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INTRODUCTION

The functions studied in this monograph are a cross between
elliptic functions and modular forms in one variable. Specifically,

we define a Jacobi form om SL,(Z) to be a holomorphic function
b: X x ¢ > ¢ (¥ = upper half-plane)
satisfying the two transformation equations

2mimcz

o ¢(ar +b _z ) = er+d¥ e T 4,2 (("’ b)ESLNU)

eT +d ’etT +d c d

e—Z'lTim()\z'r +2)z)

) $(T, z+AT+U) = $(T,2) () € z%)
and having a Fourier expansion of the form
3 6(T,2) = Z Z c(n,r) e2171(11'[ +rz)
n=0 rE€Z
rzélmm

Here k and m are natural numbers, called the weight and index of ¢,
respectivély. Note that the function ¢(t,0) is an ordinary modular
form of weight k, while for fixed T the function =z > ¢(1,2) is a
function of the type normally used to embed the elliptic curve @/ZT + Z
into a projective space.

If m=0, then ¢ is independent of z and the definition reduces
to the usual notion of modular forms in one variable. We give three
other examples of situations where functioms satisfying (1)~(3) arise
classically:

1. Theta series. Let Q: ZN > Z be a positive definite integer
valued quadratic form and B the associated bilinear form. Then for

any vector X &€ ZN the theta series

“) Ox(’r,z) _ Z eZTTi(Q(x)’r +B(x,x;)z)
0

xezlN

—1-
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is a Jacobi form (in general on a congruence subgroup of SL,(Z)) of
weight N/2 and index Q(xo); the condition r2 L£4nm in (3) arises from
the fact that the restriction of Q to Zx + Zx, 1is a positive definite
binary quadratic form. Such theta series (for N=1) were first studied
by Jacobi {10], whence our general name for functions satisfying (1)

and (2).

2. Fourier coefficients of Siegel modular forms. TLet F(Z) be a

Siegel modular form of weight k and degree 2. Then we can write Z as
(Z _?,) with z€€, T1,T'€ ¥ (and Im(z)? < Im(t)Im(T')), and the
function F is periodic in each variable T, z and T'. Write its

Fourier expansion with respect to T' as

(5) T F(Z) = Z ¢, (T52) eZﬂimT' H

m=0

then for each m the function d)m ig a Jacobi form of weight k and
index m, the condition 4nm >r? in (3) now coming from the fact that F

2wi Tr(TZ) where T

has a Fourier development of the form X c(T) e
ranges over positive semi-definite symmetric 2%X2 matrices. The expan-
sion (5) (and generalizations to other groups) was first studied by
Piatetski-Shapiro [26], who referred to it as the Fourier-Jacobi
expansion of F and to the coefficients ci)m as Jacobi functions, a word
which we will reserve for (meromorphic) quotients of Jacobi forms of

the same weight and index, in accordance with the usual terminology

for modular forms and functions.

3. The Weierstrass g—function. The function
- -2 -2
(6) p(T,2) = 220+ 2. ((z+w) 2-w’?)
wEZ+ZT
. w#0

is a meromorphic Jacobi form of weight 2 and index 0; we will see
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later how to express it as a quotient of holomorphic Jacobi forms (of
index 1 and weights 12 and 10).

Despite the importance of these examples, however, no systematic
theory of Jacobi forms along the lines of Hecke's theory of modular
forms seems to have been attempted previously.* The authors' interest
in coqstructing such a theory arose from their attempts to understand
and extend Maass' beautiful work on the "Saito-Rurokawa conjecture'.
This conjecture, formulated independently by Saito and by Kurokawa [15]
on the basis of numerical calculations of eigenvalues of Hecke operators
for the (full) Siegel modular group, asserted the existence of a "1lift-
ing" from ordinary modular forms of weight 2k-2 (and level one) to
Siegel modular forms of weight k (and also level one); in a more
precise version, it said that this lifting should land in a specific
subspace of the space of Siegel modular forms (the so-called Maass
"Spezialschar", defined by certain identities among Fourier coefficients)

and should in fact be an isomorphism from M (SLZ(Z)) onto this space,

2k-2
mapping Eisenstein series to Eisenstein series, cusp forms to cusp forms,
and Hecke eigenforms to Hecke eigenforms. Most of this conjecture was

proved by Maass [21,22,23], another part by Andrianov [2], and the

remaining part by one of the authors [40]. It turns out that the

* Shimura [31,32] has studied the same functions and also their higher-
dimensional generalizations. By multiplication by appropriate elemen-
tary factors they become modular functions in T and elliptic (resp.
Abelian) functionms in 2z, although non-analytic omes. Shimura used
them for a new foundation of complex multiplication of Abelian functions
Because of the different aims Shimura's work does not overlap with ours.
We also mention the work of R.Berndt [3,4], who studied the quotient
field (field of Jacobi functions) from both an algebraic-geometrical
and arithmetical point of view. Here, too, the overlap is slight
since the field of Jacobi functions for SL,(Z) is easily determined
(it is generated over € by the modular invariant j(t) and the
Weierstrass p—function p(T,z)); Berndt's papers concern Jacobi funec-
tions of higher level. Finally, the very recent paper of Feingold and
Frenkel [Math. Ann. 263, 1983] on Kac-Moody algebras uses functions
equivalent to our Jacobi forms, though with a very different motivation;
here there is some overlap of their results and our §9 (in particular,
our Theorem 9.3 seems to be equivalent to their Corollary 7.11).
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conjectured correspondence is the composition of three isomorphisms

Maass "Spezialschar'" C Mk(SpQ(Z))
J/z
Jacobi forms of weight k and index 1
) 1
' " "_
Kohnen's " +"-space ([11]) C Mk—%(r‘o (€3))
lz
My, 5 (SL,(Z)) H

the first map associates to each F the function tbl defined by (5), the

second is given by

Z () e21Tim: — Z Z e(4n - r2) e21Ti(n'r+rz) ,

n20 n20 r’<4n
and the third is the Shimura correspondence [29,30] between modular
forms of integral and half-integral weight, as sharpened by Kohnen [11]
for the case of forms of level 1.

One of the main purposes of this work will be to explain diagram

(7) in more detail and to discuss the extent to which it generalizes to
Jacobi forms of higher index. This will be carried out in Chapters I
and II, in which other basic elements of the theory (Eisenstein series,
Hecke operators, ...) are also developed. TIn Chapter ITI we will study
the bigraded ring of all Jacobi forms on SL,(Z). This is much more

complicated than the usual situation because, in contrast with the

classical isomorphism M*(SLz(Z)) = C[EQ,EG], the ring J*,* = kGBm Jk,m
J = Jacobi forms of weight k and index m) is not finitely generated

k,m

Nevertheless, we will be able to obtain considerable information about

the structure of J* g In particular, we will find upper and lower

bounds for dim J which agree for k sufficiently large (kz2m),

k,m

will prove that J =& J is a free module of rank 2m over the
*,m kx k,m

ring M*(SLZ(Z)), and will describe explicit algorithms for finding
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k.m &S @ vector space over U and of J as a module over
. : %,

M*(SLZ(Z)). The dimension formula obtained has the form

bases of J

m
(8 dim 3 o= 2 dimM_, - N@)
. r=0
for k even (and sufficiently large), where N(m) is given by

2
N(m) = 3. [-z; _I ([x1] = smallest integer :x) .
r=0

We will show that N(m) can be expressed in terms of class numbers of

imaginary quadratic fields and that (8) is equivalent to the formula

. new _ . new +
1)) dim Jk,m = dim My 7, (T (m)) s
new + ;
where M2k_2(1"0 (m)) is the space of new forms of weight 2k-2 on I'o(m)

which are invariant under the Atkin-Lehner (or Fricke) involution

~k+1 _~2k+2
T

£(1) —> m new

f(-1/mT) and Jk,m

a suitably defined space of
"new" Jacobi forms.

Chapter IV, which will be published as a separate work, goes more
deeply into the Hecke theory of Jacobi forms. In particular, it is
shown with the aid of a trace formula that the equality of dimensions
(9) actually comes from an isomorphism of the corresponding spaces as
modules over the ring of Hecke operators.

Another topic which will be treated in a later paper (by B.Gross,
W.Kohnen and the second author) is the relationship of Jacobi forms to
Heegner points. These are specific points on the modular curve
Xo(m) = HYFO(m) U {cusps} (namely, those satisfying a quadratic equa-
tion with leading coefficient divisible by m). It turns out that for
each n and r with r2 < 4nm one can define in a natural way a class

P(n,r) € Jac(Xo(m)) (@) as a combination of Heegner points and cusps and
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that the sum Z P(n,r) ¢® ¥ is an element of Jac(XO(m))(Q) ®Q J

i 2,m

One final remark. Since this is the first work on the theory of
Jacobi forms, we have tried to give as elementary and understandable an
exposition as possible. This means in particular that we have always
preferred a more classical to a more modern approach (for instance,
Jacobi forms are defined by transformation equations in #Hx € rather
than as sections of line bundles over a surface or in terms of the
representation theory of Weil's metaplectic group), that we have often
given two proofs of the same result if the shorter one seemed to be too
uninformative or to depend too heavily on special properties of the full
modular group, and that we have included a good many numerical examples.
Presumably the theory will be developed at a later time from a more

sophisticated point of view.

This work originated from a much shorter paper by the first author
submitted for publication early in 1980. 1In this the Saito-Kurokawa
conjecture was proved for modular (Siegel and elliptic) forms on FO(N)
with arbitrary level N. However, the exact level of the forms in the
bottom of diagram (7) was left open. The procedure was about the same
as here in §84-6. The second author persuaded the first to withdraw his
paper and undertake a joint study in a much broader frame. Sections 2
and 8-10 are principally due to the second author, while sections 1, 3-7
and 11 are joint work. .

The authors would like to thank G. van der Geer for his critical

reading of the manuscript.
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Notations

We use W to denote the set of natural numbers, N, for WU {0}
We use Knuth's notation l_xJ (rather than the usual [x]) for the
greatest—integer function max{n€Z|ng<x} and similarly

rx-l = min{nGZ‘n;x} = —L—x_]. The symbol [ denotes any square number.
By diln we mean d|n and (d,ﬁ—)= 1. 1In sums of the form 3, or

E it is understood that the summation is over positive dix:iilsnors only.

ad=%
The function . d° (d€N) is denoted O (n).
din

The symbol e(x) denotes eZ'nix, while em(x) and em(x) (me W)
denote e(mx) and e(x/m), respectively. In e(x) and e"(x), x is a
complex variable, but in em(x) it is to be taken in Z/mZ ; thus
em(ab_l) means e_(n) with bn = a(mod m), and not e(a/bm).

We use Mc and In for the transpose of a matrix and for the nxn
identity matrix, respectively. The symbol fa,b,c] denotes the quadrati
form ax? +bxy+cy2.

¥ denotes the upper half-plane {Te €lIm(t) >0}. The letters T
and z will always be reserved for variables in X and €, respectively,
with T = u+iv, z = x+1iy, q=e(T), L =e(z). The group SLZ(Z) will
often be denoted by I, and the space of modular (resp. cusp) forms of
weight k on I"1 by Mk (resp. Sk)‘ The normalized Eisenstein series
Ek € Mk (k 24 even) are defined in the usual way; in particular one
has M := ka = ¢[E,,E,] with E, = 1+240 Z o (mq" ,

E = 1-504 Z 0 (n)q".

The symbol ™" :=" means that the expression on the right is the

definition of that on the left.



Chapter I
BASIC PROPERTIES

§1. Jacobi Forms and the Jacobi Group

The definition of Jacobi forms for the full modular group
1"1 = SLZ(Z) was already given in the Introduction. In order to treat
subgroups I C I’1 with more than one cusp, we have to rewrite the

definition in terms of an action of the groups SLZ(Z) and z? on

functions ¢: %€ » €. This action, analogous to the action

) EL = (et £ (j;—j:%) (M -(2 5. r,)

v

in the usual theory of modular forms, will be important for several,
later constructions (Eisenstein series, Hecke operators). We fix

integers k and m and define

a b o -k m( -cz? at+b z
2 (¢|k,m[c d])(T’Z) = (eT+d) " e (cr+d)¢(c~r+d Cer+d

(¢ &er)

and
(3) @ [ e (r,2) = "OPT+2A2) ¢ (1,2 + AT + W)

(w ez,
where em(x) = ezTrimx (see "Notations"). Thus the two basic transfor-

mation laws of Jacobi forms can be written
- - 2
Sl M=9¢ WMETH, ¢l X =0 (xez?),

where we have dropped the square brackets around M or X to lighten

the notation. One easily checks the relations
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Gl [ M = ol LMD L 0l 0 | X = ¢]_x+x")
(&)
@l o 8= @0 M, ouer, xx'ez’

They show that (2) and (3) jointly define an action of the semi-direct
product I'f =T K z® (= set of products (M,X) with M € I, X€ z>
and group law M,X)(M',X') = (MM',XM' +X"'); notice that we are writing
our vectors as row vectors, so [, acts on the right), the (full)
Jacobi group. We will discuss this action in more detail at the end

of this section.

We can now give the general definition of Jacobi forms.

Definition. A Jacobi form of weight k and index m (k,m € W) on
a subgroup T C I'1 of finite index is a holomorphic function &: ¥ x & -
satisfying

i) ¢[k’mM = ¢ METD;
i) 4] X = ¢ X € z%);
iii) for each M EI‘l, ¢|k,mM has a Fourier development of the
form Ec(n,r)qnzgr (g=e(T), 2=e(z)) with c(n,r) =0

unless n > r?/4m. (Ifj ¢ satisfies the stronger conditiom
c(n,r) # 0 = n>r?/4m, it is called a cusp form.)

The vector space of all such functions ¢ is denoted Jk m(1") 5 if
b

I'=T, we write simply Jk,rn for Jk,m(rl)'

Remarks. 1. The numbers n,r in iii) are in general in @, not
in Z (but with bounded denominator, depending on I' and M).

2. We could define Jacobi forms with character, Jk,m(F’X)’ by
inserting a factor X(M) in i) in the usual way.

3. Also, we could replace z® by any lattice invariant under T,
e.g. by imposing congruence conditions modulo N if T =T(N). It would

therefore be more proper to refer to functions satisfying i)-iii)
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. . 2
as Jacobi forms on the Jacobi group I‘J = I' XZ (rather than on T).
However, we will not worry about this since most of the time we will
be concerned only with the full Jacobi group.

OQur first main result is
THEOREM 1.1. The space T oD} is finite-dimensional.
—_— s

This will follow from two other results, both of independent

interest:

THEOREM 1.2. Let ¢ be a Jacobi form of index m. Then for
fixed TE€H, the function z > ¢(T,2), if not identically zeroc, has
exactly 2m zeros (counting multiplicity) in any fundamental domain for

the action of the lattice ZT + Z on €.

Proof. It follows easily from the transformation law ii) that

$,(1,2)
E%TI ﬂg ]}Z—(;—Z-)— dz = 2m (d)z = % , F = fundamental domain for C/ZT+ Z)
¢Z

(the expression 7};; —E is invariant under =z - z+1 and changes by 2m
when one replaces z by- z+T), and this is equivalent to the statement
of the theorem. Notice that the same proof works for ¢ meromorphic
(with "number of zeros" replaced by "number of zeros minus number of
poles") and any me€ Z. A consequence is that there are no holomorphic
Jacobi forms of negative index, and that a holomorphic Jacobi form of

index 0 is independent of z (and hence simply an ordinary modular form

of weight k in T).

THEOREM 1.3. ZLet ¢ be a Jacobi form on I' of weight k and
index m and A,u rational numbers. Then the function
f(r) = em()\ZT) ¢ (ts AT+1) <8 a modular form (of weight k and on some

subgroup of T' of finite index depending only on T and on A,u).
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For A=u=0 it is clear that T > ¢(7,0) 1is a modular form of
weight k on I'. We will prove the general case later on in this sectio
when we have .developed the formalism of the action of the Jacobi group
further. Note that the Fourier development of f(T) at infinity is

Z e(rwc(n,r) e((@mA’ +rA+n)T) R

n,r

so that the conditions nz0, r? < 4nm in the definition of Jacobi
forms are exactly what is required to ensure the holomorphicity of f
at ® din the usual sense.

To deduce 1.1, we pick any 2m pairs of rational numbers
CHRTIRC Q> with (gomy) # (44515 (mod Z®) for i#j. Then the
functions fi(’[') = em(XiT)q)(T, Xir+ui) lie in M.k(l"i) for some
subgroups I'i of T, and the map ¢ - {fi}i is injective by Theorem 1.2
Therefore dim Jk’m(l") < Z:- dim Mk(I'i); this proves Theorem 1.1 and
also shows that Jk,m is O for k<O unless k=m=0, in which case it
reduces to the comstants.

To prove Theorem 1.3, we would like to apply (3) to (A,u) € @2.

However, we find that formula (3) no longer defines a group action if

we allow non-integral A and U, since
Gl D [ I W h(r,2) =

em(k'z‘r + 20z + BT 4+ 20 (z+A'T +u )T, zH A T+ H Az )

e(2min") (o] [MA" pu']) (1,2)

and e(2mA'y) will not in general be equal to 1. Similarly, the third
equation of (4) breaks down if X is not in 22 . Hence if we want to
extend our actions to SLZ((Q) (or SLZ(]R)) and QZ (or ]Rz), we must
modify the definition of the group action.

The verification of the third equation in (4) depends on the two
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elementary identities

z+>\1T+u1

oz aT+b " R R
cT+d cT+4d H cT+4d 4
2 at+b z cz? 2 C(Z+}‘1T+u1)2
A cr+d+2>\ cT+d—cT+d+>\u = >‘1T+2}‘lz‘ cT+d +>‘1

a b

where (A, u;) = (A ) (c d

). Thus to make this equation hold for

arbitrary M = (2 2) € SLz(]R) and X = (Au) € R? we should replace
(3) by
(5) (¢]m[>\ ul) (t,2) := em(kzr + 22z + AW ¢(T, z+ AT +n)

(A w) € RY)

this is compatible with (3) because em(Xu) =1 for A,u€ Z.
Unfortunately, (5) still does not define a group action; we now find

(6) Gl 01X = "On' -l (X+x")

=W, X=@A" u") eRr?)

To absorb the extra factor, we must introduce a scalar action of the

group R by
o) @l kD (T,2) = e@@)d(T,2) (K ER)

and then make a central extension of ]R2 by this group R; i.e.

replace R? by the Heisenberg group

He = {lw.k] | Q,w e B, ker}

LWL uL.k'] = [OR" '), k+x"+20"' - A"u] .

(This group is isomorphic to the group of upper triangular unipotent

3 x3 matrices via
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1 A LB(k+ AR
LA W,x] —> 0 1 u D)

0 0 1

The subgroup C i= {[(0 0),xl, k& ]R} is the center of H._, and

R

H]R/C]R = R?. We can now combine (5) and (7) into an action of H

R

R
by setting

@I WLk (T,2) = TP T+2Az +A+K) (T, z+AT+W) ,

and this now Zs a group action because the extra factor em(k'p—ku')
in (6) is compensated by the twisted group law in H]R' Because this
. A
twist involves Ap' - Ay = det (A' E,) and the determinant is preserved

by SL,, the group SL,(R) acts on H on the right by

R

[X,kIM = [xXM,k] (XER?, KER, ME SL(R)) ;

the above calculations then show that all three identities (4) remain
true if we now take M,M' € SL,(R) and X,X' € H]R and hence that
equations (2), (5) and (7) together define an action of the semidirect

product SLZ(IR) [ H]R'

In the situation of usual modular forms, we write H as G/K,

where G SLZ(]R) contains I' as a discrete subgroup with Vol(T'\G)
finite and K=S0(2) is a maximal compact subgroup of G. Here we would
like to do the same. However, the group SLZ(IR) 3 H]R contains

I"J = Ix ZZ with infinite covolume (because of the extra R in H]R)
and its quotient by the maximal compact subgroup S0(2) is H x € xR
rather than X xC. To correct this, we observe that the subgroup ZCR
acts trivially in (7), so that (2), (5) and (7) actually define an

action of the quotiemt group

J
G i= SLZ(]R) x H]R/CZ .
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Here it does not matter on which side H we write C since C is

R Z°’
central in H; the quotient H]R/CZ is a central extension of R? by
st = {;GC] [r,] =l} (z = e(k)) and will also be denoted Rr%.st.
Now FJ is a discrete subgroup of G with Vol(I’J\GJ) < o, and if we

choose the maximal compact subgroup

kK = so@)xstc ¢l-= SL,(R) % (R>-s%)

then GJ/KJ can be identified naturally with ¥ X € via

a b J ai+b Al+p
[(c d)’“‘ “)’C]K i (ci+d , ci+d) .

The above discussion now gives

THEOREM 1.4. Let G° be the set of triples [M,X,C} (M € SL,(R),

Xe®R?, g€, |g]=1). Then ¢’ i a group via

M,x,z][M',x", '] = [, XMI'+X', zg'ee (det()g[,'))]

and the formula

ol [(2 5) 0 u),c] (r,2)

2
Z;m(cT+d)_k em(_ c(z+ AT+

cT+d

+ 22T + 2xz + Au)

X

aTt+b z+ AT+
¢ ct+d > ct+d

defines an action of ¢t on {¢: Hx¢C ~ C} . The functions ¢ satisfying
the transformation laws i) and ii) of Jacobi forms are precisely those

invariant with respect to this action under the discrete subgroup

-1 xz? of GJ, and the space of such ¢ can be identified via

F(g) := (¢|8)(i,0)

with the set of funetions F: ¢’ > ¢ left invariant under 7 and

trans forming on the right by the representation
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. cos 6 sin © __m _ike
-F(g [(_Sine cose),(o 0),?;]) =7 e F(g)

.

of the maximal compact subgroup KJ = s0(2) x S of c’.

Thus the two integers k "and m in the definition of Jacobi forms
appear, as they Shbuld, as the parameters for the irreducible (and here
one—diménsional) representations of a maximal compact subgroup of GJ.

As an application of ‘all this formalism, we now give the proof
of 1.3. The function f(1r) in that theorem is up to a constant
(namely e"(An)) equal to ¢X('r) = (9|X)(1,0), where X=(A p) € @
and ¢|X is defined by (5) (from now on we often omit the indices k,m

on the sign | ). For X'= (A' u") € 2° we have
dgaxt (T = gty = AT (T)

by (6), so ¢X depends up to a scalar factor only on X (mod Zz) and ¢X

itself depends only on X (mod NZz?) if X € N 'z%. For M= (i g) er

we have

Cctr ™ 9y (£22) = @lxlw (v,0)
= (@M@ (t,0
= (| (xM))(1,0)

¢XM(T) >

so ¢X behaves like a modular form with respect to the congruence

subgroup

{Mer|xM=X (mod 2%), m-det(x);l) €z}

of T (this group can be written explicitly

{(2 Z)E I|(a=1)A+ cu, A+ (d-Du, mleu®+(d-a)Au-br") € Z}
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2
and hence contains I N F(_(ﬁluj) if NX € Z° ). Finally, if M is any
element of T, then
gl WD = @MEM(T,00 = "t + A u) @M (r, AT+ )
k

where ()\1 ul) = XM, and since ¢|M has a Fourier development contain-
ing q7gF only for 4nm > r?, this contains only nonnegative powers of
e(T) by the same calculation as given for M=1Id after the statement

of 1.3.

We end with one other simple, but basic, property of Jacobi forms

THEOREM 1.5. The Jacobi forms form a bigraded ring.

Proof. That the product of two Jacobi forms d)l and ¢2 of
weight k, and k, and index m, and m,, respectively, transforms like

a Jacobi form of weight k = k1+ k, and index m = m +m is clear;

2
we have to check the condition at infinity. One way to see this is to
use the converse of Theorem 1.3, i.e. to observe that the condition
at infinity for a Jacobi form ¢(T,z) of index m is equivalent to the
condition that f£(T) = em(AZT)¢(XT+u) be holomorphic at « (in the
usual sense) for all A,y € Q; this condition is clearly satisfied for
¢(t,z) = ¢1(T,z)¢2 (t,z) with (1) = £,(T) fz('r). A more direct proof
is to write the (n,r)-Fourier coefficient of ¢ as

c{n,r) = Z cl(nl,rl)cz(nz,rz) R

n,+0,=n
I, +r,=r

where the c; are the Fourier coefficients of ¢i (the sum is finite

since n; £ 0, r; < lmimi) and deduce the inequality r? < 4nm from

the identity

2
(‘71“72)2 B T, . Ty . (mr, -mr,)
myrn, - 4(m1+m2) - k! 4m % T Zm 4m1m2 (m1+m2) .
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This identity also shows that (as for modular forms) the product ¢1¢2

is a cusp form whenever ¢, or ¢, is one but that (unlike the situation

for modular forms) ¢,4, can be a cusp form even if neither ¢, mor ¢, is.
The ring J*’* = kQ,;m Jk,m of Jacobi forms will be the object

of study of Chapter IIIL.

§2. Eisenstein Series and Cusp Forms

As in the usual theory of modular forms, we will obtain our
first examples of Jacobi forms by constructing Eisenstein series. In

the modular case one sets (for k> 2)

E (1) = Z 1), - /z (ct+d)®

YE 1"0“\1"1 c,deZ
(c,d)=1

where I = {i((l) 1z)[ne Z} is the subgroup of I'| of elements 7Y with
llk =1, where 1 denotes the constant function. Similarly, here we

define

&) NGO B D DR 1 R

yerdr!

where

J
rd oo fyer] 1ly=1}

]

(g 1)-cowl Inuez

Explicitly, this is

2
-k m aT+b 2 cz
(2) Ek’m('r,z) =3 Z Z(cr+d) e (AZ At e Cﬂd)

c,d€EZ AEZ
(c,d)=1
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where a,b are chosen so that (i :) € TI,. As in the case of modular
forms, the series converges absolutely for k2 4; it is zero if k is
odd (replace c,d by -c,-d). The invariance of Ek n under 1"J is
clear from the definition and the absolute convergence. To check the
cusp condition, and in order to have an explicit example of a form in
J , we must calculate the Fourier development of Ek , which we now
k,m ,M

proceed to do.

As with Ek’ we gplit the sum over c,d into two parts, according

as ¢ is O or mot. If c¢=0, then d=%1; these terms give a contributi

2
(3) T Pt 2az) = 3 g™

AEZ rEZ :
(q = ezan, = eznlz). This is a linear combination of qnzr with

4om = r> and corresponds to the constant term of the usual Eisenstein

series. If c#0, we can assume ¢ >0 (since k is even); using the

identity

2 2
aT+b z cz? c(z-A/c) ai
— = - + —_—
cT+d + 22 cT+d ct+d eT+d c (c#0)

we can write these terms as

© -~k _ 2 2
LoD BTl
(d,c)=1

Note that d + d+c and X > A+c correspond to 2z » z+1 and 1 > T+1,

so this part equals

«©

%) Tk Z Z ec(md'l}\z) Fk,m(T + —'i—, z - %—)

e=1 d (mod ¢) A(mod c)
(d,c)=1

with e as in "Notations" and
c
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Z (T+P)—k em(_ (z—+gi) ;

F (T,z)
k,m"* ?
P,a€ Z T+e

the function Fk o is periodic in T and 2z, so (4) makes sense. Now
’

the usual Poisson summation formula gives

F = 0, (o) ot
k,m
n,rEZ
with
“k »
y(n,r) = T e(-ut) e(-mz® /T -rz) dz dt
Im('l:)=C1 Im(z)=C2
(C,>0, C, arbitrary). The inner integral is standard and equals

(1/2im)? e(rt/4m). Hence

- 1L 2 _
Y(n,r) = J T k(T/Zim)/i e(r_zgl_lg_m*n T) daT
Im(T)=C,
0 + 2
if " > 4nm
= 3
otkml k(lmm—rz)k— 2 £ r?<4mm
with
1
o - (S
22721 (k - 35)

(if 2 2 4nm, we can deform the path of integration to +iw, so y=0;
if r? < 4nm, we deform it to a path from -i® to =-i® circling O once
in a clockwise direction and obtain a standard integral representation
of 1/T(s)). Substituting the Fourier development of Fk,m into (4)

gives the expression
n,r
e
k,m(n,r) T
n,r€EZ

4om > r?

with



OLk 5 k=Y 2 X -
(5) ek,m(n,r) = F (4nm - r) c E ec(md A2 -rA+nd)
c=1 A,d(mod ¢)

(d,c)=1

(for d_l, see "Notations"). To calculate this, we first replace A by

dA in the inner double sum (since (d,c) =1, this simply permutes the
summands); then the summand becomes ec(dQ()\)) with Q) := w2 4+ ri+n.
We now use the well-known identity

D @ = D0 wa,

d(mod ¢) af(c,N)
(d,c)=1

where y is the Mobius function (so-called Ramanujan sum; see Hardy-—
Wright or most other number theory texts); then the inner double sum
in (5) becomes
c
2 H()a Z : 1
ale A(mod c¢)

Q(A) = 0(mod a)

Now the condition Q(XA)= O(mod a) depends only on A (mod a), so the

inner sum is % times Na(Q)’ where
N,(Q) = #{A(mod a) | Q(X) = O(mod a)}

Hence the triple sum in (5) simplifies to

w © N (©
1-k c -1 a
TR WHIN@ = kDT Y —

c=1 alc a=1 a

s

(the last equality follows by writing c=ab and using Eu(b)b— = Z(s)_1 ).
To calculate the Dirichlet series, we first calculate N,(Q) for (a,m)=1;
this will suffice completely if m=1 and (using the obvious multiplica-

tivity of Na) will give the Dirichlet series up to a finite Euler

nroduct involving the prime divisors of m in general. If (a,m)=1,



—21-

then
N(@ = #HA(mod a) | mA* +ri+n = O(mod a)}
= #Himod a) | (2m+1)® = r’-4am (mod 4a)}
= N (r? - 4om)

where
N,(D) := #{x(mod 2a)| x’=D(mod 4a)} .

