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INTRODUCTION

One of the most romantic stories in the history of mathematics is that of the friendship

between Hardy and Ramanujan. It began and ended with two famous letters. The

first, sent by Ramanujan to Hardy in 1913, presents its author as a penniless clerk

in a Madras shipping office who has made some discoveries that “are termed by the

local mathematicians as ‘startling’.” Hardy spent the night with Littlewood convincing

himself that the letter was the work of a genius and not of a fraud and promptly

invited Ramanujan to come to England for what was to become one of the most famous

mathematical collaborations in history. The other letter was sent in 1920, also by

Ramanujan to Hardy, just three months before his death at the age of 32 in India, to

which he had returned after five years in England. Here he recovers briefly from his

illness and depression to tell Hardy excitedly about a new class of functions that he has

discovered and that he calls “mock theta functions.”

This letter has become celebrated, not only because of the tragic circumstances sur-

rounding it, but also because it was mathematically so mysterious and intriguing. Ra-

manujan gives no definition of mock theta functions but only a list of 17 examples and

a qualitative description of the key property that he had noticed: that these functions

have asymptotic expansions at every rational point of the same type as those of theta

functions (Ramanujan used the word “theta functions” where we would say “modu-

lar forms” today, so that “mock theta functions” meant something like “fake modular

forms”), but that there is no single theta function whose asymptotic expansion agrees

at all rational points with that of the mock theta function. Obviously, this is a basic

property, but far from a complete definition.

In the years since 1920, many papers have been written, including many by famous

mathematicians like Watson, Selberg and Andrews, studying the 17 specific examples

Ramanujan had given, proving the identities that he had stated, and finding further

identities of the same type. But no natural definition was known that described what

these functions are intrinsically and hence could give a natural explanation of the iden-

tities between them and a method to construct further examples at will. The break-

through came in 2002 with the thesis of a Dutch doctoral student, Sander Zwegers,

who finally found the missing intrinsic characterization of mock theta functions. In
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fact, he did this in three different ways! Specifically, he observed that various known

identities from the literature could be interpreted as saying that each of Ramanujan’s

examples belongs to at least one (and presumably to all, although probably not all 51

verifications have been carried out explicitly) of three infinite families of functions:

(A) “Lerch sums”

(B) “Quotients of indefinite binary theta series by unary theta series”

(C) “Fourier coefficients of meromorphic Jacobi forms”

(We will define and discuss these families in more detail below.) For each of these classes

he was able to prove a specific type of near-modular behavior which therefore held in

particular for Ramanujan’s examples. What’s more, this near-modularity property

turned out to be the same for each of the three classes, so that the original problem

was not only triply solved, but in a way that made it quite convincing that the essential

property of these functions really had been correctly identified.

In this talk we will describe Ramanujan’s letter and the 17 original examples, describe

each of the classes (A) – (C) and the nature of their modularity, formulate a general

definition of mock modular forms, and describe further examples. In the final section,

we will also discuss some of the beautiful recent work of Kathrin Bringmann and Ken

Ono, based on these ideas, that has led to the solution of several well-known open

problems in combinatorics and the theory of q-series.

Before beginning the main story, there are two points that I would like to emphasize.

The first is that one of the reasons for the great usefulness (or “unreasonable effec-

tiveness,” to coin a phrase) of classical modular forms in number theory is that each

modular form has calculable invariants—its weight, level, and a (known) finite number

of its first Fourier coefficients—that suffice to characterize it uniquely. This means that

to prove any conjectured identity between modular forms, like the famous formulas
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of Euler and Jacobi, respectively, it suffices to calculate the invariants on both sides

and check that they are the same; one does not need to know any further properties

of the functions involved or even where they come from. Precisely the same principle

will apply also to the larger class of mock modular forms motivated by and containing

Ramanujan’s examples, as soon as we know their modular transformation properties,

so that here, too, identities which previously required lengthy computations and great

ingenuity for their proofs can now be established by an essentially automatic procedure.

The second point is that all 17 of Ramanujan’s mock theta functions were given in

the form of q-hypergeometric series. (We recall that a q-hypergeometric series is a sum

of the form
∑∞

n=0 An(q) where each An(q) ∈ Q(q) and An+1(q)/An(q) = R(q, qn) for

all n ≥ 1 for some fixed rational function R(q, r) ∈ Q(q, r).) Some modular forms are



986–03

q-hypergeometric series, classical examples being the theta series and Eisenstein series

1
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+

∞∑
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24
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qn
1 + q2n

(1− q2n)2
,

respectively, but this is very rare and there is no known criterion for deciding whether

a given q-hypergeometric series is modular or not. (There are fascinating conjectures

due to Werner Nahm relating this question to deep questions of conformal field theory

and algebraic K-theory [17, 24].) Ramanujan loved and was a supreme connoisseur of

q-hypergeometric series, and his examples all quite naturally belonged to this category,

but it is a complete red herring from the point of view of understanding the intrinsic

modular transformation properties that make these functions special. It is perhaps

precisely for this reason that it took so long for these transformation properties to be

found, just as the theory of ordinary modular forms would have developed much more

slowly if for some reason one had focused only on the rare q-hypergeometric examples.

1. RAMANUJAN’S LETTER

Ramanujan divided his seventeen examples into four of order 3, ten of order 5, and

three of order 7, though he gave no indication what these “orders” were. (We’ll see

later that they are related to the levels of the corresponding mock modular forms.) We

will discuss most of these functions here to illustrate various points involved.

The mock theta functions of order 3 were denoted f , φ, ψ and χ. We give only the

first three (changing q to −q in φ and ψ in order to simplify the relations):

f(q) =
∞∑
n=0

qn
2

(1 + q)2 · · · (1 + qn)2
,

φ(q) =
∞∑
n=0

(−q)n2

(1 + q2)(1 + q4) · · · (1 + q2n)
,

ψ(q) =
∞∑
n=1

(−q)n2

(1 + q)(1 + q3) · · · (1 + q2n−1)
.

Ramanujan gives two relations among these functions (as well as a further relation

involving f and χ), all proved later by Watson:

2φ(q) − f(q) = f(q) + 4ψ(q) =
1− 2q + 2q4 − 2q9 + · · ·

(1 + q)(1 + q2)(1 + q3) · · ·
,

where the expression on the right-hand side is, up to a factor q−1/24, a modular form of

weight 1
2
. Already in this first example we see three points:

• there are linear relations among the mock theta functions (here, φ = f + 2ψ);

• the space they span contains a subspace of ordinary modular forms;

• one must multiply by suitable powers of q to get the correct modular behavior.
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Ramanujan also describes the asymptotics of f(q) as q tends to any root of unity, a

typical result being

eπt/24 f
(
−e−πt

)
= − 1√

t
eπ/24t + 4 + o(1) as t→ 0 .

