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Foreword

Although you might never think so from the title, this
book is about the relationship of certain corollaries of the
Atiyah-Singer index theorem with some rather classiéal objects
from the theory of numbers. That there is a connection was
noticed more or less simultaneously by a good many people,
including (independently) both of the authors. And since
neither we nor any one else know why there should be one, it
seemed an ideal subject for a book to present the enigma to
the members of the mathematic#l community, for their puzzlement
or entertainment as the case may be.

The book is largely ﬁased on a course given in 1970-T1
by the senior author, but the writing~up was done by the
junior author, and it is he who must take full responsibility
for the mistakes, poor style, facetiousness and bad jokes, and
for the regrettable fact that the final product is so much
less coherent than the original lectureé were.”

We would like to express our most hearty thanks to
Mrs. Spanier for typing these notes and for Qhowing so much

patience with the bad manuscript and frequent alterations.

The first chapter is a discussion of a group of theorems in
topology~~the signature theorem, the holomorphic Lefschetz
formula, and the G-signature theorem. These theorems, which

we refer to collectively as "signature theorems,” are all

* . .
This is naturally not true. (F.H).
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consequences of the Atiyah-Singer index theorem (though some
of them preceded it historically), but the Atiyah-Singer
theorem itself will not be formulated, nor are any of the
signature theorems proved here. The whole first chapter
contains no new results, and is essentially background for
the remaining two chapters.

In Chapter II, we define and study certain elementary

number-theoretical quantities, e.g.

-1
1 Tk nkq
= v ot — cot 1
s(q,p) Tp 32: c . m (1)
k=1
tlays-esa ) = 2 (-1)k Z 1
k>0 0<x1<a1
0<Xn<an
b'd
k¢ —- 4. ..+ XD oy (2)
a1 an

(a,,...,an e Z, ai>0)'

These, and similar but more complicated expressions, occur
in a variety of coﬂtexts in number theory and topology:
s(q,p), for instance, was studied by Dedekind in connection
with modular forms, and t(a1,...,an) is the signature of a
certain (n-1)-dimensional algebraic variety studied by Bries-
korn. Moreover, despite the very different appearance of (1)
and (2), they are in fact related: s{q,p) can be rewritten
in a rational form, and t(a1,...,an) can be expressed as a
sum involving cotangents.

In Section 5, we describe some of the methods which can
be used to study sums like (1) or (2). The remainder of

Chapter II, which from the point of view of this book is really
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something of a digression, treats the relationship of thesé
sums with other topics in number theory--the law of quadratic
reciprocity, the study of modular forms, and the properties
of Markoff triples (which arise in the theory of binary
quadratic forms).

The rest of the book is then concerned with yarious
topological situations where number-theoretical expression§
of this sort arise. As ve have already stated, sums like
(1) or (2) can always be written in two ways: by an expression
which is a rational number or an integer, and by a sum involving
products of cotangents. This is reminiscent of the signature
theorems of Chapter I, for in each of these theorems a
topological invariant such as the signature is evaluated by
means of characteristic classes whose definitions involve
trigonometric functions. It is thus not particularly surpris-
ing that, by specialising the.various signature theorems to
specific manifolds and manifolds-with-group-action (e.g.
complex projective space, lens spaces, and the above-
mentioned Brieskorn varieties), one can obtain some of the
number-theoretic results of Section 5. This is just what
we do in Chapter III.

So the. vhole book consists of using the Atiyah-Singer
theorem, one of the deepest and hardest results in
mathematics, to prove a series of perfectly elementary
identities which can be proved much more easily by direct
means. This may seem to be a rather pointless course requiring
Justification. Of course, one can defend it simply by saying
that both the number-theoretical and the topological ideas

involved are important and far-reaching--Dedekind sums turn up
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in connection with topiecs ranging from class numbers of
quadratic fields to logic and from the theory of modular

forms to the pféblem of generating random numbers on computers,
while the Atiyah-Singer index theorem probably has wider
ramificdations in topology and analysis than any other single
result--and therefore any relationship between them, however
nebulous, cannot fail to be of interest. Nevertheless, it
would be nice, and would possibly have important consequences,
if one could understand the real reasons for the relgtionship.
Although no one yet has managed to explain, for instance, why
the theory of the modular form A(z) and the index theorem
for 4-manifolds should have anything to do with one another,
at least some vague explanations of the connection are
beginning to eﬁerge. We will try to give some idea of this

in the remainder of the introduction.

First of all, even on the formal level the link between
the elementary number-theoretic identities and the Atiyah-
Singer theorem has deeper roots than appears at first sight.
All of the identities in question are based essentially on
the Cauchy residue theorem.(applied to rational functions on
the Riemann sphere). The residue theorem is, so to speak, just
a miniature version of the Atiyah-Singer theorem (as well as
being a special case of it), for despite the great difference
of depth the two theorems make essentially similar assertions:
both express a global and topological invariant in terms of
local differential data.

This "explanation" is, of course, rather metaphysical and
unsatisfactory. But recently a series of quite concrete
situations arose in which ideas related both to Dedekind sums

and to signature theorems occurred. This culminated in the



discovery that a certain invariant which had been defined
using the signature theorem for 4-manifolds by Werner Meyer
in Bonn is identical to another invariant which had been
defined twenty years earlier by Curt Meyer (no relation) in
Cologne using Dedekind sums. These two invariants, which
assign rational numbers to elements of SL(2,Z), had been
invented for very different purposes--by W. Meyer to study
certain torus bundles over the circle, and by C. Meyer

to evaluate L(1) for certain L-functions associated to ideal
classes of real quadratic fields (explicit Kronecker limit
formula). These two seemingly'unrelated aspects of the
Meyer invariant turned out to tie up very closely with one
another, in the following way:

To a real éuadratic field is associated a certain
discrete group (the Hilbert modular group) of automorphisms
of HxH (where H is the upper half-plane). The quotient
space of this action is a four-dimensional manifold which can
be compactified by adding a certain number of cusps. The
number of cusps needed is equal to the class number of the
field, and each cusp is associated to an ideal class of the
field and has an L-function associated to it. On the other
hand, each cusp is a singular point of the compactified
manifold and has & neighbourhood homeomorphic to the cone
on a certain smooth 3-manifold which turns out to be a torug
bundle over a circle. Then we can associate to the cusp an
invariant by using either the topological or the number-
theoretical Meyer definition, and the two agree. Similarly,
the Hilbert modular group of a totally real algebraic number
field K of degree n>2 leads to an n-dimensional complex

algebraic variety with h(k) cusps. To each cusp corresponds



a T"-bundle over Tn-1 (Tk =2 k-dimensional torus). To

such a bundle is again associated a topological invariant
(ef. Kreck [s55]). But here it is not known how this
invariant relates to the value at s = 1 of the corresponding

L-series. (For a further discussion see [42], §3, and [46]).

Of course, even this only provides an example where the
number theory and topology come together in a niée way: it &oes
not provide any theoretical explanation why they should tie
up. But now some very.recent theorems of Atiyah, Singer
and Patodi make it seem that such an explanation may have
been found. We will try now to give some description of

their ideas.

On the one hand, it has become increasing clear--both
from the work of C. Meyer and from subsequent work on the
Hilbert modular group--that the correct theoretical frame-
work for the study of Dedekind sums is to consider them as
giving the. values of certain L-functions at s = 1, (It is
also this point of view which explains the importance and
ubiguitousness of Dedekind sums, for L-functions are among
the basic objects of algebraic number theory.) On the other
hand, it is possible to associate L-series to elliptic
operators: instead of considering sums Z(Nu)-s with
Ot ranging over some Of the ideals of an algebraic number
field, we consider sums Zl-s, with A ranging over some
of the eigenvalues of an elliptic operator. Such Dirichlet
series converge for s with Re(s) sufficiently large, and
can be defined by analytic continuation for all s. Then
the results of Ativah, Singer and Patodi relate the

values of these elliptic operator L-functions at s = 0
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on the one hand to the values of certain of the number-theo-
retical L-functions at s = 0 (or s = 1, using the |
functional equations) and, on the other, to the index of
the elliptic operator involved. To make this more precise,
we state completely two of the Atiyah-Singer-Patodi results,

though without explaining the meaning of the terms involved:

THEOREM 1 (Atiyah, Singer and Patodi [4]):
Let M be a (bk-1)-dimensional manifold and £ a

Riemannian metric on M. Then

C(M,P) = B(msf)s

vhere the invariants o and g are defined as follows.

Choose n 32 1 such that n.M =3Y for some ULk-manifold

hx-+- is finite!) Extend P to a

Y (the cobordism group @
metric F on Y which is a product metric in a tubular
neighbourhood of 3Y. Let p;(p) (i=i1,...,k) be the

Pontrja;in differential forms associated to this metric, and

L = Lk(pi(i)"..’pk(?))

the corresponding L-polynomial (a differential form of

degree L4k on Y). Then set

a(Mp) = !11 f L - Sign Y|.
Y

That this is well defined, i.e. independent of the choice
of n and Y, follows from the signafure theorem and the

additivity of the signature.

(3)

(4)

(5)
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Now define a first-order self-adjoint operator D: nev
+ 2% on M by D =% - d¥% , so that D2 = A (the
Laplacian on M ), and form the series
Ly(s) = I wa® - ) 1w/-n%, (6)

A>0 A<o

here A runs over the eigenvalues of D (which are real)
with appropriate multiplicities. The series converges for
Re(s) > % dim M and defines a function which can be

extended meromorphically to the entire complex plane and

which is regular at s = O, The invariant B8 'is then

defined by
B(M,p) = Lp(O). (7)
THEOREM 2: Let M be the Tz-bundle over S1 defined by

2. Rzlzz induced by a2 matrix A€

the automorphism of T
SL(2,Z) with |Tr A| > 2. There is a natural metric o

on M, and with respect to this metric

B{(M,p) = 2 L(O), . (8)

Here L(s) 1is the function defined by analytic continuation

of the L-series

v = 2, BEEGL oo, (9
wez2-{ot/a NI

where N(p) 4is defined for u represented by (m,n)e Z2-{0}
as % {cm? + (d-a)mn - bn2?}.

Combining Theorems 1 and 2 with the functional equation
for L(s) and a formula for L(1) due to C. Meyer, one
obtains for the signature-related invariant a(M,p) an

expression involving the Dedekind sum s(d,c) (see [46]).



CHAPTER I: TOPOLOGICAL PRELIMINARIES

In this chapter we give a review of the topological
material which will be needed in the following two chapters,
namely those aspects of topology related to the signature
theorem and its generalizations.

Subjects which are completely standard in topology,
e.g. the theory of vector bundles and characteristic classes,
will not be reviewed. We do, however, give tﬁe aefinitions
and facts concerning sheaves over complex manifolds which
are necessary to the statement of the Riemann-Roch theorem.
We also describe, at the end of Section 1, the modifications
required for the more general situation where a group acts
on the manifolds and sheaves involved.,

The signature theorems themselves are stated in the
second section. We will only be interested in formulas
expressing invariants associated to the cohomology ring of
a manifold in terms of .characteristic classes; thus there
will be no mention of elliptic operators or of the general
Atiyah-Singer index theorem.

We then discuss two definitions which are based on the
various signature theorems: in Section 3 we give Thom's
definition of an L-class for a space with the cohomological
properties of a manifold, and show how to calculate this
L-class for the qﬁotient of a manifold by a finite group
action, and in Section U we describe the properties of a
number called the "g-invariant" which is associated to a
free group action on an odd-dimensional manifold and whose

existence is a consegquence of the Atiyah-Singer G-signature

theorem. )



The contents of Section 1 and 2 asre well known and can
be found expounded at greater length in |§4 and El]. The
contents of Sections 3 and 4 are also known, but are

dispersed over a number of papers.

§1. Background on complex manifolds

This section contains fairly standard material on
complex manifolds and their cohomology with coefficients
in a sheaf or a holomorphic vector bundle. It is essentially
to be regarded as a compendium of facts assembled for
reference purposes; 8 complete exposition of the subjects
covered (with the exception of the discussion in 1.4 of the
equivariant situation) can be found in [34.

After a brief review of sheaves and of cohomology with
coefficients in a sheaf (1.,1), we give in 1.2 the main
" theorems on cohomology with coefficients in a bundle (Serre
duality, etc.), using as a tool the fine resolution of the
sheaf of germs of cross-sections of a bundle by means of
sheaves of local differential forms. 1In 1.3 we discu#s
special properties of line bundles, such as the four-term
formula and the Kodaira vanishing theorem, and define
Hodge and Kdhler manifolds. In 1,4, we restate some of the
definiﬁions end results for manifolds and bundles on which

a group acts.,

Tetla If(5 is a sheaf over a topological space X (always

assumed paracompact), we denote by H'(X,S)the jtb

cohomology group of X with coefficients in (5, and by



r(x,©) the group of sections of (5; then INX,5) and HO(XJS)
are naturally isomorphic, If G is a group with the discrete
topology we denote by G the trivial sheaf XxG, and note

that Hi(X.g) is isomorphic to the usual cohomology group
Hi(x;c). If G is a sheaf of C-modules, then each ni(x,cv',)

is a complex vector space, and we say that 65 is of type

{F) if all of these vector spaces are finite-dimensioneal
{(over €) and all but finitely many of them are zero. In

that case we can define the Euler characteristic of (C) by

X(x,®) = z (-1)idim¢ ni(x,G). (1)
i=0

THEOREM j: If .

]
0.4.6'—1!—) 6 —h—b 6" -0 (2)
is an exact sequence of sheaves over X, then there is an

associated long exact sequence in cohomology:

(3)
010 (X,G ) B 80 (x,8) s 1O(x &) 25 Bl (x,E ) B ...
Corollary: If two of the sheaves in“(2) are of type (F),

then so is the third and

(x> = x(x.(5')+ x(X5"7. (L)
Definition : The sheaf O is fine if for any locally-
finite covering {U;};er ©f X there are sheaf homomorphism
: - - 2 . - . - . -
hiG"G(leI) with o1 hl = id suich that h1|x Ul is O

(i.e. maps each stalk S, to the 0 element of that stalk).

THEOREM 2: 'If (5 is a fine sheaf, then

1% (x 5)
1l (x,G)

rnxO), (5)
0 (i>0).



Definition : An exact sequence of sheaves
0 1

is called a fine resolution of © if each GSP {(p>0) is

a fine sheaf., Then Theorem 2 and a diagram chase in the
diagram of cohomology sequences induced by (6) yields immed-
iately the following theorem, ;hich is the main tool for
computing the cohomology groups of a sheaf:

THEOREM 3: Let (6) be a fine resolution of the sheaf G ana

h, 0 n!
0 = T(XB) —— NxB;) ——MX,G ) —XG,) —...
(7
the induced sequence of groups of sections, Then
%(x5) = ker 8%, (8)
il (x,B) = (ker bl)/(im w171y (i>0), (9)

We will be especially interested in the sheaf Q(W) of
germs of holomorphic sections of a holomorphic vector bundle
W over a complex manifold X. In applying the notations
introduced above to this she;f, we omit the 2( ); thus we
write

B (X,W) = EY(X,a(W)), (10)
and speak of "cohomology with coefficients in the bundle W"
and similarly we write

r{x,w) = TI(x,2(w)) (11)
and (if (W) is of type (F))

X(X,W) = X (Xx,0(wW)). (12)
I (X,W) is the vector space of global holomorphic sections

of the bundle W.



1.2 If X™ is an m-dimensional manifold, we define the

tangent bundle Re as the principal GL(m,R)=-bundle given

: <y \
by coordinate transformations (axill/laxiJ)}rse ¢L{m,R) from

the jth to the ith coordinate patch in X. The associated

m

fibre bundles with fibre R end ¢" (with the obvious action

%* ¥*
of GL(m,R) on ¢®) are denoted lRT and RTC'

X" is a complex-analytic manifold of complex dimension n,

Similarly, if

we define a holomorphic tangent bundle 6 by the coordinate

. _ (1) ().
transformations fij = (azr azs rs € GL(n,C) and denote the

. *
associated C"-bundle by T% and the conjugate by T (co=

ordinate functions ?.j); the duals of these bundles coordinate
transformations fgl and ?5;) ere denoted T and T
respectively., If we think of X as a real manifold (with

* ” - *
RTc =T eT .
It follows from this description of the change of

dimension m = 2n) +then

coordinate functions on a complex n-manifold X that a section
w of the pth‘ exterior power AP7 is described in local
coordinates by

g = :E: a, . (z) dz, A...AQz (1)

@ i <...<ip§n 1qeeely iy ip ’
so that 2 (APT) is the sheaf of germs of holomorphic p-forms
on X and F(X.APT) is the vector space of global holomorphic
p=-forms on X. We define

= : P
gp = dlmc r(st T)s (2)

the number of linearly independent "forms of the first kind
of degree p" on X. If X is a Riemann surface, g, is the
genus.

The holomorphic bundle APT just described will bve
especially important in the sequel., Ve apply all the

previously introduced notations for & holomorphic bundle W



to the tensor product WQ9APT, simply adding a superscript p.

Thus we write
af = a(A\Pm), (3) -
aP(W) = A(werPT) = a(W)e of, (%)

where @ = Q(Xx€) is the structure sheaf of X (sheaf of germs

of holomorphic complex-valued functioms),

P 9(x,w) 4(x,werPr) = EY(X,0P(W)), (5)

nPr9(x,w) dim .Hp’q(X,W), (6)

and, if oP(w) is of type (F),

xP(X,¥) = x(x,2P(w)) = Z(-nth'q(x.m. (7)
q=0
When we want to treat all of the numbers XP(W) simultaneously

we introduce a dummy variable y and write (if all the

aP (W) are of type (F))

X_(X,W) = Z yPxP(x,w) = Z (-1)YPuPrqx W), (8)
¥ - P30 I

This is called the xy-characteristic of W. For y =0 we have

0

Xo(X,W) = X7 (X,W) =x(x.W)=z(-1)qh°’q(X.W). (9)
q

If W =1 (trivial line bundle) we omit it from all nota-

tions; thus
xo(x) = x%(x) = x(x) = Z) (-1)%%02(x). (10)
q=

The integer (10) is the arithmetic genus of X,

Now let X ©be a real manifold, and z[p the sheaf of germs
of local differentiable sections of AP(RT). There is then

an exterior derivative

a: YA P—YP*? (11)



defined by

d( fi o.'i (x)dxiAo.nAdxi ) (12)
:E:: " P l P
i,¢...<1
1‘
= E dfi veol (x)/\dxi/\ ...Adxi .
{1 < <{ 1 P 1 P
1...' p

(o] 1
Now it is clear that d2 = 0, and that the kernel of a2 =2
is exactly the constant functions in Qlo; this proves part of
THEOREM 1 (Poincaré lemma): The following sequence is exact:

0 1
o-)E h IQIO h lm‘ h 'QL2__.000 (13)

Corollary (de Rham): Let AP = Ir(x2(°) be the space of
differentiable p-forms on X and d:Ap----'AP+1 the exterior
derivative, Then
B°(X,R) = ker (a:4%-a"),
(14)

HP(X.R) = ker (d:Ap-’Ap+1)/im(d=Ap'1-oAp) (p>0).

The corollary is immediate since the sheaves U P are all
fine. A similar result holds with R replaced by € if we
consider forms with differentiable complex coefficients.

Now for X a complex manifoid ve have forms of type
(pyq) which, expressed in local coordinates Zyyees sy
have p factors dz; and q factors dij. Let YFP*? pe
the corresponding sheaf of germs of local differential forms
of type (p,q), i.e. of local differentiable sections of the
bundle APT@AIR (wvhich is only a differentiable vector bundle,
since ' is not analytic). We define operators 8 anda @ by

formulas analogous to (12) but acting only on the z= or z-

variables, respectively; thus



a : P9 _)rupﬂ.q‘ (15)

5 : lenq _’lesQ"q . (16)
Then ° = 32=0 ana 9 = -53, and so
d=29 + 3 (17)

also has square zero. Since the 5-operator on a O=form is
Just & » ve find that ker(5 QLP'O—QLP'” is given by germs
f(z)dzi eeedz;  With f(z) holomorphicj; i.e. the sequence
1 r

0o ( P —y® Lyt Lgyee, (18)
is exact at le'o . It can be shown that the whole
sequence is in fact exact. Moreover, the le.q are fine,
so (18) is a fine resolution of 8P, Moreover, since 3
vanishes on holomorphic functions and since the transition
functions of a complex analytic vector bundle W are holo-
morphic functions,-ve can tensor with (W) without disturbing

exactness. Therefore

THEOREM 2: Let W be a holomorphic vector bundle over X

and le'q(w) = le'qusXW) be the sheaf of germs of local
differential sections of the differentieble vector bunéle
WoAPTO AT, Then P*Y(W) is fine end
o..ap(u).mp'°(mimp-‘<w)f.... (19)
is & fine resolution of the sheaf QFP(W).
Corollary: If p> or g¢>n (n = dimcX), then WP (x,W) = 0
The corollary follows immediately from Theorem 3 of 1.1 since
Qip’q(w) = {0} unless p,q¢n.
We would now like to indicate what the Serre duality

theorem says and how it is obtained. To do this we need

another fine resolution of np(w), this time using the sheaf



]2 or germs of differential forms of type (p,q) with
distributional (rather than smooth) coefficients. The
precise definition is as follows: if V is any complex
differentiable vector bundle over X, we define ¢'(V|U) as
the space of distributions on v|u, i.e. of linear functionals
on the test space ,F(X,VIU) of €"-sections of V with
compact support contained in U, If U'C U, we let

i: ,F(X.VIU')—%5F(X,V|U) be the map induced by the inclusion,

and @U': 3'(viu)— #'(V]U'") ©be the adjoint of i. The
spacesU 3'(viU) ana maps @g; define a presheaf, and hence
also a sheaf, If V = A2"Pr e An-q;. we denote this sheaf
by jip‘q (the sheaf of germs of local differential forms of
type (p,q) with distributional coefficients); if

V= AR™Pp g pAR-¢ T®W we denote it by ARP'YW), There

is an isomorphism

KW = n(w)oo.ﬁ""‘. (20)

Notice that there is & natural inclusion of le.q in
jip.q. for on the presheaf level we can associate to a section

w of APT @ AY%|U the distribution
7 HAwAn (n e ,T(X,A""Pr @ AR=E|y)),

(The integral is finite since 7 has compact support). The

operator (16) extends to & map
3: g4 - RPUTT (21)
and corresponding to Theorem 2 we have

THEOREM 3 : The sequence



10

? ?
0- aP(w) - &P*O(w) SRR (w) SRPIZ(W) - (22)
is & fine resolution of 0P(W).

We now define a map

A =ﬂp.q%ﬁr,s ______.‘ﬁl""r.Q"'s (23)

which extends the usual exterior product of differential

forms with smooth coefficients, Over an open set U in X
we define the exterior product as follows:
it ted' (A" TT@A""® B|U) and ael (U,APT@AIP) then
aA ted (AR"T~Ppe\2~8"8 |y) is defined by
(aAt)(®) = t(ahp) for ¢eér(x.,An'r'i’MAn""TIU). (24)
This pairing on the presheaf level induces the map (23) of
sheayes. We can also insert a holomorphic W as usual to
obtain
THEOREM E : Let W be & holomorphic vector bundle over X
and W* its dual., Then the exterior product A defines a pairing
p AP AR, BT OO (W) - RPHTHUTS (25)
The definition of the exterior product has to be extended

to distributional forms rather than just smooth ones in order

that we obtain a duality map. Namely, integration over X
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yields a map

KW —=¢, (26)

where ch,q is the space of differential forms of type
‘p,q) with distributional coefficients and compact support.

Combining this with (25) produces a map
e: AP'YwR K PP ) — ¢, (27)

For TeKcn-p'n-q(W') ve get from € & linear mapping

;T from r(x&u?'q(w)) to €, Thus € induces a map

L: xg'P'n"l(w*) — (AP (W), (28)

THEOREM 5 : The map L induced by the exterior product is

an isomorphism. Furthermore, the diagram

Ne=p, N~
[

K Uwe) ——L o (AP0

5 (3"’ (29)

Kg-p.n-qﬂ(w*) —_T (Ap.q-1(w)).

13 1

is commutative up to sign.
We are now ready to derive the Serre duality theorem. If
ve apply Theorem 3 of 1.1 to the fine resolutions (19) and (22

ve obtain

) (B =B aPrI(w) -aP 3% (i)
(30)

Hp'q(x,w)g (kersq)/(im Sq-1

and (using the isomorphism L and the commutativity of (29) to

replace K:* by A *M)
PRl v (ker-a'q-.')/(imsé) . (31)

But all of our spaces of cross-sections are Fréchet spaces,
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and it is known that if I-E)M LN is a sequence of Fréchet
spaces with vu = 0, and N“KM"tm' the adjoint sequence, then
(ker v )/(impu) ® (ker p')/(im n'), Therefore

THEOREM 6: (Serre duality): Let ‘X be a connected para-
compact complex manifold of (complex) dimension n, W a
holomorphic vector bundle over X, and W* the dual bundle.
Then

P Yx,me = B PP x 9 (32)

If X 1is compact, we simply get a dual pairing between
the spaces HP'Yxw and H2"P*""I(x,w¥) the usual form of the
Serre duality theorem, (In the compact case we do not need
to ever introduce distributions)., One can defime an inner

product on Ap'q(w). and a map

8 ¢ aAPrY(y) P37 (y) (33)
vhich is adjoint to ] under this inner product (i.e.
(a.sp)' = (Bx,8) for a,Be AP*Y), rThen O= 983 +98% is an
elliptic operator on AP*Y (the complex Leplacian), the space
AP»a decomposes as the orthogonal sum of the image of 3,
the image of @ , and the k;rnel of O, and the resolution
(19).1eads to an isomorphism HP'%(x,w) ¥ ker (O: AP A ()P
Since the kernel of an elliptic operator is finite-dimensional,
we get (combining with corollary to Theorem 2):
THEOREM 7 (Kodaira): If X is compact, then P Yy m is
isomorphic to the vector space of "complex harmonic forms"
(elements in the kernel of O) of type (p,q) with coefficients
in W. 1In particuler it is finite-dimensional. Since
P Yy, u) = (0} for max(p,q)>n, the sheaves 9QP(W) are

alvays of type (F), so the numbers XP(X,W) are well-defined,
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and xy(x.w) is a polynomial of degree at most n.
For X compact, the isomorphism (32) of finite-dimensional

vector spaces gives also the equality of the dimensions:

nPed(x,w) = no"PeRY(x w¥). ©(34)

Multiplying this by (=1)% and summing over q, we obtain

xP(x,w) = (=1)" x®7P(x,w*). (35)
If we use the Xy notation introduced in (8), we can

express all of the equations (35) simultaneously as
n .
xy(x.w) = (-y) X,/y(x.w').- (36)

an equality of polynomials of degree n.

1.3 In the framework of the ideas we have been discussing,

and in their various applications, holomorphic line bundles

play an especially important role. On the one hand, various
special properties (the 1:1 correspondence of line bundles

over X with elements of Ha(x;z), the property given in

Theorem 1 below and the "four=-term formula") make them
especially easy objects to work with; on the other, they arise
naturally in & variety of situations (Hopf bundle over Pn(c);

the line bundle of a divisor and its connection with the classical
Riemann-Roch problem; the positive element in the second

cohomology group of e Hodge manifold).

A line bundle is of course a prinéipal C€*-bundle, and
is therefore (up to equivalence) classified by an element of
1 .
H (x.c:). where e: is the sheaf of germs of local complex-

valued continuous non=-vanishing functions ot X. 8imilarly,
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let cc be the sheaf of germs of local continuous complex=

vhlued funciions, and 2 the constant sheaf (see 1.1); then

clearly Z is a subsheaf of Cc. there is a map Cc—*tg

2%if
)

locally given by f=-e » and the sequence

0% —4¢c—4cg%90 (1)

is exact., Moreover, Cc is a fine sheaf (define hi:cc-’cc

by hi(f) = aif. vhere [“i} is & partition of unity

i€l

subordinate to the covering {Ui] 80 that from Theorems

iGI)'

1 and 2 of 1.1 we get an isomorphism

B, H1(x;c:)—J§—»H2(X31). (2)

It can be checked (see [36]. 4.3.1) that this is just the
first Chern class

c H‘(X.CZ) ——»Ha(x;l)

wvhen evaluated on the Hopf bundle over X = Pn(c).
Therefore (by naturality) the two maps agree for any X,

proving the assertion that ¢, provides & 1:1 correspondence

1
between line bundles and elements of Ha(x;z).

It is not generally tru? for holomorphic bundles that
AP(H'QW") = r+§=p/\r(w‘)®/\s(w"), but this does hold if. one
of the bundles is a line bundle. We can even say something
about the exterior powers of an extension of a bundle by a

line bundle:
THEOREM 1 : If

0O =pF W —=W"—0 (4)
is an exact sequence of vector bundles (continuous,

differentiable, or holomorphic) with F a line bundle, then

there is a canonical exact sequence

[, .
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0—=AP " TW"@F — APW —A Py —— 0. (5)

Similarly an exact sequence

0 W' ——edW —=F —= 0 (6)

with F a line bundle yields an exact sequence

0 — APW! —= APY — AP Ty1gF —s0. (7)
Proof: Given (4), there are natural homomorphisms

@i APTTNRR o APw, (8)

ay: APTTwer L APTTN @R, (9)

and clearly & is surjective and o vanishes on ker G

2 1 2.
This induces a map
AP=lyre F —aA Py, (10)

and one easily checks that this map gives an exact sequence
(5)« The second assertion of the theorem follows from the
first if we dualize (L4) and (5) and write W', W, F for
WU W AR,

If X 1is a compact complex manifold, a diviso; in X
is & submanifold SCX of (complex) codimension 1, The

associated line bundle {S} is given by transition functionmns

T, .2 U, . .2 U, i
1/fJ Ulr\UJ ~C , wvhere fl U1 -€ are holomorphic
functions such that Ui has a system of local coordinates

with fi a8 one of the coordinates and such that

snu; = { eri'fi(x) =0} The bundle { S} over X has a
global section s given by

S(u) = (u.fi(u)) (ueUi). (11)
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(this clearly transforms in the right way to give a section).

If W is any holomorphic vector bundle over X, we denote HS
the restriction of W to S. If O is any sheaf over S,
ot . . 3 .
then ('5 denotes the trivial extension of G (= the unique
A A
sheaf with G5|S =& eand GBI(X-S) = 0),
THEOREM 2: The sequence

0 —2 (W) —2 g (w@{s})——ﬂ—.@ —0 (12)

is exact, where the map h' sends a section of W +to its tensor
product with s.

Proof: Clearly h' is e monomorphism since s does not vanish
identically in any open set of X. Since s is non-zero on
X=-S, h' is an isomorphism there while the third sheaf is O0;
therefore we only have to prove exactness on S, At a point
x€S, choose a neighbourhood U of x contained in & coordinate
neighbourhood Ui and such that W|U and (}lu are trivial,
Idenﬁify them with Ux€¢? and UxC, respectively, and identify
€%c with €% in the obvious way. Then an element of

2 (W)U is a q=-tuple of functions (51......gq). and h' sgends
this to (sig1......sigq). The map h sends &a g=tuple
(f1....;fq) to its restriction to S. Therefore h 1is onto
(the germ of a holomorphic function on S is the restriction
of the germ of a holomorphic function on X, since in local
coordinates S is given by the vanishing of one coordinate)

and ker h = ((f1.....fq)| f =ee= fq =0 whenever 8, =0}

= ((f1,.... £)| each r_ is divisible by s;} = imH.

Corollary: x(s.ws) = X(X,W) -x(x.w@[s}"). (13)
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" Proof : Replace W by H®[S]-1 in (12) eand apply 1.1(4).

Now the restriction (S}S is just the normal bundle of S

iz X, so there is an exact sequence of bundles

0—-)T(S)—-»T(X)S —‘[S]S » O. (14)
The dual sequence is
0 —{8);" - TH(X)g —+THE)— 0. (15)

&pplying Theorem 1 gives an exact sequence

0 =2~ (1%(5)) @ 3! —aAP (17 (X)) —»aP(T%(8)) —Q (6)
Zensoring this with Wy and applying 1.1(4) gives
TEROREM 3 : X(5,A P(T*(X)) @) = xP=V (s, (webl™) ) + XP(s,¥,).
(17)
Combining this with (13) applied to AP(T*)®W gives the

four-term formula:

xP(x,w) -xP(x,wes)™") =xP"(s.wS®(s1s") +xP(s,W5).  (18)

Corollarz:

xP(8,¥;) = z (-1)i{x"‘i(x.w®(s] ") i(x,vels '1'1)}. fi9)
ig

Proof : The corollary follows by iterating (18). ﬁote that
the case p = O is just the corollary to Theorem 2; thus (13)
expresses the Euler characteristic of HS in terms of
information about X and W, and (19) does the same for the

XP_characteristic, We can combine the equations (19) for ell

P by using the 'Xy-characteristic, obtaining

_ {1 s
Xy(S.WS) = Xy(x.W) - (1+y) i=Z'(-y)1 Xy(x.w@(s] 1y, (20)

The last thing which we wish to discuss in this section is
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the Kodaire venishing theorem. We first have to define a
Kéhler metric on a compact complex manifold X, A Hermitian

metric on X is given in local coordinates by

as’ = 2Zgaa(z,i)dzadia. : (21)

(where gaﬁ -FBa )o To it is associated an exterior differential

form

w = iZgaB(z,i)dzaad;B. (22)

We write this as a real form (using i dzAdz = dxpdy); then

the condition that the metric is a Kéhler metric is that

dw= 0, In this case the class wena(x;n) is called the
fundamental class of the metric, and X (always assumed to be

compact) is called a Kédhler manifold. In this case the complex

Laplace operator 0O (see the remarks preceding Theorem 7

of 1.2) equals * A, where A 'is the real Laplace operator,
.80 O commutes with conjugation and there is ;n anti=
automorphism from ker(o: AP*? — AP+ %) ¢, ker( 0:ATP =3P
and hence (by Theorem 7 of 1.,2) from Hp'q(x) to Hq'p(i).

Moreover, the theory of de Rham and Hodge gives an isomorphism

from HY(X;€) to @ ker( 0:4aP*3 P29y therefore
pty-r
THEOREM 4: Let X be a Kéhler manifold. Then
thQ(x) = thP(x) (23)
and the rth Betti number is given by
b.(X) = dimcHr(x;C) = E: nPr(x) (21)
p+q=r

Corollary s Let X ©be a Kéhler manifold. Then

X_,(X) = e(X), (25)
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where e(X) is the ordinary Euler-Poincaré characteristic of
tze space X and X_1(x) is the value at y =-1 of Xy(x).
Proof: From the theorem,

ex) = D (-1)p_(x) = D (-1)P*WPeq(x)
r Psyq

= Z(-an(x,nP). (26)
| o

Ecvever, the corollary holds for an arbitary compact complex
manifold, as we see by applying 1.1(4) repeatedly to the

following exact sequence of sheaves of type (F):

0 ‘-"'2 —.n? —d—)n1 .-—d. see 200 —.Qnﬁo. (27)

Corollary 2: The arithmetic genus of a Kéhler manifold X
(defined in 1.2(10)) is related to the numbers g (defined

in 1.2(2)) by

x(X) = I (-1)Pg., (28)
p P

Now on a Kdhler manifold X, consider the sequence

02 —C —C -0, (29)
w w

defined just as vas the sequence (1) but with €, and €,
being sheaves of holomorphic rather than continuous complex

. . L -
functions, Since €, = = 0 is not fine, we do not get an

isomorphism corresponding to (2), but the long exact sequence

induced by (29) still yields a map from line buadles to

BQ(X;Z) wvhich can be shown to equal the Chern class:
B (X, 0) —t' (x,6%) —S1ou®(x;8) — ©(X,0). (30)

Now Bq(x.n) = Bq(x,I) = no'q(x). and Kodaira and Spencer have

proved that & eue(x;z) is mapped to zero in Be(x,ﬂ) if and
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only if a is of type (1,1). Therefore

THEOREM 5: An element a€ Be(x;l), X a Kédhler manifold, is
the first Chern class of a complex analytic line bundle if and
only if it is of type (1,1). _

Definition : An element x€ H1'1(X;R) is positive if x can
be chosen as the fundamental class of a Kidhler metric on X,
An element x in H1'1(X;l) is positive if its image in
31'1(X;R) is. A holomorphic line bundle F is positive if
c1(F), which by Theorem 5 lies in 31'1(x;2), is positive.

A Hodge manifold X 1is a Kdhler manifold admitting a Kéhler

metric with fundamental class in im(Be(x;1)+ ne(x;a)).
THEOREM 6: A compact complex manifold is a Hodge marifold if
and only if it is arn algebraic manifold.

This fundamental theorem is due to Kodaira. One directicn is
easy, since to find a Hodge manifold structure on ary algebraic
manifold it suffices to find one en complex projective space
(because an algebraic manifold is a submanifold of soxe
complex projective space, and we can restrict the class x ).
THEOREM T: (Kodaira vanishing theorem): If P is a positive
holomorphiec line bundle over a Kéhler manifold X ¢f
dimension n, then Hi(x.F'1) venishes for i # n.

An importent line bundle oter X 1is the caromical line

bundle K = A"T, The case p = 0 of the Serre dualisy
theorem (Theorem 6 of 1,2) yields a duality pairizg bezveen
Bq(x;W, and Bn-q(x,KGW*x Therefore we can reformziate
Theorem T:

THEOREM 8 : If X is & Kéhler manifold with canczical lige
bundle K and F is a line bundle over X witk F@X~

positive, then Hl(x,F) = 0 {({i>0), In particular,

dim T(X,F) = x(X,F). r31)
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1.4 As above, let W be a holomorphic vector bundle over a
compact complex manifold X. A map g 1is said to be ah

automorphism of (X,W) if g:X =X is a biholomorphic map of

manifolds and g':W -W a biholomorphic map of bundles (thus

. =
G'IW is a vector space isomorphism W_ ——iW ) Then g
x x gx
induces a map from T(X,W) to itself by taking a section f

of W to the section g*f defined by

g*f(x) = g'" r(gx) (1)
Clearly if g, and g, are both isomorphisms then (8182)*
equals 525:. from which it follows that, since g 1is
invertible, g* also is. Similarly g induces automorphisms
of the higher éohomology groups Bq(x.w). We define

X(X,W;g) = Z (=) Tr(g* HY(x,W)). (2)
q

Since a map g from X to itself induces a map dg on T,

ve see that an asutomorphism of (X,W) induces an automorphism of

(X,ﬁPTOW% We define

xP(x,W;g) = XX, Frewg), (3)
Xy(x.W;s) = 2 v? ®(x,W;e). (%)
P

If V is a real or complex vector space on which a group

¢ the subspace of vectors invariant

G acts, we denote by V
under the action of all the elements of G. We recall two
simple facts:

THEOREM: If G 1is a finite group acting linearly on a finite-

dimensional real or complex vector space V, then
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1
aim v¢ = — 1 Tr(glv). (5)
lc| e&e6
Proof: Let i ©be the inclusion of VG in V, and
f:V -V be the map
£(v) = == X, @v (6)
|q geG

Clearly f(v) alvays lies in VG, i.e. the map f factors as
in, where n:v-»vc. But if veVG, then gv = v for all geG,

so f(v) = v. Therefore =i = 1dv¢. so
dim VG=Tr(idvg) = Tr(fi) = Tr(i®) = Tr f, (1)

{Note: the theorem and proof are alsc valid for compact
groups, if we replace the average over G by an integral with
respect to the normalized Haar measure on G.)

Proposition: Ir

A—i._’B —-—G——-QC . (8)
is an exact sequence of G-vector spaces and Ge-egquivarient
maps, then there is an exact seguence

G =G

AC LA a6 __&lB S . - (9)

G, g(BG) CCG. and the composite map

Proof: Clearly f(AG)CB
in (9) is zero, If beBG maps to zero, then b = f(a) for
some aeA (because (8) is exact), and then a' = n(a) (in
the notation of the proof just given) 1lies in AG and
satisfies f(a') = b,

We now return to our vector bundle W over X and

suppose that G is a group of automorphisms of (X,W). We

associate to this situation a number



23

x(x,0)¢ = Ez (-1)% aim 8Y(x,N)°, (10)
q _

and make similar definitions for XP(X.W)G and xy(x,W)G.
According to the theorem just proved, these numbers are not
essentially new, but can be obtained from the numbers (2)-(k)
by averaging over G.

All of the material covered in 1,1=1,3 now carries over to
the equivariant casé, because the required fine resolutions can
be made equivariant. For example, we find (using the
proposition above) thet, if O > W! > W > W" >0 is an exact

sequence of Gevector bundles over X,

x(x,1¢ = x(x,wn% + x(x,umE, (1)

When quoting the equivariant version of any of the formulas
of this section,.we will add a superseript "G" to the number;

thus 1.2(36_)G refers to the equivariant Serre duality theorem
G n G
X (X4 W) = (=y) X (X,Ww*) (X compact) (12)
Yy 1/y
and 1.3(18)G refers to the equivariant four~term formulas

G G

Px,0% - Px,wers)™)® = (P N(s,w e (537

+ Xp(s,wS)G. (13)

§ 2, Signature theorems

We will discuss in this section various theorems expressing
invariants of the cohomology of a manifold in terms of
characteristic classes. The first theorem of this type,

discovered in 1953, was the signature theorem, which states
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that the signature of a manifold (an integer defimed by the
intersection pairing in the middle dimension of the homology
of the manifold) is given by a certain polynomial in the
Pontrjagin classes of the tangent bumdle of the manifold.
This was followed by the Riemann-Roch theorem {alsoc in 1953)
expressing X (X,W) and Xy(X.W) (W a holomorphic vector bundle
over a Hodge manifold X) in terms of the Chern classes of W
and of the tangent bundle of X. Later the Atiyah-Singer
index theorem made it possible to prove the Riemann=Roch
theorem and the equality Sign (X) = X1(X) for any complex
manifold, and also gave the Gesignature theorem, which for

€ in a compact group G acting on X gives Sign(g,X)

(a number defined by the action of g on the middle homology
group of X) in terms of the Chern classes of X and of the
normal bundle in X of the fixed-point set of g (and of
the action of g on this normal bundle),

We define Sign(X) and Sign(g,x). in 2.1 and give their
main properties (cobordism invariance, multiplicativity,
Novikov additivity). In 2.2 we discuss multiplicative
sequences, the device which produces from the Chern or
Pontrjeagin class the more complicated characteristic classes
appearing in the statement of the various signature theorems.
The signature themselves are stated in section 2.3. At the
end of 2.3 the most general formula of this type (giving a
formula for xy(x,w;g) ) is formulated; this is given for
completeness' sake and because it is not written out

‘explicitly in [3].
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2.1 Let xen be a closed (=compact and without boundary)

oriented smooth manifold. The bilinear form

B(x,y) = <(xUy) [x]> (x,y 6 V = EH*(X;R) ) (1)
is, by }oincaré duality, a non-degenerate form on the real
vector space V and is symmetric or skewv-symmetric according
as n 1is even or odd., In the former case, let P, and p_
be the number of positive and negative eigenvalues of B and

define

Sign (X) = P, = P_.