It is a classical fact that

-s _ &(s)
(6) :él Ngma® = 22 L),

if D=1 or if D 1is the discriminant of a real quadratic field,
where LD(s) = L(s, 2)) is the Dirichlet L-series associated to D.
It was shown in [39, p.130] that the same formula holds for all DE€Z

if LD(s) is defined by

0 if D#0,1 (mod 4) ,
LD(s) = z(2s-1) if D=0 ,

D - s —_—
LDo<s)-d‘|£,f u@ () a7 o, , (£/d) 1if D=0,1 (mod &), D#0

where in the last line D has been written as Dof2 with f€WN and
D, = discriminant of Q(YD) (the finite sum in this case can also be
written as a finite Euler product over the prime divisors of f).

Inserting (6) into the preceding equations, we find that we have proved

k-,

ey 1(mE) = oD z (2k-2)"" L (k-1)

if m=1 and D =r?-4n< 0, while for m arbitrary there is a similar

formula (now with D = r? —~4nm) but multiplied by an Euler factor
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involving the prime divisors of m. Using the functional equations of

LD(s) and {(s) we can rewrite this formula in the simpler form

e 1 (D) = L -R/L(G20)

where now all numerical factors have disappeared. The values LD(Z-—k)
(D<0, k even) are well-known to be rationmal and non-zero; they have
been studied extensively by Cohen [6], who denoted them H(k-1, |[D]).

Summarizing, we have proved

THEOREM 2.1. The series E o n (k 2 4 even) converges and defines
s

a non-zero element of Jk The Fourier development of Em ig

,m

given by

Eem(52) = Z e m(® 1) q"z*

n,r€ Z
4nm 2 r?

where e m(n,r) for 4mm=1® equals 1 Zf r = O(mod 2m) and 0 other-

wise, while for 4nm>r? we have

H

(k-1, 4n~r?)

e, 1) = Z(3-2k)
(Hk-1,N) = L_N(Z—k) = Cohen's function) and

H(k-1, 4nm-1?) T

ek’m(n,r) = T (3-2K) (elementary p-factor)

plm
In particular, e, _(u,r) € Q.
s

One can in fact complete the calculatiomn of e m in general with
>

little extra work; the result for m square-free is

-1
o] (m)

- k=1 k-1 4nm - r?

(7 & n™) = T E a H(k—l,—H%Z—L)

d|(n,r,m)
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However, we do not bother to give the calculation since this result
will follow from the properties of Hecke-type operators introduced in
§4 (Theorem 4.3).

For m=1 and the first few values of k we find, using the tables

of H(k-1,N) given in [6], the expansions

‘B o= 14+ (C2456C+126+56C 1 +572)g
+ (12672 +576% + 756 + 5760 - + 1267 2)q°

+ (5673 + 75602 + 15120+ 2072+ 15122 1 + 7562 2 + 562 )q’ + ...

E = 1+ (z?-880-330-88C '+¢ g

+ (-3300% - 42245 - 7524 — 42247 ~ 3300 )q? + ...

1 2 2

1+ (z2 + 567 + 366 + 565 DY S

=]
]

+ 7

4

Further coefficients of these and other Jacobi forms of index 1 are

given in the tables on pp.l41-143.

In the formula for the Fourier coefficients of Ek 1° it is
2
striking that e l(n,r) depends only on 4n-r?., Ve now show that this
s

is true for any Jacobi form of index 1; more gemerally, we have

THEOREM 2.2. Let ¢ be a Jacobi form of index m with Fourier
development Tc(n,r)q®ct. Then c(n,r) depends only on 4nm— r? and on
r(mod 2m). If k is even and m=1 or m is prime, then c(n,r) depends

only on 4nm—r2, If m=1 and k is odd, then ¢ fis identically zero.

Proof. This is essentially a restatement of the second transfor-

mation law of Jacobi forms: we have
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Ec(n,r)qnl;r = ¢(t,2z) = em()\zr+2>\z)¢(r,z+)\'r+u)
N g e, RN
= % c(n,n) qn+r)\+m}\2 Cr+2m)\
and hence
c(n,r) = c(n+ri+m?, r+2m\) R
i.e. c(n,r)=c(n',r') whenever r' = r(mod 2m) and 4n'm-r'?’ = 4om-1r

as stated in the theorem. If k is even, then we also have
c(n,~r) = c(n,r) (because applying the first transformation law of
Jacobi forms to -I,€ I'l gives ¢(t,-2) = (—l)kd)('l'_.z)), so if m is 1

or a prime, then
4n'm-r'? = 4nm-r? = r' = tr(mod 2m) = c(n,r) = c(n',r")

Finally, if m=1 and k is odd then ¢$ =0 because c(n,-r) = -c(n,r)

but 4nm - (—r)2 = 4om-1r? and -r = r(mod 2m) in this case.

Remark: Theorem 2.2 is the basis of the relationship between

Jacobi forms and modular forms of half-integral weight (cf. §5).

In the definition of Jacobi cusp forms, there were apparently
infinitely many conditions to check, namely c¢(n,r) =0 for all n,r with
4nm=r?. Theorem 2.2 tells us in particular that we in fact need only
check this for a set of representatives of r (mod 2m). The number of
residue classes r(mod 2m) with r2 = O(mod 4m) 3s b, where b2 is the
largest square dividing m (namely if m=ab? with a square-free, then

4m|r? = 2ab|r). Thus for ¢ € Iy p ve have

¢ a cusp form = c(asz, 2abs) = 0 for s=0,1,...,b~1 ;

CUSP 4n g is at most b. Using

. . 4 .
in particular, the codimension of Jk,m k,m
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k

c(n,-r) = (-1) c{n,r) we see that in fact it suffices to check the
condition c(as?,2abs)=0 for S=0’1""’|.%J if k is even and
s=1,2,...,l_%J if k is odd. Hence we have

THEOREM 2.3. The codimension of J;uSP in J ig at most

_—— ,m k,m
b . . - . . .
[7J+ 1“ 1f k is even (resp. L%J if k g8 odd), where b is the

largest integer such that b%|m.

On the other hand, if k> 2 then for each integer s we can

construct an Eisenstein series

(8) Ek,m,s(T’z)

i}

o
)
17}

N

I
N
o
o
©

<

Y€ I'i\ FJ

(m=ab® as above), where the summation is the same as in the definition
of Ek,m=Ek,m,0' Then repeating the beginning of the proof of

Theorem 2.1 we find that

E : r?/4m, k,.—T
(9) Ek,m,s =k q €+ D% ") + ... s
r€EZ
r= 2abs(mod 2m)

where (the contribution from all terms in the sum with c # 0) has

a Fourier development consisting only of terms qncr with 4mm-r? >0.

It is then clear that Ek depends only on s(mod b), that
’

m,s
k b
= - i i < < =
(-1 Ek, .8 and that the series Ek, s with 0 £ s £

Ek,m,—s =2

(k ever) or 0<s <% (k odd) are linearly independent. Comparing this
with 2.3, we see that the bound given there is sharp and that we have

proved:

_ .cusp Eis cusp
THEOREM 2.4. If k> 2, then Jk,m = Jk,m :2] Jk,m , where Jk,m

is the space of cusp forms in e m and Jiii is the space spanned by
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. . . b
the functions Ek,m,s' The funections Ek,m,s with 0 < s E—(k even)
or 0< s<h (k odd) form a basis JEis |

2 k,m

We will not give the entire calculation of the Fourier development
of the functions Ek,m,s here, since it is tedious and we do not need
the result. However, we make some remarks. In §4 we will introduce
certain operators UJL and VSL which map Jacobi forms to Jacobi forms of
higher index. These will act in a simple way on Fourier developments
and will send Eisenstein series to Eisenstein series. Hence certain
combinations of the Ek,m,s ("old forms") have Fourier coefficients which
can be given in a simple way in terms of the Fourier coefficients of
Eisenstein series of lower index (compare equation (7), where the

coefficients of Ek are simple linear combinations of those of Ek l),
’

»

and we need only consider the remaining, "new'", forms. A convenient

basis for these is the set of forms

o) ._ - g2
(10) Ek,m := Z X(s) Ek,m,s (m=£f")
s (mod f)

of index f2, where X is a primitive Dirichlet character (mod f) with
X(-1) = (—l)k. Then a calculation analogous to the proof of Theorem 2.1

(&9)

for the case m=1 shows that the coefficient qncr in Ek n is giwven by
*

an e = e00 XD Loa_y (271,50

if (r,f) =1, where LD(s,X) is the convolution of LD(s) and L(s,X)
and e(X) a simple constant {essentially a quotient of Gauss sums
attached to X and )(2 divided by L(3-2k, X—Z)); in particular, the
coefficients are algebraic (in Q(X)) and non-zero. If (r,f) >1, then
elg),(;(n,r) is given by a formula like (11) with the right-hand side

multiplied by a finite Euler product extending over the common prime
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factors of r and f.

If k=2, then the Eisenstein series fail to converge; however, by
the same type of methods as are used for ordinary modular forms ("Hecke's
convergence trick") one can show that for X non-principal there is an

Eisenstein series E J having a Fourier development given by

2,m,X € 2,m

the same formula as for k> 2. Since X must be even (X(-1) = (—l)k) and

since there exists an even non-principal character (mod b) only if b=35

or b2 7, such series exist only for m *divisible by 25, 49, 64, ... .
There is one more topic from the theory of cusp forms in the

classical case which we want to generalize, namely the characterization

of cusp forms in terms of the Petersson scalar product. We write
T = ut+iv (v>0) , z = x+1iy
and define a volume element dV on HXEC by

a2 av = v ldx dy du dv .

It is easily checked that this is invariant under the action of GJ on

H*x € defined in 81 and is the unique GJ—invariant measure up to a
constant. (The form v ?dudv is the usual SLZ(]R)—invariant volume form
on H; the form v_ld'x dy dis the translation-invariant volume form on C,
normalized so that the fibre €/ZT+Z has volume 1.) If ¢ and ¢
transform like Jacobi forms of weight k and index m, then the
expression

2
VR eTHTYIY e 2y BT,z

is easily checked to be invariant under FJ, so we can define the

Peterssom scalar product of ¢ and P by

2 [N
(13) (6,0) = f R AT/ w0y T, AV .
rN\gexe
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Then we have

THEOREM 2.5. The sealar product (13) is well defined and finite
for ¢, 0 € J and at least one of ¢ and Y a cusp form. It ig

usp

positive~-definite on Jﬁ,m , and the orthogonal complement of Jeusp

k,m with

. Eis
respect to ( , ) is Jk,m'
This will follow from the results in §5 concerning the connection

between Jacobi forms and modular forms of half-integral weight.

§3. Taylor Expansions of Jacobi Forms

The restriction of a Jacobi form &(tT,z) to 2z=0 gives a modular
form of the same weight. In 81 we proved an analogous statement for the
restriction to 2z = AT+ (A,u rational) and used it to show that
Jk,m(r) is finite-dimensional. Another and even more useful way to get
modular forms is to consider the Taylor development of ¢ around z=0;
by forming certain linear combinations of the coefficients one obtains

"\)th development coefficient')

a series of modular forms .'D\)d) (D, for
with Do¢ = ¢(t,0) and _'D\)qb a modular form of weight k+v. The precise

result is

THEOREM 3.1. For vEN,, k€N define a homogeneous polynomial

Pg\{)—l) of two variables by
Lerv-l o (kel) - (e 2V ety KD
@ (201 (k=231 Pay (r,n) coefficient of t in (1 -rt+nt”)

Then for ¢ € J (I') a Jacobi form with Fourier development

Z c(n,r)q™ct, the function
n,r
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M8

(2) D, b ==

2v ( i P(k l)(r,nm)C(n,r)) @
r

i8 a modular form of weight k+2v on T. If v>0, it e a cusp form.

Explicitly, one has

D¢ = L(lc@m)a®
n r
2,9 = Y(Y (er?-2mde(n,n)q® ,
n r
D¢ = Z(Z (<k+1)(k+z>r"»-1z(k+1)r2nm+1zn2m2)c<mr))qn

n-r

Notice that the summation over r 1is finite since c(n,r)#0 = r? < 4mm.

The polynomial pg\lj—l) is given explicitly by
v
(k-1) e N (2v)! (k+2v-~u-2) 2v=-2u 1
3 Pyy (Esm) zz: CDY rGe T (k+v-21 ° n

and is, up to a change of notation and normalization, the so-called
Gegenbauer or "ultraspherical' polynomial, studied in any text on ortho-
gonal polynomials; we have chosen the normalization so as to make p(k D
a polynomial with integral coefficients in k,r,n in a minimal way
1 (k-1) . PN
(actually, 3T times Poy would still have integral coefficients as
a function of r and n for fixed k€ N). The characteristic property

of the polynomial pésql)

is that the function p(k 1)(B(x,y),Q(X)Q(Y)),
where Q is a quadratic form in 2k Variables and B the associated
bilinear form, is a spherical function of x and y with respect to Q
(Theorem 7.2).

There is a similar result involving odd polynomials and giving

modular forms D1¢,D3¢,... of weight k+1,k+3,... (simply take v E}+N

and replace (k+v-2)! by (k+\)-3/z)! in (1) and (3)), but, as we shall see



~30-

this can be reduced to the even case in a trivial way, so we content
ourselves with stating the latter case.

As an example of Theorem 3,1 we apply it to the function Ek,l
studied in the last section; using the formula given there for the

Fourier coefficients of Ek 1 ve obtain
L]

COROLLARY (Cohen [6, Th.6.21). ILet k be even and H(k-1,N) (NEN,

be Cohen's function

L_N(Z—k) if N>0, N=0 or 3(mod 4) ,
H(k-1,N) = 7 (3-2k) if N=0,
0] if N=1 or 2(mod 4)

Then for each vV €N, the function

(O - ST et nt)e

n20
=" ¢?¢4n

ig a modular form of weight k+ 2v on the full modular group T,. If v>0

it 18 a cusp form.

Cohen's proof of this result used modular forms of half-integral

weight; the relation of this to Theorem 3.1 will be discussed in §3.

Yet another proof was given in [39], where it was shown thar CIEV) has

the property that its scalar product with a Hecke eigenform

f = Zla(n)qn € S is equal, up to a simple numerical factor,

k+2v
to the value of the Rankin series Za(n)zn_S at s = 2k+2v -2,
)
k

This property characterizes the form C and also shows (since the

value of the Rankin series is non-zero) that it generates Sk+2\) (resp.

M, if v=0) as a module over the Hecke algebra; an application of this

k
will be mentioned in §7.

To prove Theorem 3.1, we first develop ¢(t,z) in a Taylor

expansion around z= 0:
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*) o(r,2) = X X 0z
V=

and then apply the transformation equation

aT+b Wk m
) <l)(c'r+d cT+d) = (et+d)” e (cT+d)¢(T z)
to get
) 2
at+b k+v 21T:imc 1l (2mimc
® XV(cT+d) = () (XV(T) M= v 2™ * 57 ( ct+d Xv—A(T) *e

i.e. X, transforms under I' like a modular form of weight k+v modulo
corrections coming from previous coefficients. The first three cases

of (6) are

(cT+ D X,(D)

at+b
Xo (cr+d )

X (EB) - erraft x@
+ k+2
Xz(i;'_g) = (cTt+d) Xz(T) +2‘7Timc(c'r+d)k+1 XO(T)

Differentiating the first of these equations gives

X! (%) = ke(er+a)¥HL X, (T) + (ct+a) K2 X,

and subtracting a multiple of this from the third equation gives

Zﬂ'lm v

g, = Xy - € Mo (T

Proceeding in this way, we find that for each Vv the function

-
o (z2mim)” (ktv-u-2)! | (W)
%) g (1) = 2 : Tkro-231 1! Xyoau (™
osusy

transforms like a modular form of weight k+v on I'. The algebraic
manipulations required to obtain the appropriate coefficients in (7)

directly (i.e. like what we just did for v=2) are not very difficult
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and can be made quite simple by a judicious use of generating series,
but we will in fact prove the result in a slightly different way in a
moment. If ¢ 1is periodic in z and has a Fourier development

z: c(n,r)qn§r, then X\) = Gl'— Z (Z(Zﬂir)\) c(n,r))qn and hence
n,r "n ¢

(ktv-p-2)1 (a2
® g, = @)’ >0(Z( 2 N v IR T )C(“’r)>qn
n
Osusy
SO
_ 2v (k+2v ~ 231 (2u)!
9 Zyp(m = @) (krv-D1 2y

Thus Theorem 3.1 follows from the following more general result:

THEOREM 3.2. Let ¢(T,2z) be a formal power series in z as in (4)
with coefficients Xy which satisfy (6) for all (i 3) €T and are
holomorphic everywhere (including the cusps of T). Then the function

£, defined by (7) is a modular form of weight k+v on T.

Proof. Let Mk,m(r') denote the set of all functions ¢ satisfying
the conditions of the theorem. (Note that Mk’m(l") is isomorphic to
M.k’l(l") via z+>/mz.) Since E\) involves only X\)' with Vv'=v(mod 2)
we can split up Mk,m(r) into odd and even power series, say,

Mk,m(r) = M:’m(l") Q)M.;,m(l") and look at the two parts separately
(this corresponds to adjoining —12 to I' and looking at thi action of
~-I, on ¢; if T' already contains -I1,, then Mk’m(r) = Ml({_’]];l) aTy).
I pEM_ (D), then ¢ =20, wich ¢, € M;+l’m(r) and the functions
x\),iv for ¢ and <b1 are the same except for the shift v + v-1,
k + k+l. Hence it suffices to look at M.:;,m(l") . We now introduce the

differential operators

3. _ 2
9z?
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(the heat operator) and

L, 2l B
Lk = L e 3z

The operator L is mnatural in the context of Jacobi forms because it

2
acts on monomials q%Y by multiplication by (2mi) (4nm ~r?) and hence,
in view of Theorem 2.2, preserves the second transformation law of

Jacobi forms; this can also be seen directly by checking that
(10) LG = @) X xe R .

If L satisfied a similar equation with respect to the operation of
SLZ(IR), then it would map Jacobi forms to Jacobi forms. Unfortunately,
this is not quite true; when we compute the difference between

L(<1)[k mM) and (L¢)[k+2,mM we find that most of the terms cancel but

c
cT+d

there is one term, 4mim(2k-1) (qb’k mM) (t,z), left over (unless

>
k=%, in which case L really does map Jacobi forms to Jacobi forms of
weight %, and the same index m; examples are the Jacobi theta-series,

which are annihilated by L ). To correct this we replace L by Ly,

which no longer satisfies (10) but does satisfy

an L@l ntD = @GPy, oM M € SL,(R)) ,

as one checks by direct computation. Because of the 2z in the denomi-
nator, Lk acts only on power series with no linear term; in particular
. + + +
it acts on Mk’m(l") and (because of (11)) maps Mk,m(f‘) to Mk+2’m(f‘).
Explicitly, we have
L: 3 X 22 — T (8mimX] - 4 O+1) OHOX, )22 .
k A A A+1

Az0 Az0
Iterating this formula v times, we find by induction on v that the

composite map



L.
Mk,m(r) - M'k+2,m(r) tee Mk+2\),m(r)

maps z X)\z2 to
A

v
V1 VY Qv Ok 2V~p~2) ! ) 22
g}(gb -2V (8mim) (u 0 Okrvoy | x}‘w_um) z"

and composing this with the map

Moo, a@) = Mo (D (6(1,2) > $(1,0))

gives 52\) € Mk+2\)(1") . This proves Theorem 3.2 and hence also Theorem
3.1 except for the assertion about cusp forms. But the latter is
clearly true, because the constant term of (2) is pgt’l)(o,O)c(o,O),
which is 0 for v> 0, and the expansion of qu: at the other cusps is
given by a similar formula applied to (Hk,mM’ MET,.

By mapping an even (resp. odd) function ¢ € Mk’m(l") to

(Eo’Ez’Eq"") (resp. to (El,Ea,...)), we obtain maps

“:,m(“ — T u,,. O

V20
Ml:,m(r) - \]I)Mk+2\)+l(r) ‘

It is clear that these maps are isomorphisms: one can express X\) in

terms of E\) by inverting (7) to get

B Cerim” Grv-2u-1)! _(w)
(12) X\)(F) = Z (kov-DT ! E\)-—Zu(r) s

N

O<us

and then the transformation equations (6) of the X\) follow from
E, €M (). In particular, taking £=f, £ =0 (v>1) and m=1 we
obtain the following result, due (independently of one another) to

Kuznetsov and Cohen:
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THEOREM 3.3 (Kuznetsov [16], Cohen [7]). Let £(T) be a modular

form of weight k on T. Then the function

- i LV
a3 Fr) = 3 GG (O, 20
v=0 :

satisfies the transformation equation

ao (S ) - e () e (2 5)e)

We mention a corollary which will be used later.

COROLLARY (Cohen [6, Th.7.1}). Let £,£, be modular forms on T
of weight k, and k,, respectively, V€ N . Then the function

I‘(k1+\)) r‘(k2+\)) f(U‘)

(V-1
Tk F) TR rp-v) 1 £,

v
- .V v-pfv
FL(£,,£,) = (@m) "~ 3 (-1) (u)
u=0
i8 a modular form of weight k +k,+2v on I and is a cusp form if v> 0.

(We have modified Cohen's definition by a factor (27ri)_\) to make
the Fourier coefficients of F\)(fl,fz) rational in those of f1 and fz.?
The corollary follows by computing the coefficient of ZZ\) in
%I(T,.Z)%Z (1,iz), which by Theorem 3.3 transforms like a modular form
of weight k, +k, under T.

We observe that the known result 3.3 could also have been used
to prove 3.1 and 3.2. (We prefer.red to give a direct proof in the
context of the theory of Jacobi forms, especially as the use of the
differential operators Lk makes the proof rather natural.) Indeed,

let MIE\); be the subspace of Mk n of functions ¢ which are O(z\)),
3 £

+1
VR

i.e. have a development X\)(T)ZV + X\)+1(T)z .. . From (6) it is

clear that the leading coefficient X\) is then a modular form of weight
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k+v and we get an exact sequence

o= D D

in which the first arrow is the inclusion and the second is ¢ +—> X\)'
w)
,m

used for V=1 when we reduced the study of M; n tO that of M.Z m), and
’ >

~ A Y .
_Mk+\),m by division by 2z (this was already

On the other hand,

3.3 gives a map Mkﬂ)ﬁ Mk+\),m by f+> f(1,v/mz); this shows that

the last map above is surjective and gives an explicit splitting.

To get the sequence of modular forms £ ,£,,... associated to ¢€M.k o
k4

we now proceed by induction: having found 50’51""’5\;_1 such that

$(t,2) - Z gv.(T,/Ez)zV' = 0 (mod z7)

v'<v

we define EV(T) as the leading coefficient (coefficient of z\)) in the
expression on the left-hand side; then ¢ = X gV(T, /ﬁz)zv as a formal
power series and this is equivalent to the s:ries of identities (12)
or (7).

We have gone into the meaning of the development coefficients
D\)«p fairly deeply because they play an important role in the study of
Jacobi forms and because the relation with the identity (14) of
Kuznetsov and Cohen concerning £ (which is not a Jacobi form) seemed

striking. In particular, we should mention that (13) can be written

. ® Jy_y G4/ D 2)
(1,2) = a(0)+ (k-1)! Y. a(n) — 1 1
n=1 @2n/n z)
if £ = Za(n)q® (this is the form in which Kuznetsov gave the identity)

To see where the Bessel functions come from, note that the function
Jy_q(472)

(amz)*L
2k-1

h" + = h'+ (4m)?h = O and is the only solution holomorphic at the

h(z) = (k-1)! satisfies the ordinary differential equation
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origin and with h(0) =1. By separation of variables we see that
oo

> 2mi .

f(t,z) = X a(n)h(/nz) e Tint is the unique solution of the partial
0 ~

differential equation ka=0 satisfying the boundary conditions

E(T+l,z) = E(T,z) and f(t,0) £(t), and this uniqueness together with
the fact that L, commutes with the operation of SL,(R) (eg. (11))
immediately implies that f has the property (14).

As a first application of the maps D\) to Jacobi forms, we have

a second proof and sharpening of Theorem 1.1:

2m
THEOREM 3.4.  dim Jy (T) £ dim M (T) + \?;1 dim s, (1) .

. . 2
Indeed, Eo= e = Ezm'—'O implies X0= R X2m=0 or ¢ =0(z m+1

)’
so Theorem 1.2 implies that the map
2m

\go D\f Jk,m(I‘) —> M () ® sk+l(1‘) ®...05 ., @

[

7

is injective. Note that half of the spaces M‘k+\)(r) are ( if —12€F H

in particular, for ['=T, we have

dika+dimS +...4dim S (k even) ,

k+2 k+2m

(15) dim 3 <

dim Sk+1 + dim Sk+3 + ... +dim Sk+2m—l (k odd) .

Here the second estimate can even be strengthened to

(16) dim Jk,m < dim S1<+1 + ... 4+ dim Sk+2m—3 N

because an odd Jacobi form must vanish at the three 2~division points

%—, T %l and hence cannot have more than a (2m~3)-fold zero at z=0.

E’

Application: Jacobi Forms of Index One

Theorem 3.4 is the basis for the analysis of the structure of

J = & J as given in Chapter III, to which the reader may now
),k k,m k,m

skip if he so desires (the results of §84-7 are not used there). As an



example, we now treat the case m=1, which is particularly easy and will

be used in Chapter II. Equations (15) and (16) (or Theorem 2.2) give

Jk,l =0 (k odd) , dim Jk,l S dlka + dim Sk+2 (k even).

On the other hand, the Fourier developments of Eu 1

as given

and EE,1

after Theorem 2.1, show that the quotient

E, I(T,Z)

-1
E, 1(T’Z) 1 - (144T + 456 + 1447 ")q + ...
b

depends on z and hence is not a quotient of two modular forms, so the ma

Mt M T Y
(f,g) +> f(T)Eu’I(T,z) + g('r)E6 l('r,z)

is injective. Since dim M _, tdinM .= dim M, +dim Si42 for all k

(this follows from the well-known formula for dika), we deduce

THEOREM 3.5. The space of Jacobi forms of index 1 on SL,(Z) is a

free module of rank 2 over M, , with generators E“ L

s

and E - The map
Dy+D,: 3 g > M ot S,

(D.,D. as in Theorem 3.1) is an isomorphism.
0*“2 P

In particular, we find that the space ‘Is L is one~dimensional.
»

with generator & = E *E (E, = 1+240q + ... the Eisenstein
8,1 b Tl Y

series in Mu)’ while the first cusp forms of index 1 are the forms

qblo,l = 144 (ESER,I - E‘*Eﬁ,l) ’
Q7
R (E E - E_E )
®20 T Tah 4yl 6,1

of weight 10 and 12, respectively (the factor 144 has been inserted to

make the coefficients of ¢lo , and ¢12 1 integral and coprime). We
b ’
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have tabulated the first coefficients &1 of E (k=4,6,8) and c
3

k,1 k,1

of ¢k 1 (k=10,12) in Table 1; notice that it suffices to give a single
3

sequence of coefficients c(N) (N20, N = 0,3(mod 4)) since by 2.2 any

Jacobi form of index 1 has Fourier coefficients of the form

¢(n,r) = c(4n-r?) for some {c(¥)}. To compute the c(N), we can

use either assertion of Theorem 3.5, e.g. for ¢1° 1 ¢12 , we can
- 3 s
either use (17) and the known Fourier expansions of Ek and Ek n or
k]
else (what is quicker) use the expansions
D¢ =0 >, Do = 20A
0%10,1 10,1 ’
(18) s 2 >
Do¢12,1 =124, Dz¢12,1 =0
@ o
(A= ¢ T @-gdM?® = 3 1(n)q™) to obtain the identities
=1 n=1
> cl, (Gn-1tH) =0 , rlc,, (4n-r?) = 1(@ ,
jrl<2/n ° 0<r<2vm >

Z c12’1(4n—r2) = 12t(n) , Z rzclz’l(lm—rz) nt (n)

Jri<2vn 0<r<2va

and then solve these recursively for S l(N).
b4

The functions

(C=2+C Y)q + (~202 - 160+36-165 - 22 °)q% + ...

¢10 1

>

9100 = (C+10+Z2 ")q+ (1022 - 88z - 132 - 887 ' +107 %)q* +...

have several beautiful properties and will play a role in the structure

theory developed in Chapter III. Here we mention only the following:

THEOREM 3.6. The quotient

¢ (t,2) -1 -
12,1 = E*I0*L o242 Mg ...