Notice that, as Ramanujan asserts, this is similar to the type of expansion which we

would have if q−1/24f(q) were a true modular form of weight 1
2
, except that then the

subleading terms would have a form like t−1/2
∑

n≥0 an e
−πn/24t rather than 4 + o(1).

The ten mock theta functions of order 5 have similar features, but are considerably

more complicated. We discuss this case in more detail since it is quite typical. The

functions come in five groups of two each, denoted fj, φj, ψj, χj and Fj with j ∈ {1, 2}.
(These are Ramanujan’s notations, except that he omits the indices.) The five functions

with index j = 1 are given by

f1(q) =
∞∑
n=0

qn
2

(1 + q) · · · (1 + qn)
,

φ1(q) =
∞∑
n=0

qn
2

(1 + q)(1 + q3) · · · (1 + q2n−1) ,

ψ1(q) =
∞∑
n=1

qn(n+1)/2 (1 + q)(1 + q2) · · · (1 + qn−1) ,

χ1(q) =
∞∑
n=0

qn

(1− qn+1) · · · (1− q2n)
,

F1(q) =
∞∑
n=0

q2n2

(1− q)(1− q3) · · · (1− q2n−1)
,

and the five with index j = 2 are very similar, e.g.,

f2(q) =
∞∑
n=0

qn(n+1)

(1 + q) · · · (1 + qn)
,

χ2(q) =
∞∑
n=0

qn

(1− qn+1) · · · (1− q2n+1)
.

Again Ramanujan gives a number of linear relations among these functions or between

them and classical modular forms (multiplied by suitable powers of q). These relations,

later proved by Watson, can be summarized in the form(
f1(
√
q) f1(−√q) χ1(q)− 2 φ1(−q) ψ1(

√
q) ψ1(−√q) F1(q)− 1

f2(
√
q) −f2(−√q) χ2(q)

√
q −φ2(−q)/√q ψ2(

√
q) −ψ2(−√q) F2(q)

√
q

)

=

(
U1(q) V1(q) W1(q)

U2(q) V2(q) W2(q)

)−1 1 2 0 1 −1 1

1 1 0 0 1 1 0

2 −2 −3 1 −1 1 −1

 ,
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where Uj and Vj, multiplied by q−1/120 for j = 1 and by q11/120 for j = 2, are quotients

of classical theta series and only W1 and W2 are functions of the new “mock” type. We

thus see the same points as above, but in a more complicated setting: we have seven

vectors, each consisting of two q-hypergeometric series, which span a space of dimension

only 3 rather than 7, and this 3-dimensional space contains a 2-dimensional subspace of

(weakly holomorphic) classical modular forms after multiplication by suitable rational

powers of q. Again there are also asymptotic formulas as q tends to any root of unity.

Finally, the three mock theta functions of order 7 are much simpler, since they form

in a natural way a single 3-vector, with no linear relations. The three functions are

F1(q) =
∞∑
n=0

qn
2

(1− qn+1)(1− qn+2) · · · (1− q2n)
,

F2(q) =
∞∑
n=1

qn
2

(1− qn)(1− qn+1) · · · (1− q2n−1)
,

F3(q) =
∞∑
n=1

qn(n−1)

(1− qn)(1− qn+1) · · · (1− q2n−1)
.

Since there are no relations, either among these functions or between them and classical

modular forms, it is less apparent here than in the other cases what is special about

these particular q-hypergeometric series. One answer (which was Ramanujan’s) is that

they again satisfy asymptotic formulas at roots of unity of the same type as for order 3

and 5. Another will appear later when we state identities relating the functions Fj(q) to

indefinite theta series and to mock Eisenstein series. But a third answer, which we can

already state here, is simply at the level of the q-expansions themselves. If we calculate

to high order, we find that the coefficients of these expansions grow very rapidly, the

coefficient of q5000 in F1(q), for instance, being 1945224937571884136277772966. But if

we multiply any of the series Fj(q) by the infinite product
∏∞

n=1

(
1− q7n

)
, which up to

a rational power of q is a modular form, then in each case the first 5000 coefficients are

all at most 10 in absolute value, suggesting that the functions Fj(q) are indeed related

in some non-trivial way with modular forms.

2. LERCH–APPELL SUMS AND MORDELL INTEGRALS

In his famous lecture “The Final Problem” given on the occasion of his retirement

as president of the London Mathematical Society in 1935, Watson [22] considered the

mock theta functions from Ramanujan’s last letter and in particular proved all of the

identities and asymptotic expansions which Ramanujan had given for the functions of

order 3. To do this, he first established a number of new identities—not actually all

that new, as it transpired when Ramanujan’s “lost notebooks” were discovered later—

relating the mock theta functions to q-hypergeometric series of a much simpler form, a
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typical example being the identity
∞∏
n=1

(
1− qn

)
· f(q) = 2

∞∑
n=−∞

(−1)n
qn(3n+1)/2

1 + qn

for the first mock theta function of order 3.

In the first chapter of his thesis [27], Zwegers studies sums of the type appearing on

the right-hand side of this formula, which he calls “Lerch sums” after M. Lerch, who

studied functions of this kind in two papers [14, 15] (one in Czech and one in German)

in 1892, though in fact they had been introduced some years earlier by Appell [3]. The

transformation properties of these functions were studied by both Lerch and Appell

and also by modern authors [18, 20], but Zwegers’s analysis is very complete and we

will follow his exposition here.

It turns out to be convenient to normalize the Lerch sums, which are objects of

weight 1, by dividing them by theta series of weight 1
2
, since the mock theta functions

will eventually be expressed as linear combinations of such quotients. For fixed τ ∈ H

( = complex upper half plane) we define a function of two complex variables u, v by

µ(u, v) = µ(u, v; τ) =
a1/2

θ(v)

∑
n∈Z

(−b)n qn(n+1)/2

1 − aqn
,

where q = e2πiτ , a = e2πiu, b = e2πiv (we will use these abbreviations throughout, and

will omit the variable τ when it is not varying) and θ(v) is the Jacobi theta series

θ(v) = θ(v; τ) =
∑
ν∈Z+ 1

2

(−1)ν−1/2 bν qν
2/2 = q1/8 b1/2

∞∏
n=1

(
1−qn

)(
1−bqn

)(
1−b−1qn−1

)
.