If n is odd or is X is odd=-dimensional, define Sign(X)
to be O,

If X has a boundary, we take V = B“(x,ax;n).
Poincaré duality and the exact sequence.of the pair (X,#X)

give

vV = a“(x.ax;a)——i*-—un(x;m = Hom(H_(X),R)
= Hom(H"(X,aX;R),R), (3)

i.e, a bilinear form B on V (B is just the intersection
number if we use Poincaré duality to identify V with
Bn(x) ). This form can be degenerate, but it induces a non=

degenerate form B' on V' = im i*¥ V/ker i*, wvhere

ker i* = {xgV: B(x,y) = O for all y € V},

Clearly if n 1is even then B and B' have the same signa-
ture, and we take this as Sign(X); if dim X is not a
multiple of L we define Sign(X) = 0 again.

We summarize the main properties of Sign{(X) in the next
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three theorems. The first is that Sign{X) depends only
on the cobordism class of X:

THEOREM 1: If X = 3Y is the boundary of a differentiable
menifold, then Sign(X) = 0. |

Proof : Let. j:XCY be the inclusion map, and consider the

diagram

"
n
n

H Y. X 2 X j Ao H Y
——————————————
2k+1 ( ’ ) H2k( ) 2k( )

(all cohomology with real coéfficients), where the vertical
maps are Poincaré duality maps and dim X = Lk. Then
A =im j* is mapped isomorphically to K = ker j, , while

under the duality between nak(x) and Hek(x), A corres-

ponds to Hak(X)/K' Therefore
dim A = dim K = dim Hak(x) - dim K

= % dim Hy (X), (5)

But for =& e A, <a%[X]>=<(j*b)?[X]> = <b€(j*[x]b»= 0, since

Jg[X] is 0 in By (Y). fherefore A cannot intersect the
p+-dimensiona1 subspace (sum of the eigenspaces of all
positive eigenvalues) on which B 1is positive definite, so
we must have (dim A) + P, € dim nek(x). The corresponding
inequality for p_, the fact p _+ p_ = dim Hek(x), and
eq. (5) then give p, = f_ .

THEOREM 2 : If X" and Y' are closed oriented manifolds,

Sign (X xY) = Sign(X) Sign(Y) (6)
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In particular XxY has .0 signature if m and n are
not both divisible by L.

The proof of Theorem 2 is given in b6], and is quite
simple. From the last two theorems we find that Sign induces
& ring homomorphism from the cobordism ring Q* (cobordism
classes of closed orientable manifolds; the addition, nega=-
tive, and multiplication are given by disjoint union,
reversed orientation, and Cartesian product, respectively)
to the integers. By results of Thom, 2% is given up to
torsion by the Pontrjagin numbers (i.e. 2B Q= 0*@Q,
where @ * is the ring of equivalence classes of manifolds,
two manifolds being equivalent if they are of the same
dimension and all theif Pontrjagin numbers agree), sc that
the signature of a manifold must be a rational linear combi=-
nation of its Pontrjagin numbers. This is the content of the
signature theorem, but the explicit formula must wait till
2,3 since we need the notation of multiplicative sequences
to state it,

Another property of Sign which we will need is the Novikov
additivity law. The proof is again elementary and will be
omitted; it is given in [3 l
THEOREM 3 ; (Rovikov): Let X, X' be orientable manifolds
vith boundary, and h: 3X =+ 3X' an orientation-reversing
diffeomorphism, Let Z = X gx' be the manifold obtained

by gluing X and X' together along the boundary. Then
Sign(z) = sSign(X) + Sign(X'). (1)

To define the equivariant signature Sign(g,X), we first
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consider the situation of a group G acting on (V,B), where
V is a finite-dimensional real vector space and B is a non=
degenerate symmetric or skew=-symmetric bilinear form on V.
Non-degenerate means that the map from V to v = Hom(V,R)
sending x to B(x,-) is bijective, To say that G

acts on (V,B) means that B(gx,gy) = B(x,y) for all g € G.
We choose an equivariant scalar product <,> on V (this.

is always possible if G is a compact Lie group, by inte=-
grating over G the translates of any scalar product), and

define a map A from V to itself by

<Ax,y> = B(x,y). (8)

Then

<A(gx),gy> = B(gx,gy) = B(x,y) =< Ax,y> = <gAx,gy>,

(9)

so A is equivariant, and
<A*x,y> = <x,Ay> = <Ay,x> = B(y,x) = =B(x,y)

= YAx,y>, - (10)

so that A is self-adjoint or A = - according as B

is symmetric or skew-symmetric, Since A is Geequivariant,
G operates on each eigenspace of A (Ax = Ax implies
A(gx)=g(Ax)= x(gx) )« If B is symmetric we define vt as
the direct sum of the eigenspaces of positive eigenvalues

and V- the same for negative eigenvalues and define
. + -
Sign(g,V) = tr(g|v) = +tr(g|V7). (11)

Thus in this case
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Sign(1,v) = Sign B. (12)

If hovever, B is skew-symmetric, then we must proceed
differently as we can no longer diagonalize A. The
operator AA* is (strictly) positive-definite since
<AA*x,x> = <A'"X,A*x> > 0 for x#0, so we can form its

positive-definite square root and define

J = — (13)

Then A* = =A implies 72 = -1, 8o that we obtain on V
the structure of a complex vector space VJ, and since the
operations of G clearly commute with J we find that the
action of G on VJ is complex linear. Thus we have a

trace tr(g]VJ) € €, and can define
Sign(g,V) = tr(s[VJ) - 3r(GC VJj
= 2j Im(tr(gIVJ)L (14)

In this case the signature vanishes for g = id. One cﬁn
check that the two definitions (12) and (14) depend only on
g€,V, and B and not on the scalar product chosen. One can
also easily check that, if (V1,B1) and (Ve,Bz) are as

described above, then the signature of g on V = V18 v

2'
B = B, @B2 is given by
Sign(g,v,®Vv,) = Sign(g,V,)8ign(g,V,), (15)
regardless of the symmetry properties of B1,B2, and B.

2n

Now if G acts on a compact manifold X (smoothly and

preserving the orientation), then it acts on the real vector
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space V' = im(i*:Hn(X,a X)—=H2(X) ) described at the
beginning of the section, and leaves invariant the symmetric
or skew-symmetric non-degenerate intersection form B', so

we can define
Sign(g,X) = sign(g,V'). (16)

If X is odd-dimensional we define Sign(g,X) as zero.. As
& minor point, we notice thaé G acts on X to the left
and therefore on V' to the right (i.e. (5152)(x) =
52(51(x)) ) since cohomology is contravariant; to remedy
this we replace the action by x-»g"x which is a left action
(this corresponds to identifying the cohomology group with a
homology éroup by Poincaré dualiﬁy and considering g, on
homology). This changes nothing if dim X = 0 (mod 4), since
tr(g"). = tr(g) for a finite-dimensional real representa-
tion of a finite or compact group. But for a complex
representation we have tr(g") = tr(g), so for dim X= 2
(mod 4) the sign of (16) cheanges under g—»s-1.

All of the theorems on Sign(X) go through in the equi=-
variant case; thus Sign(g,X)A is 0 if X 1is an equivariant

boundary,

Sign(g,X,xX,) = s5ign(g,X,) Sign(e,X,) (17)
(nowv we have more possible combinations of dimensions than
for g = 1, since Xi can have any even dimension), and

sign(g,X, Y X,) = sign(g,X,) + sign(g,X,) (18)

for the union of two G-manifolds glued along a common boundary
by an equivariant orientation-reversing diffeomorphism h,

If g 1is an involution we can simplify the definition
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of Sign(g,V), and do not need to introduce an invariant

scalar product at all., Indeed, if B is skew-symmetric

then
-1
Sign(g,V) = tr(g|V;) - tr(g |V;) = 0 (19)
since 5-1 = g If B is symmetric, then so is _
B(x,y) = B(gx,y) (20)

(because 52 = id), and (by a trivial calculation, since g|V

can be diagonalized),

Sign(g,V) = Sign B. (21)
This defines Sign(g,V) even when B 1is degenerate, and
showvs that it is an integer.

Now assume that G is finite and acts freely on X

(i.e. gx = x forsome x € X implies g = 1); then X/G

is an oriented manifold (with orientation class ‘é'_ =, X1,
where T7:X *X/G is the projection), and we have
THEOREM E : Let G be a finite group acting freely on a

closed manifold X. Then

Sign(Xx/G) = Té_r 2 Sign(g,X). (22)

ge G

Proof: If dim X is odd, both sides are O by definition

If dim X5 2 (mod 4) then the left-hand side is O by

definition, while

1

Sign(g,X) = =-5ign(g” ,X) A (23)

by the remark made above, If dim X is divisible by 4, then

the right-hand side is
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e fer(e|v) - tr(gvD)] = ain(vH)® - aim(vH)®  (24)
geG
by the theorem of 1.4 (eq. 1.4(5) ). Theorem 4 then follows
from
THEOREM 5: Let G be a finite group acting on a closed
manifold X, not necessarily freely, and let =:X-+>X/G be
the projection., Then the induced map
m*: H*¥X/G)—=H*(X) (25)

is an isomorphism from H*(X/G) onto the invariant subspace
H*(X)G, if the cohomology is taken with coefficients in Q,R
or € (or any field of characteristic O on which G acts
trivially).

This was proved by Grothendieck [Bi]and is now quite standard
(it is quoted in[37] and proved in[ ﬂ),,

If G does not act freely, then X/G 1is not a manifold
but (essentially by Theorem 5) has the local real or rational
cohomology of & manifold. Such objects will be discussed in
§4, but it is already clear ﬁhat they have a cup product and
fundemental class, and therefore that Sign(X/G) can be
defined, Then the identical proof shows that Theofem 4 still
is valid with the assumption of freeness dropped,

We give two more properties of the signature, One is a
fairly special fact which we give here only because we will
need it for an application in Chapter 3. The other is a
besic result, namely:

THEOREM 6: Let X be & compact complex manifold and g &

biholomorphiec automorphism of X. Then
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Sign(g,X) = X1(X;g) (26)

The case g = id, X a Kéhler manifold, was proved by
Hodge[47]; the proof is given as Theoremr 15.8.2 of Ee ]
The extensions to arbifrary compiex manifolds and to the
equivariant case follow from the work of Atiyah and Singer,
and will be discussed in 2.3,

We now state and prove the proposition mentioned above:
THEOREM 7 : Let X be a closed oriented n-manifold and W an
oriented real m-dimensional vector bundle over X, with m and
n even and m+n Gdivisible by four. Let Bw be the disec
bundle associated to W (an (m+n)~dimensional manifold with
boundary), e € H"(X;Z) the Euler class of W, and Sign(X,e)

the signature of the quadratic form

Xy —<xUyJe ,[X]> (x,y €H(n-m)/2(x;ﬁ) )o (27)
Then
Sign(Bw) = Sign(X,e) (28)
Proof: Over &, we have the Thom isomorphism
@ : H*(X) ——H* (B, 3 B,). (29)

The space on the right is a module over H¥(X) = H*(B,), free

of rank 1 with generator U € Hm(Bw, 3B.). The map (29)

1
is given by cup product with U, Then the definition of the

Euler class e(W) 1is

-1
e = $ (vouu), (30)
or eulU = UulU, Under the Thom isomorphism the quadratic
form defining Sign(X,e) is carried into that defining

Sign(Bw), because
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< (xuyue), [X] > <(xuyuqu), [BW' anJ >

<(xuyuUuU)' [BW' BBW] >
<(-N@ (x)ud(¥)), [Bys 3B, ] >. (31)

Therefore the signatures are the same,

2.2 Let §-n be the set of finite unordered n-tuples of
non-zero complex numbers. We define a semiring structure on

8 ={/8, by defining

{a1'-nl' al‘}+ {81'...'88}8 {a1'...'a

{a1'.o.' ar}x {61.000. Bs}= {ai Bj: TSiSr, 1Sj£s} .

This clearly makes S a commutative semiring and the map
§—->Z+ vhich maps §-n to n is a homomorphism of semirings.
Let S' be the set of polynomials with complex coefficients
with leading coefficient 1, The S' eand S5 can be put in

1:1 correspondence by

n
f(x) = 'n (1 + aiX)C—D {a.‘,..-.an}e En (3)
i=1

(we had to exclude a, = 0 in defining S to make this
correspondence unigue), so we obtain a semiring structure on

S'. Denote its operations by B and ® ; then if

n n

fx)els axt = T 1+ ayx), (%)

i=1 i=1
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m m
J -
g(x) =1+z bjx = ﬂ (v + BjX)- (5)
=1 Jj=1
we have
feg(x) = I (14 a.x) Uj (1+ Bjx) = f(x)g(x), (6)
1
reg(x) = I (1% a;8;%)

i.j

2 2 2
= 1 + (a1b1)x + (a.1b2 + a.2b1 - 2a2b2)x +

3 3
(a1b3+ a1a2b1b2 + a.3b1 - 3a1a2b3

3 (1)
3b1b2 + 3a3b3) x7 o+, .

- 3a
The coefficient of x*¥ ir fHBg or f®g is thus given
by a certain universal polynomial kr(a1....,ar;b1.....br)

in the first r coefficients of f and g. This polynémial
is clearly independent of the degrees n and m, and has
rational (indeed, integral) ceefficients.

Since (7) can also be written

fwglx) = E £( Bjx). (8)
j=1
we 8lso have a definition of f®g(x) as a power series in x
vhen f is a power series and g is a polynomial. But
using the polynomials kr(ggg) above, it is clearly possible
to define f@®g even when f and g are both infinite

series. A more direct way to do this is to take logarithms

and write

n . n ]

log f(x) = Z log(1+ o x) = z Z (-1)%1 a;xr
r

1=1 1=1 r=1
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ST s, (9)
r

r=1

vhere sr(f) = E:az can be written in a well-known way as

a polynomial in LI RRRFL NG Then clearly
s (feg) = s (f) + s (&), (10)

sr(fg) = sr(f)sr(g), (11)

Thus our semiring structure on 1 + xC[[x]] = {formal power

series in x with leading coefficient 1) is given by using

f(x) = exp :E: (-T)r-1 srxr r——{s1.52....} (12)
r=1 r

to identify 1 + x€[[x]] with the set of sequences of complex
numbers, and giving the latter set the ring structure of the
direct product of countably many copies of € (i.e.
coordinatevise addition and multiplication).

For fixed f, the map

N
g—8 = fmg (13)

defines a map from 1 + xC[[x]] to itself such that the
coefficient of x¥ in g 18 glven as a polynomial in the

coefficients of x,xa,...,xr in g and such that

A " A~
g8, = (s,ﬁsz)af = (g,mf) + (g,@f) = €185+ (1h)

(using the distributive law of ® over ® and (6) ). That

is, (13) defines a "multiplicative sequence with characteristic

pover series f" in the sense of [36]. However, the old
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notation obscures the symmetry between the function f
defining the multiplicative sequence and the function g to
which it is applied.

(Digression: Observe that (9) can be written in the form

d

s (£) x* = -X ——— log f{-x) (15)

r
) ax ’

r=1
a formula that will be familiar to topologists as identical
to that defining the Adams operations wk from the

Ak—operations. Then the usual equations

vE(e @ n)) vECe) + E(n), (16)

o (2 @ n)) WEle) x vE(n), (17)

stating that wk is & ring homomorphism can be translated,
using the formalism given above, to the statement that the

pover series

_ i i
(e) = Zx(g)y (18)
satisfy 1
’\y(EOn) = Ay(a YaE y(n )} = Ay(g ) "y(” ) (19)
)\y(EQn) = )\y(E)l)\y (n) (20)

Thus our multiplication B has appeared before in a topological
settingJ

Note that if f only involves povers of x', then so
does f®g; this can be seen from (8) or directly from (7)
since a polynomial in xF is exactly one whose set of roots

is invariant under multiplication by e? sifr.
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Finally, note that the definition (8) makes sense (i.e,
gives & result only depending on f and g) even if f(x)
does not have leading coefficient 1, However, in the previous
definition we could introduce spurious factorzs 1 by
writing €(x) = II(1 + aix) with some of the a; equal
to O (i.e. with the number of indices 1 greater than the
degree of f) without changing f®g, while in (8) a factor
(1. + Ox) multiplies fmeg(x) by f{(0). Also it is clearly
not possible to define fmg if f£(0)#%1 and g is an
infinite power series. Thus we can allow & multiplicative
~sequence g>fmg defined by a power series f with £(0) #1
so long as it is only applied to g of finite and specified
"degree" (not necessarily the largest power of x appearing
in g with a non-0 coefficient). Such a multiplicative
sequence will be called non-stable.

We now define characteristic classes, Recill that a

U(q)= bundle £ has Chern classes

ci(g) (S H2i(X;l) : (21)

which are natural {i.e. ci(g* £E) = g*ci( £) for any
map g:¥—X) and satisfy co( £y = 1, ci( E) = 0
for 1i>q.

Now let K Dbe one of the fields €, R or €, and
f(x) a power series with coefficients in K and leading

coefficient 1. Define
. (¢) € (XK | (22)

by
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Z; o,(8) x = row {T e () & (23)
i

i
21
The map &, from {complex bundles over x} to HM(X)

is called & characteristic class; we denote by &( £ ) the

total characteristic class §:<bi(f ) € H®V(X). From
the multiplicativity and naturality of the Chern classes, we
deduce (using (1L4)) the corresponding properties for ¢,
namely
d(t @)
Plg*g )

P(E)D(n), (2k)

g* d(£). (g:Y—X). (25)

If 7 is & line bundle, then it follows from (23) that

d(n)

fle,(n) ). (26)

Properties (24)=(26) constitute the usual axiomatic definition
of a characteristic class @ . They define P wuniquely
because of the splitting principle, which asserts that, for
any bundle & over X, there is a continuous map g:Y¥ — X
such that g¥*: splits into a sum of line bundles and such
that g* :H*(X) - H*(Y) is & monomorphism.

Notice that the polynomiel z ci(i ) xi has & well=-
defined degree q = dim &, even though the "top" coefficient
cq(g ) may vanish. Therefore we can also allow power series
f{x) with f£f(0)#1t in (23), obtaining non~stable character=-
istic classes.

To take two trivial examples, the characteristic class c
given by the pover series 1+x 1is simply the Chern class,

and the characteristic class c¥ given by 1-x 1is simply

the Chern class of the dual, since ci( g*) = (-1)l ci( £) = c;(
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The characteristic classes we will need are:

i) The Pontrjagin class Pl &), given by f£(x) =1 + 12.

Since f(x) is & polynomial in x2. we deduce from the
remark following (20) thet 3i(£ ) = 0 for i odd.

We write pi(E ) = 32i(£ ) € Hhi(X), in agreement with the
usual notation. .

ii) The Euler class e(¢ ), given by f(x) = x.

If ¢ is a U(g)=-bundle, then

ele) = c(g) E2%(x). (27)

iii) The L-class J(£), given by f(x) = '?azﬁ x °

iv) The Todd class td(g), given by

f(x) = x = X2 [m"/i ] (28)

v) The class Ty( £), given by

x(1+y) x(1+y)
fy(x) = - Xy = + x
1 - e™X"X¥ XX Ly
X=Xy
1 + ye
- x . (29)
1 - @ =X=XYy

Here y 1is any real number. Since fy(x) is a power series
in x and xy, the coefficient of x® in fy(x) is a poly-
nomial in y of degree <n, so the component in H21(x) of

Ty( £) 1is a polynomial in y of degree at most 3i. By

setting y = 0, 1, -t in (29), we find
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To( £) = tda(g), (30)
T,(8) =  Zlg), (31)
T (g) = c(E), (32)

-1

vi) The class Ey( £), given by

-x
~ 1+y . .
fy(X) = (1+y) fy(-*nx—; = x -—JL_—:— (33)

1=-e

The components of degree 2r of Ty(g ) and iy(g ) dirffer
only by & factor (14y)T"%, Thus for y#-1 the two
characteristic classes are essentially the same (up to a
scalar factor in each dimension), whilg for y = =1 they

are different., We have

To(E) = ta(g) (34)

~

T_,(8) = e(g) (35)

vii) The class ‘fe(g )y given by f(x) = coth(x + ig/2) =
(eleeax + 1)/(elee2x - 1), where 6 is a real number not

divisible by 2rm. In particular z“( £) is given by the

power series

(eax-1)/(e2x+1) = x (x/tanh x)-1, so

-1 (36)
2 (g) = elg) L)

(this makes sense since £ (£) has leading coefficient 1

and is therefore invertible).

viii) The class ch Ay( £), given by f(x) = 1+yex. (The

notation refers to the fact that this is the Chern character
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applied to the multiplicative sequence (18) in K-theory.)

From the last equality in (33) we obtain

T . *y . .
Ty( g) = td(g)-ch Ayu: ) (37)

ix) The class %6( £), given by f(x) = (1-e"X-10)=Ts

where 6 1is a real number not divisible by 2u.
x) The class T:( £), given by

1+ ye-le-x(1+y)

f(x) = ’ (38)
1 - e-ie-x(1+y)

with y =and 6 as before. Thus

ieg) = L) (39)
™. (g) = 1 (40)
M0e) = U (e) (k1)

xi) The class ;f(g ), given by

o+ ye'l,e-x

£(x)

. (42)

1 - e-ie-x
Of all the characteristic classes we have defined, only

the Pontrjagin class, Todd class, and Ty-class are stable
(i.e. defined by power series with leading coefficient one),

Observe that any characteristic class given by a power
series in x2 can be obtained from the Pontrjagin class
rather than the Chern class; for instance; the L=class can
be obtained from the Pontrjagin class by apblying to it the

multiplicative sequence with characteristic power series
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/;/tanh Vx. This is important because the-Pontrjagin class
can be defined for real bundles: if & 1is an O(q)-bundle,
then £0C is 2 U(qg)-bundle and we set pi(g ) = (-1)i/2x
ci(E ®@ C). This is consistent with the previous definition,
a.e. a8 complex g-dimensional bundle can be thought of as

a real 2g-dimensional bundle, and then the two definitions
of the Pontrjagin class agree. It follows that the L-class
is also defined for real bundles,

The Euler class 1is also defined for oriented real bundles
(i.e. S0(g)-bundles), by a definition too familiar to be
repeated here. If ¢ 1is non-oriented, the Euler cless is
elso defined dbut is an element of a cohomology group with
"twisted coefficients", It then follows from (36) that
in( €) can be defined for 0(q)-bundles (lying in
EX(X;@) if £ is an 50(q)-bundle, in & group with twisted
coefficients otherwise), However, LP( g) for & not an
odd multiple of n is defined only if ¢ is & complex

bundle.

2.3 In this section we shall state the signature,
Riemann-~Roch, and G-signature theorems, which give formulas

for Sign(X), xy(x,w), and Sign(g,X) respectively. Since

Sign(X) Sign(1,X) and (for X a complex manifold)

Sign(X)

X1(X), the signature theorem is a special case of
both the R.R. and the G-signature theorems, However, we
shall still state it separately, since we wish to discuss

it in more detail than the generalizations which follow it:
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THEOREM 1: For & closed oriented manifold X with

tangent bundle Re {cf, 1.2),

Sign(X) =<.t(x), [xj»> (1)

Here L is the characteristic class defined in 2.2, where
it was pointed out that it is defined for real bundles, and
L(x) denotes JLgo (x)) € n*(x;e).

Notice that the fact that Sign(X) is a cobordism
invariant (Theorem 1 of 2.1) follows from (1). Indeed, if
X = 93Y then the double 2 of Y (= YW-Y glued along X)
is a smooth manifold in which X has trivial normal dbundle,

80
sign(X) = XL{(g8 (X)) xl = 1(i*me(z)) [ x]
= Lgo (zi ([X]) = o, (2)

since the cycle represented by X 4is homologous to zero in
Z. In fact this calculation is used in the reverse direction
one uses the fact that Sign(X) is a cobordism invarient and
defines a ring homomorphism'from the cobordism ring to the
integers (cf. 2.1) to prove that it can be written as
®(!‘e(x)) [Xx] for some characteristiec class @.

Since BG is a2 real bundle, & can only depend on the
Pontrjagin class i.e. @ 1is given by an even power series
f(x). To find f(x), one uses the special case X = Pn(c).
Here there is a class x € Ha(x) with x"[X]= 1 and with

c(X) = (1+x)n+1. Therefore .L(me (x)) = 2(x)®*"  and we

n . ( )n+1

require coefficient of x in f£(x = Sign(Pn(C)).
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But x generates the cohomology of X, so the signature of X
is 1 if n 1is even and O if n 1is odd. Since f{x) rust

begin with 1, we can define & power series g by

x = gly), oy = x/f(x) . (&)

Then (3) can be written

n+1 '
Tes =0 (f—(—x;)l»T d"> = Tesyeo <_¢_;+_g_u dy)
x Y
31 (n even)

0 (n odd ). (5)

@ere re w denotes the residue at x=0 of a differential

sx=O

w). Therefore

g'(y) = 1+y2+yh Yoae,
= - 3 5 _ -1
x =gly) = y+y /3 +y’/5+ ... = tanh y, (6)
f(x) = x/y = x/tanh x.

We next state the Riemann-Roch theorem:

THEOKEM 2: Let X be a Hodge manifold with complex tangent

bundle 6, and W & holomorphic vector bundle over X. Then

X(x,W) = (ch w - ta(e)) [x]. (1)

We recall that the Chern character of a U(q)-bundle 13
over X 1is defined by

%y ¢ ev
ch & = e +too+t e e (X;Q), (8)

where

q _ q |
> et = T e a0, (9)
i=1

i=0
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If &' 1is & second bundle with

qi

ql
Stoetenxt =TT 01+ gy, (10)
i=0 j=1
then
q+q' q q!
Z ci(Ele)xi = ﬂ (1+aix)ﬂ (1 + Bjx), (11)
i=0 i=1 j=1
qq' q q'
Zci(iei')xi = TT TT (1 + (ay + B5)x), (12)
i=0 i=1 =1

from which we easily deduce that ch is a ring homomorphism
from K(X) to n”(x). (In fact, when tensored with @

it becomes en isomorphism of rings). The Chern

classes of the pth exterior power of £ are given by
P i _ _
Z ci(A £)x ﬂ (1 + (ai *ooata )
i 1€1, < w0 <i_gq

(13)

from which it follows that

q
(e, +seeta) )x
IEELEED D
p=0 P i1.-oc.ip
4 a .
=ﬂ' (1 + ye?) (14)
i=1

(en 2 ,) (£), (15)
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where in the last line we use the notation given in the
last section (ef. 2.,2{(viii)) and which is now justified,

Notice that (12) and (1b4) give

]
ch Ay(E ec')

q q’

ai B,
TT .TT (1 + ye e J)
i=1 =1

(eh 2 (£)) 8 (cn Ay(&')). (16)

with the B defined by <¢h Xy(g ) as & polynomial.in v
since ch is a ring isomorphism we recover eq. 2.2(20).

We can now use this to extend the Riemann-Roch theorem,
obtaining a formula for xy(X,W). the xy-characteristic of
W (cf. 1.2 (8)). 1Indeed, using (15), 2.2(37), and the

fact that T * = 0, we obtain from (7) the equalities

xy(X.W) = 2 v¥ x(x,wer’r)
p

Z v? (eh W » en(rPT)e ga o) [x]

(ch W * ¢h Aye* + td 0) [X]

(ch W * "I"y( e)) [x]. (17)

With W = 1 we get (setting y = 0 and using 2.2(34))

the formula

x(X) = (ta( e)) [x] (18)

for the arithmetic genus of X, and {(setting y = 1 and

using 2.2(35))

x (X)) = e(0) [X] = e(x) (19)
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for the Euler characteristic, the latter in agreement with

¥ é
1.3(25). Finally, if we replace ch W = e 1+...+ e 9

1Y) 6 ,
1

by and E’y( ©) by T (@), then ve do not

"4 0

i
change (17) since the 2g-dimensional component of the
cohomology class is unchanged. We can thus state the
generalised Riemann-Roch theorem:

THEOREM 3 [36]: Let X,W be as in Theorem 2, and

q sa 1
Z ci(w)x:L = ﬂ (1 + 6ix)

i=0 i=1

the formal splitting of the Chern classes of W, Then

(1+y)6i
X (X,W) = e « T (8) [x] (20)
y &, y
Setting y = 1t and W = trivial line bundle, we find from
2,2(31) and Theorem 1 that the equﬁlity Sign(X) = x1(x)

(Theorem 6 of 2,1) is a consequence of Theorem 3.

It is known that the Riemann-Roch theorem is true-for
arbitrary compect complex manifolds rather than just for
Hodge manifolds, but this requires the Atiyah-Singer theorem
The Riemann=Roch theorem for Hodge manifolds is more
elementary and ultimately depends on the special case given
by the signature theorem.

We now state the G-signature theorem for Sign(g,X),
which for the sort of applications we will be interested in
is the most useful of the theorems of this section., Let

G be a finite or a compact Lie group acting on a closed
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oriented manifold X (the action being smooth and orientation-
preserving). Then x& = {x: gx = x} 1is a submanifold of X,
and g acts on the normal bundle N& of x® in X. Moreover,
this action is effective (leaves noc non-zero vector fixed),
since N& can be equivariantly identified with a tubular neigh-
bourhood of X8 in X and g &acts freely on X = x8. There-
fore standard representation theory for compact groups tells us
that on a fibre Ni at a point x € Xg, the action of g can
be represented as a direct sum of Ix1 matrices (=1) and

2x2 natrices

b = (Sne Teos ol (21)
Since Ao and A_O are equivalent, we can assume O<@«qg
and split Ni up into & sum of vector spaces N%,x on whiech g
acts as multiplication by =1 and spaces Ng,x on which g
acts by the represenfation (21). For © # O,n, A, defines an
orientation and even a complex structure on Ng,x' with
respect to which it is multiplication by eig. Moreover, the

splitting of Ni extends to the whole bundle NS, so we have:
THEOREM L: Let G be a compact Lie group acting (differentiably
and preserving the orientation) on an oriented closed manifold

X. Then X® is a submanifold of X, and its normal bundle

N& splits as a direct sum

¥ = 8 e 2 NG, (22)
O<e<n

where g acts on Nf by multiplication with =1 and where

Ng has a complex structure with respect to which g acts as

multiplication by elq
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Since X and the bundles Ng are oriented, so is the
total space of Nf, i.e. NE and T(X)® are "twisted" in
the same way., Therefore Nf is an S0(q)-bundle if and
only if X8 is orientable and if not, the Euler classes of
Nf end of X® 1lie in the cohomology of X with the same
twisted coefficients ®. We can now state the G-signature
thecrem:
THEOREM 5 (Atiyah-Singer [3])': Let X,G be as in Theorem k. |
If X% is connected and orientable, then

Sign(g,X) = (Z_(Xg) Z, (x8) n 10(N5)) x&1.  (23)

O<o<m

Here 1€ is the non-stable characteristic class for

complex bundles introduced in 2.2 and 1“ is the character=-
istic class for orientable bundles given by 2,2(36). 1If

Xx€ is not orientable, then the e(N€) in 2.2(36) ana
evaluation on [(x8] in (23) have to be taken in the sense of
twisted coefficients (i.e. the system of coefficients

locally isomorphic to @ defined by the local orientations
of X8). 1f X8 is not connected, we replace (23) by a

sum of the corresponding expiession evaluated for the various
components,

Although we will not need it in the sequel, we state
for completeness the result obtained by Atiyah and Singer
for Xx(X,W3g), the equivariant Euler characteristic of a
holomorphic bundle W over a compact complex manifold X
with respect to an automorphism g of (X,W) (see 1.k4).

Since X 1is complex, we have

Né = 2 NS, (24)

O<é<2r

t an elementary proof of Theorem 5 for G finite was given
by Ossa [78]. A generalization to certain topological mani-
folds and group actions is given in Chapter 14B of wall [96].
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where each subbundle Ng inherits a complex structure from

ele on Ng. Of course Xs also has

X, and g acts as 5

a complex structure and is in particular oriented.
If ¢ 1is a complex bundle on which G acts, then under

the identification
Kg(X) = k(X) & R(C) (25)

(where R{(G) 1is the complex representation ring of G)
we can write

£ = :E: a;® X, (e ; € K(X)). (26)

1

vwhere Xi is the character of the ith irreducible

representation in R{G), and define

ch & (g) = :E: X;(g) » ch a, € E¥(x;¢€). (27)

i

Thus, for example, since g acts on N% by e? we have
ch Ng (g) = e'% en Ng. (28)

Then the formula which Atiyah and Singer give for x(X,W;g),
called the "holomorphic Lefschetz theorem" in [3], is
THEOREM 6 (Atiyah-Singer [3 ]): Let W be a holomorphic
bundle over a compact complex manifold X and g an

automorphism of (X,W). Then

x(X,W;g) = {en(w|xB)(g) * ﬂ Uy (NE)
0<8<2m

. ta(e(xB))} [ xB1, (29)
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Finally, if we want to write down the most general
possible formula of this type, we note that T(X) is the
dual of the tangent bundle, so

T(x)] x8 = r(xB) e Z NG (30)
0«3 <27
Therefore, using 2.2(19) and the multiplicativity of the

Chern character,

Zyp en(We APT(X) [X5)(g) = en (W|XB) (&) + cn A m(xE)

)
. ﬂ ch Ayug*. (31)
0#0
From (28) we deduce
cn A PNE¥(g) = e~1pP® ch APyE*
S0
qQ
ch Ayng*(g) = ﬂ (1 + ye~18=%5y, (32)
i=1
where

q _
Zci(Neg) x* '='n (1 + a.x), (33)

: i=1

Putting all this into (29) gives finally

THEOREM 7 : Let X,W,g be as in Theorem 6. Then
Xy (X, Wig) = {en(W|xB) (g) + T (@(xE))-

ﬂ T(ng) | [x8) (34)

0<08 <27

As before, if W 1is the trivial line bundle or if we modify

ch W by multiplying its 2i-dimensional component by (1+y)1
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then we can rewrite (34) using Ty and T§ rather than
ﬁ; and E; .

If we take W = trivial line bundle and y = 1, then
(using 2.2(31) and 2.é(39) ) the right-hand side of (3L4) is
just the expression which appears on the right side of the
G-signature theorem, but the two theorems were proved
independently by Atiyah and Singer (applying their index
theorem to different elliptic operators), so that we
deduce the equality between X1(Xiz) and Sign(g,X) that
wvas asserted at the end of 2.1.

If on the other hand we take W = trivial line bundle
and y = «1, then by 2,2(35) and 2,2(40) the right-hand

side of (34) is just
e(8(x8))[x8] = ex®), (35)

vhere e(Xg) is the ordinary Euler-Poincaré characteristic
of the manifold X8, fTherefore
THEOREM 8 : If g is an automorphism of a complex

manifold X, then
Z (-1)1 tr(g*|Hi(X;¢)) = e(x8), (36)
i

Corollary: If G is a finite group of automorphisms, then

the Euler characteristic of X/G is
1
e(X/6¢) = —- Z e(x8), (37)
lc| feC

(This theorem holds for all differential manifolds X .)

Proof of the corollary: We use Theorem 5 of 2+!' and the
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theorem of 1.4 to get

e(X/G)

2 (-1)i dim H‘. (X/G6;¢€)
i

_ 2 (-1 aim 5 (x;0)¢
i

. 1 .
St = > e e whxe) (38)
G

i geGC

and the corollary then follovs immediately from the theorem,

§ 3. The L-class of a rational homology manifold

In 1958, Thom [95 ] showved that the L-class of a
differentiable manifold is a combinatorial rather than Jjust a
differentiable invariant., To do this, he gave a definition
of the L-class of a rational homolégy manifold (a topo-
logical space having locally the rational cohomology of
Euclidean space) generalizing the usual definition for a
differentiable manifold., This definition of Thom, and a
simpler formulation given later by Milnor, will be
discussed in 3.1 In section 3.2 we consider a quotient
space X/G, vhere G 1is a finite group acting on a manifold
X (that such a space is a rationsl homology manifold was
mentioned in 2,1), and compute its L-class in terms of the
data involved in the G-signature theorem. We also

generalize the G-signature theorem to such guotient spaces.

A reference for the contents of § 3 is [99 ].
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3.1 A rational homology manifold is a finite simplicial
complex X such that for each point x € X,

0, if i # n,

Hi(x,x-{x} Q) =
R, if i = n.

(1)
Such"manifolds" were first studied by Thom [95], vho

showed that one could define for them the concepts of
orientability, submanifolds (still in the sense of rational
homology), and transverse regularity. If X 1is oriented,

then(by definition) there is a fundamental class
(x] < Hn(X;Q). (2)

and cap products with X lead to the usual Poincaré
isomorphisms.
Wow let K be a manifold and

f: X—=K (3)
be a simplicial map transverse regular (in Thom's sense)
along a submanifold N of K. Then f-1(N) =Y is a

rational homology submanifold of X, and we define
v = f*(normal bundle of N in K). (4)

This is an orthogonal bundle over Y which, if X and Y
were differentiable manifolds, would be simply the normal

bundle of Y in X, Moreover, in that case we wouid have

sign(Y) = < 2(Y), [¥] > = <i*Z(x)L(v)™', [¥1>, (5)

where {as in 2.,3) we write JZ(X) for the L-class of the
tangent bundle of X. What Thom did was to show that even

in the non-differentiable case, these submanifolds have a
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"zood" real normal bundle (i.e. the real bundle v over Y
depends only on the rational homology manifolds X and

Y, and not on the map f), and that there are so many of
these "good" submanifolds-with-normal-bundle Y that the
homology classes they represent generate H,(X;Q). Then
for each such Y, we can define Sign(Y) (since Y 1is an
oriented rational homology manifold and therefore has a
fundamental class and an intersection form in the middle
dimension) and JZ(v) (since v is a well-defined

S0(q)=bundle over Y), and we try to find a cohomology class
2x) € B*%x;0) (6)

such that (5) is satisfied for all good submanifolds Y.
The equations (5) certainly determine JZ(X) completely
(sinée one knows that the homology classes of the good
¥'s generate H,(X;Q)), &and it can also be proved that
they do not conflict with one another, so that one gets a
consistent definition for the L-class of X. If Y is a

good submanifold of X with normal bundle v , then

i*(x) = Z(0A(v) (1)

just as in the differentiable case. The other important

property of the L-class, namely the signature theorem
sign x =<Z(x), [x]>, (8)

is of course an immediate consequence of the definition.,
It is not possible to define in a natural vay a tangent
bundle lRe(x) in such a way that the L-class of the bundle

me(x) agrees with the Thom L-class of X; nevertheless,
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Thom's definition gives a well-defined class (6) agreeing
with Z(Be(x)) if X 1is smooth.

One can now also define Pontrjagin classes for X,
Indeed, it is clear from 2.,2(11) that a multiplicative
sequence g+»f®Bg is invertible (i.e. there is a pover
series h with fB®h(x) = 1+4x) if and only if no
sr(t) is 0, Since the power series

Vx

f(x) = (9)

tanh VX

defining the L-class from the Pontrjagin class has this
property (the sr(f) are certain expressions involving
Bernoulli numbers, given in [36], and are all non-zero),
it follows that the Pontrjegin class of a bundle can be
deduced from its L-class., It seems, however, that for
rational homology manifolds that do not carry any
differentiable structure, the L-class defined above is a
very natural class to consider, whereas the resulting
definition of the Pontrjagin class is artificial. 1In
other words, the L-class is natural in situations where
there is a signature, the Pontrjagin class only when there
is a tangent bundle. The observation that the L-class
determines the Pontrjagin class doec have an important
consequence, though, namely that Thom's result implies
the combinatorial invariance of the Pontrjagin class (i.e.
twvo piecewise-linear-homeomorphic differentiable manifolds
have the same Pontrjagin class).

A slightly simpler formulation of the definition of
Z(X) weas given by Milnmor [711, who pointed out that to

generate the rational homology of X, at least in low
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dimensions, it is sufficient to take good submanifolds Y
with trivial normal bundle, for whieh (5) takes on the

simpler form
sign (Y) =<i* Z(X),[Y1> ., | (10)

Moreover, the concept of a good submanifold with trivial
normal bundle can be defined without introducing the concept
of transverse regularity. If X were smooth, and £r: X » s¥

a smeoth map, thea for almost every point peSst, f'1

(p) would
be a submanifol® of X with trivial normal bundle. Thus, if X
is a rational homology manifold and £:x—>1% a simp=-
licial map (where :° is the boundary of an (r + 1)-

simplex), then Yp = f'1(p) C X for a point p € I in
general position should play the role of submanifolds=-with-
trivial-normal-bundle in the differentiable case,

Milnor showed that, for almost all p in Zr, Y is a

P
rational homology manifold. Since Yp acquires an orien-

tation from those on X and i

, the number Sign (Yp)

is then defined, and it turns out to be independent of 1p,

for almost all p € 5T, Thus it is possible to associate

an integer S(f) to the map f. Replacing f by & homotopic
map does not change S(f), because Yp is replaced by a

cobordant manifold, and cobordant manifolds have the same

signature. Therefore S defines a map

S T (X) - B, (11)

where wr(x) denotes the set of homotopy classes of maps

from X to 8., Let n = dim X. It is known from the
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work of Serre [SQJ that 7 (X) has an abelian group

structure if ng 2r-2, and that the natural map

o% + 7w T(X)———H"(X;3) | (12)
sending the homotopy class of a map

£: X — 1T (13)

to £%( 5) ({wvhere ¢ 1is the generator of Br(z’;z))

is an isomorphism in these dimensions after tensoring with
. It is easily checked that (11) is & homomorphism,
Therefore, if we tensor everything with @ and use (12)
to identify 1 (X)®Q with H'(X;g), we obtain a
homomorphism H'(X;Q) - Q. By Poincaré duality, there is a

E®T(X;Q) such that this mep consists

unique class L. €
of cupping with L. and evaluating on the fundamental class

of X, We define

Z,(x) & ¥(x;0) (14)

88 Lok if ns2(n-bj)=2; thus zj(x) is characterized

by the equality
sign(f~'(p)) = {Lj(x)-r*(a)} [x] (15)

for all maps (13) and almost sll p ¢ ¥ (r = n=4j).

If the condition n »8j+2 is not satisfied, then we take
the Cartesian product of X and T with a sphere of
large dimension, obtaining a definition of Lj(XxSN) for

N large, and then get lj(X) by identifying HhJ(XxSN)

with Bha(x). Thus 15(X) cen be defined for all j, and
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ve set XZ(X) = z X (X).
] J

For concrete problems, Milnor's definition is easier to
work with than Thom's, since it is usually not easy to tell
whether & given subcomplex of & rationsl homology manifold
is a submanifold with good normal bundle. We will use
Milnor's definition in 3.2 to find the L-class of a gquotient
space X/G, where G 1is a finite group acting c¢cn a smooth

manifold X.