$1p,1(T>2) g-2+z "

is ~3/%° times the Weierstrass p-function p(T,2).
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Indeed, since ¢1° , Vvanishes doubly at z=0 and (by Theorem 1.2)
s

nowhere else in C/ZT+Z, and since by (18)

]

¢ (zr)® A(T)z? + 0(2*)

10,1
(19)

12,1 128(t) + o(z?)

the quotient in question is a doubly periodic functijon of z with a

double pole with principal part ?Elg;? z 2 at z=0 and no other poles
- i
in a period parallelogram, so must equal ~—J£LE-F(T,2).
(2mi)

Finally, we note that, just as the two Eisenstein series Eu 1 and
>

E, , form a free basis of J over M., the two cusp forms ¢1° , and
k] P) >
. cusp . . .
¢12 1form a basis of J* N over M*, i.e. we have an isomorphism
s >

~ cusp
Me10 ® M2 > I,

(f,g) v+ £(0¢ [(1,2) +g(D), (1,2)

10,1
Thus the Jacobi forms
Eq(r)aEs(r)"q;j L(T52) (a,b20, je{10,12}, 4a+6b+j=k
b

form an additive basis of the space of Jacobi cusp forms of weight k
and index 1. Each of them has a Fourier expansion of the form
Z c(4n-1r?)q™%; the coefficients c(N) for Ng 20 and all weights k £ 50

are given in Table 2.
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84, Hecke Operators

We define operators UJL’ VJI,’ TY. (2> 0) on functions ¢:HXC > C bv

® Gl U2 = 8T,

— — _ 2
@ @l v ) = 87 E Cervay™ (222 o(2t | Lz

cT+d cT+d ’ cT+d
ab)er\m, @
cd 1t M2 )
ad-bec =2

k-4
D DN DR

MET\M, @) Xxez?/12?
detM=2
g.c.d{M)=0

i

3 @l Ty (,2)

where the symbols |mX have the same meanings as in 51

e, m™>
—1

{except that for M € GL:(]R) one first replaces M by (det M) °M € SLZ(]R)

and g.c.d.(M) = 0 means that the greatest common divisor of the entries

of M is a square. Then we have

THEOREM 4.1. The operators UR,’ VR,’ TJI. are well defined (i.e.

independent of the choice of representatives) on J and map J to

k,m k,m

J J and J , respectively.

k,m&%’ “k,mf k,m

Proof. The well-definedness and the fact that ¢|V2, ¢IV2, ¢]T2
transform correctly follow by straightforward calculations from the
properties of the Jacobi group given in §1; the conditions at infinity
will follow from the explicit Fourier expansions given below.

Before proceeding to give the properties of the operators U, V, T,
we explain the motivation for the definitions given. The operator UR
is an obvious one to introduce, corresponding to the endomorphism
"multiplication by %" on the elliptic curve C/ZT+Z. As to the other
two, we would like to define Hecke-operators as in the theory of modular

forms by replacing ¢ by ¢|M, where M runs over a system of represen—
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tatives of matrices of determinant £ modulo left multiplication by
elements of I'l. Doing this would produce a new function transforming
like a Jacobi form with respect to I,. However, since $|[M] is a

multiple of

at+b Vi z
*) ¢(cT+d’ cT+d)

M = (‘: 3), % = det M), and v¥% is in gemeral irrational, the functiom

¢|{M] transforms in z for translations by a lattice incommensurable

with ZT +Z, and there is no way to make a Jacobi form of the same index
out of it. However, by replacing vE by £ in (4) restores the rational-
ity; since this is formally the operator U/f’ and UR multiplies the
index by 2%, we obtain in this way an operator which multiplies indices
by L. This explains the definition (2). Finally, if 2 is a square
then the function (4) transforms like a Jacobi form with respect to
translations in the sublattice VE(ZT+Z) of ZT+Z, so we get a
function with the right translation properties by averaging over the
quotient lattice. This explains (3) except for the condition on g.c.d.(M),

0
which was introduced for later purposes: If we definme T

9 by the same

formula as (3) but with the condition "M primitive'" (i.e. g.c.d.(M)=1),

then T, and T; are related by

L

2k-4
(5) T = d 2 .
2 Far l/d

Eventually we want to show that the Jacobi-Hecke operators TSL correspond
to the usual Hecke operators TSL on modular forms of weight 2k-2, and
equation (5) is precisely the relation between these Hecke operators and
the corresponding operators defined with primitive matrices.

Our main goal is to describe the action of our operators on
Fourier coefficients and to give their commutation relations. We start

with USL and VQ since they are much easier to treat.
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THEOREM 4.2. i) .Let ¢ € J, ., ¢ = Tecl(n,r)q"ct.  Then

(6) ¢lu, = 2 eln,r/V)qCt

n,r

(with the convention c(n,r/2)=0 <f 21r) and

k-1 nd r n,r
a C(az,a)>qC

- olvy = Z(
n,r a](n,r,l)

ii) The operators UQ, A satisfy the relations

(8 UQ,O UQ,' = UQ,Y.' s
(9) UQ,OVQ,' = VSL' OUR s
- k-1
(10) Voo Upr d](ﬁ‘jm 477 Uge Vagrya2

In particular all of these operators commute.

Remark. Formula (7) nearly makes sense for £=0 and suggests

the definition

n
¢[V0 = ¢(0,0) [ck + 2: Ok_l(n)q ]
n>1
with some constant Cp- Since ¢[VD should belong to Jk,0=M'k’ we
take S = ° EZ_k_ so that ¢[Vo is a multiple of the Eisenstein series
2k

of weight k. This definition will be used later.

Proof. Equation (6) is obvious. For (7) take the standard set

of representatives

an a b) o 24>0, bmodd) , ad=2
0 d

for the matrices in (2). Then
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k—l z Z (a’r+b ) az)

ad=¢ b(mod d)

an
k_l z d‘k Z Z c(n,r) qd Car ed(nb)

b(mod d) *°F

®]vy) (t,2)

ﬂ
gkl z gl k Z c(n,r) qd £ar

ad=2 n,r

n= 0(mod d)

_ ak— Z (nl ) an ar ,

alg

which is equivalent to (7). Equation (8) is obvious.
we have

By (6) and (7),

coefficient of ¢ z¥ in @loplv,, = Z a7t c(“ﬁ; , a—’;)
al (o,r,2"
215
0 if 21r
Z R c(naz' ,%) if 2|«
al(n,%,ﬂ,')

= coefficient of anr in ((HVR')lUR

Finally, using (7) we find

coefficient of q"¢% in (¢|V1)|V2v

k-1 k-1 nll’ r )
a b el %5, 0
(az'l:u2 ab
al(n,r, ") '

L r
b L 3~,)
(%50

Z N{e) ek_l C(M ) »

2
e e
number of ways of writing

Il

s

o

where N(e) 1is the

e as a°*b in the
preceding sum. If

such a decomposition exists then e|fa and hence
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e
a= -(e—ﬂ § for some integer §; writing down the conditions on a and
>

b=e/a we find the formula
1 A
N(e) = number of divisors & of (n,k,l‘,e, nf o' 2% M)

b > ’
e e e e?

(=0 unless ei(n!l,, nl', 24'), e?|nfL'). On the other hand, using the

calculation just given for UQ'OV we find

9!

coefficient of q"z' in Z dk_l(¢|Ud)| V!LSL‘/dz
dal, "

™
N

1 (nu' r
a2g? > ad

Il
o 1
Z
-~
o
-
o
-
-
I}
s
=]
=
NS
.
|
g

where now N'(e) counts the decompositions of e as a*d satisfying

the conditions in the sum; from e[nd we find —(n—e—é—)— divides d, and
s

writing d as (n?e) § we obtain for N'(e) the same formula as for N(e)
This proves (10) (another proof could be obtained by combining the
Corollary below with the multiplicative properties of ordinary Hecke
operators) and completes the proof of Theorem 4.2.

As a consequence of the formula for the action of VE on Fourier

coefficients we have the following

COROLLARY. For ¢ € J and vEN , L €N, one has

k,m
D\)(d)lk,mvl) = (Dv¢)!k+vTZ 4

where T, on the right denotes the usual Hecke operator on modular forms

Notice that this property characterizes VJL completely, since

we have



D
Tem ~ M @S5 @ .. @5
]
i
Yo Tl Ty Ty
\I/ v v v
J
k,me —_— M1<®Sk+l® cee ®Sk+N

and the horizontal maps are injective for N 2 2mQ (cf. Theorem 3.4).

To prove it, we calculate

k+v-1
Cn[(D\)(I))]kﬂ) TSZ,] = d%l d Cnl/dZ(ﬂ\)d))

= dk+v_l z pf)k_l) (r,n—'gm) c(% ,r) s
dlm, e T d d

. n . -
where ¢ denotes "coefficient of q in" and c(n,r) is the coefficient

of qn?;r in ¢. Replacing r by r/d in this sum and using the homo~
geneity of p(k D we find
_ (k-1) k-1 nl
R B > a 2. %)

dlm,z,2)

cal2 0l L,V s

as was to be shown. Another proof comes from observing that the map
+ +
Lk' Mk,m 6Mk+2,m used to construct 'DZ\) (cf. proof of Theorem 3.2)
is equivariant with respect to the action of VSL on M+ % (this follows
from (11) of §3 since VJL maps ¢ to Z(¢| M)(T,v% z)) and that VSL acts
as JL on the constant term ¢(T,0) of a form ¢ in M .
’

As another application of Theorem 4.2 we have

THEOREM 4.3. ILet Ek n denote the Eisenstein series of §2. Then
L]

for m square free we have

12 Vo = e ®E

Bl
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Thus the Fourier coefficients of Ek o Gre as in eq. (7) of §2.
. »

Indeed, we have

k-1 K -
B alVpy = m z : (eT+d) (cTC+Zd ) Z Z SEE

_fa b o AEZ
M'(c a w (Y s
nz/(ct+d) _ ym?z%/(ct+ d)® ]
x |:)\MMT+2)\ ML F S YHT+ 8 I

where M runs over Fl\{MGMZ(Z) | det M = m} and M' over T AT, .

Writing (2 Z) for the product M'M gives

_ k-1 ~k 2 aT+b mz mcz?
B qlvy = m 2(0T+d) Z [x o+ 2 CT+d-CT+d] ,

ab AEZ
cd
where now (2 Z) runs over I _\{M|det M = m}. Now suppose m is
square-free. Then (c,d) =8 divides m and ¢’ =§ is prime to 6.

It follows that (z 2) can be multiplied on the left by an element

of T so as to make a=b=0(mod 8", so
r \<l ab ab-bec =m, (c d)=(§}
® cd/’ ’ ’
1 &'z a' §'p ' o' ~ (1 8z
- (5 )\{(c S)lara - =l} = (o T
and hence

k-1 -k § -k
Ek’llvm = m Z s (cT+d)

§|m (2 3)6((1) 52) \sL,(2)

Ll 1 2
UPIEIEEE - TS
ANEZ

Replacing (i 2) by ((l) i)(i 2 multiplies the final exponential by
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e(728'/8), and this is 1 only if 8|\ (since (§,8') =1 and & is

square-free). Therefore the terms with §{ ) can be omitted, so

_ k-1 1-k -k m[ A% aT+b Az ¢z
Ek,llvm =m z 8 z (cT+d) z e [62 c'r+d+2 5 ored ~ oisa

S|m T\T © Aesz
k-1 1k B
m z § Ek,m(T’z) = Uk—l(m)Ek,m(T’z) .
§|m

This proves (12); the formula for the Fourier coefficients of Ek n
>
follows directly from Theorem 4.2. .

For m not square-free we find after a similar calculation the

more general result

L —k+l ~k+1,~1 .
(13) Eem = @ TTa+p DO Zow@ B 100V g
p|m a2|m a2

Eis defined in Theorem 2.4

yet more generally, we see that the space Jk o
is mapped by UJL and VJL to the corresponding spaces with index me? and

mf , respectively, the precise formulas for the images of Ek m.s under
3 k]

U, and V, being easily ascertained by looking at the "constant term"

2 2

(terms qncr with lmm=r2). One then sees by induction that all
Jacobi Eisenstein series can be written uniquely as a linear combination

of EIEX;IUJL"VJU (2,2' €N, X a primitive Dirichlet character modulo f
3

£ 00

with x(~1)=(—1)k, m=f£2, o

as in (10) of 82). Combining these

remarks with the commutation relations of Theorem 4.2, we obtain

THEOREM 4.4. Let

old
Teom = )3 ; Jk,E|UJL°Vd
’ dlm &°|d d 2z
d>1
d similarly for geusp,old and JEis’OId Define JEUSPLDEW s the
ana. sunt ¥ k,m k,m - k,m
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orthogonal complement of J{Zl:i in Jiu;p (with respect to the Petersson
s >

sealar product) and Jils’new as the span of the functions EIEX)
,m

Pyul

(X a primitive Dirichlet character (mod £)) if m=f> and O otherwise.

Then

Eis _ Fis,new

Yk,m ®  Tmerer 10V s
2,8
222" Im

and

cusp = cusp,new

Te,m Z Tempra? [ UgVpr -
2,8'
222 m

Eventually, we will show that the latter decomposition is also
a direct sum, but this will be harder and will depend on using a trace
formula.

It remains to describe the action of the Hecke operators Tl on
the Fourier coefficients of Jacobi forms. We do this only for (2,m)=1.
The formula obtained involves the Legendre symbol (i) if £ dis an
odd prime; in the general case it involves a slightly generalized symbol
ED(n), (D,n € Z), which we now define.

If D is congruent to 2 or 3 (mod 4) we set ED(n)=O. For D=0
we set
{ T if n=r", rz0 ;

0 if n#0 .

Otherwise D can be written uniquely as Dof2 where f21 and D, is the
discriminant of Q(vD). Then let X be the primitive Dirichlet characte

(mod Do) corresponding to Q(vD), i.e. the multiplicative function with

5 1 D, = 1(8)
X(p) = (;"—) (p 0dd) ,  X(2) = (-1 D, =5(8) , X(-1)=sign
0 D = 0(4)

and set
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X@)e if n=ng?, glf, (—f,n) =1,
0 g 0
E:D(n) =
0 if (n,f%) £ O

The function ¢ which reduces to X if D=D;, occurs naturally

D’

whenever one studies non-fundamental discriminants; it has the propertie
€ (n+D) =
p@+D) en(m)

and (as shown in [13], p.188),

®, €@
Z ——;—__ LD(S) s

n=1 n

where LD(s) is the L-series already introduced in connection with
Jacobi~Eisenstein series (eq. (6) of §2 and the following formula).

We can now state the formula for the Fourier coefficients of (MTSL .

THEOREM 4.5. Let ¢ = X c{n,r)q"2’ be a Jacobi form of weight k
and index m and L a positive imteger prime to m. Then

¢|T!L = Tc¥(n,r)qt" with

(14) c*(n,r) = Zerg_lmm(a) ak_zc(n',r') R
a

where the sum is over a with a|l?, a2|12(r2—4nm), a 2% (r%4nm)=0,1

(mod. 4) and

(15) r'2-4a'n = le(rz—lmm)/a2 s ar' = gr (mod 2m)

In particular, 1f r’—4nm  is aq Ffundamental discriminant and X the
corresponding quadratic character, then

2

(16) c*(n,r) = Z X{(d) dk_2 c (2—2 n ,% r)
dle d

To see that (15) makes sense, note that a]J?,2 and (2£,m) =1 imply

(a,m) =1, so the second equation in (15) defines 1r' uniquely modulo 2m
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if m is even and modulo m if m is odd; in the latter case, r' is
determined (mod 2) by the mod 4 reduction of the first of equations (15)

Thus in both cases r' is uniquely defined modulo 2m and satisfies

r = g2 (r2 - lmm)/az (mod 4m)

>

so the__number n' defined by the first of equations (15) is integral;
that c(n',r') is independent of the choices made then follows from
Theorem 2.2.

Before proving Theorem 4.5 we state two consequences.

COROLLARY 1. Por & and &' both prime to m one has

_ 2k-3
Tyt Ty = 2o d RIS
dj(e,2")
In particular, the operators T, ((&,m) =1) all commte. Furthermore,

the operators T, commute with Vo and U for (2,2'm) =1.

2'
Proof. Exercise.

COROLLARY 2. The spaces J and I2°¥

k.m k,m e spanned by common

etgenforms of the Hecke operators T, ((2,m) =1).

Proof. This follows by a standard argument from Corollary 1 and
the easily proved fact that the Hecke operators in question are hermitia

with respect to the Petersson scalar product defined in §2.

Proof of Theorem 4.5. We write the definition of T, as

ity = 22T ol M| A
M 3

2 and g.c.d.(M)

where the sum is over all M€ I‘I\MZ(Z) with detM) =2
a square and | A 1is the "averaging operator” which replaces a function
m

Y(T1,2z) that transforms like a Jacobi form with respect to some sublat-
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tice LC Z? by

Wl A= —— D Wl X .
(z":1] xez?/L

(Note that this is independent of the choice of L and projects
L-invariant functions to Zz—invariant functions; in (3) we took

L = JLZZ.) As in the usual computation of the action of Hecke operators
on Fourier coefficients we choose upper triangular representatives M

for the left I' —cosets; then (MTJL = ¢,]A where

¢ = lkszz Z ¢|k,m(3 g

ad=2> b(mod d)
(a,b,d)=0

1—22 :ak E : (b(a'rd+b ’JLd_z)
ad=22 b (mod d)
(a,b,d)=0O

To get rid of the condition " (a,b,d) =0" we use the identity

1 (n=0)
> A =

§in 0 (n#0)

with n= (a,b,d), where )\ is Liouville's function {the multiplicative

function with A(p”) = (-1)V). This gives

o TS e )

ad=4? 8|(a,d) b (mod d)
b =0(mod §)
- A(S
= <1 _—6) c(n,r)e(%'r+£d&z
ad=g> §|(a,d) n,r

n =0(mod d/8)

k-1 E n an rl
= E a A((a,d) ,m)c(n,r) e(?T =+ a

ad=2° n,r
n=0{(mod d/(a,d))
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where

A@,B) = Z A8/

X3y @sem.
8o, 087

B ' vi(x,B)

Replacing n and r by d—;~ and d—; gives

a7 ¢1(T,z) = Z ak_l Z A((a,d),m)c(ian-,%)e(n’r+rz)

ad=22 nea(a,d) 'z
retd 'z
This gives the Fourier development of ¢, (which, notice, involves
non-integral powers of ). We still must apply the averaging operator A
We can factor A as ﬂ10142 where '41 is the averaging operator with

respect to O0x 2z, i.e.

e gy D,

X€ 0 xZ/L'

for any sublattice L C Z such that y is invariant with respect to
0xL', and ;42 (for a function invariant under a lattice Lcz?
containing 0 X Z) is the averaging operator with respect to ZZ/OXZ.

It is easily seen that the effect of ;41 is to leave any term an,r

with n and r in Z unchanged and to replace all terms qncr with r € Z
by 0. Hence we have ¢|TJL = ¢2[ﬂ2 where q52 = ¢1!141 is obtained from
¢1 by omitting all terms in (17) for which r &€ Z, i.e. by replacing the

condition rE&Z by r€

d Thus

2
@, =

$,(1,2) = z ak 1 (bz’a(’[,z)

ad=22
with
n dn dr n.r
(18) ¢2’a(T,Z) = anEZ A((a,d),m)c(—a‘,f q
dnE’O(mod a)

dr=0(mod 2)
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To compute the coefficients c¢*(n,r) of ¢|TJL’ we must still
determine the operation of the operator 142 on each ‘blz,a' The operato
A, acts by

Wl Az = £ 0 T D, zeA)
A (mod N)
where N is any integer such that 1()[X=1p for X€ NZxZ, 1i.e. such
that the coefficient of qngr in Y depends only on 4om-r? and on r
(mod 2mN). (For ¢ = ¢2,a one checks that N=(a,%) works.) Letting
C(r,r’~4nm) denote the coefficient of q“cr in P (so that C(r,A) depend
only on A€-IN and on r € Z/2mNZ ), we easily deduce that the coefficie

of q“z;r in lb[ﬂz is C*(r,r2—4mn) with

a9 cHr,a) = 3 E C(R,A)
R (mod 2Nm)
R= r(mod 2m)
(which depends, as it should, only on A and on r (mod 2m)). Applying

this to Y = ¢ we find that the coefficient of qngr in MTJL is

2,a

given by

(20) HF,r) = 9, a7t ¢ (e, £?- 4nm)
ad=2°2

with C: related as in (19) to the coefficient Ca(R,A) of

2
q(R —A)/4mR in d)z 4+ From eq. (18) we see that this coefficient
t4

is given by

2 2
i R* - A RZ-A 4R
Ca(R’A) - A((a,d), 4ma/ (a,d) c(d 4ma JL) ’

with the convention that A(x,f) and c(n,r) are 0 unless o, B, n and

are integral. Set a=(a,d); then ad =22 implies that

PR S L
ya ., =Xy > (Jz/,a) =Y (JL,d) X

)
[= R
1l
3

for some x,y€ N with (x,y)=1. Then
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S 2 2 _ a R - A
QR 0 = xR, s iy Bt

2
=3 x|R, x2|A, %E(%) (mod 4m)
X

Conversely, if R=xro , A= szo, Ao = rs (mod 4m), then
2 2
B ry — b, 2 To By )
C,R,8) = A (G, T) C(Y a5,V
Hence (taking N= (a,f) =xa in (19))
* 1 rz B A0 2 rlf B A0
1) 8 = oy Mo —Zm—Je\Y —am Ty

r, (mod 20m)
Xr, =r (mod 2m)
rg = Ao (mod 4m)

if A= x®A, and CX(r,A)=0 if x*fA (or if x 'A= 2 or 3 (mod 4)).

Note that, since m is prime to 2% =ad by hypothesgis, the conditions

r? = A (mod 4m) and r§ = AD (mod 4) already assure that ri = Ao (mod 4m

The fact that m is prime to 2 also implies that the two numbers r and

r' o= ry = ryx'1 = rl/d determine one another (modulo 2m) and that the
2
rpo - A
number c(y2 O—AmE’ roy) in the last formula is the same as the
number c(n',r') in (14) (with A=r2—4nm). Moreover, we have

A rs_Ao _
(22) § o o = EAO(OL) ,

r, (mod 2cim)

xr; = r (mod 2m)
rg = A, (mod 4)
as we will show in a moment, and substituting this into the last
equation and into (20) gives the desired formula (14), if we observe
that i% er(a) = ;%&-erxz(axz) = -i epfa) .
It remains to prove equation (22). From the definition of A(x,B)

and the fact that o and m are relatively prime, we find that the

left-hand side of (22) equals
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ay Y
Sar D, s
YIOL 1, (mod 20m)

X1, = r (mod 2m)
réE A (mod 4Y)

The inner sum equals %NY(AO) with NY(AO) as in the formula preced-

ing equation (6) of §2. That equation gives

L0 Ty a1, ) - 3 e, @
z(s) y=1 Yoo B a=1 4,

or (since the coefficient of n™% in Z(2s)/z(s) is A(n))
a =
PRI ENIREERINO
vla

This completes the proof.

We remark that the hypothesis (£,m) =1 was not used in the
derivation of equations (20) and (21), so that we have in fact obtained

a formula valid for arbitrary £ and m:

k-1 2 2
a_  nrrA+mA +TA+mA r+2mA
e rwn = Y gy D e, ) (e xe)
a|e? A(mod(a,2))
r+2mA =0 (mod x)
n+ A +mA2 = 0(mod x*)
where x = G‘?T) s ¥ = (_a%SL_) as before and we have set r, = %ﬂ—
in (21). In particular, we find:
% prime, %|m = coefficient of q"zt in ¢|T5L
c(2%n,81) if 24r ,
2 k-2 .
(24) - c(2n, r) - & “eln,r) if Lir, 24n ,
2
¢(220,00) + L2 (- 1yc (@, r) + 27573 E c(—————“"r;;“‘A ,—~—”52me)

A (mod R)
T+ A+ A= 0(mod £)

if R r,n .



CHAPTER II
RELATIONS WITH OTHER TYPES OF MODULAR FORMS

§5. Jacobli Forms and Modular Forms of Half-Integral Weight

In §2 we showed that the coefficients c(n,r) of a Jacobi form of
index m depend only on the "discriminant" r?- 4nm and on the value of

r(mod 2m), i.e.
[@B) c(n,r) = cr(!mm—rz) R Cr'(N) = c, (N} for r'=r (mod 2m) .

From this it follows very easily, as we will now see, that the space of
Jacobi forms of weight k and index m is isomorphic to a certain space
of (vector-valued) modular forms of weight k-% 1in one variable; the
rest of this section will then be devoted to identifying this space with
more familiar spaces of modular forms of half-integral weight and
studying the correspondence more closely.

Equation (1) gives us coefficients CU(N) for all y € Z/2mZ and
all integers N2 0 satisfying N = —112 (mod 4m) (notice that p® 1is
well-defined modulo 4m if 1 is given modulo 2m), namely

2
(2) CH(N) = ¢ y—%];r—,r) (any r€Z, r = p(mod 2m))

(since 1 1is a residue class, one should more properly write r€ y
rather than r = py(mod 2m); we permit ourselves the slight abuse of
notation). We extend the definition to all N by setting CU(N) =0 if

N # -p® (mod 4m), and set

(3) b = Y e ) ¢V (u € z/2m7)
u N=0 u

-57-
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QN Y
Sar o Do
Y]ot r, (mod 20m)

Xr = r (mod 2m)
réE Ao (mod 4v)

The inner sum equals %—NY(AO) with Ny(Ao) as in the formula preced-

ing equation (6) of §2. That equation gives

©

S8 T a7 = a0 = ¥ gy @
y=1 0 a=1 0

or (since the coefficient of n™% in 7(2s)/z(s) is A(n))

> ) Ny

Yo

€, (Q)
Ao
This completes the proof.

We remark that the hypothesis (f,m) =1 was not used in the

derivation of equations (20) and (21), so that we have in fact obtained

a formula valid for arbitrary £ and m:

r+2mi

k-1 2 2
A+mA A+mh
(23)  *(n,r) = -(aa,ﬂ,) E A(}; , n+rxzm ) e (yz n+rx-; .y

a|52,2 A(mod (a,R))
r+2mA =0 (mod x)
n+ A +mA2 = 0(mod x2)

- _a_ I - ItZ2mh
where x = @2’ y = @0 as before and we have set r, -
in (21). 1In particular, we find:
% prime, &|m = coefficient of ¢"¢" im ¢|T5L
c(%%n,0r) if f4tr ,
e (2%, or) - Sl,k—zc(n,r) if lr, 24n ,

(24) =

X

)

2
c(2%n,8r) + lk—z(!&—l)c(n,r) + 51,2k~3 E c(______n+r2«;m)\ , —r+j2z'm)\)

A (mod 2)
THIME A%= 0 (mod L)

if 2,] r,n .



CHAPTER II1
RELATIONS WITH OTHER TYPES OF MODULAR FORMS

§5. Jacobli Forms and Modular Forms of Half-Integral Weight

In §2 we showed that the coefficients c(n,r) of a Jacobi form of
index m depend only on the "discriminant" r”?- 4nm and on the value of

r(mod 2m), i.e.
¢)) c(m,r) = cplhnm-r?) , ¢ ) = ¢, (N) for r'=r (mod 2m) .

From this it follows very easily, as we will now see, that the space of
Jacobi forms of weight k and index m 1is isomorphic to a certain space
of (vector-valued) modular forms of weight k-1% 1in one variable; the
rest of th'is section will then be devoted to identifying this space with
more familiar spaces of modular forms of half-integral weight and
studying the correspondence more closely.

Equation (1) gives us coefficients CU(N) for all y € Z/2mZ and
all integers N2 O satisfying N = _uz (mod 4m) (notice that p? is
well-defined modulo 4m if p is given modulo 2m), namely

2
) e, = (M) (any rez, r= p(mod 2m))

(since u 1is a residue class, one should more properly write r€&€ y
rather than r = pu(mod 2m); we permit ourselves the slight abuse of
notation). We extend the definition to all N by setting CU(N) =0 if
N 2 -p®(mod 4m), and set

oo

3) B (T) = N};O ¢, q

N/4m (u € 2/2mZ)

-57-
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and
r2/4m r
) 8, (T:2) o rZE:Z a z
r = U {mod 2m)

(The Gm u are independent of the function ¢.) Then

$(T,2)

S OE R etmends
1 (mod 2m) r€Z nxr’/im
r =y (2m)

Ner?

Z Z z ey qﬁ_ Zt

U(mod 2m) r=u(2m) N20

S oy

U (mod 2m)

(6]

Thus knowing the (2m)-tuple (hu) of functiong of one variable

u(mod 2m)
is equivalent to knowing ¢. Reversing the above calculation, we see
that given any functions hu as in (3) with CU(N) =0 for N # —uz(mod 4m
equation (5) defines a function ¢ (with Fourier coefficients as in (1))
which transforms like a Jacobi form with respect to z —>z+AT+U

(\,u € Z) and satisfies the right conditions at infinity. In order for
¢ to be a Jacobi form, we still need a transformation law with respect

to SLz(Z). Since the theta-series (4) have weight % and index ﬁ,

while ¢ has weight k and index m, we see from (5) that the h11 must

be modular forms of weight k-%. To specify their precise transforma-
: ; . . 11 0 -1
tion law, it suffices to consider the generators o 1 and 1 0
of 1"]. For the first we have
_ 2
(6) em’u(T+1,z) = e 8y L (1,2)
and

€)) hU(T+l) = e!;m(_uz) hU(T) ,
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as one sees either from the invariance of the sum (5) under T —> T +1
or from the congruence N = —uz(mod 4m) in (3). For the second we have

as an easy consequence of the Poisson summation formula the identity

1 oz _ ~ 2mimz?/T
(8) em,u( p ,T) = /T/2mi e z ezm(-—u\))em’\)('[,z) ,
V{(mod 2m)
so (5) and the transformation law of ¢ under (1,z) +—> (— T]l_:',%) give
( 1 Tk
9 hG-2) = —— > e, aw h,®
u T \/ZmT/i 2m v
v{(mod 2m)

We have proved

THEOREM 5.1. Equation (5) gives an isomorphism between k.m and
the space of vector valued modular forms (hu)u(mod om)y O SL,(Z)

satisfying the transformation laws (7) and (9) and bounded as Im(T) - .

