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Abstract We study analytic properties of the action of PSL,(R) on spaces of
functions on the hyperbolic plane. The central role is played by principal series
representations. We describe and study a number of different models of the principal
series, some old and some new. Although these models are isomorphic, they arise
as the spaces of global sections of completely different equivariant sheaves and thus
bring out different underlying properties of the principal series.

The two standard models of the principal series are the space of eigenfunctions
of the hyperbolic Laplace operator in the hyperbolic plane (upper half-plane or disk)
and the space of hyperfunctions on the boundary of the hyperbolic plane. They are
related by a well-known integral transformation called the Poisson transformation.
We give an explicit integral formula for its inverse.

The Poisson transformation and several other properties of the principal series
become extremely simple in a new model that is defined as the space of solutions
of a certain two-by-two system of first-order differential equations. We call this the
canonical model because it gives canonical representatives for the hyperfunctions
defining one of the standard models.
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Another model, which has proved useful for establishing the relation between
Maass forms and cohomology, is in spaces of germs of eigenfunctions of the Laplace
operator near the boundary of the hyperbolic plane. We describe the properties of
this model, relate it by explicit integral transformations to the spaces of analytic
vectors in the standard models of the principal series, and use it to give an explicit
description of the space of C *°-vectors.
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e Poisson transformation ¢ Green’s function * Boundary germs ¢ Transverse
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1 Introduction

The aim of this article is to discuss some of the analytic aspects of the group
G = PSL,(R) acting on the hyperbolic plane and its boundary. Everything we
do is related in some way with the (spherical) principal series representations of the
group G.

These principal series representations are among the best known and most basic
objects of all of representation theory. In this chapter, we will review the standard
models used to realize these representations and then describe a number of new
properties and new models. Some of these are surprising and interesting in their
own right, while others have already proved useful in connection with the study of
cohomological applications of automorphic forms [2] and may potentially have
other applications in the future. The construction of new models may at first sight
seem superfluous, since by definition any two models of the same representation
are equivariantly isomorphic, but nevertheless gives new information because the
isomorphisms between the models are not trivial and also because each model
consists of the global sections of a certain G-equivariant sheaf, and these sheaves
are completely different even if they have isomorphic spaces of global sections.

The principal series representations of G are indexed by a complex number s,
called the spectral parameter, which we will always assume to have real part
between 0 and 1. (The condition Re (s) = % , corresponding to unitarizability, will
play no role in this chapter.) There are two basic realizations. One is the space ) of
functions on R with the (right) action of G given by

_ . —2s at+b _ ab
@l9W) = let +d| ‘”(ct+d) (reR, g_[cd}eG).
(1.1
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The other is the space & of functions u on $) (complex upper half-plane) satisfying
Auz) = s(1 —s)u(z) (z € 9), (1.2)

where A = — yz(% + %) (z = x + iy € 9) is the hyperbolic Laplace operator,
with the action u +— u o g. They are related by Helgason’s Poisson transform (thus
named because it is the analogue of the corresponding formula given by Poisson for
holomorphic functions)

oo

o) > P = - / o(0) R(t: )™ dr, (1.3)

—0o0

where R(t;z) = R/(z) = % forz = x+iy € Handt € C. The three main
themes of this chapter are the explicit inversion of the Poisson transformation, the
study of germs of Laplace eigenfunctions near the boundary PL, = R U {co} of £,
and the construction of a new model of the principal series representation which is

a kind of hybrid of V) and &;. We now describe each of these briefly.

e Inverse Poisson Transform. We would like to describe the inverse map of P
explicitly. The right-hand side of (1.3) can be interpreted as it stands if ¢ is a smooth
vector in ) (corresponding to a function ¢(x) which is C* on R and such that ¢ —
[1]7*@(1/1) is C*® att = 0). To get an isomorphism between ) and all of &, one
has to allow hyperfunctions ¢(t). The precise definition, which is somewhat subtle
in the model used in (1.1), will be reviewed in Sect. 2.2; for now we recall only that a
hyperfunction on I C R is represented by a holomorphic function on U ~ I, where
U is a neighborhood U of I in C with U N R = [ and where two holomorphic
functions represent the same hyperfunction if their difference is holomorphic on
all of U. We will show in Sect. 4 that for u € &, the vector P, 'u € )] can be
represented by the hyperfunction

Z ¢
o L [ o, (Rey/ree)] itz v
o) = 4% (1.4)
/z [(Re@)/Ree))' ud)]  ifC €U N

forany zo € U N $H, where H~ = {z = x +iy € C : y < 0} denotes the lower
half-plane and [u(z), v(z)] for any functions u and v in §) is the Green’s form

ou(z) w(z) _

[u(z),v(z)] = % v(z)dz + u(z) PE dz, (1.5)

which is a closed I-form if u and v both satisfy the Laplace equation (1.2).
The asymmetry in (1.4) is necessary because although R({; z)° tends to zeroatz =
and z = £, both its z-derivative at ¢ and its z-derivative at { become infinite, forcing
us to change the order of the arguments in the Green’s form in the two components of
U ~ I. That the two different-looking expressions in (1.4) are nevertheless formally
the same follows from the fact that [u, v] + [v, u] = d(uv) for any functions u and v.
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e Boundary Eigenfunctions. If one looks at known examples of solutions of
the Laplace equation (1.2), then it is very striking that many of these functions
decompose into two pieces of the form y*A(z) and y'™B(z) as z = x + iy
tends to a point of R C P, = 3§, where A(z) and B(z) are functions which
extend analytically across the boundary. For instance, the eigenfunctions that occur
as building blocks in the Fourier expansions of Maass wave forms for a Fuchsian
group G C G are the functions

koomn(2) = y'? Koip@mln|y) ™ (z=x+iy €R, n€Z n#0),
(1.6)
where K 1/5(t) is the standard K-Bessel function which decays exponentially as

t — oo. The function K, (¢) has the form L (IV (t)y—1-, (t)) with
sinmv

( 1/4)n[2n+v
L) = Z n'C(n+v)’

SO k270 (z) decomposes into two pieces of the form y* x(analytic near the bound-
ary) and y'™*x(analytic near the boundary). The same is true for other elements
of &, involving other special functions like Legendre or hypergeometric functions,
that play a role in the spectral analysis of automorphic forms. A second main theme
of this chapter is to understand this phenomenon. We will show that to every analytic
function ¢ on an interval / C R, there is a unique solution u of (1.2) in U N §)
(where U as before is a neighborhood of 7 in C with U N R = I, supposed simply
connected and sufficiently small) such that u(x +iy) = y* @(x +1iy) for an analytic
function @ on U with restriction @|; = ¢. In Sect.5 we will call the (locally
defined) map ¢ — u the transverse Poisson transform of ¢ and will show that it can
be described by both a Taylor series in y and an integral formula, the latter bearing
a striking resemblance to the original (globally defined) Poisson transform (1.3):

I'(s +3)

— 2 R =54 1.7
F()F(E) Z<p(§) (¢:z) 7 dg, (1.7

Plp)) =

where the function ¢(¢) in the integral is the unique holomorphic extension of ¢(¢)
to U and the integral is along any path connecting z and z within U. The transverse
Poisson map produces an eigenfunction u# from a real-analytic function ¢ on
an interval / in Pﬁ%. We also give an explicit integral formula representing the
holomorphic function ¢ in U in terms of the eigenfunction u = PI(/).

As an application, we will show in Sect. 7 that the elements of & corresponding
under the Poisson transform to analytic vectors in )} (which in the model (1.1) are
represented by analytic functions ¢ on R for which ¢ > [t|7*¢(1/t) is analytic
at ¢t = 0) are precisely those which have a decomposition u = PIgol + PI_S(,DZ
near the boundary of §j, where ¢; and ¢,, which are uniquely determined by u, are
analytic functions on ]P)]}Q.
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e Canonical Model. We spoke above of two realizations of the principal series,
as ) (functions on 9§ = P}) and as & (eigenfunctions of the Laplace operator
in ). In fact )} comes in many different variants, discussed in detail in Sect. 1, each
of which resolves various of the defects of the others at the expense of introducing
new ones. For instance, the “line model” (1.1) which we have been using up to
now has a very simple description of the group action but needs special treatment
of the point co € Pk, as one could already see several times in the discussion
above (e.g., in the description of smooth and analytic vectors or in the definition of
hyperfunctions). One can correct this by working on the projective rather than the
real line, but then the description of the group action becomes very messy, while
yet other models (circle model, plane model, induced representation model, ...)
have other drawbacks. In Sect. 4, we will introduce a new realization Cy (“‘canonical
model”) that has many advantages:

e All points in hyperbolic space, and all points on its boundary, are treated in an
equal way.

e The formula for the group action is very simple.

 Its objects are actual functions, not equivalence classes of functions.

e The Poisson transformation is given by an extremely simple formula.

e The canonical model C; coincides with the image of a canonical inversion
formula for the Poisson transformation.

* The elements of C; satisfy differential equations, discussed below, which lead to
a sheaf Dy that is interesting in itself.

e It uses two variables, one in §) and one in IP’(%: ~ IP’]%, and therefore gives a
natural bridge between the models of the principal series representations as
eigenfunctions in §) or as hyperfunctions in a deleted neighborhood of Py, in IP’(%:.

The elements of the space C, are precisely the functions (z, z0) — h.,(z) arising
asin (1.4) for some eigenfunctionu € &, but also have several intrinsic descriptions,
of which perhaps the most surprising is a characterization by a system of two linear
differential equations:

oh (= % - 5
0z 7—72 Z  (C-E-2)

(1.8)

where (¢, z) is a function on (]P’(lC ~ Pg) x $ which is holomorphic in the first
variable and where 71* (¢, z) := (h({,z) — h(z,2))/({ — z). The “Poisson transform”
in this model is very simple: it simply assigns to &(¢, z) the function u(z) = h(z, 2),
which turns out to be an eigenfunction of the Laplace operator. The name “canonical
model” refers to the fact that )} consists of hyperfunctions and that in C; we have
chosen a family of canonical representatives of these hyperfunctions, indexed in a
G-equivariant way by a parameter in the upper half-plane: /h(-,z) for each z €
$ is the unique representative of the hyperfunction ¢(7) R(¢;z)~* on P, which is
holomorphic in all of P{. ~ P}, and vanishes at Z.

e Further Remarks. The known or potential applications of the ideas in this chapter
are to automorphic forms in the upper half-plane. When dealing with such forms,



112 R. Bruggeman et al.

one needs to work with functions of general weight, not just weight O as considered
here. We expect that many of our results can be modified to the context of general
weights, where the group G = PSL,(R) has to be replaced by SL,(R) or its
universal covering group.

Some parts of what we do in this chapter are available in the literature, but
often in a different form or with another emphasis. In Sect.4 of the introduction
of [6], Helgason gives an overview of analysis on the upper half-plane. One finds
there the Poisson transformation; the injectivity is proved by a polar decomposition.
As far as we know, our approach in Theorem 4.2 with the Green’s form is new,
and in [2], it is an essential tool to build cocycles. Helgason gives also the asymptotic
expansion near the boundary of eigenfunctions of the Laplace operator, from which
the results in Sect. 7 may also be derived. For these asymptotic expansions, one may
also consult the work of Van den Ban and Schlichtkrull, [1]. A more detailed and
deeper discussion can be found in [7], where Section O discusses the inverse Poisson
transformation in the context of the upper half-plane. Our presentation stresses the
transverse Poisson transformation, which also seems not to have been treated in the
earlier literature and which we use in [2] to recover Maass wave forms from their
associated cocycles. Finally, the hybrid models in Sect. 4 and the related sheaf Dy
are, as far as we know, new.

This chapter ends with an appendix giving a number of explicit formulas,
including descriptions of various eigenfunctions of the Laplace operator and tables
of Poisson transforms and transverse Poisson transforms.

Acknowledgements The two first-named authors would like to thank the Max Planck Institute in
Bonn and the College de France in Paris for their repeated hospitality and for the excellent working
conditions they provided. We thank YoungJu Choie for her comments on an earlier version.

Conventions and Notations. We work with the Lie group
G = PSL,(R) = SL,(R)/{=£Id}.

We denote the element £(“/) of G by [*/]. A maximal compact subgroup is
K =PSO(Q) = {k(0) : 0 € R/nZ}, with

1.
—sin 6 cosd (1.92)

k() = |: cos 0 sin9:|'

We also use the Borel subgroup NA, with the unipotent subgroup N = {n (x)
X € R} and the torus A = {a(y) Dy > 0}, with

vy 0 _[1x
a(y) = [ o 1/@}’ n(x) = [01}' (1.9b)

We use H as a generic letter to denote the hyperbolic plane. We use two concrete
models: the unit disk D = {w e C : |w < 1} and the upper half-plane
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Hn = {z eC : Imz > 0}. We will denote by x and y the real and imaginary
parts of z € 9, respectively. The boundary dH of the hyperbolic plane is in these
models: ) = P, = RU {oo}, the real projective line, and D = S!, the unit circle.
Both models of H U dH are contained in ]P(lc, on which G acts in the upper

half-plane model by [¢ ] ] : z > %FL and in the disk model by [ ] ] : w > 245,

SV [ABY _[l—=if[a byl —iq—1
with [ 55 =, 7] 200 )7

All the representations that we discuss in the first five sections depend on s € C,
the spectral parameter; it determines the eigenvalue A; = s — 52 of the Laplace
operator A, which is given in the upper half-plane model by —y292 — y23§, and in

the disk model by —(1 — |w|?)? d,, d5. We will always assume s ¢ Z and usually
restrict to 0 < Re (s) < 1. We work with right representations of G, denoted by
Vi Vs gorvi v]g.

2 The Principal Series Representation V)

This section serves to discuss general facts concerning the principal series represen-
tation. Much of this is standard, but quite a lot of it is not, and the material presented
here will be used extensively in the rest of the chapter. We will therefore give a self-
contained and fairly detailed presentation.

The principal series representations can be realized in various ways. One of
the aims of this chapter is to gain insight by combining several of these models.
Section 2.1 gives six standard models for the continuous vectors in the principal
series representation. Section 2.2 presents the larger space of hyperfunction vectors
in some of these models, and in Sect.2.3, we discuss the isomorphism (for 0 <
Res < 1) between the principal series representations with the values s and 1 — s
of the spectral parameter.

2.1 Six Models of the Principal Series Representation

In this subsection, we look at six models to realize the principal series representation
), each of which is the most convenient in certain contexts. Three of these models
are realized on the boundary dH of the hyperbolic plane. Five of the six models
have easy algebraic isomorphisms between them. The sixth has a more subtle
isomorphism with the others but gives explicit matrix coefficients. In later sections
we will describe more models of 1} with a more complicated relation to the models
here. We also describe the duality between )} and }{_; in the various models.
(Note: We will use the letter )] somewhat loosely to denote “the” principal series
representation in a generic way or when the particular space of functions under
consideration plays no role. The spaces V> and 1} of smooth and analytic vectors,
and the spaces 1,7°° and 1™ of distributions and hyperfunctions introduced in
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Sect. 2.2, will be identified by the appropriate superscript. Other superscripts such
as P and S will be used to distinguish vectors in the different models when needed.)

o Line Model. This well-known model of the principal series consists of
complex-valued functions on R with the action of G given by

ab Zos at +b
wlzs[cd}(r) = et +d|™ ‘/’(a+d)' @.1)

Since G acts on P, = R U {oo}, and not on R, the point at infinity plays a special
role in this model, and a more correct description requires the use of a pair (¢, Poo)
of functions R — C related by ¢(t) = |t| > ¢oo(—1/t) for t # 0, and with the
right-hand side in (2.1) replaced by |ar + b| ™ goo(—<F4) if ¢z + d vanishes,
together with the obvious corresponding formula for ¢. However, we will usually
work with ¢ alone and leave the required verification at oo to the reader.

The space ))*° of smooth vectors in this model consists of the functions ¢ €

C°°(R) with an asymptotic expansion

Q1) ~ [t et (2.2)

n=0

as |[t| — oo. Similarly, we define the space V* of analytic vectors as the space
of ¢ € C*?(R) (real-analytic functions on R) for which the series appearing on the
right-hand side of (2.2) converges to ¢ () for |¢| > t, for some #y. Replacing C *°(R)
or C”?(R) by C?(R) and the expansion (2.2) with a Taylor expansion of order p,
we define the space )’ for p € N.

e Plane Model. The line model has the advantage that the action (2.1) of G is
very simple and corresponds to the standard formula for its action on the complex
upper half-plane §), but the disadvantage that we have to either cover the boundary
R U {oo} of $ by two charts and work with pairs of functions or else give a special
treatment to the point at infinity, thus breaking the inherent G-symmetry. Each of the
next five models eliminates this problem at the expense of introducing complexities
elsewhere. The first of these is the plane model, consisting of even functions @ :
R? < {0} — C satisfying ®(tx,ty) = |t| > P(x, y) for t # 0, with the action

CD‘ [CCI Zi|(x, y) = @(ax + by, cx +dy). (2.3)

The relation with the line model is
p(t) = @(@,1), Poo(t) = D(—1,1),

y[™ @(x/y) ify #0, (2.4)

)] s =
O =0 a2 g /) i x £ 0,
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and of course the elements in }?, for p =0,1,...,00,w, are now just given by
@ € CP(R?~{0}). This model has the advantage of being completely G-symmetric,
but requires functions of two variables rather than just one.

e Projective Model. If (¢, pso) represents an element of the line model, we put

(1 + 12 o(t) iff € PL~ {oo} = R,

o () = . . 1 \
(1 4+ 172 goo(—1/1) it 1 € PL~ {0} = R* U {oo}.

(2.5)

The functions ¢* form the projective model of )/, consisting of functions f on the
real projective line P, with the action

p [ab 2+ 1 S fat+b
f‘z“'[c di|(t) - ((at+b)2+(ct+d)2) f(ct+d)' 2.6

N
Note that the factor (ﬂ#) is real-analytic on the whole of P} since

(at+b)2+(ct+d)?
the factor in parentheses is analytic and strictly positive on PL. This model has the
advantage that all points of P} get equal treatment but the disadvantage that the
formula for the action is complicated and unnatural.

e Circle Model. The transformation § = ;_4_—11 in ]P’(lc , with inverse 1 = i%g , maps

PPk, isomorphically to the unit circle S' = {§ € C : |&| = 1} in C and leads to the
circle model of V} , related to the three previous models by

@S = @P(coté) = P(cosb,sinf) = |sinf]> p(coth). 2.7

The action of g = [* "] € PSLy(R) is described by g = [ 7']g[1 7']7 =[5 %]

in PSU(1, 1) C PSLy(C), with A = 1(a +ib—ic +d), B = L(a—ib—ic—d):

AE+ B
BE+ A

71 g (6) = 4 + Bl‘z“f( ) =0 @8

Since |4|> — | B|> = 1, the factor |4£ + B| is nonzero on the unit circle.

Note that in both the projective and circle models, the elements in )}* are simply
the elements of C?” (]P)ﬁa) or C”(S"), so that as vector spaces these models are
independent of s.

o Induced Representation Model. The principal series is frequently defined as the
induced representation from the Borel group NA to G of the character n(x)a(y) —
y~*, in the notation in (1.9b). (See for instance Chap. VII in [8].) This is the space
of functions F on G transforming on the right according to this character of AN,
with G acting by left translation. Identifying G/N with R? ~ {(0,0)} leads to the
plane model, via F [‘; 2] = @(a, ¢). On the other hand, the functions in the induced
representation model are determined by their values on K, leading to the relation
@5(e??) = F(k(0)) with the circle model, with k(6) as in (1.9a).
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We should warn the reader that in defining the induced representation, one
often considers functions whose restrictions to K are square integrable, obtaining
a Hilbert space isomorphic to L?(K). The action of G in this space is a bounded
representation, unitary if Res = % Since not all square integrable functions are
continuous, this Hilbert space is larger than 1. For p € N, the space of p times
differentiable vectors in this Hilbert space is larger than our R’. (It is between
i ! and ") However, 1% and ))” coincide with the spaces of infinitely-often
differentiable, respectively analytic, vectors in this Hilbert space.

e Sequence Model. We define elements e;,, € 1), n € Z, represented in our five
models as follows:

t—1\"
en(t) = 2+1)7° -, 2.9
) = @07 (557) .9
. n
el (x.y) = (x2+y2)“‘(—x 2 ) , (2.9b)
’ X +1y
r—i\"
P
e (1) = , 2.9
o = (153) .90
e, () = £ (2.9d)
- ab —fa—ic\"
emdrepr — 2+ 2\ 7S ) 2.9¢
o ([c di|) (@ +¢) a+ic (2.9¢)
Fourier expansion gives a convergent representation ¢°(§) = >, Cnesn(§) for
each element of VSO. This gives the sequence model, consisting of the sequences
of coefficients ¢ = (cy),ey - The action of G is described by ¢ — ¢ with

¢, = >, Ann(g)cy, where the matrix coefficients 4,,,(g) are given (by the
! . . ~ A B

binomial theorem) in terms of § = [ 5 7] as

2

. (2.10)

() = (A/B)™ (A/B)" Z l’l—S) (—l’l—S) ’B

|A]25 I—m/) \il—n) |4

[ > max(m,n)

which can be written in closed form in terms of hypergeometric functions as

Aman(g)
An+mém—n —s—n
‘A|2s+2m ( m—n

Ant+mpn—m —s+n
|A‘2A+2n n—m

) F(s—n,s+mim—n+1; §|2) ifm > n,

A

%\2) ifn>m.
(2.11)

The description of the smooth and analytic vectors is easy in the sequence model:

) F(s+n,s—m;n—m+1;

Ve = {(Cn) Dep = O(e_”"") for some a > O},

NV ={(cy) : ca =0((1+ |n])7¢) foralla € R}. (2.12)
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The precise description of )’ for finite p € N is less obvious in this model, but
at least we have (c,) € W = ¢, = o(|n|™") as |n| — oo, and, conversely,
¢, = O(|n|™") with p > p + 1 implies (c,) € K.

e Duality. There is a duality between })* and % , given in the six models by the
formulas

1
(p.¥) = = /<p(t)1/f(t)dt, (2.13a)
T JR
2
(0,¥) = % @(cos 6, sin0) ¥(cos b, sin 0) d6, (2.13b)
0
P P\ _ l/ P P dt
lony) = — Pﬁ;p OV (2.13¢)
1 d
W = 5= [ Feve T @.13)
i Jgi £
T do
(F,F) = / F (k) F(k©) (2.13¢)
0
(e.d) = > cudy. (2.13f)
This bilinear form on ){0 X VIO_S is G-invariant:
(plas g V-2 8) = (9. ¥) (g €G). (2.14)
Furthermore we have forn,m € 7Z:
(el—s,nves,m> = 8n,—m- (215)

e Topology. The natural topology of ¥} with p € NU {co} is given by seminorms
which we define with use of the action ¢ — ¢|W = d%qo|efw‘t=0 where W =

((1) _(1)) is in the Lie algebra. The differential operator W is given by 2if 0 in the
circle model, by (1 4 ¢?) 9, in the projective model, and by (1 + x?) 9, + 2sx in the
line model. For p € N, the space ¥ is a Banach space with norm equal to the sum

over j =0, ..., p of the seminorms
loll; = sup [o|W/ (x)]. (2.16)
X€H

The collection of all seminorms || - ||;, j € N, gives the natural topology of ) =
N peN Y”. In Sect. 2.2 we shall discuss the natural topology on V).

Although we have strict inclusions Y>*° C --- C VW' c VW all these
representation spaces of G are irreducible as topological G-representations due to
our standing assumptions 0 < Res < 1, which implies s ¢ Z.
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o Sheaf Aspects. In the line model, the projective model, and the circle model, we
can extend the definition of the G-equivariant spaces WP for p=0,1,...,00,w of
functions on 0H to G-equivariant sheaves on dH. For instance, in the circle model,
we can define V*(I) for any open subset I C S! as the space of real-analytic
functions on /. The action of G induces linear maps f +— f |g, from }}“(/) to
V2 (g~'1), so that I + V®(I) is a G-equivariant sheaf on the G-space S' whose
space of global sections is the representation 1) of G. For the line model and the
projective model, we proceed similarly.