(The last equality is the famous triple product identity of Jacobi.) Zwegers shows that

the function µ has the symmetry property

µ(u, v) = µ(v, u) ,

the elliptic transformation properties

µ(u+ 1, v) = −µ(u, v) ,

a−1bq−1/2µ(u+ τ, v) = −µ(u, v) + a−1/2 b1/2 q−1/8 ,

and the modular transformation properties

µ(u, v; τ + 1) = ζ−1
8 µ(u, v)

(
ζN := e2πi/N

)
,

(τ/i)−1/2 eπi(u−v)2/τ µ
(u
τ
,
v

τ
;
−1

τ

)
= −µ(u, v) +

1

2
h(u− v; τ) ,

where h(z; τ) =
∫∞
−∞

eπix
2τ − 2πxz dx
coshπx

, an integral of a kind first introduced by Mordell [16].

These properties show that µ behaves nearly like a Jacobi form of weight 1
2

in two

variables (a Jacobi form being a function of a modular variable τ and one or more elliptic

variables u, v, . . . with appropriate transformation properties; the exact definition in

the one-variable case will be recalled in §4), and that its failure to transform exactly
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like a Jacobi form depends only on the difference u − v. (1) Zwegers then constructs

a second, but now non-holomorphic, function (of u − v only) whose “non-Jacobiness”

exactly matches that of µ, so that the difference of these two functions transforms in

the correct way, though at the expense of no longer being holomorphic:

Theorem 2.1. — For τ ∈ H, z ∈ C define R(z; τ) by the convergent series

R(z; τ) =
∑
ν∈Z+ 1

2

(−1)ν−1/2
[
sgn(ν) − E

(
(ν + =(z)/y)

√
2y
)]
e−2πiνz q−ν

2/2 ,

where y = =(τ) and E(z) is the odd entire function 2
∫ z

0
e−πu

2
du. Then the function

µ̂(u, v; τ) = µ(u, v; τ) − 1

2
R(u− v; τ)

is symmetric in u and v and satisfies the elliptic transformation properties

µ̂(u+ 1, v) = a−1 b q−1/2 µ̂(u+ τ, v) = −µ̂(u, v)

and the modular transformation properties

ζ8 µ̂(u, v; τ + 1) = −(τ/i)−1/2 eπi(u−v)2/τ µ̂
(u
τ
,
v

τ
;
−1

τ

)
= µ̂(u, v) .

Now it is well-known that specializing the “elliptic” variables of a Jacobi form to

torsion points ( = points of Qτ +Q) gives functions of τ which are modular forms times

rational powers of q. If we combine this with the two other facts that some or all

mock theta functions can be written as linear combinations of the function µ(u, v; τ)

with u and v in Qτ + Q, and that the function µ can be modified in a simple way to

give a function µ̂ which transforms like a Jacobi form, we deduce that a mock theta

function, multiplied by a suitable rational power of q and corrected by the addition

of a simple and explicit non-holomorphic function of τ , becomes a modular form. For

instance, using the identity of Watson for the mock theta function f(q) of order 3 given

at the beginning of this section and the transformation properties of the Lerch sums,

Zwegers [26] shows that the function h3(τ) = q−1/24f(q) (τ ∈ H, q = e2πiτ ) can be

“corrected” by adding to it the non-holomorphic unary theta series

R3(τ) =
∑

n≡1 (mod 6)

sgn(n) β(n2y/6) q−n
2/24 (y = =(τ)) ,

where β(x) is the complementary error function (or incomplete gamma function)

β(x) =

∫ ∞
x

u−1/2 e−πu du = 2

∫ ∞
√
x

e−πt
2

dt = 1 − E
(√

x
)

(x ≥ 0),

(1)The fact that the “non-Jacobiness” of µ(u, v) depends only on u − v can be explained by the fact
that µ(u, v) has a decomposition of the form µ(u, v) = ζ(u)−ζ(v)+ζ(u−v)

θ(u−v) + λ(u − v) , where ζ(z) =
(2πi)−1θ′(z)/θ(z) is the Weierstrass ζ-function, in which the first term is a true (meromorphic) Jacobi
form and the second a function of u− v alone. The details will be given in a later publication.
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and that the corrected function ĥ3(τ) = h3(τ) + R3(τ) transforms like a modular form

of weight 1
2

with respect to the congruence group Γ(2) .

Finally, we mention that the correction terms for the mock theta functions can be

written in a different form. For instance, we can write the definition of R3(τ) as

R3(τ) =
i√
3

∫ ∞
−τ

g3(z)√
(z + τ)/i

dz ,

where g3(z), a holomorphic modular form of weight 3
2
, is the unary theta series

g3(z) =
∑

n≡1 (mod 6)

n qn
2/24 =

∞∑
n=1

(
−12

n

)
n qn

2/24 .

This type of formula will play a role in §5 when we give the general definitions of mock

theta functions and mock modular forms.

3. INDEFINITE THETA SERIES

Let 〈 , 〉 be a Z-valued bilinear form on Zr and Q(x) = 1
2
〈x, x〉 the associated

quadratic form. If Q is positive definite, then it is a classical fact that the theta

series Θ(τ) =
∑

ν∈Zr q
Q(ν), or more generally Θa,b(τ) =

∑
ν∈Zr+a e

2πi〈b,ν〉qQ(ν) for any

a, b ∈ Qr, is a modular form of weight r/2 (and of known level and character). For

indefinite theta series there is a well-known theory of non-holomorphic theta series due

to Siegel, but no standard way to obtain holomorphic functions with arithmetic Fourier

coefficients having any kind of modular transformation behavior. In the second chapter

of his thesis, Zwegers shows how to do this when the quadratic form Q has signature

(r−1, 1). Since many (presumably, all) of the mock theta functions have representations

as the quotient of a theta series associated to a quadratic form of signature (1, 1) by

a theta series associated to a positive definite quadratic form of rank 1, this has an

immediate application to the transformation behavior of mock theta functions. We will

describe the general result first and then give some of the applications to mock theta

functions at the end of the section.

For Q indefinite, the theta series Θa,b as defined above is divergent, since its terms

are unbounded (because there are vectors ν ∈ Zr with Q(ν) < 0) and all occur with

infinite multiplicity (because there is an infinite group of units permuting the terms).

