
ASIAN J. MATH. c© 1999 International Press

Vol. 3, No. 1, pp. 93–108, March 1999 005

MODULAR FORMS AND QUANTUM
INVARIANTS OF 3-MANIFOLDS∗

RUTH LAWRENCE† and DON ZAGIER‡

1. Introduction. The Witten-Reshetikhin-Turaev (WRT) invariant of a compact
connected oriented 3-manifold M may be formally defined by [16]

Zk+čg(M) =
∫

A/G
e

ik
4π

R
M
〈A,dA+[A,A]/3〉 dτDA ,

as a Feynman integral over an infinite dimensional moduli space of G-connections on
M , in terms of additional data, namely a Lie algebra g (with dual Coxeter number
čg) and a level k ∈ N. In this paper we only consider WRT invariants with g = sl2
and it is convenient to put K = k + 2. This functional integral is not well-defined in
a literal sense, being an integral over an infinite dimensional space on which there is
no naturally defined measure. However, there are two meaningful statements which
can be made about the object represented by the path integral, both of which derive
from its form.

1. TQFT: Since the exponent in the integrand (the Chern-Simons action) is additive
under gluing of manifolds, one would expect a certain gluing property to be satisfied
by the value of ZK(M) with respect to the gluing together of 3-manifolds along a
common boundary. Indeed, the invariant ZK(M) fits into a more general picture
of invariants of arbitrary links in 3-manifolds (or more generally of slices of these,
tangles in 3-manifolds with boundary) and as such describes a functor from the
category of Riemann surfaces with punctures, whose morphisms are cobordisms,
to the category of vector spaces ([3], [9]). When this property is formalised, one
obtains the mathematical structure of a topological quantum field theory [2].

2. PE: The fact that the dependence on k enters only via a scaling of the exponent
in the integrand leads one to expect (as there would be for complex path integrals
of a similar form) the existence of a stationary phase expansion for K large of the
form ZK(M) ∼ ∑

A ZA
K(M), where the terms ZA

K(M) are labelled by the station-
ary points of the Chern-Simons action (i.e., by the equivalence classes A of flat
connections on M) and each term is the product of an asymptotic series in K−1,
an exponential in K (determined by the Chern-Simons number for the connection),
and a power of K (determined by homological data). There is always one contri-
bution Z0

K(M), coming from the trivial connection, which has the form of a formal
power series in K−1.

For integral values of K, however, there is a totally rigorous and combinatorial
definition [13] of the invariant using the representation theory of the quantum group
Uξsl2 at the root of unity ξ = e2πi/K . According to [11], ZK(M) ∈ Q[ξ] for all rational
homology spheres M . Moreover, one can construct a kind of perturbative expansion,
for ξ tending to 1 through roots of unity of increasing order, by using the congruence
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properties of the coefficients of the polynomials representing ZK(M) for prime K (see
[12]). What is obtained is a formal power series invariant Z∞(M) ∈ Q[[h]] in h = ξ−1.
This series has been shown [14] to converge K-adically to ZK(M) for prime K, for
all rational homology spheres. Moreover, in some cases it has been found by explicit
computations that the power series Z∞(M) in K−1 also describes the asymptotic
expansion in the complex sense of the “trivial connection contribution” Z0

K(M) as
K →∞. ([8], [10])

Although the combinatorial definition of [13] makes sense for any root of unity,
the definition of [16] has been traditionally only considered for integer (rather than
rational) K, and in the limit ξ → 1. In principle one can carry out a radial perturbative
expansion near any root of unity, i.e. in a power series in t for q = ξe−t where ξ = e2πiα

with α ∈ Q. To our knowledge this has yet to be done directly from Witten’s integral
formulation, although it has been done in special cases in [8] and [10] from explicit
formulae for Z0

K(M).
The phenomenon which we see here of functions which make sense only at, or

infinitesimally near to, roots of unity also occurs in [17] and in connection with “period
functions” of modular forms and mock theta functions. The purpose of this paper is
to show that in fact these two coincide, at least in certain cases. In particular we
will show that, in certain cases, there is a modular form of half-integral weight whose
Eichler integral is almost modular, its limiting values near rational points being equal
to the WRT-invariants of suitable 3-manifolds. The obstruction to modularity is
measured by a certain cocycle which is an analogue for half-integral weights of the
period polynomial for integral weights. See §4.

For most of the paper we will concentrate on one single example, the Poincaré ho-
mology sphere Σ(2, 3, 5). The WRT-invariant of this manifold has been calculated
in the literature in several different ways and is a particularly beautiful number-
theoretical function. In §2 we collect a number of these formulae and give a table
of values of W (ξ) (a normalised version of ZK(M)) for roots of unity ξ of small order.
In §3 we obtain a formula of a different sort for W (ξ) by introducing a certain theta
series of weight 3/2 and showing that the limiting values of the associated Eichler
integral coincide with the numbers W (ξ). This property is used in §4 to determine
the behaviour of the function W (e2πiα) (α ∈ Q) under the action of modular transfor-
mations. In §5 we describe briefly a surprising connection, found by Sander Zwegers,
between the WRT-invariant of Σ(2, 3, 5) and one of Ramanujan’s “mock theta func-
tions of order 5”. This leads to yet another formula for W (ξ) as an infinite sum of
polynomials in ξ−1 which becomes finite (and hence makes sense) exactly when ξ is a
root of unity; this is similar to the phenomenon appearing in the “strange identity” of
[17]. Finally, in §6 we describe the generalisation to other Seifert fibrations. If these
have exactly three exceptional fibres, then the picture is quite analogous to the one
for the Poincaré homology sphere, while in the case of four or more exceptional fibres
the same type of ideas apply but the picture becomes more complicated.