2.2 Hyperfunctions

So far we have considered )] as a space of functions. We now want to include
generalized functions: distributions and hyperfunctions. We shall be most interested
in hyperfunctions on dH, in the projective model and the circle model.

e VW and Holomorphic Functions. Before we discuss hyperfunctions, let us first
consider *. In the circle model, it is the space C*(S') of real-analytic functions
on S', with the action (2.8). Since the restriction of a holomorphic function on a
neighborhood of S! in C to S! is real-analytic, and since every real-analytic function
on S! is such a restriction, C“(S!) can be identified with the space h_rn) O(U), where

U in the inductive limit runs over all open neighborhoods of S! and O(U) denotes
the space of holomorphic functions on U'.

e Hyperfunctions. We can also consider the space H(S!) = 1lim O(U ~ S")
—

(with U running over the same sets as before) of germs of holomorphic functions
in deleted neighborhoods of S! in C. The space C ~*(S') of hyperfunctions on S! is
the quotient in the exact sequence

0— C*S"Y — H(S') — ¢S — 0; (2.17)

see, e.g., Sect. 1.1 of [11]. So C™*(S') = lim O(U \ S")/O(U) where U is as
—
U
above and where restriction gives an injective map O(U) — O(U ~ S!). Actually,
the quotient O(U ~S')/O(U) does not depend on the choice of U, so it gives a
model for C~(S') for any choice of U. Intuitively, a hyperfunction is the jump
across S' of a holomorphic function on U ~ S'.

e Embedding. The image of C*(S') in C~“(S') in (2.17) is of course zero. There
is an embedding C*(S') — C~(S') induced by

(p € OU)) > (¢ € H(SY)), @1(w) = o) ifwel wl <1, g
0 ifweU, |w >1.
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e Pairing. We next define a pairing between hyperfunctions and analytic functions
on S'. We begin with a pairing on H(S') x H(S'). Let ¢, ¥ € H(S') be represented
by f. h € O(U~S'") for some U. Let C4 and C— be closed curves in U ~ S!
which are small deformations of S! to the inside and outside, respectively, traversed
in the positive direction, e.g., C+ = {|w| = e¥*} with ¢ sufficiently small. Then the

integral
o) = 5 ([ [ ) ronon < @.19)

is independent of the choice of the contours C+ and of the neighborhood U.
Moreover, if f and & are both in O(U), then Cauchy’s theorem gives (¢, ) =0
Hence, if v € C©“(S'), then the right-hand side of (2.19) depends only on
the image (also denoted ¢) of ¢ in C~“(S') and we get an induced pairing
C~(S") x C*(S') — C, which we also denote by (-, -). Similarly, (-, -) gives
a pairing C*(S') x C~*(S') — C. Finally, if ¢ belongs to the space C*(S'),
embedded into C~“(S!) as explained in the preceding paragraph, then it is easily
seen that (@, V) is the same as the value of the pairing C“(S') x C*(S') — C
already defined in (2.13d).

o Group Action. We now define the action of G. We had identified 1} in the circle
model with C ©(S') together with the action (2.8) of G = PSL,(R) =~ PSU(1, 1).
For g = [ ] and £ € S', we have |A£ + B|> = (4 + BE~")(A + BE), which is
holomorphlc and takes values near the positive real axis for £ close to S! (because
|A| > |B]). So if we rewrite the automorphy factor in (2.8) as [(/[ + BE)(A +
B/ é)]_s, then we see that it extends to a single-valued and holomorphic function
on a neighborhood of S' (in fact, outside a path from 0 to —B/A and a path from oo
to —A/B). In other words, in the description of N as lln) O(U), the G-action

becomes
¢lasg W) = [(A+ Bw)(A+ B/w)] " ¢(gw). (2.20)

This description makes sense on O(U ~ S') and hence also on H(S") and C ~*(S").
We define )™ as C~“(S!) together with this G-action. It is then easy to check
that the embedding ) C 1)~ induced by the embedding C*°(S') c C~(S")
described above is G-equivariant and also that the pairing (2.19) satisfies (2.14) and
hence defines an equivariant pairing 1~ x Y®  — C extending the pairing (2.13d)
on V¥ x Y® .

Note also that if we denote by H; the space H(S') equipped with the action
(2.20), then (2.17) becomes a short exact sequence

0— Y —H, -1V —0 (2.21)

of G-modules and (2.19) defines an equivariant pairing Hy x H;—_; — C.
The equivariant duality identifies }J™* with a space of linear forms on 1 ,
namely (in the circle model), the space of all linear forms that are continuous for the
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inductive limit topology on C ~®(S') induced by the topologies on the spaces O(U)
given by supremum norms on annuli 1 — ¢ < |w| < 1 + ¢. Similarly, the space
)~ of distributional vectors in )} can be defined in the circle model as the space
of linear forms on ) that are continuous for the topology with supremum norms
of all derivatives as its set of seminorms. We thus have an increasing sequence of
spaces:

1 (analytic functions) C V*° (smooth functions) C ---
(2.22)
C V)~ (distributions) C V™ (hyperfunctions),

where all of the inclusions commute with the action of G.

e Hyperfunctions in Other Models. The descriptions of the spaces )~ and 1J™°
in the projective model are similar. The space of hyperfunctions C ~ (Py,) is defined
similarly to (2.17), where we now let U run through neighborhoods of ]P)]}Q in ]P’(lc.
The formula (2.6) describing the action of G on functions on P]ﬁ makes sense on a
neighborhood of P]ﬁ in ]P)(lc and can be rewritten

p[ab 2 s T—i s T+i s at + b
f|2“'[cd}(r) = (@+) (r—g‘l(i)) (r—g_l(—i)) f(cr+d)'

(2.23)

where the automorphy factor now makes sense and is holomorphic and single-
valued outside a path from i to g~! (i) and a path from —i to g~!(—i). The duality in
this model is given by

1 dr
e = ([ - )emvor i 2.24)

where the contour C runs in the upper half-plane §3, slightly above the real axis in
the positive direction, and returns along a wide half circle in the positive direction
and the contour C_ is defined similarly, but in the lower half-plane $H~, going
clockwise. Everything else goes through exactly as before.

The kernel function

(E+i)(x—i)
k(1) = ——F— 2.25
€0 = 3 g 2.25)
can be used to obtain a representative in H; (in the projective model) for any o €
Y ~*: if we think of « as a linear form on W, then

g = (k@ ). ) (2.26)

is a holomorphic function on ]P’éz\l% such that 7 (g) = «. Cauchy’s theorem implies
that g and any representative ¥ € H; of « differ by a holomorphic function on a
neighborhood of ]P)ﬁa- The particular representative g has the nice properties of being
holomorphic on £ U $~ and being normalized by g(—i) = 0.
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If one wants to handle hyperfunctions in the line model, one has to use
both hyperfunctions ¢ and @oo on R, glued by ¢(z) = (t2) " ¢oo(—1/7) on
neighborhoods of (0, o) and (—o0, 0). For instance, for Res < %, the linear form
¢ = %ffzo @(t)dr on V) defines a distribution 1; € 1)™°°. In Sect. A.2 we use
(2.26) to describe 1; € ™ in the line model. The plane model seems not to be
convenient for working with hyperfunctions.

Finally, in the sequence model, there is the advantage that one can describe all
four of the spaces in (2.22) very easily since the descriptions in (2.12) applied to
Y and Y lead immediately to the descriptions

VS_“) = {(Cn) ey = O(ea\n\) forall a > 0},

WV ={(cy) : ¢, =0((1+ |n|)?) for some a € R} (2.27)

S

of their dual spaces, where a sequence ¢ corresponds to the hyperfunction repre-
sented by the function which is Y, c,w" forl —e < |w| < land =), _,c,n"
for 1 < |w| < 1 + &; the action of G still makes sense here because the matrix
coefficients as given in (2.11) decay exponentially (like (|B|/|A])"") as [n] — oo
for any g € G. Thus in the sequence model, the four spaces in (2.22) correspond
to sequences {c, } of complex numbers having exponential decay, superpolynomial
decay, polynomial growth, or subexponential growth, respectively. (See (2.12)
and (2.27).)

2.3 The Intertwining Map V,"° — V_¥

The representations )} and }J_%, with the same eigenvalue s(1 —s) for the Casimir
operator, are not only dual to one another but are also isomorphic (for s & Z).
Suppose first that F € C”(G) is in the induced representation model of R” with
Res > % and p = 0,1,...,00. With n(x) = [(1)’1‘] as in (1.9b) and w = [(1)_(1)],
we define

o 00 e L TE)r(G)
L@ = | Fneomar ) = Bls.3) = Tath
(2.28)

where the gamma factor b(s — %) is a normalization, the reason of which will

become clear later. The shift over % is chosen since we will meet the same gamma
factor unshifted in Sect. 5. From n(x)w € k(—arccotx)a(v 1+ xz) N, we find

—1 oo
LF(g) = b (s - %) / F (gk(—arccotx)) (1 + x*)™ dx,

[e.]
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which shows that the integral converges absolutely for Res > % By
differentiating under the integral in (2.28), we see that I(F € C?(G). From
a(y)n(x)w = n(yx)wa(y)~", it follows that I, F(ga(y)n(x')) = y*~'F(g). The
action of G in the induced representation model is by left translation; hence, I is
an intertwining operator ' — Vlf S

(I;F) |l1—s g1 = L;(F |5 1) for g, € G. (2.29)
To describe I, in the plane model, we choose for a given (£,7) € R? ~ {0} the

element g¢, = [i _E’}/(git;j)] € G to obtain

(-3) o)) e

’ ) Oo® 1 d 2.30
(5—5) /_oo (x(é,n)+m(—m§)) x. (2.30a)

I;@(§. 1)

By relatively straightforward computations, we find that the formulas for /; in the
other models (still for Re s > %) are given by

-1 00

Lo(l) = b (s — %) /_ |t — x|* 72 p(x) dx, (2.30b)
o ! t-x* 7 s dx
21—25 1._ ] ] d

Le°®) = Z—b(e=5)" [ a—gmra—wevm L @

Lo, = & Fd=s+n) = A=Hu (2.30e)

ri—s)y I'(s+n) ($)n|

with in the last line the Pochhammer symbol given by (a), = ]_[lj;lo(a + j) for
k > 1and (a)o = 1. The factor (1 —s)},/(5)},| is holomorphicon 0 < Res < 1.
Hence, Ie;, is well defined for these values of the spectral parameter. The
polynomial growth of the factor shows that I; extends to a map I, : ¥ — Vlf ; for
0 <Res < 1for p = w, 00, —00, —w, but for finite p, we have only IV C Vl‘:l
if 0 < Res < 1. See the characterizations (2.12) and (2.27). The intertwining
property (2.29) extends holomorphically. The choice of the normalization factor in
(2.28) implies that I;_; o I; = Id, as is more easily seen from formula (2.30e). From
this formula we also see that (/1_,¢, ;o) = (¢, a) forp € Y, a € V~* and that
I =1d.
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For ¢ € ¥, p > 1, we have in the line model ¢’(x) = O(|x|™2*"") as |x| — oo.
For Re s > %, integration by parts gives
—I'(s) * 25—1
L) = —/ sign (t — x) |t — x|* 7" ¢’(x) dx, (2.31)
2Tl (s+ 1) Jowo
and this now defines /;¢ for Re s > 0 and shows that ;' € )° .
We can describe the operator I, : V™ — YZ¢ on the representatives of
hyperfunctions in H, by sending a Laurent series ), ., b,w" on an annulus o <

[wl < BinC*to )" o, (l(;;)"”' b,w" converging on the same annulus. One can check
that this gives an intertwining operator /; : H; — H,_,. (Since G is connected, it
suffices to check this for generators of the Lie algebra, for which the action on the

e, is relatively simple. See Sect. A.5.)

3 Laplace Eigenfunctions and the Poisson Transformation

The principal series representations can also be realized as the space of eigenfunc-
tions of the Laplace operator A in the hyperbolic plane H. This model has several
advantages: the action of G involves no automorphy factor at all; the model does not
give a preferential treatment to any point; all vectors correspond to actual functions,
with no need to work with distributions or hyperfunctions; and the values s and 1 —s
of the spectral parameter give the same space. The isomorphism from the models
on the boundary used so far to the hyperbolic plane model is given by a simple
integral transform (Poisson map). Before discussing this transformation in Sect. 3.3,
we consider in Sect. 3.1 eigenfunctions of the Laplace operator on hyperbolic space
and discuss in Sect. 3.2 the Green’s form already used in [10].

Finally, in Sect.3.4, we consider second-order eigenfunctions, i.e., functions

on H that are annihilated by (A — s(1 — s))z.

3.1 The Space £; and Some of Its Elements

We use H as general notation for the hyperbolic 2-space. For computations, it is
convenient to work in a realization of H. In this chapter, we use the realization as
the complex upper half-plane and a realization as the complex unit disk.

The upper half-plane model of His $§ = {z = x + iy : y > 0}, with boundary
.. Lengths of curves in §) are determined by integration of y~!/(dx)? + (dy)2.
To this metric are associated the Laplace operator A = —y*(d2 +33) = (z—2)%9.0:
and the volume element du = %. The hyperbolic distance d(z, z') between two
points z, 7 € H is given in the upper half-plane model by

|z —Z|?
2yy’

coshd®(z,7) = p(z.7) = 1 + (z.7 € 9). (3.1)
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The isometry group of §j is the group G = PSL,(R), acting as usual by fractional
linear transformations z + Z‘ZZIS The subgroup leaving fixed i is K = PSO(2).
So G/ K=9$. The action of G leaves invariant the metric and the volume element
and commutes with A.

We use also the disk model D = {w € C : |w| < 1} of H, with boundary S'.
It is related to the upper half-plane model by w = j—:l, 7z = i7—=. The corresponding

1—w
24/ (dRew)2+(dImw)?

= , and the Laplace operator A = —(1 — |W|2)23w3@--
The formula for hyperbolic distance becomes

metric is

2lw —w'|?
(L=1wP?)(1—w?)

Here the group of isometries, still denoted G, is the group PSU(1, 1) of matrices

coshd®(w,w’) = p°(w,w') = 1 + (3.2)

[4%] (4, B e C, |A]> — |B]*> = 1), again acting via fractional linear
transformations.
By & we denote the space of solutions of Au = A;u in H, where A; =

s(1—s). Since A is an elliptic differential operator with real-analytic coefficients, all
elements of & are real-analytic functions. The group G acts by (u|g)(z) = u(gz).
(We will use z to denote the coordinate in both §) and D when we make statements
applying to both models of H.) Obviously, & = &,—,. If U is an open subset of H,
we denote by & (U) the space of solutions of Au = A;uon U.

There are a number of special elements of & which we will use in the sequel.
Each of these elements is invariant or transforms with some character under the
action of a one-parameter subgroup H C G. The simplest are z = x + iy — y°*

and z > y'™*, which are invariant under N = {[{ 7] : x € R}, and transform

according to a character of A = {[*{f . /«Oﬁ] : y > 0}. More generally, the

functions in & transforming according to nontrivial characters of N are written
in terms of Bessel functions. These are important in describing Maass forms with
respect to a discrete subgroup of G that contains [(l) i] The functions transforming
according to a character of A are described in terms of hypergeometric functions.
(The details, and properties of all special functions used, are given in Sect. A.1.)

If we choose the subgroup H to be K = PSO(2), we are led to the functions P, ,

described in the disk model with polar coordinates w = re'? by

1472

Ps,n(reio) = Pszl(m

) "’ (nen), (3.3)
where P | denotes the Legendre function of the first kind. Note the shift of the
spectral parameter in P" | and F,. If n = 0, one usually writes F—; instead of
PSO_l , but to avoid confusion, we will not omit the 0 in £ .

Every function in & can be described in terms of the P ,: if we write the
Fourier expansion of u € & as u(re'’) = > ez An (r)e"?, then A, (r) has the

2 .
1:’.2) for some a, € C, so we have an expansion

n
forma, P, (1
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uw) = Y ay Ry(w),  ay €C. (3.4)

nez

Sometimes it will be convenient to consider also subgroups of G conjugate to K.

: A — [V XY
For a given 7 = x' + iy’ € §, we choose gz = [V} 1/¢7] € NA C G to
obtain an automorphism of $) sending i to 7. If we combine this with our standard
identification of $) and D, we get a new identification sending the chosen point z’ to

0 € D, and the function F;, on D becomes the following function on ) x §) :

/
Psa (2, Z/) = B (Z Z—/) 3.5)
-z
This definition of P, depends in general on the choice of g in the coset g/ K.
In the case n = 0, the choice has no influence, and we obtain the very important
point-pair invariant p(z,7'), defined, in either the disk or the upper half-plane, by
the formula

ps(z7) == pso(z?d) = Poi(p"(z?)) (27 inH), (3.6)

with the argument p(z,7') = coshd(z, 7') of the Legendre function P,_; = P°
being given algebraically in terms of the coordinates of z and z’ by formulas (3.1)
or (3.2), respectively. This function is defined on the product H x H, is invariant
with respect to the diagonal action of G on this product, and satisfies the Laplace
equation with respect to each variable separately.

The Legendre function QF_, in (A.8) in the appendix provides elements of
&M~ {0}):

. 1+r2\ .
Quu(re®) = Q‘:’_l(%) " (e 37
—r
The corresponding point-pair invariant with Q°_, = Q;_,
4:(z.7) = 0s1(p"(z.7)) (.2 inH) (3.8)

is the well-known Green’s function for A (integral kernel function of (A — A,)™"),

has a logarithmic singularity as z — Z/, and grows like the sth power of the

Euclidean distance (in the disk model) from z to the boundary as z — JH with

7 fixed. This latter property will be crucial in Sect.5, where we will study a space

W of germs of eigenfunctions near dH having precisely this boundary behavior.
The eigenfunction R(z; -)°, given in the $-model by

s

R(t:2) = |z—yz|2s (t€R, z=x+iy € ), (3.9)

is the image under the action of [_(1) 1] € G on the eigenfunction z +— y°. This

function was already used extensively in [10] (Sects.2 and 5 of Chap.II). For fixed
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t € R, the functions R(¢; -)* and R(t; -)'™* are both in &. For fixed z € §, we
have R(-;z)® in the line model of ). The basic invariance property

, , , ab
et +d|"PR(gt:g2)° = R(t.2)° (g = [C d} € G) (3.10)
may be viewed as the statement that (z,z) — R(t;z)* belongs to (V* ® &)C. The
function R(-; -)'™* is the kernel function of the Poisson transform in Sect. 3.3.
We may allow ¢ to move off R in such a way that R(t, z)* becomes holomorphic
in this variable:

R(:z)f = (teC, z=x+1iy € 9). (3.11)

(T=e=3)
-2 -2
However, this not only has singularities at z = ¢ or z = E but is also many-valued.
To make a well-defined function, we have to choose a path C from ¢ to ¢, in which
case R(C; -)* becomes single-valued on U = $ ~ C and lies in & (U). (Cf. [10],
Chap.1I, Sect. 1.) Sometimes it is convenient to write Rg instead of R(¢; -)*.
Occasionally, we will choose other branches of the multivalued function
R(-; -)°. We have
s s é‘ - z s s S é‘ —< s
:R(:2) = — —R(&:2)'.  :R(G2) = ——— —= R(:2),
1=z8-z z2—-2§-2
(3.12)

provided we use the same branch on the left and the right.

3.2 The Green’s Form and a Cauchy Formula for &,

Next we recall the bracket operation from [10], which associates to a pair of
eigenfunctions of A with the same eigenvalue' a closed 1-form (Green’s form).
It comes in two versions, differing by an exact form:

[u,v] = u,vdz + uv:dz, {u,v} = 2ifu,v] — i d(uv). (3.13)

Because [u|g, v|g] = [u,v] o g for any locally defined holomorphic map g (cf. [10],
lemma in Sect.2 of Chap.II), these formulas make sense and define the same

'More generally, for any differentiable functions « and v on H we have
duvy = 2idu,v] = ((Au) v—u (Av)) dpe,

where djt (= y~2dx dy in the upper half-plane model) is the invariant measure in H.
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1-form whether we use the $)- or D-model of Hl, and define G-equivariant maps
E x & — V(H) (or E((U) x E(U) — £2'(U) for any open subset U of H). The
{u, v}-version of the bracket, which is antisymmetric, is given in (x, y)-coordinates
z=x+1iy € Hby
U iy Uy
{u, vy = [vvev, (3.14)
0dx dy

and in (r, #)-coordinates w = rel’ € D by

uru ug
{u,vi = |v rv, vg|. (3.15)
0dr/r do

We can apply the Green’s form in particular to any two of the special functions
discussed above, and in some cases, the resulting closed form can be written as
the total differential of an explicit function. A trivial example is 2i[y*, y'™] =
sdz— (1 —s)dz, {y*, y'™*} = (25 — 1) dx. A less obvious example is
1 d((Z—a)(z—b)

a z—

[R). Ry”1x) = - z R;(Z)R};S(z)), (3.16)

where a and b are either distinct real numbers or distinct complex numbers and
z & {a,b,a,b}. On both sides we take the same branches of R} and R;_“'. This
formula, which can be verified by direct computation, can be used to prove the
Poisson inversion formula discussed below (cf. Remark 1, Sect.4.2). Some other
examples are given in Sect. A.4.

We can also consider the brackets of any function u € & with the point-pair
invariants p;(z,7') or ¢s(z,7'). The latter is especially useful since it gives us the
following &;-analogue of Cauchy’s formula:

Theorem 3.1. Let C be a piecewise smooth simple closed curve in H and u an
element of E(U), where U C H is some open set containing C and its interior.
Then forw € H ~ C, we have

1 u(w) if w is inside C,
—./ [, gs(- . w)] = W) f ' , (3.17)
1 Jc 0 if wisoutside C,

where the curve C is traversed is the positive direction.

Proof. Since [u, g;(-,w)] is a closed form, the value of the integral in (3.17) does
not change if we deform the path C, so long as we avoid the point w where the
form becomes singular. The vanishing of the integral when w is outside of C is
therefore clear, since we can simply contract C to a point. If w is inside C, then we
can deform C to a small hyperbolic circle around w. We can use the G-equivariance
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to put w = 0, so that this hyperbolic circle is also a Euclidean one, say z = ee'’. We
can also replace [u, g;( -, 0)] by {u, gs(-,0)}/2i, since their difference is exact. From
(3.15) and the asymptotic result (A.11), we find that the closed form —5{u, ¢,(-,0)}

equals (%M(O) + O(elog 5)) dé on the circle. The result follows. |

The method of the proof just given can also be used to check that for a contour
C in D encircling 0 once in positive direction, we have for alln € Z

/[Ps,n, Osm] = wi(=1)" 8, —m. (3.18)
c

Combining this formula with the expansion (3.4), we arrive at the following
generalization of the standard formula for the Taylor expansion of holomorphic
functions:

Proposition 3.2. For eachu € &;:

—1)"
uw) = Yy (m) Py (w) /C [it, Qs —n]. (3.19)

nez

If u € £&(A), where A is some annulus of the form r; < |w| < r, in D, there is a
more complicated expansion of the form

uw) =Y (anPn(w) + by Qun(w)). (3.20)

nez

For fixed w' € I, the function w > ¢;(w, w’) has only one singularity, at w = w'.
So both on the disk |w| < |w| and on the annulus |w| > |w/| the function g, (-, w’)
has a polar Fourier expansion, which can be given explicitly:

Proposition 3.3. For w,w' € D with |w| # |W'|:

2onez(=D)" Bn W) Quan(w) if ] > W],

(3.21)
Yonez(D" By (W) Qs (W) if [w] < [W/].

gs(w,w') =

Proof. Apply (3.20) to ¢,(-,w’) on the annulus 4 = {w € D : |w'| < |w|}. Since
gs(-,w) represents an element of W, the expansion becomes

g, w') = Y ba(W) Q) (wl > W)).
nez
From ¢,(e’w, e?w’) = g,(w,w’), it follows that b, (ew’) = e "%h,(w). Forw €
D ~ {0}, we have g;(w, -) € &(B) with B = {w € D : |w| < |w|}. Then
the coefficients b, are also in &(B). Since O, has a singularity at 0 € D, the
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coefficients have the form b,(w') = ¢, B.—,(w'). Now we apply (3.17) and (3.18)
to obtain with a path C inside the region A:

1 1
Bm (W/) = [Psm . qs(-, W/)] = — Z Cn Bs—n (W/) / [Psm ) Qs,n]
Tl Jc Tl C
ne€z
= Com Bym (W/) (=™
Hence, ¢,, = (—1)", and the proposition follows, with the symmetry of g;. |

3.3 The Poisson Transformation

There is a well-known isomorphism Py from ;™ to &. This enables us to view
& as a model of the principal series. We first describe Ps abstractly and then
more explicitly in various models of 1)~ In Sect. 4.2 we will describe the inverse
isomorphism from & to ).

Fora € " and g € G

(P)(g) = (alos g, e1—50) = (o, e1—50lr—2s8 ") (3.22)

describes a function on G that is K-invariant on the right. Hence, it is a function
on G/K = H. The center of the enveloping algebra is generated by the Casimir
operator. It gives rise to a differential operator on G that gives, suitably normalized,
the Laplace operator A on the right-K-invariant functions. Since the Casimir
operator acts on _¢ as multiplication by Ay = (1 — s)s, the function P« defines
an element of &. We write in the upper half-plane model

Pa(z) = Psa(n(x)a(y)), (3.23)

with the notation in (1.9b). The definition in (3.22) implies that the Poisson
transformation is G-equivariant:

Pi(af2s8)(2) = Psa(gz). (3.24)

The fact that the intertwining operator I, : V)™“ — YZ¢ preserves the duality

implies that the following diagram commutes:

Iy 55 = 81—5 (325)
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Ifa e ]{0, we can describe Py by a simple integral formula. In the line model,
this takes the form

1 [ _
PSa(Z) = (es,o,a|23n(x)a(y)> = ;/_ e5,0|2_25 (n(x)a(y)) I(I)Ol(l‘) dr
00 ) s—1 o
= %/_OO y_l+s ((I_Tx)—‘,—l) a(t)ydt = %/;oo R(IQZ)I_SO[([)dI,

(3.26)

so that R'™* is the kernel of the Poisson transformation in the line model. If « is a
hyperfunction, the pairing in (3.22) has to be interpreted as discussed in Sect. 2.2 as
the difference of two integrals over contours close to and on opposite sides of dH
((2.19) in the circle model), with R(-;z)!™* extended analytically to a neighborhood
of oHL

In the projective model and the circle model, we find

Pa(z) = (R(-:2)'"".a), (3.27a)

with R(-;z)'™ in the various models given by

P e e $—1 H(Hi)“ 3 (R(z;z))l‘s
R ($:9) ™ =y (C—z) t: = (zen . (3.27b)

Sege = _— 1_|W|2 o
wew™ = (om0 —vg) (279

By R(-, ')1_5, without superscript on the R, we denote the Poisson kernel in the
line model (as in (3.11)). We take the branch for which arg R(¢;z) = 0 for ¢ on R.
In the circle model, we have for each o € )J™*:

O e ds
Pot) = E ([ - [ )e@ @ -wpa—s0) .2

with C; and C_ as in (2.19), adapted to the domain of the representative g € H; of
the hyperfunction o.