However, we can make it convergent by restricting the summation to the set of lattice

points lying between two appropriately chosen hyperplanes in Rr. More precisely, let

C be one of the two components of the double cone {x ∈ Rr | Q(x) < 0}, and for

a, b ∈ Qr and c, c′ ∈ C define

Θc,c′

a,b (τ) =
∑

ν∈Zr+a

(
sgn
(
〈c, ν〉

)
− sgn

(
〈c′, ν〉

))
e2πi〈b,ν〉qQ(ν) .



986–09

This series now contains only positive powers of q and is absolutely convergent (although

this isn’t obvious), so it defines a holomorphic function of τ , but of course it is not in

general modular. To remedy this, Zwegers introduces the modified function

Θ̂c,c′

a,b (τ) =
∑

ν∈Zr+a

(
E

(
〈c, ν〉√y√
−Q(c)

)
− E

(
〈c′, ν〉√y√
−Q(c′)

))
e2πi〈b,ν〉qQ(ν)

(
y = =(τ)

)
with E(z) as in Theorem 2.1. Then from the relation E(x) = sgn(x) (1− β(x2)) we get

Θ̂c,c′

a,b (τ) = Θc,c′

a,b (τ)− Φc
a,b(τ) + Φc′

a,b(τ) with

Φc
a,b(τ) =

∑
ν∈Zr+a

sgn
(
〈c, ν〉

)
β

(
〈c, ν〉2 y
−Q(c)

)
e2πi〈b,ν〉qQ(ν)

(which is rapidly convergent, with summands bounded by e−A‖ν‖
2

for some A > 0). If

c belongs to C ∩ Qr, then Φc
a,b(τ) is a finite linear combination

∑
j Rj(τ)θj(τ) where

each Rj(τ) is a sum of the same sort as occurred in §2 as the correction needed to

make mock theta functions modular (i.e., Rj(τ) =
∑

n∈Z+αj
sgn(n) β(4κjn

2y) q−κjn
2

for

some αj ∈ Q and κj ∈ Q>0) and each θj(τ) is an ordinary theta series associated to the

quadratic form Q|〈c〉⊥ and hence is a holomorphic modular form of weight (r−1)/2. (In

the case of mock theta functions, the function θj(τ) is independent of j, so that Φc
a,b(τ)

factors as θ(τ)Rc(τ), and moreover the theta function θ(τ), here of weight 1
2

because

r = 2, is the same for c and c′ ; the mock theta function is then, up to a power of q, the

quotient h(τ) = Θc,c′

a,b (τ)/θ(τ) and its completed version is ĥ(τ) = h(τ)+Rc(τ)−Rc′(τ).)

Zwegers now shows ([27], Cor. 2.9):

Theorem 3.1. — The non-holomorphic function Θ̂a,b = Θ̂c,c′

a,b (a, b ∈ Qr, c, c′ ∈ C)

satisfies the same transformation equations (expressing Θ̂a,b(τ + 1) and Θ̂a,b(−1/τ) as

finite linear combinations of functions Θ̂a′,b′(τ)) as in the positive definite case, and in

particular is a non-holomorphic modular form of weight r/2.

Note that this theorem can also be used to get theta series associated to Q which

are holomorphic modular forms. For instance, let O(Q)+ be the component of the

orthogonal group of Q mapping C to itself and Γ+ the congruence group of γ ∈ O(Q)+

preserving Zr + a and the function ν 7→ e2πi〈b,ν〉 on Zr + a. Then Φc
a,b = Φγc

a,b for any

c ∈ C and γ ∈ Γ+, so the function Θc,γc
a,b = Θ̂c,γc

a,b (which is independent of c, as one can

easily check) is both holomorphic and modular.

We now give examples of the applications of these results to mock theta functions.

In [1], Andrews found representations for all of Ramanujan’s fifth order mock theta

functions except χ1(τ) and χ2(τ) as quotients Θ(τ)/θ(τ) with θ(τ) modular of weight 1
2

and Θ(τ) a theta series associated to a binary quadratic form of signature (1,1), a

typical formula being

f1(q) =
1∏∞

n=1

(
1− qn

) (∑
n≥0

∑
|j|≤n

−
∑
n<0

∑
|j|<|n|

)
(−1)j qn(5n+1)/2− j2 .
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Similar formulas for the seventh order functions were proved by Hickerson [11], e.g.,

F1(q) =
1∏∞

n=1

(
1− qn

) ( ∑
r, s≥0

−
∑
r, s<0

)
(−1)r+s q(3r2+8rs+3s2+r+s)/2 .

Using these formulas and Theorem 3.1, we can find the modular properties of all of these

mock theta functions. For example, from the first identity just given and its companion

for f2 we find that the sum of the holomorphic vector-valued function
(
q−1/60f1(q)

q11/60f2(q)

)
and

the non-holomorphic correction term
(
R5,1(τ)
R5,2(τ)

)
, where

Rp,j(τ) =
∑

n ≡ j (mod p)

(
12

n

)
sgn(n) β

(n2y

6p

)
q−n

2/24p (6 - p, j ∈ Z/pZ),

transforms like a modular form of weight 1
2

with respect to the congruence subgroup

Γ(5) of SL(2,Z), while from the second one we find the even nicer result for the seventh

order functions that, if we define

M7(τ) =

 q−1/168F1(q)

−q−25/168F2(q)

q47/168F3(q)

 , M̂7(τ) = M7(τ) +

R7,1(τ)

R7,2(τ)

R7,3(τ)

 ,

then M̂7 transforms in a modular way with respect to the full modular group SL(2,Z) :

M̂7(τ + 1) = diag
(
ζ−1

168, ζ
−25
168 , ζ

−121
168

)
M̂7(τ) ,

M̂7

(
−1/τ

)
=

√
τ/7i

(
2 sin 6πjk/7

)
1≤j, k≤3

M̂7(τ) .

4. FOURIER COEFFICIENTS OF MEROMORPHIC JACOBI FORMS

We recall that a Jacobi form is a holomorphic function ϕ(τ, z) of two variables τ ∈ H

and z ∈ C which transforms like a modular form with respect to the first and like an

elliptic function with respect to the second. More precisely, a Jacobi form of weight k

and index N/2 on the full modular group is a holomorphic function ϕ : H× C→ C
satisfying ϕ

(
aτ+b
cτ+d

, z
cτ+d

)
= (cτ + d)k eπiNcz

2/(cτ+d) ϕ(τ, z) for all (a bc d) ∈ SL(2,Z) and

ϕ(τ, z + rτ + s) = e−πiN(r2τ+2rz) ϕ(τ, z) for all (rs) ∈ Z2, as well as certain growth

conditions which we omit. (For these and further details and explanations, see [7].)