When we spak of "vector-valued" forms in Theorem 5.1, we mean that

N
the vector h{(T) = (hu)u(mod om) satisfies

10) rom = (et )¥7E vanicn = (2 e
where U(M)=(qu(M)) is a certain 2m x 2m matrix (the map U: I‘1+GL2m((Iﬂ)

is not quite a homomorphism because of the ambiguities arising from the
choice of square-root in (10); to get a homomorphism one must replace 1"1
by a double cover). The result 5.1 would be more pleasing if we could

identify J with a space of ordinary (i.e. scalar) modular forms of

k,m
weight k-3 on some congruence subgroup of l"l. We will do this below
in the cases m=1 and m prime, k even, and also discuss the general

case a little. First, however, we look at some immediate consequences

of Theorem 5.1.
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First of all, by combining (5) with the equations em _U(T,Z) =
*

(—l)kq)('r,z) we deduce the symmetry property

em,u (T,-z) and ¢(T,~2)

D¥n

(11) h_, y

(1 € z/2nZ)

(this can also be proved by applying (9) twice), so that in fact (hu)
reduces to an (m+l)-tuple of forms (hu+h-u)0§11§m if k is even and
to an (m-l)-tuple (hu_h—u)0<u<m if k is odd. However, we can introdu
a finer splitting if m is composite. For each divisor m' of m with

(m',m/m') =1 (there are 2t such divisors, where t is the number of

distinct prime factors of m) choose an integer E=€m. satisfying
(12) £ = 1 (mod 2m/m') R £ = -1 (mod 2m') ;

such a & clearly exists and is unique (mod 2m), and the set of é’-,'m. for
all m'"m is precisely {E (mod 2m)]£251 (mod 4m)}. Now map the

collection of (2m)-tuples (hll)ll into itself by the permutation

(13) (h ) —> (h

Eu)p (mod 2m) ~

[y

hp u(mod 2m)

Because £2 1(mod 4m), it is clear that equations (7) and (9) are

preserved. Hence we deduce

THEOREM 5.2. For each divisor m' of m with (m',m/m')=1 there

18 an operator W from Jk o to itself such that the coefficient of
"zt in <1>|Wm, is c(n',r') where r'= -r(mod 2m'), r' = r(mod 2m/m')
4n'm-r'? = 4nm-x?. These operators are all involutions and together

form a group isomorphic to (z/zz)t and generated by the W v
t Pi

(m = TT p;)i)-

Next, we relate the expansion (5) to the Petersson product

introduced in §2.
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THEOREM 5.3. Let

¢ = Y h 6 , Y =3 g 0
u Mo om,u " Hom,U
be two Jacobi forms in Teim® Then
1 — k=%
= — h
($,9) Von J 1J(T) gU(T) v du dv

T\x 1 (mod 2m)

In other words, the Petrersson scalar product of ¢ and Y as
defined in §2 is equal (up to a constant) to the Petersson product in
the usual sense of the vector-valued modular forms (hU)U’ (gl-l)ll of we
k-!%. The assertions of Theorem 2.5 (that (¢,yP) is well defined and i
finite if ¢ or Y is cuspidal) now follow from the corresponding

statements for modular forms in one variable.

Proof. We first compute the scalar product of em and em v
— ’

’

a fixed fiber (TE€ X fixed):

~4mmy2/v

8 (1T,2) em’\)('r,z) e dx dy

fc/m}«z mH

2, _ o2 _ 2
= J e(rz—si) e(uﬁ—’r)e 4Tmy /v dxdy

C/ZT+Z r =7 (2m)

s = v{(2m)

Using

f - _ ~4TTy
J e(rz-sz)dx = 8, ©
R/Z

we find that this equals

41rm( rv
-AE (2
§ f E e 2m dy

uv
R/vZ 1t =u{mod 2m)

o

2
N Gqu UMY Y 4y = VNThm S

—o

MV
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(here Grs is the Kronecker delta of r,s and GU\) of 4 and v modulo 2

It immediately follows that

_ — k-% dudv
($,¥) ——/m f _S_ hu(T) gu(T) v e
I‘I\J(‘ U (mod 2m)

as claimed.
Since Wm' simply permutes the hll’ ir follows from Theorem 5.3

that Wor is Hermitian. From Theorem 4.5 it is clear that the W

commute with all TSZ, ((&,m) =1). Hence we deduce

COROLLARY. J has a basis of simultaneous eigenforms for

all T, ((,m) =1) and W_, (@'fm).

2

+
® ..
Jk,m as . . Jk,m R

Theorem 5.2 gives a splitting of where
the sum is over all t-tuples of signs with product (-l)k; Theorem 5.3
shows that this splitting is orthogonal and that each summand has a
basis consisting of Hecke eigenforms.

We now discuss the connection between Jacobi forms and scalar-—
valued modular formé of weight k-%. We recall that modular forms of
half-integral weight are defined like forms of integral weight, except
that the automorphy factor describing the action of a matrix (2 3)
involves the Legendre symbol (%), the easiest way to specify the
automorphy factor exactly is to say that for a modular form h(t) on

- 2
2k 1, where (1) = Zq" , 1is invariant under

1"0(4m) the quotient h/6
1"0(4m). We denote the space of such forms by Mk_%(I‘o (4m)). Shimura
developed an extensive theory of such forms in [29],[30]. In particular
he showed that one can define Hecke operators Tp on Mk—‘/i(ro (4m)) for
all primes pf{ 4m, that Mk_g(ro(‘"“)) is spanned by simultaneous eigen—

forms of these operators, and that the set of eigenvalues of an eigenfor

is the same as the set of eigenvalues of a certain Hecke eigenform of
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weight 2k-2. (Shimura used the notation T(pz) for the Hecke operators
in half-integral weight because they are defined using matrices of
determinant pz, but we prefer to write TP since these are the only
naturally definable operators and correspond to the operators TP in
weight 2k-2.) His conjecture that the eigenforms of integral weight
obtained in this way have level 2m was proved by Niwa [24]. For the
case m=1 (and later for the case of odd, square-free m {[12]), Kohnen
[11] showed how.one could get all the way down to level m by passing

to the subspace

©

Ml:_l/z(ém) = {h €M _, (T ¢m)|n = E e (W) qN}
N=0

1L n=0,1(mod 4)

of forms in M'k—‘/?_(ro (4m)) whose N*” Fourier coefficient vanishes for
all N with (—l)k_lN congruent to 2 or 3 (mod 4). Following Kohnen's
notation in [12], we shall write simply Mk_%(m) for M;_l/z(lm) and

M'k—‘/z instead of Mk—l/z(l)' Then Kohnen's main result for m=1 says that
one can define commuting and hermitian Hecke operators Tp on Mkv‘/z for
all p (agreeing with Shimura's operators if p # 2) and that Mk-—% then

becomes isomorphic to M as a module over the ring of Hecke operators

2k~2

i.e. there is a 1-1 correspondence between eigenforms h € Mk—li and

k2 such that the eigenvalues of h and h under ’I‘p agree for

all p. Explicitly, T,: M, - Mk_1/2 (k even) is given by

(14)
-Ny k-2 2k-3 N N
Tp: E C(N)qN — E (c(sz) +(?)p c(N)+p c(;z‘)>q
NzO Nz0
N=0 or 3 (mod 4) N=0 or 3 (mod 4)
Observe also that M-k-li = EI? Mk—% is a module over M, by

h(r) +> f(4T)h(t) (heM _ feM).

1

We can now state:
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THEOREM 5.4. The correspondence

as)- E cq" E c4n - r?)qict

N>0 n,re€Z
N=0,3 (mod 4) 4n » r?

gtves an isomorphism between Mk—% and J (k even). This isomorphism

k,1
ig compatible with the Petersson scalar producte, with the actions of
Hecke operators, and with the structures of MZ*—% and J* 1 as modules

over M* .

Proof. Denote the functions defined by the two Fourier series in

(15) by h(r) and ¢(r,z) and set hU(T) = X CU(N)qN/A with
c() N = -1 (mod 4)
c. (W) = »
H 0 otherwise

so that c¢c(N) = cO(N) + ¢, (M (YN and h(r) = hO(AT) + hl(aT).
By Theorem 5.1, ¢ is a Jacobi form if and only if h0 and h, satisfy

the transformation laws (7) and (9), which now become

b (D) = b, b (-E) = EL w0+ @),
(16)

h(rtl) = ~th (@ , b (-1) = ZL @ - bm) .
These easily imply

ne) = a@ () = GrD I

(for the three-line calculation, see [40], p.385), and since the matrice

1 1 1 0 :
(O l) and (4 l) generate 1"0(4), it follows that h € Mk_l/z(l"0 4))

and hence h € Mk-l/z' Conversely, if h € Mk—l/z’ then reversing the

same calculation shows that h; and h; satisfy (16) and hence by

Theorem 5.1 that ¢(1,2z) is in J

K.1" This establishes the isomorphism
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claimed. To see that it preserves the Petersson scalar product

(up to a constant), we combine Theorem 5.3 with the fact that

(h,h) = const.[(ho,ho)+ (hl’hl)] for h and h, related as above.

This fact follows easily from Rankin's method, which expresses (h,h) as

. 2 -s L. E

a multiple of Res _ Z le() " n ) and similarly for h_ and h
5=k~ N>0 ; ’ '

(for more explicit formulas, look at the proof of Corollary 5 in [13],

pp-189-191, and take residues at s=1 in the identities proved there).

The compatibility with Hecke operators is clear from (14) and Theorem 4.

The compatibility with the structures of M and J* as modules

2%-1 ,1

over MJ‘ is also clear.

Theorem 5.4 tells us that the spaces J* and M

are in
.1 2%-15

some sense tdentical: they are related by a canonical isomorphism
preserving their Hilbert space structures, their structures as modules
over the Hecke algebra and their structures as modules over the ring of
modular forms of integral weight, and such that the Fourier coefficients
of corresponding forms are the same (up to renumbering). Combining this
with results on Jacobi forms proved earlier, we can obtain various
(previously known) results about forms of half-integral weight, in

particular the following two:

COROLLARY 1. ILet k24 be even and H(k-1,N) = L_N(Z—k) as in

Theorem 2.1. Then the function

ca

(1) = X Hk-1,Mq"
M1 =

lies in M, -
‘2

This was proved by H.Cohen for both odd and even k in [6]; it was
Cohen's discovery of the existence of Eisenstein series, half of whose
Fourier coefficients vanish, which led to Kohnen's definition of the

space M:;_%(A). Cohen's calculation of the coefficients of the two
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Eisenstein series in Mk_;i(l"0 (4)) 1is of the same order of complexity as
the calculation leading to Theorem 2.1, but our proof makes it clearer
where the condition -N= O(mod 4) comes from. On the other hand, it
does not apply at all to the case of odd k.

COROLLARY 2. MZ*—% is a free module of rank 2 over M_, with

generators ¥, and ¥ .

This was proved by Kohnen [11, Prop. 1], who also ga-\}e the

corresponding result for M (it is also free, with generators ©

2%+
and JCZ); our proof, which is a restatement of Thecrem 3.5, works only
for even k.

Conversely, by combining Theorem 5.4 with Kohnen's results as
N

quoted above, we obtain

COROLLARY 3. If ¢ € J is an eigenfunction of all Hecke

k,1

operators T, then there is a Hecke eigenform in Moo with the

same eigenvalues. The correspondence
{eigenforms in J }/scalars > {normalized eigenforms in M }
k,1 2k-2
and v, with N = (mo—ro2 > 0

is bijective. More precisely, for fized n|

there is a map Sn I . given by
0® o d
zc(n,r)qngr > é 'S_N(d) dk_2 c(n',r") q'q'
=0\ ale?, a°|¢%n
d™3L AN =0,3(4) , 2
(n',r'€Z, 4n'-r'" = 4°N/d7)

ALl of these maps are compatible with Hecke operators, and some

combination of them is an isomorphism.

The second statement follows from the explicit description of the
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correspondence Mk—-‘/2 - M2k‘-2 and from the corresponding result for

half-integral weight, namely that the map

H(k-1,N -2 (&
Sy Y e — BOSLN) c0) + Z(Z e_(@a" c(d—f))ql
00 221N 42

a2ye%n

sends Mk—l to

3 M2k—2 for all N2>20 and that some linear combination of

the gN is an isomorphism ([11], Theorem 1, iii; Kohnen states the
result only for -N a fundamental discriminant). However, it also
follows from the first statement of the Corollary and from Theorem 4.5,

by noting that the map & is simply
(1) b

To

oo
n, r
¢ > Z (coefficient of ¢ °2°° in ¢|Tl)q2' .
2=0
Finally, by combining Theorem 5.4 with the main theorem of [13],

which is a refinement for modular forms of level one of a theorem of

Waldspurger [36,37] one gets:

COROLLARY 4. et ¢ € Jiuip be an eigenform of all TQ and
s
£ €5, o the corresponding normaltzed eigenform as in Corollary 3.
Then for all n,r with r?<é4n,
2 (k=) _ 2k (9,4 -
[e(n,m)] = —-n-k"l (4n - r?) E. B L(f, €p2_gn k-1) ,

where L(f, €p» s) denotes the twisted L-series EgD(n)a(n)n_S

(f = Za(n)q®).

We mention one more result about the correspondences Jk—-l > Mk—‘ .

THEOREM 5.5. ILet ¢ € Jk,l and h € M‘k—% be forms corresponding

to one another as in Theorem 5.4 and vz 0 an integer. Then
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Dy = F,8,m)]U, ,

where D\) is the Taylor development operator of §3, ¥, is Cohen's

2
operator as defined in the Corollary to Theorem 3.3, 6(t) = Z q" ,

and U, tis the operator 3 c(m)q® > Zcn)".

This can be checked easily by direct computation. The special

; : V) .
= = '
case d)_Ek,l’ h xk—l gives Cohen's function Ck as in the Corollary

to Theorem 3.1. (Indeed, Cohen proved that C}E\)) belongs to Mk+2\) by

defining it as F\)(G,Jﬂk_l)lUu )
We mow turn to the case of general m, where, however, we will not
be able to give such precise results as for m=1. By Theorem 5.2 we have

a splitting

€
arn Jk,m N GEB Jk,m ’

where £ runs over all characters of the group
2 = {€£mod2m)| £%= 1 (mod4m)} = (z/2z)"

k b -
with e(-1)= (~1) and J€ (which was denoted J, ° ’ in the remark
k,m k,m :

following the Corollary to Theorem 5.3) is the corresponding eigenspace,
i.e. if h
i.e. 1 ( 11)

U (mod 2m) are the modular forms of weight k-% associated

€ .
to ¢ € Jk,m then hgu = E(E)hu for all & € . 1In particular, the map

(18) $(T,2z) +—> h(T) = Z by, (4mT)
U {mod 2m)

(which generalizes the map ¢ - hD (4T) + hl((rr) used in the proof of
Theorem 5.4) annihilates all J;: m with € #1. TFor this map we can
b4

prove the analogue of Theorem 5.4:
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THEOREM 5.6. The function h(t) defined by (18) lies in Mk_%(m).
If m is prime and k even, then the map (18) defines an isomorphism
between ,m and the space M;_%(m) of modular forms in Mk—%(m) whose

N Pourier coefficient is zero for all N with (%) =-1.

More generally, the image of (18) is contained in the subspace
+...t ) . .
Mk—li (m) consisting of all modular forms of weight k-3 on I’o(ém)

th . . -
whose N Fourier coefficient vanishes unless -N is a square modulo 4m,

and for m square-free the map (18) gives an isomorphism between J1

k,m
too. ¥+ 1 {
and Mk_l§ (m) (note that Jk,m = Jk,m for m prime and k even). The
+...+ ...t .
spaces Mk—-% (m), and more generally the spaces Mk—lg (m) consisting

of modular forms Ec(l’.\])qN with prescribed values of (;—N) for p|m,
were studied (for m odd and square-free) by Kohnen [12}, who showed
that Mk—‘/z(m) decomposes in a Hecke~invariant way into the sum of these
spaces. It is tempting to assume that this decomposition corresponds to

the splitting (17) of but this is not the case. We discuss this

Jk,m’

in more detail below after proving Theorem 5.6.

—kaks
Proof (sketch): It follows from equation (9) that T k+2h(— ﬁ)
is a multiple of hO(T) and hence invariant under T > T+1; this and
the invariance of h itself under T+ T+1 suffice to show that

h € Mk_%(l"o((;m)). We have h = X t:(N)qN with c() = EC}J(N); since

CU(N) is non-zero only for ].12 = -N (mod 4m), this shows that h lies
. + oLt . £ .
in Mk-% . The map (18) is clearly zero on all Jk,m with €41, but
for m square-free it is injective on gt m Indeed, for ¢ € Jli m

» >

we have CEU(N) = CU(N) for all €&, and for m square-free this
implies that C]J(N) is independent of the choice of the square-root |
of -N (mod 4m); hence c¢(N) = 2tcu(N) and therefore h=0 = ¢=0.

Finally, the surjectivity claimed in the theorem results from the formula

. _ : * :
(19) dim Jk,m = dim MZk—Z(F (m)) (m prime, k even)
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which will be proved in §§9-10 and the isomorphism Ml:—%(m) = M2k_2(1"*(m)
proved by Kchnen [12], where T'*(m) denotes the normalizer of I'D (m) in
SLZ(IR). (Actually, (19) will be proved in §§9-10 only for k sufficient
large, but the inequality with = replaced by 2 will be proved for all
and that is sufficient for the application here; it then actually follow
from Theorem 5.6 and Kohnen's work that one has equality in (19) for
all k.) This completes the proof.

Theorem 5.6 and the remarks following it describe the relation
between Jllc,m and forms of half-integral weight. As we said, the
situation for the other eigenspaces Jli,m is more complicated; the

authors are indebted to N.Skoruppa for the following remarks which

clarify it somewhat.

Suppose that m is odd and square—free and let €: EZ » {il} be a

character as above. Write € = TT €p with €, a character on
p|m

{E (mod p)IE2 = 1 (mod p)} =~ Z/2Z and let f be the product of those p

for which €p is non-trivial. We extend € to a character € (mod f)

by taking € to be the product of arbitrary odd characters ::p (mod p)

for p|f and define

hg(t) = ) E(wh o)
1 (mod 2m)

(thus hE is our old h for g=1). Then

1) he lies in M_, (T (4mf),X), where X =(=2)%g ;
E k=%""0

€'
ii) the map ¢»——>hE is 0 on all Jk,m for €' #eg and

. PR . €
is injective on Jk,m;
iii) the image of this map is the set of h in Mk_%(l"n(hmf),x)

s
such that the representation of SLz(Z) (= double cover of

SL,(Z)) on Z C- hly 1is isomorphic to Ce (or to 0),
Y€ SL(&)
where CE is a certain explicitly known irreducible

representation of SL2 (Z)/T (4m).
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This set can be characterized in terms of Fourier expansions and its
dimension (resp. traces of Hecke operators) explicitly computed; it is
contained in but in general not equal to the space of modular forms in
Mk_%(ro(4mf),x) with Fourier expansions of the form EE: c(N)qN
—-N=(mod 4m2

Notice that there is a choice involved in extending £ to € but
that tbg different functions hE which are obtained in this way are
twists of one another. Skoruppa also has corresponding results for m
arbitrary (if m 1is not square-free, then one must restrict to the U-new
part, i.e. the complement of the space df& Jk,m/dzlud H if m is even,
then we must take £, to be (-%é) of conductor 4 rather than 2 and thus
to be twice as large as above; the level of hE in general is four times
the smallest common multiple of m and fz) and has given a formula for
dim Ji,m for arbitrary m and € [34].

We mention one other result of Skoruppa, also based on the
correspondence between Jacobi forms and modular forms of half-integral

weight:

THEOREM 5.7 ([34]): SO {0} for all m.

The proof uses Theorem 5.1 and a result of Serre and Stark on

modular forms of weight 1/2.

Finally, the reader might want to see some numerical examples
illustrating the correspondence between Jacobi forms and modular forms
of half-integral weight. Examples of Jacobi forms of index 1 were given
at the end of §3. According to Theorem 5.4, these should correspond to
modular forms in M*_%, so that, for instance, the coefficients given
in Table 1 should be the Fourier coefficients of the Eisenstein series
in Mk-% (k=4,6,8) and cusp forms in Mk_;2 (k=10,12); one can check
that this is indeed the case by comparing these coefficients with the
table in Cohen [7]. Numerical examples for higher m illustrating

Theorem 5.6 and the following discussion can be found at the end of §9.
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§6. Fourier—Jacobi Expansions of Siegel Modular Forms
and the Saito-Kurokawa Conjecture

We recall the definition of Siegel modular forms. The Siegel

upper half-space of degree n is defined as the set an of complex

symmetric nxn matrices Z with positive-definite imaginary part. The
group
t 0 -~I
= S = = et
Spy(R) = (M€ M, (B [M1, M =3, } Iy ("In o ) ,

= {(A g)] 4,B,C,D € ¥_(R), ABt=BA®, cpf=pct, ADt—BCt=In}

acts on an by

A B _ -1
(C D) Z = (AZ+B)(CZ+D)

a Siegel modular form of degree n and weight k with respect to the
full Siegel modular group Fn = szn(Z) is a holomorphic function

F: J(‘n—-> € satisfying
@ FM+Z) = det(CZ+D)SF(2)

A B

for all z € J(‘n and M=(C D

) S Fn‘ If n>1, such a function will

automatically possess a Fourier development of the form

(2) F(Z) = 2. A(T) e(tr TZ) ,
T30

where the summation is over positive semidefinite semi-integral (i.e.

Ztij’ tii € Z) nxn matrices T; if n=1, of course, this must be posed

as an extra requirement.

If n=2 we can write Z as (‘; Tz,) with T,T' € X, zecC,

2
Im(z) < Im(T)Im(T') and we write F(1,z,T') instead of F(Z); similarly

el
/2

2

we have T=( rr/nz) with n,r,m €%, n,m20, r“<4om and we write
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A(n,r,m) for A(T), so the Fourier development of F becomes

3 F(t,z,T') = E A(n,r,m) e(nT+rz +mt") .
n,r,mcZ
n,m, 4nm-1r2 20

The relation to Jacobi forms is given by the following result, which,
as mentioned in the Introduction, is contained in Piatetski-Shapiro's

work [26].

THEOREM 6.1. Let F be a Siegel modular form of weight k and

degree 2 and write the Fourier development of F in the form
Lo

(%) F(T,z,T') = 2. ¢ (T,z) e(mr') .
m=0

Then d)m('r,z) 18 a Jacobi form of weight k and index m.

a b

Proof. For (c d

)E 1"1 and (A U) € z°  the matrices

a 0 b O 1 0 0 U
0 1 0 O Al u 0
£ c 0'd o0 and 00 1 -A
0 0 0 1 0 o0 0 1
belong to 1"2 and act on JCZ by
f aT+b z v cz?
(T,z,T7) > (c‘r+d *oted * T cT+d) ?

(T,z,T') +—> (T,z+)\T+u,T'+2)\z+}\2T) ,

respectively. Applying (1), we deduce the two transformation laws of
Jacobi forms for the Fourier coefficients d)m; the condition at infinity
follows directly from (3). Following Piatetski-Shapiro, we call (4) the

Fourier-Jacobi expansion of the Siegel modular form F.

Note that the proof of Theorem 6.1 still applies if 1"2 is replace

by a congruence subgroup. Note, too, that the first collection of



matrices in (5) form a group (isomorphic to SL,Z) but that the second

do not; the group they generate has the form

1 0 o0
A1 K

0o 0 1 O)|rmxez
0 0 0 1

so that we again see the necessity of replacing z® by the Heisenberg
group J(‘Z. The complete embedding of SL,(R) K J(‘]R into Spu(]R)

is given by

a 0 b u

a b P S T s
[(c d)’()‘“)’K] = 1l%e 0 a =
0O 0 o 1

1

where (A' u') = QA W (2 z) However, we shall make no further use
of this.

The real interest of the relation between Jacobi and Siegel modula
forms, and the way to the proof of the Saito-Kurokawa conjecture, is the

following result, due essentially to Maass [21].

THEOREM 6.2. Let ¢ be a Jacobi form of weight k and index 1.
Then the functions ¢|Vm (m> 0) defined in 84 are the Fourier-Jacobi

coefficients of a Siegel modular form ¥Y¢ of weight k and degree 2.

Proof. Reversing the proof of Theorem 6.1, we see that the
function defined by (4), where ¢  (m>0) are any Jacobi forms of weight
k and index m, transforms like a Siegel modular form under the action
of the matrices (5). In particular, this holds for the function

Vo(t,z,7') = 2. ($|V) (1,2)e@mr")

m>0

On the other hand, Theorem 4.2 gives the formula

2
®) AG,r,m) = . d&l c(‘”‘“‘m;r) ((a,z,m) # (0,0,0)
d| (a,r,m) d
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for the Fourier coefficients (defined as in (3)) of #¢ , where

E c(n,r)qngr is the Fourier expansion of ¢, and since this is
nxr / 4m

symmetric in n and m we deduce that #$ is symmetric in T and T' ,

i.e. transforms like a Siegel modular form with respect to the matrix

6 1 0 o
1 0 0 O
7 0 0 0 1
0 0 1 o
as well as the matrices (5). Since these matrices are known to generate

1"2, it follows that ¥ is indeed a Siegel modular form.

The same proof works for the standard congruence subgroups of I‘z,

b
d

in the corresponding subgroup of T ) and (7); nevertheless, it would be

since these are known to be generated by the matrices (5) (now with (:

nice to have a "real' proof of Theorem 6.2, i.e. a direct verification
of the transformation law of W(b with respect to all elements of 1"2.
Theorems 6.1 and 6.2 give an injective map
4): M (T,) —> T o Xy X I X
and a map
V- Jk,l o Mk(l"z)
such that the composite

4 q pr
sor Loy T T

k,1 k,1

is the identity. Thus % is injective and its image is exactly the set
of F with TF = W(@?;(F)), i.e. of Siegel modular forms whose Fourier-
Jacobi expansion (5) has the property ¢, = ¢ |2 (¥ m). This means
that the Fourier coefficients A(n,r,m) (defined by (3)) are given by

the formula (6), where

A(n,0,1) if N=4n
(8) c(N) =

A(n,1,1) if N=é4n-1
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(The last statement could be omitted, since the validity of (6) for any
sequence of numbers {C(N)} forces the c(N) to be given by this formula.)
Equivalently, we can characterize these functions by the Fourier

coefficient identity

) A@yrm) = 3 at A(%;E, £, 1) (¥ n,r,m)
d](n,r,m)

The space ML’:(FZ) of functions satisfying (9) was studied by Maass

([203,[21]; see also [17]) after the existence of Siegel forms satisfying

these identities had been discovered experimentally by Resnikoff and\

Saldana [27] (whose Tables IV and V should be compared to our Tables

1 and 2); he called it the "Spezialschar". We thus have established

inverse isomorphisms

ME(FZ) —4i—> J

k,1 3

combining these with the isomorphism Jk 1% Mk—% given in §5 we obtain

COROLLARY 1. If h(T) = Q.  cMq" is a modular form in
N20
N=0,3(mod 4)
Kohnen's "plug-space” Mk_%, then the numberg A(n,r,m) defined by
equation (6) are the coefficients of a modular form F in Maass'
"Spezialschar” ME(I‘Z). The map hw> F is an isomorphism from Mo to

M;:(I‘z), the inverse map being given in terms of Fourier coefficients

by equation (8).

From Theorem 3.5 (or Corollary 2 to Theorem 5.4) we also deduce:

COROLLARY 2. The "Spezialschar” M:(I‘ )= _® M;:(I‘ ) is free
- 2 k even 2

over M*(SLZ(Z)) on two generators, of weights 4 and 6 .
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This result was proved by Maass [21],[22].

Finally, we must check that the map % is compatible with the
action of Hecke operators in J, and Mk(I‘ ), i.e. that there is an
k,1 2
algebra map 1: ’ES hd ']]3J from the Hecke algebra for Siegel modular forms
of weight k and degree 2 to the Hecke algebra for Jacobi forms of

weight k and index 1 such that

(10) VT = Y|1(D)) VTem

This will imply in particular that % maps Hecke eigenforms to Hecke
eigenforms. It is well known (cf. Andrianov [1]) that ’ES is generated
by the operators Tg(p) and Ts(pz) with p prime (until the end of
the chapter we write TS (&) and TJ(JL) for the Hecke operators in T
and ’H‘J). We use the somewhat more convenient generators Ts(p) and

Tg(p) = Tg(p)® - T, (7).