For the values of s we are interested in, Helgason has shown that the Poisson
transformation is an isomorphism:

Theorem 3.4. (Theorem 4.3 in [5]). The Poisson map P, : V,~* — &; is a bijection
for0 <Res < 1.

The usual proof of this uses the K-Fourier expansion, where K (2 PSO(2)) is the
standard maximal compact subgroup of G. One first checks by explicit integration
the formula

I'(s)

Pv ssm = )" — §,m
e = GO R B

(n € 7). (3.29)
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with e, ,, and F;,, as defined in (2.9d) and (3.3) respectively. (Indeed, with (3.27b)
and (3.28), we obtain the Poisson integral

(1—|w)'
2mi

s—1 d_ég.

Piesm(w) — /m:1 £ ((1=w/e)1 = 76)" ' T

Since |w/&| < 1 and |[w&| < 1, this leads to the expansion

appy Y e

n1! n2!
n1,n2=>0,—n+ny=m

s)\m\ Z (1=s), (1—s + |m|)n |W|2n . wh ifm >0,
(14 |m|),n! w if m < 0.

= (=™
This is (=1)"I"(s)/ (s + m) times P;,, as defined in (A.8) and (A.9).) Then one
uses the fact that the elements of )™ are given by sums ) _ ¢, e, , with coefficients
¢y, of subexponential growth ((2.27)) and shows that the coefficients in the expansion
(3.19) also have subexponential growth for each u € &;. This is the analogue of
the fact that a holomorphic function in the unit disk has Taylor coefficients at 0
of subexponential growth and can be proved the same way. An alternative proof of
Theorem 3.4 will follow from the results of Sect. 4.2, where we shall give an explicit
inverse map for P;.

Thus, & is a model of the principal series representation )~ *, and also of =% ,
that does not change under the transformation s — 1 — s of the spectral parameter.
It is completely G-equivariant. The action of G is simply givenby u| g = uo g.

As discussed in Sect. 1, the space 1} (hyperfunctions on 0H) contains three
canonical subspaces 1)~ *° (distributions), *° (smooth functions), and }* (analytic
functions on dH), and we can ask whether there is an intrinsic characterization
of the corresponding subspaces £,°°, £, and £ of &. For £, °°, the answer is
simple and depends only on the asymptotic properties of the eigenfunctions near
the boundary, namely,

Theorem 3.5. ([9], Theorems 4.1 and 5.3) Let 0 < Res < 1. The space £;° =
P, (VS_OO) consists of the functions in & having at most polynomial growth near the
boundary.

(“At most polynomial growth near the boundary” means < (1 — |w|2)_c for some
C in the disk model and <« ((|z + i|2) / y)c in the upper half-plane model.)

The corresponding theorems for the spaces £° and £, which do not only

involve estimates of the speed of growth of functions near oH, are considerably
more complicated. We will return to the description of these spaces in Sect. 7.

e FExplicit Examples. One example is given in (3.29). Another example is

Pidso0(z) = RY(00;2)'™ = y'™, (3.30)
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where 8, € W7 is the distribution associating to ¢ € Y%, in the projective
model, its value at co. As a third example, we consider the element R(-;z9)° €
1. For convenience we use the circle model. Then a(w, w') = (F’SRS(- v )“)(w)
satisfies the relation a(gw’, gw) = a(w',w) for all g € G, by equivariance of
the Poisson transform and of the function R®. So a is a point-pair invariant. Since
a(w, -) € &, it has to be a multiple of p;. We compute the factor by taking w' =
w=0¢cD:

1 d
PRC00) = — [ RE0 e T
271 Jgi &
1 d
2mi Jgi &
Thus we have
PiR(-:w) (w) = p(W.w). (3.31)
With (3.25) and the fact that P_; o = P, this implies
I, R(;w)* = R(-;w)' ™. (3.32)

3.4 Second-Order Eigenfunctions

The Poisson transformation allows us to prove results concerning the space

&l = Ker ((A — 1) C®(H) — C“(H)). (3.33)
Proposition 3.6. The following sequence is exact:
08 & e o (3.34)

Proof. Only the surjectivity of £/ — & is not immediately clear.

Let 0 < Resp < 1. Suppose we have a family s — f; on a neighborhood of sy
such that f; € & for all s near s¢, and suppose that this family is C* in (s, z) and
holomorphic in s. Then

(A - AS())(Bsfv|s=s0) - (1 - 2S0)f¥0 =0.

For 5o # %, this gives an element of £ that is mapped to f;, by A — Ay, If 50 =
we replace f; by %( fs + fi—s) and differentiate twice.

1
2°

To produce such a family, we use the Poisson transformation. By Theorem 3.4,
there is aunique o € 17 such that f =Py a. We fix a representative g € O(U ~ShH
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of o in the circle model, which represents a hyperfunction «; for all s € C.
(The projective model works as well.) We put

Ao = Pt = o ([ = [ ) R e $
e

The contours C4 and C_ have to be adapted to w but can stay the same when w
varies through a compact subset of 5. Differentiating this family provides us with a
lift of f in & . |

This proof gives an explicit element

3 _ __1 _ S¢s. . N1—so Sy, %
Fow) = m(/c ) /C )R@,w) (og G 5©) (339

of & with (A — As)f = (1 —2s) f. Note that for s = %, the function f belongs to

&1/2, giving an interesting map &2 — &1/2. As an example, if f(z) = y'/%, then

we can take g(¢) = % as the representative of the hyperfunction @ = §/2.00 With

P12 = h, and by deforming the contours C and C_ into one circle |{| = R with
R large, we obtain (in the projective model)

Foy - —L P(s. 1/2( 2 +1 )£ d¢
N (s TR
= —y"?logy. (3.36)

In part C of Table A.1 in Sect. A.2, we describe the distribution in 1)17200 correspond-
ing to this element of &/ .

Theorem 3.5 shows that the subspace £ °° corresponding to 1)~°° under the
Poisson transformation is the space of elements of & with polynomial growth.
We define (€)™ as the subspace of &, of elements with polynomial growth.
The following proposition, including the somewhat technical second statement, is
needed in Chap. V of [2].

Proposition 3.7. The sequence

A_/M

0—E® 5 (E)y® B> 50 (3.37)

is exact. All derivatives B{VBQ Sw), I,m >0, of f € (E))™°, in the disk model,
have polynomial growth.

Proof. We use the construction in the proof of Proposition 3.6. We use

fiw) = (R°(5w)' 7 a),
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with & € V™. For { € S!' we obtain by differentiating the expression for R®
in (3.27¢)

(€00 0,0 ROEw)'™ o (1= )/,

With the seminorm || - ||, in (2.16), we can reformulate this as
180,02 REC W) ™l g (1= w77 (3.38)

Since « determines a continuous linear form on R for some p € N, this gives an
estimate

ai»agf(w) Lwlm (1- |W|2)Res—1_1_m_p

for f € £,°°.

Differentiating RS(-;w)!™ once or twice with respect to s multiplies the
estimate in (3.38) with at most a factor ilog(l — |w|2)|2. The lift f € &, of fy
in the proof of Proposition 3.6 satisfies

A f (W) Kaame (1— |wPResi=lmm=p=e

foreach ¢ > 0. |

4 Hybrid Models for the Principal Series Representation

In this section we introduce the canonical model of the principal series, discussed
in the introduction. In Sect. 4.1 we define first two other models of ] in functions
or hyperfunctions on dH x H, which we call hybrid models, since they mix the
properties of the model of )} in eigenfunctions, as discussed in Sect. 3, with the
models discussed in Sect.2. The second of these, called the flabby hybrid model,
contains the canonical model as a special subspace. The advantage of the canonical
model becomes very clear in Sect. 4.2, where we give an explicit inverse for the
Poisson transformation whose image coincides exactly with the canonical model.

In Sect.4.3 we will characterize the canonical model as a space of functions
on (]P’é: ~ PL) x $ satisfying a certain system of differential equations. We use
these differential equations to define a sheaf D, on ]P’é: X §), the sheaf of mixed
eigenfunctions. The properties of this sheaf and of its sections over other natural
subsets of ]P’é: x $) are studied in the remainder of the subsection and in more detail
in Sect. 6.

4.1 The Hybrid Models and the Canonical Model

The line model of principal series representations is based on giving co € 9 a
special role. The projective model eliminated the special role of the point at infinity
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in the line model at the expense of a more complicated description of the action
of G = PSL,(R), but it also broke the G-symmetry in a different way by singling
out the point i € $). The corresponding point 0 € D plays a special role in the
circle model. The sequence model is based on the characters of the specific maximal
compact subgroup K = PSO(2) C G and not of its conjugates, again breaking the
G-symmetry. The induced representation model depends on the choice of the Borel
group NA. Thus none of the one-variable models for )} discussed in Sect. 2 reflects
fully the intrinsic symmetry under the action of G.

To remedy these defects, we will replace our previous functions ¢ on dH by
functions ¢ on 0H x H, where the second variable plays the role of a base point,
with @(-,7) being equal to the function ¢ of the projective model. This has the
disadvantage of replacing functions of one variable by functions of two, but gives a
very simple formula for the G-action, is completely symmetric, and will also turn
out to be very convenient for the Poisson transform. Explicitly, given (¢, ¢oo) in the
line model, we define ¢ : P, x $§ — C by

—712\*
('Z d ) o(t)  if1 € PL~{oo},
T2 = Y @.1)

(%) oo (_;) itr € Pl ~ {0}

(here y = Im (z) as usual), generalizing (2.5) for z = i. The function ¢ then satisfies

|11—t|2/y1)s~(t ) = (R(t;zz)
o —112/y,) ¥ R(t:21)

s
Pt,z1) = ( ) @(t,22) 4.2)
fort € IP’]{Q and 71,20 € $. A short calculation, with use of (3.10), shows that the
action of G becomes simply

0lg(t,2) = (gt g2) (tePy, z€9H, g€G) (4.3)

in this model. From (4.1), (2.5), and (4.2), we find

P - ~ t=20 -2\ »

G0 = o 7o = (CEET) o0 e
giving the relation between the new model and the projective model. And we see
that only the complicated factor relating ¢ to ¢ is responsible for the complicated
action of G in the projective model.

We define the rigid hybrid model to be the space of functions 4 : P x  — C
satisfying (4.2) with @ replaced by /. The G-action is given by F + F o g, where
G acts diagonally on P]ﬁ x §). The smooth (resp. analytic) vectors are those for
which F(-,z) is smooth (resp. analytic) on ]P)]}Q for any z € §; this is independent
of the choice of z because the expression in parentheses in (4.2) is analytic and
strictly positive on P]ﬁ . These spaces are models for 1)*° and ), respectively, but

when needed will be denoted ]{oo’rig and sz’rig to avoid confusion. We may view
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the elements of the rigid hybrid model as a family of functions ¢ +— @(¢,z) in
projective models with a varying special point z € . The isomorphism relating the
rigid hybrid model and the line (respectively projective) model is then given by (4.1)
(respectively (4.4)).

In the case of ¥”", we can replace ¢ in (4.2) or (4.4) by a variable ¢ on a
neighborhood of PL. We observe that, although R(¢;z)* is multivalued in ¢, the
R(¢:z1)
R(Z:2) .
on z and z;) of P]ﬁ in ]P)(lc. In the rigid hybrid model, the space H;® consists of germs
of functions / on a deleted neighborhood U ~ (Pﬁ x $)) which are holomorphic in
the first variable and satisfy

N
quotient ( ) in (4.2) is holomorphic in ¢ on a neighborhood (depending

R($:22)
R 71)

h(¢ z1) = ( ) h(¢,z22) (z1,22 € 9, Cnear]P’ﬁR), (4.5)

where “near ]P)]}Q” means that ¢ is sufficiently far in the hyperbolic metric from the
geodesic joining z; and zp. This condition ensures that ({,z;) and (¢, z2) belong
to U and the multiplicative factor in (4.5) is a power of a complex number not in
(—00. 0] and is therefore well defined. The action of G on Hy* is given by h({,z)
h(g¢, gz). In this model, )™ is represented as Hy®/)”"". The pairing between
hyperfunctions and test functions in this model is given by

~ 1 ~
mV =2 ([ [ )eoveoreaa  ao

with the contours C4 and C_ as in (2.24). Provided we adapt the contours to z, we
can use any z € §) in this formula for the pairing.

The rigid hybrid model, as described above, solves all of the problems of the
various models of 1) as function spaces on dH, but it is in some sense artificial,
since the elements / depend in a fixed way on the second variable, and the use of this
variable is therefore in principle superfluous. We address the remaining artificiality
by replacing the rigid hybrid model by another model. The intuition is to replace
functions satisfying (4.5) by hyperfunctions satisfying this relation.

Specifically, we define the flabby hybrid model as

M@ = H MO,

where 7, is the space of functions® h(,z) that are defined on U ~ (]P’]% X Y)) for
some neighborhood U of ]P)]}Q X §) in ]P’(lc X §), are holomorphic in ¢, and satisfy

2Here one has the choice to impose any desired regularity conditions (C°, C°°, C?, ...) in the
second variable or in both variables jointly. We do not fix any such choice since none of our
considerations depend on which choice is made and since in any case the most interesting elements
of this space, like the canonical representative introduced below, are analytic in both variables.
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R(¢:22)
R(C;z1)

where U;, ., = {¢{ € Pt : (£,z21),((,22) € U}, while M consists of functions
defined on a neighborhood U of P]ﬁ X $) in ]P’(lc x $) and holomorphic in the first
variable. The action of G in H is by /| g (¢,z) = h(g{, gz). The pairing between
hyperfunctions and analytic functions is given by the same formula (4.6) as in the
rigid hybrid model.

An element i € H, can thus be viewed as a family {h(-,z)}Z € of represen-
tatives of hyperfunctions parametrized by $. Adding an element of M¢ does not
change this family of hyperfunctions. The requirement (4.7) on & means that the
family of hyperfunctions satisfies (4.5) in hyperfunction sense.

th(z,zl)—( )h(z,m) € OW,.) forallznzen,  @7)

Finally, we describe a subspace C; C H, which maps isomorphically to
™ under the projection H, —» )~ and hence gives a canonical choice of
representatives of the hyperfunctions in M. We will call C the canonical hybrid
model, or simply the canonical model, for the principal series representation 1]~
To define Cs, we recall that any hyperfunction on ]P)]}Q can be represented by a
holomorphic function on ]P)(lc ~ ]P)]}Q with the freedom only of an additive constant.
One usually fixes the constant by requiring (i) = 0 or /(i) + h(—i) = 0, which is
of course not G-equivariant. Here we can exploit the fact that we have two variables
to make the normalization in a G-equivariant way by requiring that

h(zz) = 0. (4.8)

We thus define Cs as the space of functions on (]P’(lc ~ Pﬁ) x §) that are holomorphic
in the first variable and satisfy (4.7) and (4.8). We will see below (Theorem 4.2) that
the Poisson transform Py : V™ — & becomes extremely simple when restricted
to C,; and also that C; coincides with the image of a canonical lifting of the inverse
Poisson map P& > )~ from the space of hyperfunctions to the space of
hyperfunction representatives.

Remark. We will also occasionally use the slightly larger space C;t (no longer
mapped injectively to & by Py) consisting of functions in #; that are defined on
all of (I% ~ P}) x £, without the requirement (4.8). Functions in this space will
be called semicanonical representatives of the hyperfunctions they represent. The
decomposition h({,z) = (h(é‘, 7) — h(z, z)) + h(z,z) gives a canonical and G-
equivariant splitting of C;" as the direct sum of C; and the space of functions on £,
so that there is no new content here, but specific hyperfunctions sometimes have a
particularly simple semicanonical representative (an example is given below), and
it is not always natural to require (4.8).

e Summary. We have introduced a “rigid”, a “flabby”, and a “canonical” hybrid
model, related by

VO x HIE/VOE > MY = H/MP = C C Hy. (4.9)

S
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In the flabby hybrid model, the space H, consists of functions on a deleted
neighborhood U ~ (P x ) that may depend on the function, holomorphic in the
first variable, and satisfying (4.7). The subspace M consists of the functions on
the whole of some neighborhood U of ]P)ﬁa x $), holomorphic in the first variable.

For the elements of H, and M¥ C H,, we do not require any regularity in the
second variable. In the rigid hybrid model, the spaces H® C #, and ¥ C MY
are characterized by the condition in (4.5), which forces a strong regularity in the
second variable. The canonical hybrid model C; consists of a specific element from
each class of H,/ M that is defined on (]P’(lC X $) ~ (]P’]}Q X $)) and is normalized
by (4.8). In Sect. 4.3 we will see that this implies analyticity in both variables jointly.

e [Examples. As an example we represent the distribution J; o in all three hybrid
models. This distribution, which was defined by ¢” > ¢ (c0) in the projective
model (cf. (3.30)), is represented in the projective model by 4% (¢) = %é , and hence,

by (4.4), by ,
D) = 53 (—@_Z)@_Z))S (4.10)

’ 2 E =D+
in the rigid hybrid model. Since the difference 25\)5 ((i:—f?g)‘(%)‘ - 1) is

holomorphic in ¢ on a neighborhood of ]P)]}Q in ]P(lc for each z, we obtain the much
simpler semicanonical representative

¢
2iys’

h(t.2) = @.11)

of 8500 in the flabby hybrid model. Finally, subtracting /(z,z), we obtain the
(unique) representative of §; o in the canonical hybrid model:

he(.z) = éz—zzy“". (4.12)

We obtain other elements of C; by the action of G. For g € G with goo =a € R
we get

G0 = 2 22 R @13)

Here property (4.8) is obvious, and (4.7) holds because the only singularity of (4.13)

on IP}, is a simple pole of residue (i/2) R(a;z)™* at { = a.

e Duality and Poisson Transform. From (2.24) we find that if 1 € H; and f €
{_, are defined on U ~ (IE"IIR x ), respectively U, for the same neighborhood U

of P x £, then

wn = ([ - )reomcareoa @
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where C1 and C_ are contours encircling z in §) and Z in $), respectively, such that
C+ x {z} and C_ x {z} are contained in U. The result { f, &) does not change if we
replace /1 by another element of 7 + M% C H,.

We apply this to the Poisson kernel f(¢) = R¥({;2)!™° = (gggf;)l_s, for
z € 9. The corresponding element in the rigid pair model is

fo 0 (REGD\VT (RGN (RGD\T
L&) = (R(g;i)) (R(C;Zl)) a (R(C,Zl)) '

Applying (4.14), we find for z,z; € $:

1 B R(:2) '™ _
Psh(z)—ﬂ(/c+ /) (R(m)) h(E 2 R(E: o) dE

L[ - Rz’ .
i (/CJr /c) ( R(C;z)) h(€.z1) R(§:2) dE, (4.15)

where C4 encircles z and z; and C_ encircles z and Z;. Since this does not depend
on z;, we can choose z; = z to get

Psh@:%(/c —/C )h(z,z) R(:2) d¢
e

([ =
- (/C+ /C) Moo o s @)

The representation of the Poisson transformation given by formula (4.16) has
a very simple form. The dependence on the spectral parameter s is provided by
the model, not by the Poisson kernel. But a really amazing simplification occurs
if we assume that the function 7 € 7, belongs to the subspace C; of canonical
hyperfunction representatives. In that case, /1({, z) is holomorphicin ¢ in all of C\R,
so we can evaluate the integral by Cauchy’s theorem. In the lower half-plane, there
is no pole since /(z, z) vanishes, so the integral over C_ vanishes. In the upper half-
plane, there is a simple pole of residue /(z, z) at { = z. Hence, we obtain

Proposition 4.1. The Poisson transform of a function h € C; is the function
Rh(z) = h(z,z2). (4.17)

defined by restriction to the diagonal.

As examples of the proposition, we set { = z in (4.12) and (4.13) to get

u(@ =y'"’ = (P, (2 =
(4.18)

u@ = R@:29)'™ = (PR7'u) (L2 = >—
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Finally, we remark that on the larger space C;" introduced in the Remark above,
we have two restriction maps

Rth(z) = h(z.2), R = h2) (4.19)

to the space of functions on §). The analogue of the proposition just given is then
that the restriction of P, to C;% equals the difference R, = Rt — R .

4.2 Poisson Inversion and the Canonical Model

The canonical model is particularly suitable to give an integral formula for the
inverse Poisson transformation, as we see in the main result of this subsection,
Theorem 4.2. In Proposition 4.4 we give an integral formula for the canonical
representative of a hyperfunction in terms of an arbitrary representative in H.
Proposition 4.6 relates, for u € &, the Taylor expansions in the upper and lower
half-plane of the canonical representative of P, !u to the polar expansion of u with
the functions p; .

To determine the image P,~'u under the inverse Poisson transform for a given
u € &, we have to construct a hyperfunction on 0H which maps under Py to u. A first
attempt, based on [10], Chap.II, Sect. 2, would be (in the line model) to integrate
the Green’s form {u, R({; -)*} from some base point to ¢. This does not make sense
at oo since R({; -) has a singularity there and one cannot take a well-defined sth
power of it, so we should renormalize by dividing R(Z; -)* by R(¢; i), or better, to
avoid destroying the G-equivariance of the construction, by R({;z)* with a variable
point z € $. This suggests the formula

¢
| tereorreary i es,
h(¢.2) = " 7% (4.20)
[t reCorrery it e,
20
in the hybrid model, where zp € § is a base point, as a second attempt.
This almost works: the fact that the Green’s form is closed implies that the
integrals are independent of the path of integration, and changing the base-
point zyp changes h(-,z) by a function holomorphic near ]P’]% and hence does
not change the hyperfunction it represents. The problem is that both integrals
in (4.20) diverge because R({:Z')° has a singularity like ({ — z/)™* near ¢ and
like ({ — Z/)™° near ¢ and the differentiation implicit in the bracket {-, -} turns
these into singularities like ({ — 2/ )™=l and (¢ — z/)™*~! which are no longer
integrable at 77 = ¢ or 7 = {, respectively. To remedy this in the upper half
plane, we replace {u, (R;(-)/R:(z))*} by [u, (R¢(+)/R¢(z))’], which differs from
it by a harmless exact 1-form but is now integrable at ¢. (The same trick was
already used in Sect. 2, Chap.II of [10], where zyp was co.) In the lower half-plane,
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[u. (R:(-)/R¢(2)*] is not small near 7/ = ¢, so here we must replace the differ-
ential form {u, (R(-)/R¢(2)'} = —{(Re(+)/Re(@)". u} by —[(Re(-)/Re())' ]
instead. (We recall that { -, - } is antisymmetric but [ -, -] is not.) However, since the
differential forms [u, (R¢(-)/R¢(2))*] and —[(R¢(-)/R¢(z))’, u] differ by the exact
form d(u (R¢(-)/R¢(z))*), this change requires correcting the formula in one of the
half-planes. (We choose the upper half-plane.) This gives the formula

. s ¢ NN
M(ZO)(R@,.ZO)) +/ [u’(R(é,. )” it e
h(CZ) — R(é‘,z) 20 R(é‘vz)v (4.21)
’ Zo[(R(z;'))“ }'f 9
/E R ul ifce$H .

We note that in this formula, /(Zp,z) = 0. So we can satisfy (4.8) by choosing
20 = Z, at the same time restoring the G-symmetry which was broken by the choice
of a base point zo. We can then choose the continuous branch of (Rg / Rg(z))s that
equals 1 at the end point z of the path of integration. Thus we have arrived at the
following Poisson inversion formula, already given in the Introduction (1.4):

Theorem 4.2. Let u € &;. Then the function Bu € H defined by

¢ |

u(@) + / [ (Re/R:(2)'] ifE € 5.

(Bu)(§,2) = (4.22)
/E [(Re/Re@)) ] if g € 5

along any piecewise C'-path of integration in § ~ {}, respectively § ~ {C}, with
the branch of (Rg/Rg(z))s chosen to be 1 at the end point z, belongs to C; and is a
representative of the hyperfunction P,"'u € MY =H /M.

Corollary 4.3. The maps B, : & — Cs; and R, : C; — & defined by (4.22) and
(4.17) are inverse isomorphisms, and we have a commutative diagram

- R
J . l (4.23)

Proof. Let u € &. First we check that i = Byu is well defined and determines an
element of C,. The convergence of the integrals in (4.22) requires an estimate of the
integrand at the boundaries. For { € $ ~ {z}, we use
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, / s _ R((;7) ’ N is , (-7 7
[M(Z)7 (RE(Z )/RE(Z)) ]Z/ = (R(é';z)) (uz(z)dz + Z—y/u(z) g_?dz).

(4.24)
The factor in front is 1 for 7 = z and O(({ — Z/)™*) for 2’ near {. The other

contributions stay finite, so the integral for { € $ ~ {z} converges. (Recall that
Re (s) is always supposed to be < 1.) For ¢ € = ~ {z}, we use in a similar way

’ s ’ _ R(:7) (s /C_? ’ (N A
[(Re()/Re (D)’ ()], = ( R(m) (z—y,u(z) L +uz(z)dz).

We have normalized the branch of (R({;2')/R(¢;z))’ by prescribing the value 1

at 7 = z. This choice fixes (R(§ :7)/R(C; z))s as a continuous function on the paths
of integration. The result of the integration does not depend on the path, since the
differential form is closed and since we have convergence at the other end point {
or . Any continuous deformation of the path within £ ~ {} or $) ~ {¢} is allowed,
even if the path intersects itself with different values of (R (¢:7)/R(: z))s at the
intersection point.