Examples are given by classical theta functions and by the Fourier coefficients of Siegel

modular forms of degree 2, and an important property, already mentioned in §2 in con-

nection with the mock Jacobi forms µ(u, v; τ), is that for any a, b ∈ Q the specialization

ϕ(τ, aτ+b), multiplied by a suitable rational power of q, is a modular form with respect

to τ .

The elliptic transformation property of ϕ implies that it has an expansion

ϕ(τ, z) =
∑

` (mod N)

h`(τ) θN,`(τ, z) ,
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where h`(τ) (` ∈ Z) is the Fourier coefficient

h`(τ) = e−πi`
2τ/N

∫ z0+1

z0

e−2πi`z ϕ(τ, z) dz (any z0 ∈ C)

and θN,`(τ, z) is the unary theta series

θN,`(τ, z) =
∑

n≡` (mod N)

e2πinz qn
2/2N

(which is itself a Jacobi form of weight 1
2

and index N/2 on a subgroup of SL(2,Z)).

The modular transformation property of ϕ then implies that the vector-valued function

h = (h1, . . . , hN) : H→ CN transforms like a modular form of weight k− 1
2

on SL(2,Z).

Zwegers observed that certain representations of the fifth order mock theta functions

found by Andrews [2] can be reinterpreted as saying that these functions are the Fourier

coefficients of a meromorphic Jacobi form (= quotient of two holomorphic Jacobi forms),

and proceeds to find a general theory of the transformation behavior of the vector-valued

function h(τ), defined by the same integral formula as above, when the Jacobi form ϕ

is allowed to have poles. The complete result (Theorem 3.9 in [27]) is a little too long

and technical to be included here. Briefly (in the simplest case when ϕ has only simple

poles), it says that h can be completed to a non-holomorphic vector-valued modular

form ĥ(τ) =
(
ĥ`(τ)

)
` (mod N)

of weight k − 1
2

by the addition of a vector of functions

which are linear combinations of functions Rν(τ) of the same type as we encountered

in §2 and §3, the coefficients in their turn being modular forms of weight k − 1 if

the poles of ϕ are at torsion points z = aτ + b, a, b ∈ Q. In particular, if k = 1

and the poles of ϕ are at torsion points, then the ĥ` are C-linear combinations of the

functions Rν and the functions h` are mock theta functions of precisely the same kind

as Ramanujan’s. Moreover (now again for general k), the meromorphic Jacobi form

has an expansion of the form ϕ(τ, z) =
∑

` h`(τ) θN,`(τ, z) + Res with the same θN,` as

above and with “Res” being given as an explicit finite sum over the residues of ϕ(τ, z)

in the fundamental domain z0 + [0, 1) τ + [0, 1) for the action of Zτ + Z on C.

One peculiarity of the expansion just described is that the individual terms change

as the base-point z0 used to compute the Fourier coefficients h`(τ) moves across cer-

tain lines in C, namely, those where ϕ(τ, · ) has a singularity on the boundary of the

parallelogram z0 + [0, 1]τ + [0, 1] ⊂ C. This is related to the so-called “wall-crossing

phenomenon” in the theory of Donaldson invariants (which were in turn related to

the theory of indefinite theta functions in [9]) and also to the similar wall-crossing

phenomenon which has appeared more recently in the theory of black holes [21].

5. MOCK THETA FUNCTIONS AND MOCK MODULAR FORMS

In §§2–4 we have seen that each of Ramanujan’s mock theta functions H(q) ∈ Z[[q]]

acquires modularity transformation properties after carrying out the following three
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steps: (i) multiply H(q) by a suitable rational power qλ of q, e.g., q−1/24 for the mock

theta function f(q) of order 3 or q47/168 for the mock theta function F3(q) of order 7;

(ii) change the variable from q = e2πiτ to τ with τ ∈ H, setting h(τ) = e2πiλτ H(e2πiτ );

(iii) add a simple (but non-holomorphic) correction term to h(τ) so that the corrected

function ĥ(τ) transforms like a modular form of weight 1
2

for some congruence subgroup

of SL(2,Z). The correction has the form g∗(τ) =
∑

n∈Z+α sgn(n) β(4κn2y) q−κn
2

for

some α ∈ Q and κ ∈ Q>0, with β(t) as in Sections 2 and 3, and is in turn associated (in

a way which we will make precise in a moment) to the theta series g(τ) =
∑

n∈Z+α n q
κn2

,

which is a true modular form of weight 3
2
. Notice that steps (i) and (ii) would also be

necessary in the case of q-series which are attached to true modular forms; it is only in

the final step that the “mock” aspect comes into play.

One can therefore say that each mock theta function H(q) has two secret invariants:

a rational number λ such that H(q) must be multiplied by qλ in order to have any kind

of modularity properties, and a “shadow” g(τ) which is a unary theta series of weight 3
2

such that the holomorphic function h(τ) = qλH(q) becomes a non-holomorphic modular

form of weight 1
2

when we complete it by adding a correction term g∗(τ) associated

to g(τ). This picture generalizes immediately to other weights and leads to the notion

of a mock modular form of weight k, which we now describe. The space Mk of all

such forms contains as a subspace the space Mk of classical modular forms of weight k

(and arbitrary level and character), but since—as we already saw for Ramanujan’s

original mock theta functions—we will in general need to allow negative powers of q

in the Fourier expansions at infinity or other cusps, we will define Mk in such a way

that it contains the larger space M !
k of weakly holomorphic modular forms of weight k

(= functions which transform like modular forms of weight k and are holomorphic in H,

but may have singularities of type q−O(1) at cusps). The space Mk is of course infinite

dimensional, but becomes finite dimensional when one adds conditions specifying the

level of the form (i.e., the discrete group Γ ⊂ SL(2,R) and the character or finite-

dimensional representation of Γ describing the modularity properties of the completed

form) and the order of poles which we allow at the cusps. Each mock modular form

h ∈ Mk has a “shadow” g = S[h] which is an ordinary modular form of weight 2 − k.