Acknowledgements. The authors would like to thank J. Bernstein for suggesting
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2. The WRT-invariant of the Poincaré homology sphere: a collection of
formulae. Computation of ZK(M) or Z∞(M) is generally a hard problem. For K
small, there are relations between ZK(M) and classical topological invariants of M .
For a general 3-manifold it is hopeless to give nice formulae for WRT-invariants,
although for special classes of manifolds this can and has been done: lens spaces [6],
surgery around (2, n)-torus knots [7], and Seifert fibred manifolds [10]. The Poincaré
homology sphere fits into all but the first of these categories, as well as having a nice
realisation as the quotient of S3 by the icosahedral group, and hence is particularly
accessible to computations.

The WRT-invariant associated to the Poincaré homology sphere M = Σ(2, 3, 5)
gives an element W (ξ) = WM (ξ) ∈ Z[ξ] for every root of unity ξ. This invariant
transforms equivariantly under the Galois group, i.e. W (ξσ) = W (ξ)σ for every σ ∈
Gal(Q(ξ)/Q), so it is enough to compute W (ζK) for the standard Kth root of unity
ζK = e2πi/K . However we will try to write down formulae which work for all roots of
unity, since we will later be interested in the behaviour of the function Q→ C defined
by α 7→ W (e2πiα).

A number of formulae for W (ξ) have been given. We quote in particular several of
the formulae from [7], [8], and [10]. In fact we will use a slightly different normalisation
from the standardly defined sl2 WRT-invariant of compact connected orientable 3-
manifolds ZK(M) (for which ZK(S3) = 1) in order to simplify the formulae. In
particular, we set

W (ζK) = ζK(ζK − 1) ZK

(
Σ(2, 3, 5)

)
.

The geometric meaning of the factor ζK(ζK − 1) is as yet unclear.
First, the manifold M can be obtained from S3 by integer surgery around a (2,−3)-

torus knot with 2 additional twists. Specialising to this case the formula given in [7]
for the WRT-invariants of such manifolds and assuming K odd, we obtain the formula

(1) W (ξ) =
1

G−

∑

m∈Z/2KZ
n∈(Z+ 1

2 )/KZ

(−1)n− 1
2 ε

(m

K
,

n

K

)
A5m2+2m−6n2−4n− 1

2 ,

where A is a primitive 4K-th root of unity with A4 = ξ, G− is the Gauss sum∑
j mod 2K

(−1)jA−j2
, and ε : (R/2Z)2 → {−1, 0, 1} is the function defined by ε(x, y) =

1
2 ((−1)[x+y] + (−1)[x−y]). (The formula is given in a slightly different form in [7]; to
pass from (II.10) there to (1), make the substitutions a + 1 = ±m, j + 1

2 = ±n and
use the symmetry properties.) It is not hard to check from this formula that W (ξ)
belongs to Q(ξ) rather than just Q(A), and from the identity G2

− = −2K (−A)K it

follows that W (ξ) ∈ 1
2K

Z[ξ], but the integrality of W (ξ) is not obvious from (1). It

is known from [11] that for all rational homology spheres, ZK(M) ∈ Z[ξ] for prime
K, so that W (ξ) ∈ (ξ − 1)Z[ξ)]. (See [7] for an explicit derivation for K prime in this
case, or [8] for an extention of this to an arbitrary prime power K.)

Next, M can also be thought of as a Seifert-fibred manifold, with three exceptional
fibres and branching numbers (2,3,5). The formulae proved in [10] specialise in this
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case to

(2) W (ξ) =
1

2G

∑

β (mod 60K)
β 6≡0 (mod K)

(1− ζ24β)(1− ζ40β)
1 + ζ60β

ζ−(β+1)2 ,

where ζ denotes a primitive 120K-th root of unity with ζ120 = ξ and G the Gauss sum∑
β mod 60K

ζ−β2
. (The number of terms can be reduced by a factor of 8 by summing

only over β lying between 0 and 15K and congruent to K +1 modulo 2.) If ξ = e2πi/K

and ζ = eπi/60K , then G = (1− i)
√

30K and (2) can be rewritten more explicitly as

(3) W (ζK) = − 1 + i√
120K

∑

β (mod 60K)
β 6≡0 (mod K)

sin(πβ/3K) sin(πβ/5K)
cos(πβ/2K)

e−πi(β2+1)/60K ,

Finally, there is an even simpler formula for W (ξ) which will follow from the results
in §3:

(4) W (ξ) = 1 − 1
2

30K∑
n=1

χ+(n)
(
1− n

30K

)
ξ(n2−1)/120 ,

where χ+(n) is the periodic function defined by the table

(5)

n (mod 60) 1 11 19 29 31 41 49 59 (other)

χ+(n) 1 1 1 1 −1 −1 −1 −1 0

Any of the formulae (1)–(4) can be used to compute W (ξ). By virtue of Galois
invariance, it suffices to give W (ξ) as a polynomial in ξ for each value of K, where ξ
is a primitive Kth root of unity. Here is a table up to K = 12.