If we choose the geodesic path from z to ¢, and if ¢ is very near the real line, then
the branch of (R;(z’ )/ R;(z))s near 7 = ¢ is the principal one (argument between
—m and ).

The holomorphy in ¢ follows from a reasoning already present in [10], Chap.1I,
Sect.2, and hence given here in a condensed form. Since the form (4.24) is
holomorphic in ¢, a contribution to dz2 could only come from the upper limit of
integration, but in fact vanishes since O(({ —2)™*) (( —2) = o(1) as { — 7.
Hence, h(-,z) is holomorphic on § ~ {z}. For { near z, we integrate a quantity
O((§ —7)* ) from z to ¢, which results in an integral estimated by O((é‘ — gl )
So (Bsu)(¢, z) is bounded for ¢ near z. Hence, h(¢,z) = (Bsu)(¢, z) is holomorphic
at ¢ = z as well. For the holomorphy on §)~, we proceed similarly. This also shows
that i(z, z) = 0, which is condition (4.8) in the definition of C;.

For condition (4.7), we note that

- (o - v (S5 [ (553)]
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itl e$H~{z,z1} and

R(¢;21)

A2 = (R@z) )‘h@;“) = /[(I;(éz;)”}

if { € = ~{z,z1}. The right-hand sides both have holomorphic extensions in { to a
neighborhood of PLand the difference of these two extensions is seen, using (3.13)
and the antisymmetry of { -, -}, to be equal to

REDY L [ o (REDY
u(z) — u(m)( + / d( u(z) =0
R(&;2) z R(¢:2)
In summary, the function Byu belongs to H,, is defined in all of (P& ~ PL) x ),
and vanishes on the antidiagonal, so Bju € Cs, which is the first statement of the
theorem. The second follows immediately from Proposition 4.1, since it is obvious

from (4.22) that R;Byu = u and the proposition says that R is the restriction of Py
to Cy. |

The corollary follows immediately from the theorem if we use Helgason’s result
(Theorem 3.4) that the Poisson transformation is an isomorphism. However, given
that we have now constructed an explicit inverse map for the Poisson transformation,
we should be able to give a more direct proof of this result, not based on polar
expansions, and indeed this is the case. Since P,Biu = R;Bju = u, it suffices to
show that R; is injective. To see this, assume that & € C; satisfies h(z,z) = 0 for
all z € 9. For fixed 71,7, € 9, let ¢(¢) denote the difference in (4.7). This function
is holomorphic near ]P)]}Q and extends to ]P)(lc in a multivalued way with branch points
of mild growth, (¢ — &)™ with 0 < Res < 1, at z1, Z1, 22, and Z3. Moreover, ¢ ()
tends to 0 as ¢ tends to z; or 71 (because Res > 0) and also as ¢ tends to 7, or 7
(because h(z2,22) = h(z2,22) = 0 and Res < 1). Suppose that ¢ is not identically
zero. The differential form dlogc(¢) is meromorphic on all of ]P)(lc and its residues
at & € {z., 22,7172} have positive real part. Since c is finite elsewhere on PL., any
other residue is nonnegative. This contradicts the fact that the sum of all residues of
a meromorphic differential on ]P’(lc is zero. Hence, we conclude that ¢ = 0. Then the
local behavior of 1(¢,z1) = h(¢.22) (R¢(z2)/R¢(z1))" at the branch points shows
that both A (-, z;) and h(-, z2) vanish identically.

Remarks.

1. It is also possible to prove that BP9 = ¢ and P;B;u = u by using complex
contour integration and (3.16), and our original proof that B; = F’S_1 went this
way, but the above proof using the canonical space C; is much simpler.

2. Taking z = i in formula (4.22) gives a representative for P,"'u in the projective
model, and using the various isomorphisms discussed in Sect.2, we can also
adapt it to the other 0H models of the principal representation.
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We know that each element of )}~ has a unique canonical representative lying
in C;. The following proposition, in which k(z, ¢; z) denotes the kernel function

1 {—z

k(r,8:2) = mf—_z, (4.25)

tells us how to determine it starting from an arbitrary representative.

Proposition 4.4. Suppose that g € H, represents o € V™ “. The canonical
representative g. € Cs of a is given, for each zo € §) by

_ 1 3 R(zt;20)\’ )
gc(8.z) = n(/c+ /C) g(T,ZO)(R(_L_;Z)) k(z,¢;z)dr, (4.26)

with contours Cy and C_ homotopic to ]ID]}Q inside the domain of g, encircling z
and zy, respectively 7 and 7y, with C4 positively oriented in §) and C_ negatively
oriented in $H~, and { inside C4 or inside C_.

Note that this can be applied when a representative gy of « in the projective model is
given: simply apply the proposition to the corresponding representative in the rigid
hybrid model as given by (4.4).

Proof. Consider k(-,{;z) as an element of ))” in the projective model. Then
gc(¢,2) = (o, k(-,¢;z)). Adapting the contours, we see that g.( -, z) is holomorphic
on$HUH".

For a fixed ¢ € dom g, we deform the contours such that ¢ is between the new
contours. This gives a term g(¢,z) plus the same integral, but now representing
a holomorphic function in { on the region between Cy and C_, which is a
neighborhood of ]P’]%. So g and g, represent the same hyperfunction. Condition (4.8)
follows from k(z,Zz;z) = 0. |

Choosing zp = z in (4.26) gives the simpler formula

gtz = %(/CJF—/C) g(t.2) k(z,¢;7)dr, (4.27)

(which is, of course, identical to (4.26) if g belongs to ¥"'%). In terms of o € Ve
as a linear form on Y, we can write this as

¢—-2)(—2)

2.2 = (fe.a) with  fi(r,2) = =0

(4.28)

The integral representation (4.26) has the following consequence:

Corollary 4.5. All elements of Cy are real-analytic on (P{ ~ P) x $.
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e [Expansions in the Canonical Model. For u € &s, the polar expansion (3.4) can
be generalized, with the shifted functions py, in (3.5), to an arbitrary central point:

u@ = Y anw.2) psaz.7)  (Z € § arbitrary). (4.29)

nez

Let h = Byu € C, be the canonical representative of P lue V™ ® For7 € 9

ﬁxed h(, 7 ) is a holomorphic function of { € C ~ R and has Taylor expansions in

{—z
7
on fo vanishes. Thus there are A, (h,7') € C such that

> A(h, z)( _,)n fort € 9,

hgd) = 1 "= /

=3 Ay, z)( Z_/) for¢ € 9.

n<0

E Z, on $)~. Since h(z,z) = 0, the constant term in the expansion

(4.30)

(We use a minus sign in the expansion on )~ because then

¢.7) HZ Ap(h,7) (g;z_:)nforé‘ €9,
—z

I\

> Au(h.z )( Z_/) for{ €
—<

nzngo n<no
represents the same hyperfunction Py ~lu for any choice of ny € Z.) From i%i:;: =
T ij g z forg =[¢ ] € G, it follows that
: c?+d\' :

An(hlg,7) = (m An(h, g7). (4.31)

Similarly, we have from (3.5) and (3.3):
e +d\"
a,(u|g.?) = (cz’ n d) an(u, g7'). (4.32)

In fact, the coefficients A4, () and a, () are proportional:

Proposition 4.6. Foru € & and h = Bu € Cs, the coefficients in the expansions
(4.29) and (4.30) are related by

I'(s)

an(w,2) = (= 1)nl“( +n)

An(h, 7). (4.33)

Proof. The expansion (4.30) for 77 = i shows that the hyperfunction P, 'u has the
expansion ), A, (h,i) ey, in the basis functions in (2.9). Then (3.28) gives

_ G
u) = ;( D' F g Anh ) Ba(@):
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This gives the relation in the proposition if 7 = i, and the general case follows from
the transformation rules (4.31) and (4.32). |

The transition s <> 1 — s does not change & = &,—; or ps,;, = pPi—sa- So the
coefficients a, (u, 7') stay the same under s +> 1 —s. With the commutative diagram
(3.25), we get

—w

Corollary 4.7. The operator C; — C\—; corresponding to I : ]
on the coefficients in (4.30) by

— WYY acts

An(h, 2y = L=y G,

()]

We remark that Proposition 4.6 can also be used to give an alternative proof of
Corollary 4.5, using (3.19) with u replaced by u o g to obtain the analyticity of
a,(u,7) in 7' and then (4.33) to control the speed of convergence in (4.30).

4.3 Differential Equations for the Canonical Model
and the Sheaf of Mixed Eigenfunctions

The canonical model provides us with an isomorphic copy Cs of ¢ = & inside
the flabby hybrid model H,. We now show that the elements of the canonical model
are real-analytic in both variables jointly and satisfy first-order differential equations
in the variable z € §) with { as a parameter.

The same differential equations can be used to define a sheaf D; on ]P’é: X 9.
In Proposition 4.10 and Theorem 4.13, we describe the local structure of this sheaf.
It turns out that we can identify the space ™ of the rigid hybrid model with a
space of sections of this sheaf of a special kind. There is a sheaf morphism that
relates Dy to the sheaf & : U +— &(U) of As-eigenfunctions on §). For elements
of the full space & = &;(9), the canonical model gives sections of D; over (]P’é: ~
Py) X 9.

Theorem 4.8. Each h € C, and its corresponding eigenfunctionu = Pbh = Rh €
& satisfy, for ¢ € PL NP}, z € ), { & {z2,Z}, the differential equations

C=DUED + 51 (hE0 = 1) = 0 (4.342)
(z—2)0:(h(.2) —u(z) — s g :i h(¢,z) = 0. (4.34b)

Conversely, any continuous function h on (]P’(lC ~ Pﬁ) X $) that is holomorphic in the
first variable, continuously differentiable in the second variable, and satisfies the
differential equations (4.34) for some u € C'($)) belongs to Cy, and u is P.h.



Function Theory Related to the Group PSL;,(R) 147

The differential equations (4.34) look complicated but in fact are just the dz- and
dz-components of the identity

[RE@: )" u@: )] = d(RE -)'h(E;-)) (4.35)

between 1-forms, as one checks easily. (The function R(;z)* is multivalued, but if
we take the same branch on both sides of the equality, then it makes sense locally.)

Proof of Theorem 4.8. The remark just made shows almost immediately that the
function i = Byu € C, defined by (4.22) satisfies the differential equations (4.34):
differentiating (4.22) in z gives

. N . N 1
L REsy) — | EORED) = W@ RED) ifze .
+ [R(G:2)" u@@)]: ifz€H™,
and the right-hand side equals [R({; z)*, u(z)] in both cases by virtue of (3.13).

An alternative approach, not using the explicit Poisson inversion formula (4.22),
is to differentiate (4.7) with respect to z; (resp. z1) and then set z; = zp = z to see
that the expression on the left-hand side of (4.34a) (resp. (4.34b)) is holomorphic in
¢ near ]P’]}Q. (Here that we use the result proved above that elements of the canonical
model are analytical in both variables jointly.) The equations h(z,z) = u(z),
h(z,z) = 0 then show that the expressions in (4.34), for z fixed, are holomorphic
in ¢ on all of ]P)(lc and hence constant. To see that both constants vanish, we set { = 7
in (4.34a) (resp. { = zin (4.34b)) and use

3:(h(2.2))le=z = 0:(h(z.2)) = 8.(0) = 0,  3:(h(&,2))|¢=: = 3:(h(z.2)) = dzu(2).

This proves the forward statement of Theorem 4.8. Instead of proving the
converse immediately, we first observe that the property of satisfying the differential
equations in the theorem is a purely local one and therefore defines a sheaf of
functions.

We now give a formal definition of this sheaf and then prove some general
statements about its local sections that include the second part of Theorem 4.8.

We note that the differential equations (4.34) make sense, not only on (]P’(lC ~
Pﬁ) x $) but on all of ]P’(lc x 5, with singularities on the “diagonal” and “antidiagonal”
defined by

At = {(z2) 1 z€H) AT ={(@Z2 :zeH) (4.36)

We, therefore, define our sheaf on open subsets of this larger space.

Definition 4.9. For every open subset U C IP’(%: x £, we define D;(U) as the space
of pairs (%, u) of functions on U such that:

(a) h and u are continuous on U'.
(b) h is holomorphic in its first variable.
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(c) Locally u is independent of the first variable.
(d) h and u are continuously differentiable in the second variable and satisfy the
differential equations (4.34) on U ~ (AT U A™), with u(z) replaced by u(¢, z).

This defines Dy as a sheaf of pairs of functions on ]P’é: x $), the sheaf of mixed
eigenfunctions. In this language, the content of Theorem 4.8 is that C,; can be
identified via h + (h, Rh) with the space of global sections of D, ((Pf ~Pg) x 5).
The following proposition gives a number of properties of the local sections.

Proposition 4.10. Let (h,u) € D;(U) for some open set U C ]P’é: X $). Then

(1) The functions h and u are real-analytic on U. The function u is determined

by h and satisfies Au = s(1 — s)u.

(ii) If U intersects AT U A™, then we have h = uon U N AT and h = 0 on
Uuna-.

(iii) If u = O, then the function h locally has the form h(¢,z) = ¢(¢) R(¢:2)™° for
some branch of R({;2)™*, with ¢ holomorphic.

(iv) The function h is determined by u on each connected component of U that
intersects AT U A™.

Proof. The continuity of & and u allows us to consider them and their derivatives
as distributions. We obtain from (4.34) the following equalities of distributions on
U~((ATuAa):

- —_— g = = - S 2
d,0:h = 0 (8u+;§—_zh) = 0;0:u (Z—Z)Zh (z—2)? (h —u),
o= o )Y = e S
b = (2t ow) = -

The differential operators d, and d; on distributions commute. In terms of the
hyperbolic Laplace operator A = (z — z)? 9,0z, we have in distribution sense

(A=Asg1)h = (A+57)u = su. (4.37)

Since u is an eigenfunction of the elliptic differential operator A — A; with real-
analytic coefficients, # and also % are real-analytic functions in the second variable.
To conclude that 4 is real-analytic in both variables jointly, we note that it is also a
solution of the following elliptic differential equation with analytic coefficients

—0 3-+A—AS+1 h = su.
t9%

Near co € P(., we replace ¢ by v = 1/ in the last step.

Since u is locally independent of ¢, we conclude that u is real-analytic on the
whole of U and satisfies Au = s(1 — s)u on U. Then (4.37) gives the analyticity of
h on U. Now we use (4.34a) to obtain

w2 = hic. )+—§—ah@ ).
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So h determines # on U ~ A~ and then by continuity on the whole of U.
Furthermore, u = h on A™. Similarly, (4.34b) implies 4 = 0 on U N A~. This
proves parts (4.10) and (4.10) of the proposition.

Under the assumption # = 0 in part (4.10), the differential equations (4.34)
become homogeneous in /. For fixed £, the solutions are multiples of z — R(¢;z)7%,
as is clear from (4.35). Hence, & locally has the form h(¢,z) = ¢(¢) R(¢:2)~%,
where ¢ is holomorphic by condition b) in the definition of D;. It also follows that 4
vanishes on any connected component of U on which R({;z)™ is multivalued and,
in particular, on any component that intersects AT U A~. Part 4.10) now follows
by linearity. |

Proof of Theorem 4.8, converse direction. Functions h and u with the properties
assumed in the second part of the theorem determine a section (&, u) € D; ((]P’(lC ~
Pﬁ) X .6). Proposition 4.10 shows that u € &. By the first part of the theorem, we
have (Bsu, u) € DS((]P’}C ~ ]P’]k) X .V)). Since this has the same second component as
(h, u), part (4.10) of the proposition shows that 7 = Bsu € C;, and then part (4.10)
gives u = Rjh = Ph. [ |

e Local Description of h Near the Diagonal. Part (4.10) of Proposition 4.10 says
that the first component of a section (%, u) of D, near the diagonal or antidiagonal
is completely determined by the second component, but does not tell us explicitly
how. We would like to make this explicit. We can do this in two ways, in terms of
Taylor expansions or by an integral formula. We will use this in Sect. 6.

We first consider an arbitrary real-analytic function « in a neighborhood of a point
70 € $ and a real-analytic solution /4 of (4.34a) near (2, zo) which is holomorphic in
the first variable. Then & has a power series expansion 71({,z) = Y oo h,(2)(¢ —
z)" in a neighborhood of (z9, zo), and (4.34a) is equivalent to the recursive formulas

1 0ho(z) ifn =1
hn(z): I—s dz T
1 (ahn—l(z) + S - hn_l(z)) ifn > 2,

n—s 0z Z—z

which we can solve to get the expansion

R qu\ (¢—2)
h(C.2) = u@ + y~* - (ys _) : (4.38)
’; dz' 1 9z ) (1—5),

where (1 —5), = (1 —s)(2 —s5)---(n — s) as usual is the Pochhammer symbol.
Conversely, for any real-analytic function u(z) in a neighborhood of zy, the series
in (4.38) converges and defines a solution of (4.34a) near (zo,zp). Thus there is
a bijection between germs of real-analytic functions u near zp and germs of real-
analytic solutions of (4.34a), holomorphic in ¢, near (2o, z9). If u further satisfies
Au = Asu, then a short calculation shows that the function defined by (4.38)
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satisfies (4.34b), so we get a bijection between germs of A;-eigenfunctions u near
7o and the stalk of Dy at (z0,70). An exactly similar argument gives, for any A,-
eigenfunction u near z, a unique solution

S n—1 5\
e = -y 32 (ys a”) ¢-" (4.39)

n=1 Z)Zn—l B_Z (1 _s)n7

of (4.34a) and (4.34b) near the point (zo, z0) € A™. This proves:

Proposition 4.11. Let u € E(U) for some open set U C ). Then there is a unique
section (h,u) of Dy in a neighborhood of { (z,z) | z€ U} U {(Z,z) | z € U}, given
by (4.38) and (4.39).

The second way of writing / in terms of u near the diagonal or antidiagonal is
based on (4.22). This equation was used to lift a global section u € & to a section
(Byu, u) of Dy over all of (]P’(lC ~ Pﬁ) x $), but its right-hand side can also be used
for functions u € &(U) for open subsets U C $ to define & near points (z, z) or
(z,2) with z € U. This gives a new proof of the first statement in Proposition 4.11,
with the advantage that we now also get some information off the diagonal and
antidiagonal:

Proposition 4.12. If U is connected and simply connected, then the section (h,u)
given in Proposition 4.11 extends analytically to (U U U) xU.

e Formulation with Sheaves. Proposition 4.10 shows that the component & of a
local section (&, u) of Dy determines the component u, which is locally independent
of the second variable and satisfies the Laplace equation. So there is a map from
sections of D to sections of &. To formulate this as a sheaf morphism, we need
to have sheaves on the same space. We denote the projections from ]P)(lc x $ on PL,,
respectively §), by p. We use the inverse image sheaf p; 1€ on ]P)(lc X §), associated to
the presheaf U +— &(p2U). (See, e.g., Sect. 1, Chap. II, in [4].) The map p, is open,
so we do not need a limit over open V' O p,U in the description of the presheaf.
Note that the functions in & (p,U) depend only on z, but that the sheafification of
the presheaf adds sections to p; 1€ that may depend on the first variable. In this
way, (h,u) — u corresponds to a sheaf morphism C : Dy — p; le . We call the
kernel /C;.

We denote the sheaf of holomorphic functions on ]P)(lc by O. Then pl_l(’) is also a
sheaf on ]P)(lc x ). The following theorem describes Ky in terms of pl_1 O and shows
that the morphism C is surjective.

Theorem 4.13. The sequence of sheaves on Pi. x §)
0— K, — Dy - p7l&, — 0 (4.40)
is exact. If a connected open set U C ]ID(IC x § satisfies U N (AT U A7) # 0, then

KCs(U) = {0}. The restriction of Ky to (]P’(lC X .6) ~ (A+ U A_) is locally isomorphic
to py 'O where holomorphic functions ¢ correspond to ({,z) +— ((p(é') R(;2)77, 0).
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The inductive limit of Ks(U) over all neighborhoods U of P, x §) in P{ x §) is
canonically isomorphic to the space W'

Proof. For the exactness, we only have to check the surjectivity of C : Dy —
2 1&,. For this we have to verify that for any point Py = (o, 20) € ]P)(lc X £, any
solution of Au = A,u lifts to a section (h,u) € D, (U) for some sufficiently small
neighborhood U of Py. If Py € AT U A, then this is precisely the content of the
first statement of Proposition 4.11. If Py ¢ AT U A~, then we define & near P, by
the formula

h(t.z) = / Z[(R;(-)/R;(z))“,u] (4.41)

20

instead, again with (R;(z1)/R;(z))’ = 1 at z; = z. The next two assertions of the
theorem follow from Proposition 4.10. The relation with the rigid hybrid model is
based on (4.5). |

We end this section by making several remarks about the equations (4.34) and
their solution spaces C; and Dg(U).

The first is that there are apparently very few solutions of these equatlons that
can be given in “closed form.” One example is given by the pair /({,z) = 7y ~°,
u(z) = y'* (cf. (4.12)). Of course one also has the translations of this by the action
of G, and in Example 2 after Theorem 5.6, we will give further generalizations
where £ is still a polynomial times y~*. One also has the local solutions of the
form (¢({)R(¢;z)~*,0) for arbitrary holomorphic functions ¢(¢), as described in
Theorem 4.13.

The second observation is that the description of C, in terms of differential
equations can be generalized in a very simple way to the space C;" of semicanonical
hyperfunction representatives introduced in the Remark in Sect.4.1: these are
simply the functions & on (]P’é: ~ ]P’]{g) x $) that satisfy the system of differential
equations:

L
-2)(¢ —

f—
-2)(¢ —

9:(h(¢.2) —u-(2)) = — (h(é 2) —u4(2),

9(h(C.2) —us(2)) = (h@ 2) —u-(2)) (4.35)

for some function u+ and u_ of z alone. This defines a sheaf D} which projects to
Dy by (h,ut,u_) + (h,us — u_), and we have a map from C;" to the space of
global sections of D} defined by & > (h, R, R™h) with R* defined as in (4.19).
In some ways, CS+ is a more natural space than Cs, but we have chosen to normalize
once and for all by u_(z) = 0 in order to have something canonical.

The third remark concerns the surjectivity of C : Dy — p5'&. We know from
Theorem 4.13 that any solution « of the Laplace equation can be completed locally
to a solution (%, u) of the differential equations (4.34). We now show that such a lift
does not necessarily exist for a # defined on a non-simply connected subset of $).



152 R. Bruggeman et al.

Specifically, we will show that there is no section of D; of the form (h, ¢1—s(z,1))
on any open set U C ]P)(lc x $) whose image under p, contains a hyperbolic annulus
with center i.

Now the disk model is more appropriate. We work with coordinates § = i%g €
C*andw = 12—:1 € D. The differential equations (4.34a) and (4.34b) take the form

1 —wé

(1 —r»)d,h+s (h—u) = 0, (4.36a)
E—w
(A=) dalh—u) 4+ s~ h = 0, (4.36b)
1 —wé
with r = |w|, and (4.35) becomes
[RE(E; )" uE, )] = d(R°(E: ) h(E, ), (4.36¢)

with the Poisson kernel RS in the circle model, as in (3.27¢).

Proposition 4.14. Let A C D be an annulus of the form ri < |w| < ry with
0<r <r =<1 andlet V. C C* be a connected open set that intersects the
region ry < |&| < r{lin C*. Then Dy(V x A) does not contain sections of the form
(h, Q1=sn) foranyn € Z.

Proof. Suppose that such a section (h, Q1—; ) exists. Take p € (ry, r;) such that V'
intersects the annulus A, = {p < |§| < p~'}. Let C be the contour |w| = p. Then
the function f given by

£ = /C [RO(E: ). Q1sn]

is defined and holomorphic on 4,. For £ € V N A, we know from (4.36¢)
that the closed differential form [RS@ ;+)%, Q1—sx] on A has a potential. Hence,
f(E) = 0foré € VN Ay, and then f = 0 in A,. In particular, f(§) = 0
for £ € S'. In view of (3.19), this implies that the expansion RS(£;-)* =
> ez @m(E) Py (with € € S!) satisfies a—,(§) = 0. The function RS(£; -)°
is the Poisson transform Py_ §;_,¢ of the distribution §;_s¢ : ¢S — ¢5(&) on
) .. This delta distribution has the expansion 6;—,¢ = ZmeZ &"ej_sm. Hence,

R'S(ég-; )= Zm ez g_.’” %H_S,m, %n which a'll coefficients are nonzero.
Since P—sn = B, this contradicts the earlier conclusion. |

This nonexistence result is a monodromy effect. In a small neighborhood of a
point (&, wo) € S! x A, we can construct a section (h, Q1—sn) of Dy as in (4.41):

h(§,w) = /W[(RS(S;W’)/RS(E;W))S,Ql—s,n(W’)]w,- (4.37)

0
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If we now let the second variable go around the annulus A, then i (&, w) is changed
to h(&, w) 4+ ho(&, w), where hy is defined by the same integral as & but with the path
of integration being the circle |w'| = |wy|. Using

[(REEW)/REEW)), Qisn )], = REEW™ [REEW). Q15a (W),

m (=D" I'(1—s)
F(l—s+m)s
Py ,,(w) from the proof above, we find from the explicit potentials in Table A.3

in Sect. A.4 that only the term m = —n contributes and that A is given by

(1) I(-s)
ho(€.w) = mi =

and the absolutely convergent expansion RS(£;:w')* = Y omez &

RE(E;w) ™. (4.38)

(Here we have also used (3.13) toreplace [, | by {, }.)