This “shadow” depends R-linearly on h and vanishes if and only if h is a modular

form (which is then weakly holomorphic, since in Mk we impose exponential growth

conditions at the cusps), so that we have an exact sequence over R

0 // M !
k

// Mk
S // M2−k .

In fact the last map is also surjective, so that we have a short exact sequence and Mk

can be seen as the extension of one space of classical modular forms by another.

The definition of the shadow map is as follows. For g(τ) a modular form of weight 2−k
we define a new function g∗(τ) with ∂g∗/∂τ̄ proportional to y−k g(τ) by

g∗(τ) = (i/2)k−1

∫ ∞
−τ̄

(z + τ)−k gc(z) dz =
∑
n>0

nk−1 bn βk(4ny) q−n ,
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if g =
∑

n>0 bn q
n (sum over some arithmetic progression in Q), where gc(τ) = g(−τ̄) =∑

bn q
n and βk(t) is the incomplete gamma function

∫∞
t
u−k e−πu du . (Here we are

assuming for convenience that g vanishes at infinity. For mock theta functions, the

unary theta series g is in fact a cusp form.) Then to say that g is the shadow S[h] of h

means that the non-holomorphic function ĥ(τ) = h+g∗ transforms like a modular form

of weight k, i.e., ĥ(γτ) = ρ(γ)(cτ + d)kĥ(τ) for all γ = ( · ·c d ) in a suitable subgroup Γ

of SL(2,R), where ρ is a character (or, for vector-valued h, representation) of Γ.

We can say this in another way. There is a canonical isomorphism between the

space Mk of mock modular forms, which are holomorphic, but not quite modular,

and a second space M̂k of functions which are modular, but not quite holomorphic,

the situation here being exactly analogous to the isomorphism (see [12] or §5 of [25])

between the space M̃k of “quasimodular forms” (which are again holomorphic, but

not quite modular) and the space M̂k of “almost holomorphic modular forms”. The

isomorphism Mk
∼= M̂k sends the mock modular form h with shadow g to the completed

function ĥ = h + g∗, so to find the definition of the image space M̂k we must see how

to recover h from ĥ. But this is easy: since h is holomorphic, we can just apply the

Cauchy–Riemann operator ∂/∂τ̄ to get ∂ĥ/∂τ̄ = ∂g∗/∂τ̄
·

= y−kg, and from ĥ and g

we recover h as ĥ− g∗. The direct definition of M̂k is therefore as follows. Let Mk be

the space of real-analytic functions F (τ) in H which transform like modular forms of

weight k (i.e., F (γτ) = ρ(γ)(cτ +d)kF (τ) for all γ in some modular group Γ ⊂ SL(2,R)

and some character or representation ρ of Γ) and have at most exponential growth at

the cusps. More generally, let Mk,` be the space of functions which transform under

some modular group Γ by F (γτ) = ρ(γ)(cτ+d)k(cτ̄+d)`F (τ). Since the derivative of a

modular form of weight 0 is a modular form of weight 2, the map ∂/∂τ̄ sends Mk = Mk,0

to Mk,2 and the map ∂/∂τ sends M0,` to M2,`. Also, the function y := =(τ) belongs to

M−1,−1, so we have isomorphisms · yr : Mk,` → Mk−r,`−r for any r ∈ Z. This gives a

commutative diagram

Mk = Mk,0

∂/∂τ̄
// Mk,2

· yk

∼=
// M0,2−k

∂/∂τ
// M2,2−k

M2−k

∪

OO

0

::ttttttttt

,

and M̂k is the space of functions F ∈Mk for which ykFτ̄ = yk ∂F/∂τ̄ belongs to M2−k,

or equivalently (since it already transforms like a modular form of weight (0, 2− k) by

the above diagram), for which ykFτ̄ is anti-holomorphic:

M̂k =

{
F ∈Mk

∣∣∣∣ ∂

∂τ

(
yk
∂F

∂τ̄

)
= 0

}
.

Note that the composite map Mk
yk ∂/∂τ̄→ M0,2−k

y2−k∂/∂τ→ Mk is, up to a factor of 4 and

an additive constant k(2−k), the Laplace (or Casimir) operator in weight k, so that the

elements of M̂k are in particular weak Maass forms (= non-holomorphic modular forms
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of at most exponential growth at the cusps which are eigenfunctions of the Laplace

operator), but they are very special weak Maass forms since the eigenvalue under the

Laplacian is only allowed to have the particular value k
2

(
1− k

2

)
. Following a suggestion

of Bruinier and Funke, these functions are called harmonic weak Maass forms.

The whole discussion can be summarized by the commutative diagram

0 // M !
k

⊂ //

=

��

M̂k

yk ∂/∂τ̄
//

∼=
��

M2−k
//

∼= complex
conjugation

��

0

0 // M !
k

// Mk
S // M2−k // 0

,

We observe that the map S is linear over R but antilinear over C, so that the sequence

0 → M !
k → Mk → M2−k → 0 is exact only over R. We could make it exact over C by

replacing the last term by M2−k ; this would be more natural, but less aesthetic since

holomorphic modular forms are more familiar than antiholomorphic ones.

Remark. A mock theta function is by definition a q-series H(q) =
∑

n≥0 an q
n such

that qλH(q) for some λ ∈ Q is a mock modular form of weight 1
2

whose shadow is

a unary theta series of weight 3
2
, i.e., a function of the form

∑
n∈Z ε(n)n qκn

2
with

κ ∈ Q>0 and ε an odd periodic function. It follows that if A ⊂ Q is any arithmetic

progression containing no number of the form −κn2−λ with n ∈ Z and ε(n) 6= 0, then∑
n∈A an q

n+λ is a true (though in general only weakly holomorphic) modular form of

weight 1
2
. This principle has many applications, one of which will be described in §7.

6. NEW IDENTITIES AND NEW EXAMPLES

At the end of the introduction we mentioned that one application of Zwegers’s theory

is that it now becomes as easy to prove identities among mock theta functions (or

more generally, among mock modular forms) as it previously was for modular forms.