THEOREM 6.3. The map ¥: J ; + M (T,) <is Hecke-equivariant
(in the sense of (10)) with respect to the homomorphism of Hecke algebra

1: Ty + ".ll‘J defined on generators by

k-1 k-2

W(Tgp)) = Ty(p) +p +p >

2k-3 2k-4

- -2
kl+pk)1‘J(p)+2p + p

1
W(Tg(p)) = (p
Proof. 1In [2], Andrianov proves that Maass' '"Spezialschar'" is
invariant under the Hecke algebra by calculating the Fourier coefficient

of the two functiomns

Fo= FlT () . F, = FlTg(p)

for F € M; and checking that they satisfy the identity (9). Since the

Spezialschar is just the image of #, this says that for ¢ € Jk 1
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volrge) = ¥, , Vo|Tg () = Vb,

for some ¢,,¢, € Jk,l with explicitly given coefficients, so to prove

the theorem we need only check that

6, = ol(r, + ot 405D

(11)

k-1 . k-2 2k~ -
¢l (e +p OHTp) + 2p 34 p2K 4)

S
]

The coefficients of a Siegel modular form in the Spezialschar are
determined by a single function c(N) (N=0,3(mod 4)) as in (6),(8).
If c(N), CI(N)’ and CZ(N) are the coefficients corresponding in this

way to ¢, ¢, and ¢,, then equations (13)-(16) of [2] (with D=-N, t=1,

4=0) give
e, = ™M + ol + o2+ (2)) e
if p? TN,
c, (M = c(’N) + P lean + pkcz(C(N) + pk_lc(;N;))
if p?| N,
e, = P+ (2)ean + 2™ e
+ 2 A H(ENEE™ + o em) + 0" P(p -(2)) c®
if p?’{N, and
e, = p™ ey +p™ e + p3k_5c(;Nz—)
+ pk—z(c(pzN) + ey + ka‘zc(plz))+pk‘1c(p2N)

if p2|N. In a unified notation, this can be written

k-1 k-2 k-2, D 2k-3
P +p +p (3))0(1‘1) +p2 3 (X,

2
cl(N) = c(p N)+( >
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k- k-2 - - - -
c, N) = (p 1+p, )c(pzN) + (2p2k 3+p2k' 4+(p2k 3+p2k 4)(%))

3k~ -~
e ()
p

with the usual convention c(l%) =0 1if pzf N. On the other hand,
p
from Theorem 4.5 with m=1, £=p we find that the Nt coefficient for

¢lTJ(p) “ig given by

2 k=2, D 2%-3 (N
N 2Ye .
c@'N) +p (e +p C(pz)

(cf. equation (14) of §5), and comparing this with the formulas for ¢,

and c, gives the desired identities (11).
In [1}, 81.3, Andrianov associates tec any Hecke eigenform
F € Sk(Fz) the Euler product

Yo P +

2k~4y -2s 2k-3-3s _ _4k-6-4s\~1
p -, p

p— —_ =S "_
z,(s) = T;F(l YpP + (v,

where F|Tg(p) = Y,F, FlT  (p) = Yl')F. If F=¥p with ¢|TJ(p) = A,

then it follows from Theorem 6.3 that

2k-3 2k

k-l | k=2 ' k-1, k-2
= THp N+ 27 T4p

Yp= )\p+p +p H Y.

and hence

2k-3 k-
2 - Y.p k 2 4 ph 6tu

2k-4
) p

T
I-vpt + (yp-2p
- - 2k—
= @-p"oa-p ) - e+ 7 T)
By Corollary 3 of Theorem 5.4, there is a 1-1 correspondence between

eigenforms in M and J , the eigenvalues being the same. We
2k-2 k,1

deduce:
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COROLLARY 1 (Saito~Kurckawa Conjecture). The space S;(Tz) is
spanned by Hecke eigenforme. These are in 1-1 correspondence with

normalized Hecke eigenforms f € SZk—Z’ the correspondence being such

that
(12) ZF(s) = L(s-k+1)C(s-k+2)L(f,s)

As stated in the Introduction, most of the Saito-—Kurockawa conjectu
was proved by Maass [21,22,23]. 1In particular, he found the bijection
between functions in the Spezialschar and pairs of functions (ho’hl)
satisfying (16) of §5, showed that dim M;(I‘z) = dim M, ,, and
established the existence of a lifting from the Spezialschar to M2k—2
satisfying (12), without, however, being able to show that it was an
isomorphism. The statement that the Spezialschar is spanned by eigen-
forms was proved by Andrianov [2] in the paper cited in the proof of
Theorem 6.3, and the bijectivity of Maass' lifting by one of the
authors [40]. See also Kojima [14]. A detailed exposition of the
proof of the conjecture (more or less along the same lines as the one

given here) can be found in [40].

A further consequence of Theorem 6.3 is

CORQLLARY 2. The Fourier coefficients of the Eisenstein series

E(z)(Z) = z det(cz+D)*k
{c,n}

(sum over non-associated pairs of coprime symmetric matrices C,D € M,(Z)

in M, (T,) are given by

(e W) - 3 (e )
n,r,m

(2)

Indeed, since Ek is the unique eigenform of all Hecke operators

with A((O 0 ) =1, it must equal Y(E

0 0 and the result follows.

k,l)’
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The formula for the coefficients A(T) of Siegel Eisenstein series of
degree 2 was proved by Maass ({18}, correction in [19]), but his proof

involved much more work, especially in the case of non-primitive T.

8§7. Jacobi Theta Series and a Theorem of Waldspurger

Perhaps the most important modular forms for applications to

arithmetic are the theta series

_ e
<1> %M = D 4 :
xEA

where Q is a positive-definite rational-valued quadratic form onm a
lattice A of finite rank. This series is a modular form of weight

L rk(A) and some level; in the simplest case of unimodular Q (i.e. Q
is integer-valued and can be written with respect to some basis of A as
%xtAx with A a symmetric matrix with integer entries and determinant 1)
it is a modular form on the full modular group. As is well known, the
theta~series (1) should really be considered as the restriction to z=0
("Thetanullwert") of a function O(T,z) which satisfies a transformation
law for z+>z+AT+Uu and is, in fact, a Jacobi form. (This fact,
which goes back te Jacobi, is the primary motivation for the definition
of Jacobi forms.) We give a precise formulation in the case of uni-

modular Q.

THEOREM 7.1. Let Q(x) be a unimodular positive definite quadratic
form on a lattice A of rank 2k and B(x,y) the associated bilinear form

with Q(x) = %B(x,x). Then for fized y€ A the sertes
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e Q) ,B(x,y)
@ @Q,Y(T’z) : z 4 ¢
x€EA

18 a Jacobi form of weight k and indexr m=Q(y) on SL,(Z) .

1 1

Proof. The transformation law with respect to o 1

)e SL,(Z)

. . 0 -1 . . .

is obvious and that for 1 0 an immediate consequence of the Poisson
summation formula, so that the modular properties of @Q x are particu-—

larly easy in this case. The transformation law with respect to

zt+—>z+At+u is equally clear:

em()\z‘r + ZAZ)GQ y('C,z +At+u)

2
ql 0169 C2>\Q(y) z qQ(X) CB(x,y) q>\B(x,y)
xEA
- z (QGHAY)  Blxedy,y) 9,y T+
9y
xEA

Finally, as pointed out in the Introduction, the conditioms at infinity
are gimply Q(x) 20, Q(¥)20, B(x,y)" £ 4Q(x)Q(y), which express the
fact that the restriction of Q to the (possibly degemerate) sublattice
Zx +Zy C A is positive (semi-)definite.

If Q is not unimodular, then will have a level and

OQ,X
character which can be determined in a well known manner.

We recall two generalizations of the theta series (1) and explain
their relation to the Jacobi theta series (2). First of all, one can
insert a spherical polynomial P(x) in front of the exponential in (1)
(recall that "spherical" means AP =0, where A is the standard Laplacian

with respect to a basis of A®R for which Q is Exf ): if P is

homogeneous of degree 2v, then the series

- Q(x)
) O p(™ = D PG q
x€A
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is a modular form of weight k+2v (2k = rk A) and the same level as @Q,

and a cusp form if V> 0 (see for example Ogg [25]). We then have

THEOREM 7.2. Let A,Q,B,y be as in Theorem 7.1, VEN, . Then

the polynomial

k-1
@ - P, G0 = pee (8BGx,y), maG)
(k-1) . . . .
( sy as in Theorem 3.1) is a spherical polynomial of degree 2v and
D, (© ) = © .
Vv Q,y Q,P\)’y

Proof. The final formula is clear from the definition of DZ\)’

and this makes it morally certain that P\) v is spherical with respect

>

to Q, since (3) is never modular unless P is spherical. To check that

this is really so, we use eq. (3) of §3 to get

P\) y(x) = constant X coefficient of t2\) in Q(y—t:x)_k+l

(we may assume y#0, so m#0), from which the assertion follows easily
2
(choose a basis so Q = inz and compute (X 8 )Q(y— t:x)"k+1 5

2
X,

recalling that k = %rkA ).
The other generalization of (1) is the Siegel theta series

) @éz)(z) = z r(M e(er12)
T20

where rQ(T) is the number of representations of the binary quadratic
form T by Q (just as the coefficient of qn in (1) is the number of
representations of n, or of the unary form nxz, by Q). Explicitly,

we have
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v (2 ) = H{ey € dxhlaw=n, a6 =m, By =1},

@éz)(T :,) = Z e(Q(x)T + B(x,y)z + Q(y)Tl) .
%yEA

Then the following is obvious.

h

THEOREM 7.3. ILet Q be as in Theorem 7.1. Then the mt Fourier-

Jacobi coefficient of Oéz) equals Z @Q -

yEA
Q(y)=m

Theorems 7.2 and 7.3 show how the Jacobi theta series fit into
the theory developed in 83 and 86, respectively. Their relation to §5
is also easily described: the modular form of weight k-3 associated
to OQ,y is essentially the theta series associated to the quadratic
form of rank 2k-1 obtained by restricting Q to the orthogonal complement

of y. We illustrate this in the simplest example, with k=4 and m=1.

Then (A,Q) is the E, lattice (cf. Serre [28,5, 1.4.3]), i.e.

8
A ={xeﬁuzﬁua“”@12 &ezz}, Q=1 %2 .
h i 2 4 1
i=1 i=1
The form G)Q is Eu (since dim Mk = 1); in particular, there are
240 choices of y with Q(y) =1, but since they are all equivalent
under Aut(Q) we can choose y= (}%,...,%). Then
2
o - z B(xT + +x) C‘/z(x1+ +x,)
Qy 4 ’
xE A
and since Jx, L is one-dimensional this must equal El+ e Hence the

formula for the coefficient of q¢"z¥ in Ek 1 (Theorem 2.1) implies

2
#HxEA|x]+. .. +x = 20, x, + ... +x, = 2r} = H_(izfu(_r_l_sl)f_l

or, more explicitly (replacing Xy by *%x.),
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(6) #x € Ze|xlE co-=x%, (mod 2), 2i21=8n, 2X1=4r} = -252 H(3,4n-1

This first seems like an infinite family of identities, parametrized by
r € Z, but in fact the identities depend only on r (mod 2). Indeed,

if r is even then replacing Xy by xi+15r replaces the left-hand side
of (6) by the same expression with n replaced by n-%r> and r by 0,

so (6) for any even r is equivalent to the theta series identity

l/g(Xi+...+xi) oo
(7) E q = 1-252 Y H(3,4n)q"

n=1
XGZE,x1+...+x =0
xlz...EXi(modZ)

(= 1+126q + 756q% + 2072¢° + ...) .

Similar remarks hold for r odd except that now replacing x5 by xi+1/2r

replaces "'x € z8" by "x € (15,...,’/2)+Ze " ; doubling the x; then turns

this condition into "xEZs, all Xy odd, X = ...=x, (mod 4)", so (6)

for odd r is equivalent to

1 2 2
fa(x"+...+x7) [l
(8) . E q ® = 252 3 H(3,4n-1)g* 7t
n=1

XEZG,XI'F...'FXE =0
x; odd, xls..sxe(mod 4)

(= 56q° + 57697 + 1512q't + ...) .

Thus the Jacobi form identity G)Q v = Eu L is equivalent to the
3 3

modular~form-of-half-integral-weight identity @Q. = H3 ,

the integer-valued quadratic form Ye T x; on the 7-dimensional lattice

where Q' is

{x S Ze|2xi=0, X =...5x, (mod 4)}.

We end this section by combining various of the results of
Chapters I and II to obtain a proof (related in content but different

in presentation from the original one) of a beautiful theorem of
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Waldspurger's [35], generalizing Siegel's famous theorem on theta-series.

Siegel's theorem [33], in the simplest case of forms of level 1, says

by (i 1)
-0 = — ] Ex (k € 4Z) .
i1 Y i=1 ¥

9

Here (Ai’Qi) (L£igh) denote the inequivalent unimodular positive-—

definite quadratic forms of rank 2k and w; the number of automorphisms

of Q;. Explicitly (9) says

2

Ta-© Op_q1 () (n>0)

(10) €. 1ty (n)
i1 1%

-1
W

i . . .
(e, := T =1 ), i.e. it gives a formula for the average
1 L W
number (with appropriate weights) of representations of an integer n by

the forms Qi' The number of representations by a single form, however,

remains mysterious. Waldspurger's result in this case is
y

2

Ei rQi(n) @Qi = E(l——k) Ck|Tn

h
(11)

(n € ]NO)

i=1

where Ck(’r) = (Hk__l(’r)e(’r))[ULQ is Cohen's function. Thus one has
explicit evaluations of weighted linear combinations of theta-series

with variable weights; in fact, since the CkITn are known to span Mk
(cf. discussion after the Corollary to Theorem 3.1), one gets all

modular forms in this way. Equation (9) follows from (11) by taking

n=0 (with the convention f!Tn = ZE(l-k)_1 a(O)Ek for f = Za(n)qn S Mk)
or by computing the constant term of both sides; taking the coefficient

of q® on both sides gives

h
. 2 k-1 4 b4om >
az 3 ey g ) = gy > a > ue1, 4o )

dl(n’m) Zs_lﬂn_

= dz

r
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Finally, Waldspurger has a generalization of (11) involving theta
series with spherical polynomials.
To prove all of these results, we start with Siegel's own

generalization of (9) to Siegel modular forms of degree 2 :

h
(13) e; 8. @ = P
i=1 i
Here Eiz) is the Eisenstein series of degree 2 and weight k and

S] the theta-series (5). We then compute the mth Fourier-Jacobi

Q
1
coefficient of both sides of (13); by Theorem 7.3 and (the proof of)

Corollary 2 of Theorem 6.3, this gives

h
(14) DI E O, 5 (T2 = (B V) (t,2)
i=1 i ’
yEA-
() =m
an identity of Jacobi forms of weight k and index m. We now apply

the development map Zév of §3 to both sides of (14). By Theorem 7.2,

the left-hand side of the resulting identity is
h

€. O v (O s
= * Qi’Pi,m

i=1

Y . .
where Pi,m is given by

V) L (k-1)
(15) Pl p(®) = E Poy, . (Bi(xy),mQ ()
vE& Ai
Q(y)=m
and is a spherical polynomial of degree 2v with respect to Q. By the

Corollary to Theorem 4.2, the right-hand side is

Dy, By Dlgez T

v

But ZE is Cohen's function Ck as defined in §3 (Corollary to

\)(Ek,l)
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Theorem 3.1). Hence we have the following identity, of which (11) is

the special case v=0.

THEOREM 7.4 (Waldspurger [35]). Iet Qi (i=1,...,h) be the

inequivalent unimodular quadratic forms of rank 2k (k>0, k=0 (mod 4))

and P\; m(\);O) the polynomials (15), pé\lj_l) as in (1) of §3. Then
L1 &1 )
— 0 v = ( T T > C T
12=:1 laut Qg| Q4 Fy 1=Z:1 |Aue Q| / Tk "
where Cli\)) ig Cohen'’s function (as in the Corollary to Theorem 3.1)

th

and Ty the m™" Hecke operator in M, v

. R ()]
Since, as mentioned in §3, the C [Tm are known to span Sk+2\)’

one obtains

COROLLARY. For fixed k and Vv, the functions © (i=1,...h,

QP

(respectively

P spherical of degree 2v with respect to Q;) span Spa2v

M if v=0).

In particular, the theta-series associated to the Ee-—lattice and

to spherical polynomials of degree k-4 span Sk for every k.



CHAPTER III
THE RING OF JACOBI FORMS

§8. Basic Structure Theorems

The object of this and the following section is to obtain as much
information as fossible about the algebraic structure of the set of
Jacobi forms, in particular about

i) the dimension of Jk,m (k,m fixed), i.e. the structure

of this space as a vector space over C;

ii) the additive structure gf J D J (m fixed) as a
* k k.m

,m
module over the graded ring M* = % Mk of ordinary
modular forms;

iii) the multiplicative structure of the bigraded ring

J = & J of all Jacobi forms.
*, % k,m k,m

We will study only the case of forms on the full Jacobi group Ff
(and usually only the case of forms of even weight), but many of the
considerations could be extended to arbitrary T.

The simplest properties of the space of Jacobi forms were already
given in Chapter I. There we showed that Jk,m is finite-dimensional

for all k and m and zero if k or m is negative (Theorem 1.1 and its

proof) and obtained the explicit dimension estimate

m
dim M + \)Z_:l dim S, (k even)

i <
(1) dim Jk,m -1

) dim Sy, (k odd)

V=

~89-
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Theorem 3.1). Hence we have the following identity, of which (11) is

the special case v=0.

THEOREM 7.4 (Waldspurger [35]). Let Qi (i=1,...,h) be the

inequivalent unimodular quadratic forms of rank 2k (k>0, k=0 (mod 4))

and P\.l) 1]1(\);0) the polynomials (15), pé\lj—l) as in (1) of 83. Then
&1 L1 )
— 0 v = ( e > c T
i§l laut Qg|  "Qp.P5 o 1=Z:1 laue Q] / 7k ™
where Cli\)) is Cohen's function (as in the Corollary to Theorem 3.1)

th

and Ty the m™" Hecke operator in M oyt

Since, as mentioned in §3, the C(\))[Tu1 are known to span S

k+2v’

one obtains

COROLLARY. For fixed k and Vv, the functions © (i=1,...h,

Qi ,P
P spherical of degree 2v with respect to Qi) span S

M 7f v=0).

ke 2V (respectively

In particular, the theta-series associated to the Es-lattice and

to spherical polynomials of degree k~4 span Sk for every k.



CHAPTER III
THE RING OF JACOBI FORMS

§8. Basic Structure Theorems

The object of this and the following section is to obtain as much
information as possible about the algebraic structure of the set of
Jacobi forms, in particular about

i) the dimension of Jk o (k,m fixed), i.e. the structure
of this space as a vector space over C;
ii) the additive structure of J =® 7T (m fixed) as a
%, k k,m
module over the graded ring M, = @ Mk of ordinary
* k
modular forms;

iii) the multiplicative structure of the bigraded ring

J = & Jk of all Jacobi forms.
*,% k,m ,m

We will study only the case of forms on the full Jacobi group Tf
(and usually only the case of forms of even weight), but many of the
considerations could be extended to arbitrary T.

The simplest properties of the space of Jacobi forms were already
given in Chapter I. There we showed that Jk,m is finite-dimensional

for all k and m and zero if k or m is negative (Theorem 1.1 and its

proof) and obtained the explicit dimension estimate

m
dim Mk + 2: dim Sk+2v (k even)
v=1
i <
(1) dim Jk,m o-1
2 dim S0 (k o0dd)
v=1 .

~89-
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(Theorem 3.4 and the following remarks). We also proved that J*

reduces to M* if m=0 and is free over M, on two generators Ek -
s
Es L for m=1. The very precise result for J* , was obtained by
s >

comparing the upper bound (1) with the lower bound coming from the

linear independence of the two special modular forms Eu L and Es .
k] b ]

Similarly, we will get information for higher m by combining (1) with

the following result.

THEOREM 8.1. The forms E, and E_ are algebraically
— > k]

1 1

independent over M_ .

Proof. Clearly the theorem is equivalent to the algebraic indepen-

dence over M  of the two cusp forms ¢ and ¢ defined in §3, (17)

10,1 12,1

Suppose that these forms are dependent. Since both have index 1 and any
relation can be assumed to be homogeneous, the relation between them has

the form
m . o1

2 Y oMo, (o)) 6, (1" = 0
j=0 ’ ’

for some m, where the gj are modular forms, not all zero. Let j0 be
the smallest j for which gj is not identically zero. Substituting
into.(2) the Taylor expansions given in §3, (19), we find that the

left-hand side of (2) equals

23 23 +2
(constant)A(T)™ g (t) = Jo + 0(z To )
0

and hence cannot vanish identically. This proves the theorem.

Since the two functions Eu and Es 1 will play a basic role in
s

s 1

our analysis of J* , we introduce the abbreviations A,B to denote them

'

Thus A € Ju L B e Js N and the theorem just proved says that the map
B

)

M*[X,Y] > J, , sending X to A and Y to B is injective. The (k,m)-
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graded component of this statement is that the map

Metn ™ Memtme2 X 000 X Meon > Jeom

>

m m-~1 m
(fo,fl,...,fm) —> fA + fA B + ... + £.B

is injective. This implies
m
. i >
COROLLARY 1. dim Jy . 2 ');6 dim M0 os -

We now show how this estimate can be combined with (1) to obtain

algebraic information about the ring of Jacobi forms.

COROLLARY 2. Fix an integer m2> 0. Then the space J ox.m °F
b

Jacobi forms of index m and even weight is a module of rank m+l over M,.

Proof. The linear independence of the monomials adpmd (0gjgm)
over M, implies that the rank is at least m+l. Using the two facts
dim M e and dim Mk+0(1) = dim M‘k+0(l) (we do not need the more

precise formula dim Mk 1_k2 +0(1)), we can write Corollary 1 in the

]

weakened form

\%

dim Jk,m 2 (m+l)dim M‘k + 0(1) (k >, k even)

If there were m+2 Jacobi forms of index m linearly independent over M,
then the same argument used to prove Corollary 1 would show that the
factor m+l in this inequality could be replaced by m+2, contradicting

the upper bound

dim Jk,m < (m+1l)dim M‘k + 0(1)

coming from (1). Hence the rank is exactly m+l.
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COROLLARY 3. Every Jacobi form can be expressed uniquely as a
polynomial in A and B with coefficients which are meromorphic modular

forms (quotients of holomorphiec modular forms).

Proof. If ¢ € J* m’ then the forms ¢, Am, Am_lB, ,Bﬂ1 must
I——— 3
be linearly dependent over M, by Corollary 2, and this linear relation

must involve ¢ by the theorem, i.e. we have the formula

s

) F(T)(T,2) = £,(0) E“’I(T,z)m—j ES,I(T,Z)J'

0]

]

with f,fj €M, and £#0; dividing by f gives the assertion of the
corollary (the uniqueness follows at once from the algebraic independenc

of A and B).

Looking more carefully at the proof just given, we can obtain an
estimate of the minimal weight of the form f in (3). Indeed, the
proof of Corollary 2 depended on the fact that the upper and lower
bounds we had obtained for dim Jk,m (m fixed) differ by a bounded

amount, i.e.

m m
(dim M+ é'l:l dim sk+2\)) - (\?;o dim Mk_4m_2v) <c

for some constant C depending only on m; using the explicit formulas

for dimM_ we see that this holds with C= &“‘2'—11 and with equality
. . A .

for all even k. Hence the codimension of M*[A,B] Jk,m in Jk,m is

bounded by C for all k. Now if ¢ € J and there is no relatiomn

k,m
of the form (3) with f of weight h, then the subspaces ¢-Mh and

M fa,Bl Ny of

k+h,m Jk+h,m are disjoint and hence the dimension of Mh

is £C€. Therefore there is a relation of type (3) at latest in weight
h = 12C = 6m(m-1). (Later we shall obtain a much better bound.)

Corollary 3 says that J*’* ® K., where K, = C(E,,E.) is the
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quotient field of M., is.,a free polynomial algebra K*[A,B] over K*.

In particular, the quotient field of J*’* is C(E“,ES,A,B). In view
of Theorem 3.6, this is equivalent to the statement that the field of
Jacobi functions (= meromorphic Jacobi forms of weight O and index 0)
for SLZ(Z) is €(j(1),p(T,2)), a fact which is more or less obvious
from the definition of Jacobi functions and the fact that every even
elliptic function on C/ZT+Z 1is a rational function of p(T,z).

Before proceeding with the theory we would like to discuss the
case of forms of index 2 in some detail; this will both motivate and
illustrate our results. Here, of course, we do not need Theorem 8.1,
since we can check the linear independence of AZ, AB and B2 (or of the
monomials Am,...,Bﬂ1 for any fixed m) directly by looking at the first
few terms of their Fourier expansions, as was done in the case m=1 in §3

Thus we obtain the lower bound of Corollary 1 "by hand". This bound and

the upper bound are given for small k by the table

k 2 4 6 8 10 12

dinm Mk + dim Sk+2 + dim Sk+4 o 1 1 2 2 3

dim Mk—B + dim Mk—lO + dim Mk—lZ 0 0 0 1 1 2

Thus the upper and lower bounds no longer agree, as they did for m=1,
but now they always differ by 1. We will see that the upper bound is
in fact always the correct one. In §2 we showed that Jk m#O for all

even k>4 and all m>1. Hence there exist non-zero forms X € Jn 5
= B = b

Y € Js 5 By Corollary 2, there must be two linear relations over M,

among the five Jacobi forms X, Y, AZ, AB and B? of index 2. To find

them, we could calculate the leading Fourier coefficients of X and Y

(we didn't give complete formulas for the coefficients of Eisenstein

2

series of index >1 in §2, but from §4 we know that E,
2

and E are
2 n 3
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proportional to E, 1|V2 and E v from which the Fourier coeffi-
’

6,1' "2?

cients can be obtained painlessly). However, we prefer a different
method which illustrates the use of the Taylor development coefficients

D4 of §3. Since S, =5 =8 = {0}, we must have ﬂvx =,7)\)Y =0 for

6 8
v=1,2; we normalize X and Y by assuming DX = E,, DOY = -E,
(thus X=Eu 22 Y = —E6 2). Then equation (12) of §3 shows that the
bl kd

beginnings of the Taylor expansions of X,Y are

2 .
- . v2 27 "oy 6
X Eh + i Ehz = Ehz + 0(z°) s
) _ 2ri _v 2 41T2 "oy &
Y = -E, 3 Egz® + S Eozt 4 0(z%)

we do not need to go beyond 0(z®) since a Jacobi form of index 2 is
determinied by its Taylor development up to z* (by Theorem 1.2). For
convenience we introduce the abbreviations Q and R for Eh and Ee
(just as we already are using A,BA for El“’1 and Ee,l)’ as well as P
for the near-Eisenstein series 1 - 24201(n)qn (the notations P,Q,R

are those of Ramanujan). Then one has the well known identities

] 2mi 2 |___2_1I_i_ _ l__Z_TI_i_ _
Pl S 7o) Q= I (P-R) R' = = (PR-Q

for the derivatives of P, Q and R, so the above expansions become

2 y
X = Q- 2% (PQ-R)z* + 2% (P2Q+Q2% - 2PR)2* +0(2%) ,
. 2 N
Y = -R+ 2% (PR - Q%) 2% - 2% (PPR+ QR - 2PQ%) 2" + 0(z®)

Similarly we find the expansions

4
2, T (p20+Q° - 2PR)2" + 0(z®) ,

TT2
A = Q-7 (PQ-R)z 18

TTZ 252 m 2 24y 4 6
B = R—-—B—(PR—Q )z -t-~——18 (P°R+QR - 2PQ°)z" + 0(2”)

for the two basic Eisenstein series of index 1. Hence the five forms
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2 2
¢ = X,Y,A",AB,B° have Taylor expansions ¢ = Xo + X222 + X“zl“ + 0(z%)

with X\) given by the table

¢ X, o % 2191.14 X,

X Q R~ PQ P2Q +Q2%-2pR

Y | -R PR-Q* -P?R - QR + 2PQ2

A? Q? QR - PQ? 15(Q® + R?) + P2Q? - 2PQR
AB QR %(Q3+R2) - PQR P20R - PR - PQ? + Q%R
B’ R? Q°R - PR? 50(Q® + R?) + P2R? - 2PQ2R

If any linear combination of the rows gives 0 in the three columns on
the right, then the corresponding form ¢ is O(zs) and hence identicall

zero. Therefore by linear algebra we find the formulas

% = Q%A% - 2RAB + QB? v = ORA® - 20%AB + RB?
Q’ -Rr? ? Q° - R?

expressing X and Y as polynomials in A and B as in Corollary 3.
At this point we can discard AB and B> from our collection XY, AZ,
AB, B2 since

2
2AB = RX-QY , B> = Q?x-RY-0A®

2 . .
we can also replace A" by the more convenient basis element

R?A% - 20RAB + Q°B?
9° - r?

Z = Qx-A" =

(Z is a cusp form and is equal to lZd}f0 1/A , where ¢10 , 1s the

I’ ’
cusp form of index 1 defined in §3). Then X,Y,Z are Jacobi forms of
index 2 and weights 4, 6 and 8, respectively, and since they are clearly

linearly independent over M, we can improve our lower bound to
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dim I, 2 dim M, + dim M+ dim Mg

Since the right-hand side of this inequality is equal to the upper bound

(1), we deduce:

THEOREM 8.2. The space JZ* 2 of Jacobi forms of index 2 and
’
even weight is free over M, on three generators X,Y,Z of weight 4, 6,

and 8, respectively. The functions X, Y and Z are related to A

and B by
Q? R Q A®
= st 5l @@ r J[-2s8 ,
Q -R 2 2 2
z R QR Q B
A? Q -1 X
~2AB = -R Q 0 Y
B? 0 -R Q A

There are two striking aspects to this result: that the module
JZ*,Z is free over M., il.e. that we need no more generators than are
required by Corollary 2, and that the only modular form we need to
invert in order to express these generators in terms of A and B is
the discriminant function A = L (QS-RZ). We now show that these

1728

two results hold in general.