3.2 If a finite group G acts orientably on an oriented
closed manifold X, then by Theorem 5 of 2,1, the

projection 7 from X to X/G induces an isomorphism

from H*(X/G) to H*(x)c, vhere all homology and cohomology
is to be taken with rational coefficients. The quotient

or orbit space X/G. is a rational homology manifold, and

is oriented: the fundamental class is given by

[x/6] = L

v, [x1, ()
deg

Therefore X/G has an L-class in the sense of Thom; ve
wish to compute it.

Let X& be the fixed-point set of an element g€G, and

L'(ex) = X(x8)- XL (xf) - ” L (v8)

O<o8<7

€ H*(x8;¢) (2)

be the class defined in the statement of the G-signature
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theorem (€ denotes the twisted coefficients, locally
isomorphic to € and tvisted by the local orientations of
X8, that vere mentioned in 2.3). Now if we have an
embedding i of one oriented manifold A in another B,
there is a covariant map .i! ({the Gysin homomorphism)
from the cohomology of A to that of B, obtained by

using duality to identify the cohomology of a manifold with

its homology and then applying i, in homology, i.e.

i = Dy ixD, : E¥*(A)-s H*(B) (3)

(here i, 1is the induced map in homology and D is the

A
Poincaré duslity isomorphism from H*(A) to H*(A)
defined by cap products with the fundamental class [A]).

If the submenifold A is not oriented, then (3) still
defines a map i! to the cohomology of B, but the group
E*(A) in (3) must be replaced by the group with coefficients
twisted by the local orientations of A. Applying this

to the class £'(g,X), ve can define

L(g:X) = if X'(&.X) € EX(X;¢), ()

where i is the inclusion of X& in X ana 1? the
homomorphism just defined. When X& has several
components, the classes {(2) are defined for each, as are
the maps i?, and the class £45,x) is the sum.of the
expressions (h). We can now state:

THEOREM 1 : Let G be a finite group acting orientably on

an oriented closed manifold X, and let = be the projection

of X onto X/G. Then
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( ‘ )“*,t(x/c) - Té'l Z(gX), (5)
N g€ G

deg 7
vhere L(g,X) is the class defined by (2)-(k).
Corollary: The sum on the right of (5) is a rational rather
than just a complex cohomology class (this generalizes the
consequence of Theorem L4 of 2,1 that the expression on
the right of 2.1(22) is an integer).
Note that if G acts effectively (i.e. no element of
G except the identity acts trivially on X), we have
deg m = |G|, so that the numerical factors in (5) can be
dropped., Since any action can be replaced by an effective
one (by factoring it through G/H, wvhere H&G is the
normel subgroup consisting of elements acting trivially),
we will essume in future that the action of G is effective
Before discussing the proof of Theorem 1, we should
point out why the right-hand side is a reasonable expression
for w*X(X/G). First of all, if he G, then one easily

checks that
h* L(g,X) =  Z(b~'gh,X). (6)

Therefore the right-hand side of (5) is invariant under
the action of G and therefore (by Theorem 5 of 2.1) is
equal to T*L for a unique class L € H*(X/G), To be a
candidate for JL(X/G), the class L should be 1 in
dimension O, S5ign(X/G) in the top dimension, and zero in
dimensions not divisible by 4. We can easily check these
properties, If 1:A+ B is an embedding of manifolds as

described above, then the map iy of (3) raises dimen-
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sions by be-a (b = dim B, a = dim A), so i!x can only
have a O-dimensional component if & = b, Since (for an
effective action ) g # id =3 dim X8 < dim X, we deduce
that XL(g,X) hes no component in HO(X) for g # 1. On

the other hand,
£(1,x) = Z(Xx) (7)

has leading coefficient 1, and we find that the O=dimen=
sionsel component of the sum in (5) is indeed 1. 7Thet the top
dimensional component is Sign(X/C) follows from Theorem 4 of
2.1 combined with the GC=-signature theorem and the fact that,

for i : A+B & map of manifolds,
(i,x) [8} = () [4l. (x €E"(A) ). (8)

Finally, it is not hard to see that L is zero except in
dimensions divisible by four, It is certainly even-dimensional
because -the expression (2) is in Hev(x) and the codimension
of X8 in X is even {the bundles N% in Theorem L4 of 2.3
are complex bundles and hence even=dimensional, and the bundle
N$ on wvhich g acts as =1 must be even dimensional since
othervise the action of g would be orientation-reversing).
.Using x€ = Xs-1, and NE = Ns-1 (as bundles, with g and

5-1 acting in opposite ways), one can easily check that each

sum

L(g,x) + ZL(g~',x) (9)

has non=zero components only in dimensions which are
multiéles of four.

To prove Theorem 1, we must show that L = “*-1(E£GL(8'X))
satisfies formulas 3.1(15). Now, for almost all points

p € zr. the set A = f“(p) is a submanifold of X with
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trivial normal bundle, and, for the same reasohs, the set
A8 = AnxE = (flxs)-1(p) has trivial normal bundle iﬁ x&,
It follows that the normal bundle of A& in A is the
restriction j;Ns of the normal bundle of X& in X,
where js is the inclusion map A8c x&, since f and
all inclusion maps are Ge-equivariant, this even holds for
t.‘.le normal bundle considered as a G-bundle, i.,e, the
action of g on the normal bundle of A€ in A 1is the
restriction of the action of g on N€, It then follows
immediately from formula (2) that XL'(g,A) is the res=
triction of Z'(g,X), and therefore also that Z(g,A)

= j *ZL(g,X) (where j is the inclusion of A in X),
Moreover, the homology class in X represented by the
submgnifold A is the Poincarf dusl of f* (o ) (where

o is as usual the generator of H'( zr)), 8o we have
(3*x) [A] = (x) (j, [a}) = (xU£f"(q)) [x]  (10)

for all x € H¥*(X)., Using all of this, we can now verify
that L satisfies 3.1(15). Namely, let f£':X/G »3x’ be
an arbitrary simplicial map, so that f = f'oq is an

equivariant map from X to:’, Then (using in succession
(1), the definition of L, (10), the equation i*L(g,Xx)

=Z(g,A), (4), (8), 2.3(23), and 2.1(22)) we find

1
(Lve™(o)) [x/6] ( )(LUr'*(o))n* [x)

degm

1
( )(n*LUn*r'*(o)) [x]
deg

1
(T(;i- z Z(B.X)Uf*(o)) [x]

geG



.
= —— :E: i*Z(&,x) [A]

|G| ge G
1

= — z i(s.A) [A]
l6l  gec

- LD 82 14)
A e

1
= — :E: Z'(g,A)[ A8y

P — Sign(g,A)
G

2
™
a

e Sign(A/G)

= sign(f'"'(p)). (11)

Therefore L fulfills Milnor's definition for L{X/G)
and Theorem 1 is proven,

We stated earlier that the Pontrjagin class of a rational
homology manifold cannot be naturally defined, since =
Pontrjagin class essentially requires & bundle for its
definition, while an L-class is defined in terms of
signatures, Similarly, the Atiyah-Singer class XZ'(g,X) e H* (x8)
does not naturally extend to rational homology manifolds
because it depends on the normal bundle of XSC X, but the
lifted class L(g,X)e H*(X) can be generalized-because it
has a definition in terms of signatures. Indeed, from the

last calculation wve get
<l (g,X)Ut*(c) , [X]>= Sign(g,f”'(p)) (12)

for & G-invariant map f: X » sT (X a smooth manifold),
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This exactly corresponds to (15) of 3.1 for differentiable
manifolds without G-actions, and we can try to imitate

Milnor's proof to define a class
L(g,X) € H*(X;¢) (13)

for rational homology G-manifolds in such a way that (12)

holds. The G-invariant-homotopy classes of G-invariant

maps f from X to S° &re in !:1 correspondence with homo-
topy classes of maps f' from X/G to s, Just es in
Milnor's definition, the map f'hasign(g,n-l(f'-l(p)),

vhere p¢€ st is a point in general position, gives a well-
defined homomorphism from w’(x/G) to €, even if X

is only a rational homology menifold., For dim X <2r=2,

we have & commutative diagranm

,".l'

— 1T (x;¢)C

S

F(x/C) @ ¢ n T(x)%ec (14)

BT (x/6;¢)

and therefore obtain & well-defined homomorphism

Hr(X/G;C) —+C. ©Since X/G is an oriented rational homology
manifold if X is, we can use Poincaré duality to obtain
from this homomorphism an element 2 ¢H’(X/G;c) which

satisfies
sign(g,f™'(p)) = <(wWf'™(o)), [X/6]>
(£ = £'om ) {15)

for all f' : X/G——I¥, Then if we define ii(s.X) as

(deg 7)~" ™%, the equation (12) is satisfied, as one
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sees by a calculation similar to (11). This definition
sutomatically gives a G-invariant.class L(g,X), since
Z(g,X) lies in the image of # « But from (6) we see

that the class XZ(g,X), in the differentiable case,is

not in general G-invariant, unless G is abelian.

Therefore the definition of Z(g,X) just proposed is only
reasonable (i.e. consistent with (4% ) if X is differentiable)
if the group G is abelian. This is no restriction,
though, because the class XL(g,X) should depend only on

g€ &and not on the group. G, 80 we can always replace G

by the abelian group generated by g and then use the

above definition. Equation (15) defines ¢ wuniquely and

»* is an isomorphism, so this definition uniquely defines a
class L(g,X). This class must agree with the old one

if X 1is differentiable, since for G abelian the class
Z(g,X) defined by (L) is G-invariant end therefore in

the image of 7%, We have thus proved:

THEOREM 2: Let X be an oriented rational homology mani=-
Sinite

fold on which a{ abelian group G acts orientably. Then

there is & unique class %2 € H*(X/G;€) such that (15)

holds for any map f' from X/G +to a sphere., The class

1
Lig,x) = ( )W*E e H*(X;C) (16)
deg T

satisfies (12) and agrees with the class defined by (4)
if X 1is a differentiable manifold, In particular, from

(12) follows the formula

Sisn(SQX) L(Sox) (x] (17)
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which, for X a differentiable manifold, is just the
G-signature theorenm,

One can check without difficulty that, with this .
definition, Theorem t and also formula (6) for the
operation of G on Z(g,X) remain valid when X is an
arbitrary rational homology manifold. In fact, one proves
essentially as before that the following generalization of
Theorem 1 holds:

THEOREM 3 : Let G be a gfoup acting on an oriented
rational homology manifold X and preserving the
orientation., Let H be a finite normal subgroup of G,
and T the projection from X to X/H., Then G/ﬁ. acts
naturally on X/H, and if £ is an element of G/H

{i.e. a coset of H in G) we have

1 1
( )-n*.t( £ JX/H) 2 — Z L (g,X) (18)
deg IHI geé&

Again the numerieal factors can be omitted if H

acts effectively on X, for then degm = |H|.

§4., The o-invariant of Atiysh and Singer

In this section we will consider some of the consequences
of the G-signattire theorem stated in section 2. 1In
particular, we use this theorem to define an interesting
invariant of a free group action on an odd~dimensional
manifold, and givé methods for evaluating this invarieant

1

when the group acting is 12 or S,
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L,1 The assertion of the G-signature theorem is that
Sign(g,X) is equal to a certain number L(g,X) defined in
terms of the fixed point set of the action of g on a
closed manifold X. This equality is felse if X is a
manifold with boundary, and the deviation turns out to be
an invariant of the action of g on the boundary of X
(an invariant first defined in general by Atiyah and Singer,
and nov known as the a=invariant). Because Sign(g,X)
and L(g,X) will no longer be equal, we will want to deduce
several properties of these numbers (e.g. under what
circumstances they are real, rational, or integral)
directly from the two definitions, rather than proving the
property for one of the two numbers and appealing to the
G-signature theorem, as we could in thé closed case,

We begin by recalling the_enunciation of the G-

signature theorem:

Sign(g,X) L(g,X), (1)

wvhere

L(g,X) {l(xs)e(nﬁ) z(nﬁ)" n ze(ng)}[xs].

O<o<n

(2)

Here the bundles Ng are those of Theorem 4 of 2.3, the
various characteristic classes appearing are defined by the
multiplicative sequences given in 2.2, and (as usual)

L(X) denotes the L-class of the (real) tangent bundle of
a differentiable manifold X. We assume X is even-
dimensional (Sign(g,X) is zero for odd-dimensional

manifolds) and write 2k = dim X,
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er = dim Xs, 2m(g) = dim Ng (we use real dimensions

even for the complex bundles Ng). Then

k=1r + m(n) + :E: m(6) (3)
O<b<m

The class 1_9 is given by the power series coth(x + %i)
= i cot( %- =ix), so the cohomology class ifm(e) IQ(NS)
is zero in o0dd dimensions, real in dimensions divisibdle
by 4, and pure imaginary in dimensions 3j + 2. Since the
L-class is a real cohomology class and is zero in dimenw
sions not divisible by four, and since e(Nf) € H ?m(“)(xs)
we deduce using (3): L(g,X) is ik times & real number,
i,e. real if k is even and pure imaginary if k is odd.
Moreover, we have proved this for the expression in (2) on
each component, rather than just for the number L(g,X)
in (1) with its implied summation over components, From
the definitions in 2.1, Sign(g,X) is also real if k is
even and pure imaginaery if k is odd,

In general we can say little about the values of
Sign(g,X) and L(g,X) besides this. However, if g. is
of finite order n, then it follows from thé definition of
Sign(g,X) as a difference of traces of g and of L(g,X)
in terms of the action of g on the fibresAof the normal
bundle of X& that both of these numbere lie in the field
e2ﬂi/n)

Q(

An even more trivial property is that, if X1 and x2

are G-manifolds, then

(x,xx,)8

g, &
Xyx X5 (%)
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and the normal bundle is also a product, so

L(gyX, x X2) = L(EQXT)L(Glxe)’ (5)

9

Equation (17) of 2.1 states the same equality for Sign(g,X
We now turn to the definition of the "a-invariant."
We begin by stating the following basic theorem, which is
a trivial consequence of the G-signature theorem but
surprisingly has not been given a proof independent of the
theory of elliptic operators:
THEOREM 1 : Let G be a compact Lie group acting
orientably, smoothly, and freely on a closed oriénted

manifold X. Then for g€ G = {1}
Sign(g,X) = 0 (6)

More generally, this holds fo; any action of G if the
element g acts on X without leaving any point fixed.,

Now assume that X, and X2 are orieuted manifolds
with boundary on which G acts freely, and that

~

h: 3X, —— 13X, (1)

an equivarient and orientation-preserving diffeomorphism

of their boundaries. Then G acts freely on

zZ = X U (=X,), : (8)
1 N 2

and combining the (equivariant) Novikov additivity theorem

with Theorem 1 gives
Sign(g,X,) - Sign(e,X,) = sign(g,2) = 0 (g#1),(9)

50 that the number Sign(g,xi) is independent of the free
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G=-manifold X, with a given free G-manifold as beundary.
More generally, suppose that Y is a free closed G-

manifold and that X X are free G-manifolds with

1* 72
N,» ¥ = 23X, (10)
N, * Y = X

wvhere N°Y means N disjoint copies of the manifold Y

(N & positive integer). Then N 'X1 and N1-X {with

2 2
the obvious action of G) are free G=manifolds with the

same boundary N1N2-Y, so by (9)

Sign(g,N,*X,) = Sign(g,¥,'X,) (g# 1) (12)

Since obviously Sign(g,N*X) is N times Sign(g,X), we get

1 1
— Sign(g,X,) = = sign(e,X,). (13)
N N
1 2
The cobordism theory of Conner and Floyd[zo] shows that
for an odd-dimensional manifold Y with a free action of
a finite group G, some multiple of Y can always be
expressed as the equivariant boundary of a free manifold X.
(The case of even=-dimensional Y is of course uninteresting,
since Sign(g,X) is O for odd-~dimensional X.) Therefore
THEOREM 2: Let Y ©be a closed odd-dimensional oriented
manifold on which a finite group G acts freely. Then
there exists a positive integer N such that N.Y is the
equivariant boundary of a free G-manifold X, and the
number
1

a(g,Y) = ; Sign(g,X) (g€ G - {1}) (%)
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is independent of N and X, and depends only on Y

and the action of g on Y. The assertion that (1k) is
independent of N and X also holds if G 1is any
compact Lie group, but then it may not be possidble to find
a free G-manifold X with boundary a multiple of Y.
Equation (i4k) also remains valid even if G does not act
freely, if the element g has no fixed points om Y or
on X.

Note that the definition of the invariant o given
here differs in sign from that given for the invariant o
in [ 3 ].

If G is not a finite group, we cannot in general
find a free manifold X with the required boundary, and
even in the finite group case we may often have X
represented as the boundary of a G-manifold with fixed
points but not know how to find the free manifold X of
vhose existence we are assured by Theorem 2. However,
if some multiple N of the free G-manifold Y bounds
a Gemanifold X, even with fixed points, we can form the

expression

1
"(Sisn(gsx) - L(an)) (8#1)0 (15)
N

Indeed, L(g,X) is still defined for a manifold with
boundary, as long as g heas no fixed points on the
boundary (because in that case the fixed=point set x€

is disjoint from 93X, and since (2) only depends on X8

and its normal bundle, it is not affected by the boundary).

Moreover, it is trivial that
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L(Gsz) = L(an1) - L(G.xz) ) (16)

for Z as in (8), since the fixed point set 2€ avoids
the submanifold along which X1 and X2 are giued. Then
an argument exactly like that above shows that (15) is
independent of N and X. 1In particular, if X 1is a
free manifold then (15) reduces to (14), so that the new
definition coincides with the o0ld one if such a free
bounding manifold exists, Therefore o g,Y) can be defined
vhenever g acts on Y without fixed points and some
multiple of Y ©bounds a manifold X +to which the action
of g extends, possibly'with fixed points, Moreover,.
the various properties which were proved independently
for L(g,X) and Sign(g,X) (i.e. without using (1))
carry over automatically to o (g,Y), so we have:
THEOREM 3: Let Y ©be a closed oriented manifold of dimen=-
sion 2k«1 on which a compact Lie group G acts
orientaﬁly. If g €GC acts on Y without fixed points,
and if some multiple N>0 of Y bounds a G-manifold X,
then
1 ' -

a(g,¥) = 5 (Sisn(s.x) - L(s.X)) (17)

is an invarient of the action of g on Y and is

independent of N and X. The number oa(g,Y) is real

if k 1is even and pure imaginary if k is oddy; it lies

in Q(e2ﬂ1/n) if gn acts as the identity on Y; and it
satisfies
o(g,¥%z) = a(g,¥)eSign(g,z) (18)

for any closed even~dimensional G=manifold Z.
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We will need one other property'of the oa=invariant in
the case of free finite group actions (i.e. the special
case of Theorem 2), namely:

THEOREM 4 : Let Y and G be as in Theorem 2, and H a
normal subgroup of G, Then G/H acts naturally on Y/H

and for e coset® £eG/H we have

1
al £,Y/E) = — Z a(g,Y). (19)
el 22

Proof: By Theorem 2, Ve can assume (taking if necessary a
multiple N of Y) that Y ©bounds a free G-manifold X.
Since X is then elso & free H-manifold, we can consider
the pairs (X,Y) and (X/H,Y/H), each consisting of a
manifold and its boundary. Using the usual identification
(Theorem 5 of 2.1) of the cohomology of the quotient with
the invariant part of the cohomology of the original space,
we find that the bilinear forms B, B' on B*(X,Y) and on
H*(X/H,Y/H) wvhich are used to define the numbers Sign(g,X)
and Sign( £ ,X/H) (see 2,1) correspond, and the theorem is
reduced to the following algebraic theorem:

THEOREM 5: Let V be a real vector space and B =&
symmetric or skew-symmetric non-degenerate bilinear form

on V, Let G be a finite group, H & normal subgroup,

and assume that G acts (linearly) on V preserving B.

Let VH denote the subspace of V 1left fixed by H,
and B' the restriction of B to VH. Then G/H acts
on VE preserving the form B', and for ¢ € G/H,

Sign( & ,VH) = v}- Z Sign(g,V). (20)

||| o
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Proof : This generalizes Theorem 4 of 2.1, and the proof
is similar, That G/H acts on vE o ois clear, since for
veE VH we have €.V = 8,V if €, and g, are in the
same coset of H, B' is invariant with respect to this

ection, for
B'(gx, £y) = B(gx,gy) = B(x,y) = B'(x,y)
(£ € G/H, x,y € V') (21)

since B is Geinvariant (here g is any element in £).
To prove (20), we need the folloving generalization of the
theorem of 1.k:

THEOREM 6 : Let G,H be as above, and assume that G acts

on & reel or complex vector space V, Then for £ € G/H,

tr( g |V = TﬁT :E: tr(glVv), (22)

where the summation is to be taken over all gef .,
Proof 1 We have already observed that G/H acts on VH
(this is clearly valid also in the complex case), Define

e map h from V to itself by

n(v) = -L-z gov (23)
L Py

Clearly h(v)e V2, and therefore tr(h|V) = tr(n|vE).
But 'hlvH is just the action of &, and tr(h|V) is the
desired average in (22)., This proves Theorem 6,
Returning to the proof of Theorem 5, we have to dis=-
tinguish between two cases, according as B is symmetric

or skew=symmetric, In the first case, we introduced (in 2.
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a G-invariant scalar product <, > on V, & map

A:V 5V defined by <Ax,y> = B(x,y), &and the decompo-
sition V= v'® V™ of V into the +1 and =1 eigen-
spaces of A, and defined Sign(g,V) as tr(g[V+) - tr(g]V')
Since A commutes with the action of G, the restriction

A' of A to VH takes VH into itself, The (+1)= eigen-
spaces of A' is {xlhx =x, all h€H, Ax = x}= (V+)H.
and similarly the (=1) -eigenspace is (V')H. Then

Theorem 6 applied to the real vector spaces V. and

V™ gives

sign( £ ,v9) = tr(e|(vH)*) - tr(g [ (vE)™)

= tr(e¢ |(V+)H) - tr(¢ |(V')H)

= l—:ﬂ- Z 1.:r(g|V+) -l—;iz tr(slv-)
S€E

gé ¢

= '%' :E: Sisn(z.v). (2k)
{24

Similarly, if B 1is skew-symmetric one shows that the
G-invariant complex structure J on V induces e (G/H)=
invariant complex structure J' on VH. Then (20) is
obtained by applying the complex version of Theorem 6 to
the complex G=-space VJ and to its invariant part

= (vH)J,.

k,2 We want to study the a=inveriant of the non=trivial
element of a free (Z/2Z)=-action, i.e. of an involution with
no fixed points. We know that the g=invariant of an element

2Ti/m

of order n lies in @Q(e ) (Theorem 3 of h,1), so the



78

a-invariant for an involution is certainly rational. We

want to show that it is an integer. As in L4.1, we first

rust show thet Sign(g,X) end L(g,X) are both integers

(even if X has a non-empty boundary and g acts freely).
In fact, however, we know from 2,1(19)=-(21) that, if

g is an involution, then Sign(g,X) 1is O if k 1is odd

and equals the Sign(Bs) if k is even, where
k
Bs(x’y) = (xUgy) [ x] (xyy€e H (X) ). (1)

Therefore Sign(g,X) is certainly an integer. Another proof
of this is to let G ©be the group consisting of 1 and g3
then X/G 1is a rational homology manifold and it follows
from Theorem 4 of 2.1 (which as we pointed out, also holds

for non-free actions) that
Sign(g,X) = 2 Sign(X/G) - Sign(X) (2)

and is therefore an integer.

We want to show that the contribution to L(g,X)
from each component of x& for an involution g ié also
an integer having & natural interpretation as a signature,
and thet it is O if k 1is odd. An involution can only

have eigenvalues *1, so NE = N: and L4,1(2) becomes
L(g,X) = { £(xB)e(n®) L(n&)~" ) [x8], (3)

We claim that there is a submanifold A of X® whose
normal bundle in X& is i*N€® (where i: pcx®, and
N& is the normal bundle of x® in X) and such that the

homology cycle i [A] represented by A is the Poincaré
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dual of e(K8)., (This is at least consistent with the
following fact (cf.[36], &, 11.3) : if 1:ACB is the
inclusion of one oriented manifold in another, and

h ¢ H¥(B) is the Poincaré dual of i, (ad ¢ u,(B),
then the Euler class of the normal bundle of A in B

is precisely i*h,) Then
(yVe(88) ) [ x8] = (y) (i, [A) ) = (i* y) [4] (L)

for any y € H*(x8), so from (3) we obtain

L(g,X) (i* ( Z(x8) L5~ 31) [a]

(i* 2(x&) L& &)Yy [a]

L(A) [A)

= Sign A . (5)

To find A, we use Thom's transversality theory. Thus.
ve replace the inclusion map of X —=x by & homo=-
topic smooth map f which is transverse regular on

x€, ana let A = r"(xs). Then A is oriented,
because the normal bundle of A in Xx& is i*N€ and
its normal bundle in X is therefore i*NSe f‘Ns. which
is orientable, while the manifold X is orientable by |
assumption, Moreover, by the usual Thom theory, the
oriented cobordism class of A is independent of the
choiée of T, The manifold A (determined up to

cobordism) is called the self-intersection manifold of

x& in X ahd is denoted X%)Xs. We have thus far proved

THEOREM 1: Let g be an orientation-preserving involution

of an oriented closed manifold Xak. Let B8 denote the
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quadratic form (1), and x8,x€ the oriented cobordism
class of the self-intersection manifold of Xx& in X,

Then we have the following three formulas for Sign(g,X):

Sign(g,x) = 0. it k is odad, (6)
Sign Bg' if k 1is even,

Sign(g,X) = 2 sign(X/g) - Sign(X). N3

Sign(g,X) = Sign(xsoxs). (8)

From any of these it follows that Sign(g,X) is an integer
and vanishes for k odd.

We nov wish to show that o(g,Y) is always an integer;
to see this, we will give several alternate definitions for
o (ByY), just as we did for Sign(gqx) in Theorem 1,

Choose N so that KY = 383X, as in 4.1 (17). We know that
Sign(g,X) and L(g,X) are integers, since they are equal
to Sign BS and to Sign(xsoxs). respectively., Burdick
[uﬂhas shown that N can be taken to be 2, 80 in any case
ga(g,Y) is an integer (we are always assuming that. k is
even; othervise o« is 0),

We now proceed to describe, without proof, two alternate
descriptions of a(g,Y» g€ an involution, which show that
it is an integer. Both can be found in Bal though the
first definition had already been éiven by Brovder and
Livesay[lg]for Y &a homotopy sphere,

The Browder-Livesay definition is as follows, A

2k-1) is a submanifold

characteristic submanifold for (g,Y
WCY of codimension one, invariant under g, and such

that Y-W has two components wvhich are interchanged by
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g thus W = ©08A for a compact submanifold-with=-
boundary A C X such that ANgA = W and AUgA = Y.
Since gW = g(dA) = 3(gA) = =3A = =W, g is orientation=-
reversing on W. Such a characteristic submanifold

alvays exists., Let i:W +A be the inclusion map and
K = ker (i,: H_,(W;Q)~>H _, (A;Q) ) (9)

We define a quadratic form on K (analogous to the form

BS of Theorem 1) by
£(x,y) = x°guy (10)

The f is symmetric: (the dot indicates the intersection

form)
£(y,x) = yeg,x = =g, (¥Y*84X) = =g4¥°'Xx

= (-5 xegy = flx,y). (11)

(because k is even and g reverses the orientation of W)
THEOREM 2 : (Hirzebruch und Janich [43]) : Let

oY, W,A,K and f be as above. Then

o(g,¥Y) = Sign f. (12)

so in particular the signature of the bilinear form f is
independenﬁ of W,

The other definition for a(g,Y) given by Hirzebruch
and Jinich depends on a construction of Dold [25] (not given
here) producing a certain smooth 2k-manifold . The
boundary of 9 is Y - 2(Y¥/g). There is an involution
T of 9 such that Ti‘a@ interchanges the two

components Y/g and equals the involution g on Y.
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The quotient ‘:S)/T = IxY/g, 80 D) is a double branched
covering of (Y¥/g)xI, with branching locus D8 ana covering
transformation T. Moreover, Z)s has trivial normal

bundle in 9, so L(g,?) is O, Therefore Sign(T,D)

= a(T,9%) = a(g,Y) - a(t,2(¥/g)), wvhere t is the
interchange of the two components. But

THEOREM é : Let M ©be any oriented manifold and t the

interchange on 2+M, Then
a(t,2*M) = 0 (13)

Proof : It is well known that the elements of the oriented
cobordism ring R, in dimensions not divisible by 4 are

all of finite order. Let X be a manifold with boundary

NeM (N >0)., Let %' be the trivial involution (interchange)
on 2*X., Then t', restricted to 3(2°*X) = NeM, is just
N copies of t, so by definition a(t,N+*M) = % Sign(t',2+X)
(t* is free, so L(t', 2X) = O0). But the intersection
matrix giving Sign(t',2°X) is of the form (g g) with

B a symmetric matrix, and such a form has signature 0. Q.E.D

It follows that

0‘(5.!) = Sisn(Tog)o (1%)

giving another proof that o is an integer. Moreover,from

(2) and the fact Sign(P/T) = Sign(IxY/g) = 0, we deduce
sign(T,3) = -Sign(D), (15)

This gives yet another formula for o which is obviously

integral.

L,3 We nov consider the actions of the circle group S1 on
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. 1
a compact manifold X. Bince every closed proper subgroup of §

is & finite cyclic group, every point in X is either a
fixed point of the whole group or is left fixed by omly
finitely many t eS‘. Let Z be the fixed point set x5
and assume ZN3X = ¢ . Then for all bdbut fiﬁitely many

te S1. Xt = Z, The G-signature theorem yields for such t

tEe2%i 41
wien = ] T (5| £02) {123, (1)

K j tke2xj -1

vhere t 1is thought of as a complex number of norm one,
k ranges over all integers, N is the complex subbundle

k
of the normal bundle of Z in X on which elee S1

acts as multiplication by eike , and the xj's are as
usual the "roots™ of the Chern class of N . This
expression is clearly & meromorphic function of t
(defined for all te€), holomorphic in ¢ except at
the finitely many values of ¢t es' whiech have fixed points
in X - Z,

Expression (1) only makes sense if Z avoids Y =23X,
i.e. if the action of S' on Y is fixed-point free (no
point left fixed by the whole group). Conversely, if Y
is an odd-dimensional closed manifold with a fixed-point
free circle action, then it was shown by Ossa [79] that some
multiple of Y (which can always be taken as a power of two)
bounds an S‘-manifold X, not necessarily fixed-point free,
Now Sign(t,X) = sign(1,X) = Sign X for all te 51, because
s' is connected, so the action of t on X 1is homotopiec
to the identity and t’: E*(X) » B*(X) is the identity.

Therefore the « -invariant of the action on Y is essentially
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the function (1), and in particular is a meromorphic function
of t with no poles except at values of 1;€S1 which have a
larger fixed point set than 2, In.fact. & more general
argument of Atiyah and Singer[ 3 ]shows that the only poles of
a(t,Y) can be at the values of t which have fixed-points on
Y itself.

Two easy consequences of formula- (1) are

-1

Lt~',x) = (-1¥ L(t,x) (2)

where 2k = dim X and t 1is not a pole of (1)), and
L({w,X) = Sign(Z). (3)

If the action on Y is free rather than just semi-free, we can
calculate L(t,Y)., In this case, Y is the total space of an
S‘-bundle £ vhose base space Y/S} is also a manifold. Let
X be the associated D2-bundle; then X 1is an S‘-manifold
with boundary Y and fixed=point set 2 = Xs1 = zero=-section
of ¢. We identify the zero-section of the bundle with the
base space, and write x €H2(Z;Z) for the first Chern class

of g. The normal bundle of 2 in X is, bf course, simply

3 vith. S1 acting by the first pover, Therefore, only k = 1

occurs in (1), and N, = g, so

2
L(t,X) = te ” + 1 - L(z)] [2]. (%)

Moreover, we can apply Theorem 7 of 2.1 to the calculation

of Sign(X), and we get:

TEEOREM 1 (Atiyah and Singer [ 3 ]): Let Y2E=! ye an
odd=-dimensional manifold on which S1 acts freely, and

let 2 = Y/S1 be the base space of the corresponding
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complex line bundle §. Let x = c1( £)., Then

a(t,Y) = = T L(z) |[2] + 8Sign(2Z,x), (5)

where Sign(Z,x) is the signature of the quadratic form

k=2
a,b—(abx)[ z] (a,b ¢ H (z) ). (6)
Corollary: Let Z be a manifold of even dimension, and

xi,...,xre HZ(Z) be two-dimensional integral cohomology

classes. Then the number

t(xy5...,% ) = Ctamh x ... tanh x_£(2),[z]> (1)

1

is an integer.

Proof of corollary: First suppose that r = I. Let £ be

the complex line bundle with cl(C) =X and Y the

associated principal SY-bundle. Then S1 acts freely

on Y with quotient space Z, and from (5) we deduce
Ca(=1,Y) = -r(x)) + sign(z,x)). (8)

Since the action of -t €Sl is an involution, it follows

from 4.2 that «a(-1,Y)€ Z. But Sign(Z,x) 1is an integer

by definition; hence r(xl)ETZ.

Now let r be arbitrary, ii the line bundle classified

by x, (lcigr), X the disc bundle associated to the

vector bundle 510 e Qir, and Y the associated sphere
bundle. The torus group ' acts freely on Y by a
smooth action extending to X (namely ¢t = (tl,...,tr) €T

acts by multiplication with t; on £.). It is clear
- 1
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that for t = (tl,...,t Y with all ti $ 1,
X.
r t.e 1+1
L(e,X) =< || e L@),[2]>, (9
i=1 i
t.e -
1

since the fixed-point set b is precisely the zero-section

7 of the bundle X. On the other hand,

Sign(t,X) = Sign(X)€ Z (10)

{because the group T is conmected, so te'rr acts as the
identity on E*(X)). We now set t = (-1,...,-1)€ Tr;
this is the involution of Y defined as the antipodal map

SZr-l

on each fibre . Again by 4.2, a(t,Y)€ Z, while

from (9) and (10) we obtain
a(t,Y) = Sign X + r(xl,...,xn). (11)
The desired conclusion follows.

The number T(xl,...,xr) defined in (7) is called the

virtual index (cf. [ 36 ]). That it is always an integer

was known before the G-signature theorem had been proved
and the oa-invariant defined. One can,namely,interpref
T(X],...,Xr) in the following way: According to Thom

[94 ], the homology class dual to xlﬁ.Hz(Z;Z) can.be

represented by a submanifold V1 of Z (of codimension 2).

Applying this theorem repeatedly, we obtain ZD'VID...DVr

with Vi a submanifold of codimension 2 in Vi_1 re-
presenting in H#Vi-l) the class dual to the restriction

%
of X, to H (Vi—l)' Then

T(X)s-00,% ) = Sign v_. €12)

To see this, say, for r = 1, we calculate
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Sign V= <L(V1), [Vl]>

1

- <iL@w !, [v,] >

(where j:VICZ is the inclusion and v the normal bundle

of V in 2Z)

< xp . tanh j *x,
= <jL(z) ’ [V1]>

(R 3
1°%

(since v is a line bundle with first Chem class j¥

%)

- <L(2)- —t-a—“:;—"", i» [v,]>

= <L(z) tanh x, [2]>

(since jx_[Vl] = xin[Z] by assumption). Equation (12)
for r>1 1is proved by induction. It is clear from (12)

that T(xl,...,xr) is an integer.
We now give a further formula relating the virtual index and

the o-invariant of an Sl—action.

THEOREM 2: Let Y,Z,x be as in Theorem l!. Then for

r€ 2, the virtual index of rx 1is given by

r

tf-1 dt
(rx) = rest=l[ a(t,Y) -é—t]
t +1

= res__o [ tanh rx'a(ezx,Y)~dx] (13)

Proof: The function a(t) = a(t,Y) has a pole at t = 1

and is regular elsewhere. Therefore, applying the residue
ti-1
theorem to the rational function alt) we obtain

1]
tf+1 2t
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T r
t -1 dt - E Lk § at
res _, [—;—— G(t)i? ] = (reso+resw+ rest)[ = a(t)zt]

to+1 tTu] t +1
= %a(O) + %a(w) - i zg: a(t). (14)
ti=-1
For convenience, we define
F(t) = a(t) - 3(a(0) +al=)). (15)

Thus g(t) differs from a(t) only by a constant. The

right-hand side of (14) is now

> aw. (16)

tf=-1

|
L2 B L)

But, by Theorem 1,

2x
F(t) = -(553;il L), [z]>. (17)
te -1

Therefore we obtain

r 2x
ooy [ S s |- L 3T <l o] >

t +l tf=-) te -1
lex*l
= Trx L(Z)’ Z >
e +1 N
= t(rx), (18)

as was to be proved.

Theorem 2 is only interesting if the dimension'of Y is
congruent to 3 (modulo 4), since otherwise both sides vanish.
If this is the case, then it gives considerable information
about the L-class of Y/Sl in terms of the a-invariant of
m

the Sl-action on Y: namely, since the coefficient of x

in tanh x 1is non-zero for all odd m, we obtain from (13)
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the value of (xmL(Z),[Z]> for all m in terms of o (t,Y).

We deduce, in fact, that

<eL@[z]> = res, o [f0a e, vyax] (19)

for any fec[[x]].

The question now arises whether there is any analogous rela-
tion between o(t,Y) and L(Y/Sl) also for Sl-actiOns
which are not free. Of course, in general this question
does not make sense, since Y/S! will not in general be a
manifold. However, if we make the additional assumption

that Sl acts fixed-point freely on Y, so that ao(t,Y)

is defined, then the quotient space Y/Sl will be a rational
homology manifold and hence have an L-class (cf. §3.1).

We wish to state an analogue of Theorem 2. First we must
define a class ::EHZ(Z) which replaces the first Chern
class of the S'-bundle Y—Y/s! = z in the free case.

The points t¢€ Sl which have a non-empty fixed-point set

lie in some cyclic subgroup GNC.Sl. We use the exact

sequence
0—6—s'—s' —o | (20)
tr—t
to define
A
Y—Y = Y/6G— 2 = v/s! (21)

then Y——#? is the projection of a manifold onto its
quotient by a finite group action, and Q——az is the pro-
jection onto the quotient space of a free Sl-action.
Because the group GN is finite and acts smoothly and

. D . .
orientably on Y, the space Y 1is a rational homology
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A
manifold (cf. 3.2). Then Sl acts freely and Y—Z 1is a
principal s'-bundle over Z. Let £ be the corresponding

complex line bundle and set

X =

le e’ 0. (22)

This class will serve as "first Chern class of Y—Z;" that
the map Y—>2 1is not actually a bundle is reflected in the
fact that x 1is not an integral cohomology class. It is
easy to see that (22) is a sensible definition: if we had
chosen a different multiple N' of the orders of the
(finite) isotropy groups of the points of Y, then

e cl(E') would be the same as x. We can now formulate:

THEOREM 3: Let Y be a sﬁooth, oriented manifold whose
dimension is congruent to 3 (modulo 4), and suppose that

s! acts on Y with Ysl = @. Let Z = Y/Sl and xEHZ(Z')
be defined as in (22). Then, faor any r€ Z,

Nr
t -

<tanh er'L(Z),[Z]>== :E: res [—ﬁ?—l al(t,Y) %%] (23)
a(g,Y)=w et '

(sum over all poles of the rational function ¢o(t,Y)).

This theorem has been proved by Atiyah, using the methods
of [ 2 ]. Again we can deduce that

<L, [z - Z res [£Goa(e?®, vyax ] 28

a(ezx,Y)=°°

for any power series f(x), and in particular for £f(x) =
tanh kx, even if N*—k. But the staterent given is more
interesting because, since ¥x 1is an integral cohomology

class, and since Thom's transversality theory holds also for
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rational homology manifolds, the left-hand side equals
Sign V (V&Z a rational homology submanifold representing

the homology class dual to Nrx) and is therefore an integer.

Observe that, just as in the free case, we can rewrite the
right-hand side of (23) as a linear combination of values

of a(t,Y), namely as

% a(0,Y) + %a(a,y) - 3= z alt,Y), (25)
r
Nr
t T=-1
because the poles of g(t,Y) all occur at tN = | and are
Nr
thus disjoint from the poles of 1t -I .
2t tNr+l

We can also rewrite the right-hand side of (23), by using

Nth

the fact that all poles of a(t,Y) are roots of unity

and replacing t by zt:

. Nr
- E t -1 dt
t(rNx) restgc[————— a(t,Y) E?]

Nr
Ve t o+l

Nr
- E t -1 dt
Tes a) [tNr alze,¥) 2t]

N +1
T =

= resy=0 {tanh Ty [% Z a(;ezy,N,Y)]dY } (26)

cN=l

This becomes nearly identical to equation (13) if we define

. 3 A
the a-invariant of the free Sl-action on Y by

ale,®) = 1 Z a(s,Y). (27)

N
s =t
This formal definition is consistent with Theorem 4 of 4.1,

and can be justified in the framework of the theory described

in [ 2].
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CHAPTER II: COTANGENT SUMS AND RELATED NUMBER THEORY

The form of the G-signature formula of Atiysah and
Singer makes it natural to study sums of terms which are
products of cotangents (or hyperbolic cotangents). Another
motivation for the study of such sums was the observation
that they can be used to rewrite results obtained by Brieskorn
[ 7 ] for the signatures of certain algebraic varieties.
These trigonometric sums, whose appearance in topology is
still rather mysterious, are not new. Although not particularly
well known, even among number theorists, they have turned up
before in contexts so varied as to make their-appesrance in
topology less startling: 1in connection with the law of
quadratic reciprocity, the theory of modular forms, class
invariants of quadratic number fields and, more recently, the
problem of generating random numbers. In this chapter we will
study the elementary properties of these sums and discuss
some of their relations to other topics in number theory,
postponing to the following chapter the discussion of their

applications in topological problems.