K W (ξ)

1 0

2 2

3 −2ξ − 1

4 ξ + 1

5 −ξ3 − 2ξ2 − 2ξ

6 −1

K W (ξ)

7 −ξ5 − ξ4 − 3ξ3 − ξ2 − 1

8 ξ3 − 2ξ2 − 2ξ + 1

9 ξ4 − ξ3 + ξ2 + ξ + 1

10 −3ξ3 − 2ξ + 2

11 −ξ9 + ξ8 + ξ3 − ξ

12 −3ξ2 + ξ + 4

As mentioned in the Introduction, there is a second version of the function W (q)
which, instead of being a function ξ 7→ W (ξ) defined at roots of unity, is a formal
power series in q − 1 with rational coefficients. There are two ways of obtaining this
power series, one using p-adic ideas and the other purely complex. We describe this
briefly. A result of Ohtsuki [12] implies (for arbitrary rational homology spheres M)
that there exist rational numbers λn such that for all sufficiently large prime K,

λn ≡ [W (ζK)]hn mod K
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where the square brackets denote the coefficient of hn in the integer polynomial in
h = ζK − 1 representing W (ζK). Define a formal power series,

W∞(h) : =
∞∑

n=0

λn hn ∈ Q[[h]] .

According to [7] and [8], for the Poincaré homology sphere,

(6) 2(1 + h)
1

120 W∞(h) = (1 + h)30(B̄−
4
15 )2 − (1 + h)30(B̄−

1
15 )2 ,

and W∞(h) converges p-adically to W (ζK − 1) for all K which are powers of a prime
number p. (This makes sense because the p-adic valuation of the algebraic number
ζK − 1 is then strictly positive.) The right hand side of (6) is to be understood
according to the binomial expansion, with the powers of the symbol B̄ being formally
replaced by modified Euler numbers whose generating function is ezB̄ = sech z

4 . For
the Poincaré sphere this power series begins

W∞(h) = h − 5 h2 + 39 h3 − 419 h4 + 5760 h5 − 96592 h6 + 1912421 h7

− 43664112 h8 + 1129444381 h9 − 32643929747 h10 + · · ·

(The corresponding series for the original normalisation Z∞(h) = W∞(h)/h(1 + h)
of the WRT-invariant, as given in [7], begins 1 − 6 h + 45 h2 − 464 h3 + 6224 h4 −
102816 h5 + · · · .) Note that this power series has integral coefficients; the correspond-
ing fact is known to be true for all integer homology spheres, but no general topological
interpretation of these coefficients is known.

Finally, according to [7] and [10], the power series W∞ may also be expressed as
the asymptotic expansion near q = 1 of the integrals:

(7)
q1/120W∞(q − 1) ∼

∫ ∞

−∞

q−2(15iz−4)2/15 − q−2(15iz−1)2/15

cosh 2πz
dz

∼ 1 + i

2
√

120K

∫

C

(qβ/6 − q−β/6)(qβ/10 − q−β/10)
qβ/4 + q−β/4

q−β2/120 dβ ,

where the contour C in the second integral passes through the origin in the direction
of steepest descent

√−iK. In fact, in the case of the Poincaré homology sphere,
there are precisely three terms in the stationary phase decomposition, the term W 0(ξ)
associated with the trivial connection being given by the last integral in (7) (with
q = ξ, and multiplied by ξ−1/120) and the terms corresponding to the two non-trivial
flat connections being given [4] by

(8) W j(ζK) = 2

√
K

5i
e−πi/60K sin

(πj

5
)
e−πim2

jK/60 (j = 1, 2) ,

where m2
1 = 1, m2

2 = 49 come from the corresponding values of the Chern-Simons
action. In this case, and indeed for all Seifert fibred manifolds [10], the decomposition
ZK(M) =

∑
A ZA

K(M) holds not only perturbatively amongst formal power series,
but as an exact expression at all integers K.

From the integral formulae (7), or from the computations given later in this paper,
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one finds the following alternative explicit expression for the power series W∞(h):

(9)
1−W∞

(
e−t − 1

)
= et/120

∞∑
r=0

ar

r!
( t

120
)r

= 1 + t +
9
2

t2 +
205
6

t3 +
2907

8
t4 +

596341
120

t5 + · · · ,

where the coefficients ar ∈ Z are defined by

(10)

∞∑
r=0

ar

(2r)!
x2r =

cos(5x) cos(9x)
cos(15x)

= 1 +
119
2

x2 +
129361

24
x4 +

353851559
720

x6 +
258138625303

5760
x8 + · · · .

3. The invariant W (ξ) as the limit of a holomorphic function.
Let χ+ : Z→ {−1, 0, 1} be the function introduced at the end of §2 and set

(11)

A(q) =
∞∑

n=1

χ+(n) q(n2−1)/120 = 1 + q + q3 + q7 − q8 − q14 − q20 − · · · (|q| < 1) ,

a holomorphic function in the unit disk.

Theorem 1. Let ξ be a root of unity. Then the radial limit of 1− 1
2A(q) as q tends

to ξ equals W (ξ), the (rescaled) WRT-invariant of the Poincaré homology sphere.

Theorem 2. The asymptotic expansion of 1− 1
2A(q) as q ↗ 1 is the power series

W∞(q − 1).

The proofs of both these results make use of the following general proposition.