For example, the so-called “Mock theta conjectures” for the mock theta functions of

order 5, which were stated by Ramanujan in his “Lost Notebook”, were proved only

in 1988 by D. Hickerson [10] after heroic efforts, but now with the knowledge of the

transformation properties of the mock theta functions the proof becomes automatic: one

only has to verify that the left- and right-hand sides of the identities become modular

after the addition of the same non-holomorphic correction term and that the first few

coefficients of the q-expansions agree. Moreover, knowing the transformation behavior

also allows one to find new identities in a systematic way. For instance, we mentioned

in §3 that representations as quotients of a binary by a unary theta series were found

in [1] for only four of the five vector-valued mock theta functions of order 5, but using

the mock modular transformation properties one easily gets such a representation also

in the missing case, and it actually turns out to be the best one, since it is the only
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one of the five functions whose completed version transforms under the full modular

group SL(2,Z) : if we set M5(τ) =
(
M5,1(τ)
M5,2τ)

)
= −2

3

(
q−1/120 (2−χ1(q))

q71/120 χ2(q)

)
, then we have

− 3

2
M5,j(τ) =

1

η(τ)

∑
|a|> 5|b|

a+b≡ 2 (mod 4)
a≡ 2j (mod 5)

(−1)a
(
−3

a2 − b2

)
sgn(a) q(a2−5b2)/120

and the completed function M̂5 = M5 +
(
R5,1

R5,2

)
, where Rp,j is defined as in §3, satisfies

M̂5(τ + 1) =
(
ζ−1
120 0

0 ζ−49
120

)
M̂5(τ) , M̂5

(
−1/τ

)
=
√
τ/5i

(
−2 sin π

5
2 sin 2π

5

2 sin 2π
5

2 sin π
5

)
M̂5(τ) .

Similarly, for the mock theta functions of order 7, as well as Hickerson’s identity for

η(τ)M7,j(τ) as an indefinite binary theta series, we find the representation

η(7τ)M7,j(τ) =
∑

|r|>|s|, rs>0
2r≡−2s≡j (mod 7)

sgn(r)
(
2ε6(s)− ε2(r)ε3(s)− ε3(r)ε2(s)

)
qrs/42

(where εN(s) = 1 if s ≡ 0 (mod N) and 0 otherwise) of the product of M7,j(τ) with

η(7τ) as a “mock Eisenstein series” of weight 1 (explaining the smallness of the Fourier

coefficients of this product that was mentioned in §1), and also the representation

η(τ)3M7,j(τ) =
∑

m>2|n|/9
n≡j (mod 7)

(
−4

m

)(
12

n

)(
m sgn(n) − 3n

14

)
qm

2/8−n2/168

of the product of M7,j(τ) with η(τ)3 as an indefinite theta series of weight 2. What’s

more, by methods obtained in a reasonably straightforward way by generalizing methods

from standard modular form theory (holomorphic projection, Rankin–Cohen brackets,

etc.), one can produce infinitely many new examples of mock theta functions or of more

general types of mock modular forms. In particular, we can construct vector-valued

mock modular forms Mp(τ) =
(
Mp,j(τ) = −Mp,−j(τ)

)
j (mod p)

of length (p − 1)/2 of

order p > 3 for any prime p by a formula like the one just given for M7, e.g.,

M11,j(τ) =
1

η(τ)3

∑
m>2|n|/11
n≡j (mod 11)

(
−4

m

)(
12

n

)(
m sgn(n) − n

6

)
qm

2/8−n2/264

for p = 11, in such a way that the completed function M̂p(τ) =
(
Mp,j(τ)

)
j (mod p)

with

M̂p,j(τ) = Mp,j(τ) + Rp,j(τ) transforms like a vector-valued modular form of weight 1
2

on SL(2,Z), thus directly generalizing the previous two cases p = 5 and p = 7.

There are also many examples of other types. For instance, there is a family of scalar-

valued functions having completions that transform like modular forms of every even

integral weight k on the full modular group. The kth function Fk = Fk(τ) is defined as

Fk =
∑
n 6=0

(−1)n
(
−3

n− 1

)
nk−1 q

n(n+1)/6

1 − qn
= −

∑
r>s>0

(
12

r2 − s2

)
sk−1 qrs/6
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(i.e., as a Lerch-like sum or as a mock Eisenstein series), the first two values being

F2 = q + 2q2 + q3 + 2q4 − q5 + 3q6 − · · · ,
F4 = 7q + 26q2 + 7q3 + 26q4 − 91q5 + · · · .

Then the function

f(τ) =
F2(q) − 12E2(τ)

η(τ)
= q−1/24

(
1− 35q − 130q2 − 273q3 − 595q4 − · · ·

)
,

where E2(τ) = 1 − 24
∑∞

n=1 σ1(n)qn is the usual quasimodular Eisenstein series of

weight 2, is a mock modular form of weight 3
2

on the full modular group with shadow

η(τ), and for each integer n > 0 the sum of 12F2n+2(τ) and 24n (2n
n )−1 [f, η]n (where

[f, g]n denotes the n-th Rankin–Cohen bracket, here in weight (3
2
, 1

2
)), is a modular

form of weight 2n + 2 on SL(2,Z). In a different direction, the Eichler integral f̃ =∑∞
n=1 n

−k+1a(n) qn of a classical cusp form f =
∑
a(n) qn of weight k is a mock modular

form of weight 2 − k, but of a somewhat generalized kind in which the “shadow” is

allowed to be a weakly holomorphic modular form. (This latter fact was observed

independently by K.-H. Fricke in Bonn.) Yet another example—actually the oldest—is

the generating function of class numbers of imaginary quadratic fields (more precisely,

of Hurwitz–Kronecker class numbers), which was shown in [23] to be a mock modular

form of weight 3
2

and level 4 with shadow
∑
qn

2
, although the notion had not yet been

formulated at that time.

7. APPLICATIONS

Since the appearance of Zwegers’s thesis, Kathrin Bringmann and Ken Ono and

their collaborators have developed the theory further and given a number of beautiful

applications, a sampling of which we describe in this final section.