§ 5. Elementary properties of cotangent sums

5.1 Let p,q be coprime integers, p>0. We define the

Dedekind sum s{q,p) by

P

s(a,p) = 2 () (&), (1)
k=1

where



((x))

(2)

(here [x] is the greafest integer $x).
THEOREM 1: (Dedekind reciprocity law) : Let p,a be coprime
positive integers. Then
2 2
+ + 1 -3
s(q,p) + s(pya) = & % B, (3)

Proof : Since
zero residues modulo D,

function with period 1,

p-1

kay," -
2 ((p))
k=1

for any integer r. But

right-hand side of (4) can be evaluated explicitly.

cases r = 1,2 give
p-1
kg =
((3))
k=1
p-=1
. .15.9.. 2 -
((p))
k=1

Bl

{kq | 0<k<p}

12pq

runs over a system of non-

and since ((x)) 1is & periodiec

we have
p-1
k7
Z () (%)
k=1

so the

<(1-I§)) =5 -1 gor

> 3 0<k<p,

The

0y (5)

i2p ¢ (6)

(7)
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a statement which we will use often. Expanding the left-hand

side of (6), and using (7), we obtain

k=1 k=1

We introduce & new symbol, which is equivalent to the

Dedekind sum but which is easier to work with and has the

.

advantage of being an integer:

p-1
)
f = Z —_— ,. = .
p(q) kl—2 (p,a) 1 (9)
k=1 ,
Then (using (5))
p-1
6p s(a,p) = 62y {(E) +l}-((53))
P 2 P
k=1
¢ p-1 kq [kq 1
- N EREEI
k=1
= (p-1)(2pg-q- 321)—6fp(q)- : (10
Equation (8) relates fp(q) to Z[E%]Q. We can relate fq(p)
to this same sﬁm by the simple trick of expanding ] as
YD
a-1 a-1
Lp
fq(p)=££[‘—q]= Z.g, E 1
£=1 L=1 O<k<p/q
p-1 q-1
D SR D
o<kt o k=1 &=[kq/p]+1

P a
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e (e - fassl® s Bosol)

k=1

p-1 2
=i(p-1)(q-1)(2q-1) -4 [M] . (11

Combining this with (8) gives the reciprocity law

P fq(p) + q fp(q) = f% (p-1)(q-1)(8pa-p-q-1), (12

and we can then use (10) to translate this into the desired
reciprocity law for sf{q,p).
We can now deduce other properties of Dedekind sums. It

follows immediately from (10) that
6p s(q,p) ¢ Z; (13
indeed, we can even deduce from (10) that
-1) (p-2

6p s(q,p) = 6p s(1,p) = S (mod 2) (14

(the second equality is equation (6)), & congruence which will
receive an interpretation in Section 6.2.

Next, we can deduce from equations (12) and (3) that

(mod p) (15

11}
Q
!

-

12q ¢
q p(q)

(mod p). (16

1
re)
+

i2qp s(q,p)

If we define the "socius" q' (mod p) by

qq' = 1 (mod p) (17

then we can rewrite (15) and (16) as
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Q
i

q - 12fp(q) (mod p), (18)

q' 12p s(q,p) - q (mod p). (19)

.The right-hand side of (19) is an integer, by (13).) This gives
elegant formulas for the socius in terms of the sum (9) or the
Dedekind sum (cf. Meyer le], Lerch [58 l Rademacher[ja1 ]).

We now define a generalized Dedekind sunm

p
k kr
s(q,r3p) = Z((—‘i))((—)), (20)
p P
=1
wvhere p>0 and gq,r are integers prime to p. By the same

sort of argument as that preceding (L4), we have

s(q,r;p) = s(qx,rx;p) (21)
for any x prime to ©p. In particular,

s{q,r;p) = s(qq',ra';p; = s{1,rq';p) = s{rq',p), (22

so the sum (20) can be reduced to the ordinﬁry Dedekind sum.
Nevertheless, the expression (20) is 2f interest because it
satisfies a reciprocity law generalizing Théorem 1:

THEQOREM 2 (Rademacher reciprocity law): Let p,q.,r be pairwise

coprime positive integers. Then
2 2
P +a + r - 3pqr
s(q,r;p) + s(p,r;q) + s(p,q3r) = . (23)
12pqgr
(The special case r = 1 1is just Dedekind reciprocity).

Lemma: Let p,g,r be as in the theorem. Then

p-1 Q-1 r-1

2 B 3 ] 2 B

x=1 y=1 z=1
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= (p=1)(g-1)(r-1). (24)

Proof: This generalises equation (7). To prove it, consider

Z 1 = (e-1)(a-1)(z-1) (25)

O0<x<p

O0<y<q
O<z<r

We bresk this up into six sums, according to the relative sizes

of the three numbers %, g, f € (0,1). (These numbers are
certainly unequal, because p,q,r are mutually prime to one
another). One of these sums is
q=-1
_ 1 - 1 1
. 1 \0<x<yr/a yr/q<z<r
0< 2 ¥ 2 g
P aqa r
q-1
= IP. r-1- |¥L&
q q
y=1
1 T[] [
= §(p-1)(q-1)(r-1) - I . (26)
v=1 L 9@ Q

If we plug (26) and its five permutations into (25), we get (24

Proof of Theorem 2 : Expanding (20) and using (7) and (9), we
find
p-1
- k k 1 kr kr 1
s(q,r; = e b I B S S 8 B
q p) Z{p [pJ 2}{11 [p] 2}
=1

- q1(1>-1)(2p-1) _ P31
6p

- 5 IsIls)

q r
- = F (I‘ -
rp ) b

1
Lo}
Lo}
—
ffe}

Lo )

P

Therefore, by virtue of (12) and the lemma, the expression

s(a,r;p) + s(p,r;q) + s(p,q;r) can be evaluated completely as
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a rational function of p,q and r. The result of the

computation is " (23).

5.2 As explained in the introduction to the book, the main
interest to us of sums like the Dedekind sum is that they can
also be given by trigonometric expressions. We now give one
way of doing this.,

The function ((x)) is odd and periodic, therefore has s

Fourier series of the form

E a sin 2mnx,

n=1

((x))

1
a = 2 / ((x)) sin 2wnx dx
0
1

f (2x-1) sin 27nx dx

Hence for integers a and p

O

a = _1 1 . 27mna
(2)) L D01 ein2me
n=1
p=-1
= - 214 2 sin 21ke 1
N k=1 P o<n<N n

nsk mod p

Since sin (2nka/p) is odd, this is unchanged if we replace

the last sum by

1 1in Z - Z

2 N** |. 0<n<N 0<n<N S+ -S<s<8
nZ-k mod p

Bl-

= % l1im }E: ]

k+ps

Bil-

n=k mod p
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L Tk
= -—— got —=
2p P
because
S
fcot mx = %Eyw :E: ;%; .
s§=-5 =
Hence
p-1
a 1 2 27ka
- = e e sln
((2))= - 55
k=1

A+
-1

is replaced by its negative under

Formulas (1) and (2) are due to Eisenstein

Now we can easily evaluate

P
) K kg
s(a,p) = kz () (B
=1

Since

P
L]
Lo}

x> ATt
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this equals

o Z g a1, ozl
-q _ =1
Lyp P 4 1
+1
s0
p~1
= nk Tkg
s(q,p) = 4p 2 cot Pcot > (3)
k=1
We can use 5.1(22) to write this in a symmetric form:

THEOREM 1: Let p be a positive integer, and gq,r prime to

p. Then
p-1
. = . Tkg akr
s(g,r;p) = Ip cot D cot > " . (L)
k=1

This is a special case of the following theorem which we
do not prove.
THEOREM 2 [ 100 ]: Let a ©be a positive integer, and

B ae-es8 ) prime to a (n even). Define

R A > JY T W
. 8 a *

0<b,,...b_<a
n

1 (5)

a|(a1b1+. . .+anbn)
Then

_,yn/2 a-1 1ja Tja

6(&;&1,...,a ) = Gk D b cot i ...cot 2 (6)
n a . a a
=1
The numbers 6(&;&1,...,an), which directly generalize the

Dedekind sums ( s(a3b,ec) = -4 s(b,c3a) ), satisfy a similar

reciprocity, generalizing Theorem 2 of 5.1:
THEOREM 3_[100}: Let &g ,...;an (n even) be mutually coprime

positive integers. Then
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seeenB ) = 1 - 4 (7)

G(ak;al,...,a n ag -.-8

k-1"%k+1

P
]
o

where zn 1s & certain polynomial in n+1 variables which
is symmetric in its variables, even in each variable, and

homogeneous of degree n. For instance

zz(a,b,c) (a2 + b2+ c2), (8)

W=

zh(a,b,c,d,e) %g(a + b° + ¢+ a° + e
+ b +c +d + e). (9)

About the proofs of these two formulas we only.remark
that (6) is proved just like the special case (3), by the
use of the Eisenstein formula for ((i)), and that the recip—
rocity law (7) is proved using equation (6) and the calculus of
residues.

The interest of Theorem 3 is that the polynomials L
which occur are essentially the same as the polynomials giving
the L-class (ef. 2.3) in terms of the Pontrjagin classes. To
be more precise, let P (i = 1,2,...,n/2) ©be the jth
elementary-symmetric function 1in ag,...,ai; then En(ao,...,an
equals a certain polynomial Lk(P1""’Pk) in the pi's (k=n/2)
This polynomial Lk is exactly the polynomial expressing the
component of XL (f) in Hhk(X) in terms of p1(E),...,pk(E),
wvhere ¢ 1is a bundle over a space X, XZ(f) the L-class of

th

g », and Pi(g) € th(X) the 1 Pontrjagin class.

5.3 In 5.2 we indicated a method of using PFourier analysis to
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obtajin identities between rational and cotangent expressions.
Here we give a slightly different method, based more directly
on the calculus of residues, which is useful for expressions
like the Brieskorn sums defined in the introduction to the book

Let a1,...an and p be positive integers, and set

e; = #{kysaeank | O<ki,eui,k <py 8k +...4a k =i}, (1)

even -
tP (a1,...,an) = cg *+ c2p + Cyp + ...
a1k1+...+ankn
=#{k1,...,kn | O<k,,...,k <p, ;"
is an even integerl}, (2)
odd
tp (a1,...,an) = < + °3p + c5, + ...
. a.1k1+...+ankn
= #{k1""’kn| 0<k1,.”,kn<p, 5
is an odd integerl}, (3)
- _1\T
tp(a1,...,an) = :E: (-1) o
r3Q
even dd
= tp (Byseesa ) - t; (8,5000n ) (1)

THEOREM 1: Let p, Bysesesdy (n even) ©be positive integers

with each a, an odd integer not divisible by p. Then

n/2 2p-1 Tja nia
= L:ll___ 1 n
tp(a1,...,an) = > -21 cot D ...cot 55 ¢ (5)
J=
J odd

By virtue of 5.2(6), this can also be written



103

t (8-19--':& )

0 n 2 6(2p;a1,-.-,a ) - 6(p;a1,---,an)- (6)

n

Proof: Write

£(t) = Z c; st (7)
iy0 '
this is a polynomial because e, = 0 for i>(p-1)(a1+...+an).
Then
r 1 r dt
tplagseeesng) = N (-1 res, {f(t) ¢ t}
r>0
£(3)
= rest_o S—t . (8)
- 14tP

This is a legitimate expression because, since f 1is a
polynomial, the function £(1/t) is meromorphic. For the
same reason, f(1/t) has no poles for- t#0 and is holomorphic
at infinity, so the only poles of the expression in (8) are
t=0, tP= -1, The residue theorem therefore gives

- - z; : £(1/t) at
tplagsreeaay) ~ =g [ ]

t(1+tF)

But it is eclear that

o a 2a, (p~1)a
£(t) = n(tk+tk+...t k)
k=1

ba a

n
- ”tk—tk. (10
a
k=1 g E o
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If ve set t = £ | = e "1d/P (0<j<2p, j odad) inm (10), then the

k™ factor is clearly p if Zplak, -1 if 2p+ak and a, 1is

Tja
. k. .
even, and 1 cot 5P it p}ak and a, 1is ?dd. We are

assuming that the last possibility is always the case; then
(9) reduces to (5).

Let &;5ee0y8 5 Doyeas,b De integers (aj>0) and X

n

a common multiple of the a.i's° In the above proof, replace

£{(t) by

o Nb. /a 2Nb, /a (a,=1)Nb, /a )
TT Kk b B R L+t K Kk (11)

and 1/(1+t?) vy

(t) = -t 1 (12)
& 1+tN

in (8)., Then exactly the same proof as before gives:

THEOREM 2: Let n be o0dd, Biseeerd) >0 and b1,...,bn
be integers with b, odd. Let ¥ be any common multiple of
the a.'s. Then

1

t(a1,...,an; b1""’bn) n—1 2N=-1
- _:ll___ :E:
= cot2N b
k odd
 Tkb kb
cot 2s, coe COt —= ’ (13)
n

where by definition

t(&1,.°.,an; b1,..;,bn) =
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b1Xy bpXy
= #F{0<x1<a1....,0<xn<a ' 0< 7 teeot s <1 mod 2}
b1x1 bnxn
- #P{0<x <8 4000, 0x <8 | < . to..+ -2 <2 Mod 2}
Notice that if we define
(-1)* (x€ Z)
h(x) =
: (o] (xecZ),
then equation (1h)'étates that
a1-1 an—1
-z b1x1 bnxn
t(a1’coo,&n;b1,ooo’bn) = cee Zh(—::— teoot a )-
n
x, =1 x =1

If we represent h(x) Dby its Fourier series

5 einkx
hix) = §3 =
k===
k odd

we obtain for (1h) the formula

a -1 x1 b x
Z ik ‘., .+ 28

23 3.5 ol
i a

k odd x“
bt I nlkb /a Tikb
I Y [ P ?
it L2 koo kb e )
k odd - €

(14)

(15)

(16)

from which we can prove our theorem just as 5,2(1) was proved,

by using the same expansion of Tcot Tx.

From (13) we see that t(a1,...,an;b1,...,bn) only depends

on N and the numbers bi(N/ai):
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X
a

- . b
t(a1,...,a ;b1,...,bn) = t(N,...,N; b, 2 ). (17)

n

N N
= tN(1,b1 a1,...,b an). (18)

In one special case t_(d

d ) can be evaluated
N n

02
explicitly:

THEOREM 3: If do,...,dn are relatively prime integers

(n odd) and N>O0 is a multiple of dys-..»d , then
tN(do,.

and the di's, namely:

¢ (a a) = 1 - 1 :z: 22K (p%k.q)
N*T0** " °*"p d. ...d (2x)!

"’dn) is given by a rational expression in N

k21
2k-1
B N ; v e sd
* Pox j‘n-2k+1(do’ ’“n)’ (19)
vhere B is the (2k)th Bernoulli number and %
2k n-2k+1

the polynomial discussed in 5.2.

Proof: By (7), the left-hand side equals

d d
1 (§0+1 Ld.n+1)
N dgq e n
cN=_1 ¢ O-1 r -1
do d
1D W Pt
2 Ny 2= & 40y 7 0-1 21 z

"Since the di's are relatively prime to one another, if z#1

then at most one of the factors z9i - 1 ‘can vanish, and

therefore{because of the factor ZN -1 in the numerator)the
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d.
function in brackets is regular at =z =1, 2 #1. Therefore
. 2
(setting 2z = e x),
e odd
then(do,...,dn)- (dgsee-rdy) =
R + res + res 290 4 Ly 4z
= 5 [resz=0 2= z= zd:o _ ) z
1 n
= - -|-1-1+2res I (coth d:.x)-tanh Nx-dx
2 x=0 }._ J
j=0
1 n . noodLx
= 1 = .4 coeff. of x° 1n tanh Nx- I i
0" """n j=0 tanh de

The theorem then follows from the expansions

ok, .2k
tanh Nx = :E: 2 ((2 1 Boy (nx)2%"T, (20

2k)!
K>1 '
QD) i
. tennh d.x ¢ zi(do""’dn) x . (21
J=0 J i20

In particular, if one defines

3 Taeaesl), (22

t(a1,...,a ) = t(a1,...,a.n

n

in agreement with equation (2) of the introduction of the book

then the theorem gives the value of t(a1,...,an) for

a -ea8 ) integers such that N/a1,...,N/an are relatively

127

prime integers. For example, if n=3 the formula obtained

is

o s p2 4 g2 4 g2 _ 20202
3

t(pa,pr.qr) = . (23

(p,qa,r pairvise coprime)
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Finally, to take the mysterious cotangents off their high

" pedestal, we will give expressions for some of the previous

quantities involving tangents. Write (5) as
n Ly
: E +
tp(a1,...,an) = % l' Eg——l . (2h)
S .
(Pamy 3 9oy
. P . . -1,\p
Since ¢ = -1 implies (z )° = -1, we can replace L by

4 ! in the sum, and we find that the right-hand side equals

(-1)"  times itself, and hence is zero if n 1is odd (which we

already knew). Similarly we can replace y by =~ g, which is
a pth root of -1 i1f p 1is even and of 1 if p 1is odd
aj za..j
. - + _
Since the ai‘s are odd, ( g)a. L. L 1. Therefore the

a
(-;) d_1 4 Ja1

right-hand side of (1) also equals

P2

¢ J

a.
z -1

=

1 g%3+1

where the sum is over the pth roots of 1 or -1 according

as p 1s odd or even. Returning to the notation of
trigonometric functions rather than complex roots of unity, we
have the following statement equivalent to Theorem 1:

THEOREM 4: If a

1,...,an are odd integers, then for n even,

p
n
IPRY:) Tka rtka
=1 :E: tan 5 ! tan 2 (p odd)
k=1

( P P
tp a1,...,an) = (25
n 2p~1
2 tka Tka
-1
L‘“%r’ :E: tan 2p1...tan 2pn (p even)
k=1

k odd
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If n is odd, both sides of eq. (2) are zero.

5.4 The next property of the cotangent sums which we will

consider is their behaviour when the integers 815.+.,8  are

large. If we set b, =...=b =1 in 5.3(14), we find that

n-1
t(a a ) = (-)% w (1
R K° .
k=0
with
X4 X,
Nk = 4*{0<x1<a1,...,0<xn<an k<;—+...+ — <k+1}
1 n
(2
It is then clear that
t(a1,---,an) il k (n)
1i - = -
a1,...ean+w ay-..8 _:E: (=1) vk ? (3
k=0 -
where
1 1
v. (1) . _/. dt, ...dt . (1
k 0 0 1 n

Ket +...+t <k+1.
1 n

Thus Vk(n) is the volume of a diagonal slice of the n-

dimensional unit cube. From 5.3(13), we have (using symmetry

2N-1
a1
- 2
t(a1,...,an) =2 cot g% cot "-'}--...cot?-r-E
N k=1 284 28y
k odd :
n- N-1
2(—1)2 k k k
= cotI= cotIE || cotIE
N k=1 2N 28, 2ay (s
k odd



Each cotangent is large when its argument is near a multiple
of n (%E cannot actually be a multiple of ¢ for k odd),
so the very large terms of the formula are those with k

small, when each of the cotangents has an argument near zero.

This 1s especially true for Bisee.s8 large, but even for

n =3 and (a1,a2,a3) = (3,4,5), with N = 60, the term
k=1 of (5) is -16.382 and no other term is bigger than
0.6; the value of +t(3,k,5,) is ~-i6 (in the notation of

equation (L), N_.=N_=2, N1 = - 20). Thus with large ai's

the value of t(a1,...,an) is approximately given by the sum of
the first few terms. Since c¢ot x 1s approximately i for

X small, we can approximate {(5) by

n-1
-1y D
0E (%)(iz‘)...(i—:—n)
N k>1 m
k odd,small
n-1 bt
) 2n+2_<_1) 2 . a1...an {
“n+1. k=1 kn+1
k odd
Eence
t(a1,...,an)
a lim a a a =
12 n—)oo 1°+-8,
n-1 2n+2 1
- 2 S e 1= — +1).
= (-1) o+l a'1 a'n ( 2n+1 g(n 1) (6)

Since n 1is odd, we have
n-1

C(n+1) = (-1) 2 . pBeet? Bat1 (1)

. PN



so finally
t e : +1,,.n+1
Lo lim o, e | EB1ereeemg )] 2™y
1?2°°°*%g B, .08 {(n+1)! n+1 (8)
1 n
{here B, is the nth Bernoulli number: B, = 1, B1 =—%
B, = 1/6, 'B3 = 0, etc.) For instance, if n = 1 then
hx3

t(a) = a-1 and the right-hand side is x

A=
[

21!
Others of the results obtained previously can similarly
be made to yield results about volumes. In particular, we

can get an expression for Vk(n). If we replace the function

N
:_t . L § @nd set b, =1 in 5.3011),
1-xt J

then the usual study of re%dff(t-1)s(t) at/t) gives, just

of 5.3(12) by

as with x = -1,
n-1
-1 -1
£ (x) = E xk-Nk = % :E: 3>—{§§— £(t)
DEF £ 1-t
k=0 t =x
-1 - ¢
1 g =t B gl
N -1 I\ =3
N 1-t =1 V1-t

(N as in 5.3(11), e, = N/aj). The large terms come from
t near 1, or log t small. Since 1log t = (log x + 2rir)/N,

we get

. £ (x)
a lim —n
EEETRLI I U
. 1-x-1 n ~1+x
= lim Na ! a Z 1 . n c.
1 a i(log x + 2mir) . —i(logx + 2mir)
rm=- o Jj=1 N
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(x=1)"

r=- o (log x + Znir)

n
|
"

n+1

o«
1 1y (g-1)R. 21 a7 1
= -(x x : n! n y+onir
ay e v=log x
- (x] 1)(1—x)n a 1. Y41 .
n! ay ™ 2 R
y y=log x {9)
That is,
n-1
D) v () = UL g e e, (10)
=0 X Yg'i® - 2nlx *ax x=-1" -

Applying Taylor's theorem to (9), we get finally

o n-1 _
Z z k n_ (n) _ e(1 x)z_1
X z Vk' = = .
n=1 k=0 1--xe(1_x)Z (1)
With x = -1 +this says
t(a, s300.5a_)
Z lim a.1 S a z" = tanh z, (12)
n= ai+ ] 1..- n )

which agrees with eq. (8).
Equation (11), giving the generating function for the

volumes » was proved by Meyer and by van Randow [70 ]

(n)
vk
Because this formula is quite an interesting one, we give
another proof (based on the idea of van Randow's, but much

simpler). Let

9 = {(t1,...,tn)€ R, K g bt %o+t < k+1}. (13)



Clearly the n-dimensional volume of Qk is ((k+1)n—kn)/n'

Therefore

™
" 8
(@)
-
+
—
=]
- B
]
.
=]
™
~
"
™M
™
w
R
‘:;5
D
—
Q
[«»)

(14

]
© w8
© Yo, 8
"
=]
a
a
@

where the square brackets denote the greatesf-integer function

We now write ei'= r. + ti (i = 1,...,n), where ro is a

non-negative integer and O<t;<1. Then (14) becomes

r1,...,rn20 . 1

Z Z " J'j' xE:1+”.+tn]dt1...dt
c o

r1>0 r >0

(1-x)" (15

]
B
=]
] }
N
<3
W~
s
"
-

If we multiply this by z%(1-x)® and sum over n, we obtain

~

[a]
[

ad n n
2 V )xk -Z.n - Z xkzi;-xz {(k+1)n-

n=1 k=0

-~
"
o

n=1

- Z & (olE+)z(1=-x)_ kz(1-x) ,

(ez(1;x) -1/ - 2(1-X))’ (16

xXe



in agreement with (11).
The same argument which we used to get from (5) to (6)
works for other sums studied in this section. Thus, from the

definition of 6(&;&1,...,an), equation 5.2(5), we have

1 1
1im (@ ™*! s(aza,...,a ) = 2 fa (a,X . +...+a x_)
1 Z 171 n'n
0 0
.((x1))...((xn)) dx,...dx , (17)
for any 8 ae-es8) € 2, where 62 is the distribution
éz(y) = Z §(y-n). (18)

ne %

But from 5.2(6) we obtain, for a large,

a TJja Tja
. 1
Jz 1
Y 1)n/2 n 144) ~ B Bn a-1
n -8. a 1 a s (19)
. e n!
T 8....8 1 n

and a comparison of (18) and (19) leads to an evaluation of the
integral (which, because of the presence of the §-function, is
essentially an (n-~1)-dimensional volume integral). Of course,

the integral can also be evaluated directly: one uses the

. 2rirx
. . - 2riry = e
Fourier expansions Gz(y) E e ,  ({x)) E Z7iT

r r #0

to obtain the Fourier expansion of the integrand
in (18) (which is a function of 1n wvariables, periodic in

each one), and then just picks out the constant term by hand.
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5.5 We will now discuss the number-theoretical properties of

the numbers t(a1,...,an). We recall that these are zero for

even n, and can trivially be evaluated for n = 1. We will

prove thet t(a1,...an), as a function of (say) a is the

10
sum of a linear function and a periodic function, the period of
the latter being the least common multiple of Bysreesd
We then use this to prove that +t(p,q,2) =0 (mod 8), for p
and q o0dd and mutually prime. (In fact, t(a1,...,an) =0
{mod 8) whenever the ai's are all prime to one another (and
even under somewhat less restrictive conditions), but the

proof uses topology and will not be given here.)

..,a ) on a

To study the dependence of t(a1,. o 1

we use eqg. 5.3(16). For x real and a>0 an integer, we
a—1 1

define Fa(x) = ¥ h(X+5)’ with h +the function introduced
i=1

in 5.3(15). Then

a-1 .
F;(x) = (—1)[XJ i£1 h(x - [x] + i)

(-1)[xd _ Z 1 - Z 1

i + x - [x]<1 i + x - [x]>1

(-1)[x](a+2a[x] - 2[ax]) ax €Z, x €2

(-1)[XJ(a—1 + 2&[){1 - 2[&}(]) ax ¥ 72 or x €2
It follows that if N is an integer such that Nx e 2, then

con(x) = F = e -0 5 aarag - ax (2)



116

Putting this in eq. 5.3{(16), which can be stated as
a2-1 an-1 , <
' n
t(a1,...an) = :E: ce F ( oot o ), (3)
x2=1

x_ =1
n

we find that, if N 1is a multiple of 8pse08 5 then

1 - -
¥ [t(a1+N1a2,---,&n) t(a1,a2,---an)] d(aa,---,an), (L)
where X x
a,—1 a -1 [Jl +...+ —E]
2 n a a
2 n
- - X
d(az,...,an) = E: . E (-1)
x2=1 xn=1
b'd x b4 b'd
x(1+2 [-—2-+...+ ——n-] -2(—2-+...+——n-)). (5)
a a a a
2 n 2 n

For example, if r 1is prime to 12, we have the following

values for t(3,k,r):

t(3,4,12k+1) = -40k

t(3,4,12k+5) = -hok - 16
t(3,4,12k+7) = -40k - 2L
t(3,4,12k+11) = -40k - ho.

Even this table can be shortened. 1In 5.3(16) we can allow the
ai's to be negative by introducing the usual convention for
interpreting sums % with p>q. We easily find that

k=p

t(a1,...,—ai,...,an) = - t(a1,...,an). (6)

(This can also be seen from eq. 5.3(13)). Hence the table

above can be shortened to
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-40k

t(3,4,12k¢1)

-4ok F 16.

£(3,4,12ks5)

On the following page we give tables of t(p,a,r) for p,a,r
relatively prime numbers with p and g small, following
the same scheme. Of the table we have just given for (p,a)

= (3,4), the fact t(3,4,1) = 0 1is a special case of
t(1,32,...,an) = 0 (1)

which is a trivial consequence of the definition. That

t{3,4%,5) -16 was mentioned in 5.4. Finally, the fact that

a(3,4) = 40o/12 1is a case of the following [97]

THEOREM 1: Let p and g be relatively prime integers. Then

__ (p%-1)(a%-1) .
d(PQQ) = 3pq H (8)
that is
t(psq,r+ npq) = t(p,q,r) - %(p2-1)(q2-1) (9)

Noté that (p,q) = 1 gives in particular that either p or g
is not a multiple of 3 and hence that p2 -1 or q2 - 11is 0
(mod 3), so the right-hand side of (9) is an integer. Moreover
either p or gq is o0dd so that (p2-1)(q2-1)/3 is not only

an integer but a multiple of 8.

Proof: By definition

Lo}
[
—-—
WMo}
M
—-—
1
A=y
+
roy N
d
—_
+
N
—
[I%8
+
[
| S |
ny
'_l
[
no
o 5
N

d(p,q) = 2l
’ . q P
1=1 J=1
= _2i 2] :E: 21 2
2 > &) SR
O<i<p O<i<p
0<j<q 0<j<gq
ide Zydy
P a P a
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TABLE: The

function t(p,q,r)

f = - t.(pstr)lg
p q r £ P q r £
2 3 6kt! k 2 23 46kz5 66kz7
2 5 10k+1 3k L6kt7 66k+10
10k+3 3kl 46k19 66kx13
2 7 14k+1 6k 46kz11 66kt15
14k+3 6ktl 46k+13 66k19
14k+5 6kt2 46kt15 66kt22
2 9 18kt 10k 46kt17 66kx24
18k+5 10k+3 46k19 66kt27
18ks7 10kx4 46kx21 66k+30
2 11 22k+1 15k 3 4 12k#1 Sk
22k+3 15kx2 12k%5 Skx2
22k+5 15k+3 3 5 15k+1 8k
22k+7 15k+5 15k%2 8kx!
22kx9 15k+6 15k+4 8kt2
2 13 26kl 21k 15ks7 8kt4
26kx3 21k+2 3 7 21kl 16k
26k+5 21kt4 21kx2 16k+!
26kt7 21k6 21k+4 16k+3
26k+9 21k+7 21k+5 16kté
26k11 21kx9 21k8 16k+6
2 15 30k 28k 21k10 16k+8
30k+7 28k+6 3 8 24k %1 21k
30kz!! 28k+10 24kx5 21k+4
30k%13 28kt12 24k+7 21k#6
2 17 34k ] 36k 24k*11 21k+10
34k13 36k+3 3 10 30kx! 33k
34k%5 36kt5 30k+7 33k+8
34k27 36kt7 30ktl11 33kt12
34k+9 36kt10 30k+13 33kt14
34kt11 36k+12 4 5 20kx1 15k
34%k%13 36k+14 20k+3 15k+2
34k+15 36k+16 20kx7 15k5
2 19 38kl 45k 20k+9 15k+7
38k%3 45k+3 4 7 28k+1 30k
38k%5S 45kt6 28k+3 30k+3
38k%7 45k£8 28k%5 30k%5
38k+9 45k+10 28k 19 30k%10
38k+11 45kx13 28kx11 30k*12
38k£13 45k+15 28k+13 30k+14
38kx%15 45k+18 4 9 36kt] 50k
38k+!7 45k+20 36kt5 50k+7
2 21 42k%1 55k 36kx7 50k+10
42k %5 55k+6 36k+11 50kx15
A2k+11 55k+15 36k+13 50k+18
42k+13 55k*17 36k+17 50k+24
L2k+17 55k+22 5 6 30k+!1 35k
42k+19 55k+25 30k+7 35k+8
2 23 L6k 66k 30kx11 35k%13
4Akx3 66kx4 30k+!3 35k15
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_ei2j 2i , 2§ _
=22(1pq)+ Z Bl 4 2.y
i=1 | j=1 j=[_9i]+1
P
a-1 q-1

Replacing the first sum by Z - z and

= °_| Q_l
=1 =1q- +1
d J= 14 P

replacing J by gq-J 1in both sums, we get

5]

d(p,q) = Z{—%—(q—1)+ z (%-%1)}
i=1 i=1
p_1 - .
i };%gi(gﬁu]_q+1)_ o[ 2] 1’$
e P q
)y 2 pf: i -1)(p=1)
- 3 - ernten - B2, [ - letile=b),

using eqs. 5.1(7), 5.1(9). Using 5.1(8), this is equal to

(@2 1) (p-1)(2p=1) _ ;o rv(n_ (a-1)(p-1) _ _ (a®-1)(p%-1)
3pq (p-1)(a-1) aQ - 3pq

QED.

Another proof, more in the spirit of 5.3, is the following

Just as we derived 5.4(5), one can show that

n-—1 2N-1
2
2 2(-1) E 2 1k Tk Tk
d(ag,...,an) = - cse” g cot a ...cot e (10)
2 n
k=1
k odd

ﬁhis formula is rather amusing. Equation (4) says that

d(az,...,an) is some sort of a derivative of t(a1,...,a ).

But the last equation is also & sort of derivative of 5.4(5),
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. d 1 X - 1 2 x ‘
since o ( 5 cot T ) = - ;E ese” J From {10}, we get
2pg-1
1 2 1k Tk Tk
d = - ecsc +—— cot == cot —
(p>q) pq :E: 2ra 2p 2q
k=1
k odd
DY ( ST e & .tPH)
pa _1)2 a_ p_
(Plqzo M(t-1) ti-1 tF-
2 zq+1 zp+1 zpq—1
) :E: Tt 2 “a., b, ,pa,, °F
(z=1)° z%-1 2P-1  2P%4y
P 1=0

Since the differential form in brackets has no poles except

z = 1 and zpq = -1, (the factor zp—1 creates no poles since
if zP =1 then 2P% = 1), this gives
q P Pq
2 +1 +1 -1 d
d(psq) = - res _, T = ?E]
(z-1)° 2%-1 2P-1 2Py
or, setting 1z = e2x,
= - res _g [csch x+ coth gqx °*coth px-tanh pqx dx]
= - 1_x 2, 1_ ,ax U 3.4
= res. .o [( Z +...)°¢ ax + -§—+...)(px +3 +...

_ o (pP-1(ePn)
3pq
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We will now find an explicit formula for t(p,a,2),
where p and q are odd and relatively prime. As in the
evaluation of d(p,qa), one can proceed either directly or by
the use of cotangent sums. Yet another approach (which we
describe here because a similar technique will be necessary
in §7 to prove the relation befween Dedekind sums and the
symbol s(p,a) ) is to use the following theorem:

THEOREM 2: For p,q odd coprime integers,

i) t(p,q,:2) = t(q,p,2)
ii)  t(p,-e,2) = -t(p,qa,2)
1i1) t(1,p,2) = 0
iv) t(p,a+2p,2) = t(p,a,2) - (p°-1)

These four properties characterize the function +t(p,q.2).

Proof: Statement i) is trivial, ii) and iii) are special cases
of eqs. (6) and (7), and iv) is a special case of Theorem 1.
Conversely, given any function with properties i)-iv), we can
compute its value on a pair of coprime odd integers p,q, as
follows: wuse 1ii) and 1) if necessary to obtain g p>0. Then
apply iv) repeatedly until q is reduced to a number in
(-p,p). If necessary use ii) to make p and q positive and
repeat the whole process. Eventually one of the two numbers
becomes one (because p,q are odd and coprime; this is a
modified Euclidean algorithm) and one can apply iii).

To show how this works out in practise, we compute an

example (writing ©b(p,q) for t(p,q.,2)):

b(79,413-6x79) - 3(79°-1)
b(79,-61) - 18720
-b(61,79-2%x61) + (612—1) - 18720
b(43,61) - 15000

b(413,79)
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b(L3,61-2%43) - (h32—1)—15000
-b(25,43) - 16848

-b(25,43-2x25) + (252—1) - 16848
b(7,25) - 16224 ”
b(T,25-bx7) - 2(7%-1) -1622)
-b(3,7) - 16320

-b(3,7-2x3) + (3%-1) -16320
-b(1,3) -16312

-16312.

This may seem laborious, but is certainly’easier than working
out the L412x78 = 32136 terms of the sum defining t(413,79,2).

Since p2—1 is a multiple of 8  for odd p, it is clear
that the repeated use of i1)-iv) can only yield multiples of 8,
so we obtain

COROLLARY: For p,q as in the theorem, t(p,g,2)= O (mod 8).

Now we apply the theorem to prove the formula for +t{(p,q,2

THEOREM 3: For ©p,q odd integers prime to one another, we have

£(p,a,2) = = 38+ 5( 248y -1 4 o us(2a,p) -k s(2p.0).
(11)

which can be rewritten, using the reciprocity 5.1(3), as

2
t(p,q,2) = -q* R;;l - b s(2q,p) + 4 s(q,2p) (12)
Proof: The expression (11) is clearly symmetric in q and p,

while properties ii)-iv) can be seen from formula (12)--the
right-hend side 1is clearly an cdd function of q and vanishes
if p = 1, while increasing q by 2p adds —(p2—1) to the
first term and leaves the other two terms unchanged.

This is & rather indirect proof of egs. (11) and (12). A
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more direct proof proceeds starting with 5.3(16):

p-1 aq-1
- il 1 d
t(P’Q,g) = Z 3 + P + a )
i=1 j=1
I RE IR
A, l 11,33 34,4
b 2 2<p+q<2 2<p+q<2
= :E: 1 - (11
i,dd
('_)<p-i-q'<2
p-1
2
- g _ail _ ... -
= ) [ 5] - @y
i=1
(p-1)/2

™M

% - g]f' - (p=1)(a-1)

1=1
p-1
7 .
= '“z [%l"%] ' (13)
Toi=)

from which it is clear at least that L4 divides t(p,q,2).

Using 5.1(2), we can rewrite this as

55
i i 1
t(p,a,2) = -l :E: 3%— (2 5>)$
i=1
-1
2

n
|
|5
ko]
T
oF
+
=
i
+
1=
N
A
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Comparing this with (12), we obtain as the formula to be proved

X

(Al + 1)) = s(q,2p) - s(2a,p)
P 2
i=1
2p-1 p-1
= X ax - Z X g}ﬁg. 1)4

> UENUEY) ((5))((222)) (1)
x=1 x=1

In the first sum the term x = p is zero. Split the first sum

into sums over even x (x = 2y, 1¢y¢p-1) and odd x

(x = 2y+p, 1sygp-1). Then the right hand side of (1L4) equals

P~1 p-1
Z((I))((ﬂl)) +Z ((I+§))((9L1)) - Z (( ))((—9-))
y=1
p-1 .
. 1yy - 1yy
-Z{((§+2)) ((%))}((%En.
y=1
p-1
ay - (29 514..‘.
. Z <<§>>{(‘p” ((B2L)) + (& 2))}
y=1

But ((x + 1) - ((0)) = ((2x)) - 2((x) = 3P (x not

an integer) so the second sum vanishes and the first equals

p=t
2 p-1
2{2 y ((2ed)) = ] Z((%%))—%Z ((2L+1))
y=1 _p+1
=5
ezt
2
- ((&42))
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Finally, one can give a third proof of (12) using the

cotangent formulas for s(q,p) and t(p,q,2). One simply

29,1 _ay
2a_y Py

y+i y2P+1 Y
2p

applies the residue theorem to s

y-1y -1y

which has simple poles at y2p = 1 and y2q =1 (yet1; 1if

y2p = y2q = 1 then y2 = 1 s8ince p and gq are coprime)

and at ypq = -1, a pole of second order at y = -1 and one
of third order at y = 1.
This proof has the advantage of generalizing to a proof

of the following formula for t(p,g,r), which is essentially

due to Mordell [73 ]:

1+p2r2+p2q2+q2r2—p2g?r2

3par

t(p,q,r) =1 + 4 s(pr,q) + bs(pq,r)
"+ 4 s(qr,p), (15)

where p,q,r are relatively coprime integers. Indeed, by

5.3{13)

. : qr pr Pa
-1 t+ +1 +
(p.g.r) = :E: 1.1 2PT41 1P

par e t-1 £37-1 £PToq P2,
$PAT =y ~

o Z res z+1 23741 2PT4q1 gPlyq PAT_y 4z
2 z=t qr__1 pr_1 zpq—1 Pq

r
z +1 z
£PT =y

Since p,q,r are pairwise relatively prime, the only poles of

the function in brackets are at 2z = 0, 2z =00, 2 = 1,

1, 2% = 1, 27 = 1. Applying the residue

theorem, one easily obtains (15). Then (15) and Dedekind reci-

_ 4p?-1) (q?-1)
3pq

-s(r,pq)}, providing another proof of Theorem 1.

procity imply ¢t(p.,q,r) = r + 4{s(rp,q)+s(rq,p)
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A proof of equation (15 using the index theorem can be

found in [40).

Literature for gg: There is a very large literature on Dede-

kind sums; for which we refer the reader to the papers of
Carlitz, Dieter, Lang, C. Meyer and Rademacher listed in the
bibliography as well as to the recent book [85] of Rademacher

and Grosswald.

§6. Quadratic reciprocity and cotangent sums

In 6.1 we define and study the Legendre-Jacobi symbol
(%), following the approach of Frobenius, and give a direct
proof of the law of quadratic reciprocity. In 6.2 we
relate the Legendre-Jacobi symbol to the symbol s(a,n)
studied in 5.1 and deduce the gquadratic reciprocity law

from the Dedekind reciprocity law 5.1(3).

6.1 The usual definition of the Legendre-Jacobi symbol
(%), with p prime and gq not divisible by p, is

I { +1 if x? = q (mod p) is solvable,
= 1
P) -1 if x2 £ q (mod p) is insoluble. (1

This definition has several disadvantages. It is somewhat
unnatural.(why should one use +1 to distinguish residues
and non-residues?), is only valid for prime p, and is not
very suitable for proving the main properties of (%) (Gauss'
lemma, reciprocity law).

We will therefore use a different definition of (%)
which has none of these defects. It seems to be due to

Zolatareff [loﬂ and Frobenius‘[29].
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Let n3!1 be an integer, aﬁd a an integer prime to n.
Let T be the map from (Z%/n3) to itself defined by
multiplication of residue classes by &a. Since (a,n) = 1,
this is a permutation of the n elements of (Z/nZ). We

define

(ﬁ)- = signwm, e {+1,-1}. (2)

Clearly (E) only depends on a (mod n), so that (g) defines
a function from the group (Z/nZ)* to the group Z/2%Z. This

function is clearly a homomorphism, that is:
a, by _ ab
(n)(n) = (n ) (3)

for a and b prime to n. Moreover,

THEOREM: If m and n are odd4 and mutually prime, and a

is prime to both m and n, then

(B) = (2)1(2) - (4)

Proof: It is obvious that, if a:A+ A and B:B> B are two

permutations, then ax8 is a permutation of AxB with sign
sign(axg) = (signa)'BI- (sign B)IA! (5)
Since (m,n) = 1, any number can be written as xn + ym where

x (mod m) and y (mod n) are uniquely determined by the

residue class of the original aumber {(mod mn) and uniquely
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determine it. This identifies (Z/mnZ2) with (Z/mZ) x
(2/nZ). Since a(xn+ym) = (ax)n + (ay)m, the permutation =
on (Z/mnZ) is the product of T, on Z/m2 and T, on

Z/nZ&% under this identification. Therefore
a a\n ,a,m
(2) = (B (T,

and for m and n odd this gives eq. (4),
From the same formula, we find that (—%— = (—%)
o 2°m 2

for k>0 and m odd. It is easy to show that (gz) is
always +1 if k3. For k = 2 "we have (E) = -1,
Therefore
-1,ifn =4 (mod 8) ‘
a _ a=3 (mod L)
n even::}(n) = (6)

+1, otherwise .

This is uninferesting, and in future we will oniy consider
(%) with n odd. .