Proposition. Let C : Z→ C be a periodic function with mean value 0. Then the
associated L-series L(s, C) =

∑∞
n=1 C(n)n−s (<(s) > 1) extends holomorphically to

all of C and the two functions
∑∞

n=1 C(n)e−nt and
∑∞

n=1 C(n)e−n2t (t > 0) have the
asymptotic expansions

∞∑
n=1

C(n) e−nt ∼
∞∑

r=0

L(−r, C)
(−t)r

r!
,

∞∑
n=1

C(n) e−n2t ∼
∞∑

r=0

L(−2r, C)
(−t)r

r!

as t ↘ 0. The numbers L(−r, C) are given explicitly by

(12) L(−r, C) = − Mr

r + 1

M∑
n=1

C(n) Br+1

( n

M

)
(r = 0, 1, . . . )

where Bk(x) denotes the k-th Bernoulli polynomial and M is any period of the function
C(n).

Corollary. Let C(n) and M be as in the Proposition. Then each of the expres-
sions

∞∑
n=1

C(n) e−nt

∣∣∣∣
t=0

,
∞∑

n=1

C(n) e−n2t

∣∣∣∣
t=0

,
∞∑

n=1

C(n) n−s

∣∣∣∣
s=0
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(where the first two denote limits as t ↘ 0 and the third the analytic continuation to
s = 0) define the same “renormalised sum”

∑∗
n≥1 C(n) and the value of this sum is

given by
∑∗

n≥1

C(n) = −
M∑

n=1

( n

M
− 1

2
)
C(n) .

Remark. The expansion of
∑

C(n)e−n2t involves only the values of L(s, χ) at nega-
tive even integers. If C is an odd periodic function, the values at negative odd integers
vanish anyway, since

∑
C(n)e−nt =

∑
0<n<M/2 C(n) sinh((M/2 − n)t)/ sinh(Mt/2),

which has an even power series expansion at the origin. If C is even, then the same
argument shows that L(−2r, C) = 0 for all r > 0 and hence that the asymptotic ex-
pansion of 1

2C(0) +
∑

n≥1 C(n)e−n2t at the origin is identically 0, but this is obvious
anyway since this sum is one-half the sum over all n ∈ Z and hence is O(e−A/t) for
some A > 0 by the Poisson summation formula.

Proof of the Proposition. We give only an indication, since the Proposition is more
or less standard. By summing the geometric series we see that

∞∑
n=1

C(n) e−nt =
M∑

n=1

C(n)
e−nt

1− e−Mt
= −

M∑
n=1

C(n)
∞∑

r=−1

Br+1(n/M)
(r + 1)!

(−Mt)r

(|t| < 2π/M)

and hence that
∑

n≥1 C(n) e−nt has an asymptotic expansion of the form∑
r≥0 br(−t)r/r! with br equal to the expression on the right-hand side of (12). On

the other hand, from the Mellin integral representation

Γ(s) L(s, C) =
∫ ∞

0

( ∞∑
n=1

C(n) e−nt

)
ts−1 dt (<(s) > 1)

we find (for any A ∈ R>0 and R ∈ Z≥0)

Γ(s) L(s, C) =
∫ A

0

(R−1∑
r=0

br

r!
(−t)r + O(tR)

)
ts−1 dt +

∫ ∞

A

O
(
e−t

)
ts−1 dt

=
R−1∑
r=0

(−1)rbr

r!
1

s + r
+

(
holomorphic in <(s) > −R

)
,

and this gives the analytic continuation of L(s, C) and (by comparison of residues on
both sides) the identity L(−r, C) = br (r ≥ 0). Finally, the same argument applied to
the Mellin transform integral

∫ ∞

0

( ∞∑
n=1

C(n) e−n2t

)
ts−1 dt = Γ(s)L(2s, C) (<(s) > 1

2 )

shows that, if the function
∑

n≥1 C(n)e−n2t has an asymptotic expansion of the
form

∑
r≥0 cr(−t)r/r! as t ↘ 0, then cr is indeed equal to L(−2r, C) as asserted

in the Proposition. We can show that such an asymptotic expansion exists in sev-
eral ways, e.g. by applying a “shifted version” of the Euler-Maclaurin summation
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formula to the function f(x) = e−tx2
or by writing

∑
C(n)e−n2t as a contour integral

1
2πi

∫
γ

Γ(s)L(2s, C)t−sdt for a contour γ encircling the negative imaginary axis and
then moving this contour to the left across the simple poles at s = 0, −1, . . . .

Proof of Theorem 1. We apply the Proposition to C(n) = χ+(n) ξ(n2−1)/120, where
χ+(n) is the function defined by (5) and ξ any root of unity. Observe that if K is the
order of ξ then the number M = 60K is a period for C(n) while C(60K−n) = −C(n)
so that the mean value of C(n) is zero. Denote the corresponding Dirichlet series
by L̃ξ(s, χ+). The proposition and its corollary immediately give that the function
e−t/120A(ξe−t) has an asymptotic expansion

∑
r≥0 L̃ξ(−2r, χ+)(−t/120)r/r! at t = 0

and that the limiting value

(13) A(ξ) := lim
t↘0

A(ξe−t) = L̃ξ(0, χ+)

is given by the sum in (4).
To complete the proof of the theorem, we must relate the value in (4) to the sum

in (2). Replacing β by β − n in the sum defining the Gauss sum G in (2), we find

G =
∑

β mod 60K

ζ−(β−n)2 = ζ−n2 ∑

β mod 60K

ζ−β2
ζ2nβ

(here, as in (2), ζ is a fixed primitive 120K-th root of unity with ζ120 = ξ). Hence

(14) ξ(n2−1)/120 =
1
G

∑

β mod 60K

ζ−β2−1ζ2nβ .