5 Eigenfunctions Near dH and the Transverse
Poisson Transform

The space & of As-eigenfunctions of the Laplace operator embeds canonically into
the larger space /& of germs of eigenfunctions near the boundary of H. In Sect. 5.1
we introduce the subspace VW of J consisting of eigenfunction germs that have the
behavior y* x (analytic across R) near R, together with the corresponding property
near oo € P, and show that J splits canonically as the direct sum of & and WW*. In
Sect. 5.2 the space W) is shown to be isomorphic to 1) by integral transformations,
one of which is called the transverse Poisson transformation because it is given by
the same integral as the usual Poisson transformation ) — &, but with the integral
taken across rather than along P},. This transformation gives another model W* of
the principal series representation 1, which has proved to be extremely useful in
the cohomological study of Maass forms in [2]. In Sect. 5.3 we describe the duality
of ¥* and YZ¢ in (2.19) in terms of a pairing of the isomorphic spaces W* and
E1—s. In Sect. 5.4 we construct a smooth version WW*° of W* isomorphic to )}*°
by using jets of A -eigenfunctions of the Laplace operator. This space is also used
in [2].

5.1 Spaces of Eigenfunction Germs

Let /& be the space of germs of eigenfunctions of A, with eigenvalue A; = s(1 —s),
near the boundary of H, i.e.,

% = lim &(U N $), (5.1)
v
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where the direct limit is taken over open neighborhoods U of H in ]P’(lc (for either of
the realizations §) C ]P’(lc orD C ]P’(lc). This space canonically contains & because
an eigenfunction in §) is determined by its values near the boundary (principle of
analytic continuation). The action of G in % is by f | g(z) = f(gz). The functions
Qs and Q1—;, in (3.7) represent elements of & not lying in &. Clearly we have
A-s = K.

Consider u, v € K, represented by elements of £ (U N §H) for some neighborhood
U of 9H in P.. Then the Green’s form [u, v] is defined and closed in U, and for a
positively oriented closed path C in U which is homotopic to dH in U N (H U dH),
the integral

1 2
pun) = — [C ol = = /C () (5.2)

is independent of the choice of C or of the set U on which the representatives of u
and v are defined. This defines a G-equivariant antisymmetric bilinear pairing

B:ExF —C. (5.3)

If both u and v are elements of &, we can contract C to a point, thus arriving at
B(u,v) = 0. Hence, B also induces a bilinear pairing & x (K/&) — C.

For each z € H, the element gs(-,z) of % is not in &. By (ILu)(z) =
,B(M,qs(- ,z)) we define a G-equivariant linear map 1, : % — &,. Explicitly,
uin(z) := IT;u(z) is given by an integral % Jelu(@). qs(2 . 2)]-, where z is inside
the path of integration C. By deforming C, we, thus, obtain u;,(z) for all z € 9,
30 uin € &. We can also define uou(z) 1= = [ [u(z). q,(z',2)]2 where now z is
between the boundary of H and the path of integration. For u € & we see that
uoyt = 0. More generally, Theorem 3.1 shows that

U = Ugy + Uin VuekR). 5.4)

The G-equivariance of [-, -] implies that the maps I1; and 1 — I, are G-equivariant.
This gives the following result.

Proposition 5.1. The G-equivariant maps Il : u v+ uiy, and 1 — Il : u +— gy
split the exact sequence of G-modules

1, 1—11,

0 &, E/E, 0 (5.5)

We now define the subspace WW® of J. It is somewhat easier in the disk model:

Definition 5.2. The space W consists of those boundary germs u € & that are of
the form

u(w) = 277 (1 = [w)* 4% (w)

where A° is a real-analytic function on a two-sided neighborhood of S' in ]P’(lc.
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In other words, representatives of elements of W, divided by the factor
(1 — |w|)*, extend analytically across the boundary S'. (The factor 272* is included
for compatibility with other models.)

The next proposition shows that Y}® is the canonical direct complement of &;
in %.

Proposition 5.3. The kernel of I1; : 5 — Es is equal to the space W, and we
have the direct sum decomposition of G-modules

5 = &E&dW, (5.6)
given by u < (uin, Uou)-

Notice that all the spaces in the exact sequence (5.5) are the same for s and 1 — s,
but that [T, and IT,_; give different splittings and that W* # W (for s # %).

Proof. In view of Proposition 5.1, it remains to show that YW is equal to the image
of u = ugy.

The asymptotic behavior of Q,—; in (A.13) gives for w' on the path of
integration C and w outside C in the definition of uqy (W)

A 2 ' 2
4s(w,w) = (pD(w’,w)—i-l) fS(PD(W/sW)"*'l)’

where f; is analytic at 0. With (3.2),

2 _ (1—|w?

2
P +1 - =P+ (=P —pp M

We conclude that if w’ stays in the compact set C, and w tends to S!, we have

Ut (W) = (1 —|w»)* (analytic function of 1 — |w|?).
S0 uout € W?.
For the converse inclusion, it suffices to show that & N W® = {0}. This follows
from the next lemma, which is slightly stronger than needed here. |

Lemma 5.4. Let u be a solution of Au = Agu on some annulus 1 —§ < |w> < 1
with § > 0. Suppose that u is of the form

u(w) = (1—|w’)*Aw) +O((1 — [w)**), (5.7)

with a continuous function A on the closed annulus 1 —§ < |w|> < 1. Then u = 0.

Proof. On the annulus the function u is given by its polar Fourier series, with terms

21 . ) do
I/tn(W) — /0 e 21n9f(610w)§.
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Each u, satisfies the estimate (5.7), with A replaced by its Fourier term A,.
Moreover, the G-equivariance of A implies that u, is a A;-eigenfunction of A. It
is the term of order n in the expansion (3.19). In particular, u, is a multiple of F ,.
In Sect. A.1.2 we see that P, has a term (1 — |w|?)!™* in its asymptotic behavior
near the boundary, or a term (1 — |w|?)!/2log(1 — |w|?) if s = 1. So u,, can satisfy
(5.7) only if it is zero. |

Remark. The proof of the lemma gives the stronger assertion: If u € K satisfies
(5.7), thenu € W® and IT;u = 0.

Returning to the definition of WW*, we note that the action g : w gx—ig in D

gives for the function A®

M) , 5.8)

s P 7125 4S
A®|g(w) |Bw+ A|7> 4 (§w+/f
first for w € D near the boundary and by real-analytic continuation on a
neighborhood of S' in P}. On the boundary, where |w| = 1, this coincides with
the action of G in the circle model, as given in (2.8). In (2.20) the action in the
circle model of 1) is extended to holomorphic functions on sets in Pf.. That action
and the action in (5.8) coincide only on S', but are different elsewhere. This reflects
that A is real-analytic, but not holomorphic.

The restriction of A° to S! induces the restriction map

ps i WO — W, (5.9)

which is G-equivariant.

Examples of elements of W) are the functions Qj ,, represented by elements of
Es(D ~ {0}), whereas the functions Q_,, belong to & but not to V).

We note that the factor 272°(1 — |w|?)® corresponds to (ﬁ)s on the upper
half plane. So in the upper half-plane model, the elements of W“’ are represented by
functions of the form u(z) = ( E 4¥1|2 )S AF (z) with AF real-analytic on a neighborhood
of ]P)]}Q in ]P’(lc. The transformation behavior for A” turns out to coincide on ]P)]}Q with
the action of G in the projective model of V* in (2.6). Outside ]P)]}Q it differs from the
action in (2.23) on holomorphic functions. The restriction map p; : W* — V® is
obtained by u AP|%.

In the line model, we have u(z) = y*A(z) near R and u(z) = (y/|z|?)*A®(—1/z)
near oo, with 4 and A® real-analytic on a neighborhood of R in C. The action on

A is given by
A‘ S P T et (5.10)
cd |V T cz+d)’ '

coinciding on R with the action in the line model. Restriction of A4 to R induces
the description of py in the line model. The factors 2725(1 — |w|?)*, (y/|z + i|2)s,

¥, and (y/|z|)s have been chosen in such a way that A%, AF, A, and A restrict
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to elements of the circle, projective, and line models, respectively, of 1, related by
(2.8) and (2.5).

The space VW is the space of global sections of a sheaf, also denoted WW*, on dHI,
where in the disk model W®(I) for an open set I in S! corresponds to the real-
analytic functions A° on a neighborhood of I in PP¢. such that (1 — [w|?)* A5 (w) is
annihilated by A — A;. Restriction gives p; : W (I) — V*(I) foreach I C S'. In
the line model, W (1) for I C R can be identified with the space of real-analytic
functions A on a neighborhood U of I with y*A(z) € Ker (A — A5) on U N $); for
I ~ P} ~ {0}, we use (y/|z|*)* A>®(—1/z). The function z > y* is an element of
W (R), but not of W = W (PL).

Another example is the function z — y %, which represents an element of
W (R), but notof W =W, (Pﬁ). It is the Poisson transform of the distribution
85.00, Which has support {co}.

The support Supp (o) of a hyperfunction o € )™ is the smallest closed subset
X of OH such that each g € H; representing o extends holomorphically to a
neighborhood of dH ~ X.

1—s

Proposition 5.5. The Poisson transform of a hyperfunction o € )]~ represents an
element of VW (3H ~ Supp (a)).

This statement is meaningful only if Supp () is not the whole of dH. In The-
orem 6.4, we will continue the discussion of the relation between support of a
hyperfunction and the boundary behavior of its Poisson transform.

Proof. Let g € H, be a representative of « € 1)~“. In the Poisson integral in (3.28),

we can replace the integral over C; and C_ by the integral

(1= |wP)'™
2ri

s—1 d_%-

£
where C is a path inside the domain of g encircling Supp («). For w outside C,
the integral defines a real-analytic function on a neighborhood of dD, so there the
boundary behavior is (1 — |w|?)!™ x (analytic). Adapting C, we can arrange that
any point of dD ~ Supp («) is inside this neighborhood. |

Pa(w) = /C 00 ((1 — w/E)(1 — #6)) (5.11)

e Decomposition of Eigenfunctions. We close this subsection by generalizing the
decomposition (5.4) from K to E(R), where R is any annulus 0 < r| < |w| <rp <
1 in D. For u € £ (R) we define

Uin € 55({|w| < rz}) and uoy € 55({|W| > rl}),

by uin(z) = % fc [, g5 (-, 2)] and uou(z) = ;_11 fc [, qs(-.2)], where C C Ris a
circle containing the argument of u;, in its interior, respectively the argument of 4y,
in its exterior. Then (5.4) holds in the annulus R. Explicitly, any u € £ (R) has an
expansion of the form

=Y (@Qsn+biPen)  onr <|w<r, (5.12)

nez
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and uj, and uey are then given by

Uin = anPs,ny Uout = ZanQn,s- (513)

nez nez

5.2 The Transverse Poisson Map

In the last subsection, we defined restriction maps p; : VYW —), and more gener-
ally W) — V“(I). We now show that these restriction maps are isomorphisms
and construct the explicit inverse maps. We in fact give two descriptions of p; !,
one in terms of power series and one defined by an integral transform (transverse
Poisson map); the former is simpler and also applies in the C*° setting (treated in
Sect. 5.4), while the latter (which is motivated by the power series formula) gives a
much stronger statement in the context of analytic functions.

e Power Series Version. Let u € W“(I), where we work in the line model and
can assume that / C R by locality. Write z as x 4 iy and for x € I expand the
real-analytic function A such that u(z) = y*A(z) as a power series Y oo @, (x)y"
in y, convergent in some neighborhood of 7 in C. By definition, the constant term
ao(x) in this expansion is the image ¢ = p,(u) of u under the restriction map. The
differential equation Au = Au of u translates into the differential equation

v (A + Ayy) + 254, = 0. (5.14)

Applying this to the power series expansion of A, we find that
al_,(x) + n(n+2s—1)a,(x) = 0

for n > 2 and that a; = 0. Together with the initial condition @y = ¢, this gives

_ k 1
( 1/4) F(S + 2) @(Zk)(x) lf}’l — 2k,
an(x) = { KIT(k+s+1) (5.15)
0 if2 4 n,

and hence a complete description of A in terms of ¢. Conversely, if ¢ is any
analytic function in a neighborhood of x € R, then its Taylor expansion at x
has a positive radius of convergence r, and we have ¢ (x) = O(n!c") for any
¢ > r'. From Stirling’s formula or the Legendre duplication formula, we see that
47Kk (k + 5 + 3) = O(k™R®)/(2k)!), so the power series ), - dn(x)y"
with a, (x) defined by (5.15) converges for |y| < ry . By a straightforward uniform
convergence argument, the function A(x + iy) defined by this power series is real-
analytic in a neighborhood of 7, and of course it satisfies the differential equation
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Ayx+ Ayy +25y7 1A, = 0, so the function u(z) = y*A(z) is an eigenfunction of A
with eigenvalue A;. This proves:

Theorem 5.6. Let I be an open subset of R. Define a map from analytic functions
on I to the germs of functions on a neighborhood of I in C by

. S e (x)
Plo)(x +iy) = »*' Y —2 2L (C)2/a)k, (5.16)
;; k! (s +3),

with the Pochhammer symbol (% + s)k = ]_[]]:10(% + 5 + j). Then P} is an
isomorphism from V) (1) to W (1) with inverse p.

Of course, we can now use the G-equivariance to deduce that the local restriction
map ps : W*(I) — ¥“(I) is an isomorphism for every open subset / C Pj, and
that the global restriction map p; : W — W is an equivariant isomorphism. The
inverse maps, which we still denote P;r, can be given explicitly in a neighborhood
of infinity using the functions ¢, and A* as usual for the line model or by the
corresponding formulas in the circle model. The details are left to the reader.

Example 1. Take ¢(x) = 1. Then (5.16) gives PI(p(z) = »* in W*(R). More
generally, if p(x) = ¢** witha € R, then PI(p is the function i, , defined in (A.3b).

Example 2. We can generalize Example 1 from ¢ = 1 to arbitrary polynomials:
=25\ i s =S\ (TS k=t
p(x) = o Fle@ =y Y (L)) 4 s
n k+{=m k ¢

This can be checked either from formula (5.16) or, using the final statement of
Theorem 5.6, by verifying that the expression on the right belongs to & and that

its quotient by y* is analytic near R and restricts to (_’js) x™ when y = 0.
Example 3. Leta € C~ I.Then (5.16) and the binomial theorem give

—2s i s O - y2k s
o) =0 = P =yY () gom = k@
k=0

(5.18)
(Here the branches in (x —a)™2* and R(a; z)* have to be taken consistently.) Again,
we could skip this calculation and simply observe that R(a; -)* € W* (/) and that
@(x) is the restriction y * R(a; x + iy)s’yzo. If |a| > |x|, then expanding the two
sides of (5.18) by the binomial theorem gives another proof of (5.17) and makes
clear where the binomial coefficients in that formula come from.

Example 4. Our fourth example is

o(x) = R(x:20)' = Plo@) = b(s) ' ¢s(z20)  (0€H). (519
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where the constant b (s) is given in terms of beta or gamma functions by

1 r'$s)rQ)

b(s) = B(s,z) = el
2

5 (5.20)

Formula (5.19) is proved by remarking that the function on the right belongs to ¥
and that its image under py is the function on the left (as one sees easily from the
asymptotic behavior of the Legendre function Q;_;(¢) as t — o00). Obtaining it
from the power series in (5.16) would probably be difficult, but we will see at the
end of the section how to get it from the integral formula for PlL given below.

Remark. Equation (5.15) shows that the function y=* - PI(p(x 4+ iy) isevenin y
(as is visible in Examples 1 and 2 above). In the projective model, AP (z) =
(#)_b u(z) = |z + i|* A(z) is not even in y. In the circle model, related to the

projective model by w = ;—:l, the reflection z — 7 correspondstow — 1/w (orr
r~! in polar coordinates w = re’?), and the function A5(w) = 2%°(1 — |w|?) " u(w)
satisfies A5(1/w) = |w|* A5(w). For example, (A.8) and (A.9) say that the function
in W (D ~ {0}) whose image under p; is w" (n € Z) corresponds to AS(w) =
v_v_"F(s —n,s;2s;1 — |w|2), and this equals w”|w|_2‘F(s —n,s;2s;1 — |w|_2)

by a Kummer relation. Note that if we had used the factor (}j";“)s instead of

2725(1 — |w|?)* in Definition 5.2, we would have obtained functions A® that are
invariant under w — 1/w.

e [Integral Version. If ¢ is a real-analytic function on an interval / C R, then we
can associate to it two extensions, both real-analytic on a sufficiently small complex
neighborhood of /: the holomorphic extension, which we will denote by the same
letter, and the solution A of the differential equation (5.14) given in Theorem 5.6.
The following result shows how to pass explicitly from ¢ to A, and from A to ¢,
and show that their domains coincide.

Theorem 5.7. Let ¢ € V(1) for some open interval I C R, and write Fj;go(z) =
y* A(z) with a real-analytic function A defined in some neighborhood of I. Let
U = U C C be a connected and simply connected subset of C, with I = U N R.
Then the following two statements are equivalent:

(1) @ extends holomorphically to all of U.
(i) A extends real-analytically to all of U.

Moreover, the two functions define one another in the following way.

(a) Suppose that ¢ is holomorphic in U. Then the function u = P;(p is given for
zeUNHby
1
ib(s)

u(z) = / R o) de. (5.21)

where b(s) is given by (5.20) and the integral is taken along any piecewise C!-
path in U from 7 to z intersecting 1 only once, with the branch of R(¢;z)'™
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continuous on the path and equal to its standard value at the intersection point
with 1.

(b) Suppose that u(z) = Pj(p(z) = y*A(z) with A real-analytic in U. Then the
holomorphic extension of ¢ to U is given by

: ¢
M/ [u(). (R )] ifceUns.
0 &o
@) = A0 iftel, (5.22)
2 b(s) si ¢ s . _
D /g [(—R@ )" u()] e eUns,

where the integrals are along piecewise Cl-pa(hs inUNS fromany&y € I tol,
respectively ¢, with the branch of (—R(§; z))“ fixed by | arg(—R(é‘;z))| <m
for z near &.

We note the formal similarity between the formula (5.21) for Plpr and the
formula (3.26) for the Poisson map: the integrand is exactly the same, but in the
case of Py the integration is over ]ID]}Q (or SY), while in the formula for PZL it is over a
path which crosses P, . We therefore call P! the transverse Poisson map.

We have stated the theorem only for neighborhoods of intervals in R, but because
everything is G-equivariant, they can easily be transferred to any interval in Pf.
(Details are left to the reader.) Alternatively, one can work in the projective or the
circle model. This will be discussed after we have given the proof.

Proof of Theorem 5.7.  First we show that (5.21) gives A on U N § starting from a
holomorphic ¢ on U. Define Pfq) locally by (5.16). For x € I we denote by r, the
radius of the largest open disk with center x contained in U. Using the identity

O A5 i
FKMk+s+3  TGHOrk+s+3 TG /O (1-1) dr

(duplication formula and beta function), we find for x € [ and 0 < y < r, the
formula

. 2k)
o) s i) = o7 [y (Z L
1
= §y5/0 (A=)~ ((p(x +iyv1) + o(x —iy\/;)) de
1
= yS/ (1=1)"lo(x +iyn)dt (1 =1?)
—1

y 2 I—s
- yxf (ﬁ) plx+imy~tdy  (t=n/y)

-y
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— . Xty + I—s
- /x—iy ((f—z)(g“_z)> p(¢)dg, (5.23)

where the path of integration is the vertical line from x —iy to x + iy. The integral

converges at the end points. The value of the factor (y /(=2 — z))l_s is based
on the positive value y~' of y/({ —z)(¢ —2) at { = x. Continuous deformation of
the path does not change the integral, as long as we anchor the branch of the factor
( v/ (€& —2)( — Z)) '™ at the intersection point with 7. (This holds even though that
factor is multivalued on U ~ {z, z}. We could also allow multiple crossings of 7, but
then would have to prescribe the crossing point at which the choice of the branch of
the Poisson kernel is anchored.) This proves (5.21) for points z € U N $) sufficiently
near to /, and the extension to all of U N § is then automatic since the integral
makes sense in the whole of that domain and is real-analytic in z.

To show that (5.22) gives ¢ on U if we start from a given 4, we also consider
first the case that { = X +iY € U N $) and that the vertical segment from X to ¢ is
contained in U. Since we want to integrate up to z = ¢, we will use the green’s form
we(2) = [u(2), (~R(¢;2))"] rather than [(=R(¢;2))’, u(z)] or {u(z), (~R(:2)’},
which would have nonintegrable singularities at this end point. (The minus sign is
included because R({;z) is negative on the segment.) Explicitly, this Green’s form
isgivenforz =x +iy € U N $H by

w(2) = (—R(:2)’ (—d + 2y:§udz)
04
= (—yR(C;Z)S)(a—Zdz—z—SAdz+2—sZ—§ )
ke (M s M, 5ot
= (-yR(:2) |:(aZ o )dx + ( 2 T3 é‘A)dyi|.

(5.24)

If we restrict this to the vertical line z = X 4+ itY (0 < ¢ < 1) joining X and ¢, it
becomes

iy Y
we(X +itY) = (17 A(X +0Y) + T AX +itY) + A(X—l—itY))

S
(1 +1)
125 dt
(1—12)s

— 0 11(S——+_%) (2k+1) . 2k+1
_;;ok!F(mH%)[@ (X) (iY/2)

k s k) . w| o P
+(t+—t(1+t))(p (X)(iY/2) :|t —(l—tz)fdt’

where ¢ is the holomorphic function near / with ¢ = Aon I.
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Now we use the beta integrals

1 e L et rk+s+5Hra-
/ [21{ 5 dt — _/ tk+s—2(1_t)—sdt — ( s 2) 3( S)
o U=y 2k 20k +3)
T+ DTU—s) KTk+s+1) 2%+
S 2r) rs+l @+

1 k s o t23 1 12k+25—1 t2k+23—l _ t2k+23
—+ t dr = k + dr
.é(zza+o) (1—y A( (=2 7 (I—2yH )

k 1 3 s 1 . s—l L
:5/0 T =) dt+%/0 (T T -
_k Tk+s)I(1=s) i(nk+nr@g_rm+s+9reg)
T2 Tk+1) 2 (k) rk+3)

Fs+HTA—s) kKITk+s+3) 2%
2rdy T+ h @

(the second calculation is valid initially for Re (s) < 0, Re (k 4+ s) > 0, but then
by analytic continuation for Re (s) < 1, Re (k + s) > 0, where the left-hand side
converges) to get

oo

£ Ts+3)r—ys) N0 LI m
[;wg_ 2r () 2N = 350) sy Y 6

n=0

Furthermore, we see from (5.24) that the dx-component of the 1-form w¢(x + iy)
extends continuously to U N § and vanishes on 7, so f xf we vanishes for any & €

and we can replace the right-hand side of (5.25) by fé} w¢ . On the other hand, the
fact that the 1-form is closed means that we can integrate along any path from & to ¢
inside U N $), not just along the piecewise linear path just described, and hence also
that we can move ¢ anywhere within U N $), thus obtaining the analytic continuation
of ¢ to this domain as stated in (5.22).

If{ = X —iY (Y > 0) belongs toH ™ N U, then the calculation is similar. We
suppose that the segment from X to { is in U, and parametrize itby z = X +itY.
The differential form is

[(—R(:2)) . u]
sf (0 0 —
= (—y R(:2) ((a—;l(Z)-i-%_z A(Z)) dx—i—(—la—;l(z)—f-% iT)zc A(z))dy),

which leads to the integral
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/E —/1 a YA 4iY) + DA X +iry)
YT A=y T T T

1
i A+ itY)) di

t1+1¢
1
= Z 'F(S—_'_li) ((p(2k+l)(X) (—iY/2)2k+l
Sk T+ 5 +k)
k s t23+2k
-4+ (X)) (—iY/2)* | ———dr,
+(t+t(l+t))(p (X) (=i¥/2) )(1—t2)~Y

which is the expression that we obtained in the previous case with Y replaced by
—Y. We replace Y by —Y in (5.25) and obtain the statement in (5.22) on U N H~
as well. |

It is not easy to find examples that illustrate the integral transformation (5.22)
explicitly, i.e., examples of functions in W® for which the Green’s form
[u(-), R(C; -)*] can be written explicitly as dF for some potential function F(-).
One case which works, though not without some effort, is u(z) = y* = PI(l)
(Example 1). Here the needed potential function is given by Entry 6 in Table A.3
in Sect. A4, and a somewhat lengthy calculation, requiring careful consideration
of the branches and of the behavior at the end points of the integral, lets us
deduce from (5.22) that the inverse transverse Poisson transform of the function
y¥ € W?(R) is indeed the constant function 1.

e Other Models. The two integral formulas above were formulated in the line
model. To go to the projective model, we consider first U C C as in the theorems
not intersecting the half-line 7 [1, 0o). In that case we find by (2.5) and (3.27b)

1 ‘ d
Plo®(z) = ib(s)[ R (¢:2)' 77 0" (0) . _’22 (ze U N9, (5.26a)
i ¢
2b(s)sinms / [u(-), (~RZ(C: ))'] if¢ e U s,
7 &
PO = AFQ) ifeUnR=1,
i ¢
2RO [U[(-R* s )Y u)] ¢ € U sy
T §o
(5.26b)
with u(z) = (#)Y AF(z), where the paths of integration and the choices

of branches in the Poisson kernels are as in the theorems, suitably adapted.
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These formulas then extend by G-equivariance to any connected and simply
connected open set U = U C PL~{i,—i} and any & € U N P}, giving a local
description of the isomorphism ¥ = W on all of P,. Note that the integrals
in (5.26) make sense if we take for U an annulus 1 —& < ‘j—:l‘ < 1 +¢in PL, which
is not simply connected, but the theorem then has to be modified. We will explain
this in a moment.