By the theorem, it is (in principle) only necessary to
evaluate (3) for n=p or n = pk (p prime). For n = p,
we have such a formula if we show that definitions (1) and
(2) agree. To see this, recsall that (2/pzf is a cyclié

group (of order p-t), and let g be a generator. Then

: 2 p-2 p-1\ . _
(g) = gign[& & --- & g = (-1)% 2 2 -1 if p is an
g2g3... gP~1 g
k k
odd prime, so, by eq. (3), (%;) equals (-1)". On the

other hand, it is clear that gk is a quadratic residue (mod

iff ¥ is even. This proves the equivalence of (1) and (2
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for prime moduli. To complete the determination of the
symbol (ﬁ), we have:

THEOREM 1: If p is an odd prime, then for ki,

(1)

Proof: We can write (Z/pkl) as the disjoint union of A
* .
and B, where A = (Z/ka) and B 1is the set of multiples

of p. Then T takes both A and B 1into thémselves,

. a 8
and sign (7_[B) = (pkf1 ). Therefore (%) = (pk_1 ) *

iy

sign (naiA), so the theorem is proved by induction if we can

. - (8
show that sign (ﬂalA) = (p)'
To do this, let f and g be the functions from A to
k-1 Jopk=1
itself defined by f(z) = zP and gl(z) = z P . Let
C=im f, D = im g. Now Fermat's theorem states that 2P: 2
k-1
(mod p), and iterating this one obtains 2P = z (mod p),

or f(z) =z (mod p), g(z) =1 (mod p). In particular, if
f(z) = £(z') then 2z =2z' (mod p). The converse of this is
also true, for if we write z = rz' (mod pk), possible since

z' is ipvertible mod pk, then =z zz' implies r=1 (mod p)
k-1 Kk
and therefore that rF =1 (mod p), the last being a

consequence of the binomial theorem applied to r = 1 + cp.

We have therefore proved that C has exactly p-1

elements and D at most pk-1 (since every element of D

equals 1 mod p). But fxg: A +»CxD must be one-one since
z = f(z)g(z). Therefore D must have exactly pk-1 elements

and fxg 1is a set isomorphism, since [A| = pk-1(p-1).
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Identifying A and CXD by the isomorphism fXg,we see that the
permutation “alA is identified with a permutation of CxD
which is & product of a permutation ¢ of A (namely

k-1 k-1 k-1

2P +gP ez? ) and & permutation 1t of B (namely

RS
yra' P *y). Applying (5) and noting that |Cc| = p-1 is
even and |D| = pk-1 odd, we get that sign (ﬂalA) = sign o.

But we showed above that the elements of C are in one-one
*
correspondence with elements of (Z/pZ) , the correspondence

k-1
being effected by reduction mod p. Since ¥ za (mod p),
the permutation © corresponds under this identification to the

permutation L of (2/pZ)*, and so sign o = (2),
P Q.E.D.

THEOREM 2: Let n>1 be odd. Then

n—1
o U
( n) = (-1) (8)
n2-1
2 = (-1) 8 (9)
(2) = (-1)
129.. n~-1 -1
Proof : The permutation T, is n=1...2 1 p with 25—
n-1 n+ 1
12 e 2 2 +.en-1
transpositions, and T_, 1is (2 Lo ..n=1 1 ...n-2)’ with
n2-1
142 +,.4+ (n=-1)/2 = 8 transpositions.
THEOREM 3: (Generalized Gauss' lemma):
Let n>1 be o0dd, (a,n) = 1. Then
N
a
(E) = (-1) a,n’ (10)

where
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N o= #F xS s ((35) > ol (11)

Proof : By definition (&) = (-1)k, where k is the

n
number of inversions in the permutation (1,2,...,n)~*
(a,28,...,n8 mod n). That is, k = |8| where S = {0<x<y<n:
ax >ay (mod n)}. Here ax >ay (mod n) means that the
inequality holds for the "canonical" representatives (those
between O and n) of ax and ay. Clearly if ax >ay
(mod n) then a(n-y) >a(n-x) (moed n), and therefore if ({x,y)
is in 8, 80 is (n-y,n-x). If x + y #n, this pairs

(x,¥) to another element. Therefore the number of elements
of S, reduced mod 2, is equal to the number of x such that
(x,n-x) is in S. These x are easily seen to be those with
0<x<g and ((ax)) > 0.

THEQOREM L: (Quadratic Reciproecity Law): If p and gq are

odd and mutually prime, then

el I bkl
By(2 = -1 2
(q)(p) (-1) (12)
Proof: Define four sets:
_ -1 -1
s, = [lexe®rs 1avdds py - ax>2},
s, = {1sxs%’, 15y 2=t §>py -ax>0}
_.‘] _1
53 = {1‘X€EE—, 1$Y§1§— : 0>py - qx>-% L
= - -1 - '
Sy = PR3, teyed3t -3y - ax}

: -1 q-1
It is clear that |[S | + |[S,] + |8 + Ish|=2§"q'2_'

3l
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Moreover, |S1| = |Sh|, as one sees by replacing the

+ .
element (x,y) of S1 by (R%l - X, 351 - ¥). PFinally,

-1 . 1
|S3| = [{1sy59§— : 3 x with E% + 5> x> Ex}l
= |{1§y53%l : ((EI))> O} = Np,q’ and similarly |Sd
-1 -1 .
= N _. T N + N =(E-) (£2) mod 2, which
a,p erefore P.a a,p ( 5 y ( 5 ) m , whic

gives the theorem on applying Gauss' lemma.

6.2 We will use Gauss' lemma to relate (g) to the various
sums treated in §5.

The third line of 5.5(13) states

t(p,a,2) = -{p-1)(q-1) + L :E: 1.
0<i<p,0<j<q

i j_a

_* < =

P a 2

Clearly in this sum 1sisB:l and 1<jsg%l. Writing

t{p,a,2) = - (p-1)(q-1) + & 2 1

= - (p=1)(a-1) +k |5, |,

in the notation of the proof of the quadratic reciproeity law
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1

In that proof we showed that |Sk|= > 1841+ 5yl )
S e e Therefore
3 53 73 QP p.al”

THEOREM 1 : For p,q odd and coprime,

= - P-1 g-1
t(p,q.,2) = 2 [ > .2 + Nq,p + Np’q]. (1)
COROLLARY 1:
t(Pstz) < 0 i (2)
COROLLARY 2:
N + N = - 21 atl o (peq b)), (3)
q,p P,q 2 2

The second corollary follows from the fact +t(p,q.,2) =0
(mod 8), which was proved im 5.5. Corollary 2 is a sharpening
of the quadratic reciprocity law (which only asserts the. same
equality mod 2); it was first discovered in 191k by Frobenius

(30 7.

To get a formula for Np a itself, we use the following
| ]

relations, already used in 5.5:

((2x)) - 2((x))

((x + 3)) - ((x))

3 if ((x)) <0
—% it ((x))» 0
= 3. (-nied (4)
if 2x ¢ 2. Putting (4) into the definition of N (p,a
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odd, coprime) gives

Ny.p = {lexgrp-1: ((22))> 0, ((2)) < 0}
p-1
- 3%+((§+%))—((§)) %%+((§‘1))-((§3+%n
x=1
p-1
1 1 1
= Z g - (BNCEN-(G + 2(EFB + 3)
x=1
x, 1 X)) (X2 4 1
+(G + 3D R + (ENUGE + a0, (5)

where in the second line we have used

p-1

((3%)) =
D) - o
x=1

Setting y = 2x, ve get

2p-1
= 1_ Yy m - L"‘R ¥+p
Yaup Z; {): () CERN - LERN (e 5)
¥y even

¢ (R (D) + (5 (-T2}

since gq 1is odd. Since ¥y + p runs over all o0dd residue clas

classes (mod 2p) as ¥y runs over all even ones, this is

2p-1 2p-1
_ Bt Xyy((La 1
Mo = ET D (ENE) « SGE + Phedhn,
y=1 y=1 '
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or, on applying eq. (4) to ((fL‘+ %)) - ((g%)),

D
p-1 2p-1
_p=1 .1 ayyy 1 Z ay
N, =B+ ) (@) -3 ()
y=1 y=p+1

p-1
. Z; ((2))
y=

The sum in this formula was studied by Dedekind.

sometimes denoted by

p-1
s(%;) = Z <<g§>> (a,2p) = 1
x=1

Therefore we have proved

N = Ril + s(%;). (a,2p)

1e
q.P

It is

(6)

(1)

(8)

To express this result in terms of the quantities studied

in §5, we will prove that

t(psq) = - ”S(E%)' (a,2p) = 1

where t(pj;q) is defined by 5.3(1Lk). Indeed, by definition

t(p3q) = {0<x<p : O <5% <1 mod 2}
- - {0<x<p 1 <5% <2 mod 2}
p-1 p—-1

(9)
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-]
—_

i
= 2 {cd2+ D -
x=1
p-1
=2 ), (e EE)
x=1
p-1
=-u2 <<§g)>.

We have now evaluated Nq

p-1

n - % t(p;3a).

However, for the study of the

much less, i.e. only the value

notations of 5.1, we have for

another, p'odd,

p? namely:

(10

Legendre-Jacobi symbol we need

of N (mod 2).
q,p

Using the

qQ and p prime to one

p-1
= M
£ (a) Z k.[p]
k=1
p-1
= Z [M] (mod 2)
k=1 LP
k odd
p-1
= -1)(g=-1) _ kq
e - 2 []
k even
by 5.1 (7). That is, p-1
2
fp(q) = (q-1)’P;—1 - Z [-2—%9-] (mod 2)

»

—_
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il
|
|
|
M
[N

1
1
——h
n
|
——h
1
-

O¢x<p/2
()50
= "1 —1) - N L]
> QP
Therefore we have proved
£ (q) = —1)ig-1 - XN (mod 2)
P 2 q,P
and, since (%) = (-T)Nq,p z 2N + 1 (mod L),
P q,P
(g) = 1+ (pm1)(a-1) - 27 (@) (mod 4).

Using 5.1(10) to translate to s(aq,p), this becomes

(%) + 6ps(q,p) = P;—‘ (mod L).

Then the Dedekind reciprocity law 5.1(3) becomes, for

and q odd,

(11)

(12)

(13)

2(!1(%) + p(E)) = a(p+1) + p(a+1) - 12pa {s(a,p) + S(p.q)}
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2 2
=2pq + p +aq + 3pa - p - q -1
S 5pqg +p+aq- 3, (mod 8)
. 2 2 . q
since p° =z q° =z 1 (mod 8). Since gq and (p) are odd,

+

q(%)s (%) q-1 (mod L4), and similarly with p and gq

interchanged, so we find

5pq - p —q + 1 (mod 8)

g Y
2(3) * 2(3)

(p=1)(q-1) + & (mod 8),

or
3 [(g) - 1]+ 3 [(E) - 1]; Bl 22l (moa 2),

which is'a restatement of the law of quadratic reciprocity.

An even more direct connection between s{q,p) and (%)
is the fact that the number of inversions of the permutation
m of Z/pZ (i.e. the number k = |8] of our proof of

q
Gauss' lemma in 6.1) equals 3p |s (1,p) - s(q,p)j =

—1h =2 - 3p s(aq,p). This is proved in C. Meyer [61],

Indeed, the number k is given Dby

k =FF{ O<x<y<p: ax>aqy mod p}

p-

1 p-1
X7V - (2 I 1
1 21 (L) - (B o+ () o+ LYo
y=

ypx

x qy - 49X - ay
e D (- DO P I

where we have used
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1 1> B > g >0 (mod 1)
((a=8))-((a)) + ((8)) *+ 3 =)o 15a > g 50 (mod 1)
% az0 or B=0 or azg (mod 1)

(14)
If we expand this expression for k, we get 16 terms. Using
the oddness of the function ({(x)) and the fact that q 1is

prime to p, we get

= (XX ax7ayyy_( (¥ QX yy_ (X ay
k—o<xz’y<p{ ((ESENHE7E)) ((p))((p)) ((p))((p))
x4y

X7y axyy_ x-y Q¥ yy_( (X ay-ax
+ ({ > )) (( p)) (55 ))((p )) ((p))(( > ))

X Axy vy, (L AXyy.( (L a4y-gx : 1 }

p))((p )) ((p))((p )) ((p))(( S )) + 5of-

Each of the first three terms in brackets clearly contributes
-{p-2)s(q,p), while each of the following six terms contribute
-s5(q.,p) (for example, summing ((E%I))((%E)) over all x

and y would give zero, but here the omitted terms y=0

2_ (-
mod p give -s{q,p)), and the last term gives (p=1) h(P 1).

This proves

THEOREM 2: Let p,q be coprime integers, p>0. Then

~1(p=2)  _ 6pe(q,p)

=2 .#{x,y (mod p) | x <y, qx>qy (mod p)}.
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§7. Cotangent sums and modular forms

In the introduction to this chapter, we mentioned the
relationship between the cotangent sums we have been studying
and the theory of modular forms. In fact, it was in this
connection that the cotangent sums were first discovered and
studied by Dedekind in & femous commentary [21 ] to incomp-
lete notes of Riemann about the boundary behaviour of
modular functions.

Dedekind studied the function (now named after him)

giz/12

n{z) = e n(1 eewinz) (Im z> 0) (1)
n=1
1/24 = n
&8 q I (1 -aq7), (2)
n=1
where
q = e2miz (la] < 1). (3)

This function is related to other standard functions of

elliptic function theory as follows:

alz) = (20)'2 n(z)2, (1)

vhere A(z) is defined by

0 12 (5) = gy(e,0)? - 27 gy(w,wt)?, (In (&) > 0) (5)

60 Z (mw + m‘m')-h; (6)
(m,m') #(0,0) '

Se(m,m')
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g3(w,w') = 140 :E: (mw + ﬁ'm')_6. (1)

(m,m' )*(an)

To show that (4) and (5) really do define the same function
it suffices to show that (4) defines & modular form 4 of
weight 12 (precise definitions will be given in T7.1). For
then (4) and (5) both define cusp forms of weight 12
and with the same leading terms, and tﬁerefore agree, since
the space of cusp forms of weight 12 is one-dimensional (a
reference for all this is Gunning pﬁ] or Serre [92]).

The statement that A(z) is a modular form means that

azZ+b
(cz+d)

is related to A(z) by a certain transformation
formula given below. Thus from (%) we deduce that the
extent to which n(z) fails to obey such a formula is given

by a 2hth root of unity. That is, to every transformation

+ . . . .
z »::+g there is associated & certain 24kth root of unity.
If we study just the power A(z) = n(z)eh, we lose the

information given by this root; this is the reason that
Dedekind studied n. Hermite c 34 ) had already studied the
cube of n (which he thought of in terms of theta-functionms,
namely n(T)3 = %F 3;(0), where 1 1is the ratio of the
periods of the theta-function 91). He evaluated the eighth
root of unity which ariseé in terms of the Legendre-Jacobi
symbol. Dedekind went beyond this by considering the
function log n(z) (with an appropriate choice of branch for
the logarithm), which contains much more information; now to
each (i g) is associated an integral multiple of 27i, and

Hermite's eighth root is given by reducing this integer

modulo 8. The value of this integer turns out to be given
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by the Dedekind sum studied in §5. 1In ﬁarticular the relation
just mentioned, combined with Hermite's evaluation of the
eighth root of 1, gives the connections between Dedekind sums
and the quadratic reciprocity symbol which was considered in
§6.

The proof that A(z) 1is a modular form of weight 12
(following Siegel) occupies T7.1; in 7.2 we show how cotangent

sums arise in the study of log n(z).

1

—
0 @
a o
~

T.1 Given & non-singular matrix A with complex

coefficients, the map

az + b

z > (1)

cz + d

is & holomorphic automorphism of C=Cvue (= P1(C)). Indeed,
it is well-known that these "linear fractional transformations"
(or "Mdbius transformations”) are the only biholomorphic
automorphisms of €. We will ﬁe interested only in those

preserving the upper helf-plane

H = {z: Im z>0}. (2)

One can easily show that (1) takes R onto itself only if
a,b,c,d are all real (after multiplication, if necessary, of
2ll four by & common factor), and when this is the case it
obviously must take H onto itself or onto the lower half-

plane. Since (for a,b,c,d real)
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(az+b)(cz+d) d - b
az+b) = 1n (l22 b)(cz+d ) . 2 c Im (2))

Im
cz+d [cz+d12 | cz+d]

H is mapped onto itself only if ad - be 1is positive. We

are now only interested in matrices with integer coefficients
whose inverses are also integral; then det A = ad-bec = +1,
i.e. A € SL(2,Z). Finally, since we can multiply a,b,c,d
in (1) by a common factor without changing the map, we do not

distinguish between A and -A. Therefore we define the

modular group I Dby

r = sSL(2,Z) / { +1}. (3)

Associating to any matrix A the map (1) defines an

action of T on H. We define a modular form of weight 2r

as a meromorphic function g on H such that

8(:‘:212) = glz)-(cz+a)?" (ZEH’*(i 2) €r). ()

(There is some variation of notation here; for instance,
Gunning in [32] calls such a function an "unrestricted

modular form" and defines its weight as r rather than 2r).

Since (using ad-bec = 1) we have
4 (az+b) _ 1
+ - s
dz ‘cz+d (cz+d)2

eq. (L) can be rewritten as

g(az) - [a(az)]® = g(z2)-[az]", (5)
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so g corresponds to a I'-invariant differentiel form of
degree r (this is the reason that we refer to the function
g as a modular form; +the term modular function is used if
r = 0). 8Since H is contractible, the cotangent bundle

T*H and its rth temsor product (T*H)r are trivial bundles,
so that we can identify forms with functions by g{z) »

gl(z) (dz)r; however, {(5) is a better way to think of the
definition of modular form. In particular, it is clear from
(5) that, if equation (4) holds for matrices A and B,

it also holds for AB (and A-1

). Therefore, in checking
whether a given form is a modular form, it suffices to check
(4) for the generators of T,

The main result of this section is

THEOREM: The function A(z) defined by T(1),(3) is a

modular form of weight 12.

Proof: This is & classical result, but the proof we shall
give is fairly new (due to Siegel [93]). An even more

elementary proof, based on the partial fractions identity

lN

o0
- cot Mz = - - 1 +

1
o HPI i
-1 n= n =z

1 _ 1 1
2 21 2 2niz

E ]

can be found in Chandrasekharan [17].
It is well known that SL(2,2) is generated by the

transformations

s = (31, sz

z + 1, (7)

(01,

10 T(z)

-1/z. (8)

Therefore by the remarks above, it suffices to prove that A(z)
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satisfies (4) for the two matrices S and T. The first is

trivial, since A(z) only depends on e2n1z and therefore
satisfies
Mz + 1) = alz). (9)

It therefore only remains to prove that

a-1/z) = 2" a(a). (10)
To rewrite this in terms of 1, we must take a twenty-fourth
root, and this requires a convention about many valued functions
We cut the complex plane along the negative real axis, and
define log on € - R_ by requiring it to be real on R,.
a a log z

For =z €€-R., =z will denote e . Then eq. T(3)

becomes

i

'ﬂ(Z) : = m A(Z)1/2h'

(11)
and (10) certainly will follow from

1/2

n(-1) = nlz)e(2/i) (z € H), (12)

We prove rather more by looking at the logarithm of 1 rather

than n itself. Thus we define

£(z) 24 log n(z) = log ( (2¢) '2a(z) ), (13)

and write

21iz - f£(z)

-
-24 Z log (1-e271R%)

O |
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= - 2h21os (1 - a%) (q =e2™%, |q| < 1)
n
S
DD NE S
n k 'k n
i
= 2/, % X (14)
k 1-q

since the absolute convergence of the double series for |q| <1

permits the interchange of summations. Using

k e2ﬁikz 1 1
5= &z T "3 3 cot ke, (15)
1-q 1 - e
we obtain from (14)
2qi (z + 1) - £(z) + £(- 1)
z z
-]
= 121 Z 1—1 (cot -'% + cot Tkz), (16)

and the series is convergent because (14) is.
To evaluate the sum in {(16), we will consider the residues

of the function
g(z) = % cot (az) cot (vz). (a,db € ¢ -{01). (17)

Clearly, g(z) has a triple pole at z = 0 and poles whenever
az or bz 1is a multiple of 7. The latter poles are simple
if there are no 2z for which saz/7" and bz/7 are simultaneously

integers, and thus if a/b ¢ §. We assume a/b f R. To find
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the residue of g at z = 0 we substitute the expansion

+ 0(x3) (x+0)

= 1 _x
cot x = X 3

into (17); we then get

re (g(z) az) = - TR

sz=0

The residues at the simple poles are, of course, even simpler

to evaluate, and are given by

Tkb

|_s

resz=k“/a(S(Z) dz) = w7 cot e (k € 2, k#0),
- 1 Tk &
resz=k“/b(s(2) az) = = cot == (k€ Z, k #0).

From these formulas, it is clear that the residues only depend

on a/b, and so are unchanged if g is replaced by

8V(Z) = vg(vz) = % cot (avz) cot (bvz). (v€ R, v>0).
(18
The poles of gv are of course now located at =z = ku/av,
z = knr/bv. In the parallelogram C with vertices = 7/a,

+ /b, therefore, the poles of g, are 0, % k7/a,

1+

kr/b (k = 1,2,..., Vv ). We take v = n + %, for n a
positive integer (the picture shows n = 3). Then applying

the residue theorem to C (which has s non-empty interior
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X c s
b - a
simple
poles .
‘\triple
. bpole
. . z~-plane
S ) - _m
a - 1}
since a/b is not real) gives
n
2 2
a _+ b~ 2 Z 1 Tkb Tka
3a5 + - 4 X (cot . + cot b )
k=1
_ 1
- 5L f g (z) az. (19)
c
Now for x € ¢ - R,
2wikx i if Im x % O
. s . e + 1 : (20)
jim (cot kx) = aim (1 _Znikx - T)o= {-i if Im x > O.
Therefore the function
g (z) = :; sign (Im az) sign (Im bz), (21)

vhich equals + % on two sides of C and -

i

on the other
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two, and is undefined on the corners) is the limit %ig g\’(z),

uniformly bp C except near the corners. Also g\’(z) is

uniformly bounded on ¢ (i.e. | v(z)| <M for all z€C
and all v), because we chose v = n + % It follows that
lim % g (z) dz = ﬁgw(z) dz.
n-w \Y
C C
But
a/b -n/a -n/b n/ea
f g (z) dz = -f + f - f + f 9_:
¢ w/a a/o  -n/a  -u/b
= - a b & pud. ]
= log = + log o log = + log Y

4 log ;%, if Im (%) >0 (21)

(we have assumed a/b ¢ R, and the sign in (21) can be checked

by taking b = 1, a = i). Therefore (19) gives

-
2 2
_ & *b 2 E:l(cot“ka+cotﬂ£)
T k - a

3ab b
k=1
2 a 8 '
= =3 log 1 (Im g 0). (22

Writing 2z for a/b gives the equality

S

k=1

(cot l'—lz‘—+ cot wkz) = 2¢i(z + %) + 12 log

[ =Y

Helpd

(Im z>0), (23

and substituting this into (16), we obtain
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£(- 1) = £(z) + 12 log

HelN
.
—

n
=
~

and the theorem is proved.

T.2 We now want to discuss the behaviour of f(z) wunder
general modular transformations and show how this relates to

the cotangent sums of §s5. By the theorem of T.1,

8RRy = a(a)-(ezra)'?, (1)

and taeking logarithms (according to the convention for

defining log in € - R_ given in 7.1) we find
az+b 2 .
f(E;:E) = f(z) + 6 log[-(cz+d) ] + 27i(a,b,c,d)}

(2)

for some integer® (a,b,c,d) depending on the matrix

(ab
c d

cz+d ¢ R and therefore [—(cz+d)21¢ B., so that log [—(cz+d)2]

A = ). We use log [-(cz+d)2 ] because, if c # 0, then
is defined by our convention. In using (2) we will always
assume that c#0. (If ¢ = 0, then A = i(; 3), and this is
a trivial case since f(z+b) = f(z) + 27ib for b ¢ R).

We have therefore associated an integer (a,b,c,d) to

*The notation (a,b,c,d) and the notation (d,c) used
later are those of Dedekind [ 21]; we have avoided using the
latter in §§5-6 to avoid confusion with the greatest-common-
divisor function. However, in all of 7.2, {(d,ec) will
denote the Dedekind symbol.
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every A € SL{(2, Z) with c#0. In studying its properties,
we shall follow the original paper of Dedekind [ 21 J. First
ab a' b!

ca) end (o 4)
ad-bec = a'd - b'ec = 1 and therefore c(a-a') = d(b-b').

note that if ( are both in SL(2,%), then

Since ¢ and 4 are mutually prime, we deduce a=z=a' (mod c)

and therefore

a' = a + nc, b' = b + nc
] + ] +

a'z b - &z b + n.
cz + d cz + d

Hence

a'z + b' _ az + b .
£( cz + d ) - f(cz + d) + 2min,
from which we deduce
a' - @
(a',b',c,4) = (a,bycyd) + n = (a,b,c,d) + -
Therefore c{a,b,c,d) =-a is independent of 'a and b for

fixed ¢ and d (subject to ad - be = 1). For symmetry,
we subtract the trace a+d instead of just a. It will follow
from the discussion below that c¢-(a,b,c,d) - (a+d) is in

fact always an even integer. We therefore define

(d,C)

[aey B

[a + 4 - c.(a,b,c,dﬂ s (3)

and summarize what we have already proved as

THEOREM 1 (Dedekind): For zeH, (% 9)e su(2,2), c#o,
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. a+td-2(d,c)
1 t]

f(z) + 6 log [-(cz+d)2] + 27 .

az + b) =
(k)

f(cz + d

c and d

is an integer depending only on
d with c# 0.

where 2(d,c)
[ and

and defined for all relatively prime

We now study the properties of the Dedekind symbol
is only determined

a b as an element of T

(d,c). Since (c d)
= (a,b,c,d), from

up to a factor +1, we have (-&,-b,-c,-d) =

which it follows that

(-da,~c) = =(d,c). (5)
Therefore (since ¢ #0) we can restrict ourselves to the
case ¢ >0. Next, since (a,b,c,d) e 2) and ad 1 (mod c)
we have

(6)

2(d,e) = a+ da (mod e),

where 4 denotes the residue class x (mod c¢) with x4 =1

Our main goal is to prove
c>0. Then

be relatively prime integers,

THEOREM 2: Let c,d
c—1
= 3 Tk Tkd
(d,e) = 5 cot = cot - -
k=1
COROLLARY: The Dedekind symbol (d,c) is an integer.
We can avoid the restriction ¢>0 by writing (7) as
(d,c) = 3 Eﬂ 1k nkd
’ =3 cot cot TX&.
k (mod ¢) c c
k$0

This makes sense (because cot is & periodic function), and

(1)

(8)
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satisfies equation (5). Using the results of §5, we can

rewrite (7) as

(d,C) = 6¢ s(d,c) (9)
c—1

=6 (B By (10)
k=1

for c¢>0 (this is eq. 5.2(3) ). The corollary then follows
from 5.1(13). Formula (10) was known to Dedekind.

To prove Theorem 2, we proceed as in the proof of 5.541),
namely by characterizing (d,c) by its properties under simple

changes of argument. Specifically, we prove

THEOREM 3: The Dedekind symbol (d,c) has the properties

(-d,-c) = =(d,e) (11)
(d,=¢) = (d,c) | (12)
(-d,e) = ~-(d,e) (13)
(d+c,c) = (d,c) _ (14)
(0,£1) = 0 (15)
cle,a) + a(a,e) = 2[1 + 2+ a® - 3lcal]. (16)

These properties uniquely define (d,c) for all relatively

prime c,d (c#0).

To prove the last statement of this theorem, we notice
that (11)-(16) suffice to define (d,c) for relatively prime
d and c¢ by a Euclidean algorithm. We can use (11);(13) to
make ¢ and d positive. Then (Jh) says that (d,c) only

depends on the residue class of d(mod c¢), so0 we can ensure
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Ogd<c. Then applying (16) we can find (d,c) if we know (c,d)
and d 1is smaller than ¢. Continuing in this way, we must
get down to (0,1), which is evaluated in (15). This also
shows that (d,c) is an integer, since the right-hand side of
(16) is obviously integral for relatively prime c¢ and d.
Define a symbol (d,c) as 6|c| s(d,|c|). Because of the
uniqueness clause of the theorem, we cén deduce Theorem 2 as
soon as Wwe check that (d,c)' satisfies properties (11-(16).
Properties (11)-(1L4) are self-evident from the definition of
s(d,c), while (15) is also trivial since the sum in (10)
is empty for ¢ = 1. Finally, the reciprocity law (16) for
(dyc)' is just the Dedekind reciprocity law 5.1(3), of whiéh
several proofs were given in §5.

It remains to check (11)-(16) for the Dedekind symbol
itself. Consider the mep 2z + -z, which takes the upper half
plane H onto itself. On the one hand, substituting -2

for =z in (L4) gives

£(ZBE2) = 1£(-%) + 6 log[-(-cz+a)?] + pypi2td=2(d,c)

-cz + d ¢

(17)

On the other hand, it is clear from the definition that n(-z)

= n(z), and therefore that f(-z) = £(z). Therefore applying

(%) to the matrix (t: _g) and conjugating,
-az + b _ +t8z - b
f(-ci + d) B f(-cz + d)

f(z) + 6 log -[(-cz+d)‘]+ 27i a+d-2(d,-¢c)

-cC
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- - _+_s_!
= f(-z) + 6 log[:-(-cz+d)2 ] - oni &td fcd €L, (18)
Comparing these two formulas gives (12). Equation (11) is
the sameaas (5), and (13) follows from (11) and (12).
We can use the transformation =z-> z+1 (which also tekes
H onto itself) in a similar way: on the one hand, replacing

2z by z+1 in (4) gives

p(BZ28YD, o p(ue1) + 6 log[-(cz+c+d)2] + 2ni ﬁid—'—iﬁhc—l;

cz+c+d

(19)

on the other, rgplacing (z 2) by (2 :Ig) in (4) yields
£(BZ28D) - £(2) + 6 log[-(cztera)®] + anzitdte=2{dtcsc),
(20)
Since f(z+1) = f(z) + 271, a comparison of these two
equations yields (14).
Finally, we can use the transformation 3z -+ - i from

H onto itself to deduce (16), just as z —» -z and z—z+1
were used to deduce (12) and (14). Thus replacing =z by

- % in (4) gives

f(ﬂi/—z)-ﬂ) = f(:%) + 6 log[—(% +d)2]+ 21:1213—(2:—!3’&1,

e(=1/z)+4
(21)

while replacing (z 2) by (P e

PR in (4) gives

£(2228) = £(z) + 6 log [—(az—c)2J + ong bres2lzedd) (5

dz-c d

Subtracting equation (22) from (21) and using 7.1(24) gives
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6 log[-('

N 10

+ d)2] + 12 log 2 - 6 log[-(dz - c)2]

el

- oni (b - cd-e(—cjd) _at a - 2(d,c) ). (23)

With our conventions for evaluating the logarithms, the value
of the left-hand side of (23) is =671 if cd 1is positive
and +67i if cd 1is negative, (this is most easily checked

by setting =z = i). Therefore, multiplying the whole equation

cd

by S

we get

3| cd| c(b-c-2(-c,d)) - d(a+d-2(d,c))

= -1-¢2-a%+ 2¢(c,d) + 2a(d,e). (24)

This gives (16). Setting 4 = 0, ¢ = 1 in (16) gives (15)
(which is just a restatement of T.1(24)). Theorem 3 is thus
completely proved.

It is aléo possible to prove Theorem 2 directly in a way
exactly analogous to our previous proof of the special case
7.1(24). The function g(z) defined by 7.1(17) must be
replaced by the more compliceted function

c~1

. PR
Z e21k'bz/c e 2ik Taz/c

. — (25)
- g2ivz , _ -2iaz

glz) + E

“h(z) z

>

=1

where, as before, a and b are complex numbers whose ratio

is not real, and where k* is defined by

0<k* < ¢, k* = -dx (mod e). (26)
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Again we define h,(z) by hy(z) = vh(vz), where

1
v =n+

5» &nd integrate hv(z) around the parallelogram C.

The function hv has the same poles with the same orders as
does gv, but the residues are more complicated; for example,
the triple pole at 2z = 0 has residue -(a2+b2)/3abc

+ 4s(-d,c). As before, 'hv tends as v+ to an elementary
function h,, the convergence being uniform away from the
corners of C and uniformly bounded, and on evaluating
./;hw(z)dz we obtain (4). The details can be found in Lehner
[57 ], but since they are a little tedious we have preferred an
indirect proof of (7) using the transformation properties of
f(z).

The transformation law (4) for 1log A(z) is very
important, and has been given many proofs. Dedekind's proof
[21]13 essentially the one we have given. A second proof
was given by Rademacher [81] in 1932 using Mellin transforms.
A third proof, also given by Rademacher [84], is the proof we
Just mentioned, using Siegel's contour-integration trick. A
fourth proof, due to Iseki [49], uses incomplete theta
functions; a fifth, also due to Iseki [50] uses the partial-

az

fraction expansion of for 0O<a<1 (cf. (6) ). A sixth

1-e
proof, due to Meyer [66], is similar to Iseki's first proof
but uses a certain functional equation for the incomplete
theta function, involving a confluent hypergeometric function.
A very recent proof of Lewittes[sg] proceeds by using analytic
continuations to define the Eisenstein series Gk(T)

{classically defined if k = 4,6,...) for k = O.
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§8. Cotangent sums and Markoff triples

In Section 5 we studied

p=1
s(g,r3p) = E% cot 1%3 cot 1%5 (1)
k=1
p-1
= kg kr
= Zs (( p)) (( p)) (2)

for q &and r prime to p (egs. 5.1(20), 5.2(%) ), and

proved the reciprocity law

2
Lz*‘g +r2“3PQr (3)

s(q,r;p) + s(p,r3q) + s(p,qsr) = T2par

for mutually prime positive integers p,q,r. When we study

the topological interpretations of cotangent sums (in Chapter
III), s(q,r3;p) will measure the contribution from an isolated
fixed point of a Zp—action on a four-dimensional manifold to

a certain "defect" which in some sense measures the deviation
of the action from a free action. Then the left—hﬁnd side of
(3) will be the total defect (summed over all isolated fixed
points), and it will therefore be of interest to know if and
wheﬁ it can vanish. This gives some motivation for looking for
solutions (in positive and mutually prime integers) of the

Diophantine equation
2 2 .
p? + ¢ + r° = 3pqr. (4)

From this topological point of view, (4) is the first of
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a series of Diophantine equations in 2n + 1 variables
corresponding to the total defect of a finite group action
with isolated fixed points on a Un-dimensional manifold;
these equations are obtained from the reciprocity law given

in 5.2 (Theorem 3) for the expressions

p=1
/2 Tka rka,,
(-1)" E 1 2n
8 B reenrly ) = St cot «escot . (5)
(pia, 2n D & D D

For example, with n = 2 the reciprocity law states (by 5.2(7T),

(10) )

4 5(&2+...+a2)2—7(ah+..o+ah)
§(a, ;a 3 ) = 1 - —=2 b 0 =
k, O,-tcg k’--., )+ 90a ...ah
k=0 °
(6)
and we want relatively prime solutions of
5(p2+q®+rles®et?)? - 7(ph+qh+rh+sh+th) = 90pgrts. (1)

Of course, (1,eees1) and (2,154..,1) are solutions of (T7),
(and indeed of all the corresponding Diophantine equations in
more variables since (5) vanishes for p = 1 or p = 2).

The only non-trivial solution of (7) in integers ¢ 100 (and

the only one we know at all) is

(pra,rys,t) = (2,7,19,47,59), (8)

found by computert There seems to be no general theory of
our Diophantine equation in 2n + 1 variables for n3 2,

despite its natural occurence in a topological problem.

¥The IB!M 7090 at Bonn
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But the situation is quite different for the equation (k).
Here there is not only a complete and satisfactory theory
giving the solutions, but the equation is a classical and
famous equation, first studied by Markoff in a context which
we will discuss briefly below. First we make an elementary

deduction from eq. (3).

LEMMA: If

0 (mod p), (9)

Q
+
H
1}

then.
s(q.rjp) = O. | (10)

Proof: Let rx=q (mod p); this is soluble since r is

prime to p. Then by 5.1(22)

s(aq,rsp) = s(ar™d,1;p) = bp s(x,p).

2 -1

But (9) says that x"= -1 (mod p), or x x, and so

s(q,r;p) s(r,q:p)

= s(za” ', 15p)
= bp s(x ',p)
= bp s(-x,p)

= -hp s(x,p).
Equation (10) follows.

THEOREM: For p,a,r mutually prime positive integers., the

following five statemenis are all eguivalent:

2
P+ Q" + r? = npar (for some n € 2Z)

0 (mod r), p2 + r2 0 (mod q), q2 + r2 =0

d
+
Q
m
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iii) s(q,r;p) = s(p,r;q) = s(p,asr) = O
iv) s8(q,r;p) + s(p,r;qg) + s(p,q;r) = O
v) p2 + g2 + r2 = 3pgr.

Proof: The lemma gives ii)=>1ii), and iii)=>iv) v) =>i)=3ii)
is obvious using eq. (3).

One might conjecture that a corresponding result holds for
the Diophantine equation in 2n + 1 variables discussed above,

i.e. that 1if

1 a
E N G(ai,ao,...,ai,...,azn) (11)

1=0

vanishes, then each of the summands must be zero. However,
this is not true for the example (8), where we have (after

laborious calculations)

1825 7,19,47,59) = 0
T&Ts 2,19,47,50) = -2
38195 2.7,47,59) = +6
1 -
pro(b7352,7519,59) = +1h
] = -
596(59;2,7,19,h7) = 18

The sum of these numbers is zero but the individual terms

are not.

If we have a solution of

2 2 2
P+ q + r = npqr (12)
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with p,qa,r not all zero, then clearly n,p,q,r are non-

zero and can be taken to be positive. If d 1is the greatest

commoﬁ divisor of p and gq, then d2 divides npgr - p2
- q2 = r2 80 d|r also. Then
2 2 2
P 9 z = Py(9y(Z
B+ (D + D na (2)(H) (%)

with g, . =z relatively prime, so by the last theorem

THEOREM: If n,p,q,r &are non-zero integers satisfying (12),

then either n =3 and p,q,r are pairwise prime, or n = 1

and any iwo of ©p,a,r have greatest common divisor exactly 3.

This theorem can also be proved quite easily by the method
of descent, without using cotangent sums. The number 3 seems

to play a very.special role, but in fact this is not the

case: for any n>2 it is not too hard to show that the
equation
x2 + + x2 = KX,...X (x.,.0..,x_ € %) (13)
1 e n 1 n 12" " n

is only soluble for finitely many values of k, the largest
of which is n (thus for n = L4, k can only be 1 or L;
for n =T, k can be 1,2,3,5 or T); e¢f. Hurwitz [48].

The special interest in the Markoff equation (4) is there-
fore not that it is essentially the only soluble equation of
the form (12), but rather its appearance in a completely
different context (discovered by Markoff in [eol), namely the
theory of the minimum value attained by an indefinite quadratic

form (a problem important in the geometry of numbers; for
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instance, Markoff's equation is treated in Cassels BS], ﬁq]).
What Markoff proved 1is

THEOREM (Markoff): Let

f= f(x,y) = ax2 + bxy + cy2 (a,b,c real) (14)

be an indefinite guadratic form:
2

D = b - hae >0. (15)
Let

M= inf {|f(x,y)]| : x,y € Z, (x,y) #(0,0)}. (16)
Then

Mool (17)

/D 3

unless f (multiplied by a suitable factor k) 1is equivalent

o a form

s = o(x,y) = px® + (3p-2a)xy + (v-3a)y°, (18)
where a and b are determined by
O<a<§, tag = r (mod p), _ (19)
bp - 2% =

for some solution (p,q,r) f (4). For the form ¢ ,

D = 9p - h9 M = p, 3 = 1 l‘ (21)
/b 3 7(1—hl9p§) ” 3
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Ipn paerticular, if the ratios a:b:c are not all rational,

then (17) holds.

This remarkable theorem has been the starting point for a
large amount of research on the Markoff triples (psg,r)
satisfying (4) and the Markoff numbers p,q,r themselves
(the latter are interesting since by 121) they determine the

-1/2

possible values of MD above 1/3). There are only 13

Markoff numbers smaller than 1000, namely

1,2,5,13,29,34,89,169,194,233,433,610,985.

That eight of these are also Fibonacci numbers is no
coincidence, since it is easy to show that the only solutions

th
n

of (L) with p =1 are (1,F F )} with Fn the

2k-1°*"2k+1
Fibonacci number (F,=0, F.=1, F . =TF +F ).
A discussion of many elementary properties of the Markoff

numbers can be found in Frobenius [28]. For example, it is

shown there that the roots of the guadratic equation

ax2 + bx + ¢ =0

for a form (14) equivalent to a Markoff form have.continued
fraction expansions containing only ones and twos in their
periods (although not all continued fractions whose periods
contain only ones and twos actually occur). This means that,

of all irrational numbers, these Markoff quadratic irrational-
ities are the worst approximable by rationals (see, for instance
the remarks at the beginning of 11.10 of Hardy and Wright

[33 ]; the numbers 5 and 2v2 occurring there are
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equivalent to the first two Markoff irrationalities), and
partly explains why the Markoff forms do not represent small
numbers. These continued fraction expansions, in a modified
form, were used in a recent paper (Cohn [19]) relating
Markoff triples to the problem of identifying primitive words

in the free group on two generators.
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CHAPTER III: APPLICATIOHS

In this chapter we will study problems involving both the
general topological theorems of Chapter I and the specific number-
theoretical formulas of Chapter II. The signature theorems
(Riemann-Roch, G-signature, etec.) discussed in § 2 of Chapter I
yield formulas in terms of elementary trigonometric functions
of characteristic classes, for certailn in&ariants of manifolds.
Our aim now is to comstruct manifolds for which these invariants can
be calculated directly as well as by means of the corresponding
signature theorem. The resulting equality is then an
identity of the type investigated in Chapter II.

In § 10 we study the G-manifold Pn(t) {complex projective
space), where G is the product of .n+1 finite cyeclic groups
acting in the natural way. We first compute directly the equi-
variant Xy—characteristic of Pn(C) with coefficients in any
power of the Hopf bundle. This is possible because of our very
detailed knowledge of the topology of the sp;ce and the action of
the group. This is then used to compute the L-class of the rational
homology manifold Pn(c)/G, a result due to Bott. We also
derive the signature of the Brieskorn variety V,: These results
are then all reproved using the signature theorems of Chapter I;
for example, the calculation of IJPH(C)/G) is based on the
theorem of 3.2,

In § 11 we study the Brieskorn variety Va and related
manifolds (namely the S‘—manifold , and guotient space Za =
23/81) and calculate some of the inveriants arising (L-class of
Za’ a-invariant of the S1-action on Xa)' Ve also try to under-
stand the topological significance of a fact proved in § 5 as
a purely number-theoretical statement, namely a certain periodi-

city phenomenon exhibited by the numbers Sign(Va).
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In § 12 we define a natural involution on lens spaces of
any dimension with odd rotation numbers, and calculate their
Browder-Livesay invariant using the G-signature theorem. It
again turns out to be one of the arithmetical functions studied
in § 5. In this case we did not succeed in doing the calcu-
lation "by hand" as well, although we do describe how one might
begin a direct calculation.