Applying the above corollary to the same function C(n), we see from (13) that

A(ξ) = lim
t↘0

∞∑
n=1

C(n) e−nt =
1
G

lim
t↘0

∑

β mod 60K

ζ−β2−1
∞∑

n=1

ζ2nβχ+(n) e−nt ,

where in the last step we have transformed C(n) into a combination of terms ζ2nβχ+(n)
using (14).

Define rational functions ψ and φ by

ψ(u) =
∞∑

n=1

χ+(n)un =
u + u11 + u19 + u29

1 + u30
=

(u5 + u−5)(u9 + u−9)
u15 + u−15

,

φ(u) = −
∑

n≥−1
n 6=1

χ+(n)un = u + u−1 − ψ(u) =
(u6 − u−6)(u10 − u−10)

u15 + u−15
,

where the equalities follow by summing geometric progressions. Then

A(ξ) =
1
G

lim
t↘0

∑

β mod 60K

ζ−β2−1 ψ(ζ2β e−t) .

Changing from ψ to φ introduces a term

1
G

∑

β mod 60K

ζ−β2−1(ζ2β + ζ−2β) = 2 ,
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so

1 − 1
2
A(ξ) =

1
2G

lim
t↘0

∑

β (mod 60K)

ζ−β2−1 φ(ζ2βe−t) .

The terms with K -β give precisely the expression for W (ξ) in (2), so to complete the
proof of Theorem 1 we need only show that the terms with K|β sum to 0. This can be
done easily using various symmetries, e.g. the terms with β = Km with m odd cancel
in pairs under the involution m 7→ 30−m, and similarly for the other terms.

Proof of Theorem 2. From the proposition, applied to C(n) = χ+(n), we find that
the asymptotic expansion of A(q) near q = 1 is

e−t/120A(e−t) =
∞∑

n=1

χ+(n) e−n2t/120 ∼
∑

r≥0

L(−2r, χ+)
r!

(
− t

120

)r

,

where L(s, χ+) =
∑∞

n=1 χ+(n) n−s and we have explicitly

L(−2r, χ+) = − 602r

2r + 1

60∑
n=1

χ+(n)B2r+1

( n

60

)
.

Thus e−t/120(2−A(e−t)) ∼ ∑∞
r=0 cr (−30t)r/r! where

cr =
2

602r
+

1
2r + 1

60∑
n=1

χ+(n)B2r+1

( n

60

)
=

(
B̄ − 4

15

)2r

−
(

B̄ − 1
15

)2r

.

The last equality uses B̄m = 2[Bm+1(3/4) − Bm+1(1/4)]/(m + 1), the relation be-
tween the B̄ numbers and Bernoulli numbers, along with symmetries of the Bernoulli
polynomials. The theorem now follows on comparison with (6).

Thus the series defined through complex asymptotics in a radial limit is identical
to that emerging using congruence properties of the coefficients in the polynomial
expressions arising from values at prime order roots of unity ζK as K increases. We
have also established the formulas given at the end of §2: the coefficient ar in (9) is
equal to 1

2 (−1)r L(−2r, χ+), the trigonometric function appearing in equation (10)
is 1

2ψ(e−ix), and the relationship expressed by formulas (9) and (10) is simply the
special case C(n) = χ+(n) of the Proposition above.

4. Modular properties. Define a Dirichlet character ε of character 5 (square
root of the Legendre symbol modulo 5) by

n (mod 5) 0 1 2 3 4

ε(n) 0 1 −i i −1

and denote by ε+(n) and ε−(n) the real and imaginary parts of ε(n), respectively. We

denote by χ the primitive character of conductor 60 defined by χ(n) =
(12

n

)
ε(n) and
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by χ±(n) =
(12

n

)
ε±(n) its real and imaginary parts, given explicitly by the formulae

χ+(n) =
{

(−1)[n/30] if n2 ≡ 1 (mod 120),
0 otherwise,

χ−(n) =
{

(−1)[n/30] if n2 ≡ 49 (mod 120),
0 otherwise.

(The function χ+, of course, is the same one as was used in §2 and §3.) The 2-
dimensional space spanned by the theta functions

Θχ(z) =
1
2

∑

n∈Z
nχ(n) qn2/120 , Θχ̄(z) =

1
2

∑

n∈Z
n χ̄(n) qn2/120

(
z ∈ H, q = e2πiz

)

of weight 3/2 is also spanned by the two functions

Θ+(z) =
1
2

∑

n∈Z
nχ+(n)qn2/120 = q1/120

(
1 + 11q + 19q3 + 29q7 − 31q8 − 41q14− · · · ),

Θ−(z) =
1
2

∑

n∈Z
nχ−(n)qn2/120 = q49/120

(
7 + 13q + 17q2 + 23q4− 37q11− 43q15 −· · · ).