In the circle model, we have

1/
Pl = — / REaw'=e*m Y weund), (27
2b(s) Jiw n
P [Ty, (R )] it e Ulnl <1
o0 = A5() ifneuUns,
. 1/ii
PRSI [T R ) ] it Ul > 1

(5.27b)

with u(w) = 272(1 — |w|)’ A3(w), for w € U N D, with U open in C ~ {0},
connected, simply connected, and invariant under w + 1/w, and with & € U N St,
with the paths of integration and the choice of branches of the Poisson kernel again
suitably adapted from the versions in the line model.

If U is an annulus of the form ¢ < |w| < &¢~! with ¢ € (0,1), we still can
apply the relations in (5.27), provided we take in (5.27a) the path from w to 1/w
homotopic to the shortest path. If we change to a path that goes around a number
of times, the result differs from PI(p(w) by an integral multiple of % PypS(w). In
(5.27b) we can freely move the point & in dDD, without changing the outcome of the
integral.

Let us use (5.27a) to verify the formula for P;r (R(-:z0)*) given in Example 3.
By G-equivariance, we can suppose that zp = i. Now changing to circle model
coordinates, we find with the help of (3.27c) that the function ¢p(x) = R(x;i)*
corresponds to ¢°(£) = 1 and that the content of formula (5.19) is equivalent to the
formula

/m ((1 —r/n)(1 _rn))f—l dn _ (1= ) Y-t et

1—r2 n o (1—1(1—r?)

I(s)?

_ _2ys
== F ey

1 2
Fis.si28:1 =) =20, (1),
1—1r2

where in the first line we have made the substitution n = (1 — #)r=! + ¢r.
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5.3 Duality

We return to the bilinear form 8 on % defined in (5.2). We have seen that f is zero
on & x &. The next result describes ,3 on other combinations of elements of & in
terms of the duality map (, ) : ¥* x YZ¢ — C defined in (2.19).

Proposition 5.8. Letu, v € K.
(@) If ue& andv e W?, then

Blu,v) = b(s)™ (g, a) (5.28)

with b(s) as in (5.20), where u = P_ya witha € V_¢ and v = P:fgo with
¢ €R”.

(b) If u, ve W, then B(u,v) = 0.

©) If ueW? andv € W, then

Bluv) = (s—%) 0. 1). (5.29)

with ¢ € V°_, ¥ € V* such that u = Ij;_s(p andv = P,
Proof. The bijectivity of the maps Pj_, : V™ — &_; = & and P/ : 1)* —

W implies that we always have ¢ and « as indicated in (5.8). All transformations
involved are continuous for the topologies of YZ¢ and 1}, so it suffices to check
the relation for ¢ = e ,, and @ = e;_ ,,. Now we use (3.29), the result for Pzes,,, in
Sect. A.3, and (3.18) and (2.15) to get the factor in (5.28).

For part (5.8) we write u = (1 — |w|?)*A(w) and v = (1 — |w|?)* B(w) with A4
and B extending in a real-analytic way across dD. If we take for C a circle |w| = r
with r close to 1, then

1
[u.v] = Tr(l —r?)> (AB, — BA,) db.
1

It follows that the integral is O((1 — r?)*) as r 1 1 and hence vanishes.
In view of b), we can restrict ourselves for ¢) to the case s # % As in part 5.8), it
suffices to consider the relation for basis vectors. We derive the relation from (A.14):

IB(Ql—s,mv Qs,n) = :3 (ﬂ cotms Ps,m + Qs,mv Qs,n) =m cotms (_l)ngn,—m- u

5.4 Transverse Poisson Map in the Differentiable Case

The G-module W, which is isomorphic to V“, turns out to be very useful for
the study of cohomology with coefficients in 1}, discussed in detail in [2]. There
we also study cohomology with coefficients in Vp with p = 2,3,..., 00, and for
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this we need an analogue V" of W related to p times differentiable functions.
In this subsection, we define such a space and show that there is an equivariant
isomorphism PT K’ — WY, To generalize the restriction p; : We — N, we
will define Wp not as a space of boundary germs but as a quotient of G-modules.
In fact, we give a uniform discussion, covering also the case p = w treated in the
previous subsections.

Definition 5.9. For p = 2,3,...,00,w we define GP and NY as spaces of
functions f € C 2QD)) for which there is a neighborhood U of 0D = S in C such
that the function f(w) = (1 — |w|)™ f(w) extends as an element of C?(U) and
satisfies on U the conditions

p For G For N/’

€Z=  Acf(w) = o((l —|wP)?) Fw)=o((1—wP?)

00 The above condition for all p € N The above condition for all p € N
w Afwm =0 fw) =0

where A, is the differential operator corresponding to A — A; under the
transformation f — f.

In the analytic case p = o, the space G® consists of C2-representatives of germs
in W, and N consists of C 2-representatlves of the zero germ in W?, i.e., N =
C2(D). Any representative of a germ can be made into a C2-germ by multlplylng
it by a suitable cutoff function. Thus Y} as as in Definition 5.2 is isomorphic to
G® /N©. We take C>-representatives to be able to apply A without the need to use
a distribution interpretation.

In the upper half-plane model, there is an equivalent statement with f° replaced
by fP, and 272(1 — |w|?) by # The group G acts on G/ and NY for p =
2,...,00,w, by f|g(z) = f(gz), and the operator corresponding to A — A is
Ay = —y?(02 + 92(— 25y 9y (cf. (5.14)).

The deﬁnition works locally: G (1) and N (I), with I C dH open, are defined

in the same way, with 2 now a neighborhood of / in ]P’é:. In the case that / C Rin
the upper half-plane model, we have f(z) = y° f (z) on £2 N H with f e CP(£2).
On can check that G7 and N are sheaves on 9H.
o Examples. The function z +— y* is in G¥(R). The function Q;, in (3.7) has the
right boundary behavior, but is not defined at w = 0 € ID. We can multiply it by
re? > x(r) with a smooth function y that vanishes near zero and is equal to one
on a neighborhood on 1. In this way we obtain an element of G

e Restriction to the Boundary. For f € G! the corresponding function f° on £
has a restriction to S! that we denote by p; f. It is an element of })”. In this way,
restriction to the boundary gives a linear map

ps 1 G — VP (5.30)
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that turns out to intertwine the actions of G and that behaves compatibly with respect
to the inclusions G — G{ and ¥’ — Y if ¢ < p. This restriction map can be
localized to give ps : GF (1) — R’ (1) for open intervals I C 9H.

Lemma 5.10. Let I C 0H be open. For p = 2,...,00, the space NT(I) is a
subspace of G (I). It is equal to the kernel of ps : G (I) — W' (1).

Proof. The sheaf properties imply that we can work with I # dH. The action of G
can be used to arrange / C R in the upper half-plane model.

_Letfirst p € N, p > 2. Suppose that f(z) = y*f(z) on £2 N § for some
f e CP(82), with £2 a neighborhood of / in C. The Taylor expansion at x € [
givesfori,j >0,i +j <p

P .
Ao . (}’l —l)' (i) i s
1 ] — . n—i ] p 1 j
9%0) f (x +1iy) n=§i+j i j)!a”_’ (x)y +o(y ) (53D

on §2, with
1 N
an(x) = — 7 ().
n!

The differential operator A — A, applied to f corresponds to the operator Ay =
—y29% — yzai —2syd, applied to f on the region £2 N §). Thus we find

P
Asf(x +iy) = —2sa)(x) — Z(a,’,’_z(x) +n(n+2s— l)an(x))y” +o(y?).
n=2

(5.32)

If f € N{(I), thena, = 0for0 <n < p,and Ay f(z) = o(yP).So [ €
GP(I), and ps f(x) = f(x) = ao(x). Hence, NY¥ (I) C Ker p;.

Suppose that f € GI(I) is in the kernel of p,. Then ag = 0. From (5.32) we
have a; = O and a,_, = n(l —2s — n)a, for2 < n < p. Hence, a, = 0 for
alln < p,and f e NP (I).

The case p = oo follows directly from the result for p € N.

In the analytic case, p = w, the inclusions N®(I) C G*(I) and N (I) C
Ker p, are clear. If f € G¥(I) N Ker py, then f is real-analytic on 2, and instead
of the Taylor expansion (5.31), we have a power series expansion with the same
structure. Since (Ker p;) N G® (1) C N°(I), we have a, = 0 for all n; hence, the
analytic function f vanishes on the connected component of £2 containing /. Thus,

feNe. [ ]

Relation (5.32) in this proof also shows that any f € G (1) with I C R has the
expansion

)3 1/ C(s+3)

(k) s+2k s+p
t+o 0, xel),
k! T (s+k+3) P (x) y 077 (v 10, xel)

flx+iy) =
0<k=<p/2
(5.33)

with ¢ = ps f € W (I).
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e Boundary Jets. For p = 2,...,00 we define Y} as the quotient in the exact
sequence of sheaves on dH

0— N/ — GF — WP —0. (5.34)

In the analytic case, p = w, we have already seen that WW® is the quotient of
G ING.

In the differentiable case p = 2,...,00, an element of W (1) is given on a
covering / = |J; I; by open intervals /; by a collection of f; € Gr(I;) such
that f; = f/ mod N (I; N 1;7) in GP(I; N 1) if I; N 10 # @. To each j is
associated a neighborhood £2; of /; in P} on which ij is p times differentiable.
Add an open set £ C Hsuch that H C 2 U U ; £2;. With a partition of unity

subordinate to the collection {.Q} U {$2; : j}, we build one function f on H such
that /S = (1 — |w|?>)™ f(w) differs from ij on £2; by an element of N7(/;). In
this way we obtain W’ (1) = G (I)/NY (I) in the differentiable case as well.

We have also

0 —> N7 (3H) —> G2 (9H) — WP (IH) —> 0

as an exact sequence of G modules. We call elements of VW’ boundary jets if p =
2,...,00. The G-morphism p; induces a G-morphism ps : W’ (1) — K’ (I) for
p = 2,...,00,w. The morphism is injective by Lemma 5.10. In fact it is also
surjective:

Theorem 5.11. The restriction map ps : Vo' (I) — KW (I) is an isomorphism for
every open set I C dH, for p =2,...,00,w.

The case p = w was the subject of Sect.5.2. Theorem 5.7 described the inverse
PI explicitly with a transverse Poisson integral, and Theorem 5.6 works with a
power series expansion. It is the latter approach that suggests how to proceed in
the differentiable and smooth cases. We denote the inverse by PI or by P;rq p ifitis

desirable to specify p.

Proof. In the differentiable case p € N U {oo}, it suffices to consider ¢ € CF(I)
where I is an interval in R. The obvious choice would be to define near /

(—1)* 2% 2%
f@) = ) (x) T, (5.35)
05;5:1;/2 4K (s + 3),

However, this is in general not in C?(§)) because each term ¢%) (x) y*+2¢

in C?~2 Instead we set

is only

oo

f) = yS/ o) e(x + yt)dt = yH/ w(t_Tx) p(t)dt, (5.36)

—00 —00
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where ¢ has been extended by zero outside its support and where w is an even
real-analytic function on R with quick decay that has prescribed moments

o) -1 k¢l
My, = / 12k w()dt = % foreven k > 0. (5.37)
—00 (S + i)k

(For instance, we could take w to be the Fourier transform of the product of the

1 A
functionu — I'(s + %) (%) t Is—1/>(Ju|) and an even function in C>°(R) that is
equal to 1 on a neighborhood of 0 in R. This choice is even real-analytic.) Replacing
@ in (5.36) by its Taylor expansion up to order p, we see that this formally matches
the expansion (5.35), but it now makes sense and is C* in all of §), as we see from
the second integral. The first integral shows that

oo

f@ =y f@2 =/ o(t)p(x + yt)de (5.38)

extends as a function in C*(C).

Inserting the power series expansion of order p of ¢ at x € [ in (5.38),
we arrive at A, f(z) = O(y?). This finishes the proof in the differentiable and
smooth cases. |

In the proof of Theorem 5.11, we have chosen a real-analytic Schwartz function
o with prescribed moments. In the case p = 2, 3, ... we may use the explicit choice
in the following lemma, which will be used in the next chapter:

Lemma 5.12. For any s ¢ %Z and any integer N > 0, there is a unique
decomposition
, dVa(r)
2 s—1

t 1 = — t 5.39

(+1) 2+ B0 (539)
where a(t) = ays(t) is (1> + 1)*7! times a polynomial of degree N in t and
B(t) = Bns(t) is O>* N3 as |t| — oo.

We omit the easy proof. The first few examples are

T A (e Do 25 =2 5 .,
& +1) _d—t[ - i|+ T (2 +1)"72,
_ 2T 2+1)y! (1241) 4(s—1)(s—2) _
2 s—1 _ = 2 s—3
@+ = dtz[(ZS—l)(Zs—3) +2s(2s—1):|+ (2s—1)(25=3) @+D™
@41 = d_3[ 2t (2 + 1)1 t(t* + 1) }
A @2s+D@2s—1D@2s—3)  2sQs+ D@2s—1)

4(s — 1)(s —2) (2s +3

2 2 s—4
2s+ H(2s—1) 2s—3+3t)(t+1) '
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In general we have
N/2

—j _1 (12 )s 1+
ans(t) = 2N Z ( N/2 -1 ) () (s =2 + v

if N > 2iseven, where (s); = s(s+1)---(s+j—1) is the ascending Pochhammer
symbol, and a similar formula if N is odd, as can be verified using the formula

1'dt"( F1yt = Z (n—J)(’::j) Q1) (12 + 1y~

0<j=<n/2 J

Let us compute the moments of § = By asin (5.39). For0 < n < N, we have

oo [} N
/ " B(1) dt =/ ((12+1)5—1 - ddi\gt))t”dt.

This is a holomorphic function of s on Res < 1. We compute it by considering
Res < —%:
2

/oo tn(t2 + 1)3_1 df = fo = dx if niseven,
—oc0 0 if n is odd;
1
r —)k 2k iy = 2k is even,
= Jrtanws ——— () =D s+ 3k (5.40)
rs+%) 0 if n is odd.

So a multiple of By has the moments that we need in the proof of Theorem 5.11.

6 Boundary Behavior of Mixed Eigenfunctions

In this section we combine ideas from Sects. 4 and 5. Representatives u of elements
of W have the special property that (1 — |w|2)s_1 u(w) (in the circle model) or
¥*~u(z) (in the line model) extends analytically across the boundary dH. If such an
eigenfunction occurs in a section (%, u) of the sheaf D, of mixed eigenfunctions,
we may ask whether a suitable multiple of & also extends across the boundary.
In Sect. 6.3 we will show that this is true locally (Theorem 6.2), but not globally
(Proposition 6.5).

In Sect. 6.1 we use the differential equations satisfied by y ~*u for representatives
u of elements of W to define an extension A; of the sheaf & from §) to ]P(lc. We also
extend the sheaf D, on ]P(lc x $) to a sheaf D} on ]P(lc X ]P’(lc that has the same relation to
Aj_s as the relation of D; to & = &;—,. In Sect. 6.2 we show that the power series
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expansion of sections of A, leads in a natural way to sections of D}__, a result which

is needed for the proofs in Sect. 6.3, and in Sect. 6.4 we give the generalization of
Theorem 4.13 to the sheaf Dy Finally, in Sect. 6.5 we consider the sections of D;
near P, x ).

6.1 Interpolation Between Sheaves on $) and Its Boundary

In this subsection we formulate results from Sect. 5.2 in terms of a sheaf on ]P’(lc that
is an extension of the sheaf &. This will be used in the rest of this section to study
the behavior of mixed eigenfunctions near the boundary ]P’(lc X ]P’]% of ]P’(lc X §) and to
extend them across this boundary. We also define an extension D} of the sheaf D;
of mixed eigenfunctions.

For an open set U C C, let A;(U) be the space of real-analytic solutions A(z)
of (5.14)inU.For U C ]P’(lc containing oo, the definition is the same except that the
solutions have the form A(z) = |z|7>*A%°(—1/z) for some real-analytic function
A®° near 0 (which then automatically satisfies the same equation). The action (5.10)
makes A; into a G-equivariant sheaf: A — A|g defines an isomorphism A, (U) =~
As(g7'U) forany open U C Pl and g € G.

For any U C PPL, the space A, (U) can be identified via A(z) — u(z) = |y|*A(z)
with a subspace of the space & (U ~ Pﬁ&) of As-eigenfunctions of the Laplace
operator A = —y%(3% + Bi) in ]P’(lC ~ ]P)]}Q (up to now we have considered the operator
A and the sheaf & only on §)), namely, the subspace consisting of functions which
are locally of the form |y|* x (analytic) near R and of the form |y/z?|* x (analytic)
near oo.

If U C PL ~ P}, then the map A — u is an isomorphism between A,(U) and
Es(U). (In this case, the condition “real-analytic” in the definition of A (U) can be
dropped, since C? or even distributional solutions of the differential equation are
automatically real-analytic.) At the opposite extreme, if U meets ]P)]}Q in a nonempty
set , then any section of A, over U restricts to a section of V* over /, and for
any I C PL, we obtain from Theorem 5.6 an identification between V(1) and
the inductive limit of A,(U) over all neighborhoods U DO I. The sheaf A, thus,
“interpolates” between the sheaf £ on ]P’(lc ~ ]P’]% and the sheaf 1 on ]P]}Q. At points
outside ]P’]%, the stalks of A, are the same as those of &, while at points in ]P’]%, the
stalks of the sheaves A, *, and W) are all canonically isomorphic. At the level of
open sets rather than stalks, Theorem 5.7 says that the space A, (U) for suitable U
intersecting ]P)]}Q is isomorphic to O(U) by a unique isomorphism compatible with
restriction to U N R, the isomorphisms in both directions being given by explicit
integral transforms. Finally, from (5.15) we see that if U is connected and invariant
under conjugation, then any A € A(U) is invariant under z — Z. In the language
of sheaves, this says that if we denote by ¢ : ]P’(lc — ]P(lc the complex conjugation,
the induced isomorphism ¢ : c ' A, — A, is the identity when restricted to ]P’]%.
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We now do the same construction for the sheaf D; of mixed eigenfunctions,
defining a sheaf D} on IP’(%: X ]P’é: which bears the same relation to D, as A, has
to &. (We could therefore have used the notation £ instead of A, but since
Ay interpolates between two very different subsheaves & and ))”, we preferred
a neutral notation which does not favor one of these aspects over the other. Also,
E =&, but Ay # A )

Let (4, u) be a section of the sheaf D in U N ((C xﬁ), where U is a neighborhood
in C x C of a point (xg, xo) with xo € R. The function u(z) is a A;-eigenfunction
of A, and we can ask whether it ever has the form y* A(z) or y!™ A(z) with A(z)
(real-)analytic near xy. It turns out that the former does not happen, but the latter
does, and moreover that in this case, the function A (¢, z) has the form y™ B({, z)
where B((, 7) is also analytic in a neighborhood of (x¢, xo) € C x C. To see this,
we make the substitution

u@ =y AR, kG2 =y B2 (6.1)

in the differential equations (4.34) to obtain that these translate into the differential
equations

(¢—20.B = —sB —%S(C—E)A, (6.2a)

(£—2)9-(B —yd) = —s B — g (t—7) A, (6.2b)

for A and B, in which there is no singularity at y = 0. (This would not work if we
had used u = y*A, h = y* B instead.)

As long as z is in the upper half plane, the equations (6.1) define a bijection
between pairs (h, 1) and pairs (B, A), and it makes no difference whether we study
the original differential equations (4.34) or the new ones (6.2). The advantage of the
new system is that it makes sense for all z € C and defines a sheaf D} on C x C
whose sections over U C C x C are real-analytic solutions (B, A) of (6.2) in U
with B holomorphic in the first variable and A locally constant in the first variable.
This sheaf is G-equivariant with respect to the action (B, A)|g = (B|g, A|g) given

forg = [¢ 2] by
Blg(t,z) = |cz+d[*B(gt. g2). Algz) = |cz+d[*?A(gz), (6.3)

s0 it extends to a sheaf on all of P{. x P[. by setting D¥(U) = D¥(g7'U)|g if U is
a small neighborhood of a point (&, 00) or (00, z0) and g is chosen with g~ 'U C
CxC.

In (4.38) and (4.39), we give a formula for % in terms of u near the diagonal and
the antidiagonal where (%, 1) is a section of D;. In terms of A = y*"'u and B =
y*h, this formula becomes

i _ "4 (C—2)"
—5 —z); O T ) for ¢ near z,
B(é" Z) = " - (é- _ z)n

_%(C —2) ; BZI: (2) TS %(C —72)A(z) for ¢ nearz.
B (6.4)
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Now inspection shows that the right-hand side of (6.4) satisfies the differential
equations (6.2), whether z € $) or not, so (B, A) with B as in (6.4) gives a section
of D} on neighborhoods of points (z, z) and (z, z) for all z € C. From (6.4) it is not
clear that for z € R both expressions define the same function on a neighborhood
of z. In the next subsection, we will see that they do.

6.2 Power Series Expansion

Sections of A are real-analytic functions of one complex variable and hence can
be seen as power series in two variables. In this subsection, we show that the
coefficients in these expansions have interesting properties. They will be used in
Sect. 6.3 to study the structure of sections of Dy and D near the diagonal of PJ, xPj,.

Let U C C be open, and let zp € U. We write the expansion of a section A of
Ay at a point zy in the strange form (the reason for which will become apparent in a
moment)

AG) = Zj(m+s_1)("+2_1)am&w@—mwgtzw.<a$

m
m,n>0

Then we have the following result.

Theorem 6.1. Letr U C C, A € A;(U), and for zo € U define the coefficients
Cmn(z0) form,n > 0by (6.5). Letr : U — Ry be continuous. Then the series (6.5)
converges in |z — zo| < r(z0) if and only if the series

Ba(z0:v. W) 1= Y Ccmalz0) V"W (6.6)

m,n>0

converges for |v|, |w| < r(z0). The function defined by (6.6) has the form

B(Zo + v, Z()) — B(ZO +w, ZO)
@ ’ R = B 6.7
o) Yo+ = w)/2i ©7

for a unique analytic function B on
U' = {(62eCxU : [t—z<r@@} U{(2eCxU : [{-2 <r@)}

satisfying B(¢,z) = y A(z) and B(z,z) = 0 for z € U, and the pair (B, A) is a
section of Dy_, over U’

Proof. The fact that (’"tz_l) = m%D as m — oo implies the relation between

the convergence of (6.5) and (6.6). (We use here that a power series Y ¢y V'W"
in two variable converges for |v|, [w| < r if and only if its restriction to w = v
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converges for |v| < r.) The differential equation (5.14) is equivalent to the very
simple recursion

21y0 Cm,n(ZO) = Cm,n—l(ZO) - Cm—l,n(ZO) (m7n > 1) (68)

for the coefficients ¢;, , (z0). (This was the reason for the choice of the normalization
in (6.5).) This translates into the fact that (2iyg + v — w) @ 4(zo; v, w) is the sum of
a function of v alone and a function of w alone, i.e., we have

L 4(z0;v) — Ra(z0:w)

D4(zo;v,w) = ot w2 (6.9)

where, if we use the freedom of an additive constant to normalize R 4(z9;0) = 0,
the functions L 4 and R4 are given explicitly in terms of the boundary coefficients

1¢;.0(z0)}j=0 and {co ; (z0)} j>1 by

2i L 4(z0;v) = (v + 2iyo) Z cmo(z0) V™,

m=>0

2i Ra(z0:w) = co0(z0) W+ (w = 2iy0) Y _ co(z0) W' (6.10)

n>1

(Multiplied out, this says that coefficients ¢, ,(zo) satisfying (6.8) are determined
by their boundary values by

Cman(20) = Zi (m_j +n_1) ¢jo(zo)

= Qiyoyrtr m—j
(= (n—j+m—1)

+Y , co.; (20), (6.11)
j; (2iyo)"+n= n—j 0 @)

which of course can be checked directly.)
We define B on U’ (now writing z instead of z) by

La(z,§—2) if[{ —z| <r(2),

6.12)
Ru(z,§—2) if [{—2| <r(2).

B((,2) =

These two definitions are compatible if the disks in question overlap (which happens
if 7(z) > |yo|) because the convergence of (6.6) for |v|, [w| < r(z) implies that the
fraction in (6.9) is holomorphic in this region and hence that its numerator vanishes
ifzo +v =120+ w.

Surprisingly, the function B thus defined constitutes, together with the given
section A of Ay, a section (B, A) of D}__ for ¢ near z or Z. To see this, we apply
the formulas (6.4), with s replaced by 1 — s, and express the derivatives of A4 in the
coefficients ¢, » (z) with help of (6.5). We find that the first expression in (6.4) is
equal to L 4(z; ¢ — z), and the second one to R4(z; ¢ — 7). |
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Example 1. Let A(z) € A, ((C ~ {O}) be the function |z|7%*. For any zo # 0 the
binomial theorem gives ¢,y ,(z) = (—=1)"+" 79| 7% z5™ ;" and

|z0>7% _ 1 (|ZOIZ_ZS _ |Zo|2_25)
(z0 +v)(Zo +w) 2iyo+v—w\Zo+w zo+v /)’

D4(z0;v,w) =

(6.13)
in accordance with (6.7) with the solution B({,z) = 1 [2]*™* (™' —Z7"), defined
onz # 0, # 0. (The regions |{ — z| < |z] and |{ — z| < z do not overlap.)