The first section of the chapter, Section 9, is somewhat out
of line with the other sections in that we do not look at specific
manifolds, but rather consider the forms which the signature
theorems assume for manifolds of low dimension. Thus we write
out very explicitly the assertion of the equivariant Riemann-
Roch -theorem for surfaces and of the G-signature theorem for
L-manifolds. The latter is of especial interest since here the
number theory arising is classical: the G-signature theorenm
on h—manifoldé leads to the classical Dedekind sums, and the
involution on 3-dimensional lens spaces to the Legendre-

Jacobi symbol.

Other places where the interplay between signature theorems
and number theory in the spirit of this chaptef arises are:
Zagier [ 98], Chapter III; Hirzebruch [ 0], [38], [39]
Naumann [ 74 J; Meyer [68 ] 3 Kreck [55 ]3 Hirzebruch-

Neumann -Koh [45] .
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§ 9. The signature theoremson low-dimensional menifolds

In applying the equivariant signature theorem of 2.3,
considerable simplification results if the manifolds involved
have small dimension. Recall that for closed, orientable and
connected manifolds and orientation-preserving group actions,
any component of & fixed-point set has even codimension. 1In
applying the signéture theorems, the case of codiménsion zero
is trivial since there is no normel bundle, and the case of
codimension two also is easy to handle since the action on the
normal bundle is given by a2 single eigenvalue eie. The case
of a zero-dimensional fixed-point set is also easy to deal with,
since now the process of evaluating on the fundamental class of
the fixed-point set is trivial.

It follows from these congiderations that essentially any
signature problem for group actions on & two-dimensional manifold
(Riemann surface) can be solved completely by the application of
the G-signature theorem or holomorphic Lefschetz theorem, and
that the same holds for group actions on four-dimensional
manifolds if we make certain assumptions about the action of
the group (namely that all isotropy groups are abelian). We
describe the holomorphic Lefschetz theorem in 9.1, discuss
the G-signature theorem for 4-manifolds in 9.2, and give some

examples of the latter in 9.3.

9.1 Let X ©be a compact connected Riemann surface and G a
finite group acting effectively (and holomorphically) on X.
The canonical line bundle K (see 1.3) is just the dual T of
the tangent bundle. For aeﬂz; we can form the ath power

Ka, and g€G is an automorphism of X,Ka (ef. 1.4). The
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statement of the holomorphic Lefschetz theorem in this case

(Theorem 6 of 2.3) is

tr (gl B2(x,k%) - tr(g|E' (X,k*) = x(x,k%:g) (1)

=Z s ! (g # 1). (2)

u -—
xexg g!x 1 1

Here X% is a finite set of points since g # 1 and G acts

effectively, and ug x (x € Xs) is the complex number giving
]

-10

the action of g on T (so = e in the notation

x Hg,x
of 2.3(29), since T 1is the dual of the tangent bundle 6(X)) .
Note that u .x # 1 since x 1is an isolated fixed point, so
that equation (2) makes sense.

At a point x of X, the isotropy group Gx of elements
of G 1leaving x fixed is necessarily cyclic, since it is
mapped injectively into U(1) = S1 by its representation on
T =€¢. Let its order be b(x) and the order of G/Gx be
d(x); thus da(x) = |6|/v(x) and-there are d(x) points of
x in the same orbit of G as x-, at each of which the
isotropy group is a conjugate in G of Gx aﬁd therefore is
also a cyclic group of order b(x). Thus at each point ¥y

of the quotient Y = X/G +there is a well-defined order by at

Yy defined by

o’
n

b(x) (xen'(y), (3)

vhere

T : X+X/G =Y (L)

is the projection. We call by the branching number at y;
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then dy =|G|/by points of X 1lie over Y and at each of

b

them the map 5 looks like the Riemann surface of 1z y.

Moreover, the quotient Y 1is also a Riemann surface, because
the quotient of € by & finite cyclic group Gb is naturally
isomorphic to € Dby z-»zb.

We now calculate the invariant Euler characteristic of

(cfe 1.4):

x(X,k%)¢ = T%I_ Z X (X,k*;¢)
g€eG

a
R RO R D N
|6
geG 1 -1

gk xex® g,X

T%T x (X, k%) Tl— E; E; E; ___54___

yeY [n(x)=y geG -{1}
| . .
- AL 20 L. (5)

HET

Lemma: Let b O be an integer. Then, for any a € Z,

a
z bz1 5 = g2l (6)
uu#1

Proof: Recall that ((x)) for xe R - Z is defined as

X - % if O<x<1 and by the requirement that it be a
periodic function of period one otherwise. Thus both sides of
(6) only dspend on a (mod b), and we can assume O <a<b. Let

the left-hand side of (6) be denoted Aa; then the rational
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function
a=1
£(t) = b (1)
(t=t)(t  =1)
has no residue at t = ® (since a<b) or at t = O (since

a>1), while the sum of its residues at £° = 1, t # 1 is

clearly Aa. The only other pole is t = 1, so

' a-1
_ S1+x! dx
A = rest=1(f(t) dt) = +tres__, [ -

(14x)? =1 %

1+ (8=1)% +...  dx 1 b=1,
= res__ — — = -(3-1 - -——-)
x=0 | yx + %b(b—1)x2'+... x b 2
2a=1 '
= ((-Eg—)). : (8)

A shorter, but less direct, proof of (6) is to notice that

1/ irf af 0 (mod b),
1 & _
Aav1 "2y = T % bz: oE 3 =(b=1)/b if 820 (moa b),(%)

uo=1
TR

from which (6) follows immediately by summation.

Substituting d, = IGI/by and equation (6) into (5) gives

X(X,k8)% = L x(X,k%) + Z ((2a=ly), (10)

This also gives the Xy-characteristic, since

xy(t:t.lc“)G = Z v? x(X,k* x AP1)% = x(x,x*)% + yx (x,x**")¢
p=0
(11)

In particular,
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x,x*)¢ L X (x,k%) + Z [((ﬁ:ln + ((2211y,
x4 ) TeT ™ oy 26 2b_

L@ L, D () (12)
¢ yeY by

[This corresponds to using

1 a 1+u _ a

= o - @y (13)
ub=1
uEl

instead of (6), since the left-hand side of (13) is just

%(Aa + Aa+1)' Formula (13) in trigonometric notation becomes
b-1
a -1 . 27ka 1k
() == Z sin =4 cot ==, (1%)
k=1

a formula of Eisenstein given in §5 (equations 5.2(1), (2))],

Since ((E)) is an odd function of a, equation (12) implies
-a G
X, (x,k)¢ = —x (x,x7*)¢, (15)

which is a special case of the equivariant Serre duality formula

1.2(36)3. For a = O this gives

X1(x)G = x(x)%+ xx,x)¢ = o, (16)

which is also clear since, by Theorems -6 and 4 of 2.1, we know

that

x1(x)G = Sign(X/G), ' (17)

and Y = X/G is a two dimensional manifold and therefore has

signature zero.
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Substituting y = -1 in (11) and using equations (16) and

(10), we find

x. (0% = x(x)% - x(x,0)°
= 2 x(x)G
= 224 53 ((——))
yeXl
X : 1
- 2 G X + :E: (v - g—). (18)
yeX y

which corresponds to the case a = 0 of (9). Another proof of

(18) is given by Theorem 8 of 2.3, from which

(0 = e(¥) = z e(x®)
SeG
1
RO DY
G| © geG gx=x
gkl

SECINERD WD

x€X ger
g#l

x€X

=e‘%l+2 —I——- (19)

YeXl

since there are |G|/by isolated fixed points over ye€Y, each
having Euler characteristic one. In particular, since Y is
a compact Riemann surface, the expression on the right of (19)

must be an even integer ¢ 2, so that we get some information
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about the possible sizes by of the isotropy groups. Formula
(19),of course, is8 just the classical Hurwitz formula.
If X has genus > 1 and a > 1, then by Theorem 8 of

1.3 the group H1(X,Ka) vanishes, so that
x(x,k*)¢% = aim %(x,x%)¢ (20)

is the number of G-invariant sections of Ka, i.e. is the
(complex) dimension of the vector space of forms of weight a
on Y. The evaluation of this number is the classical Riemann-

Roch theorem.

9.2 The G-signature theorem has an especially simple form
for an element g€G with isolated fixed points: 1if x 1is
an isolated fixed point of g, then the contribution of x

to L(g,X) is (from 4.1(2) and the definition of Le)

L(gsx)x = -[-‘- (coth ize‘)m(e) = T-I- (-i cot %)m(e)' (1)
]

O<p<ern

wvhere m(g) is the complex dimension of the éigenspace of

e_io of the action of g on the tangent bundle of X at x.

If there are any eigenvalues equal to =1, then L(g,X)x is 0.
The next most difficult case of the G-signature theorem is

that of a fixed-point set component Y of codimension 2 in

X (of course for x€ of éodimension 0O we simply have

L(g,X) = Sign(X)). In this case N& is either a real bundle

of dimension 2 on which g acts as -1 or a complex bundle of

dimension 1 on which g acts as eie # 1; in the latter case

Y is oriented. In the former case we have
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Lig,Xx) = (L(x8)e(n&))[x8§ = sign(x%x¥) (2)

by the argument of 4.2, while in the latter case wve obtain

from 4.1(2) that
L(g,X) = @ (x8) coth(x + %ie))[xg], (3)

where x 1is the first Chern class of the complex line bundle
& over xE,

Now if X has real dimension 4, an oriented action can
only have fixed-point sets of dimensions 0,2, or k., If Y
is a two-dimensional component of x€ ana g acts by eie

on its normal bundle, then (3) gives for the contribution from

Y to L(g,X) the value

L(g,X)y (£ () cotn(E2 + x))Iv]

= coth(%? + x)[y]

= (coth%— + 2" + .. [Y]
sin“(g/2)

= (csc? g) x 1]

= {csc® 9/2) Yov, ()

since Y. is two-dimensional and therefore has a trivial L-class
Here YoY is the oriented cobordism class of the self-
intersection manifold of Y (cf. 4.2), which can be thought of
as an integer since the cobordism class of a O-dimensional
oriented manifold in a connected manifold is clearly determined
by the (algebraic) number of points. Since the signature of a

point is 1, we also have
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Sign(YoY) = YoY, (5)

so that (2) is just the special case of (U4) with eigenvalue
i@ im
e = e = -1,

If G acts effectively on X, then only g = 1 has a
fixed-point set of dimension four, so we obtain from (1) and
(4) the result:

THEOREM 1: Let G act orientably and effectively on a

connected four-manifold X. Then

Sign(X) if g=1,
L(g,X) = (6
- Z cot(la )cot(ls ) + Z csc2(le Yoy
= 27 x,¢g 2¥x,g Y 2" Y,g
if g ¢ 1.

Here x ranges over all isolated fixed points of g (with
ia iB

X, X8

e and e the eigenvalues of g on the tangent

space of X at x) and Y. ranges over all two-dimensional
components of X& (with eleY’g the eigenvalue of g on
the normal bundle of Y in X).

Notice that the formula (6) is well-defined; the angles
eY,g are determined, modulo 27 and up to sign, by the action
of g, and csc2(e/2) is an even function of © with period -
%g. X and Bg,x are well-defined

modulo 2n and up to a,8 +B,a Or a.B + =a,-B (we can

2yx; while the angles

distinguish between a,B and a,~B because X is oriented),

and (cot % cot g ) is invariant under these changes. Of course

the sums in (6) are finite since X 1is compact.

Let Y be any connected two—dimensional submanifold of
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X and

6y = {geG: g is the identitylh. (1)
Let

3(Y) = Gy -(1%h (8)

Clearly G(Y) 4is empty for all but finitely many YCX, and
consists of all geG for which Y is one of the two-dimensional

components of X& appearing in (6). Similarly, we define
G(x) = {geG: x is an isolated fixed point of g} (9)

and note that the isotropy group Gx is the disjoint union

G. = {1} UG(x)U Z c(Y). (10)

x Yax
We now consider the formula 2,1(22):

Sign(X/G) = T%T z Sign(g,X). , (11)
geCG

Because of Theorem 1, this can be rewritten

6] sign(X/G) = sign(X) + Z def  + Z def
X Y

- (12)

wvhere x ranges over all points of X angd

def = - Z cot(la \cot(ls ) (13)
X geG(x) 2 g’x 2 g’x ’

and wvhere Y ranges over all two-dimensional submanifolds of

X, connected but not necessarily orientable, with

def, = (YoY) 2{: csc2(%9g’y). (1)
g<G(Y)
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The notation "def" is an abbreviation for "defect": the
sums in (12) measure the defect from the formula Sign(X/G)
= T%T Sign X which would hold for a free finite group ;ction
or ecovering space (cf. [40]).
Consider first equation (14). The action of Gy on the
normal bundle of Y gives an effective one—-dimensional
complex representation of the group 'GY (unless eg’Y = W,
when it gives an effective two-dimensional real representation)
1

S0 #e get a monomorphism from GY to U(1) = s'. Therefore
ie
if n 1s the order of Gy, the map g » e g, gives an
isomorphism from GY to the cyelic group Gn, and
0
defY = (YoY) Z csc2§
e1n9= 1
el%s 1
n2 - 1
= 221 (vo1) (15)

by a simple trigonometric calculation (e.g. from 5.1(4) and

5.2(3) we deduce :E: cotz(%e) = (n-1)(n-2)/3, and since
0

csc®x = cot®x + 1 we obtain (15)).

The situation (13) at an isolated fixed point is more
complicated. We now have an effective representation of Gx
on wz. We make the assumption that G (or at least each
isotropy subgroup Gx of G) is abelian; then we can find a
single splitting of Tx into a sum of two subspaces invariant
under the actions of all gGGx, so that mappihg g to its
eigenvalues on these two subspaces defines a homomorphism

1 1

from Gx to S8 xS . This map is injective since G acts

effectively, so Gx is isomorphic to its image HCS1X S1.
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Let n and m be the orders of the two finite cyclic groups

1

Hﬂ(S1 x1) and HN (1 xS ). Then G x Gm is a subgroup of

H, and the map S1x S1 > st xg! defined by (x,y)*-(xn,ym)
gives an isomorphism from H/an Gm onto its image H' 1in

1
] xs1. The image H' is a finite subgroup of slx s! whose

intersection with S1x 1 or 1x S1 consists of just the

identity, and such a subgroup must be of the form

{(e2"1k/p, e2ﬂ1kq/p), k mod p}, (16)
where p = |H'| and gq 1is prime to p. Therefore
Gx T g = {(ele’el¢) elne - e2w1k/p’ e1m¢ - e21r1kq/p}

(17)

where k runs over all residues (mod p). Of course

G(x)% {(eie, ei¢)e H such thsat eie 1, ei¢ # 1}- (18)

Therefore
ia x iB
X cG(x) ia N * ig
8 e g’ _1 e g’x_1
Y
- Z 2+l b#1 (19)
k= aPzglmik/p  m_ 27ikq/p a=1 ®-i

a# 1 b#1

We now use the identity

il Z az+1=xzn+1
n o az = 1 (20)

n
8 =y Yz -1
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(proof: both sides are rational functions of 2z, holomorphic
except for a simple pole of residue %f at points z with

yz" = 1, and equal to =1 at =z = 0) to find:

z a+t1 y+1
n a=1 = n y=1 (yz21), (21)
a =y
a # 1
n
P Tl CE )
- e -
a = 1 z z =1
a # 1

x>0

_ . 2 + nxX + ... 2+x)
= lim 1 -
x->o x + E(n-1)x + e e x

= 0. (22)

Therefore (19) becomes

p-1 . .
_ e27ik/p 1 e21ukq/p + 1
def, = o S Tik/p * " 2nikq/p
k=1 e =1 e -1
p=1
= =nm cot 1k cot 153. (23)
P P
k=1
By 5.2(3), this is equivalent to
p=-1
k
defx = -bnmp s(q,p) = -Lnmp :E: ((E))((%?))' (2%)
k=1

We know from 5.1(13) that 6ps{q,p) is an integer (indeed

2p s(q,p) is already an integer unless p is a multiple of 3
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Therefore from (23) and (15) we find that the numbers def
and defy in (12) are not only rational numbers, but in
fact integral multiples of 1/3 (from the definition they
are only & priori real numbers). From (12) we then find that
the sum of Sign(X) and all the numbers defx and defY is
not only a multiple of 1/3 but an integer, and indeed
divisible by the order of the group G. We summarize our
results:

THEOREM 2: Let G,X be as in Theorem 1, G finite abelian.
For.each connected two-dimensional submanifold Y of X 1let
Y be the order of the cyclic group Gy. For each x€X

let nx,my,px, and a > 0 (qx prime to px) be the numbers

n

determining G, as in (17); thus nom.p_ is the order of

the isotropy group Gx. Then

|G| sign(x/6) = sign(X) + Z(ni - Y—3— - Z bn m p s(a ,p ),
Y x X X

(25)
and all of the numbers appearing on the right are integral

multiples of 1/3.

9.3 We give two examples illustrating Theorem 2 of 9.2,

For the first, we take X = P,(€) and

G = G,xG, xG, = {(a,B,y) ec3| a? = gP = y¢ = 1},

(1)
(a,b,¢c mutually coprime integers)

(G = group of ath roots of unity), acting on X by

(a,B,v)0(25:24:2,) = (azy:Bzy:v2,). (2)
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This is a special case of the situation which will be
considered--in arbitrary dimensions and from a somewhat
different point of view--in Section 10.

We dsnote by Y; the surfacs'given by zy = 0 and
by x3 the point with zy = 61j (i=0,1,2); it is clear
that Y,, Yy, Y5, Xp, X; and x, are the only components
of fixed-point sets of elements in G - {1}. For zeY,
and g = (a,B8,Y) €G, the condition that 2z s a fixed-point

of g 1is
(0:821:722) = (0:21:22) j (3)

this can be satisfied for all z2€Y¥, only if B = y, and
then B8 and Yy must both be 1 since (b,c) = 1. Thus
theé isotropy group GYo is isomorphic to G, . Since

clearly YooYy = 1 (Yy is Py(€) canonically embedded in

P,(€)), equation (15) of 9.2 gives

2 _
gety, = L. (4)
b2-1  ¢2-1
Similarly Y, and Y, have defects 3 3 .

Now consider xg5. The point Xqg 1is left fixed by the
whole group G, and since

(a,B,v)o(1:ty:t) = (1:a”lgtyza~lyt,), (5)
the action of (a,8,vy)eG on T, X is given by eigenvalues

X0
a'IB. a'ly. We can thus identify Gxo with

B = {(a~18,a"ly)est xsl| aeG,, 8€G,, yeG_}. (6)

Then Hn(s1 X1) is given by 0'17 = 1, from which we deduce
a =y =1, {,e. H n(sl x1) = Gp Xx1. Similarly HAN (1 xsi)

= 1 ch. Therefore in the notations of 9.2 we have

nxo = b, m = ¢, (7)
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Then (eie,ei¢) = (a 'B,a ly)eH implies
(e'"x0%, ™oty o (4B, a-cy
and therefore pxo, qxo are given by
pxo = a, x4 b £ ¢ (mod a). (8)
Now (24) gives
defxo = -4 T s(qxo,pxo)

= =~ 4 bca s(b'lc,a)

= - 4 abc s(b,c;a) , (9)

where s(b,c;a) is the symbol defined in 5.1(20). The
defects of x,, X, are given by cyclical permutation of

a, b, ¢c. Therefore by Theorem 2 of 9.2,

2_ 2_ 2_,.
abc Sign(X/G) = Sign(X) + a 31 + b 31 + £ 31

(10)
- 4 abe {s(b,c;a) + s(c,a3}b) + s(a,b;c)}.

Now Sign(X) = Sign{(P,(€)) = 1. We claim that Sign(X/G)

is also equal to 1 . Indeed, since a,b,c are coprime,

[}

G = GyXGp*xG, = Z/a x%/b x&c Z/abc & Gape o (11)

and under this identification Gape acts on X by
b
tolzgizy:z,) = (cbczo:caczl:cabzz) (Ca € = 1). (12)

But (12) makes sense for any € Sl, i.e. the action of G
embeds in an Sl-action. Since s! is connected and

Sign(g,X) 1is defined by the action >f g on g¥

({X) and
is therefore invariant under homotopy, we deduce that

Sign(g,X) = Sign(1,X) = Sign(X) for all g in G, so
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Sign(X/G) = ,—é—[- ] sign(g,X) = Sign(X) = 1. {13)
: geG

Substituting this into (10) gives the Rademacher reciprocity
law 5.1(23).
For our second example, we consider the non-singular

affine algebraic surface

W= {(zg.23.z3) e €] 20° + 23% 4 230 = 1), (14)
with a,b,c as before, and let the group G = Gape 2ct by
tolzy,zp.23) = (524,8P2,,0%3) (gabe = 1), (15)

It is fairly clear that this action has no fixed
surfaces Y;. It has bc points of the form

xy = (27,0,00, 2B¢ =1 (16)

with isotropy group G,, an element [ €G, acting on the
tangent space of W at x; with eigenvalues ¢tP, t€. Thus
each of the points (16) has defect ~-4aslhc;a). Similarly
there are ac points of the form (0,2z,,0), each with defect
-4bs(a,c;b), and ab points of the form (0,0,23) with
defect -4cs(a,bj;c). Therefore the sum of the defects over

all fixed-point components of elements of G - {1} (s
2 def, = =~ 4abc{s(b,c;a)+s(a,c;b)+s(a,b;c)}.
x

In particular, the sum of the defects vanishes if (a,b,c)
is a Markoff triple (cf. Theorem, §8).

However, even if this is the case, we cannot use
Theorsm 2 of 9.2 to deduce that Sign(W) = |G| Sign(w/G),
because W is not compact. 1In fact, the signature of W/G

is 0 (the middle rational cohomology group of W/G is in
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fact zero, since W/G can be identified with the orbit
space of €2 under a certain finite group action), whereas

the signature of W is given by the formula

-2 + a2 + b2 4 c2 - a2p2c2
3

Sign W . (17)

Equation (17) can be proved in the spirit of this section

as follows: We let V be the standard hypersurface of

abc
degree abc in P3(¢) (cf. Exercise 1 below) and let the

group Ga xGbx Gc act on vabc by

(u,B.Y)o(zo:zl:zZ:z3) = (zg:azy:Bz5:Y23) (18)

then the quotient V /GaxGbch is a smooth manifold

a,b,c
in which the open subset given by z5 # O can be identified
with W, Now by applying Theorem 2, 9.2, to the action of

€, %Gy, *xG

a and using the known formula for sign(vabc)

c
(Exercise 1), we deduce (17). The reader can look up the
details in BGJ or work them out as an exercise. The -amusing
point about (17) is that W is a very special case of the

Brieskorn variety

1

a a
{(21,....zn)e¢nl 21 +.o.+2nn=1}

whose signature is given by the function t(ai,...,an)
studied in §5 (this fact is due to Brieskorn [7]; we give
a different proof in 10.2). Thus (17) provides a topolo-

gical proof of the identity
t(bc,ac,ab) = %(—2+a2+b2+c2-a2b2c2) (a,b,c coprime)

proved in 5.3 (eq. (23)).

Exercises: 1. Let n be a positive integer and
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v, = {(zg:2y:2,5:23) eP3(¢)l zg+ z?+ z;+ zg}

the standard hypersurface of degree n in P3(C). Evaluate
Sign(v,) in two ways:

i) as Tt(nx), where x € 82(P3(¢);ID is the standard
generator and 1(nx) the "virtual index" discussed in 4.3
(eqs. 4.3(7),(12))

ii) by applying Theorxem 2 of 9.2 to the action of Gn on

v

n 9iven by

tol(zytzy:25:29) = (L2g:29:25:23) (z® = 1);

the quotient V.,/G, can be identified with P,(C).
2, The analogue of Theorem 2, 9.2, for the Euler

characteristic is

6] e(x/6G) = e(X) + ] (ny-1) e(¥) + ) nym.p,

Y X

(in the notation of that theorem), because the equivariant
Euler characteristic e(g,X) corresponding to Sign(g,X)
is simply the Euler number e(X9) of the fixed-point set.
Evaluate both sides of this equation for all the manifolds

and group actions considered in this section.
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+
§ 10. The action of ™ 1 on Pn(c)

The basic situation considered in this section is the

+ 1 1
action of the torus group 1 = glx, . .xs on Pn(c)
defined by
(;o,...,cn)o(zo:...:zn) = (cozo:...:cnzn) (1)

n+1 . . - n+1 _
for (;o,...,cn)eT and (zgi...:z)) e (¢ {o})/c
= Pn(c). We will look especially at the action of the finite

subgroup

1 n+1- (2)

wvhere the bk are positive integers (Gp = group of btE

roots of unity). This action is closely related to the

topology of the Brieskorn manifold

n ] % ®n
V. = {(21,...,zn) e € l Z, * c..t z = 1}, (3)
vhere a, = N/bk (N being any common multiple of the bi's).

In 10.1 - 10.3 we use the techniques of §1 only. We
compute Xy(Pn(C),Hk)G for all integers k (HzHopf bundle
over Pn(c)) in 10.1 and the function Xy(S)G in 10.2, where
S 1is the divisor in Pn(c) given by }Ezf =0, N as above
We then use these results in 10.3 to calculate the L=-class of
the quotient Pn(c)/G, at least for n odd (the result was
first obtained by Bott). In 10,2 we also use the value of
X1(S)G to calculate Sign(Va). In 10.4 we use the signature

theorems to redo some of these calculations. We first find_
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the fixed-point sets and their normal bundles for the elements
of G, and then rederive the results on .t(Pn(C))/G (this

. G .
time for all n) and on Xy(Pn(c),Hk) by applying the

theorem of 3,1 and the holomorphic Lefschetz theorem.

10.1 Let P(n,k) be the complex subspace of w[zo,...,zn]
consisting of homogeneous polynomials of degree k. We

claim that

dim P(n,k) = (n;k), : (1)

Indeed, in the expansion,

1
(1-tzo)...(1-tzn)

= (1+tzo+tzz§

2
+...)...(1+tzn+tzn+...)

(2)

the coefficient of tk is the sum of all monomials

k k

0 n . _ .
Zg e Z, with ko tooot kn = k and therefore, if we set
z, =eee=z =1, gives the number of such monomials. Since these

monomials are clearly a basis for the complex vector space

P(n,k) we find

(1 t;n+1 = :E: ¢ aim P(a,k), (3)
- k=0

from which (1) follows.

n+1

The group G of 10(1) clearly acts on € and therefore
on P(n,k), and the invariant subspace P(n,k)G obviously
k k
has as a basis the set of monomials zoo...znn with

ko +e00t kn =k and k; divisible by b., 80 the argument
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just used vields

. n

. 1
z tk dim P(n,k)G = TT %7 -
k=0 j=0 ' 7t

We now consider

PP

n,k 1,000l

O§i1<...<ip<n 1 1

= 2 a. . dzi /\.../\dz:.L l

P

ai1...ipe P(n’k'P)}. (5)

Since i1s...,ip can be chosen in

from (1) that

. P n+1, ,n+k=p
dim Pn,k = ( D ¢ K-p ),
or
= (n+1) tp
E tk dim PP = __B___:- .
n,k n+1
k=0 (1-t)

Following the usual formalism of X, xP

n+1

= P gsm PP .
py{n,k) Z yUodim P oyos
p=0

then (7) can be rewritten

n+1
:E: 5 Py(n,k) = (Lt .
k=0

More generally,

THEOREM 1: Let

(n+1)

ways, we deduce

(6)

(1)

and Xy we define

(8)

(9)
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n+1
G P i P G
py(n,k) = E y© dim (Pn,k) . (10)
P=
Then n .
5 TT (e
+
:E: t* pl(n,k) = (i—xisr). (11)
k=0 ¥ i=0 \ 1=t 2
Proof : We assign weight r to a power zr or to a

differential d(zr). Thus the elements of Pg k B8re homo=-
]

genous of weight k. Note that

v 2™ gz = N PLAPTELIN (12)

which is consistent with this weighting. A monomial in

Pz X is G-invariant if and only if it can be written as
]
b. b.
i, i
c. . d(z ) ee. d(z ) (13)
11...1
with e, . an invariant monomial in Z.sees,Z of
1, eee 1 0 n
1 P
weight k-b. “eee—b. .
i i
1 P
Therefore the coefficient of yptk in
n bi bi .
1+ ¥yt d(zi)
T] b, b, (1%)
i=0 1 -t Z.

1

is exactly the sum of all invariant monomials (13), and

setting z; and d(zi 1) equal to one gives the number of

such monomials, i.e. dim(P P )G.
n,k

We now relate these calculations to the Xy-characteristic
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xy(Pn(C),Hk)G. The Hopf bundle over Pn(C) is the principal
¢*~bundle
vy : e - (o} =P (0), (15)

and H 1is defined as the associated line bundle

n+1

¥ : (€777 - {0}) x o € —P (C), (16)

c*

which can be thought of geometrically as "blowing up" the

origin of ¢! into Pn(c). The KB pover B® is the

n+1

bundle with total space (C ~ {0}) x c* ¢, wvwhere C€* now

acts on € by A.z = 25z (re C* ze¢C). This is defined for

negative k also (H 1is a line bundle and therefore invertiblé;

we sometimes use 'i to denote H-1 .

Let 8 %be an element of H n s 1.6, & section of
Hk. This 1ifts to & section s' in the diagram

S'
e - [0} == SR Errre NP AT E -
1 1 . (17
P (¢) SESTPTTPYS SRR (¢?*1 - {0}) x g, € = *,
¥

where the vertical maps consist of dividing out by the actions

of C€*. Since s' 1isva section, it is given by & map
n+1

f: C -{0}~+¢, and from the commutativity of (17) we
deduce that, for =ze ¢t . {0} and AreC* s8'(z) and
s'(rz) are in the same orbit of €* But s'(z) = (z,f(z))

and s'{xz) = (rxz,f(xz)) = Ao(z,xkf(xz)) by definition of

the action of C€* on Hk, 50
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- +1
£(az) = A7F £(2) (ze €' -(o},2ec. (18)
But by a well-known theorem of Hartogs, a function of more
than one variable which is holomorphic in & deleted neigh-
bourhood of a point is holomorphic at that point also, so

. ~ n+1
that the function f extends to f: C +C and

F(rz) = 2K £(z) (z ¢ Cn+1, AECx) (19)

if np» 1. This establishes a 1:1 correspondence between
the elements of Ho(Pn(C),Hk) and functions T of n+1
variables which are homogenous of degree =k, Since any
homogenous function is a polynomial, we have proved:
THEOREM 2: Assume that nal1, and write ¥ for H '. Then

0, if k <o0.
0 ok
H (Pn(c),-H ) (20)
P(n,k),if k »0.

By & similar proof (Serre [91]),

o, if k<p

BO(P_(¢), AP(n+1) @ F P) = (21)
P -
Prx»  if k>p.

Moreover, these isomorphisms are G=equivariant, and therefore
induce isomorphisms of the G-invariant parts of the vector
spaces. Here (n+1) is the trivial bundle P,(C) x cn+1.
There is an obvious bundle map from H to (n+1).

Let the quotient bundle be V, with fibre V = c“”/nx,

so that there is an exact sequence

0—eH—+(n+1)—>=V—>0, (22)
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THEOREM 3: If T* 1is the tangent bundle of Pn(c), then

there is an isomorphism

0 ¥ veH .. (23)

Proof: Let G denote the group GL(n+1;C), which acts
transitively on Pn(c). Choose a basepoint e = (1:0:...:0)

in Pn(c), and let H be the isotropy group of e:

a.o a.1...a.n

0
H=G_ = GL(1,n3€) = { B =|: A ’
: _
(2k)

a;e €, &, # 0, A€ GL(n;C)).

Clearly Pn(c) is the homogenous space G/H. It follows that
the bundle T * is given in terms of its fibre T; at e

{on which H acts) as G»XH T:. By mapping en element -

BeE as in (2#) to &g or to A, we get homomorphisms
from H to the groups €* and GL(n;C). The tangent space
at e is identified with an infinitesimally small neighbour-
of e ¢ Pn(c) by sending (z1,...,zn) to the point
(1:€z1:...:€zn) € Pn(c); therefore the action of B on T:

is given by (z1,...,zn)-+(w1,...,wn), vhere

1€ HFP = :€ 2eeelE
B(1 z, Ezn) (1 v, EWn), (25)
a.i1z1 +eoeo + ainz
v, = 2, (26)
ao + Ga1z1+...+€anzn

Letting € »+0, we see that B acts on T: as the matrix
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A/ao. Since B acts on Ve by A and on H by a8y

this implies the assertion (23).

Substituting (23) into (22) gives an exact sequence

0—+H——=(n+1)—==T*%g H — 0, (27)

or, tensoring with ﬁ,

0 —sl—e(n+1) @H | —=Tt—s0, (28)
or, dualizing,
0—T—(n+1) ® H —>1—=0, (29)

where 1 1is the trivial line bundle. We apply to this the

second statement of Theorem 1 of 1.3 to obtain

0 —APP—pB(n+1)@ B)—=AP " tp—s0, (30)
or equivalently
0—sAPP—epP(n+1) @ P —epP 0 oo, (31)

In particular, if p = n+1, the first term vanishes and the
last is the canonical line bundle K of Pn(c) (defined

in 1.3), so we get an isomorphism

K ¥ ERY1) (32)

If we tensor (31) with T = H-k and apply 1.4(11), we obtain

xP(p_(€),7)% + xP7"(p_ (), )% = x(p_ (€), A P(ne1)0F"F)C,

-

(33)
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Now it is known that

z[x] /x2t? (34)

B*(P_(€))
with

x = c1(ﬁ) = —c1(H); (35)

this is the usual convention for x as the Poincaré dual

of [P _,(€)leH, ,(P (€)). It is also known that an element

of H2(Pn(c);z) is positive (ef. 1.3) if and only if it is

a positive integral multiple of x. Therefore c1(ﬁkx K-1)

= (k+n+1)x (by (32) and (35)) is positive if k + n 30,

so the Kodaira vanishing theorem (Theorem 8 of 1.3) tells us

that the hiEher cohomology groups of Pn(C) with coefficients
~k

in the sheaf of sections of H are O 1in this case. We

deduce

G G

X(P_(€), AP(n+1)x FEPYC o 4ip Ho(Pn(C),AP(n-H)x FE-P)

. (36)
if k-p+n >0. 8ince n-p3>1, it suffices to have k >0
(if p>n+1 both sides of (36) are trivially zero). We
substitute (21) into (36) and the result into (33), multiply
P

by ¥y°, sum over p, and use Theorem 1, obtaining

THEOREM k: For k >0,

Tk
(1+y) xy(Pn(c)’H )¢ = coefficient of t¥ in

1

n
b.
nlLﬂri. (37)

i=0 1 - ¢t

G . .
To take care of k< O, we apply 1.2(36) (equivariant
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Serre duality) to get
ok G _ 7E)G.
X, (PL(E),E)T = (-9)%,, (P (€),F) (38)
so that for k<O we deduce from (37) the equation

g ' b
o8+ o ] )

T+y i=0 -t !
n
N L | QR Ry
= res — (39)
1+y t=u t 120 . i ’
-1 : at™h) at
where we have replaced t by t ', using =3 = -2 .
t
THEOREM 5: For any integer k,
- n
g [T e
(143) %, (P, (0),8)% = (res, o+ res, )| ¢* & _I_.BT]
1i=0 1-t
n bi
= -2 [tkﬂH—H—“t.].(uo)
Z t 1
Izt =1 deo 17t

Proof: The equality of the first and second lines follows
from the residue theorem. For negative k the residue at
infinity vanishes and we are left with equation (37), while
similarly for positive k there is no residue at zero and
the equation reduces to (39); notice that we have replaced
kK by -k and H by H in (40). It remains to prove the

equation for k = O, namely (evaluating the residues)
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"
—

(1+3) x (P (€)® (=)™, (k1)

or

1 = 3§ 4aeet (=y)7, (42)

G
X, (Py(e))

Since G acts trivially on H*(Pn(c)) {(because the action of

n+1), it suffices

G embeds in that of the connected group T
to prove (42) without the G. Since Pn(c) is certainly a
Kéhler manifold, we deduce from Theroem 4k of 1.3 that the

numbers hP*Y for Pn(c) satisfy hP*? = h%*P gpng

ZE: nP*% = v ., But from (34) we find that b is one for
piger r r

r even and O for r odd. We deduce that hP'P = 1 for

0O §pgn and that n?*% = 0 for P # d. Equation (42) then

follows,

10,2 In this section we will apply the theorems of 1.3 to

the non-singular divisor

s = {lzgie..iz )e P (€): zg +eeet zV = 0} (1)

The line bundle associated to this divisor is {8 = H .
We assume that N is a multiple of all the bi's; then the
group G of 10(2) acts on S. From 1.3(20)G (a consequence

of the equivariant four-term formula) with W = 1 we obtain

Xy(S)G = )S'(Pn(c))G - (1+Y)Z(-y)i-1 xy(Pn(c)’HiN)G.
i=1
(2)
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Using 10.1(40), we can rewrite this as

iN
)(y(S)G = ‘1—:;1,‘ Z res [ £{t)ds d] Z(-y)l 1Z esz[uﬂﬂ]

|zt =1 i=1 t
(3)

vhere
£(t) = ﬂ -i!—f,.— (%)
i=0 1-t

By the Weierstrass theorem on double series, we can inter-
change the order of summation in (3) if |y| is sufficiently
small, and then perform the inner sum over i (a geometric

series in ytN), obtaining

N .
(1+y)X (S) 122 res, . [: : ;tN f(tt) dt] (5)

z & pole of f

This must be valid for all ¥y, since a polynomial identity

which we have proved to hold for sufficiently small Yo

. b.
The poles of f(t) are given by t ' = 1 (some i), so

since N is a multiple of =all the bi's they all satisfy
tN = 1, In particular, if y # -1 the poles of f are
disjoint from the zeroces of 1 + ytn, so applying the

residue theorem to (5),

N
(1+y)xy(S)G = (res +res + :E: resz)[i:i—— i%}l dt]. (6)

0 ® 1+yzN=0 1+ytN

1 - (-y)? - —L- Z £(z). (1)
1+yz =0
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We can rewrite this using the techniques of 5.3. Let

8, = N/b; (8)
. N
then 1f 1+yz =0,
b. -b. -a.b.
i i_ i7i -b. =-2b. -(a.=-1)b,
1+yz z z = —(z L4z i, 4 i iy (9)
b -b1
1-2 * z -1
and substituting this into (7) gives
n
n n b. (a.-1)b,
X (5)¢ = 1=l=y) , (=1) Z (t Y+...+t * 1y, (10)
¥ *y Woow =0
t +y=0
where we have written t for z-1. Since
: . (—y)k, if r = kN,
¥ :E: t = (11)
. 0, if Nr,
t +y=0
we can rewrite (10) as
n
G k-1 ~
()% = 0 - 0P ), (12)
k=1
where
Noo= #{O<Jo<ao,...,0<gn<an: Jgbgteee*i b = kN}. (13)

We now use a result of Lefschetz. Given an n-dimensional

complex submanifold V of Pk(C) one can find & hyperplane

EJCPk(C) such that VNE 1is a submanifold of V of complex



200

codimension one, and the assertion is that

al(v;z) —ul(vnE;2) (14)

is bijective for i <n-1 and injective for i = n-1. 1Indeed,
V-VNE has the homotopy type of & CW complex of dimension

n (see [1 ] or [ 6 ]), s0 Hi(V,VfﬁE) = H, _;(V-VNE)

2
vanishes for i ¢n, and the result of Lefschetz follows.

If we take V = Pn(c) and k = (n;N) 1 there is an

i

. . . n
embedding of V in Pk(c) given by w. = z5" ...z for
(zO:...:zn) €V, where i = (10,...,1n) ranges over the
k multi-indices with io,...,in »0 and io+...+in = N. Then

the divisor S8 of (1) is precisely VNE, where E 1is the

hyperplane

+ +Q..+ =
Y(§,0,...,0) ¥ ¥(0,5,0,...,0) ¥(0,...,0,8) = O»
(15)
and so from the Lefschetz theorem just quoted,
i A
B (P_(€)) —=H (5) (16)

is an isomorphism for i <n=-1, BSince S 1is a closed manifold
of real dimension 2n-2, we can deduce all but the middle

Betti number of S:

o, if 1<0 or 1i>2n-2,
bi(S) ={0, if 0¢i€2n-2, i#n-1, i odd, (17)
1, if 0¢ig¢2n~-2, i#¢n-1, 1i even.

Since S 1is a Kéhler manifold (indeed algebraic), we deduce

just as for Pn(c) (see the proof of Theorem 5 of 10.1)
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hp,q

that for p+q # n-1 the only non-zero of S are

the numbers nP*P = 1 (0O€¢psn-1, 2p # n-1). Therefore

xP(s) =z (_1)‘1 P4
q

-1- s-1— 2;1_
(-1)P 4 (-1)RTITR pPeRTITR (p ¢ B2, (18)

- (-1)P WP (p = B5L)

ecf. Appendix of[ 36], theorem 22.1.2). Comparing this with

(12) (in which we take b =...=bn=1 and omit the "G"),

0
we obtain the only remaining values of hp,q’ namely

~ 1

1+ N, Os¢pen-1, p # 3(n-1),

NP+1 P = ‘é(n-1)’

with ﬁp+1 given by (13) with b0=...=bn=1, namely

~ . . . .
Nopr =#H10<igeeen,d <W: Jotaeeti = (p+1)N)
N . J1+o.. Jn
=#'{O<J1s"'s3n<N: P < N < p+i1 I (20.)

All of this works in the equivariant case, for the map (16)
is G-equivariant (it is induced by the inclusion) and there-
fore gives an isomorphism of the G-invariant parts of the
cohomology groups for i = n-1, and G acts trivially on
H*(Pn(c)), so that (18) and (19) still hold, with ﬁ; given
by (13). 1If by= 1 we can do the same trick as that leading

to (20):
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ﬁ'pﬂ -#{0<30<N, 0<j,<Byseees0<j <@ 1 Jq + boj +oeetd jo

= (p+1)N}
=#{0<j1<a1,...,0<jn<an: pN<b1j1+...+bnjn<(p+1)N} (21)

= N (22)

p’

with Np defined by 5.4(2). We have proved

THEOREM 1 : Let S(ZPn(C) be the divisor (1). Then

1, if p=q=0,¢..,n,

nP23(e (€))% = nP*%(e_(€)) =3 (23)

0, othervise,

and for p+q €n-1,

. ¥ if p+q = n-1,
nPr(5)¢ " = nPr%(e ()% 4+ ] P+ (2k)
n
0, otherwise,

where Nk is given by (13) and Nk+1 = Nk if bo =1

(N as in 5.4(2)).

k
We now shall apply the results of this section to the

Brieskorn variety 10(3). We assume n is an odd number

2k + 1, Let E ©bYe the hypersurface 2 = 0 in pn(g),

so that G leaves E as well as S invariant, and let T

be a closed equivariant tubuiar neighbourhood of ENS in 8.