This space is invariant (in weight 3/2) under the full modular group SL(2,Z). Indeed,
the obvious identities

Θ+(z + 1) = ζ Θ+(z) , Θ−(z + 1) = ζ49 Θ−(z)
(
ζ = eπi/60

)

together with the relations Θ+ = 1
2 (Θχ + Θχ̄), Θ− = 1

2i (Θχ −Θχ̄) give the transfor-
mation formula(

Θχ(z + 1)
Θχ̄(z + 1)

)
= ζ25

(
cos 2π

5 −i sin 2π
5

−i sin 2π
5 cos 2π

5

)(
Θχ(z)
Θχ(z)

)

with respect to the generator
( 1 1

0 1

)
of SL(2,Z), while the transformation behaviour

under the second generator
( 0 −1

1 0

)
is given by the Poisson summation formula as

(
Θχ(−1/z)
Θχ̄(−1/z)

)
=

(
z

i

)3/2 (
0 Gχ/i

√
60

Gχ̄/i
√

60 0

)(
Θχ(z)
Θχ̄(z)

)
,

where

Gχ =
∑

n (mod 60)

χ(n)eπin/30 = −
√

30 + 6
√

5 + i

√
30− 6

√
5 , Gχ̄ = −Gχ

are the Gauss sums associated to χ and χ̄. In terms of the basis Θ+ and Θ−, the
transformation properties become

(15)

(
Θ+(z + 1)
Θ−(z + 1)

)
=

(
ζ 0
0 ζ49

)(
Θ+(z)
Θ−(z)

)
,

(
Θ+(−1/z)
Θ−(−1/z)

)
=

(
z

i

)3/2(
a b
b −a

)(
Θ+(z)
Θ−(z)

)

where a =
√

1
2 (1− 1√

5
) and b =

√
1
2 (1 + 1√

5
).
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We now introduce the Eichler integrals and period functions associated to these
theta-series. Recall that in the classical theory of modular forms one associates to a
cusp form f(z) =

∑∞
n=1 a(n) qn of integral weight k ≥ 2 its “Eichler integral” f̃(z) =∑∞

n=1 n−k+1a(n) qn = (k− 1)-fold primitive of f . The function f̃ is not modular, but

is “nearly modular” of weight 2− k: the difference between (cz + d)k−2f̃
(az + b

cz + d

)
and

f̃(z) is a polynomial. More precisely, this difference equals r−d/c(z), where rα(z) for
any α ∈ Q is (up to a simple scalar factor) defined as

∫∞
α

(τ − z)k−2f(τ)dτ .
For non-integral weights k, the interpretation of f̃ as a (k − 1)-fold primitive no

longer applies, but the definition as a sum still makes sense. We define

Θ̃±(z) =
∞∑

n=1

χ±(n) qn2/120 (z ∈ H) .

In particular, Θ̃+(z) is q1/120 times the function A(q) defined in (11). (Notice that,
because the theta-series Θ± has only exponents which are a fixed multiple of perfect
squares, the factor n1−k = n−1/2 in the definition of f̃ does not introduce any irra-
tionalities, as it would for a more general function of half-integral weight, and that
the formula for Θ̃± is actually simpler than that for Θ± itself.) Similarly, the function
rf can no longer be a polynomial, since its expected degree, k − 2, is no longer a
non-negative integer, but we can still define it as an integral. We set

(16) r±α (z) =

√
2i

15

∫ ∞

α

Θ±(τ) dτ√
τ − z

(α ∈ Q , z ∈ H−) .

This function is originally defined and holomorphic in the complex lower half-plane
H− = {z ∈ C | =(z) < 0}, but clearly extends as a C∞ function to ∂H− = R and is
real-analytic on Rr {α}. Indeed, by choosing the path of integration in (16) to be an
arbitrary path L from α to i∞ in H, we obtain a holomorphic continuation of r±α (z)
from H− to Cr L.

The relationship between Θ̃±(z) and r±a (z), however, is not as straightforward as in
the case of integral weight, and indeed, the function Θ̃±(z) has no modular properties
in the upper half-plane. However, its limiting values at rational points, and more
generally the asymptotic expansions of Θ̃±(α+ iy) in powers of y as y ↘ 0 for rational
numbers α, do have modular properties. We explain this only briefly, leaving a more
detailed exposition to the later paper [18]. The key idea is to introduce a second
analogue of the classical Eichler integral, this time non-holomorphic and defined in
the lower rather than the upper half-plane:

(17) Θ∗±(z) =

√
2i

15

∫ ∞

z̄

Θ±(τ) dτ√
τ − z

(z ∈ H−) .

Then one has the following properties:
(i) The functions Θ̃± and Θ∗± agree to infinite order at rational points.
(ii) The function Θ∗±(z) is nearly modular of weight 1/2 in the lower half-plane,

the discrepancy being given exactly by the cocycle r±a (z).
More precisely, (i) means that the asymptotic expansions of Θ̃±(α + iy) (y > 0) and
Θ∗±(α + iy) (y < 0) as power series in y coincide for all rational numbers α, while (ii)
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means that if the modular transformation properties of the weight 3/2 theta-series
Θ±(z) are given by
(

cz + d

i

)−3/2( Θ+(γ(z))
Θ−(γ(z))

)
= Mγ

(
Θ+(z)
Θ−(z)

) (
γ =

(
a b

c d

) ∈ SL(2,Z), c > 0, z ∈ H
)
,

for some matrix Mγ ∈ GL(2,C) (cf. (15)), then the functions Θ∗±(z) transform by
(

cz + d

−i

)−1/2 (
Θ∗+(γ(z))
Θ∗−(γ(z))

)
+ Mγ

(
Θ∗+(z)
Θ∗−(z)

)
= Mγ

(
r+
−d/c(z)

r−−d/c(z)

)
(z ∈ H−) .