Example 2.1f zp € R, then (6.8) says that ¢,, »(z0) depends only on n + m, so the
generating function @4 has an expansion of the form

0 PN N+1
Dy(zo:v,w) = Z Cn (20)
v—w
N=0
Hence, in this case, we have A(z) = ZNZO Cn (z0) Py (z — zo) where Py is the

section of A, defined by

Py() = (DY )~ (_S) (_s) 7, (6.14)

m n
mn>0,m+n=N

a polynomial that already occurred in (5.17).

Example 3. Let A(z) = y~* psx(z,1), defined in (3.5), with zo = i and k > 0. We
describe A(z) = kf;f(ffll) A(w) first in the coordinate w = j—:} of the disk model.
Taking into account (A.8) and (A.9), we obtain

1—ww
[1—w?

Aw) = wk( )_S(l—wv‘v)“F(s,s+k;l+k,wv?z).

Set p = (z —1)/2i,so thatw = p/(p + 1). Then

7 k
Ay = =y (1= Y —(ﬁ‘fg{ O

>0

_ e —1
() () () e
>0
—s\[ =S —k\[(L+k\ " [—s—k—C\[—s—1 P
() )0
won (S =K\ =5\ (nHEk\ T G (m—k\ (n+k
2. »p (m—k)(n)( k ) : ( ¢ )(n—e)

=0

|
™
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S ETEY IO )

m>k,n>0

Hence, A has an expansion as in (6.5) with

LG = epal) = (1) @) (1= s (’"I k) (6.152)

(= 0if m < k), which satisfies the recursion (6.8).
The analogous computation for k& < 0 gives

M) = (=1)"@) 7" (1= s) (’"”) (6.15b)
: m—k
(=0ifn < —k).?
In this example we can describe the form of the function B up to a factor
without computation by equivariance: since z + py,(z,1) transforms according

to the character [_Z?;z C‘é‘;z] > eZk9 the function # = y*~! B should do the same

near points of the diagonal or the antidiagonal. Thus, for k > 0, we know that
B(¢,1) is a multiple of (§+1)
k < 0, we have B({,i) = O for ¢ near i, and B({,1) is a multiple of ( ) for
¢ near —i. The explicit computation using (6.12), (6 10), and (6.15) conﬁrms these
predictions, giving B(¢,i) = (=1)F (1 — s)k( ) if Kk > 0 and ¢ is near i, and

B(L,i) = —(—1)k Lkt1=s) (E 1.) if k < 0 and ¢ is near —i.

k . . . .
near { = i and vanishes near { = —i, while for

T(a-s) \ZHi
Note that since any holomorphlc function of ¢ near i (resp. —i) can be written
as a power series in m (resp = 1) we see that this example is generic for the

expansions of A and B for any section (B, A) of Dy near ({,z) = (=i, 1), and hence
by G-equivariance for z near any zo € $) and ¢ near zo or Zo.

Remark. We wrote formula (6.5) as the expansion of a fixed section A €
A;(U) around a variable point zo € U. If we simply define a function A(z)
by (6.5), where zp (say in $) is fixed, then we still find that the differential
equation (A — As)(y“' A(-,ZO)) = 0 is equivalent to the recursion (6.8) and to
the splitting (6.9) of the generating function @, defined by (6.6). In this way, we
have constructed a very large family of (locally defined) A -eigenfunctions of A:
for any zp € $ and any holomorphic functions L(v) and R(w) defined on disks
of radius r < y, around 0, we define coefficients c,, , either by (6.9) and (6.6) or
by (6.10) and (6.11); then the function u(z) = y* A(z) with A given by (6.5) is a
As-eigenfunction of A in the disk of radius r around z,.

3The Pochhammer symbol (x); is defined for k < 0as (x — 1)71 -+ (x — |k[|)™', so that (x); =
I'(x 4+ k)/I'(x) in all cases.
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6.3 Mixed Eigenfunctions Near the Diagonal of P}, x P},

Parts (4.10) and (4.10) of Proposition 4.10 show that if (h, u) is a section of D, near
a point (z,z) € H x $ of the diagonal or a point (z,z) € $H~ x § of the antidiagonal,
then the function / and u determine each other. Diagonal points (£, §) € Pj x ]P)]}Q
are not contained in the set ]P)(lc x £ on which the sheaf D; is defined. Nevertheless,
there is a relation between the analytic extendability of & and u near such points,
which we now study.

Theorem 6.2. Let & € P},. Suppose that (h, u) is a section of Dy over U N (.V) X .6)
for some neighborhood U of (§€,£) in P(IC X ]P’(lc. Then the following statements are
equivalent:

(a) The function y*~'u extends real-analytically to a neighborhood of € in ]P’(lc.

(b) The function y*h extends real-analytically to a neighborhood of (£, €) in Pg. x
PL.

(¢c) The function y*h extends real-analytically to U’ N (]P’(lC X .6) for some neighbor-
hood U’ of (£,£) in Pl x PL.

The theorem can be formulated partly in terms of stalks of sheaves. In particular,
the functions u in a) represent elements of the stalk (W® )¢, and the pairs
(»*h, y*~'u) with y*~'y as in a) and y*h as in b) represent germs in the stalk

(D;") €6 The theorem has the following consequence:

Corollary 6.3. Foreach & € ]ID]}Q the morphism C : Dy — p;'E; in Theorem 4.13
induces a bijection

lim D, (U N (B x 9) = (W),
U

where U runs over the open neighborhoods of (€,§) in ]P’é: X I%, and
(Wcis)g = (D:)(g,g)'

Proof of Theorem 6.2. We observe that since U N ($ x ) intersects the diagonal,
the functions 4 and u in the theorem determine each other near (&, £) by virtue of
parts 4.10) and 4.10) of Proposition 4.10. Hence, the theorem makes sense.

Clearly (b) = (c). We will prove (a) = (b) and (c) = (a). By G-equivariance
we can assume that £ = 0.

For (a) = (b) we write u = yl_“A with A real-analytic on a neighborhood
of 0 in C. We apply Theorem 6.1. The power series (6.5) converges for |z9] < R,
|z—z0| < r for some r, R > 0. (Choose r to be the minimum of r(zp) in |79| < R for
R small.) The theorem gives us an analytic function B on the region W = {({,z) €
CxC : |zl < R,|C—2| < r} such that (B, A) € D} (W). By the uniqueness clause
of Proposition 4.11, the restriction of B to W N ((C X .6) is y*h. Since (0,0) € W
this gives (b).



Function Theory Related to the Group PSL;,(R) 179

For ¢) = a) we start with a section (y*B, y' ™ A) of DS(UR X Ulg') for some
R > 0, where Ugx = {z € C : |z < R}and U = U, N . Then 4 €
A (U ; ). We apply Theorem 6.1 again, with zo € U ; . By the uniqueness clause
in Proposition (4.11), the function B appearing in (6.7) is the same as the given B
in a neighborhood of {(z.2) : z€ Uf} U {(z.2) : z € UF}. Since B(-,z) is
holomorphic in Uy for each zy € U, the right-hand side of (6.7) is holomorphic
for all v, w with |zo + v|, |z0 + w| < R. (The denominator does not produce any
poles since the numerator vanishes whenever the denominator does.) Hence, the
first statement of Theorem 6.1 shows that the series (6.5) represents A(z) on the
open disk |z — z0| < R — |zo|. For |z0] < %R, this disk contains 0, so A is real-
analytic at 0. |

In Proposition 5.5 we showed that the Poisson transform of a hyperfunction
represents an element of W outside the support of the hyperfunction. With
Theorem 6.2 we arrive at the following more complete result.

Theorem 6.4. Let I C JH be open, and let « € V™. Then P represents an
element of W* (1) if and only if I N Supp (o) = @.

Proof. Proposition 5.5 gives the implication <. For the other implication, suppose
that Pyor represents an element of VW (7). Let g, be the canonical representative
of o, defined in Sect. 4.1. Then (gean. Ps) € Dy((PL ~ Py) x §) by Theorem 4.8
and Definition 4.9. The implication (a) = (b) in Theorem 6.2 gives the analyticity
of y* gcan On a neighborhood of (&, §) in ]P’é: X IP’(%: for each & € I. It follows that for
70 € 9 sufficiently close to &, the function gean( -, zo) is holomorphic at &. It then
follows from the definition of the mixed hybrid model in Sect. 4.1 that gcn( -, z) is
holomorphic at £ for all z € §). Thus & cannot be in Supp («). |

Theorem 6.2 is a local statement. We end this subsection with a generalization
of Proposition 4.14, which shows that the results of Theorem 6.2 have no global
counterpart. For convenience we use the disk model.

Proposition 6.5. Let A C DD be an annulus of the form r; < |w| < 1 with
0<ri<l1, and let V C ]ID(IC be a connected open set that intersects the region
ri < |w| < r;L. Then Ds(V x A) does not contain nonzero sections of the form
(h, u) where u € E;(A) represents an element of YW® ..

Proof. The proof is similar to that of Proposition 4.14. Suppose that (h,u) €
Ds(V x A) where u represents an element of Y} . By (4.36¢) the holomorphic
function § — [, [RS(g i), u] is identically zero on some neighborhood p <
|€] < p~! of the unit circle. We have the absolutely convergent representation
u=y, b,0Qi_s, on A forasequence (b,) of complex numbers. Combining this

with the expansion RS(§; - ) = > =H " Pi—s,» and (3.18), we obtain

m (T—s)m

o
gy, =0

for all £ € S'. Hence, all b, vanish, so u and hence also / are zero. [ |
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Corollary 6.6. IfV is a neighborhood of dD in P, then DS(V x (VN .6)) = {0}.

Proof. Let (h,u) € Dy(V x (V N §)). Corollary 6.3 implies that u € (B N D)
represents an element of W)/ 7*. The neighborhood V' contains an annulus of the
form r; < |w| < r’!, and Proposition 6.5 shows that (, u) = (0, 0). |

6.4 The Extended Sheaf of Mixed Eigenfunctions

In Sect. 6.1 we defined an extension D} of the sheaf of mixed eigenfunctions from
]P’(lc X ) to ]P)(lc X ]P)(lc. We now prove an analogue of Theorem 4.13, the main result on
the sheaf D;, for D}

We denote by O the sheaf of holomorphic functions on ]P)}C, by p; : ]P’(lc X ]P’(lc —
PP¢. the projection of the jth factor (j = 1,2), and put AT = {(z, Z)}zeP}C u

{(Z, Z)}Z cc- We define KT to be the subsheaf of Df whose sections have the form
(B.0).

Theorem 6.7. The sheaf IC} is the kernel of the surjective sheaf morphism C :
D — py' A that sends (B,A) € D¥({U) (U C PL x Pl open) to A. The
restriction of K¥ to A* vanishes, and its restriction to (P(IC X P(IC) ~ A% is locally
isomorphic to py ' O.

This theorem gives us the exact sequence

c
0— K¥ — D — p;' Ay — 0

generalizing the exact sequence in Theorem 4.13.

Proof. By G-equivariance we can work on open U C C x C. The differential
equations (6.2) imply that sections (B, 0) of D} on U have the form B({,z) = ¢({)
(¢ —2)° (¢ —7z)° for some function ¢. The analyticity of B implies that ¢ = 0
near points of A*, and the holomorphy of B in its first variable implies that ¢ is
holomorphic. Thus K¥ is locally isomorphic to 3;'O outside A* and its stalks at
points of A* vanish.

Let (4, u) be a section of D} over some open U C C x C. Denote by D, and
D) the expressions in the left-hand sides of (6.2). A computation shows that

((; —2)0: + S) D) — ((; —2)0; + S) D,

is 3 (£ —2) (¢ —2) times (z —2)Az — (1 —5) A 4+ (1 — 5) Az. The vanishing of
the latter is the differential equation defining 4;—;. So A4 is a section of 4;_; on
p2U ~ A*. By analyticity it is in A;_;(p,U). Hence, C : (B, A) — A determines
a sheaf morphism between the restrictions of D and p5'A;—; on C x C, and by
G-equivariance on Pl x PL.
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To prove the surjectivity of C, we constructed for each (o, z9) € C x C and each
A € Ag(U) for some neighborhood U of zy a section (B, A) of D} on a possibly
smaller neighborhood of (o, zo). This suffices by G-equivariance.

For (8o, z0) € A*, this construction is carried out in (6.4). Let (o, z0) &€ A*. The
integral in (4.41) suggests that we should consider the differential form

o =y [(R&z)/R(&:2) 3" A@)],

@@= \' [ s¢-2) i Ry
= (@—a)@—zn) (21<§—z1)A(Z1)dZ‘+(2(1 A+ AZ(Zl))d“)'

Choosing continuous branches of (m)s near (o, z0), we obtain B({,z) =

(&—z1)(&—21)
fz i o such that (B, A) satisfies (6.2) near (£, z9), which can be checked by a direct
computation, and follows from the proof of Theorem 4.13 if zp € . [ |

Remark. We defined D} in such a way that the restriction of D} to Pt x ) is
isomorphic to Dy. Let ¢ : (¢,z) + (¢, 2). Anisomorphism D¥ — ¢~ D¥ is obtained
by B(,2) = B(L,Z) + yA(2), A(z) = A(Z). So the restriction of D to Pl x $7 is
isomorphic to ¢ 1 D,. New in the theorem is the description of D¥ along IP’(%: xPL. In
points (£, £) with § € PL, the surjectivity of C is the step (a) = (b) in Theorem 6.2.

6.5 Boundary Germs for the Sheaf Dy

In Sect. 6.3 we considered sections of Dy that extend across dH and established a
local relation between these sections and the sheaf W} .. In this subsection we look
instead at the sections of Dy along the inverse image pI_IIP’]{Q, where p; : ]P’é: X $ —
IP’(%: is the projection on the first component. The proofs will be omitted or sketched
briefly.

A first natural thought would be to consider the inductive limit li_m)DS(U n

(]P’(lC X Y))), where U runs through the collection of all neighborhoods of P, x Pj, in
]P’(lc X ]P)}C, but Corollary 6.6 shows that this space is zero. Instead, we define

= i ~ 1 = 1
di = mD,(U~@rx9).  h = limDy(V). (6.16)

where the open sets U run over either:

(a) The collection of open neighborhoods of ]P)]}Q X $in ]P)(lc X £y, or
(b) The larger collection of open neighborhoods of P, x § in P, x £’ with §’ the
complement of some compact subset of £

It turns out that the direct limits in (6.16) are the same for both choices. Clearly
d, contains h; and the group G acts on both spaces. The canonical model Cs is a
subspace of the space d;.
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In Theorem 4.13 we considered the sheaf morphism C : Dy — p; L&, that sends
a pair (h,u) to its second coordinate u = u({, z), which is locally constant in ¢
and a A-eigenfunction in z. This morphism induces a surjective map C : hy — &
whose kernel is the space "¢ introduced in Sect. 4.1. It also induces a map (still
called C) from the larger space d; to & @ & by sending (%, u) to the pair (u4, u_),
where u+(-) = u(¢+, -) for any £+ € $*. This map is again surjective and its
kernel is the space Hy® studied in Sect. 4.1. Moreover, the results of that subsection
show that the kernels of these two maps C are related by the exact sequence

. P
0— Yo" — H' — & — 0,

where the Poisson map P; is given explicitly by

o Rz ) .
Ph(zz) = E(L‘L)(R@n)) ME) REDA oz € ).

(4.15). Here C4 (resp. C-) is a closed path in $ (resp. $) encircling z and z;
(resp. z and z;), and the right-hand side is independent of z;. Now consider an
element of hy represented by the pair (h,u) € DS(U ~ (P} x $)) for some open
neighborhood U of ]P)ﬁa X $ in ]P’é: x $) and define Ps/i(z, z1) by the same formula,
where C and C_ we now required to lie in the neighborhood {¢ € P{. | ({.z1) €
U } of PL, and to be homotopic to P} in this neighborhood. The right-hand side is
still independent of the choice of contours C+ and is also independent of the choice
of representative (4, u) of [(h, u)] € dy, butitis no longer independent of z;. Instead,
we have that the function PsA( -, z1) belongs to & for each fixed z; € $ and that its
dependence on z; is governed by

d11 (Ps(hsu)(LZl)) = [ps('sz)s Lt+—1/t_] (617)

with the Green’s form as in (3.13) and the point-pair invariant p,(-, -) as in (3.6).
We therefore define a space £ consisting of pairs (f, v) where v belongs to &;
and f : H x H — C satisfies

f(-,z1) € & foreachzy € §, (6.18a)
d(f(z, -)) = [ps(-,z),v] on §) for each z € £. (6.18Db)

The group G acts on this space by composition (diagonally in the case of f). By the
discussion above, we can define an equivariant and surjective map F’S+ chy —> &F
with kernel h; by [(h, u)] +— (Psh, Uy — u_). Finally, the space £ is mapped to
Es by (f,v) +— v with kernel & (because f(-,z;) is constant if v = 0). (In fact,
the space 5;’ is isomorphic to & x & as a vector space, though not as a G-module,
by the map sending ( f,v) to ( f(-,0), v).) Putting all these maps together, we can
summarize the interaction of the morphisms C and Ps by the following commutative
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diagram with exact rows and columns:

7 Boundary Splitting of Eigenfunctions

In the introduction we mentioned that eigenfunctions often have the local form
y* x (analytic) + y'™ x (analytic) near points of R. Here we consider this
phenomenon more systematically in both the analytic context (Sect.7.1) and the
differentiable context (Sect. 7.2). This will lead in particular to a description of both
EY = Py()?) and £X° = P;())*°) in terms of boundary behavior.

As stated in the introduction, results concerning the boundary behavior of
elements of & are known (also for more general groups; see, eg., [1, 7]). However,
our approach is more elementary and also includes several formulas that do not
seem to be in the literature and that are useful for certain applications (such as those
in [2]).

7.1 Analytic Case

In Proposition 5.3 we showed that the space J; of boundary germs is the direct sum
of & (the functions that extend to the interior) and WW* (the functions that extend
across the boundary). We now look at the relation of these spaces with £, the image
in & of 1) under the Poisson transformation.

If s # %, we denote by £ the direct sum of W* and W . (That this sum
is direct is obvious since for s # %, an eigenfunction u cannot have the behavior
y* x (analytic) and at the same time y'™* x (analytic) near points of R.) For s = %,
we will define A%, as a suitable limit of these spaces in the following sense. If s # %,
an element of £ is locally (near xo € R) represented by a linear combination of
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y* and y!™* with coefficients that are analytic in a neighborhood of x,. Replacing

y* and y'~ by % (y“ + yl_“') and ﬁ (y“' - yl_“), we see that an element of }172

should (locally) have the form A(z) y'/? log y + B(z) y'/?> with A and B analytic
at xo. We, therefore, define }I‘/‘)z (now using disk model coordinates to avoid special
explanations at o) as the space of germs in A/, represented by

F) = (1= ) (A0 logl = W) + B(w)). .1)

with A and B real-analytic on a neighborhood of S! in C. We have a G-equivariant
exact sequence

0— WY — F% = Wy — 0 (7.2)

where 7 sends f in (7.1) to A. The surjectivity of t is a consequence of the following
proposition, which we will prove below. This proposition shows that for all s with
0 < Res < 1, the space A” is isomorphic as a G-module to the sum of two copies
of Y.

Proposition 7.1. The exact sequence (7.2) splits G-equivariantly.

The splittings 5 = & @& W = & ® W?, show that nonzero elements of &
cannot belong to YW or W .. The following theorem shows that they can be in £®,
and that this happens if and only if they belong to £2.

Theorem 7.2. Let 0 < Res < 1. Then
EF=ENE?,

and K = EL @ W =EX W,

So for s # %, the space £ is the direct sum of each two of the three isomorphic
subspaces £, W, and W . For s = %, two of these subspaces coincide.

We discuss the cases s # % and s = % separately.

Proposition 7.3. Let s # % For each ¢ € )], we have

Po = c(s) Po+c(l—s)B_ g, (7.3)
where, with b(s) as in (5.20), the factor c(s) is given by

tan s 1 F(%—s)

Proof. Since ¢ is given by a Fourier expansion which converges absolutely
uniformly on the paths of integration in the transformation occurring in (7.3),
it is sufficient to prove this relation in the spacial case e, (n € Z). We have
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1
Peos = (—1)" 785 P,y and Pleg, = (=1)" % Q.. See Sect. A.2. The
relations (A.14) and (2.30e) give the lemma for ¢ = e, foralln € Z. |

Remark. One can also give a direct (but more complicated) proof of (7.3) for
arbitrary ¢ € V), without using the basis {em}, by writing all integral transforms
explicitly and moving the contours suitably.

The proof of Theorem 7.2 (for s # %) follows from Proposition 7.3. The
inclusion £’ C A“ is a consequence of the more precise formula (7.3). For the
reverse inclusion we write an arbitrary u € £ in the form c(s) Pf<p +vwithv €
We, and g € V. Ifu € &, then u—Pyp = v—c(1—s)P_, I,p € ENW = {0},
sou = Pyp € £”. This completes the proof.

We can summarize this discussion and its relation with the Poisson trans-
formation in the following commutative diagram of G-modules and canonical

G-equivariant morphisms
:
\\
)
[0}
W,

together with the fundamental examples (and essential ingredient in the proof):

I
Va) //_\ Va)

Pl
Ps P1—

R(-320)° R(-520)'
b(s)gs (- 20) ~— P =psCon) = g, (-, 20)

r an s (q5(-, 20) + g1—s(+. 20))

We now turn to the case s = % We have to prove Proposition 7.1 and
Theorem 7.2 in this case.

To construct a splitting o : W72 — ]—I‘;’z of the exact sequence (7.2), we put
0Q1/2n = —% Pjan € & forn € Z. Since Pijp, € 2%, we have 00,12 €
EP. Further, 10 Q124 = Q124 by (A.13) and (A.15). The Q12 € V\{‘/‘)Z with
n € Z generate a dense linear subspace of V\{‘/‘)2 for the topology of Vl’;’z transported

to V\{’;’z by PI 5ot 1)1’72 — V\{‘/‘)Z Hence, there is a continuous linear extension
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o W72 — Ei"/z. The generators ET and E™ of the Lie algebra of G act in the

same way on the system (QS,,,) as on the system ( ) (See Sect. A.5 and use
case G in Table A.1 of Sect. A.2 and case a in Table A 2 of Sect. A.3.) So o is an
infinitesimal G-morphism and since G is connected, a G-morphism. The splitting
o W72 — ]-172 also gives the surjectivity of t and hence the exactness of the
sequence (7.2).

Since 0 Q12 belongs to 51/2, we have a(VVl‘/”z) C 51/2 Since Ef’/z is an
irreducible G-module, this inclusion is an equality. This gives £ = Ei"/z &) V\/l‘;’2
and &7 1 C EipNA /2 The reverse inclusion then follows by the same argument as

fors;éz. |

Remark. The case s = % could also have been done with explicit elements. For

each s with 0 < Res < 1 and each n € Z, the subspace £, of £ in which the

elements | Cffﬁz CS::Z] act as multiplication by e?"? has dimension 2. In the family
s = ]—; >, there are three families of nonzero elgenfunctlons s = Py, € &Y,

s> Qs € WP and s = Qi_;, € W . Fors # 1 5» each of these functions can
be expressed as a linear combination of the other two, as given by (A.14), which is
at the basis of our proof of Proposition 7.3. Ats = %, the elements Qs ,, and Q11— ,

coincide. This is reflected in the singularities at s = % in the relation (A.14). The
families s — Py, and s — Q,, provide a basis of £® for all s, corresponding to
the decomposition £* = £ @ W“. Relation (A.14) implies
-2 d

O

Pipn = — — :
1/2.n w2 ds T ls=172

which explains the logarithmic behavior at the boundary.

7.2 Differentiable Case

In the previous subsection, we described the boundary behavior of elements of

&Y = P) in terms of convergent expansions. In the differentiable case, the spaces

WY consist of boundary jets, not of boundary germs. So a statement like that in

Theorem 7.2 seems impossible. Nevertheless, we have the following generalization

of Proposition 7.3:

Proposition 7.4. (i) Letp e N, p> 2 ands 75 L. For each ¢ € ' there are b €
G7? representmg c(s) Ijgo eW’anda € G| representing c(l—y) PJI_S I;p €

Y such that

Pow) = bw) +aw) +O((1—[w*)P™) (w1 1). (7.5)

(ii) Lets # % For each ¢ € Y™ there are b € G and a € G{°_ representing
c(s) P;(p and c(1 —s) PI_S(p, respectively, such that for each N € N

Pow) ~ bw) +aw)+o((L—wHY)  (wlt1. (7.6
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Proof. The proof of Proposition 7.3 used the fact that the e, generate a dense
subspace of )}“ and that the values of Poisson transforms and transverse Poisson
transforms are continuous with respect to this topology. That reasoning seems
hard to generalize when we work with boundary jets. Instead, we use the explicit
Lemma 5.12.

A given ¢ € ) can be written as a sum of elements in }” each with support in a
small interval in 0H. With the G-action, this reduces the situation to be considered
to ¢ € C/(I) where [ is a finite interval in R. Proposition 5.5 shows that Py¢
represents an element of )” (]P’]}Q ~1 ) So we can restrict our attention to Ps¢(z)
with z near / and work in the line model.