1

THEOREM 8.3. The ring J is contained in M*[ A 1[a,B].

2% %
In other words, the meromorphic modular forms occurring in Corollary 3

of Theorem 8.1 are holomorphic except at infinity.

Proof. In the proof of Theorem 8.1 we used the fact that A(T)
is not identically zero. Using the fact that A(r) wvanishes nowhere
in ¥, we find with the same proof that the functions E, 1(TD’Z) and

s

E6 l(To,z) are algebraically independent for each point T,€ ¥, Indeed,
s
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replacing the functions gj‘(T) in (2) by complex numbers Cj’ we find
that the left-hand side equals

23 25 +2
(const.)A(TD)mcj z %+ oz ¢
0

)

as z=+0, where jo is the first j with cj#O, and this cannot vanish

because A_(TD) # 0. Now suppose that ¢ € J is a non-zero Jacobi

k,m
form and let f(T) be a modular form of minimal weight such that
f¢ € M [A,B], di.e. such that there is a relation of the form (3)
(we have already proven that such an f exists). If £ is not a power
of A, then f vanishes at some point T,€¥, and then f_ (1,) = 0 for
i .
all j by the algebraic independence of Ek 1(To’z) and Es l(To’z) .
y b4

But then f and fj have a common factor (namely Eu or Es if 1, is

. Ti/3 . LR . s
equivalent to e or i and E,,_J(TO)A otherwise), contradicting
the minimality of f£.

THEOREM 8.4. J is free as a module over M.

x,%

Proof. The proof is similar to those of 8.1 and 8.3. Let us
assume inductively that for some k> 0 we have found Jacobi forms

¢1""’¢r of weight k1""’kr < k which are a free basis of J* o over

M* in weights <k, i.e. such that every form in Jk' . for k'<k can
Tr bl
be written uniquely as § fi(T)q)i(T,z) with fi € Mk'—ki' (This is
certainly true if k=1 or k is the smallest integer with Jk m340.)
y
If we can show that the d)i are linearly independent over M* in weight

k also, i.e. that there is no non-trivial linear combination Efiq)i

in Jk o which vanishes, then we are done, for then the subspace
k4

¢ _ + ..+ @ _ of J is a direct sum, and choosing a C-basis
1Mk k1 er kr k,m
¢r+l""’¢s for its complement gives us a new collection of Jacobi forms

¢1,...,¢S satisfying the induction hypothesis with k replaced by k+l1.

So assume that we have a relation Efiq)i = 0 in Jk,m' Since ki< k,
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we have weight(fi) = k-k,

i > 0, so f, lies in the ideal (Q,R) of

i
M, = ClQ,R], i.e.

fi = Qgi+Rhi

1S €
for some modular forms 84 Mk—4-ki’ hi Mk—6—ki (where, of course,
forms of negative weight are zero). Then our relation becomes
Q- Egiq)i + R~ Ehiq)i = 0. But a relation Q + Ry, = 0 between

Jacobli forms llJl and "’2 implies that npl = Ry, 1[)2 = —Qp for some

holomorphic Jacobi form Y of smaller weight (to see this, note that
v ¥
Y = f— = - -61— transforms like a Jacobi form, is holomorphic at all

points TEH not equivalent to i because R(T) #0 and at all T not

equivalent to em/3 because Q(T) #0, and satisfies the cusp condition
because Q and R are invertible near o). Hence we have
Zgi¢; = +RY Zhi¢;, = -Q¥

for some Jacobi form Y of index m and weight k-10. Since k-10 < k,
by our induction assumption we can write P as a linear combination

Eeiq)i with eiG Mk—lO-ki; then the identities
Z(g;-Redo, = O , Z(h;+Qe)o, = O

in weights k~4 and k-6 (both <k) imply by the uniqueness part of the

induction assumption that gi=Rei, h=—Qei and hence fi=0 for all 1i.

Remark. The method of proof used for Theorem 8.4 would equally
show that other spaces of modular forms (e.g. modular forms of half-
integral weight, or modular forms of level N, with M*(I‘l) embedded
into M*(FO(N)) via either f(1) +=> £(1) or f(T) > £(NT)) are free
M*(I‘1 )y-modules. This fact, although not at all deep, may be of practica

interest in tabulating modular forms, since it means that all modular
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forms of a given type (e.g. of fixed level but arbitrary even, odd or
half-integral weight) can be described by tabulating the Fourier
coefficients of a finite system of free generators.

The results we have proved up to now have all been additive, i.e.
concerned with points i) and ii) in the introduction of this section.
We end with a simple result on the multiplicative nature of J*’* -
THEOREM 8.5. The ring of Jacobi forms is an infinitely gemerated

ring of transcendence degree 4.

Proof. That the transcendence degree of J is 2 over M*, and

*y%

hence 4 over €, is clear since J*’* contains the polynomial algebra
M*[A.,B] = C[Q,R,A,B] and is algebraic over it (the square of any Jacobi
form of odd weight has even weight, and we have proved that a Jacobi
form ¢ of even weight actually satisfies a linear equation ap+b =0
over M* [A,B], where in fact we can take a € C[Q,R] or even

a € (:[Q3 —RZ]). We show that J* is not finitely generated. Consider
’

*

any finite collection of non—constant Jacobi forms ¢i € Jk .
i1

(i=1,...,r). By the results of §1 we know that migo and ki> 0.

o Oy .
It follows that any monomial ¢1 d)r (nl,...,nr 2 0) has a ratio
m/k bounded by

n B n1m1+ R nrmr . nax mi
k 1'11k1-+-...~l:-nrkr = lgigr ki

Since m/k is unbounded in J* % (in §2 we constructed Eisenstein series
kd
with k=4 and arbitrary m), we deduce that ¢,,... ’¢r cannot generate

J as a ring.
*,% g

Theorem 8.5 is a negative result. In the next section we will

show how to embed J* % in a slightly larger ring which is finitely

s

generated.
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§9. Explicit Description of the Space of Jacobi Forms

Our main tool for studying the structure of J in §8 was the

*y%
fact that we had estimates on dim Jk,m from above and below which
differed by a bounded amount as k> with m fixed (at least in the
case of even weight; for odd weight we have so far given only an upper
bound). 1In this section we will improve both estimates, obtaining upper
and lower bounds which actually coincide for k sufficiently large.
This will not only permit a more accurate description of the ring J*,*,

but will also lead to an algorithm for computing J (actually, two

k,m

algorithms) which is effective and, for modest m, practical. The
results will apply to both even and odd weight.

We begin with the upper bound. The bound used in §8, namely

m
dim Mk + \?—__-:1 dim Sk+2\) (k even)

(1) dim J <
k,m m—1

1 dim Sk+2\)—l (k odd)

V=
was proved in §3 as a corollary of the injectivity of the map 2 from
Jk,m into the direct sum of the spaces whose dimensions appear on the
right of (1). We will now give a second proof of (1) which is even
more elementary than this proof (in that it does not make use of the
Taylor development operators ﬂ\)) and leads to a sharper result;
however, it gives less precise information than the first proof in that

it gives only a filération of J with successive quotients mapping

k,m
injectively into spaces M'k+\)’ rather than an injective map of the
whole of Jk,m into a direct sum of spaces Mk+\) as we obtained before.

The sharpening of (1) we will obtain is the following:

THEOREM 9.1. The dimension of J_ _ is bounded above by
—_— »
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m V2
(2) dim Jk,m < \)§) max (dim Mk+2\) - (-E" R 0) (k even) ,
m—-1 V2
(3) dim Jk,m < \?.:—.:1 max (dlm Mk+2\)—1 - I_ZE-I N O) (k odd) .
Proof. For v>0 Ilet
BRSO {6 €3, _lo(t,2) = 0(z") for z > 0}
k,m ’
i.e J(\)) is the intersection of J and the space ™) introduced
T Tk,m k,m P M'k,m

after the corollary to Theorem 3.3. Then we have a filtration

(0) (1) (2)
= > D > s
Jk,m Jk,m Jk,rn Jk,m cc ’
moreover, 1((\)) = J(\)+l) for v=k (mod 2) because the order of
m k,m
vanishing of a Jacobi form at z=0 has the same parity as the weight,
and J(\)) 0 for v>2m for all k and for v >2m-3 for k odd for

the same reason used to prove (1) in §3 (a Jacobi form has 2m zeros
altogether in C€/Z+Z1, and for k odd three of these are at the non-
zero 2-division points). On the other hand, from the defintion of
Jacobi forms we see that if a Jacobi form of weight k has an expansion
¢(1,2) = f(T)z\) + O(z\)+l) near z=0 the function f is a modular form

of weight k+Vv, so we have an exact sequence

@ 0 O )

¢ — £

similar to (14) of §3. Together this gives filtratioms

3£2v)
_ (0) 2) (?.m) (2m+2) B J.m
Temw = e 2 Tkem 2 0 2 Jm 2 km - T 00 —J—(—2—\1)+—2)_QMk+

k,m
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for k even and

(2\)—1)
(l) (3) (2m—3) (Zm-l) _ k m
Tem™ Jem 2 Tk~ 0 7 Jkom Jeem = 0 SwD) M o1
k m

for k odd, and this immediately gives (1) (with M instead of S).

To get the sharper estimates (2) and (3), we must say something about
the image of the last map in (4). Consider first the case of even k.
The Fourier expansion of a Jacobi form of index m can be written in

the form

6(r,2) = Z ZTrlz qn

where Pn(g) is a polynomial in Z and C_l of degree < V4nm by virtue
of the condition at infinity. This polynomial is symmetric in Z and
Z;_l for k even and hence can be written as a polynomial in C+§_1 or,

-1
more conveniently, in C+7 -2 (= -4 sinzTrz)

P(2) = Q(z+L7 -2), QD EcCITt], degQq, < Vinm .

If ¢ € Jézv), then each coefficient Pn(ezm'z) must be 0(22\)) as z~> 0,
so each polynomial Qn(T) is divisible by TV. EHence Q, must vanish

identically if deg Q, < v, 1i.e.

i
o

(€)) v > imm = Qn

The last map in (4) sends ¢ to Eanqn with

2miz

. Pn(e ) 2v Qn(T)
a, = lim — 5y = (2m)°7 1im ) R
z+0 z T->0 T
Nt
and from (5) we see that this is 0 for n < —-— . Hence the image of

4m

the last map in (4) is contained in



eemile - 5 aa}
ne}

n>ve/

4m
inequality (2) follows. The case of odd k is similar, the only differ-

2
and since the dimension of this space is max(dim M.k_l_zv—lrv— -], 0) N

ence being that now Pn(;) is odd and hence has the form

1

(;—;'1)6 (T+z
(2\) 1)

- 2) for some polynomial Qn of degree <vZimm-1;

then ¢ € J implies Tv_l|Qn(T) and hence v?<é4nm as before.

COROLLARY. For k>m we have the upper bounds

dim Jk’m < Z dim H‘k+2\) - N+(m) (k even) ,
V=0
dim Jy o < v>'=:1 dim M, ; ~ N_(m) (k odd) ,
where
m m-1 2
v > v
(6) N, (m) = ) (—1 , N_(m) = (—]
+ Joo 4 =1 4m

Proof. We must show that the "max'" in formulas (2) and (3) is

always attained by the first argument. For k odd and 1< v<m-1 we have

: k+2v-3 v km  m3 Voo v
dim M oy-1 2 T 12 < z.m+ 7t ™ “)+ m (@v-D o2

N

. Vv
and the assertion follows. The same argument shows that dim M'k+2\) 2 2a

for k even and 0 <v<m-l; if V=m we use instead

, k#Zm2
: Ty 2

>

k > m+t2 = dim Mk+2m %1

k = m,m+l = k+2m # 2 (mod 12) = dim Mk+2m

proving the assertion in this case also.
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We now turn to the lower bound; for this we have to construct
Jacobi fo:_:ms. To do this we begin by enlarging the space of forms under

consideration.

Definition. A weak Jacobi form of weight k and index m is a
function satisfying the transformation laws of Jacobi forms of this

weight and index and having a Fourier expansion of the form
) $(t,2) = J I e, o7 .
n>0 r )

The space of such forms is denoted 3k o
b}

The space J is, of course, in general larger than J but

k,m k,m’

it is still finite—-dimensional. Indeed, a weak Jacobi form also has 2m
zeros in a fundamental domain for C/Z+Zt (since it satisfies the same
transformation law under z + z+AT+ U as a true Jacobi form), and its
restrictivns to 2z = AT+u (A4 € @) give modular forms in the same way
as in Theorem 1.3 (the conditions at infinity are satisfied because of
the condition n>0 in the definition of weak Jacobi forms), so the
proof of Theorem 1.1 carries over unchanged. Moreover, all of the

content of §3 also still applies, so we get maps

D: Jk,m —> Mk &S Mk+2 G ... b M'k+2m (k even)
(8)
DI L M0 6. e, o (kodd)

and they are still injective. The only point that needs to be checked

in order for, for example, the map

D L emogct — § ( I C(n,r)) q
n r

0
n,r

to make sense is that for a given n there are only finitely many «
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with e(n,r) # 0. But this follows from the periodicity condition on
the coefficients c(n,r) (Theorem 2.2), which applies unchanged to weak
Jacobi forms, for given n and r we can choose an r' with ]r'| <m

and r'=z*r (mod 2m), and then

r'? -2 .-) . r? 2
= % + — = - - -
c(n,r) _c(n % ,T 0 if n ’ < 5

by the condition defining a weak Jacobi form, so c(n,r) vanishes as
soon as r?-4mnm > m?.

The basic result on weak Jacobi forms is the following.

THEOREM 9.2. The map (8) is an isomorphism for all k and m.

Notice that the statement of this theorem makes no reference to k
being positive, and hence shows that the weight of a weak Jacobi form
can be negative (but not less than -2m). As a corollary of Theorem 9.2

we get

COROLLARY. For all k and m we have the Lower bounds

m

dim 5 > vgo dim M o~ N, (m) (k even) ,
m—1

dim Jy o2 \El dim M, . = N_(m) (k odd) ,

with N,(m) as in (6). For kxm the inequality signs can be replaced

by equalities.

To prove the corollary, we note that there is an exact sequence

~ cNi(m)
® 0 = Jem 7 Jkm 7
in which the last map sends a weak Jacobi form $ = Tec(n,r)q®zT to the

collection of Fourier coefficients c(n,r) with O<r<m (resp. 0<r<m
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if k is odd) and 0 < n < r2/4m; if all of these coefficients vanish,
then it follows from the periodicity of the coefficients (Theorem 2.2)
that all c(n,r) with 4nm < r? vanish and hence that $ is a true
Jacobi form, as asserted in (9). The second statement, of course,

follows from the corollary to Theorem 9.1.

Proof of Theorem 9.2. We need only prove the surjectivity of (8).

1

To do this, we replace J K,m*

by an a priort larger space J prove

k,m
the surjectivity of (8) with J' instead of 3, and then show that in

A

k,m

o' (1T,2) satisfying the transformation law of Jacobi forms of index m

fact J=J'. The space J is defined as the set of all functions
with respect to z » z+AT+ui (A,0 € Z) and having a Fourier expansion
of the form (7), but with the transformation law under the action of

SLZ(Z) replaced by the weaker conditions

(10) o (Tmz) = (DX o't
| ) (mod 221-MZ) (k even)

(11) (¢ M)(T,2) = ¢(1,2) . (YMET)
k,m (mod z2m 1) (k odd) 1

Equation (10) and the transformation law under Z+ ZT show that
the coefficients c(n,r) of ¢' satisfy the periodicity property of
Theorem 2.2, and the condition (11) implies that the development

coefficients z)oq)‘,pzq)‘ y eas ,Dqu)' (resp. z)l¢',p3¢', oD

2m—3¢' if
k is odd) are modular forms, since the proof that f)vnp S Mk+\) in §3
used only the Taylor development of ¢ up to order V. Hence the map
(8) is still defined if we replace 3 by J'. To show that it is
surjective is now a question of linear algebra. Suppose k is even

(the case of odd k is similar). Then given a collection of modular

forms E\)(T) = Ea\)(n)qn of weight k+2v (0 < Vv < m) we want to find a

o' € Jf( o with Dz\)np' = E\) for all v, i.e. to find coefficients c(n,r
k]
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satisfying

a) c(n,r) = 0 for n<0,

b) cln,r) = c(n',r') for r'= +r (mod 2m), r'’-4n'm = r? - 4nm,
k-1
c) z p(Z\) )(r,nm)c(n,r) = av(n) for 0<wv<m n>0.
T

Because of b), we need only find c(mn,r) for O<r<m, since the rest
are then determined by the periodicity conditions; in terms of this we

can rewrite c) as

m
(12) e p5 D (ramyem,e) £ .o = oa @
r 2y v
r=0
where €, is 1 or 2 depending whether r is O or not and " ... " denotes

a linear combination of coefficients c(n',r) with O<r<m and n'<n.

We can assume inductively that the equations have been solved for n'<n

n

and hence that the . " denotes a known quantity; then (12) becomes an

(m+1) X (m+1) system of linear equations in the m+l unknowns c(n,r)

(k-1

) .
€, 129 (r,nm) (0<r, v<m). But this

(0 € v < m) with coefficients
matrix is invertible, since it is the product of the nonsingular diagonal

; . (k-1) -
matrix (Srdrv)r,\) and the matrix (pz\) (r,nm))r’\), which can be
reduced to a Vandermonde determinant (r2\))

. (k-1) . .
operations because Py, (r,nm) is a polynomial of degree exactly 2v

by elementary row
R )
in r. Hence the equations can be solved inductively for all coeffi-
cients c(n,r).

It ‘remains to see that J=J'. But this is easy, because if
¢'€ J' and M€ T,, then the difference ¢' _¢.|k,mM transforms like
a Jacobi form with respect to translations z + z+ AT+ (because of the
compatibility of the actions Z% and SLZ(Z) proved in §1) and vanishes
to order >2v at z=0 by (11), so Theorem 1.2 shows that it vanishes
identically and hence that ¢' transforms correctly under 1"1.

We now prove a theorem which determines the structure of the
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v . X = @ 3 .
bigraded ring Jev,* Kom Jk,m completely

k even

THEOREM 9.3. The ring jev * is a polynomial algebra over M,

on two generators

—2,1 A —2.1 0,1 A 0,1

cusp

k.1 (k=10,12) qare the Jacobi forms constructed in §3.

where q>k 1 €J

Proof. That 5_2 and 50 , are weak Jacobi forms is clear,
> k4

1

since ¢10 and ¢12 , being cusp forms, have Fourier developments
bl

»1 1

containing only positive powers of q and A(T) = q+0(q?). Since
$_2 L and 50 , are algebraically independent over M* by Theorem 8.1,
s E]

the map

P : Mk@Mk+2®“'®Mk+2m —> Jk,m

(f , f1 y  eee fm )y —> Zf. ¢

is injective, and combining this with the injectivity of the map (8) in
the other direction shows that both are in fact isomorphisms, thus
proving Theorems 9.2 (for even weight) and 2.3 at one blow.

This proof of Theorem 9.2 is, of course, much shorter than the one
we gave before (and a similar proof works for odd weight, as we shall
see in a moment). Nevertheless, we preferred to give the direct proof

of the surjectivity of £ because

a) In other situations (e.g. for congruence subgroups) one might
not happen to have enough explicit generators to deduce the
surjectivity of P purely by dimension considerations, and

b) The first proof given shows explicitly how to obtain a weak

Jacobi form mapping to a given {(m+l)-tuple of modular forms by
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solving a system of recurrence relations.

This and the proof just given for Theorem 9.3 then give #wo algorithms
for computing the space of Jacobi forms of given weight and index: we
construct a basis of Jk,m either by picking a basis of Mk @ ... Mk+2m
and applying P or by picking a basis of Mk D ... D Mk+2m and applying
D" as in'the proof of Theorem 9.2; then in both cases we compute the
Fourier coefficients c{n,r) (0<r<m, O < n < r?/4m) of our basis

. < - N+(m)
elements and obtain J as the kernel of the map J —-> ¢ .

k,m k,m

Both methods will be illustrated later.

Observe that Theorem 9.3 gives a considerable sharpening of
Theorem 8.3. There we showed that any Jacobi form, multiplied by a
suitable power of A, could be expressed as a polynomial in A and B
and that in fact one can take MI;_—]') as the exponent of A, where m
is the index of the form., Here we show that Am¢ can be written as a
polynomial in A and B, and in fact as a polynomial in RA -QB and
QZA—RB, for any Jacobi form or weak Jacobi form ¢ of index m.

Theorem 9.3 gives the structure of J for even weights. We now
find the corresponding result for odd weight. The upper and lower

bounds given in Theorems 9.1 and 9.2 and their corollaries agree for

k>m and also for m<5; for m<6 we obtain the table

dim gy Ky s 7 9 11 13 15 17
"o (0 for all k)

2 6 0 o0 0 1 0 1 1

3 o o o 1 1 1 2 2

4 o o 1 1 2 2 3 3

5 o 1 1 2 3 3 4 5

6 0 Oorl 1 2 3 3 5 5

of weight 11 and

In particular, there is a certain Jacobi form 4)“ N
>
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index 2 (we shall see how to construct it explicitly a little later).
Since ¢“ 2 is a cusp form (it follows from §2 that the smallest index
s
of a non-cusp form of odd weight is 9), the quotient $ 12 = ¢, 2/A
Tts 3
is a weak Jacobi form. Hence 5__1 2 # {0}; of course this also follows
kd
directly from Theorem 9.2. Then q>_1,2 . Jk+l,m—2 C Jk,m for all k

and m, and since Theorem 9.2 gives

dim Jk+l,m-—-2 = dim Mk+l + Mk+3 + ... + dim Mk+2m—3 = dim Jk,m

for k odd, this inclusion is in fact an equality. Hence we have

od,* = ¢_1’2 . Jev,*’ i.e. the weak Jacobi forms of odd weight form a

free module of rank 1 over the ring of weak Jacobi forms of even weight

with generator &)_‘ 5 This gives the ring structure, too, for (521 2
iy —is
lies in Eev 5 and can therefore be expressed as a polynomial in ¢~>_2 )
’ »
and $0 N with coefficients in M . Comparing indices and weights,
s
4
we see that this polynomial has the form z £, ¢ ¢4_1 with £, in
4211 Tm2e1 Yoo i
MZi—Z_ and hence
£ o=a , £, =0, £, = BE, £, = YE,
for some constants o, B, Y. To find these constants, we observe that
Z)lz 3_1 2——~——> M= € by Theorem 9.2, so 2)1$—1 , 1s a constant and
this constant determines E)_l e We normalize by choosing Dl $_1 s = 2
B > b
then
~ n,r
¢_, ,(t,2) = } Y c@,ndg
’ n>0
1 (n=20) N
z rc(n,r) =
r>0 0 (n#0) .

By the argument preceding the statement of Theorem 9.2, c(n,r)=0 for

r2 > 8n+1; in particular c(0,r) =0 for [r|>1 and therefore
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(c-z7h + 2. (polynomial in g,z ')q"
n>l

<
it

This already suffices to determine o, B and Y; for comparing the

coefficients of q° in the two expressions for (52

Zia gives
(-2 = ag-2+7 ) @+10+27H® + B -2+ H g+ 10427
o+ y(@@-24gTH
or
2 3 3 "
T +4T = oT(T+12)" + BT (T+12) +YT

-1 .
(T=7-24% ), from which a = 4%’ B = -30, Y=2a. We have proved

THEOREM 9.4. The ring 3* N has the structure
»

L

3 2 3
73580’ - 30a°b + 2Ra%)

- ~ -
J*’* = M*{a,b,c]/c =

We make one remark about the relation just obtained. We can write

it in the form

e _ 1 w[,by® _40b
c” = a[(a) 3Qa+2Rj|

¢o,1 _ ¢’12,1 _ 3
bs ¢1u,1 m

p o

where p is the Weierstrass p-function. Hence

b A 6
2 o _a 3 _ AT _ 8m’
) (2mi)® (4’1 ER Y/ EG) ’

where the expression in parentheses is equal to p'z by Weierstrass'

equation. Thus the relation in Theorem 9.4 is just Weierstrass'
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equation for /1'2 as a cubic in g2 and the theorem can be interpreted

as saying that 3* 4 1s the coordinate ring of the universal elliptic
’

curve over the modular curve (we leave this purposely vague); Je %
>
itself, of course, is not finitely generated and hence not the coordi-

nate ring of anything. The square root of the relation just obtained

2
. -a '
is ¢ = ——rfp (t,2) or
(2mi)? ”

b - = (20) pen

’ i)’
-1 2 9 ¢12,1(T’z)
C 2¢ampya? 101 32 6 (T,2)
-1 1 '

]
1242 2mi (¢12,1 C’Jlo,l B C’Jlo,l ¢12,1) .

and ¢ in terms

Substituting into this the expressions for d o 2.1
s

51

of A=E, , and B=E,  , we find that the right-hand side is equal to
-2 b ’

1221Ti % (A'B~AB'). This proves the relation

(13) 288711 ¢ = E' E - E E .

11,2 byl 641 ,l B4l

This is a special case of the following easy fact, which gives a general

construction for Jacobi forms of odd weight from forms of even weight.

THEOREM 9.5. Let ¢, and b, be Jacobi forms of weight k, and
k, and index m; and m,, respectively. Then m2¢1¢2 - m1d>1¢;, where '
denotes differentiation with respect to z, tis a Jacobi form of index

m +m, and weight k, +k,+1.

Proof. The derivative of a meromorphic Jacobi form of index O
and weight k is a meromorphic Jacobi form of index 0 and weight k+1.

m m
Applying this to ¢12 /¢21 proves the theorem (the conditions at
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infinity are trivial).

Examples of Jacobi Forms of Index >1

We end with some numerical examples to illustrate the techniques
for computing Jacobi forms implicit in the theorems of this section.
We give several types of examples with m> 1 (the case m=1 having been
treated in §3) to illustrate the results described at the end of §5.

We look only at cusp forms.

1. k even, m prime

This situation, the one treated in Theorem 5.6, is the simplest
case after m=1 (because in the decomposition (17) of 85 there is only
the term €=1). From the dimension formulas we see that the first

three cases are (m,k)=(2,8), (2,10) and (3,10) and that dim Jliu:p =1
’

in all three cases.

For ¢ =2 c(n,l')anr € Jsuzp , the first two Taylor coefficients
b

Doq: and D2¢ are cusp forms of weight 8 and 10 and hence vanish, while
D,_,‘b must be a multiple of A(T). Also, c(n,r) depends only on 8n - r? by
Theorem 2.2, so c(n,r) = c(8n-r2) for some sequence of coefficients

c(N) = ¢ _(N) satisfying
8,2

z c(8n-r?) = 0 , z rzc(8n—r2) =0, z rqc(Sn—rz) = 24 1(n)
r r r
for all n (the constant 24 was chosen for convenience). These
recursions can be solved uniquely (at each stage the numbers c(8n),
c(8n-1) and c(8n-4) are expressed in terms of c(N) with N < 8(n-1)}.
We find the values c(4)=1, c(7)=-4, c(8)=6, ... (cf. Table 3a).
(These coefficients could also be calculated from the fact that

2

¢ = IlZ— Z = ¢10 l/A , where Z is the form of Theorem 8.2 and
3
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b0 1 € Jlo L the cusp form given in §3.) The most striking thing in
3 s

the table is the occurrence of zero entries. To explain them, we note

that the form X c(N)qN lies in the space

+ _ _ N
W, = {he M5/, (T, (8) | b= NZ:O e }
N=0,4,7 (8)

by Theorem 5.6 and is a new form (since MlS/Z(l) = {O}_); it then
follows from the results of Kohnen [12] that c(N)=0 for all N of the
form 45(8r+3).. In Table 3a (and the rest of Table 3) we have also
given the eigenvalues of TJL for £=2,3,5 and 7, computed by means of

Theorem 4.5 and the formulas at the end of §4.

cusp

€
For ¢ Jm’2

the same method works; now D¢ = 0, D¢ =
const. * A, Dhcp =0 and we find ¢ =32 Cl0s (8n - rz)qncr with the
k4

first coefficients given by (4)=1, c., 2(7) =8, e, 2(8) = -18,
E t

C10,2
.. (see Table 3b). This time there are no zero coefficients because
¢ 1is not a new form: it is -% I |V2. By Theorem 4.2, this is

s

equivalent to the formula

ey, M) = =he, ) + 2% (/&)

(with the convention (n) 0 for n¢ Z), and one can check this

Ci10,1
by comparing the values in Table 3b with those in Table 1.
Finally, for m=3 the first cusp form has weight 6; for this form

¢ we must have D0¢ = D2¢ = Dq¢ = 0 and Dscb is a multiple of A, so

¢ = }:c(12n—~1—2)anr .

0 vg2)
z rZ\) c(12n - %) =
r 720 T(n) (v=13)

(again with 720 chosen for convenience), from which we get the values

tabulated in Table 3¢c. (We could also compute ¢ as q)jo 1/A2 .) Again
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the zero coefficient for N=36,63,144... can be explained by the fact th
+ ;
z C(N)qN € M11/2 (3) 1is a new form and the theory given in [12]; more

generally, we would have c¢(N) =0 for all N of the form 95(3r+1).