We sketch the proofs briefly. For (i) we substitute the series expansion of Θ±(τ)
into the integral defining Θ∗±(z) and integrate term by term to obtain

Θ∗±(z) =
∞∑

n=1

χ±(n) erfc
(
π
√

ny/30
)
q−n2/120 (z = x + iy ∈ H−, q = e2πiz) ,

where erfc(x) =
2√
π

∫ ∞

x

e−u2
du is the complementary error function. The series

converges absolutely because erfc(x) = O(x−1e−x2
) for x → ∞ and formally gives

Θ∗±(ξ) =
∑

χ±(n)ξn2/120 = Θ̃±(ξ) as q → ξ because erfc(0) = 1. To make this
rigorous we argue along the same lines as in the proof of Theorem 1, by computing
the Mellin transform

∫∞
0

Θ∗±(α + iy)ys−1dy. This Mellin transform is the product of
two factors. One is the L-series

∑∞
n=1 χ±(n)ξn2/120n−2s, whose values at negative

half-integers and integers we already know to be equal to 0 and to the appropriately
normalised Taylor coefficients of Θ̃±(α + iy), respectively. The other is the Mellin
transform of eπy/60erfc(

√
y/30), which is the sum of the power series eπy/60 and an

odd power series in
√

y (because erfc(x) is the sum of 1 and an odd power series in x),
and hence has simple poles at negative integers and half-integers, with the values at
the former being the same as for the Mellin transform of e−πy/60, but with alternating
signs. The assertion about the asymptotic expansions of Θ̃± and Θ∗± follows. Assertion
(ii) follows in a more straightforward way by replacing τ by γ(τ) in the integral defining
Θ∗±(γ(z)) and making the evident change of variables to transform it into an integral
from z̄ to γ−1(∞) = −d/c and then combining this with the integral defining Θ∗±(z)
to get an integral going from −d/c to ∞.

Combining (i), (ii) and the assertion about the smoothness (indeed, almost-every-
where analyticity) of the function r±α (z) on the real line, we find that the asymptotic
expansions of our “Eichler integrals” Θ̃±(z) near rational points have a modular prop-
erty modulo smooth functions. In particular, if we ignore the full asymptotic expan-
sions and concentrate on just the values at rational points, then we see that the values
Θ̃±(α) at rational points α (defined, as usual, by the limits from above) are modular
of weight 1/2 modulo smooth functions of α. In particular, for α = 0 and our original
function A(q) = q−1/120Θ∗+(z) we deduce for the values W (e2πi/K) = 1− 1

2A(e2πi/K)
the asymptotic expansion

(18) W (e2πi/K) ∼
√

K/i e−πi/60K
(
a e−πiK/60 + b e−49πiK/60

)
+ W∞

(
e2πi/K − 1

)

as K → ∞, with a and b as in equation (15). This agrees with and explains the
asymptotic properties coming from the stationary phase description (PE) of the orig-
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inal Witten integral (the three terms in (18) correspond precisely to the contributions
from the three equivalence classes of flat connections on Σ(2, 3, 5), as described in
equations (7) and (8)), but now in a more general context, since we can give such ex-
pansions around any rational point and can also see that the value of the leading term
is determined by a modular transformation property under the full modular group.

5. Relation to Ramanujan’s mock theta functions. In a singularly prescient
definition, Ramanujan, in his famous last letter to Hardy in January 1920, introduced
the terminology “mock theta function” to describe certain power series in q = e2πiz

which, though not modular, possess asymptotic expansions for q tending to roots of
unity of the sort normally associated with modular functions and forms. His definition
and examples were highly enigmatic (as witness the title of Watson’s famous talk on
the subject, “The Final Problem”), and while the various identities which he wrote
down in this letter and in his “Lost Notebook” have now all been proved, the subject
retains an aura of mystery. The same phenomenon of “interesting asymptotic be-
haviour near roots of unity” (or, if one will, of the “quantisation of modular forms”) is
of course the theme of this paper, so it comes as a pleasant surprise that Ramanujan’s
mock theta functions are not only similar in spirit, but in fact directly related, to our
function W (ξ). This observation is due to Sander Zwegers (Utrecht University) and
is very recent; we thank him for permitting us to quote some of his results here.

Ramanujan’s letter speaks of mock theta functions of the third, fifth, and seventh
order (terminology not defined). We are concerned with those of fifth order. We recall
some of his statements. (A good reference is [1], particularly Sections 1 and 7.) In his
letter, Ramanujan defines (among others) three power series, all defined for |q| < 1,

f(q) =
∞∑

n=0

qn2

(1 + q)(1 + q2) · · · (1 + qn)
,

φ(q) =
∞∑

n=0

qn2
(1 + q)(1 + q3) · · · (1 + q2n−1) ,

ψ(q) =
∞∑

n=1

qn(n+1)/2 (1 + q)(1 + q2) · · · (1 + qn−1)

and states without proof the relations

φ(−q2) + ψ(−q) = 2φ(−q2)− f(q) = θ1(q) P (q) ,

where θ1(q) and P (q) are the standard modular forms (of weights 1
2 and 0, respectively)

defined by

θ1(q) =
∑

n∈Z
(−1)nqn2

=
∏
n>0

1− qn

1 + qn
, P (q) =

∏
n>0

n≡±1 (5)

1
1− qn

=
∑

n(−1)nq(5n2−n)/2

∏
n>0(1− qn)

.