We take o and § as in Lemma 5.12 with N = p. Then

o0
Ps(p(z) = 7.[—1 yl—S/ (t2+y2)s—l (p(t-l—x)dt

1, [ , ,

= yS/ (12 + 1)*! e(x +yt)ydt = ¥y A(z) + y' ™ B(z),
—00

with

o0 o0
B(z) = n_I/ B@) p(x+yt)dt, A(z) = n_lyZS_I/ aP (1) p(x+yt) dt.
—00 —0Q
We consider B(z) and A(z) for x € I and0 < y < 1. The decay of 8 implies that
1 P ¢(n)(x) ) e’} ) »
B(z) = ;ZTy /_oot B(t)dr + o(y”).

n=0

In (5.40) we have computed the integrals. We arrive at

[p/2] k 1
=1/ T (s +3) o 2%
B = 7y, 7.7
() = c(s) k§=0 KTk +s+1) e (x) y*= 4+ o(yP) (1.7)

A comparison with (5.33) shows that y* B(z) has the asymptotic behavior near / of
representatives of c(s) PI(p
In the second term, we apply p-fold integration by parts:

AR) = (—1)f’n—1y2S—I+P/oo a(t) P (x + yt)dr.

—0o0

For fixed ¢, this expression is a holomorphic function of s on the region Re s > 0.
In the computation we shall work with Re s large.

The function 4 + (1 + h)*~! has a Taylor expansion at 4 = 0 of any order R,
with a remainder term O(AR™!) that is uniform for 4 > 0. This implies that o(z)
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has an expansion of the form «(t) = Z,{;O by|t|PHE=272n 4 O(|¢|pHas 2R,
uniformly for t € R ~ {0}. We take R = [p/2] and use the relation 87 a(t) =
(1 4 £2)*~! — B(¢) and the decay of B(t) to conclude that

_ : 25s—2n+p—2
at) = Y (S 1)(Slgnt)p|t| Tro(Y). s

o<z /2 n 2s—2n-1),

We compute this with Re s > 1. The error term contributes to A(z):

o0
yzs—1+p/ O(lt* ) P (x + yt)dt = O(yrt!). (7.9)
t=—00

(We have replaced ¢ by ¢/ in the integral.) The term of order n contributes

2 —25—pt2n+1
A E ) [ A /oo(signt)"ltlz”p_z”_z<ﬂ(")(x +10)dt
T n 2s—2n-1), J-o

(—1)?y¥" ['(s) I'(2s —2n — 1)

- —)P (25 — 1)
Jrn!F(s—n)F(Zs—Zn—1+p)( ) (25 = 1) p—2n

o0
. / 1122 (x 4 1) dt (partial integration p — 2n times).
—0o0

In (2.30b) we see that the holomorphic function f_ozo |£1>72¢" (x+1) dt continued
to the original value of s gives us b(s — 3) (I5¢)?"(x), provided 2n < p. We have

IV cy” ;1, but not necessarily /;¢ € R”. For even p, we move the contribution
O(y?) to the error term. The terms of order n < p/2 give

Y () T(2s —2n—1) /7 T(s—1) )
an'l'(s—n)'2s—1) I'(s) (L))
tanz(l—s) F(1—s) (=1/HrGE—5)

= (@2n) 2%
 Jr TG-s) n'TG-s+n) s ™ (x) y™.

Thus we arrive at

— nped 1
CUDTEZY gy + ol H)),

A@Z) = c(1—5%) Z ngr(%—s—i—”)

0<n<p/2

(7.10)
Again we have arrived at the expansion a representative of V\{f :1 should have
according to (5.33). This completes the proof of part (4.10).

In view of Definition 5.9, the estimate (7.5) holds for all representatives b € G?
anda € G__ of c(s) PI(/), respectively c¢(1 — s) PI_Sqo. In particular, for ¢ € 1,
this estimate holds for each p € N, p > 2, for representatives bo, € G° of c(s) Pj(p
and ae € G2, of (1 — ) PI—S‘/)- This implies part (4.10) of the proposition. W
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Appendix: Examples and Explicit Formulas

We end by giving a collection of definitions and formulas that were needed in the
main body of this chapter or that illustrate its results. In particular, we describe a
number of examples of eigenfunctions of the Laplace operator (in A.1), of Poisson
transforms (in A.2), of transverse Poisson transforms (in A.3), and of explicit
potentials of the Green’s form {u, v} for various special choices of # and v (in A.4),
as well as some formulas for the action of the Lie algebra of G (in A.5).

A.1 Special Functions and Equivariant Elements of &

Let H C G be one of the subgroups N = {n(x) : x e R}, A ={a(y) : y >0}
or K ={k(0) : 0 € R/Z} with

C[lx ¥y O B cos @ sin6
n(x) = [01} a(y) = [ 0 l/ﬁ} k(®) = [—sinGCOSG]

(A1)

For each character y of H, we determine the at most two-dimensional subspace 5’5{’;
of & transforming according to this character.

A.1.1 Equivariant Eigenfunctions for the Unipotent Group N

The characters of N are y, : n(x) — €% witha € R. Ifu € Ega (we write Ega

instead of 5!?’)(”), then u(z) = e'** f(y), where f satisfies the differential equation

V) = (T —s+ ety f(). (A2)

This can also be applied to ES]L(U ) for any connected N -invariant subset U of §).
For the trivial character, i.e., @ = 0, this leads to the basis z — y*, 7z yl_s of Es{vo
1/2

if s # 1, andz > y'/2, z+—> y!/2logy if s = 1. For nonzero o, we have

ksa(@) = 5 Kem1ja(laly) €
_3
2572 I(s) i /°° i y*dt

=2 W — (A.3a)
NCal o (PP

) I'(s+1 )

isa(z) = %ﬁg_l/zqau)em, (A.3b)
o 2

with the modified Bessel functions
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o0
(1/2) 2 7 1_u(t) = L)
I,(t) = _ K,(t) = = ———=. A4
@ ’;n!l“(u—i-l—}-n) ®) 2 sin ru (A4
The element i, , represents a boundary germ in Y} (R). The normalization of i,
is such that the restriction pgiy s (x) = el®* in the line model.

The elements k4 and i;, form a basis of Ev]\fx for all s with 0 < Res < 1. For
s # % another basis is i; , and i1 . The element k4 is invariant under s > 1 —s,
and
ri#-s . r(s—1)

— 2 2 :
ksa = (hmgeriys e F iy (1mse

(A.5)

gives (for s # %) a local boundary splitting as an element of WW* (R) & W2 (R).
For the trivial character, k; , may be replaced by

ys _ yl—s

L@ =5

1
for s # 5 Lija(2) = y!/2 log y. (A.6)

A.1.2 Equivariant Eigenfunctions for the Compact Group K

The characters of K are k(0) > e with n € Z and k(6) as in (A.1). If u(re') =
f(r)e"? is in EK (U), with a K-invariant subset U C $), then f satisfies the

n
differential equation

LU= O+ PO = @) = s -9 f0). AT

For general annuli in H, the solution space has dimension 2, with basis

i i w (17N
Puatre’ = Resptr) = B2 (15 ) e,

1—
i n 1+r2 in
Qun(re’) = H(ﬁ)e . (A8)
—r
with the Legendre functions
1 +r? (s +m) r?
pP" = ml g (1 =551+ |m]:
H(l—ﬂ) m[\ T(s — |m]) ssldiml
F(s+m) Im| 2 2
=—— " —¢r"™ A =r?)* F(s,s + |m|; 1 + |m|;r
Im[t I"(s — |m]) ( )
I'(s+m)

_ |m| 271—s . L2
= BTl (1 _p2)1= F(1—s, 1—s + |m]: 1+|m]; r2),
Im|! I (s—|m]) ( )
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m 1+ r? _ (_1)’” F(S)F(S + m) (1 _ rZ)s

- (1 - rz) E: ' (2s) o
=) T (s+m) (1—r?)
2 I'(2s) 25—m

F(s—m,s;2s:1—1r7)

F(s—m,s;2s;1 —r7?),
(A.9)

and the hypergeometric function F' = , Fj given for |z| < 1 by

n n—1
(a.biciz) = > (@n(b)n 2" with (@), = [J@+j). (A10)

'7
= (c)p n!

(See [3], 2.1, 3.2 (3), 3.3.1 (7), 3.3.1 (1), 3.2 (36), and 2.9 (2) and (3).) The space
851 (H) is spanned by P, alone, since Qj ,(r) has a singularity as r | 0:

—logr (1 + r - (analytic in r)) + (analyticinr) ifn =0,
1 '(s+n) _ ..
) = 4= (nl -1 ————— "1 4 r - (analytic in r
Qsan(r) 5 (Inf=1) INCET) ( (analy )

+ log r - (analytic in r) otherwise.
(A.11)

See [3], 3.9.2 (5)—(7) for the leading terms, and 2.3.1 for more information. Directly
from (A.9), we find for r | 0

I'(s +n) R
P,(r) = m rhl (1 +r - (analytic in r)). (A.12)

The solution Q, is special near the boundary S' of D. As r 1 1:

7 [(s +n)

re+ D 272 (1= 2 (1 + (1 — r) - (analytic in 1 — 7).

Osn(r) = (=1)"

(A.13)

Thus, Qo € WY, and p, Q.a(§) = (=1 EeF2 &% ons',

Fors # 3, we have

1
Ps,n = —tanms (Qs,n - Ql—s,n)- (A.14)
b
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(The formula in [3], 3.3.1, (3) gives this relation with a minus sign in front of %.)
This relation confirms that P_;, = £F, and forms the basis of the boundary
splitting in (7.3). It shows that in the asymptotic expansion of P ,(r) as r 1 O,
there are nonzero terms with (1 — r)* and with (1 — r)!=. At s = %, we have
asr 11

ROVENCRT)

—7 (1—r2)"2 log(1 —r?) +0(1). (A.15)

Pian (re?) =

So B, is not in W®([I') for any interval I C St.

A.1.3 Equivariant Eigenfunctions for the Torus A

The characters of A are of the form a(t) — ' with @ € R. We use the coordinates
z = pel? on §, for which a(¢) acts as (0, @) — (tp, @). If u(pe'?) = p' f(cos ¢) is

in Efa, then f satisfies on (—1, 1) the differential equation

— (1= @) +1 (1=12) f1() + (21 =2 —s(1 —5)) £(1) = 0. (A.16)

This leads to the following basis of the space Eéa:

. . ; s+ie s —iw 1
+(pe) = p (sm¢)‘F( 2¢),

, ; =1c0s
2 2 2

i +1 s—ia+1 3
srled ,s o i Zicoslg ). (A17)
2 2 2

fralpe®) = p cos§ (sing)' F (

The + or — indicates the parity under z — —z. In particular

. Wy . . oy .
fial) = 1. 3—(;(1) =0, fz0 =0, a—qff(l) = —-1. (A9

Relation (2), Sect. 2.9 in [3] shows that fl*_'s’a = fiwand fi~ = fi.

For the boundary behavior, it is better to apply the Kummer relation (33) in
Sect. 2.9 of [3] to the following function in & ($ ~iRy)

s+ io s —ia
2 72

0 (sing)* F ( 1S+ %; sin’ ¢) . (A.19)

2 R ;o
One has to choose /cos*¢. Denote by f, the restriction to 0 < ¢ < 7 and by
S’La the restriction to 5 < ¢ < m. The Kummer relation implies the following
equalities:
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x JE (s +1) 2wl (s+3%)

se s+ia s—ia fUt—,t'_ s+ia s—io a,s?
Cr () r (=) F(=5%) I (5*)

. Jr (s +1) 27l (s+3) ,_

— : / £+ : . . (A.20)
s, stio+1 s—ia+1 a,s stia s—ia .8
r ( 2 )T ( 2 ) r ( 2 ) I ( 2 )
Thus, we see that Sﬁ and Sﬁt extend as elements of &; that Sﬁ represents

an element of W*(Ry) with, in the line model, p, £,% (x) = x'*; and that f%,
represents an element of W (R_) with p; vLa (x) = (—x)". Inverting the relation
in (A.20) one finds, for s # %, the following expressions for ‘4‘; and f{, as a linear
combination of S{fx and flli s

o VAT VA6

T () (e e T () ()

ARG L VALY

s s+ia s—ia | 7/ 5.0 s +ia s—ia fli"ﬂ’
20 (1= S58) I (1= 25%) 7 7 or (SHgH) (=) 7

R
fl—s,a ’

(A21)

and similarly of f%, and fi* . showing that each of these elements belongs to the
direct sums W*(R1) @ W* (R4) and W (R-) @ W* (R_), but not to W* (1) &
W (I) for any neighborhood I of 0 or oo in PL; in other words, just as for the
Bessel functions i, and k; 4, we have a local but not a global boundary splitting.

A.2 Poisson Transforms

Almost all of the special elements in Sect. A.1 belong to & and hence are the
Poisson transform of some hyperfunction by Helgason’s Theorem 3.4. Actually in
all cases except one, the function has polynomial growth and hence is the Poisson
transform of a distribution (Theorem 3.5). In Table A.1 and the discussion below,
we give explicit representations of these eigenfunctions as Poisson transforms of
distributions and/or hyperfunctions.

A. In (3.30) we have shown that yl_s is the Poisson transform of the distribu-
tion d; 0. See (3.30) for an explicit description of §; oo as a hyperfunction.

B. The description of y* as a Poisson transform takes more work. For Res < %

the linear form 1, : ¢ — % f_ozo @(1)dr is continuous on 1 , in the line
model. Note that the constant function 1 is not in 1) since it does not satisfy the
asymptotic behavior (2.2) at co. Application of (3.26) gives the Poisson transform
P,1; indicated in the table.
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Table A.1 Poisson representation of elements of &

u € & P lue VA Model
Ayl 8500 0F > @F(00) Proj.
rid—s) 1, = integration against 1 for Res < 1, .
B Jal(—s) Y ) ) ) ' Line
with meromorphic continuation
PR A ) —1 (oo _ ¢
C 2 mtan b ¢ 5 (o) i) 4t Line
£, as in (A.6) With @oo = lim,— o0 |1 20(t)
D R(t;2)'™ ( €R) 8ss > 0(t) Line
St} lal%ﬂ ko) Integration against e for Res < %,
E =) T or integration of —¢’ against &~ Line
(¢ € R~{0})
forO0 <Res <1
i1—50(2) Support {co}; representative near co: .
F ] Proj.
(@ € R~{0}) —it (1 + 172 F(1;2 — 2s5iat)
G P e Circle
H psW, ) RS(-;w)* Circle
I W}f IL_W Integration against x'*~* on R Line
J W fliiw Integration against (—x)*~* on R_ Line

To describe 1; as a hyperfunction in the line model (and also to continue it in s),
we want to give representatives gr and goo of 1, on R and IP’]% ~ {0}, related
by g00(8) = 7% gr(—1/¢) up to a holomorphic function on a neighborhood
of R ~ {0}.

Formula (2.26) gives a representative g" in the projective model:

O = o [

t—i)+i) " dr
i —oot—i( i)'t +1i)

(¢ € Pg ~ Py).

(The factor (12 + 1)*~! comes from passage between models.) This function extends
both from $) and from £~ across the real axis. An application of Cauchy’s formula
shows that the difference of both extension is given by (¢2 + 1)*, corresponding to
the function 1 in the line model. See (2.5).

To get a representative near oo, we write

(1 + eZnis) gIF’(é-) — (22 + 1)* dz, (A.22)

27i Jo (2= (z+1)
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where C is the contour shown below. The factor (z* + 1)* is multivalued
on the contour and is fixed by choosing

arg(z> + 1) € [0,27). On the part of the con-
tour just above (0, 00), the argument of Z+1is
approximately zero, and just below (0, co), the
argument is approximately 27. Near (—oo, 0), i
the argument is approximately 2 just above
the real line and approximately O below the
real line. We take the contour so large that
¢ € $H U H™ is inside one of the loops of C.
If we let the contour grow, the arcs in the upper K
and lower half planes give a contribution o(1).
In the limit, forRe s < 1, we are left with twice

~
J

the integral along (0, co) and along (—o0, 0), both once with the standard value and
and once with e?™¥* times the standard value. This gives the equality (A.22) and the
continuation of g% as a meromorphic function of s.

Now consider ¢ € $T with |¢| > 1. Moving the path of integration across ¢,
we obtain with Cauchy’s theorem that (1 + ¢*™*) ¢¥(¢) is equal to +({? + 1)°
plus a holomorphic function of ¢ on a neighborhood of co. The term £(¢? + 1)
obeys the choice of the argument discussed above. To bring it back to the standard
choice of arguments in (—, 7], we write it as {2(1 + ¢72)" for { € § and as
—(=0)*(1 4+ ¢72)" for { € H~. The factor (1 + {~2) is what we need to go back
to the line model with (2.5). Thus we arrive at the following representatives in the
line model.

1 .
@ = 1M @ = £ (14T on st (A23)
0 on$H";

Finally one checks that gg () — (£%) ™ goo(—1/) extends holomorphically across
both R4 and R_, thus showing that the pair (gg, goo) determines the hyperfunction
1. These representatives also show that 1 extends meromorphically in s, giving
1, €1 forall s # 1 with0 < Res < 1.

For the relation between the cases A and B, we use (3.25) to get
P Il—sgl—s,oo(z) = Pl—sSI—s,oo(Z) = ys'
The fact that the Poisson transformation is an isomorphism V™ — £* implies

r'(z—s)

b Era-s

I585.00. (A.24)
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C. ForRes < % we have

00 r—
1) = = [ (o0 -0+ A Yar b Do)

o) ﬁ]“(l—s)

So the distribution L given by

) 1= P 2\5—1
Lo o [ (0= e+

1 —S
which is well defined for Re s < 1, is equal to 1, — % 85.00 for Re s < % The

results of the cases A and B give the expression of Py L; as a multiple of £; defined
in (A.6). Going over to the line model, we obtain the statement in the table.

D. This is simply the definition of the Poisson transformation in (3.22) and (3.23)
applied to the delta distribution at z. It also follows from Case A, using the G-
equivariance.

The latter method involves a transition between the models. We explain some of
the steps to be taken. In the projective model, 8%, : ¢% = (1 + 12)* 1P (r). We

have
t—1 01
<8£'ij|2s|:1 0:|’('0P> = <8~£Pjt’€0pi2—2s|:_1 Z:|> == 8?00(([)1?)

Hence,

P.(8,,)(2) = P (3S,w|[_?1D(z) = (Pbyoo)(1/(t —2)) = (%)1_

t—z|?

E. For @ # 0, we need no complicated contour integration. When Res < %,
the distribution ¢ % ffzo @(t)e® dt in the line model is equal to ¢ >

% :“o)o @' (t)el*" dt. The latter integral converges absolutely for Re s < 1.

F. Since i;, has exponential growth, we really need a hyperfunction. The
representative in the table does not behave well near 0. However it is holomorphic
on a deleted neighborhood of oo, and represents a hyperfunction on ]P’]% ~ {0} in the
projective model. We extend it by zero to obtain a hyperfunction on ]P’]%.

The path of integration f cy /. ¢ can be deformed into a large circle |z| = R,
such that we can replace T by T — x in the integration. We obtain

1 it

T Jie|=r =2

y(1+ 1) )S_l dr
(t—2)(t—2) 1+ 12

1-2s 251
- L'yl_s/u (1+2) (1 + %) F(l;2—2s;ia(t+x))dt—t.
7|=R

(1+ ) F(1;2-2s; iat)(

2mi T
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Expand the factors (1 + %)1—2s and (1 + :—z)s_l and the hypergeometric function

into power series and carry out the integration term by term. In the resulting sum,
we recognize the power series of €'“* and, after some standard manipulations with
gamma factors, also the expansion of the modified Bessel function /; /(|| y).

G. See the discussion after Theorem 3.4.
H. See (3.31).

Iand J . Integration against x > x*~* on (0, c0) and against x +> (—x)*~*, in
the line model, defines distributions. For pe‘¢ € 9, the Poisson integral leads to

i sin 1—s o ] .
M/ PO (2 4 14+ 2C0) " dr,
T 0
with C = F cos ¢. Let us consider this for small values of C, i.e., for points near

iRy in 9. Expanding the integrand in powers of C gives a series in which one may
separate the even and odd terms and arrive at

. 1—
peT—c2 " (F(l—ia—s) F(l-i—ioz—s) F(l—ia—s 1+ia—s_l_c2)

220 (1 —5) 2 2 2 0 2
—2CF(1—1a+S) F(l+ 1a—s) F(l— 1a+s’1+ 1a—s;§;cz)).
2 2 2 2 2
Now take C = —cos¢, respectively C = cos ¢, and conclude that we have a

multiple of fi* . respectively /i .

A.3 Transverse Poisson Transforms

In Table A.2 we give examples of pairs u = PI(/), ¢ = psu, where ¢ € V(1) for
some I C oH.

In Cases ¢, d, f, g, and h in the table, the eigenfunction u is in & = &;(H); hence,
it is also a Poisson transform. If we write u = P,_,«, then entries A, D, F, J, and I,
respectively, in Table A.1 (with the s replaced by 1 — s in most cases) show that the
support of « is the complement of the set / in dH for each of these cases, illustrating
Theorem 6.4.

A.4 Potentials for Green’s Forms

Ifu,v e &(U) for some U C H, then the Green’s forms {u, v} and [u, v] are closed.
So if U is simply connected, there are well-defined potentials of [u, v] and {u, v} in
C®(U), related according to (3.13). We list some examples of potentials F of {u, v}
in Table A.3. Then %F + %uv is a potential of the other Green’s form [u, v].
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Table A.2 Transverse Poisson representations of boundary germs

U= PZL‘/’ € W(I) o = psu € V(1) I Model
a Qs (=" Ji(fr;") € st Circle
bog(-w) L Gy s! Circle
c ) 1 R Line
d R(t;2)° (t€R) [t —x|7% R~{r} Line
e Rz (C€C~R) (C—x)* (multivalued) R Line
f i el R Line
g fi xies (0,00)  Line
h sta (=x)** (—00,0) Line

We found most of these potentials by writing down {u, v}, guessing F, and
checking our guess.
Case 3 is essentially (3.16). In Case 6 we needed the following function:

Fy(r) = 2s / oo(1 + ¢3! (A.25)

have used that (Im gz)* = R(¢;z)® and R(0; gz)° = |p — R(¢;z)° and R(0; gz)°* =
|p—t|*R(p:z)* withg = [f‘i’ %] with z, p € R. So 6 leads to the potential in 7
if p # t are real. We write ((p — t)z)_s and not | p — |7 to allow holomorphic
continuation in p and ¢. For Case 8 we use that if u(z) = €** f(y) and v(z) =
e**g(y), then

vy = (f'g — fg)dx,

and that the Wronskian fg’ — f’g is constant if u,v € &. Cases 9-12 are obtained
in a similar way. In 9 and 11 the potentials are multivalued if U is not simply
connected.

Cases 3-5 are valid on §) if ¢ and p are real. Otherwise {u,v} and F are
multivalued with branch points at ¢ and at p in 3. We have to chose the same branch
in {u, v} and F. Also in 7, the branches have to be chosen consistently. In 4 there
are singularities at # = zand ¢ = z, but {u, v} and F are univalued.

A.5 Action of the Lie Algebra

The real Lie algebra of G has H = ((1) _(l)), V= ((1) (1)), W= (_(1) (1)) as a basis. Any
Y in the Lie algebra acts on V*° by flo, Y = 0, f 2 e’fY|t=O. Note that for right
actions, we have f |[Y1,Y2] = (f | Y2) | Y1 —(f | Y1) | Y2

In the projective model,
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Table A.3 Potentials for Green’s forms
u v F such that dF = {u, v} Domain
1y yi=s (2s — D)x 9
2 yl/Z y1/210gy —x 9
R t;z s R iz 1—s _ _ !
3 RGD (P52) 0 R R(pia) ™ 6
teR p € R~{t}
R(t;2)° ' -1
g RET Ry sl iRay 9
t €R N
, R(t;2)'™* o _ ,
5 2 -+ =2y HRE:D'T H
t €R
6 ) R(t;2) —F((x—1)/y), Fyasin (A25) §
R(t;2)° R(p;2)° —s O (—x) -y
7 K09 I -0 RO g
teR peR~{r} e
8 kS.Dt l’x,ot #—Lﬂ{ﬂ/z eZiDtX )
U CD~ {0}
9 Py(re?) Qso(re) —f simply
connected
Py (re) . o Foin)
O ez 2 T R D~ {0}
: o U CD~ {0}
Ps,—n (relg) i0) —2in / Ps,—m (r) Qs,n (r) Li_r .
11 OQsn(re simply
n € Z~ {0} —(=1"e
connected
meZL n EZ\{_m} - s,m(r)arQs,n(r))/l(m+n)
1-172
flsH(t) = (25— + 279 | (1),
1+7
T
flsV(r) = | —4s s+ (1 =1)d. ) f(2),
1+
s W@ = (1+199: /(2. (A.26)

For the elements Et = H + iV and E- = H — iV in the complexified Lie algebra,

we find
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Bt = (<2 =i 70 o),
FlaE-(7) = (—2s§:i +i(t—i)28,) f(0). (A.27)
In particular
enls W = 2ine,, e, BT = —2(s Fn)eg,z1. (A.28)

By transposition, these formulas are also valid on hyperfunctions.

The Lie algebra generates the universal enveloping algebra, which also acts
on . The center of this algebra is generated by the Casimir operator @ =
—JETE™ + ;W? — IW. It acts on )} as multiplication by s(1 — s).

For the action of G by left translation on functions on §3:

W= (1+220.+0+0  E* = Fiz+£1)?, Fiz+i).

A.29)
o = (z—2)%0.0: = A,
and on D:
W = 2iwd, —2iwd;, ET = 29, — 2w*0;,
(A.30)
E- = —2w?d, + 205, o = —(1—|w*?9,0;.
A counterpart of (A.28) is
P, |W = 2in P, P, |ET = 2(s—n)(s+n—1) Py,
B |ET = 2P, Osn|ET = 2(s—n)(s +n—1) 0y, (A31)

Qs,n |E_ =2 Qs,n+ls Qs,n |W

2in Qg p.
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