We claim

sign(g,T) = 1 (g eG). (25)

Indeed, by the Lefschetz theorem given above, Hn-B(ErB)

¥ Hn-B(S) (we take V =S in (14)), and by (16) this is
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isomorphic to Hn-B(Pn(C)) 2. But T has E NS as deform-
ation retract, and T has real dimension 2n-2, so the
middle cohomology group H' '(T,3T) ¥ H__ (T) ¥ H _,(ENS)

= B*"3(ENs) = Z since ENS has dimemsion 2n-h, There-
fore Sign(g,T) muét be *1 or 0; Since T is the total
épace of the normal bundle Vv of EAS in S, we can

apply Theorem 7 of 2.1 to get

Sign(T)

sign(ENS.e) = Sign(f),

(xsye)[ENS] (x,y e E* 3(ENS)), (26)

£(x,y)

where e 1is the Euler class of v, ﬁe have shown that the
group Hn-s(E Ns) is ®2; its generator is ™' ana
(ek-1-ek_1-e)[EﬂS] = en-z[EﬂS] = N>0, so Sign(f) =+1., A
similar argument in the equivariant case proves (25).

Now we apply Novikov additivity (Theorem 3 of 2.1) to

deduce

Sign(g,S) = Sign(g,S-T) + Sign(9,T) = Sign(g,s-T) + 1,

(27)
so from Theorems 4 and 6 of 2.1 we obtain
Sign(5-T/G) = 'lél_ 2 (sign(g,8) - 1)
ge G
- x1(s)G - 1. (28)

Recall that the signature of a non-compact manifold is defined
by the intersection pairing in homology or the cup product

followed by evaluation on the fundamental class in cochomology
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o
with compact supports, and that with this definition Sign(X)
= Sign(X) for a compact manifold with boundary X, where

°
X is the interior of X. It follows that 8Sign(85-%/G) =

Sign((s-T)/G) = Sign((S~EMNS)/G). But

s-(ENS) = {(zos...:zn)e Pn(C): zoio,zg + Y

"‘ao-"‘zN = 0}
1 n

= {(21,...?zn) c€®: 1+ z? Yooot zﬂ = 0}, (29)

and under this identification G acts by
(¢ z Jo(z z ) = (¢ '¢,z eVt 2 )
0***°*°n 12°°°2%p 0 *1712***2>0 *"n°n

(2 €6, ). (30)
l.

s

If by=1 wve can omit Ty and then the map z, >z,

defines an isomorphism

a8 a
(S-EﬂS)/G ~{(z1,...,zn)e Cn: 1 + 211 +...+znn=0}

~
=

Vs | (31)

where Va is the Brieskorn manifold defined in 10(1).
Combining this with (28) and (7) (with y = 1, by = 1,
and n odd), we deduce

n b.
1
Sign(V ) = - & Z 22 ﬂ L&—  (noaq). (32)

1+zN-0 . 1=z
i=1
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10.3 We recall formuls 10,2(7) for the invariant xy-

characteristic of the divisor §S:

n
b.
N 1
- - + d
x_(5)% = L res, (A=t ] e 4t (1)
y 1+y t=2 1+ tN bi t
2 y i=0 1=t
LH
where the sum is over all 2z with |zf =1 anda 2z * =1
for some i, Write t = e 2* ana y = 1; then (1) becomes
n -2b.x
-2Nx i
G Z 1-e 1+e
X = —— _—
1(5) + resx=§ -2N8x TT -2b.x dx |» (2)
3 tte i=0 1-e 1
with the sum now over all ¢ with Ogig<w and g= -uir/bk

for some k and some re Z Then making the substitution

X +X + g, &and observing that Ng=0 (mod in) since

k
divides N for all k, we find:
: n .
LS . .
X1(S) = res, ¢ tanh Nx ﬂ coth bix dx
€ i=0
> :
= . res__o [tanh N{x+E) = ﬂ coth bi(x+E Yedx
i=0

™M

n
res__q ltanh Nx ]T coth b, (x+g _) . dx]. (3)

i=0

If we replace & by 1E, this becomes

X1(S)G = Tres__o [tanh Nx F(x)x;llf1]’ : _ : (L)
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n

F(x) = Z T - (5)

0<E<n ;{‘:E tanh bk(x+1§)
b, £=0 (mod r)

for some k

. + . N
We have introduced the factor x° 1 in F(x) to make it

holomorphic at x = 0; thus F(x) is a certain power series

in x (in fact in 12, since F(-x) = F(x) as we see by

replacing & by ¥ -g). From Theorems 4 and 6 of 2.1 we find

XY(S)G = Sign(s/G), (6)

and therefore (4) becomes
THEOREM 1: Let S be the divisor 10.2(1) and G the group

10(2). Then

Sign(S/G) = coefficient of x® in (tanh Nx) F(x), (1)

where PF(x) 1is the power series given by (5).

This is only of interest if n is odd, since for even
n both sides are zero (to see this for the right-hand side
meke the substitutions x-+-x and ¢ + 5-f in equations
(4) and (5)).

If a finite group G acts on a manifold X, the quotient
is a rational homology manifold (see 3.1). If YcX 1is a
submanifold which is mapped into itself by G, and if Y is
transverse to all the fixed-point sets Xg, we get a bundle
gV over Y/G whose fibre over Gy is vy/Gy (for yeY,
the isotropy group Gy acts on the fibre vy of the normal
bundle v of Y in X). If, as well as the transversality

assumption, we assume that G acts trivially on v (i.e.
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that Gy acts trivially on vy for all y €Y), then the
bundle gV is & vector bundle and Y/G has a normal bundle
in X/G in the sense of Thom (ef. 1.3). These assumptions

are satisfied for Y =8, X = Pn(c), so we get a bundle

gV ©°n S/G. Consider

™ - " (8)

Let ye H2(S/G) be the first Chern class of the complex

line bundle gV We will take cohomology with rationsal

coefficients, so T~*: H2(S/G) = H2(S) by Theorem 5 of

2.1 (since G acts trivially on H2(S)). The first Chern

class of v is then 7T*(y). But {S} = BV s0
v o= i*(H_N) and therefore
T*y) = N i*x, (9)

where x is the standard generator of Pn(C) given in
10.1(35). Let d denote the degree of %, with [ 8/6]

= % ;*[S]. Then from 3.1(5) we deduce:

Sign(s/G) (;"’L(Pn(c)/G) -Z(Gv)'1)[S/G]

(3° T*LP_(¢)/c). L8BBETY ) [g)
Tty

Al —

(177rZ(p (€)/c) i~(L2nB X)) (q)

Pl
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1 tanh N s
= (7 "(p_(€)/6) - 22E=E) (4, [8])

= %(w*j(?n(c)/e) - tanh Nx)[P_(€) ], (10)

since Nxe H*(Pn(t)) is the Poincar?® dual of i,[S]. Since

H?(Pn(f)) is generated by x, we must have
©«L(P (€)/¢) = T(x) (11)

for some polynomial T (with rational coefficients, since
Thom's definition gives an L-class in rational cohomology).
Since evaluation on the fundamental class in Pn(c)
corresponds to picking out the coefficient of xn, (10)
becomes

Sign(S/G) = coefficient of ® in % T(x) tanh Kx. (12)
Now T(x) 4is an even polynomial since the L-class of a
manifold only has non-zero components in dimensions divisible
by four. The right-hand side of (12) is a polynomial in N,
identically zero if n 1is even (since tanh t is an odd
function). However, since tanh t has an expansion in which
the coefficient of t° for r odd is non-zero (it is
essentially a Bernoulli number), the coefficients of the
various powers of N in this polynomial completely determine
the coefficients of the various even powers of x in T(x).
Therefore if T(x) is an even polynomial in x of degree
at most n and we know the value of the right-hand side of (12

for infinitely many N, the polynomial T(x) is completely
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determined. This is our situation (the infinitely many values
of X being all common multiples of bo,...,bn), and

. 1
therefore comparison of (12) and (7) tells us that 3 T(x)

. s 2 n-1 .
and F(x) have the same coefficients of 1,X ,...,X if

n is odd. But **1 = 0 in H*(Pn(c)) and F(x) 4is even, so
we have an equality T(x) = 4 F(x).

THEOREM 2 (Bott): Let G be the group defined in 10.(2).
Assume n is odd. Let x¢ Hz(Pn(C)) be the standard

generator and
w P (€)>P (€)/G (13)

the projection map. Let (bo,...,bn) be the greatest common

divisor of the b's. Then

x*L(P, (€)/6) =

b x
Z n tanh b Tx+1t) (1)

(bogooo.b ) 0‘E<

Proof: This is simply the equation T(x) = dF(x), except that

we must prove that
d = bye.sd /(bgaeeesd ) (15)

and that the condition "bkE £ 0 (mod n), for some k" can
be omitted in (5). The latter is clear, since if & 1is such

that no b is O (mod 7w), then each factor in the product

x5
in (14) is & power series beginning with a multiple of x, so
the product is a pover series whose first non-zero coefficient

is that of x°*'. since x®*' =0 in H*(Pn(c)). such & do

not contribute to the sum. In particular, only finitely many

£ in (14) give a non-zero contribution, so the infinite sum
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makes sense.

To prove (15), recall that the degree d of =© is egqual
to lG/H|, wvhere H 1is the subgroup of G acting trivially on
Pn(c). From the definition of the action and of Pn(c), we
see that H consists of the elements (;0,...,cn) of G
with gy =...=;_ . Therefore K ¥ {g|g K -4 for k =0,...,n0}
is just & cyelic group of order (bo,...,bn). Since |G|
= bo...bn, equation (15) follows. We :could also have deduced
formulae (15) from the equality T(x) = dF(x). For T(x) has

leading term 1 (since it is on L-class), while from (5) we see

1

boﬂooobn )

that F(0) is Hlo<g<n | b £ =0 (mod ¥) for
all kl.

Theorem 2 is especially interesting when the bi's are
mutually coprime. In that case, for £ # O at most one of the
bkg can be O (mod w), so the product in (1k4) begins with a

n+1 .
X 18

multiple of x®. Since O and the coefficient of

x® in F(x) vanishes (F(x) is an even power series, n 1is odd

we can drop all the terms with ¢ # O. Therefore

n

b, x
wel(p (€)/e) = [ —F— (16)
k=0 tanh bkx

in this case, and we can (exceptionally)Asolve explicitly for
the Pontrjagin class, obtaining

Corolliary: Let G be as in the theorem, n o0d4, and
assume that all of the Li's are prime to one another, Then

the rational Pontrjagin class in the sense of Thom of the

quotient Pn(c)/G is given by

n. .
(2 (0)/6) = T] (142 <P, (17)



10, k., The methods of calculation used up to now in § 0 have
been very explicit, essentially going back to the definitions
of the quantities involved. Thus to calculate Xy(Pn(C),Hk)G
in 10.1 we related it to a situation where Kodaira's
vanishing theorem applied, so that it was only necessary

to calculate the diﬁension of the oth dimensional coho-
mology group (or space of sections) as a certain vector

space df homogeneous polynbmials. However, there are rela-
tively few situations which can be treated this concretely,
and it is therefore worthwhile to show how the results of
10.1-10.3 can be derived by using the theorems of 2.3. This
would be the only feasible approach in most problems, and
even in the situation considered here gives stronger results
than calculating "by hand": we can prove the Theorem 2 of

10.3 for Jt(Pn(C)/G) without the assumption that n is odd.

We will denote Pn(c) by X and let

g8 = (ggseeesrty) (1)

' + . . :
be an element of TO 1, acting on X as in 10(1). Then a

point z€X is in Xx® if

(cozof...:cnzn) (2g:eeezz ), (2)

i.e.

Ok 2y zz, (k= 0,...,n) (3)

for some ¢ eC*. Clearly (3) determines ¢ uniquely
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(since at least one of the zk's is non-zero), and indeed

z must equal one of the Ck's. Therefore

2= ox(®) (L)
C€S1
with
X(g) = {(zg:eeezz e X: CL $L = g = o}, (5)

and the union (4) is a finite disjoint union. Since each
X(z) 1is eclearly a projective space and hence conneéted, (L)
exactly gives the decomposition of X8 into connected
components.,

The normal bundle of X(&) in X will be denoted N(5).
We want to study the eigenvalues of the action of g on
N(:j and the Chern classes of the corresponding subbundles.
Fix ;, &and renumber the zi's so that the & 's -equal

k

to ¢ are Zy,...,_ . Then (5) becomes
= . .: . . - . g
x(z) {(zo.....zs.o.....o)ex} P_(¢). (6)
If we pick coordinates ZosesesZy to represent z ¢ X(3&)
(rather than just an egquivalence class under the € *action),

the fibre N(;)z can be identified with & neighbourhood of

z by

¢? 9(y1,.--,yn_s)+»-(zoz...:zn:y1:...:yn_s) cX, (1)

so the action of g on N(C)z is
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go(y1,...,ys) +>
g(zoz...zs:y1:...:yn_s) = (czoz...:;zs:;s+1y1:...:;hyn_s)

-1 =1
= (zo....zs. L Bgeq¥qieeei 8 LY )

1

Bogq Tqoeesol & ¥ ).

-1

Thaet is, g acts on XN(z) with eigenvalues c-1:i

(i = s+1,...,n), and the corresponding eigenbundles are the
line bundles given by the coordinate z; or ¥._. (s<ign).
Let

a € H2(X(z)) (9)

be the standard generator (defined as in 10.1(35) for
P,(€) eand transferred to X(Z) by the isomorphism (6)).
Then the Chern class of the line bundle on which g acts
by c—1ci (i = g+1,...,n) dis 1 + &a.

We apply this first to the calculation of the ﬁumbers
Xy(x,nk;g). By the holomorphic Lefschetz theorem (theorem T

of 2.3), the contribution of X(z) to Xy(x,ﬂk;g) equals

i .a. 1+ ~-g \s+1 (14 )s .
en(E*| x(2)) (g) - o - e . (1+y)B.

1-e

n 1+ }’CCT1 -a
1 ( —ie— rlxo)], (10)
i=g+1 ! TER e

since the tangent bundle 6(X(z)) has Chern class (1+a)s+1

and the complex manifold X(f) has dimension s.
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But g acts on the bundle HIX(;) as multiplication by

z (for H is the dual of the normal bundle of X in
Pn+1(0), and just as in (8) one finds that g acts on
the normal bundle by ;-1), so it follows from definition

2.3 (28) that

ch(E¥|X(2)) (&) = ¢° cn(E¥|X(g))
= ;k i* en(E®)
= k i¥(e*kx)
k -ka

= 7 e , (11)

vhere 1 is the inclusion of X(z) in X. Here we have
used 2.3(8), 10,1(35), and the obvious equality i*x = &,
Finelly, we see from (6) that evaiuation on the fundamental
class of X(z) corresponds to finding the coefficient of

e®. Therefore (10) becomes

K -x o1 Tr 1oy e
) res —Qa—;ea-as:ﬂ 2

1+y a=0]  s+1 i=0 1 - c;-1 -a
n -1
= el Tes X 4z TT ML S (12)
¥y 2= z 1 - C-1 2 :
i=0 i

vhere we have vwritten z for GLe °, Combining this with

(4), we get
THEOREM 1: Let g be the element (1) and k any integer.

Then



L
X(P(C)H,g) aa‘-Zres zkgzin —_—,

Notice that the sum is well-defined since the only &
giving non-zero residues are those with 7 = Ci for some
i. Theorem 5 of 10.1 is an immediate corollary of (13) if

we average over G, using the identity

-1 b '
1 z My =z . 1 *yz (1%)
bop 1! 1 - 2°

In the same way, from eq. (2) of 3,2 we find that the

contribution from the component X(z), of X8 to &L'(g,X) is

£ (x(e) ] & (x8(2))

8 #0
n -1 2a
s+ 1 T r.e +1
= (—2—) * . (15)
tanh a iJ;[1 c-1c.e2a_1

Now since ae Hzr(Ps(C)) is dual to [Ps_r(C)] in PS(C),
and since [ P;_r(c)] is dual in Pn(c) to xPTS*T ve

deduce from the definition of the Umkehr map that

i!(ar) = xPT8T, (all r). (16)

Therefore i! applied to (15) gives

-1 2x

o 2 g.e* 4+
x (tanh %) n - . (17)
i=g+1 T G.e x-1
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es the contribution of X(z) to #(g,X) and therefore
THEOREM 2: Let g be the element (1) and X the standard

generator of H2(Pnc). Then

n -1 2x
T L.e +1
Lig,p (€)) = 21 n(x—::l—*—éx——) (18)
Tes i=0 L gge -1

‘Only finitely many terms in the sum are non-zero, since
xn+1 = 0,
Coroliary l: Theorem 2 of 10,3 is true for even n as

well as for n odd.

Proof of corollary: By Theorem 1 of 3.2, the left~hand side

of 10.3(14) is equal to the average over gcG of (18).
This average can.be performed easily by using identity (14)
with y=1. Then the substitution c.= e-2iE in (18)
gives the éxpression on the right-hand side of 10.3(14).
The Corollary to Theorem 2 of 10.3, however, namely
the equation #¥p(P,(€)/G) = N(1+b#x?) for the Pontrjagin
class of Pj(€)/G in case the by, are pairwise coprime,

is not in general true for n even. The argument used

to prove that corollary again gives

n
by X
* = n
L (€)/G) = kEO Toe By (mod x™) , (19)

but fpr n evén we no longer know that the coefficient

of x™ in +*L(P (€)/G) vanishes and therefore cannot
deduce that the two sides of (19) are equal. What we do
know is that the signature of P,(€)})/G equals 1 , because
the action of G embeds in an action of the connected

group TP*! and therefore Sign(g,P,(€)) = Sign(P,(€)) = 1
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for all g€&€G. Therefore the equation

n by x

*
T L(Py(€)/G) = kEO tanh byx (20)

holds if and only if the coefficient of x?  in the product
n
on the right equals T by . We thus have:
k=0

Corollary 2: Let n be even and bo,...,bn mutually
coprime positive integers. Then the formula
b 2 .2
™p(PL(€)/G) = T (1 + bfx") (21)
k=0
for the Pontrjagin class of P,(€)/G holds if and only if

the integers bg,...,b, satisfy the Diophantine equation
bo.-.bn bd !‘h(bO""'bn) (22)

considered in §8, where &, 1is the polynomial défined by
eq. 5.3(21). 1In particular, for n=2 equation (21!) holds
if and only if (bg,b;,by) 1is a Markoff triple, and for
n=4 we have the solution

bg = 2, by =7, by = 19, by = 47, by = 59,

As a final remark, we observe that the equation

coefficient of x® in T[(p,(€)/G)

= (deg n) x Sign(P,(€)/G)

bo...bp .
(bop.--,bn, x 1 (23)

for n even in combination with the formula 10.3(14) for
n*L(Pn(c)/G) provides a "“"topological proof" of the general-
ised Rademacher reciprocity which was given without proof

as Theorem 3 of 5.2. (cf. [39], Boﬂ.)
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§ 11. Brieskorn manifolds

Let ao,...,an » 2 be integers, -and

a .a
X =(zee®™ | 2% 4.4 2" =0} (1)
a Q n
. . + .
the (singular) Brieskorn variety in ¢ 1. Write
. _ x N San+1. (2)
a a

Then I, is a smooth manifold of dimension 2n-1, and X,

is homeomorphic to the cone on za. Let N be any common

multiple of the numbers & and

bi'= N/a:.L (i = 0,...,m). (3)
We define an action of g! on xa by
bo bn
to(zo,...,zn) = (¢ zo,...,t zn). (L)

We will study this action and the quotient space

z, = za/s1
in 11.1; in particular, when the integers bi are coprime,
Z, is a complex manifold and we compute the {(integral)
cohomology and the Cherxrnclass of Za' In 11.2 we calculate
the a-invariant af(t, Za) of the s!-action. Finally, in
11.3 we discuss periodiecity phenomena in the topology of the

Brieskorn varieties; this is related to the periocdicity of the

numbers t(a1,...,an) discussed in 5.5.

1.1 In this section we study the manifold Za defined
above. The first observation is that

Za = 5/G, _ (1)

where 8 and G are defined as in § 10 (egs. 10.2(1) and
10(2)); nemely, S 1is the hypersurface of degree N in Pnf@
and G 1is & produet of eyclie groups of order bi’ with the

obvious action on S. To see this, we write S as
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1

5 = ((wyseresw )EC™ -{0} |v§ PO wg = 0}/ (2)

where <+ is the equivalence relation

(vo,...,vn) 4 (two,....,tvn) (t€C). (3)
The action of G on S consists of multiplication of vy
by some bi'th root of unity; hence a point in S/G is
b.
i

deseribed by coordinates 1z, = w and we have

i i
n+1 %o a’n
s/G = {(zo,...,zn)EE ~-{0} Izo teeot oz o o= 0}/51

(%)
where . % is .the equivalence relation
t b

(zo,...,zn)fif(t ozo,...,t nzn) (teec”). . {(5)

This shows thet §/¢ = (X, - {o})/e* = z,.

We thus have two representations of Za; a8 the quotient
of a smooth manifold by a fixed-point free S’—action, and as
the quotient of a smooth manifold by a finite group action.
Both representations show that Za is a rational homolqu
manifold; we can also use (1) to compute the rank of Hr(Za)
and the L-class of Za' Nemely, by using theorem 1 of 10.2

(eq. 10.2 (24)), we find

dimg Hr(Za;Q) dimQ H (s/G;®)

dimQ Hr(S;Q)G

D apeagge

p+g=r
1 r even R r = n-1
= +
0 r odd 0 r # n-1, (6)
where
n .
~ .

R = EZ: Nk A7)

=1

~
(Nk defined in 10.2 (13)). As to the L-class, if

p:S———»S/G=Za (8)
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denotes the projection, then a calculation like that of

10.h'gives
p*L(2,) =i‘f-§|-2 Z L(g,s)
g€G
- -1 e2 +1
= 1 Z E Z tanh Nx H xc $i
——-——.————5- . s e ' . -
(b _3e.eyb T, bn : Nx i=o\ ¢ 1cie2x_1
CO =] Cn =1 ;eS
| 2 b.x
= (v : b ) 3232 = :z: J:L tanh 1b (x+ig)? (9)
0?"**?*"n Ogg<n i

where x €H2(S) is the restriction to S of the standard
generator of H2(Pn(c)). This generalizes Bott's theorem
(Theorem 2 of 10.3) and reproves our previous formula (10.3(12))

for the signature of Za'

Everything we have said up to now applies for arbitrary
exponents as - From now on we make the additional assumption
that the integers bi = N/a.i are pairwise coprime. Then the

action 11(L4) of S1 on I, is free, so Za has the

structure of a smooth manifold. We can now give more precise
information about the topology of Za than in the general case;

this is contained in the following three theorens.

Theorem 1: Let Za = za/S1 be defined as above, with the

integers bi mutually coprime. Then Za has a complex

manifold structure such that the map (8) is a ramified

covering.
Theorem 2: The cohomology of Za is given by
i Z i even Hn—1(za) i = n-1,
B (2,) = ® (10)
0 i odd 0 i # n-1,
1 L]
and H" (Za) is free abelian of rank R (R as in (T7)).

Moreover, if y denotes the integral cohomology class
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y = -y (W) € B () (11)

with W the complex line bundle associated to the principal

]
S -bundle Za———*Za, then yk is a generator of the summand

Z of HZK(Za) if 2k £ n-1 and 1is d times a generator

2k(

of H z ) if 2k 2n, where

d = N/ b ...b (12)

(d is an integer since the b, are by assumption coprime).

Theorem 3: The Chernclass of Za is given by
] n
clz) = (1+my) " TT (1 +by). (13)
k=0
Remark: That Za has a natural complex manifold structure when
the b. are coprime was observed by Brieskorn and van de Ven

1

[ 8 }; in fact, they showed that Za bears a complex
structure (as projective algebraic complex space) for arbitrary
exponents a;, and gave necessary and sufficient conditions on
the a; in order that this structure be non-singular. Later,
Neumann [ 74J showed that these are the only exporents for which
Za can be given the structure of a differentiable manifold.
Altrhough exponents a satisfying these conditions need not have

k

coprime bk's, the manifolds Za obtained are always 1iso-

morphic to other Za for which the bk are coprime; thus
there is no loss of generality in our assumption. As to
Theorens 2 and 3, both results were communicated to us by
Zleumann. liowever, in our proofs of Theorems 1-3 we follow
the exposition of Tetsuro Kawasaki, who was kind enough to
rlace a preprint of his paper "Free S]-actions on Brieskorn

1

varieties" at our disposal.

Proof of Theorer 1: From (1) we see that Za can be considered
25 the hypersurface of degree ¥ 1in the twisted projective

race P (2)/G (quotient of the Bott action); namely, we
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have a diagram

i
S C P_(€)
n
P P (14)
i
Za = S/G C Pn(C)/G .

We denote by Pn(c)' the space
Pn(m)' = Pn(c) - {(1:0:...:0), (0:1:...:0),...,(0:...:0:1)}.
(135)
We assert that, if the bi's are coprime, the space
Pn(¢)'/G is a complex manifold.  To show this, one must show
that, for any point w>EPn(¢)', the quotient of a neighbor-

hood of w by the isotropy.group G, is a disc. Write

w = (wo:..;:ws:O:...:O) (16)
with LATRERIS N # 0, s > 1. Then ¢ = (go,...,gn) is in
G only if Ty = = Lo, (and since s 3» 1 and bo,...,bs

are coprime)} this common value must be 1, i.e.

G = 1x ,,.%x 1 xG X,,.% G, . (17)
w bs+1 bn

We define a coordinate chart ¢ from a neighbourhood of w

n - - ] = . ~
to ¢ by by, = wi/wo (i=1,...,n); then G, acts by

(TsneesTsggyqseresp)ltysneest )

= (18)
(tl’...’tS,cS"'lts*‘l,...,cntn), .
b b

s+1 n
ety 1) (19)

SO

,» t

(u,,...,un) = (t1,...,1;s

s+1

is a coordinate chart for Pn(C)/G at the point g(w).

Since S CPn(C)', the manifold Z, 1is represented by

{14) as a2 subset of the complex manifold Pn(c)'/G. At the

b -

point Dp(w)€ Pn(¢)'/G, the equation defining Z, = S/G is

n terms of the local coordinates (19))

a8 a

N N s+1 n
+.00 c e = .
1+ uj tug o, + +tu o] (20)
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This defines a non-singular algebraic variety in ¢®, and

it follows that Za is a complex submanifold of Pn(c)'/G.

Proof of Theorem 2: Let

V. (u) = {z€c™| JCIPURUP } (21)
(¥ = {z zZ, ceet z u
for u # 0. For u, u' small enough, Va(u) and Va(u') are

hiholomorphically equivalent complex manifolds; thus we
write simply v, for Va(u) with u small. We denote by
Va the intersection of Va' with the unit disc in ¢n+1; then
3Va is diffeomorphic to Ea. But it is known (cf. Milnor [ J)
th;t the 2n-manifold-with-boundary Va is homotopy equi-
valent to a bougquet of n-spheres. Thus Hi(V;) =0 1if
i #0,n and Hi+1(Va, W,y = Hy . (V) =0 if i#n-1,
2n-1. It then follows from the exact sequence of the pair
(V,» 3V,) that

Hi(dva) =0 if i #io,n—1,n,2n—1, (22)

and that Hn—1(ava), Hn(ava) are given by

) —-»Hn_1(ava)'—>Hn(Va, ava)_’Hn(@—»H“(ava)——»o, (23)
i /
B (V)
l.€
H““(a?a) ¥ ker a, H“(aVa) ¥ coker o (2%)

Since Hn(va) is free abelian, the group Hn‘1(aVa) is also
free abelian, say of rank r. Since the intersection matrix
o is known and has been diagonalized (cf. Pham [80 ], Bries-

korn [ 7 }), one can explicitly calculate r and show that

s ]
[}

i » e - - I- 3
-FF{JO, ,JHEZI 0<Jk<ak, N'Jobo+"'+‘]nbn}

~

= N +...+ T =R (25)
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in the notation of (7) and 10.2 (13). However, we will be able to
avoid appealing to the calculation of the matrix of o by using
equation (6).

"o obtain the cohomology of Za’ wve use the Gysin sequence of

the S’—bundle L w7 2
a a

i-2 4 i i
(Za)————bH (Za)—-—vH (Za)—-——b... . (26)

It then follows from (22) that multiplication by y gives an

isomorphism Hl_z(za) z Hl(Za)' for 1<i<n-2 and n+2¢ig 2n-2.

Since Ho(Za) = 2, H2n-2(za) = Z, we deduce that Hl(Za) = 0 for
i o0dd, i # n-1, that H2k(Za) = Z with generator yk for
O¢k <n;1 , and that I?k(za) = 2 with yk equal to d' times a

generator for n;1 <kg n-1, where 4°' is independent of k.

Taking k = n-1, we find
ar = <y, [z] >

= <y, [sra]>

1 -1
= ieg < ¥y, p*[S]>

1
deg p

<p*)™ N [s] > . (27)

Here p 1is the map (8), and p¥y = x:€H2(S) (notation as above).
Since the hypersurface S represents the homology class in
H2n42(Pn(c)) dual to N times the standard generator of Hz(Pn(C)),
we have

<™, [s]> =n. (28)
On the other hand, the group. G acts effectively on S, so

deg p = |G| = bo....bn. (29)

Therefore,

1
1 —————————— =
d 5.5 " d. (30)

The only assertion of Theorem 2 still left to prove is the calculation
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of the middle cohomnology group of Za.' The middle part of the

Gysin sequence is

n-T n=1 n-2 Y n
0—sH (Za)-——-rH (Za)—-»H (Za)————bH (Za)

[ I Il

ker ¢ Z Z

__.._->Hn(za)_—->Hn_1(

n

coker ¢

Z ) ———0
a

if n 1is even; by what we have already proved, the map Z—Z
given by Hn—2__;x_*Hn sends a generator to d times a generator;

therefore

1{“"1(23) z Hn"1(za) > g7, (31)

n ~ n-1 ~
E(E,) ¥ E"(z,) @ 2, T e Z, (32)

in this case. If n 1is odd, the relevant part of the Gysin

sequence is
o—-»s“‘3(za) —¥ ! (za)——rﬁn'1 (z,) — o,

I I

Z ker o

O-—»Hn(Za)———*Hn_1(Za)——LI—*Hn+1(Z )y———0,
N gl

coker o

and we deduce that

rn-1 . o~ n-1 ar Tr
i (43)-2:0}1 (za)-zez (33)

n=1

with the first factor generated by y 2 , and that

B I . n=1
E¥(z ) = H (za)- (3%)

a

Tomparing equations (31) and (33) with our previous calculation

- .n-=1 . .
n® the rank of H" _(Za) for arbitrary exponents a; (equation (6))

we deduce that r = R. This completes the proof of Theorenm 2, as
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well as providing a complete evaluation of the groups El(Za;Z).

Proof of Theorem 3: We will in fact show that the (stable) complex

tangent bundle of Za is given by

-b -b

(o] n

e(za)ow’z"o1=w & ... o w 7, (35)

where 1 denotes the trivial complex line bundle and w®  the kth

power of the line bundle W associated to za——-za. This clearly

implies equation (13).

To prove (35) we use the embedding of Z_, in Pn(c)'/G
described in the proof of Theorem 1., We can describe the quotient
space Pn(C)/G alternatively as the quotient space

2n+1 1

P (e)/e = s7™*ys (36)
where S1 acts on 82n+1C Cn+1 by
bo bn
t o ( uo,...,un) =€ u ...t un). (37)
on+1 iboe ibne
The orbit through a point ug€ S is thus {(e Ugseses® un)l
e1e € S1}, and
a iboe ibne
FEl (e U seesse un)|e=0 = (1bouo,...,1bnun). (38)

Hence the tangent space to the orbit at u 1is spanned by the

vector B = (ib u_,...,ib_ u_ ), and the slice at u of the action
u o o nn
is the orthogonal complement. If
2n+1,, 2n+1
u€ (s ) {(ugreciuyes | at least two uy # O}, (39)

then the action of S at u is free and we obtain

8(P_(€)'/6) = {(u,v) e(s®™*yrxert | v | B }/s', (40)

where 8! acts by

X o (u,v) = (Ao u, 2o v) (r e sl). (L41)

We define a line bundle

2n+1

Ny (k€Z) on Pn(C)'/G by

n, = ((s )t x €)/s! (42)

k
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where sl acts by

» o {ust) = (A o u, 2 Et) (resh). ' . (43)

Then

My

0"'0nb = _((82n+1),x cn+1)/s1 (4k)
o n

where 8! acts by (k1). Thus e(Pn(C)'/G) is a subbundle of

Ny 0...0nb , and its complement is the line bundle
n

{(a, tB)) | ue(s®® ), tecyss’. (45)

This bundle is clearly trivial since it has a non-degenerate cross-
section uh——»(u,Bu) (this is well-defined because B and the
action commute), so
' = e . h
o(p_(€)'/c) o1 n, @ Onbn (k6)

o

We now write 1 for the inclusion of Za in Pn(c)'/G and v

for the normal bundle. We assert that

v ¥ it (47)

This will imply (35), for it 1is clear that

= v* (xea). (48)

n
To prove (4LT), we define an open covering i%o U; of Pn(c)'/G by

u; = {(uo:...:un)E.Pn(c)'; u; #0 /G, (49)

On the intersection of Ui and a tubular neighbourhood of Za
we have the trivialization of v given by
= N N

£, p(uo:...:1:...:un)'--"uo Fooet T4 u (50)

Ti denotes the projection from Pn(W) to Pn(C)/G). Thenon uor\u1,

f
=(a4. . . [} N N N N
p(1.u1 ..... un) 1 + u1 + u2 +...4 un
]
i(u—1'1'u—1u . u‘1 ) f1 ~-N 1+ ~N N -N N
1 fliwy pieeely un -—-——-——'*u1 + u1 u2 +...+u1 un.

That is, we have the coordinate transformation
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f, = u f (51)

(note that this makes sense because the ambiguity of u, lies in
the group of ﬁth roots of unity). On the other hand, for

the bundle we have the trivialization

y

g; ° w((zo,...,1,...,zn),t)h——+ t (52)

on U, &hére LA (82n+1)'

x € —ny is the projection onto the
A1
quotient), and on Uoﬂ u,

b b

n((1, u1.1,,.., u Ty, t) —2 L ¢
i
-b -b b -b_ b -N g
: 1 -N
1r((u1 °.1, u, 2 u, 2,...,u1 M, u, t) — ] b
i.e.
-N
gy = U, &, (53)

Comparing (51) and (53) shows that the line bundles v and

i‘nH are isomorphiec. This completes the proof of Theorem 3.

An immediate corollary of Theorem 3 is that the L-class of

Za (in the case of a free action of S} on Za) is given by

n
by
= tanh Ky k
L(za) Hy J:L tanh bky. (5L4)

This agrees with our previous calculation of L(Za) for arbitrary

ak's (eq. (9)), since, if the bi's are relatively prime, then

(bo,.,.,bn) = 1 and
n
tanh Nx Px* . - o
Nx tanh bk(x+i5)
' k=0

for & # 0 since then at most one of the numbers tanh (ibkg) can

vanish, while xn = 0 (compare the proof of the corollary to

Theorem 2 of 10.3).
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A further consequence of Theorem 3 is that we can calculate
- s s s . k .
the xy—characteristic of 2, with coefficients in W (kE€Z).

Indeed, by the Riemann-Roch Theorem (eq. 2.3 (17)),

X, (2., W) = {7 & (a2} [z] (55)

. . . 2
(we write XA rather than >(y to avoid confusion with yé€H (Za))
But it follows from Theorem 3 that

n Bt
-Ny b, y(14re )
~ 1 1-e k
T (e(z )) = . - TT — (56)
A a T Ny (1me W) AR NS TEAR
Using
"1z] =0 (r#n-1), y'[z] =da=5/p ..., (57)

(ef. (30)), we find

k .. n-1 . -ky~
XA(Za’ W) = d x coefficient of ¥y in e yTy(e(za))
n = y
1 -ky 1-e "7 e TT 1+de  —
= —— res e dy
= —b
1A y=0 14re” ito iy
= LA
= - T%T res__, TT 1+Ax xk—1dx (58)
= bj
1+Ax 1=0 1-x .
. bk ’
Since the bk's are coprime, x = = 1 implies x = 1

b
|| 1
thus all poles of |, lil§7- other than x = 1 are simple poles
1 1

1-x
occurring for x an Nth root of unity, and hence are

cancelled by the factor 1—xN in the numerator of (58). Thus

the function in brackets in (58) has, besides the pole of order

n at x =1, poles only at x = 0, x = » and the roots of
1 + ax" = 0, and we obtain
1
x. (Z W) = == (res__. + res__, + EE: res_)(...)
A k T+X x=0 =1 oMo X )

N TT by
= L. (coefficient of x—k in 1-x 14+ Ax _ )
1+ T . b5
1+Ax i=0 1-x
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N 1 1

4 e e ) 1- 142

Ty (coefficient of xk in X I l FAX
A 1+2Ax 1=0

>

n . bi -
- Z p* .ﬂo HAg ' (59)
l=

The first term is O if k > 0, the second if k < 0. For

k=0, we find

n
I |

1+ypP

This agrees with equation 10.2 (7), since

G
X (2,) = x (5/6) = x (5)C. (61)

11.2 In this seetion we discuss the a-invariant of the Sit-action
on Ea. We first suppose; as in 11.1, that the integers bi are
mutually coprime, so that the action is free. Then, by Theorem

1 of 4.3, .

te2y+1

a(t, £ ) = sign f - <
8 teey—1

L(z,), [2,]1>, - ()
where
n-2 n-2 '
£ : H (Za)x H (Za)———+ Z
is the form

f((!, S) = <aBY9[Za]>' (2)

By Theorem 2 of 11.1, Hn—z(za) is 2 if n is even and O
if n 1is odd, and is generated by ygilg in the former case,
Since then
ﬁ-? n-2 '
f(y2,y2 )= <y, [z]> = a>o, : (3

we have sign f = 1 for n even, i.e.

n .
sign f = .1_+£—_1_L (h

> .

Now, by virtue of (54) and (57) of 11.1,
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j n
2y 2y
te "1 £(z2.),[2.]> = res =o<.te_2+_l .tanh Ny H coth by * dy)
te?Y -1 2t ¥=0 teY-1 et
n
- tz+! ﬂ dz
= resz=1(tz_1 57 ). (5)
z +1 k=0
. . 1
Notice that the function in (5) has residue - 3 at z = and
n+1
L:l%——— at z = 0; thus from (1), (&), (5) we get
alt, Xa) = —(resz=o + res __ + resz?1) (....)
= (rcasz:t_1 + Nz , res _ C) (....)
g==1
n n bk
_ 1+t + 1 E tZ+1 ‘H L 41 (6)
N ¥ £ tg-1 b, .
k=0 g =1 k=0 ¢ -1

It is clear from this expression that the only pole of «a(t, Za)

is t = 1, which is as it should be for a free si-action.

If we do not make the assumption that the bi's are pairwise
coprime, then the sl-action on Za is still fixed-point free, so
-he d&-invariant is still well-defined. Formula (6) is pre-
sumably valid in this more general situation. In any case, the
function on the right-hand side of (6) has poles precisely for those

values of t which have a non-empty fixed-point set on I _,

a
b b -
namely 211 t with t 1 =1t J =1 for some i # j. Furthermore,

(6) is compatible with Theorem 3 of 4.3, as the reader can check
using formula 11.1{% for the L-class of Z,. Finelly, (6) is valia
for t"=1 (provided t acts freely on Za; otherwise both sides
have a pole .t t). To see this, we observe that such t operate
on the manifold ;a defined in the proof of Theorem 2 of 11.1, and
tnat the diffeomorphism

~ -

" v, (1)
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is equivariant with respect to this action. Thus for te(an s!
we can use (7) rather than Ea = a(zéx SlDZ) to compute the
a-invariant., The calculation is given in § 18 of :98 } and agrees

with (6).

11.3 In section 10.2, we considered the Brieskorn variety

_ n+1 2 ®n
va = {(zo,...,zn)fc bz, oot oz = 1} (1)

and showed (eq. 10.2 (32)) that its signature is given by
Sign Va = t(a). (2)

Here t(a) = t(ao,...,an) is the function studied in § 5, namely

' N/a
t(a) = - D 1+2 § 1+2 -
N 1-2 N a8, ’ (3)
z'=-1 k=0 1-2
(where N is any common wmultiple of ao,...,an) or equivalently
t(a) = £04d . peven
odd e . . +1 .
godd(even) {(Jo,---,Jn)éln 0 <j < ap, (4)
i
T o< L ;2 <r+]l for some odd(even) integer r}.
o n

Our proof yielded the trigonometric formula (3) for Sign Va’ whereas
Brieskorn'slcalculation [ 7 ] produces the expression (4); in fact,
Brieskorn expliciﬁly computes the intersection pairing on Hn(Va)

and finds its number of positive (fésp. negative) eigenvalues to be

precisely tOdd (resp. teven).

When we studied the number-theoretical properties of t(a) in § 5,

we proved the following two results:

t(ao,a!,...,an, 2,2) = —t(ao,...,an), (5)

t(ao + M,al,...,ah) - t(ao,...,an) = Md(al’;“’an)’ (6)

where, in formula (6), M denotes any common multiple of
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ByseeeaBy and d(a1,...,an)eQ is independent of a, and of M.

In this section, we will try to see whether these number-
theoretical statements are merely accidental properties of.the
function t(a) or whether they reflect properties of the topo-
logical situation. Thus we will be interested

1) in the relationship between the varieties

v and V ("suspension");
8 seees8 ao,...,amz,z P ?
and
2) in the relationship between V and V
) P ao,a1,...,an a;,a1,...,an
where aé = a (moad ai) for 1£ign ("periodicity").

) To discuss these questions, we will put them into the
framework of the theory of singularities on complex hypersurfaces,
wvhose main results we now briefly review. For a complete

exposition, Milnor's book [72] is extremely highly recommended.

Let f : ¢" —=¢ ve a polynomial in n variables with

£(0) = 0. We will always use the following notations:

D, = D2% = {z€¢® : [zfl < e}, (7)
. a2n=1 n

S =8 =3p =1{z¢q¢" : “z" = E}, (8)

€ € €

K = f—1(0)ﬂS€, . (9)

v o= £ '(§)N int D_, (10)

v o= f—1(6)le€. (11)

Here e > O is a sufficiently small positive real number (the
homotopy type of K is then independent of ¢) and, once ¢ 1is
chosen; § # 0 is a sufficiently small complex number (then V
is a smooth open (2n-2)-manifold whose diffeomorphism type is

independent of §).
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The map
¢: S_-K —s] (12)
defined by
¢(z) = £(z)/]£(=)] | (13)

is the projection of a smooth fibre bundle called the Milnor

- 190 . :
fivering; each fidbre F_, = 4 1(el ) 1is a parallelizable

8
(2n-2)-manifold diffeomorphiec to V. If we choose some
continuous one-parameter family of maps ag F6———»Fe with

F ——F ,

. . . A mar = &
ao homotopic to the i1dentity, then the map a om o o

called a characteristic map for £, has a well-defined homotopy

type. Thus the induced map

ay : Hy(F ; 2)—Hy(F _3;Z), (1h)

called the monodromy map of f, is well-defined. (We sometimes

use the homotopy -equivalences Fo‘v VA~V to consider a, as
an sutomorphism of E,V or H,V). The space X 1is (n-3)-

connected.
If 0 1is an isolated eritical point of f, we can say
ruch more. In tris case ¥ 1is a2 srmooth {2rn-3)-manifold and G
is an (n-2)-connected (2n-2)-manifold with boundary diffeomorphic

to K, and has the homotopy type of a bouquet of (n-1)-spheres.