2. k odd, m prime

This is the next simplest example, since again the decomposition
of Jk,m given in (17) of’§5 reduces to a single term, but no longer
with € trivial. The first case occurring, as we saw in the discussion
preceding Theorem 9.4, is m=2, k=11. The corresponding form ¢ = ¢n’2
is given explicitly by (13), but although this formula can be used to
compute the Fourier coefficients of ¢ it is easier to proceed as in the
examples above. Indeed, if we write ¢ = 2 c(n,r)q™z” then c(n,r) =
—-c(n,-r) (since the weight is odd) and c(n,r) depends only on 8n-r?
and on r (mod 4); together these facts imply that c¢(n,r)=0 for r
even and that c(n,r) can be written as (:ri)c(Sn—rz) for some
coefficients c¢(N) which are non-zero at most for N = 7 (mod 8). Then

Dl¢ €8, = C+A implies that Z re(n,r) is a multiple of T(n), so

(with suitable normalization)

Z (:ri)rc(Sn—rz) = 1(n)
0<r<v/8n

This recursion determines the c¢(N) uniquely and we get the values shown
in Table 3d. But here we can do more. Indeed, the equation above is

equivalent to

2

N r_
3 -4 8
z c () q8 z (T rq = 2 T@)q" .
N>0 r>0 n> 0
N =7 (mod 8)

The second factor on the left is n(‘r)a by Jacob's identity and the

expression on the right is A(T) = n(T)zk. Hence we get, instead of
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just a table, the closed formula

he(D) = 3 oe, ' = nenT
N>0 ’

where € as in §5 is an extension of € to a Dirichlet character modulo
(here necessarily € = (:&)) and hg the form of weight 10% defined in
§5. The fact that hE(T/S) is a modular form on all SL,Z (with
multiplier) rather than on 1"0 (16) 1is due to the fact that the repre-
sentation C_ of SL,(Z) mentioned at the end of §5 is one-dimensional
in this special case (in general for m prime and k odd it would have

dimension m-1).

3. k even, m a product of two primes

This is the first case where the decomposition of Jk . has more
b

than one piece; we are interested in the summand Jk m
L]

corresponding to
non-trivial €, since the space Jk o can be understood by Theorem 5.6
and the following remarks. The first composite m 1s 6 and the
first weight k with J;—6 # {0} is 12. To see this, note that a

s

function ¢ € J has a Fourier development of the form

k,6
= <':]:(24r1—1:2)q7:1§r where CU(N) depends only on W (mod 12) and

changes sign if u 1is replaced by 5u or 7u. It follows that CU(N) =0
for u not prime to 12 (since then y is congruent to 5u or 7y modulo
12) and that in general CU(N) can be written as (lTZ)c(N) for some
coefficients c(N) depending only on N and vanishing unless N = 23
(mod 24-). In particular, CU(O)=O for all i, so ¢ is automatically
a cusp form, and since ¢ is determined by Z)ocp = ¢(1,0) € Sk the first

possible weight is k= 12. For the form with k=12, and normalized by

¢(t,0) = 2A(T), we have

6 = L (Be@in-r"a" T (Fe@im-1) -t ,
n,r r>0
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which can be solved recursively to give the numerical values given in
Table 3e or explicitly in the same way as was done for the last example:
we write the recursion for c as

N

£ i
2(%)9{24 ZC(N)q24 = z T(n)q"

r>0 N>0 n>0

and observe that the first factor is n(t) (Euler's identity), so

hx(t) = Z e = nen?’ (€=(y
N>0
N=23(24)

(again hE(T/ZA) is a modular form on all SLz(Z) because C€ is

one-dimensional). Similarly, if ¢ € Ty 6 with %¢(t,0) = £(1) =
s

z a(n)qn € Mk then the recursion relation for the ¢(N) gives

x? N
z(_lrl) q24 ZC(N) 9124 = za(n)qn
N

r n

-1
or h'g;'(-z%) = n(t) £(1). Since f 1is a cusp form we have f=Ag for
some g € M 195 and then hg(i) = n(‘r)zsg('r). It follows that

¢(t,z) is g(t) times ¢12 E_'('L‘,z) , i1.e. J;_6 is a free module of
3 b

rank 1 over M with generator ¢ We could also have seen this

12,6 °
by a direct argument; more generally, it is not hard to modify the

€
proof of Theorem 8.4 to show that J* n is a free module over M, for

every character £ and to give a formula for its rank,

4. k=2
The case of Jacobi forms of weight 2 is particularly interesting,
both because this is the smallest weight occurring and because of the

connection with Heegner points mentioned briefly in the Introduction.

However, it is also the most difficult case, since we do not even have
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the Eisenstein series Ek 1 to get things off the ground. The lower

bound for J obtained from the corollary to Theorem 9.2 is

2,m
(14)
m |25 37 43 49 53 61 64 67 73 79 81 83 85 89 91 93 97 98 100

bound | i1 1 2 1 1 1 2 2 1 2 1 1 1 1 1 3 1 1

the bounds for the omitted m being zero or negative. The cases m= 25,
49, 64, 81 are accounted for by the Eisenstein series of weight 2 (cf.
the remarks following (11) of 82). The other dimensions are equal to
those of Slzlew(l"*(m)) (given in [5], Table 5) when m is prime and one
less when m is a product of two primes, the first in accordance with
the relation between Jk,m and MZk—Z(r*(m)) discussed in the Introduc—
tion (eq. (9)) and in §10. This relation will be proved in Chapter IV
by trace formula methods for k> 2, but the case k=2 presents extra
difficulties, so the numbers (14) are not necessarily the true values
of JZ,m' In any case, they are lower bounds, so we must be able to
find, for instance, a Jacobi cusp form of weight 2 and index 37.

Let us look for a cusp form ¢ € J2’37 . By Theorem 2.2, the

coefficient of qncr in ¢ depends only on 148n-r?%, i.e. we have

o(t,z) = Z c(148n - r¥)q"c’

n,r
148n > r?

with some coefficients c(N) (N>0, N=0 or 3 (mod4), (%)=0 or 1).
However, to find these coefficients by either of the algorithms mentioned
after Theorem 9.3 would involve an impossible amount of computing. For
instance, using the Taylor development operator in (8) would involve
constructing an explicit map into the space S, ® S, & ... ® 5, of
dimension 102 and then solving a 102 x 102 system of equations with
coefficients which are very large and hard to compute. We therefore

use another method. The function
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h(t) = 2 eMq"
N>0

belongs to M3/2(37) by Theorem 5.6, and an easy calculation shows that

the form
hoemlu, = 2 ad”
n=1
(15)
a(n) = Z c(lm—4r2) ’

]r|</l—+H

is a cusp form of level 37 (and weight 2). Since Sz(ro(37)) is only
two-dimensional, and the Fourier coefficients of a basis have been
tabulated (e.g. in [5]), we have a good chance to get the coefficients
a(n), but at first sight this seems insufficient to determine the c(N),
since the identity (15) gives a recursion which at each new step involves
two new coefficients ¢(4n) and c(4n-1). What saves us is that we know
a priori that about one-half of the c(N) are 0 (namely those with N

a quadratic non-residue of 37), so that om the average this one recursion
for two coefficients c(4n), c(4n-1) will suffice. Let us see how this
works in practice. The first cases of our recursion, combined with the

vanishing of c(N) for TN7_) = -1, give

c(4) + 2¢(3) = a(l) ,

2¢(7) + 2c¢(4) = a(2) ,

c(12) + 2¢(11) + 2¢(3) = a(3) 5
c(16) + 2c¢(12) + 2c(7) = a(4) B
2c(16) + 2c¢(11) + 2¢(4) = a(5) s
0 = a(6) .

Looking at the tables in [5], we see that the last equation determines
the form Ea(n)qn € Sz(ro(37)) up to a constant: it must be a multiple

of the eigenform

12 13 186

fl(z) = q+q3—2q4—q7—2q9+3q11—2q -4q " +4g + ...
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At this stage we have five non-trivial equations involving seven
unknowns a(l), c(3), e(4), c(7), c(1l), c(12), c(16). Proceeding
further, we find that at n=15 the number of equations overtakes the
number of unknowns, so that we suddenly get all c(N) up to N=60.

For various higher n, we again have enough equations. However, eventu—
ally we will have too few, since (15) provides an average of one equation
for every two c(N) with N =0 or 3 (mod 4), while the proportion of
c(N) known a priori to vanish is only Bl < Yo However, we have some
extra information. Namely, for m prime the space M:/z(m) as defined
in Theorem 5.6 is by Kohnen's work isomorphic as a Hecke module to
Mz(F*(m)) = {f € MZ(I’O(m)) llem = f} (cf. proof of Theorem 5.6). For
m= 37 both spaces are one-dimensional, so our form h(t) € M—;—/z(37) is a

Hecke eigenform with the same eigenvalues as the second eigenform
2
fz(z) = q-2q —3:;[3 +2ql' —2q5+6q8 —q7 P

in SZ(I'0 (37)). This means that we can write all coefficients c(¥N) as
multiples of those with -N a fundamental discriminant, thus reducing
the number of unknown coefficients by a further factor of 5(2)«1 ~ 0.61.
Using this, we find that we now have a surfeit of equations to determine
the coeffiéients c(N) (so many, in fact, that we can simultaneously
solve for the coefficients of qp, p prime, in f1 and f2 and hence
dispense with the Antwerp tables entirely!). We have tabulated the
resulting values (in Table 4) up to N= 250, since the example is of

interest in connection with recent work of B.Gross and the second author

on "Heegner points" and will be cited in a forthcoming paper of theirs.
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510. Discussion of the Formula for dim J

k,m
For k,m € N set
m 2
Z (dim Mk+2\) - ’-m-l) (k even) ,
v=0
jk,m) =
m-1 \)2
2 (s [£]) o
v=1
In 89 we showed that dim J 2 jk,m) for all k and dimJ = j(k,m
k,m k,m >

for k sufficiently large (namely for k2>2m; this will be improved to
kz 3 in Chapter IV by means of a trace formula). The purpose of this
section is to write j(k,m) in terms of standard arithmetical functions
and to relate it to the dimensions of known spaces of modular forms.

More precisely, we will prove the following result.

THEOREM 10.1. For k> 2 and m€ N define 3, (kym) inductively by

€ itom = ¥ (Z 1)3-0(1(,%)

dlm \2|d

k
Then 3, (k,m) equals the dimension of the space Mgle{YZ(FO (m))(_l) of

new forms of weight 2k-2 on T (m) with eigenvalue (—l)k under the

Fricke-Atkin-Lehner involution

Woor £(T) e ol k2 f(— ~1—)

mT
2
Similarly, if j°USP(k,m) is defined like j(k,m) but with H—m]

v2 . Cusp .
replaced by I_EJ+1’ and 3, by the obvious analogue of (1), then

3S9%P(k,m) equals dim sOoV

k
o 22T (m))(—l) , the dimension of the corres-

ponding space of cusp forms.

Note that the difference j(k,m) —jCUSp(k,m) is the number of Vv

with 0gvgm (resp. 0<v<m if k 1is odd) and v2 = 0 (mod 4m), which
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equals thglj (resp. ngi-J), where b 1is the largest integer whose
Eis
k,m
2.3 and 2.4). In view of Theorem 4.4, Theorem 10.1 has a plausible

square divides m, and this is just the dimension of J (Theorems

interpretation as saying that the decomposition

J = 2 2 Mgy,
x,m o oo om0l

given there is direct and that there is an isomorphism between Ee:
>

and Mgifz(Fo(m)) preserving cusp forms. In Chapter IV we will prove
that this is indeed the case by proving the analogue of Theorem 10.1
with dimensions replaced by traces of Hecke operators. Here we restrict

ourselves to the equality of dimensions.

Proof. We carry out the proof only for k even, leaving the
entirely analogous case of odd k to the reader.

Our first objective is to write the formula defining j(k,m) in
terms of familiar arithmetic functions. It is convenient to replace
.Cusp

the different rounding functions in the definitions of j and of j

by their average. We therefore use the notation

a-% if x€Z+a, 0<qg<1,

() = x- Lellxl
0 if x€zZ ;
then
R _ m A _\i?; ) \)2 § ﬁ
(2) jkm = ¥ {dim M, - F= -kt (FENT+5| 2
v=0

(b as above) and jcuSp(k,m) is given by a similar formula with the

sign of the last term reversed. We substitute into this the formula

k+5
2

dim Mk = T

- BX&D - Vs X (k1)
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where X3 and Xh denote the non-trivial Dirichlet characters modulc 3

and modulo 4, and calculate:

i k+2v+5 _ v? _%) _ (2k-3) (mr1)
<, 12 Zm 24
- m Y3 if m=%k# 2 (mod 3) ,
3) Y L X, (ke2v-1) = -Y if m#F k=2 (mod 3) ,
v=0 A
0 otherwise »
o Ya if m is even, k = 0 (mod 4) ,
(%) =Y 2o X, (ke2v-1) = ~Ya if m is even, k = 2 (mod 4) ,
V=0

0 if m is odd

2
Also, since ((x)) is periodic with period 1, the function «_ZE)) is

periodic with period 2m, so we can write

m 2 2
v \Y
L) =5 > (L) + a2y .
y=0 4m 4m 4
Vv (mod 2m)
. : b, 61 b,1 .
Finally, the last term in (2) equals % +5 or % +Z depending

whether or not 4 divides m. Hence (2) can be written

8
(5 iGm = 3 5 Gkm)
i=1
with
- 2k—
iGem = &3 , 3,0,m = 2232 ,
js(k,m) = RHS of (3) , jl’(k,m) = RHS of (4) ,
2
fem =k > () . JeGem = B(F) = -¥b X, @
Vv (mod 2m)
Y if 4fm
j,Gm = &b, 3 Ck,m) = ,
L% if 4|m
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and jcusP(k,m) is given by the same formula but with the signs of j7
and j, reversed. We have now practically achieved our goal of writing
j(k,m) in terms of familiar arithmetical functions, for all the ji
except j, are extremely simple functions of m and k (periodic
functions of m and k or products of a polynomial in k and a multipli-
cative function of m). We shall now see that the fuﬁction js’ which
depends only on m, can also be expressed in terms of a well knowm —

though less elementary — arithmetic function.

LEMMA. Define h'(d) for d # -3,-4 as the class number of
positive definite binary quadratic forms of diseriminant d (so, h'(d) =0
if d>0or d# 0,1 (mod 4)), h'(-3) = Y5, h'(-4) = Y5. Then for any
natural number N

\)2 hl
O > ) = -Y v
v{mod N) d[N
In particular

Sm = -% > RCD .
d[4m

Proof. Suppose N=p is a prime. If p=2 or p = 1 (mod 4), then
both sides of (6) are zero, the left because (( ) 1is an odd function

and -1 is a quadratic residue of p, the right side because p has no

It

divisors congruent to 0 or 3 (mod 4). If p 3 (mod 4), then the

left-hand side of (6) equals

STy D> 1= DD (2 a+®)

n (mod p) v(mod p) n (mod p)

v2=n(mod p)
- ) Gy ®

n (mod p)
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=l n 1 n
- LG
~1
lp
e L G
n=1

and this equals —h'(—p) by Dirichlet's class number formula. The case
of comp”osite N can be handled similarly by expressing the square-roots
of n (mod N) as z X(n), where the sum is over all quadratic Dirichlet
characters X (modXN) (this formula must be modified if (n,N) >1) and
applying Dirichlet's formula to each X separately.

Equation (5) and the Lemma give a very explicit formula for
j(k,m); to prove Theorem 10.1 we must relate it to the formula for the

. . +1
dimension of M2k—-2(r0 (m)) ~. Set

d{k,m)

dim Mk(l"o (m)) s

wom = erQi, M (T, @)

and write dg,Ww for the corresponding numbers with M'k replaced by

0
new

Mk . We have to show that
i, km) = (d (2k-2,m) + w (2k-2,m))
since this is the dimension of the (+1)-eigenspace of W, . Equivalently

if we define

P'Gm = %2 ( 1) d (2k-2, m/d)
dim *g%|da
(€))]
3" kem) = % 2 ( 1) w, (2k-2, m/d)
dlm *g21q

(which equal one-half of the dimension and trace of W, on a space

lying between MRV (1"o (m)) and M

k2 (1"0 (m)) ), then we must show

2k~-2

that j dis the sum of j' and j". Rather than work out everything
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in terms of new forms, it is convenient to write (7) directly in terms

of d and w instead of d, and w;. As is well known, d and d, are
related by
dim) = ¥ (Z 1) 4, (k') 3
' m
im LT
indeed, this is clear because M.k(l"o (m)) has a basis consisting of the

functions £(t) = h(t) with h a new (eigen)form of some level m'

dividing m and £ a divisor of %— . Similarly, w and w, are
related by
wikom) = Y w(km')
m'|m
m/m' =[]

because for h and f as above we have

k/2

hlW, = e = flw_ = e(—mz—)
m m n'l

»(& %)

and therefore h gives a contribution € to tr(Wm) if L = ET_JL

and 0 otherwise (since then the sum and difference of Lk/zh(fxt) and
m_\k/2 m . . .

(m'll,) h( - T) are non-zero eigenfunctions of W with opposite

eigenvalues). Substituting these two formulas into (7) and carrying

out an easy exercise in multiplicative functions, we deduce

(8) i"Gem) = % 2 A(gv)d(2k-2,m")
m'[m

(9 i",m) = % 2, w(Zk-2,m") s
m'|m

v, pAVES
where A is the Liouville function (X(Hpil) = (-1) ). Into these
formulas we have to substitute the known formulas for d(k,m) and w(k,m)

and then compare j'+j" with our formula for j.
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The formula for d(k,m) is well known (see e.g. [8]); for k >2

we can write it as

4
(10) d,m) = 3 e (k) £, @)
i=1 b
where
e, = XL, W@ = %o,
e (0 = “AXGkD, e ) = VaX(k-1)

and the fi are multiplicative functions:

B o= T ard)
p|m
£,m = T @LY2 4 LoDzl
pYilm
v>0
1 if 9Tm
f,m = TT (1+x3(p))x{ )
plm 0 if 9|m
. 1 if 4'rm
£,@ = T <1+xq<p>)x{
0 if 4| m

plm

These formulas can be written more uniformly as

- e+ £, =TT +0p ,
P P

£, = TTEGY +x67D) = TG + x67)
P P

where in each case the product is over primes p dividing m and v is

the exponent of p in m. Thus each fi has the form
v-1
£, = T (g, 6%) + 8,007 ) = g; (m)
1
P m |m

m/m' squarefree
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for some much simpler multiplicative function g;°

g, (@ = m , g,m = TTop =1,
P
g, (m = X, (m) , g, m = X, (m

(b as before the largest integer such that b2|m). On the other hand,

the inversion of (8) is

an d@k-2,m) = 2 2, §'Gm
m'|[m
m/m' squarefree

so this means that j'(k,m) is given by

(12) i'(k,m)

4
72 2 ey (2k-2) gy (m)

i=1

= B2 0+ b+ Yo X 00 X @) - Yo X, (m)

The first two terms and the last are the functions 3,0 3 and jG of (5)

7
respectively. (Note how much simpler (12) is than the more familiar
formula (10); the fact that each of the four multiplicative functions
fi(m) occurring in the dimension formula (10) has a natural decomposi-
tion parallel to (11) suggests that, in some respects at least, the
theory of Jacobi forms is simpler than the usual theory of modular forms

of higher level. We shall see the same phenomenon again in Chapter IV,

where almost every term of the trace formula is simpler for Jk o than
s

. new
for either M, ,(T (m)) or M, ", (T (m) .)
We still have to look at the formula for tr(Wm). Since this is

given in the literature only for cusp forms, we first consider the
Eisenstein series contribution separately. The term i=2 in (10) is

the contribution from the cusps ( fz(m) is the number of cusps of Fo(m))
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and would change sign if .we replaced d(k,m) by dim SZk—Z(ro (m)),
just as the term j7(k,m) in (5) to which it corresponded changes sign

when we replace j by quSp'

The number fz(m) can be written

; ¢((d,%)), where ¢ is the Euler function; this formula arises
dim

by attaching to a cusp % €@V {°°})/I'°(m) (x,y coprime integers)

the invariants d= (y,m) and x-%(mod(d,ﬂ)). To each cusp corresponds

. . . Eis . .
an Eisenstein series, so the trace of Wm on M is just the number

2k~2
of fixed points of W, on the set of cusps. Since W sends X to
- L
;;E = 2;—, with .x' = —%, y' = %x, d' = (y',m) = % , we see that a
. m 2 S A )
fixed point occurs only if d = 1 (so m=d") and x T Exg (mod 4d) ;
since on the other hand xy = -x'y' and x% is prime to d, this

can only happen for d=1 or d=2. Hence

Eis 1 if m=1 or 4 ,
tr (W, M, (I‘o(m))) =

0 otherwise B

and putting this into (9) gives a contribution

Y, if 41 m

2j 4 (k,m)
1 if 4]m

to j'(k,m), as required (notice that jEis = 2(j,+j,) 1in the notation
of equation (5)).

Finally, the formula for the trace of W, on Sk(l"o (m)) (given in
[38] and for k=2 essentially going back to Fricke, who computed the
number of fixed points of (1?1 _Ol) on JC/l"0 (m)) can be written

Eis
1
e (i, My

er(W,, (T, (m)) (T, (m))

Moo

{ ~%h'(-4m) - L h'(-m) if m= 3 (mod 4)

~-%h' (~4m) otherwise
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-
Yy if m=3, 3]k
-7 if m=3, 3{k

. o ¥ if m=2, k=0 (mod 4)
-Y, if m=2, k=2 (mod 4)
2k-3 |, . _
5o+ /X (k) if m=1

(the correction terms for m=2 and 3 come from extra fixed points of
Wy; the large correction for m=1, of course, comes from the fact that

W, =1 and hence w(k,1') = d(k,1) ). Inserting this into (9) we find

3" (k,m) 53" em) - % Y n'(-4d) +

(—1)k/2/4 if 2| m
d}4m

0 if 2% m

Vs if 3|m, 3|k
2k-3 3 Yy oo
S Tl x & + 4V Af 3lm, 3%tk
0 if 3fm

+

The first term on the right is je’ by the discussion above, the second
equals j5 by the Lemma, and the third and fpurth terms are jl’ and jz’
respectively. Finally, the last two terms together with the so-far-
unaccounted-for term 1/6X3(1()X3(m) in (12) together add up to i,

as one checks easily. This completes the proof of Theorem 10.1.

Notice that for m prime the Theorem gives

Jem) = 3 Cem) + 3 Gk,1)

= 1/z(do (2k-2, m) + w(2k-2, m)) + do(Zk—Z, 1)
= 4%(d(2k-2, m) + w(2k-2, m))

= dim My (T (m) yHl

2k-2

*
= dim M, L, (T"@)
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where T*m) = I‘o (m) V T'o (m)wm is the normalizer of I‘o(m) in SLZ(]R);
this is the equation which we used in §4 (eq. (19)).

Finally, we say something about the case k=2. We set

13 Fem = jem o+ P 1
d<vm
d|m, d%{m

Then Theorem 10.1 remains true for k=2 with j replaced by j*.
Indeed, in the proof of the theorem only two things are different for
k=2:

i) There is one less ''new" Eisenstein series of level 1

(compare the remarks near the end of §3, where the only new

X

Eisenstein series E , which fails to exist for k=2 is

X

the one with X =trivial character, =1);

fX
ii) The formulas for dim Sk(l"o (m)) and tr(Wm, Sk(l"o(m)))
must be increased by 1 for k=2 (compare [8],[38]).
The effect of i) is to decrease the right-hand side of (1) by cro(b) if
k=2 (where as usual b 1is the largest integer with bzlm and Oo(b)

the number of positive divisors of b), while that of ii) is to increase

it by

3 if m=square

m'|m

B L MET) vk 2 1 = ko) + {
m' |m

0 if m# square

(cf. (8) and (9)), so the two effects together give the correction term

in (13). Since we would like the identity

new new (—1)k
dim J " = dim M (T (m))

to be true for k=2 as well as for k> 2, it is reasonable to conjecture

that dim J is in fact given by j*(2,m) (it certainly cannot be

2,m

given by j(2,m) in general since this is sometimes negative). In any
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case, it would be nice to prove at least the lower bound

. .k
dim J2,m > j*(2,m)

by elementary methods like those used in 89 to establish dim J

w

k,m

j(k,m). Looking at the proof of that inequality, we see that this is
. . . 2 .
a question of finding #{d <V/m, dim, d 'fm} linearly independent linear

relations among the numbers

el p e Qe@oeeT e 3, )
0 ; n<r?/4m

For m square-free we can do this as follows: for ¢ € I and m'[ m

2,m
the function (¢[wm,)(‘r,0) belongs to Mz(SLz(Z)) and is therefore

identically zero; taking the constant term of this relation gives the

identity
2 2
r'“-r
S (L) <o
r€Z
where r'= -r (mod 2m'), r'= r (mod 2{:;11 ) (cf. Theorem 5.2). Since
wm, = wm/m' , this gives Zt_l relations involving c(0,0) and coefficient

2

c{n,r) with 4nm < r (t = number of prime factors of m), and hence

Zt_l— 1 relations among the c(n,r) with lmm<r2, as desired. Presumabl
something similar works for non-squarefree m using the Hecke cperators
TQ’ (R,Im) defined at the end of §4 as well as the involutions Wm, .

The first few values of 3i¥(2,m) are given in the following table

(in which omitted values are zero), which is to be compared with (14)

of §9 and with Table 5 of [5]:

m 25 37 43 49 50 53 57 58 61 64 65 67 73 74 75 77

j*@m) {12 1 1 2 1 1 1 1 1 1 1 2 2 1 1 1

m 79 81 82 83 85 86 88 89 91 92 93 97 98 99 100

j*@2m)| 1 2 1 1 2 1 1 1 2 1 2 3 2 1 2
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§11. Zeros of Jacobi Forms

To..complete the theory developed in this chapter, we discuss the
sets of zeros of Jacobi forms. These zeros are divisors on the algebrai
surface (J('XC)/I";I > and we could give a discussion in algebraic-
geometric terms, but we prefer to take a function-theoretic point of
view more in accordance with the rest of the exposition.

Let, then, ¢ € J be a non-zero Jacobi form. If &(1,,2)

k,m
vanishes identically in 2z for some T, € ¥, then we can write ¢ = £o,
where f£(T) is a modular form vanishing at T, and ¢1 is still a
holomorphic Jacobi form. Hence we can assume that the zero-divisor of
¢ contains no fibres of : (J('XC)/I‘;] -> J('/I‘l. We denote by v(T) the
values of z at which ¢(t,2) vanishes; then V(1) is an infinitely
many-valued function. By Theorem 1.2, we know that Vv(T) has 2m values

(counting multiplicity) modulo ZT+Z; mnear a given point T, of ¥H we

can number these ’:\)1 (T),...,i\)m('r) so that

¢(1,2) = 0 = =z = }\T+ui\)j(T)
for some A,M € Z, jFE€{1l,...,m}
(this numbering cannot be done globally because the restriction of T
to the divisor of ¢ is ramified). We want to see what kind of
functions Vv and the \)j are. In particular, we will show that they
are well-behaved at infinity and that their second derivations are
algebraic modular forms (i.e. satisfy algebraic equations over the ring

of modular forms) of weight 3.
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THEOREM 11.1. As T = «, each branch of V(1) has an expansion

-3

1) V(D = ot + B8+ 3

n=1

2TindT
e

for some A€ Q, BEGC, and S§E Q,, Irm 18 the demominator of a,
then there are M-1 further branches of v(1) with the same o but B

replaced by B+ % (L=1,...,M-1).

In other words, the branches of V(T) near infinity tend with

exponential rapidity to a subset of € of the form

-1
Y ((ag + Z)T + By + M, Z)

for some numbers M € N, oag € M;lz and B € € with z M, = 2m;
s

in a fundamental parallelogram for the

action of ZT+Z on € such a set

could look as in Figure 1 (where m=35, 1+T

OL1=1/5: 2=—1/s)- Im(T) > =

the dots
Proof. The method of proof will are the
limiting
be tc take the expansion (1) as an positions
of the
“"Ansatz', substitute it into the zeros of ¢
expansion of ¢(1,2z) =0, and show 0 1
that ®we obtain the full number
Figure 1
(i.e. 2m modulo translations by ZT+Z)
of zeros in this way. Let
n.r
¢(t,z) = Z cln,r)q
(r,n)€C

be the Fourier expansion of ¢, where €= {(r,n) € Zzlc(n,r) #O}.

Then we want
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@ 0 = ¢(T,aT+B+0(1)) = Z 2™ (0, ¢* M Qo))
(r,m)€C

where we have used 0(l) to denote any function which is exponentially
small as T = ®. This equation can hold only if the minimum value Y of
ar+n ((n,r) € @) is attained for at least two distinct pairs (n,r) € C,
i.e. onlyaif n = Y-—af is a supporting line of €. Hence -0 must be
the slope of one of the segments bounding the convex hull € of €.

By the properties of the coefficients c(n,r), we know that € satisfies

the two properties

2
) ¢ c{Enlnziz],

ii) € is invariant under the map ©: (r,n) - (r+2m, n+r+m)

(cf. Figure 2). It follows that the boundary of € consists of an
infinite sequence of line segments (PS’PS+1)s€EZ with 68(P.) = Pots

for some SE€ N and the numbering chosen so that Ps = (rs,ns) with

< < < . s .
e Sr <r i< Let ag denote the negative slope of this

segment, i.e.

(the dots
indicate _
points of &)

"y

Figure 2
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Then

o (ns+l+rs+1+m) - (ns+rs+m) L
= - = o -
(rs+l+ 2m) - (rs+2m) S »

so the numbers oy repeat periodically (modulo 1) with period S.