Define the rank of a partition to be its largest part minus the number of its parts,

and for n, t ∈ N and r ∈ Z/tZ let N(r, t;n) denote the number of partitions of n

with rank congruent to r modulo t. The rank was introduced by Dyson to explain in a

natural way the first two of Ramanujan’s famous congruences

p(5`+ 4) ≡ 0 (mod 5) , p(7`+ 5)≡ 0 (mod 7) , p(11`+ 6)≡ 0 (mod 11)

for the partition function p(n) : he conjectured (and Atkin and Swinnerton-Dyer later

proved) that the ranks of the partitions of an integer congruent to 4 (mod 5) or to

5 (mod 7) are equidistributed modulo 5 or 7, respectively, so that N(r, 5; 5` + 4) =
1
5
p(5` + 4), N(r, 7; 7` + 5) = 1

7
p(7` + 5). (He also conjectured the existence of a

further invariant, which he dubbed the “crank,” which would explain Ramanujan’s

third congruence in the same way; this invariant was constructed later by Garvan and
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Andrews.) The generating function that counts the number of partitions of given size

and rank is given by

R(w; q) :=
∑
λ

wrank(λ) q‖λ‖ =
∞∑
n=0

qn
2∏n

m=1(1− wqm)(1− w−1qm)
,

where the first sum is over all partitions and ‖λ‖ = n means that λ is a partition

of n. Clearly knowing the functions n 7→ N(r, t;n) for all r (mod t) is equivalent to

knowing the specializations ofR(w; q) to all t-th roots of unity w = e2πia/t. For w = −1,

the function R(w; q) specializes to f(q), the first of Ramanujan’s mock theta functions,

which is q1/24 times a mock modular form of weight 1
2
. Bringmann and Ono [6] generalize

this to other roots of unity:

Theorem 7.1. — If ξ 6= 1 is a root of unity, then q−1/24R(ξ; q) is a mock modular

form of weight 1
2

with shadow proportional to
(
ξ1/2 − ξ−1/2

)∑
n∈Z
(

12
n

)
n ξn/2 qn

2/24.

Remarks. 1. Note that the choice of square root of ξ in the formula for the shadow

does not matter, since n in the non-vanishing terms of the sum is odd.

2. In fact Bringmann and Ono prove the theorem only if the order of ξ is odd. (If it is

even, they prove a weaker result showing the modularity only for a group of in general

infinite index in SL(2,Z).) Also, both the formulation and the proof of the theorem

in [6] are considerably more complicated than the ones given here.

Proof. The proof is based on the following identity of Gordon and McIntosh [8]:

R(ξ; q) =
1− ξ∏

n≥1

(
1− qn

) ∞∑
n=−∞

(−1)n q(3n2+n)/2

1− qnξ
.

Using the identity 1
1−x = 1+x+x2

1−x3 we can rewrite this as

q−1/24R(e2πiα; q)

e−πiα − eπiα
=

η(3τ)3/η(τ)

θ(3α; 3τ)
+ e−2πiαµ(3α,−τ ; 3τ) + e2πiα µ(3α, τ ; 3τ)

with θ(v; τ) and µ(u, v; τ) as in §2. The first term on the right is a weakly holomorphic

modular form of weight 1
2

and the other two terms are mock modular forms of weight 1
2
,

with shadow proportional to
∑∞

n=1

(
12
n

)
n qn

2/12 sin(πnα) , by Theorem 2.1. �
As a corollary of Theorem 7.1 we see that for all t > 0 and all r ∈ Z/tZ the function∑

n≥0

(
N(r, t;n) − 1

t
p(n)

)
qn−1/24

is a mock modular form of weight 1
2
, with shadow proportional to( ∑

n≡2r+1 (mod 2t)

−
∑

n≡2r−1 (mod 2t)

) (
12

n

)
n qn

2/24 .

Applying the general principle formulated at the end of §5, one deduces that the sum∑
n∈A, n≥0

(
N(r, t;n) − 1

t
p(n)

)
qn−1/24
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is a (weakly holomorphic) modular form for any arithmetic progression A ⊂ Z not

containing any number of the form (1−h2)/24 with h ≡ 2r±1 (mod 2t). In particular,

this holds if A is the set of n with
(

1−24n
p

)
= −1 for some prime p > 3, and using this

and methods from classical modular form theory the authors deduce the following nice

result (stated there only for t odd and Q prime to t) about divisibility of the Dyson

counting function N(r, t;n) :

Theorem 7.2. — Let t > 0 and Q a prime power prime to 6. Then there exist A > 0

and B ∈ Z/AZ such that N(r, t;n) ≡ 0 (mod Q) for all n ≡ B (mod A) and r ∈ Z/tZ.

In a different direction, knowing the modularity properties of mock theta functions

permits one to obtain asymptotic results, as well as congruences, for their coefficients.

We give two examples. In §2 we described the weak Maass form ĥ3(τ) associated to

Ramanujan’s order 3 mock theta function f(q). In [5], Bringmann and Ono construct

a weak Maass–Poincaré series that they can identify (essentially by comparing the

modular transformation properties and the asymptotics at cusps) with ĥ3(τ), and from

this they deduce a Rademacher-type closed formula for the coefficient α(n) of qn in f(q)

of the form

α(n) =
1√

n− 1/24

∞∑
k=1

ck(n) sinh
( π

12k

√
24n− 1

)
,

where ck(n) is an explicit finite exponential sum depending only on n modulo 2k, e.g.,

c1(n) = (−1)n−1. This formula had been conjectured by Andrews and Dragonette in

1966 (after Ramanujan had stated, and Dragonette and Andrews had proven, weaker

asymptotic statements corresponding to keeping only the first term of this series), but

had resisted previous attempts at proof because the circle method, which is the natural

tool to use, requires having a very precise description of the behavior of f(q) as q

approaches roots of unity, and this in turn requires knowing the modular transformation

properties of h3(τ) = q−1/24f(q). As a second example, Bringmann [4] was able to use

this type of explicit formulas for the coefficients of mock theta functions, combined with

Theorem 7.1, to prove an inequality that had been conjectured earlier by Andrews and

Lewis, saying that N(0, 3;n) is larger than N(1, 3;n) for all n ≡ 1 (mod 3) and smaller

for all other values of n (except n = 3, 9 or 21, where they are equal).

We close by mentioning that mock theta functions (both in the guises of Appell–Lerch

sums and of indefinite theta series) also arise in connection with characters of infinite-

dimensional Lie superalgebras and conformal field theory [20], and that they also occur

in connection with certain quantum invariants of special 3-dimensional manifolds [13].

This suggests that mock modular forms may have interesting applications even outside

the domain of pure combinatorics and number theory.



986–19

REFERENCES

[1] G. E. ANDREWS – The fifth and seventh order mock theta functions. Trans. Amer.

Math. Soc. 293, 1986, 113–134.

[2] G. E. ANDREWS – Ramanujan’s fifth order mock theta functions as constant

terms. In “Ramanujan Revisited: Proceedings of the Centenary Conference, Univ.

of Illinois at Urbana-Champaign, June 1–5, 1987,” Academic Press, San Diego,

1988, 47–56.

[3] M. P. APPELL – Sur les fonctions doublement périodiques de troisième espèce.
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