Furthermore, in his “Lost Notebook” he gives the futher identity

f(q) = θ1(q5)P (q) − 2Φ(q2) ,
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where the power series Φ(q) is defined by

Φ(q) = −1 +
∞∑

n=0

q5n2

(1− q)(1− q4) · · · (1− q5n−1)(1− q5n+1)
.

These formulas resisted proof for many years and were finally settled by Hickerson [5]
in 1988.

Now the series defining Φ(q) converges not only inside, but also outside (though
not on!) the unit circle, the function Φ∗(q) = Φ(1/q) being given for |q| < 1 by

Φ∗(q) = −1 −
∞∑

n=0

q5n+1

(1− q)(1− q4) · · · (1− q5n−1)(1− q5n+1)
.

For the power series expansion of this new function Zwegers proves the identities

(19) −Φ∗(q) = A+(q)− P (q) F+(q) = A−(q) + P (q) F−(q) ,

where A± and F± are defined by

A±(q) =
∑
n>0

n≡±1 (5)

(12
n

)
q(n2−1)/120 , F±(q) =

∑

±(n− 1
2 )>0

(−1)n q(5n2−n)/2 .

The sum of the functions A+ and A− is precisely the function A(q) defined by (11),
and the three functions A+, A− and 1

2 A(q) have the same asymptotic behaviour at
all roots of unity. The function f(q) has a finite value at all roots of unity of odd
order, and we can use the above identities to relate the expansions of A(q) to that
of the functions Φ, f , φ and ψ at the appropriate roots of unity. In particular, from
Zwegers’s results we deduce the beautiful formula

(20) W (ξ) = 1 +
∞∑

n=1

x−n2
(1 + x)(1 + x2) · · · (1 + xn−1)

for the WRT-invariant of the Poincaré sphere, where ξ as usual is a Kth root of unity
and x is a square root of ξ of exact order 2K. The sum on the right is written as
an infinite one, but in fact terminates after K terms, since 1 + xK vanishes. More
generally, if we replace ξ by ξe−t and x by xe−t/2 in (20), then the right-hand side
makes sense as a power series in t, since the nth term vanishes to order at least M
for n ≥ (2M − 1)K, and gives the correct asymptotic expansion of W (ξe−t). This is
to be compared with the similar behaviour of the function studied in [17], which is
also related to the Eichler integral of a theta series, but this time of weight 1/2 rather
than 3/2.

Finally, we mention another and even simpler formula for A(q), also pointed by
Zwegers, which can be obtained by a simple substitution from equation (23) of [17]:

(21) A+(q) =
∞∑

n=0

qn (1− q)(1− q6) · · · (1− q5n−4) .

There is, of course, a similar formula for A− as well. These formulas can be used to
compute the value of A(q) at (and its asymptotic expansion near) all roots of unity of
order not divisible by 5.
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6. Generalisation to other manifolds. Consider an arbitrary Seifert fibred
manifold, M = Σ( P1

Q1
, . . . , PN

QN
) fibred over S2. According to [10], the WRT-invariant

ZK(M) equals WM (ζK)/(ζK − 1)ζσ
K , where σ is a certain rational number defined

in terms of Dedekind sums (σ = φ/4 − 1/2 in the notation of [10]; σ = 121/120 for
M = Σ(2, 3, 5)) and WM (ζK) is given by a formula analogous to (3):

WM (ζK) =
sgnH − i√

PK

∑

β (mod 2PK)
β 6≡0 (mod K)

∏N
j=1 sin(πβ/KPj)(
sin(πβ/K)

)N−2
e−πiHβ2/2KP .

Here P =
∏

j Pj and H = P
∑

j
Qj

Pj
, so that |H1(M,Z)| = |H|. Again one can replace

this by a formula similar to (2) which defines an invariant WM (ξ) ∈ Q(ξ) for every
root of unity ξ.

Define a simple hyperbolic function φ and an integer valued function χ(n) by

φ(x) = 4

∏N
j=1 sinh x

2Pj

(sinhx/2)N−2
=

∞∑
n=1

χ(n) e−nx/2P .

(The case dealt with in the rest of this paper is anomalous since 1
2 + 1

3 + 1
5 > 1. In

all other cases, the above definition of χ(n) makes sense—in that case alone, it is
necessary to alter the limits to include n = −1 but exclude n = 1. We now assume
that this anomalous situation does not arise.) When N = 3, so that we have three
fibres, χ will be a periodic function of period 2P ; when N > 3, χ(n) will be described
by polynomials in n of degree N − 3, which polynomial to use being dependent on the
value of n modulo 2P .

Define a holomorphic function on the disc |q| < 1 by

A(q) =
∞∑

n=1

χ(n) qn2/4PH .

The same reasoning as in §3 will give the following.
Theorem 3. For three-fibred Seifert integer homology sphere M and any root of

unity ξ, the radial limit of − sgn(H)
2 A(q) as q → ξ equals WM (ξ).

The function A(q) is the Eichler integral of a theta series of weight 3
2 (defined by

the same sum as for A(q) but with a factor n included), and we could again use the
methods of §4 to obtain information about the transformation behaviour of A(e2πiα)
(α ∈ Q) under the action of the modular group. In the general case of N > 3 fibres
we expect a similar story, but now also involving derivatives of theta functions.
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