If we set

Ys = a.r_. +n =0Lsrs+l+n

s"s s s+1 >

then the right-hand side of (2) with a=ag equals

3 qu E c(a,r) ™R 4 (1)

(r,n)€ [Bg, By y ]

This can wvanish only if eZTTlB is a root of the polynomial
Ts41™ s
(%) E clng-agi, rg+i) %
3=0
of degree T ,1 " Yg- Conversely, given any such B, we can choose the

§ and ¢, in (1) to make the o(1l) terms in (3) vanish (Puiseux expansion

principle). Thus we get exactly o~ T solutions (module translation

of B by Z) of the form (1) with a=a,. Since Z (rs+l—rs) =
s (mod S)
r —-r_ = 2m, this accounts for all branches of V(1) (mod ZT+2Z).

S+S s

The translation invariance B — B+ Mi ( MS = denom(ots)) follows from
s

the fact that the only non-zero coefficients in (4) are those with

n,-0,J€Z or =0 (mod M), so that (4) is actually a polynomial

r -r M
of degree sl s in x °

M and its roots therefore invariant under
s
eZﬂ'l/MS-

multiplication by This completes the proof.

It is not hard to see from the proof of Theorem 11.1 that we have
the following converse: any collection of 2m points (a,B) € Q@ X (!/Z2

invariant under (o,f) > (-a,-B) and (a,B) > (0, B+a) occurs as the
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limiting position of the zeros of some Jacobi form of index m. Another
converse is that any m-valued section of (JC><(3)/I“1I (i.e. any m-valued
function V(1) € (C/ZT+Z)/(¥1) satisfying the transformation equation
(5) below) whose behavior at infinity is as described in Theorem 11.1

is the zero-divisor of some holomorphic Jacobi form ¢ of index m.
Indeed,-if the branches of *v(T) (mod ZT+Z) are numbered

v, (T),...,\)m(’r) with \)j (T) identically zero for j=m'+l, ...,m,

then Theorem 3.6 and a little thought imply that we can take

m-m'
d(re) = ED,,  (T2) Z( 12,1 (T22) + 5 P,V (D)0, | (1,2
j=1
for some modular form f.
We now consider the behavior of v(T) in the interior of ¥, From
the transformation law of ¢ under I‘1 it is clear that ¢(T,2z) = 0 =

¢(MT, cTz-i-d) =0 for any M = (2 g) € l"l, so we have the equality

of many-valued functions

(aT+b) -

o d (eT + d)_l v(T)

(5
or, written out explicitly,

(6) v (o) = t(ct+ay L vy (D) + AT+ G=1,...,m

for some j € {1,...,m} and A,u €Z. Since the infinitely-many-

valuedness of v arises from the addition of Iimear functions AT +u
2

(A,u € Z), the second derivative v(t) = fT—z v(Tt) 1is only finitely

many-valued. An easy calculation from (5) or (6) gives

+
V" zz+2) = (et+a)v(D)
or
" a‘r+b - 3 . w
vy CT+d) = x(ecT+d) \)j.(‘[)
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In other words, V'(T) transforms under 1"1 like a (2m-valued) modular
form of weight 3 and V" (1.‘)2 like an m-valued modular form of weight 6.

We can eliminate the remaining many-valuedness by setting
2 " 2
) b = o (VDT o (0F) G=1,....m ,

where Gj denotes the jth elementary-symmetric polynomial; then d)j is
single-valued and transforms under T, like a modular form of weight 6j.
However, ll)j is not necessarily holomorphic in general: at a ramifica-
tion point of V(T)O the function Vv'(T) can have a pole of rational
order >-1 and V' (T) a pole of rational order >-2 (locally,

v =oc,t+c (T—TO)A + ... with A a positive rational number,

v~ cl}\()\—l) (T—To)_2+>‘). Hence the function (7) can have a pole of
order > -4j at such a point T,. Near infinity, it follows from Theorem
11.1 that all V) ()2 are exponentially small, so the same holds for

.(T). We have proved:
3

THEOREM 11.2. Let ¢(t1,z) be a Jacobi form of index m with zeros
given by =z = i\)j (1) (med ZT+2Z) (§=1,...,m), and define functions
11)]. (1) (3=1,...,m) by (7). Then each le (1) <8 a meromorphic modular

form of weight 63 which vanishes at <« and has no poles of order 2 4j.

We can alsc state this by saying that the zeros of any Jaccbi form

of index m have the form

jeo
z = (A+a)1+u+BiJ (t-T)Vp(t) dt (A,u € %)
T

where p(t) (= \)"(T)Z) is a root of

P -y e+ Lk = 0,
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i.e. p has weight 6 and. is algebraic of degree m over the graded
field of modular functicns. In the particular case m=1, the function
p(t) = 11)1(‘[) is itself a meromorphic modular form of weight 6. In
this case we can make Theorem 11.2 more precise:

THEOREM 11.3. Let- ¢(T,z) € J be a Jacobi form of index 1

k,1

which is not divisible in the ring of Jacobi forms by any modular form

of positive weight. Then the zero-set of ¢ has the form

ico
$(1,2) = 0 = z=1i on+s+f(t—r)—c—(t3)— dt (mod ZT +Z)
H(r)”?

for some o € {0,%} and BEC, where H is a modular form of weight

{BR— 30 if ¢ is a cusp form
k' =

3k-6 otherwise

and G a modular form of weight %k'+3 with ord (G) > Y, ord (H).

Proof. The particular case ¢ = ¢12 , was treated in [9]

(note that the zeros of ¢ and of gz are the same, by Theorem 3.6):

12,1
There k=12, k'=6 (since ¢ 1is a cusp form), so H and G must be
multiples of E6 and A, respectively. The formula actually obtained
in [9] was

Joo

_ _ log (5 +2v6) , M)
pT,2) = 0 = z = AT+p*{k+ i + 144 7i/6 | (£-T) 7
B, (t)
Qu €z
The general case is similar. We write
0(t,2) = £(DE, (1,2) + g(DE, (T,2) (FEM _,, g €M _Q

(Theorem 3.5) to get
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3 ,,(T,2) E (D g(1) + E (1) £(1)

p(t,2)

bz = 0= - T 5,mD T E@Em + 50 D

(Theorem 3.6). The only poles of \)"(‘r)2 occur where the two branches
*v(T) (mod ZT +Z) meet, i.e. at points T, where the zero of ¢(tr,2) is
at a 2-division point z € %(ZT+Z); at such a point, the cubic
polynomial

" 6
42° (1) - f%;— E (D plt,2) - fg%— E(tz) = p'(0)

vanishes. Substituting this into the above formula and clearing

denominators, we see that this is equivalent to the vanishing of

(5lg+E,6)° - 3B, (B'g+E £) (B g +E D’ + 2B (B g+E D’ = (E2-EDH®) ,
where

H(T) := Egf° + 3E’f'g + 3E,E fg® + (2E. - EDg’ ,
a modular form of weight k' = 3k-6. Any pole of ViT)? is simple or

3
72 locally), so a’

1
triple (since Vv looks like ('r—Tu)/2 or (T—To)
2
annihilates the poles of V"'(T)” or turns them into double zeros; away

from ramification points, v(T) is locally holemorphic, so v (‘r)2 has

2

zeros of even order. Hence V' (T)? has the form GETis for some G of
H(T

weight 3+%k'. If ¢ dis not a cusp form, then f£(ix) # -g(i®) so

H(i®) # 0 and we are done (G must be a cusp form because v"(T)

vanishes at =). If ¢(1,0) is a cusp form, then we can write ¢ as
i =

f¢1u,1 + g¢12’1 with f € Mk—lO’ g Mk—lZ (cf. comments at the end

of §3) and repeat the argument to get

3

(t,2) = 0, ramified = H := £ - 3E fg° - 2E g’ = 0 ,
n

6
where now H has degree 3k-30. This completes the proof, and we have
even given an explicit formula for H in terms of f and g; a formula
for G in terms of f and g and their derivatives of order <2 is

given implicitly in the last paragraph of [9].



TABLE 1. Coefficients of Jacobi forms of index 1. Coefficients of the
Eisenstein series of index 1 and weights 4, 6 and 8 and the cusp forms
of index 1 and weights 10 and 12. The table gives c(N) for N¢< 100,

where ¢ = 2 c(b4n - rz)qncr € Jk 1

n,r
n eu(n) ee(n) eg(n) clo(n) clz(n)
0 1 1 1 0 0
3 56 -88 56 1 1
4 126 -330 366 -2 10
T 576 -h2o) 14016 -16 -88
8 756 -752h 33156 36 -132
11 1512 -30600 260712 99 1275
12 2072 -46552  hé2392 -272 736
15 k032 -1309kLh 1987392 -240 -80k0
16 4158 -169290 2998638 1056 -2880
19 554k -355080 9090984 -253 24,035
20 7560 -h6h90l -1800 13080
23 12096 -899712 ' 2736 -14136
2k 11592 -10520k0 : -146k -54120
27 1366L -1732192 : -4284 -1288hk4
28  1670L ~-2099328 1254k 115456
31 24192 —3h421hko -6816 389520
32 24ok8 -3859812 -19008 38016
35 27216 -5593104 27270 -256410
36 31878 -6522450 ~h55k -69T7950
39  hh3s52 -96518L40 -6864 ~-806520
ho 39816  -10L335hLk 39880 963160
43 41832  -1h00282kL -66013 1892363
4y 55944 -1618T7hOO -26928 938400
b7 To576  -22429hko hhobl -1227600
48 66584 -23836120 12544 -~2309120
51 67536 —30320400 108102 -813L50 .
52  T6104  -33965LL8 -93704 -2813096
55 100800 -45141888 -22000 2311640
56 99792  -47828880 80784 5549040
59 101304 -58659480 . —281943 -3336015
60 116928 -65079168 188160 10548480
63 1hs5728  -83487360 -36L32 6141960
64 133182 -86676810 -295h2h  -20142080
67 12650k -10302362k4 659651  -11654893
68 160272 -114521616 193392  -10887888
71 205632 -143637120 -8L816 5100360
72 177660 -1hkT7h92972 -390k420 24801876
75 176456 -171930088 -635225 31Lk06575
76 205128 -187837320 68816 17689760
79 24998hF ~230334T720 -109088  -LT059760
80 249L80 -238495752 950400 -3767040
83 234360 -272322072 -22kh55 -3738h71
84 26510k -295334160 -484368 -6L4883280
87 326592 -35680550L 1050768 -5321L448
88 281736 -362360328 143176 26020696
91 277200 -hL08875280 195910 66711190
92 350784 -LLT15686L -2145024 18546432
95 423360 -532388736 -370800 96031320
96 382536 =~539696520 772992 15586560
99 355320 -599851800 -1073655 -239563575
100 390726 -644325330 2832950 118753250
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3 ,,(T,2) E, (1% g(1) + E (1) £(1)
$(T,2) = 0 = ey plt,z) = 3,02 = E, (1) a(D) * E(D) £CD)

(Theorem 3.6). The only poles of V'(1)? occur where the two branches
*y(T) (mod ZT+Z) meet, i.e. at points T, where the zero of ¢(r,z) is
at a 2~division point z € %(ZT+Z); at such a point, the cubic

polynomial
1 6
4% (1) - ﬁ%—’EH(T)p(T,z) - E(nn = p' @

vanishes. Substituting this into the above formula and clearing

denominators, we see that this is equivalent to the vanishing of

(ﬁg+%fﬂ—3ggﬁg+afxE&+ngz+2%(%g+njﬂ = @-EHum ,
where
H(T) := E.f° + 3E.f'g + 3EEfg’ + (2E, - EDg®
a modular form of weight k' = 3k-6. Any pole of \)"(T)2 is simple or
Y2

3
triple (since Vv looks like (’r-—’ro) or (’l.'—’l.'u)/2 locally), so i
' 2
annihilates the poles of v'(T)" or turns them into double zeros; away

from ramification points, v(r) is locally holomorphic, so v'(1)? has

2

zeros of even order. Hence v"(1)? has the form -3%—;? for some G of
T

weight 3+¥,k'. If ¢ is not a cusp form, then f£(iw) # -g(iw) so

H(i®) # 0 and we are done (G must be a cusp form because v"(T)
vanishes at ). If ¢(1,0) is a cusp form, then we can write ¢ as
fq{)l_o,1 + g¢1z,1 with f &€ Mk—lO’ g € Mk—lZ (cf. comments at the end
of §3) and repeat the argument to get

3

$(T,2) = O, ramified = H := £~ - BEL*fg2 - 2E$g3 = 0,

where now H has degree 3k-30. This completes the proof, and we have
even given an explicit formula for H in terms of f and g; a formula

for G in terms of f and g and their derivatives of order g£2 is

given implicitly in the last paragraph of [9].



TABLE 1. Coefficients of Jacobi forms of index 1. Coefficients of the
Eisenstein series of index 1 and weights 4, 6 and 8 and the cusp forms
of index 1 and weights 10 and 12. The table gives c(N) for N <100,

where ¢ = } c(n-r2)q"c" € g

ot k,1°
n e,(n) eg(n) eg(n) clo(n) clz(n)
0 1 1 1 0 0
3 56 -88 56 1 1
L 126 -330 366 -2 10
T 576 —ho2k 14016 -16 -88
8 756 ~T7524 33156 36 -132
11 1512 -30600 260712 99 1275
12 2072 -h6552 L62392 -272 736
15 4032 ~13094k 1987392 -240 -80k0
16 4158 -169290 2998638 1056 -2880
19 554k -355080 9090984 -253 24035
20 7560 -hékook -1800 13080
23 12096 -899712 . 2736 -14136
24 11592 -1052040 * -1464 -54120
27 13664 ~1732192 ' 4284 -1288k44
28 16704 -2099328 1254k 115456
31 2hk1g2 -34k214kLo ~6816 389520
32 2h4oh8 -3859812 -19008 38016
35 27216 -5593104 27270 -256L410
36 31878 -6522450 ~455h -697950
39  Lh3s2 -96518L0 -6864 -806520
ko 39816  -104335hL 39880 963160
43 41832  -14002824- -66013 1892363
L4 5594k -1618T400 ~26928 938400
47 72576  -22L294L0 LLo6h -1227600
48 66584  -23836120 12544 -2309120
sl 67536  —-30320400 108102 -813450 .
52  T6104  -33965L48 ~9370k4 -2813096
55 100800 -45141888 -22000 2311640
56 99792  -L47828880 80784 5549040
59 101304 -58659480 . —281943 ~3336015
60 116928 -65079168 188160 10548480
63 145728 -83L487360 -36432 6141960
64 133182 -86676810 -29542)  —-201k42080
67 12650% -103023624 659651  -11654893
68 160272 -114521616 193392 -10887888
71 205632 -1Lk3637120 -84816 5100360
72 177660 -147L92972 -390420 24801876
TS5 176L56 -171930088 ~635225 31406575
76 205128 -187837320 68816 17689760
79 2ho984 -230334T720 -109088 -L7059760
80 249480 -238495752 950400 -3767040
83 23L4360 -272322072 -22455 -3738471
84 265104 -29533L4160 -48L368 -64883280
87 326592 -35680550L 1050768 -5321448
88 281736 -362360328 1h3176 26020696
91 277200 -%08875280 195910 66711190
92 350784 -4LT715686)4 -21h5024 18546432
95 k423360 532388736 -370800 96031320
96 382536 -539696520 772992 15586560
99 355320 -599851800 -1073655 -239563575
100 390726 ~64L325330 2832950 118753250
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LE 2. Coefficients of Jacobi cusp forms of index 1. Similar to
able 1; the coefficients c(N), N <20, are given for all cusp forms
f index 1 and weight £ 50.

j e ) ) cl®) c{11} ci12) c{15) c{16) ci19) c(20)
10 1 -2 -4 34 99 =72 -240 1056 -253 -1800
12 110 88 -132 1275 734 -8040 -2880 24035 13080
10 1 -2 24 -4 1581 4048 -4320 96 45987 -129000
10 1 -2 520 1044  -B4&9 14848 93000 -214456 -90973 628200
12 10 152 2268  -1748% ~9344 1144600 -44160 274595 199700
10 1 -2 %4 924 54339 -106832 1046800 -84 -2842973 5619000
12 10 -592 -S172 28995 -990%8 630000 591840 -5840443 123000
10 1 -2 -28¢0 364 ~131109 241088 -3056040 3570464 459107 ~-11836920
12 10 392 4668 20955 556576 -3794740 2679360 -9382045 ~15165480
10 1 =2 704 -1404 147859 -332912 14157120 -27449824 143274867 -231589800
10 1 -2 -1024 2052 236977 -47B0b4 12887040 -24815%04 15730822 ~265458600
12 10 -352 -2772 ~110925 -131873&6 6376800 -$4285920 217428033 ~106371000
10 -2 -4 84 -196149 392129 -35120280 49456384 1018050013 1897579540
12 1 10 632 7068 117195 1693495 2087880 146407680  -872209885 1861629240
12 10 -1096 -10212 310731 2341312  -4200312 135307008  -764576221 1990045624
10 1 -2 944 -1884 338979 -474192 33970440 -110394784 3908309307  -7596107400
10 1 -2 -784 1572 662l 10096 67556380 -135132384 3735208707  -7240139400
12 1 10 -112  -372 -193245 -1942416 -20998800 -356702880 1505914115 -11201914200
10 1 -2 200 -39 -203587 407948 -82275720 143735104  -9870850333 19414437640
10 1 -2 -1528 3060 736443 -1479008 -89642134 182245440 -10153799945 19941636168
12 110 872 9468 271035 3416416 31594520 569380800  ~113712925 40715395960
12 1 10 -B56 -7812 49351  -B7968 68014488 473231148  -1103919741 39442512024
10 1 -2 1184 -2364 567699 1130472 139371360 -276483744  1B079918947  -35407805800
10 1 -2 -544 1092 192621 383056 64281120 -129327264 19949307587  -39439373400
12 H 10 128 2028 -217965 -20300%6 -67612300 -828419040 -3951942205 -101051748400
12 H 10 -1600 -15232 846483 7321840 -142703040 -875098016 -3481447997 -1039048839460
10 1 -2 840  -876 -I153429 308408 -130698380 260773624 -30055413833 59589577320
10 i -2 -1288 2380 371883 -748928 83810376 -145120320 -30087457335 60506412648
12 H 10 1112 11868 482475 5710336 99525140 1409838720 ° B05B344835 184810546680
12 1 10 -6l6  -5A12 -153429 -1941248 79136489 637312128 15315600739 201255460024
10 1 -2 1424 2844 854019 -1702352 278183280 -532954704 52743149137 -104422077000
10 1 -2 -304 612 -321021 640816 16333760  -35048544 34957074847  -59843414600
10 1 -2 -2037 4068 1489923 -2997934 -435519736 877017504 22944715395  -474B46445840
12 {10 368 4423 -185063 -1521776 -119641200 -1311194400 -20648940925 -304243522200
12 i 10 -1380 -12852 463643  36B2940 57003400 848266464 -35112508797 -298455551640
10 I -2 680 -1356 -45469 94048 -166564200 332939944 -b1751452573 122837118400
10 1 -2 -1048 2100 64923 -134043 170285936 -340303680 -9178333205 19037153928
2 1 10 1352 14268 751515 BIR02S6 216727300 2804021440 32754039395 535586093400
12 i 10 -376 3012 -299109 -3218528 39539488 159789388 33733829219 349981281424
12 1 10 -2104 -20292 1435251 14842528 -542842248 -4313363872 54358407779 2177419758%



E 2 (continued).

ci{d)

ci?)

ci®

clin
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j ci3) i) c{15) cils) c{in ci20,
10 1 -2 1664 -3324 1197939 -2389232 486230400 -967485664 121391404227 -240829833000
10 1 -2 -84 132 -391821 783376 -60811200 120055776 38313748547  -74346825000
10 1 =2 -1792 3588 1004403 -2015984 -82319a1s 16B674784 -78355183085 156371011800
12 1 10 508  &B28 -94405 -437456 -163260000 -146H788960 ~-49740122045 -422187283000
12 1 10 -1120 -10452 140403 620080 163587040 1704483744 -21437137597 -87002596920
1.1 1 -2 920 -1836 119691 -235712 -176049240 352558044 -101820918493 202936441480
10 1 -2 ~808 18620 -1B4437 345632 183611496 -347952640 31823735075  -62911195992
10 1 -2 -2536 5076 2497419 -5004992-1152766680 2315348416 217935113507 -440504318630
12 1 10 1592 16668 1073155 12026176 400018440 4896168960 D6401086755 1227660448120
12 1 10 -136  -612 -387139 -3919B08 -32601912 -619095552 42482769699 361358758824
12 1 10 -1864 -17892 1133451 7994048 -154679928 -795420672 -72403550931 -785661679744
10 1 -2 1904 -3804 1599459 -3191312 777336720 -1548294624 240573448067 -478257505800
10 1 -2 176 -348 -405021 810735 -154979760 308337496 22072314627  -46360494600
10 1 -2 -1352 3108 576483 -1139184 154873104 -307424736 -95954407165 192522510840
12 1 10 R4B 9228 53475 1222864 -184445200 -1756942720 -89142745565 -1023115479000
12 {10 -830 -8052 -126237 -1846800 196871280 1830793824 18599313603 323342812200
12 1 10 -2508 -28332 26B0035 24903376-1332542000-11458231200 300794932915 2147358543400
10 1 -2 1160 -2316 342451 -4B0472 -143329480 292017994 -143603003613 237031285960
10 1 -2 -568 1140 -376197 750112 137608056 -274715200 75486697955 -150419213112
10 1 -2 -22%b 4596 1890939 -3791072 -358857160 1123301056 -53351489053 104443594120
12 110 1832 19068 1462390 15048095 462221080 7818321200 184743042915 2428829922840
12 {10 108 1788 -4176a9 -4045038 -123814312 -1561104192 34021086179 224305113624
12 1 10 -1624 -15492 483251 5721568 113328792 1564371328 -10709098R0&1 -955095356564
10 1 -2 2144 -4284 2058579 -4108592 1165325240 -2322439584 430703904707 -856747047400
10 1 -2 416 -B2B 340821 722896 -251797920 502149216 -15196472893 29389343400
10 1 -2 -1312 2628 206163 -417584 289883324 -578929056 -57559070845 114257587480
10 1 -2 -3040 6084 3758931 -7530032-2367410080 4753886304 757703781827 -1524922354120
12 1 10 1088 11623 259133 3459184 -149972800 -1443475430 -1333346391485 -1442082958200
12 110 -h40  -5452 335277 3777680 164600320 1345434704 45570052003 758647107720
12 1 10 -2368 -22932 2056275 18845296 -675040160 -55360708R0 -13067729725 -548795708280
10 1 =2 1400 -279% 623211 -1240832 -40380920 123440704 -177939139933 355629752040
10 1 -2 -3 860 -J10337 1019392 46100816  -94239350 107476246435 -215202993432
10 1 -2 -2056 4116 1342059 -2492352 -109984440 225357496 -183408190813 364352982120
12 110 2072 21468 1904235 20646016 1017159720 11711318400 346949263875 4340047229540
12 1 10 344 4188 -390549 -35943s8 -225823512 -2527996032 2924202659 -157085091976
12 110 -1384 -13092 300651 2025088 275007912 2904352128 -79414351581 -557343782024
12 110 -3112 -30372 3977835 37504384-2640126360-23589440640 923392397475 7511424019320
10 1 -2 23B4 -4744 2575299 -5141072 1664022940 -3317768544 714943158147 -1423055927800
10 -2 836 -130B -258621 519856 -337441680 673842336 -74404102013 151461036600
10 1 -2 -1072 2148 -106537 208816 336535344 -673436176 12453463875 -23569742280
10 1 -2 -2800 5604 3031491 -4074192-1473826320 2959306623 197144242307 -400213160840
12 1 10 1328 14023 522435 6271504 -105418300 -588037840 -173352759805 -1780956963600
12 L 10 -300  -3232 -486717 5112560 978338160 444452384 104354848003 1078154321640
12 1 10 -2128 -20532 1490115 13343214 -206662320 -1062545740 -175456509565 -1834900807960




TABLE 3.
the first few coefficients c¢(N) of the forms with (k,m) = (8,2),
(6,3), (11,2) and (12,6) discussed in 89, where
in the first three cases and

c(n,r) = (12/r)c(24n- r?)

c(n

s T)

c(n,r) = (-4/D)ec(8n-17),
for the last two forms.

(10,2)

c(4nm - r?)

The eigenvalues

Coefficients of Jacobi cusp forms of index >1. This table gives

>

of T T T. and T, are also given. The number N is the sum of
2> *33 s 7
numbers above and to the left of the table.
4 7 8 12 13 15 20 23 24 28 3 32
! -4 & 9 36 -44 -84 -84 252 512 -168 -384
-1107 972 28 0 -504 [ 3724 -3388 792 -4408 4478 4096
-168 4332 -15390 0 -1496 5378 1944 -2248 27676 10752 -3668  -14128
-11435 10108  -20748 0 20412 -32768  -31836  ~-10948 79704 21504 -7520 2574
60984  -460%5  -107464 [} 12012 70848 41492 140996  -20748  -124416  -35028 -1792
53504  -12012  -5Bals 0 -78460 0 215460 -109836 175640 64512 109732 0
-315783 17556 117690 0 215460 -238336 -236796  -38892 -462672 433464 -143920 -SO4EB
+
a) JB,Z . TZ =-128, T3==-1836, T5 =3990, T7 =~433432.
L] b ] 12 13 16 20 23 b} 28 3 32
! 8 -18 -120 120 -18 200 ~1348 732 -2176 3408 . 288
271 3432 -19940  -11880  -22032 63340 46852 11000  -40392  -32540 18216 * -122624
-966% 42408 195210 30340 54544  -18400 242184 -525384  -71588 372096  1B5400 11712
-1415475 1175176 359892 514080 -793272 -9468224  B24076 -523728  -601800 -926976 -159680 2207232
2912712 -514080 1778744 -3272400 1431144 38432 -140124 30584 -9881944 -933504 3000552 319040
-14385p -2172456 11322168 7921560 -5081800 6272640 -9760500 3037848 -5316040 5992704 -s6S6112 -17725440
9990793 2603304 11433050 -12972240 14835960  -749632 -10001268 13100760 -3135388 -2992000 -15189280 646272
+ .
b) Jﬂ.’,2 . TZ ==~272, T3 =-4284, T5 =-1025850, T7=3225992.
3 8 i 12 15 20 23 24 27 32 35 36
H -6 15 -20 24 -24 -24 40 -81 216 -126 [)
-120 =300 144 208 310 0 463 -1248 9 -480 -120 972
-489 864 -1059 1580 792 1248 -840 ~2160 -2430 -1140 1524 1620
-600 120 1680 -1272 8338 -4704 -705 -3254 -1944 2520 1128 0
-4081 1092 192 6240 840 4320 -4584 -1176 0 3120 -7905 3888
3000 -7488 1200 2752 -8772 4134 18816  -10200 3888 -7752 2136 -4840
17340 0 -9981 -1977s =5040 ~9300 -720 32640 4561 2040 3345 0
e) J;’3 . T,=-36, Ty=-162, T =-1314, T,=-4480.
7 15 23 3 39 47 55 63 il 79
! -2 189 -910 2205 -378 -13321 33345 -10395 -86870
122703 46683 -98287 -264915 96390 1163064  -1113588  -1066527 1042055 536025
2287467  -3603305  -1391733 478170 -062855 13742379 -7889305  -12745348  -1009470 6926850
21064883 -13591444 4004343 -8355270  -30343950 SAAATIZ 39441969 30902949 -22027005 4899895
91000161  -20752011 44496424 118926740 76003135 -226108554 114695530 -60695838 -129044790 45385540
17204811 283682483 -27484758 67323690 214802315 -371932239  -82196348 417708354 111646555  -52005240
d) J1 1,2° TZ =0, T3 =-53028, T5 =-5556930, T7 =~44496424.
23 47 i 95 119 143 167 191 215 239
! -3 230 -1265 3795 -3519 -16445 64235 -54515 -120175
354706 -1237483 -407550 -48530 817190 1464341 -43746493 ~135355 4303955  -1282710
-682008  -11372403 5678585 13477425 -G451115 16579994  -48805635 -11515065 41570080 21234520
7731427 119019296 17214120 45143645 -22347280 134763417 9991982 -115146395 -208431980 72814445
62601078 221269499 248467505 -164773900 -396325635 -820852617 1040502519 303756860 -310026775 615008515
-577640492 284313649 -13B4290765 77872135 599028570  -18765677 2191229389 470056290 -2021867210 -2588660810
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TABLE 4. Coefficients of the form in J, 4. Table of ¢(N) for Ng 250,
s =
where X c(148n—r2‘)qncr € J, 37+

n c2,37(n) n c2,37(n)
3 1 127 1
4 1 132 3
7 -1 136 4
11 1 139 0
12 -1 144 4
16 -2 147 -2
27 -3 ) 148 -3
28 3 151 -2
36 -2 152 -2
40 2 155 2
A -1 159 1
47 -1 160 -4
48 0 164 -1
63 2 175 1
64 2 176 0
67 6 184 0
71 1 188 3
75 -1 192 2
83 -1 195 2
84 -1 196 0
95 0 211 3
99 -4 212 3
100 -3 215 0
104 0 219 1
107 0 223 -3
108 3 231 -1
111 1 232
112 -4 243
15 -6 247 -4
120 -2 248 0

123 3
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