Then Hy(V) is non-trivial only in dimension =n-1, and we define

A(t) = det(I - tay : B _ (V;@—F _ (via)).  (15)

The polynomial A(t)é€ Q[t], called the Alexander polynomial

of f, 1is an important invariant. For instance,
A(1) # OSK is a rational homology sphere
' (16)

¢==’f-1(0) is a rational homology manifold

and, if n # 3,
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A(1) = +1 &K 1is a topological sphere
(17)

e=r"'(0) is a topolegical manifold.
In the latter case, the differentiable structure (exotic or stan-~

dard) on K is determined by the Arf invariant or signature of

V, depending whether n 1is even or odd; 1if n 1is even,

then K is the standard sphere (and hence f—1(0) can be given
the structure of a smooth manifold) iff A(-1) = 1 (mod 8),
vhile if n is odd, X 1is the standard sphere iff Sign V

is divisible by a certein integer depending on n (namely 8

).

times the order of the finite cyelic group bPZn—Z

Having given this background material, we can now discuss
for general hypersurface singularities the questions posed at the

beginning of this section for the Brieskorn polynomials.

Suspension: The question is what relationship exists between
the varieties V and X for the polynomial f(z1,...,zn) and
the corresponding varieties defined by the polynomial f(z1,...,zn)

2, L2

+ z z .
n+1 n+2

More generally, we consider two polynomials

£' : ¢'—c, g ¢t—e (18)
and define

£ : e = ¢® x ¢B—g (19)
by

flz,w) = £'(z) + £"(w) (zec®, wlec™). (20)

Then we can ask for the relationship between the fibres of the
#ilnor fiberings of f', f" and f. The answer is provided by

coin Theorem (Sebastia-i-Thom [ 88 ] for isolated singularities;

-

Sra 76] for weighted homogeneous polynomials; Sakamoto [ 87 ]
in general case). Let f(z,w) = f'(z) + £"(w) as above be a

sun of polynomials in disjoint sets of variables. Let F', F", F



236

be the(homotopy types of) the fibres of the Milnor fiverings

for f£', f" and f, and a'sa”,a the corresponding character-
istic maps. Then F 1is homofopy—equivalent to the join of F!

and P" and the homotopy equivalence r : F'%F" —> F can be chosen

so as to make the diagram

F' F" r > F
a'*a" la
F'% F" r > F

commute.
Corollary: If f' and f" Dboth have isolated singularities at
the origin (in which case f also does), then the Alexander poly-

nomials A', A" and A of f', f", f are related by

A(-%) = A'(—t)EEﬂA“(—t), (21)

where the operation Egﬁ on polynomials is the one described in

Seotion 2.2.

Example 1: The map
a

f : ¢ —¢C, £f(z) = 27, (22

wvhere a 3 2 1is an integer, clearly has a variety V consisting

of a points, i.e. of the homotopy type of the group G of

a
ath roots of unity, and Alexander polynomial
. .
1-t
alt) = = = I l (1 - wt). (23)
a
w =1

w# 1

Thus by iterating the theorem, we deduce that the variety V = Va

of the Brieskorn polynomial

f(z1,...,zn) =z oot oz (ai 3 2) (24 )

has the homotopy type of Ga * ... % Ga » &and that the Alexander
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polynomial is given by

Alt) = ‘ | (1 - w1...wnt) (25)
a
n—

%1
w, =1 w =1
1 n
w1#1 mn¢1
Example 2: Taking &a = 2 in (23), we see that the map

" (w) = w2 has Alexander polynomial A"(t) = 1+t. Here

V" = f"—1(6)n D = {w : we = 8§} consists of two points, so

F" ~ V" ~ 59 and Fa~ F' ¥ F" ~5%% F' = g$F'. Thus the variety
. = '

V for a polynomial of the form f(z,,...,zn+1) f (z1,...,zn) +

Zn31 is homotopy equivalent to the suspension of the corres-

ponding variety <for the polynomial f', and the Alexander

polynomials of f and f' are related by A(t) = aA'(-t). If

. . . 2 . .
we iterate this, taking f"(w1,w2) = Wf + vy, we find: 1f
2 2
= '
f(z1,...,zn,zn+1, zn+2) f (z1,...,zn) * 2o, Z b0 (26)
then the varieties V = f—1(6) N D and V' = f'—1(6) NnD are
€ €
related by
- 2 _
v~ ¥ (27)
{double suspension), and the Alexander polynomials of f' and
f are equal:
Alt) = A" (t). (28)

Tnfortunately, in studying the relationship between the manifolds
with—bounaary A and V (of dimension 2n-2 and 2n+2,

respectively), one has to use homotopy egquivalences between (non-
cilosed!) manifolds of different dimensions. Thus all information

abcut intersection numbers is lost, and we cannot show that

Sign v o= -Sign 6', (29)
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although presumably, in view of the special case (5), this equa-
tion is true generally for isolated hypersurface singularities.

Periodicity: We now turn to periodicity phenomena. Let
f : CP—C De any polynomial with an isolated éritical point at
the origin. For g a positive integer, define fg : cn+’——+c
by

'fg(zo,z1,...,zn) = zg + f(z1,...,zn). (30)

Ve distinguish the varieties and invariants by a subseript g;
thus: Vg, Kg,Ag . Ve want to investigate any properties of the
topology of YS or Kg wvhich show a periodicity with respect to
g. '

What is a natural period? 1In the case of the Brieskorn poly-

‘nomial (24), the period is the least common multiple of the a5,
and this is precisely the order of the monodromy map a, of the
polynomial. In general, the monodromy map o, for a poiynomial
with isolated singularity at O need not be periodic, but it will
have the property that for some positive integer N, u§ -I |is

nilpotent « The smallest such N 1is called the monodromy period

of f. An equivalent definition is that, N is the least common
multiple of the orders of the eigenvalues of o, (=roots of

A(t)), which are all roots of unity.

(Note: In many cases, the monodromy map actually is periodic.

Thus, if f 1is a weighted homogeneous polynomial, i.e. if there

exist positive integers Qyseeesqy and N such that q1i1+...+
i i

qnin = N for every monomial z11 .o znn in f, then for
ag ¢ F° +Fe we can take the map
iq,6/N iq 8/xN
1
(z1,...,zn) —(e Ziseees € n z )3

. qT qn
then a: F_ —*Fo is (z1,...,zn) —(z Zyseers zn) with



239

= e2n1/N, and clearly GN = 1. More generally, if

f = fo + fI with fo weighted homogeneous as above and
also having an isolated singularity at the origin and fI
of smaller order at the origin,i.e. f1 a sum of monomials
: . ;
1 n . . .
ez ... 2 with a1, +...4 a i < N, then Oka [ 77]
has shown that f and fo have homotopy equivalent fibres

and the same monodromy maps, so that ug = id for f also, )

We can now state a theorem about singularities which generalizes

the number-theoretical assertion (6).

Theorem (W. Neumann [ 75 ]).' Let £ : € —=¢, £(0) = O
be a polynomial with an isolated critical point at the

origin and N its monodromy period. For any positive

2n+2

integer g, define fg by (30) and let Vg = f;l(é)f]De

be the corresponding 2n-manifold with boundary. Then the
function

t(g) = Sign Eg (31)

is the sum of a linear and a periodic function, i.e.

t(g) = 2 g+ 7' (@) | (32)

with A€2Z independent of g and t'(g) a function of g

(mod XN).

. This theorem follows from a general theorem (also due
to Neumann) on the non-multiplicativity of the signature for:

finite coverings of manifolds with boundary.

Weumann's theorem tells us that the number Sign (Vg) shows
a periodicity phenomenon as a function of g. We can ask
whether there is any periodicity in the homology, homotopy

type, or diffeomorphism type of the "neighbourhood boundary"

2n+1

. (33)

K = £.100)s
g g
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of fg. We first have

Theorem: Let F = F be -the fibre of the Milnor fibering

of £, and Kg as in (33) the neighbourhood boundary for

fg = f(zl,...,zn) + zg . Then there is an exact sequence

g-1 i

.
Ttagt.--* 04 3 H  (F)——al__ (K )—0 , (34)
n-1 n~1" g

(F)

n-1

where a,: H (F)—H (F) 1is the monodromy map.
* n-1 n-

1
Corollary : If K is a homotopy sphere, then the homology
group Hn-l(Kg) only depends on g (mod N), where N |is
the monodromy period of f£.

This theorem was stated by Durfee for f equal to the

Brieskorn polynomial (24) ([26}, Theorem 11,6). The proof

uses the fact that K:n-l - K2n_3

is (in an obvious way) a

g-fold covering of . Sin-l - K2n-3 (i.e. Kg' is a g-fold
branched covering of _Szn-l with branching locus K). We

have a map ¢ : Kg - K-——-»SI given by

wgzo,zl,...,zn) =z, /{zog, (35)

and a commutative diagram

K -K U > sl
g _
(2 5e00sz )% z —28 (36)
(zl,...,zn)
s -K 4 . 5!

€

whose vertical maps are g-fold coverings and whose hori-
zontal maps are fibre bundles with fibre F. The theorem

is now proved by the methods of branched cyclic covers.

To prove the corollary, we first write down the Wang

sequence of ¢,
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‘-
- -K) —0
0—H_(S_ K}—»Hn_lF-—-ﬁﬁnn F—B (S ~K)—

-1
ne n

Hn(K) Hn_z(K)

(37

(we have used Alexander and Poincaré duality to get

Hi(SE—K) = Hzn_z_i(K) = Hi—I(K))' Thus K is a homology
sphere iff 1 - ay, is invertible (i.e. iff 1 is not an
eigenvalue of a,, i.e. iff AC1) # 03 cf. (16)).. Then
a*N = 1 implies '

I +a, +...4 u*N-l = 0, ’ (38)

from which it follows that the map
a(g) = 1 + oy +o.ut o8 (39)
* *
only depends on g (mod N) and that o(N-g) = -a(g).

Since by the theorem

Hn-l(Kg) € coker a(g), (40)

this implies the corollary.

Note that the theorem itself follows from the Wang sequence
of v in case K 1is a homotopy sphere. For, since the
characteristic map of the fibre bundle ¢ 1is clearly

ag, the Wang sequence for ¢ 1is

g
l_“* -

Hn_l(F)———————* n_I(F)——-»Hn_l(Kg K)—0, _ (41)
and if K is a homotopy sphere then Hn—l(Kg_K) & Hn-l(Kg)
and l-a* is invertible, so

Hn—l(K ) ¥ Coker (I—af) & Coker a(g). (42)

It follows from another theorem of Durfee (fzs ], Theorem
8.1) that (for n even, n » 4) the diffeomorphism type

f K ly d d i v
o g only depends on Hn—l(Kg)’ Sign Vg’ and the
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n-1

quadratic form on H (Kg). If K is a homotopy sphere,

then we have shown that the first two show a periodic
in g. If one could show that the quadratic form on

Hn_l(Kg) also depends only on g (mod N), we would

obtain from Durfee's theorem the result that
Rgewm & Kg #2114

(K is diffeomorphic to the connected sum of Kg

g+N

copies of the Milnor generator Ig of bPZn)’ where

is the number appearing in (32). In particular, the

ity
(43)
and )
X E Z

homeomorphism type of Kg would only depend on g (mod N),

strengthening the above corollary, and the diffeomorp
type of Kg would only depend on g (mod NKn), wher

Kn is the order of the finite cyclicKervaire-Milnor

group bP (K4 = 28, K, = 992, K, = 8128,... ; cf 54

2n 6 8

hism

e

-

or [44] ). In the case of Brieskorn varieties one can

calculate the quadratic form and obtain

Theorem (Durfee ps],ll.?). Let n 3 4 be even and
815000523 3 2 be such that the Brieskorn manifold

_ 2n-1 2 %
T = (z€S8 1z teo0t 2 = 0}
al,...,ah 1 n

is a homotopy sphere. Suppose that g > 0 and

Hn-l(zg,al,--.,an) has no summands of order 2 or 4,

N be any common multiple of al,...,an. Then

. —~ c
zg+N,al,...,an ~ Zg,al,...,an # :8’
where Ig is the Milnor generator of bP2n and
N
c = 3 d(al,...,an)

(ih the notation of eq. (6)) is an integer independen

Let

t of

(44)

(45)
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§ 12 The Browder~Livesay invariant of lens spaces

If we represent S2n—1 as the unit sphere in ¢%, we can define

an action of Gp on it by
q, q

80 (2, pee0esz ) = (8 2yseeeent C2)) (T €0, (1)

vhere Qys---+5q ~BTE integers. If each of the q; is prime
to p, this action is free, so the quotient
2n-1
Lp3gys---say)) = 870 /6, (2
is a manifold with fundamental group 2/p2, called a (2n-1)

dimensional lens space.

If the integers Qqs-++2q, BTe odd as well as prime‘to P,
we can define L(2p;q1,...,qn) in the same way, and the inclu-

1 of G in G defines a ma
sion P 2p P

L(psaqse-vsa ) T L(2p3a, 50 005a ). ’ (3)
This is a double covering, so its covering translation

T : [(P3a,s-00q,) —L(p3ay5.0005a ) (4)
is a free involution on the lens space L(p;q1,....,qn). We
wish to compute its Browder~Livesay invariant (cf. 4.2). 1In
12.1 we compute this invariant using the G—sigﬁature theorem
and discuss its_relation to the quadratic reciprocity law in

case. n = 2, (following [3@]).

In 12.2, we show how to obtain a characteristic submanifold
for T and compute the dimension of its middle cohomology group;
unfortunately we cannot evaluate the quadratic form of the
Browder-Livésay definition (eq. 4.2 (10)), and so cannot

complete this second calculation of u(T,L(p;ql,...,qn)).

12.1 The lens space L(p;q1,...,qn) will be denoted X and

the projection from s2n—1 will be denoted w. The involution
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T on X is induced by thé action of u on s2271  here
u 1is any element of G2p - gp, 1.e. where
N I (1)
We thus get a commutative diagram
2n-1 . L2n=1
s = S
w lﬂ'
X I y X (2)
If p is odd, we can take u = -1, so that in this case (2)

shows that T 1ifts to an involution (the antipodal map) of
2n~1

S , and we get a diagram
2n-1 N
sen” Pen_1(R)
X » X/T = L(2p;q1,---.qn)-, (3)

We now calculate a(T,X) by relating it to the numbers

2n-1)

a(z,S (e G and calculating the latter directly from

2p)
the Atiyah-Singer definition of the a-invariant.

The action 12(1) is defined on all of @

and is free

except for an isolated fixed-point at the origin, since we

are assuming that all the q; are prime to p. Since the complex

eigenvalues on the tangent space at z = 0 (i.e. on the normal
a4 9

bundle of the fixed-point set) are ¢ ,...,7 ~, we find from

9.2(1) that

2n r Yo,
L(z, ") = T[] fg—/— . (&)
i=1 g7l -1
On the other hand, the middle cohomology group of D2n
vanishes, so
. 2n
Sign(t, D )} = 0. (5)

It follows from the definition of the oa-invariant that
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1
2n-1 [T  __+ 1 :
alz, 5770 = - LY RLER (6)

We now apply Theorem 4 of 4.1, with H = GP’ G = Gzp, £ the

non-trivial coset in G/H = Z2/2Z, and Y = S2n-1’ obtaining
a(T,X) = alg, Y/H)
= -'—;Ir Zu(g,Y)
g€L
1 2n-
- 1D e s
)
g
93
n
= _Il) Z Tr .qL:_i . (7)
o S IR L e S

If n 1is odd then both sides are zero (for the left-hand side
this holds bec&use the oa-invariant of an involution is always
zero except in dimensions Lk-1; for the right-hand side one
makes the substitution C——’C-1)- If n 1is even, we can write

(7) in trigonometric notation as

n
2
2 2p-1 rkq rkq
a(T,X) = 1—1%7———- EE} cot 1 ...cot 2 (n even) (8)
k=1 '

2p 2p
k odd
But now we can use the formulas of &5 to rewrite this in
several other forms. If we combine (8) with 5.3(5) we obtain

immediately the. following formula for a(T,X) :

f_ - ,odd _ .even
a(T,X) = tp(q‘l"“’qn) = tp (q1""t_qn) tp (q.t‘.t"'tqn)’
(9
where
odd a.k,+...+q k
even 11
tp (q.]""’q.n) =#{0< k1,'_")kn< Pl P L1
is an Ségn integer}. (10
If a, = 1 (which can always be areranged by replacing each

q; by q;r, where q,r = 1 (mod p)) we can uée 5.3(18) to

write this as
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a(T5L(p315a55c025a )) = t(pseosP3a,,0005a ) (11)

290" n%n

= £ (-1)1ii{o<k2,...,kn<p:i< <i+1}.(12)

For n even, we can use the theorem of 5.4 to rewrite (8) with

tangents: 1
—1)2n—1 ﬂkq1 rkq
a(T,x) = L———;——— tan—; -+ .tan—; it (n even). (13)
k(mod 2p) P P

k+p odd
For the classical (3~dimensional) lens space
L(p,a) = Llp;l1,q), (1h)

ve have from (11) and 6.2(9) the formulas

a(T,L(p,q)) = t(p;q)
= I (-1 #{O<k<pl1<—q‘<l+1}
1
= -l s(—&) (15)

vhere for q prime to 2p,

-1
- gx
5(595) = S: ((Z5))- (16)

Finally, if p as well as gq 1s odd, we get from 6.2(8) the
relation

a(T,L{p,a)) =p - 1 - th b (p,q odd, coprime) (17)

>

relating the Browder-Livesay invariant of an involution on the
classical lens space L(p,q) to the numbers Hq . of Gauss'
9

lemma.

The law of guadratic reciprocity in terms of these numbers

is the statement

i + N z - Rél . E%l (mod 2) (13

(in fact Corollary 2 to the theorem of 6.2 tells us that this

congruence even holds modulo L), It would be pleasing to prove

(18) directly from (17), i.e. to prove that



247

pa(T,L(q,p)) + ao(T,L(p,q)) = 1 - pa  (mod 8). (19)

We would thus like to find a four-manifold whose boundary consists
of disjoint copies of L(p,q) and L{q,p), and having a free
involution restricting to the involution T on the lens spaces.

Such a manifold can be constructed as follows.

Let VN be the hypersurface of degree N in P3(C):

- o r 3. N N N N _
Vy = ((zgiz 32,02 ) €CP [z + 2z, + 2, + z5 = 0} (20)

Then VN is a smooth 4-manifold whose signature equals N(4-N%V3
(Exercise 1, 9.3). We set N = 2pq and let qu act on

v b
2pq Y
tolz iz, iz, :2,) = (z,:02% Pz _:za2 'CPX+qy2 ) (21)
0'%qiZi%3 2g%% 138258 z4)
wvhere 'x and Yy satisfy
Xp + yq = 1. (22)

We further assume that the numbers p and gq, as well as
being odd and coprime, satisfy
(p-15a) = 1, (gq-1,p) =1 ' (23)
(this is the case, for instance, if 2<p<gq are primes,
@ # 1 (mod p)). Then it is easy to check that the action (21)

has 2pq points

(1: x: 0:0), A2Pe - 4 ' (24)
with isotropy group Gn’ and 2pq points

(0 : 0 : 1 :2a), N (25)

with isotropy group Gq, and is free otherwise. Let V' be

the manifold with boundary obtained by deleting a small equivari-
ant disc centred around each of.the points (24){25). Then V' has
bpq disjoint éoPies of S3 as boundary, and (%q' acts freely

on V', The manifold

Wt = Vv'/Gpq (26)
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has boundar&

aW' = 2p * L(p,q) + 2q L(q,ps- (27)

It is clear that the involution

3) (28)

2,0 -z, 0 ~Z

(20:21:2 :z3)-—-——->(z0 ] ot

2
is compatible with the action (21), and so induces an involution

T of W'. Since each of the points (2&)J253 is fixed by

(28), the boundary components of W' are mapped into them-

selves by T. Indeed it is. clear that the only fixed points

of (28) on V2Pq are the points (2h4), (25), so that T 1is a free
involution on W', and one also sees easily that the restric-

tion of T to the l2ns spaces bounding W' 1i: precisely the

involution studied in this section. Therefore

2pa(T,L(P,q)) + 2qa(T,L(q,p))

Sign (T,W') - L{T,%w')

Sign (T,W') (29)

the latter because T acts freely on W'. We can reduce the
calculation of the equivariant signature Sign(T,W') to a

calculation of ordinary signatures by using the relation
Sign (T,W') = 2 Sign (W'/T) - Sign(W'). (30)

Moreover, if W denotes the variety V/ then W 1is obtained

Gpq
from W' ©be pasting on the cones on the lens spaces making W'.
These cones are contractible and so have zero signature, so by

Novikov additivity we have Sign W = Sign W'. Therefore
2pa(T,L(p,q)) + 2qa(T,L(q,p)) = 2 Sign W/T - Sign V. (31)

The problem of calculating the left hand side (mod 16) is thus
reduced to the problem of computing the signatures of the closed
rational homology manifolds W and W/T modulo sixteen and

eight, respectively. The calculation of these signatures
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in X probably requires the G-signature theorem. Hovever,
there exist theorems giving information on the signgtures of
L-manifolds modulo 8 or 16 (theorems of Kervaire-Milnor and of
Rochlin; see e.g.[45 ]) and by applying these theorems to W
and W/T, it should be possible to deduce the quadratic reci-
proecity law from the formula for the a-invariant of T. We

leave this as an open problem for the reader.

12.2 We now attempt to calculate a(T,X) (X = t(p;q1,...,qn)
as before) directly from the Browder-Livesay definitipn. Recall

that this requires the calculation of the signature of the form

Q(x,y) x © Ty y (x,y €K) (1)
with

K

Ker (Hn_1w——>Hn_1A), (2)

W being a characteristic manifold for the involution T —

i.e.

Aen"‘C x’ AU TA = x’ AnTA= aA - w2n-2 (3)

In the case n =2, X = L(p,a), & charac{eristic manifold
was found by Neumann [ 74 ], using the description of 3-
dimensional lens spaces as the union of two solid tori D2x st
glued together by a diffeomorphism of their boundaries. These
3-dimensional.1ens spaces fit into the general cadre of 3-mani-
folds admitting a fixed-point-free Si-action; for the
invoiution on such manifolds obtained from -1 €S1, Neumann
computed the a-invariant in terms of the Seifert~Raymond

classification of the manifold.
_ We will construct a characteristic manifold in a different
way.
Define a function £ : €¢° —R by

f(z) = Re(zf +..04 zg). (%)
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Let

A' = (2 €827 L £(2) » 0}, (5)

W' o= {z2€8°%1 ; £(z) = 0}. (6)

Then A' is a manifold with boundary W' (one must check that

W' is a submanifold of S°°7', i.e. that the gradients of f
n

and of % [zjl2 are linearly independent on W'). Since
J=1

the free action of Gp maps these manifold into themselves
A= A'/G 7)
16, (
is a submanifold of X with boundary
We=Ww'/G. - (8
p )

Clearly the action of u (12.1(2)) is a diffeomorphism from A'

to S2n-1

- A', so the involution T takes A to X-A, and
therefore W 1is a characteristic submanifold for T. To
apply the Browder-Livesay definition of o (T,X), we first

need to know

. K = ker(H _, (W) ——H _,(a)). (9)

Here we can take homology with real coefficients (since wve
will want to compute the signature of a certain form on K),
we can apply Theorem 5 of 2.1 to identify K with the GP—
invariant part of

K' = ker(# _,(W')——H _,(a")). (10)

To compute K', we use a fibration theorem for real sin-
gularities of Milnor (Lemma 11.3 of [72]; in Milnor's
notation we have k=1 and he assumes Xk > 1, but the proof
is the same). Thus we choose € > 0 and define

Y = £ ()N D>, ' (11)
Let U be the region

U = {z€D3™ : £(z) > o}. (12)

We define a vector field v(z) on U with real coordinates

SO
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(u1,v1,....,u ,vn), where

n

us(z) + iv,(a) = z‘J.".‘ (z€U). (13)

Then, writing zj = xj + iyj, we compute

, n
2<v(z),z2> = 2 E: (u.x.+v.y.)

<v(z),grad"z"2>

n n
= 2 521 Re((uj-ivj)(xj+iyj)) = 25; Re(z§—1zj) = 2f(z)> 0,
(1)

and similarly,

. n
- af af_
<v(z),grad f(z)>= ;Z% (uj ax; * V5 oay

n
1 Z 3 3 P . =D
= - L, == v, = +
2 j=1(uJ ax. ' ayj)(za %5
n
-1 zz:[u (pz?—1+pzp y+v.(ipz?® -1p2§_ )]
J=1
n
= p-1:p-1
= zt Z% > 0. 1
Z Pz I3 (15)
j=1 '

It follows that both Azl and f(z) are monotone increasing
as we move outwards along any trajectory of v. Therefore
there is a well-defined map from U to A' sending a point
p to the intersection with s2n-1 of the trajectory of v
passing through p, and this map takes Y diffeomorphically

onto

Al = {z€ 52871 | £(z) » €}. (16)

Clearly 23Y = 3A! = W' if e is small enough, and gclearly
K' is isomorphic to the kernel of the homolegy map induced

by aAé C Aé s S0 with the diffeomorphism we get

K' & ker(H _,(3Y)— H _, (Y)). (17)
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This isomorphism is G-equivariant since all of the diffeo-
morphisms were.

We now need to know the homology of Y. Essentially,
Y is a Brieskorn variety V, with a = (p,...,p), the only
difference being-that we fix only the real part of tsz .
In fact V, 1is a deformation retract of Y : the calculation
of the homology of V, (Pham [QO}) proceeds by first showing
that

v, = f{zev,| zg is real and >0 for all 3} (18)

is a deformation retract of V,, and the same proof in our
case shows it to be a deformation retract of Y as well.

But the homology of V, 1is given by

-1 (19)
Ha-1(Va) & z[6]/<leuy+.. 470 =0, 3=1,..0,0>
(cf. [44], §12, for an exposition of the homology of
Brieskorn varieties), where G = Gp X... XGp (n copies),
zﬁﬂ is the group ring, and vy (3=1,...,n) are the

generators of the various copies of G From now on we work

p*
with real homology, since this suffices for st;dying the
signature of anquadratic form. Clearly Ho 1 (Y;R) is l[G]
divided by the same relations as in (19).

Since Y is a (2n-1)-dimensional manifold with

boundary, we now deduce that the only non-trivial part of

the homology sequence of (Y,3Y) 1is
0 — H,(Y,3Y) — Hyo_q (3Y) —— H,_y (¥Y)— 0O, (20
and from this and (17) we get

K'@R # H,(Y,3y;R) & mP l(y;R) = (Hn;l(Y;lR))* . (21
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Wwe denote by I the ideal in lR[G] generated by the
elements 1 + vy + w§ + cee + wg-l (3 =1,...,n); then,

by (19) and (21),

k'er & (®R[c]/1)”

g Rer(R[] — 17).

We let Yy eR[G] (i=1,...,n) be the dual basis to v

(t.e. yy(wy) = 8;4) ; then R[G] has a basis consisting
k | S .
of all monomials yll...yn“ with Ogky,...,k, € p~1, and

clearly an element

ky kn

y = ) alkyseeorky) ¥y ooo¥p
Osk1<p
Ogsk,<p

* *
is in Ker(lR[G] + I') 4if and only if for each |
p-1
a(kl;...,Op...,kn) = - Z a(klpun.'k'-uo'kn) »
i k=1 i

Therefore K' @R has a basis consisting of all monomials

k k
yll...ynn with 1 £ ky € p-!. The action of a generator

of Gp on K' 1is given by

kg kn ky+qy kntdp
Yl v ¥ > ¥y cae yn ’

G S
s0 K®R = (K'®OR) °© is spanned by the vectors

qy qp qq QAn. 2
(1 +yy ey + Yy N S I
LY kn
X ¥y eeo¥q o

q1 9n,p-1
cee + (y Ty MHPTT)
From this we deduce easily that -
n
dimg (K®R) = H{(ky,...,kp)| O<ky<p, I agk; =0 (mod p)
i=1

oda ’ even
i.e. the rank of K is tp (ql,...,qn) + tp

(22)

},
(23)

(Qyeeeeelp)s
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odd even

where tp and tp have the same meaning as in 5.3,
namely
eyen _
tggg (qll---'qn) = #{(kl"“'kn)' 0<ki<p and
. S (24)
;(qlkl + ... + qok,) an S§3" integer}. :
The Browder-Livesay invariant is given by
a(T,X) = sign Q , (25)
with ©Q the quadratic form (1) on K, From 12.1 we know
that
a (T, X) - todd - teven . (26)
P P
The numbers t:dd and t:ven must therefore give precisely

the numbers of positive and negative eigenvalues, respectively,
of the Browder-Livesay form for the characteristic manifold
we have chosen. Unfortunately, the homotopy equivalences used
to determine K do not give any information about intersection
numbers in Y, so the problem of calculating geometrically the
intersection form Q with respect to the given basis of K

remains open.



lo.

11.

12.

13.

14.

15.

16.

256

Bibliography

Andreotti, A. and Frankel, T.: The Lefschetz theorem on hyperplane
sections, Ann. of Math. 69 (1959) 713-717

Atiyah, M. F.: Elliptic operators and compact groups, Lecture
notes, Institute for Advanced Study (1971)

————— and singer, I. M.: The index of elliptic operators. III,

Ann. of Math. 87 (1968) 546-604

----- s ———-- and Patodi, V. K.: Spectral asymmetry and Riemannian
geometry, Bull. London Math. Soc. 5 (1973) 229-234

Borel, A.: Seminar on Transformation Groups, Ann. of Math. Studies

No. 46, Princeton Univ. Press (1960)

Bott, R.: Morse theory and its applications to homotopy theory,

Lecture notes, Bonn (1960)

Brieskorn, E.: Beispiele zur Differentialtopologie von Singu-
larititen, Invent. math. 2 (1966) 1-14

————— and van de Ven, A.: Some complex structures on products of

homotopy spheres, Topology 7 (1968) 389-393

Browder, W. and Livesay, G.R.: Fixed-point free involutions on
homotopy spheres, Bull. Amer. Math. Soc. 73 (1967) 242-245

Burdick, R. O0.: On the oriented bordism group of 22, Proc. Amer.
Math. Soc., to appear

Carlitz, L.: Some theorems on generalized Dedekind sums, Pacific
J. Math. 3 (1953) 513-522

—==—= 3: The reciprocity theorem for Dedekind sums, Pacific J.
Math. 3 (1953) 523-527

————— : Dedekind sums and Lambert series, Proc. Amer. Math. Soc.
5 (1954) 580-584

----- : A note on generalized Dedekind sums, Duke Math. J. 21
(1954) 399-403

Cassels, J. W. S.: An introduction to Diophantine Approximation
Cambridge Tracts No. 45, Cambridge Univ. Press (1957)

=~=-= : An Introduction to the Geometry of Numbers, Grundlehren
der mathematischen Wissenschaften No. 99, Springer-Verlag,
Berlin-Heidelberg~New York (1959)



17.

18.
19.

20.

21,

22.

23.

24,

25.

26.
27.

28.

29.

30.

257

Chandrasekharan, XK.: Arithmetical Functions, Grundlehren den

mathematischen Wissenschaften No. 167, Springer-Verlag,
Berlin-Heidelberg-New York (1970)

Cohn, H.: Approach to Markoff's minimal forms through modular
functions, Ann. of Math, (2) 61 (1955) 1-12

----- :Markoff forms and primitive words, Math. Ann. 196 (1972)
8-22

Conner, P. E. and Floyd, E. E.: Differentiable Periodic Maps,

Ergebnisse der Mathematik No. 33, Springer-Verlag, Berlin-
Heidelberg-New York (1964)

Dedekind, R.: Erliuterungen zu zwei Fragmenten von Riemann, in

Riemanns gegsammelte Werke, 2nd ed., 1892, Dover Publications,

New York (1953) 461-478

Dieter, U,: Beziehungen zwischen Dedekindschen Summen, Abh. Math.

Sem. Univ. Hamburg 21 (1957) 109-12§5

----- : Das Verhalten der Klein'schen Funktionen log °g h(“l'“2)
r

gegeniber Modultransformationen und verallgemeinerte
Dedekindsche Summen, J. fir die reine und angew. Math.
201 (1959) 37-70

----- : Pgseudo-random pairs: the exact distribution of pairs, Math.

of Comp. 25 (1971) 855-883

Dold, A.: Démonstration élémentaire de deux résultats du
cobordisme, Sém. de top. et de géom, diff, dirigé par
" C. Ehresmann, Paris (1959)

Durfee, A.: Diffeomorphism classification of isolated hyper-
surface singularities, Thesis, Cornell Univ. (1971)

Eisenstein, G.: Théorémes arithmétiques, J. fiilr die reine und
angew. Math. 27 (1844) 36-~37

Frobenius, F. G.: Uber die Markoffsche Zahlen, Sitzungsbericht der

der Kdnigl. PreuBischen Akad. 4. wWiss. zu Berlin (1913)
458-~-487 [Gesammelte Abhandlungen, Band III, Springer-Verlag,
Berlin-Heidelberg~NewYYork (1968) 598-627]

————— : Ober das quadratische Reziprozititsgesetz. I, ibid. (1914)
335-349 [op. cit., 628-642]

----- : Uber das quadratische Reziprozititsgesetz. II, ibid. (1914)

484-488 [op. cit., 643-647]



258

3:. Grothendieck, A.: Sur quelques points d'algébre homologique,
T8hoku Math. J. (2) 9 (1957) 119-221

32. Gunning, R. C.: Lectures on Modular Forms, Ann.of Math. Studies

No. 48, Princeton Univ. Press (1962)

33. Hardy, G. H. and Wright, E. M.: Introduction to the Theory of

Numbers, Oxford Univ. Press, Oxford (1965)

34. Hermite, C.: Quelques formes relatives 4 la transformation des
fonctions elliptiques, J. Math. Pures Appli. (2) 3 (1858)
26-36 '

35. Hirzebruch, F.: Elliptische Differentialoperatoren auf Mannigfal-
tigkeiten, Arbeitsgemeinschaft f£. Forschung 4. Landes
Nordrhein-Westfalen 33 (1965) 563-608

36, —==-- : Topological Methods in Algebraic Geometry, 3!d ed.,

Grundlehren der mathematischen Wissenschaften No. 131,
Springer-Verlag, Berlin-Heidelberg-New York (1966)

37. —==== : The signature of ramified coverings, in Global Analysis,

Papers in Honor of XK. Kodaira, Univ, of Tokyo Press,
Princeton Univ. Press (1969), 253-265

38, ~-==- : Free involutions on manifolds and some elementary number
theory, Institutio Nazionale d4i Alta Matematica, Symposia
Mathematica Vol. 5 (1970) 411-419

39, -—---- : Pontrjagin classes of rational homology manifolds and the
signature of some affine hypersurfaces, Proceedings of
Liverpool Singularities Symposium II, Lecture Notes in

Mathematics No. 209, Springer-Verlag, Berlin—ﬂeidelberg-
New York (1971)

40, we-=--- : The signature theorem: reminiscences and recreation, in
Prospects in Mathematics, Ann. of Math. Studies No. 70,
Princeton Univ. Press (1971) 3-31

41, === : LSsung einer Aufgabe von H. Hasse, Jahresbhericht der
Deutschen Math.-Vereinigung (4) 72 (1970/71) 29-32

42, ~-==- : Hilbert modular surfaces, L'Enseignement Math, I11® ser.
(3-4) 19 (1973) 183-281

43, ----- : and J&nich, K.: Involutions and singularities, Proc.
Bombay Colloq. on Alg. Geom. (1968) 219-240



259

44, Hirzebruch, F. and Mayer, X, H.: O(n)-Mannigfaltigkeiten,

exotische Sphiren und Singularititen, Lecture Notes in

Mathemetics No. 57, Springer-Verlag, Berlin-Heidelberg-
New-York (1968)

45, ===-- , Neumenn, W. D. and Koh, S. S.: Differentiable Manifolds

and Quadratic Forms, Lecture Notes in Pure and Applied

Methemetics No. 4, Marcel Dekker, New York (1971)

46, —===-- and Zegier, D.: Class numbers, continued fractions and

the Hilbert modular group, in preparetion

47. Hodge, W. V. D.: The topological invariants of algebraic varieties
Proc. Intern. Congress Math. Vol. I, AMS (1952) 182-191

48, Hurwitz, A.: Uber eine Aufgabe der unbestimmten Anelysis, Archiv
d. Meth. u. Physik 11 (1907) 185-196 [Mathematische Werke,
Bend II, Birkhauser (1933) 410-421].

49, Iseki, K.: A proof of a transformation formula in the theory of
pertitions, J. Math. Soc. Japan 4 (1952) 14-26

50, @ =-=-=-- : The transformation formula for the Dedekind modular
function and related functionel equations, Duke Math. J.
24 (1957) 653-662

51. Janich, K and Ossa, E.: On the signature of an involution,
Topology 8 (1969) 27-30

52. Kawasaki, T.: Free Sl-actions on Brieskorn varieties, preprint,
Univ. of Tokyo (1972) '

53, @ e==ee-- : Cohomology of twisted projective spaces and lens complexes
Math. Ann. (3) 206 (1973) 243-248

54, Kervaire, M. and Milnor, J.: Groups of homotopy spheres. I, Ann,
of Math. 77 (1963) 504-537 .

55. Kreck, M.: Eine Invariante fiir stebil paralleiisierte Mannig-
« faltigkeiten, Bonner Mathematische Schriften No. 66,
Bonn (1974)

56. Lang, H.: Uber eine Gattung elementar-arithmetischer Klassen-
invarianten reell-quadratischer Zahlk&rper, J. flir die
reine und angew. Mathematik 233 (1968) 123-175

57. Lehner, J.: Discontinuous Groups and Automorphic Functions,

Mathematical Surveys No. 8, AMS, Providence (1964)
. p-1 _
58. Lerch, M,: Zur Theorie des Fermatschen Quotienten E___;__l.

= g(a), Math. Ann. 60 (1905) 471-490



59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

260

Lewittes, J.: Analytic continuation of Eisenstein series, Trans.
Amer. Math. Soc. 171 (1972) 469-490

Merkoff, A. A.: Sur les formes quidratiques binaires indéfinies. I,
Math. Ann. 15 (1879) 381-407, I1I, Math. Ann 17 (1880)
379-400

Meyer, C.: Uber einige Anwendungen Dedekindscher Summen, J. fir die
reine und angew. Math. 198 (1957) 143-203.

----- : Uber ein Seitenstick zum GauBschen Lemma und eine verwandte
Aufgabe von H. Hasse, Abh. Math. Sem. Univ. Hamburg 23
(1959) 114-125,

~=~=-- : Bemerkungen zu den allgemeinen Dedekindschen Summen, J. fir
reine und angew. Math. 205 (1961) 186-196

----- : Uber die Bildung von Klasseninvarianten bin&rer quadrati~
scher Formen mittels Dedekindscher Summen, Abh, Math, Sem.
Univ. Hamburg 27 (1964) 206-230

wm=== : Uber die Bildung von elementer-arithmetischen KXlassenin-
varianten in reell-quadratischen Zahlkdrpern, in Algebraische
Zahlentheorie, Hochschultaschenblicher-Verlag (1966) 165-216

----- : Uber die Dedekindsche Transformationsformel fir 1log niT).
Abh. Math. Sem. Univ. Bamburg 30 (1967) 129-164

----- ¢ Bemerkungen zum Satz von Heegner-Stark Gber die imaginidr-
quadratischen Zahlkdrpern mit der Klassenzehl Eins, J. fidr
die reine und angew. Math. 242 (1970) 179-214

Meyer, W.: Die Signatur von lokelen Koeffizientensystemen und

Faserbindeln, Bonner Mathematische Schriften No. 53, Bonn
(1972)

===== : Die Signatur von Flichenbfindeln, Math. Ann. 201 (1973)
239-264

----- and von Randow, R. : Ein Widrfelschnittproblem und Bernoullische

Zahlen, Math. Ann. 193 (1971) 315-321

Milnor, J.: Lectures on Cheracteristic Classes, Lecture Notes,
Princeton Univ. (1964)

----- : Singularities of Complex Hypersurfeces, Ann. of Math.
Studies No. 61, Princeton Univ. Press (1968)

Mordell, L.J.: Lattice points in a tetrahedron and generalized
Dedekind sums, J. Ind. Math, Soc. 15 (1951) 41-46



74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

261

Neumann, W. D.: sl-Actions and the o-Invariants of Thqig'

Involutions, Bonner Mathematische Schriften No. 44, Bonn

(1970)
----- : Cyclic suspensions of knots and periodicity of signature

for singularities, Bull. Amer. Math. Soc., to appear

Oka, M.: On the homotopy type of hypersurfaces defined by weighted
homogeneocus polynomials, Topology 12 (1973) 19-32

----- : Local deformations of polynomials with isolated singu-

larities, to appear

Ossa, E.: Aquivariante Cobordismustheorie, Diplomarbeit, Bonn
(1967)

----- : Fixpunktfreie S'-Aktionen, Math. Ann. 186 (1970) 45-52

Pham, F.: Formules de Picard-Lefschetz généralisées et ramifi-

cation des intégreles, Bull. Soc. Math. Frence 93 (1965}
333-367

Rademacher, H.A.: Zur Theorie der Modulfunktionen, J. fir die
reine und angew. Math. 167 (1932) 312-336

----- : Generalization of the.raciprocity_law for Dedekind sums,
Duke Math. J. 21 (1954) 391-397

----- ¢ Analytic Number Theory, Tata Institute of Fundamental
Research, Bombay (1954-55)

----- : On the transformation of log n(T), J. Ind. Math. Soc.
19 (1955) 25-30

----- and Grosswald, E.: Dedekind Sums, Carus Mathemetical Mono-
graphs No. 16, MAA (1972) '

----- and Whiteman, A.: Theorems on Dedekind sums, Amer. J.
Math. 63 (1941) 377-407 )

Sakamoto, K.; Milnor fiberings and their characteristic maps,
Preprint, Univ. of Tokyo (1973)

Sebastiani, M.:and Thom, R.: Un résultat sur la monodromie, Invent
Math. 13 (1971) 90-96

Serre, J.-P.: Groupes d'homotopie et classes de groupes ebéliens,
Ann. of Math. 58 (1953) 258-294

----- : Un théoréme de dualité, Comm. Math. Helv. 29 (1955) 9-26

===~-- : Céométrie algébrique et géométrie analytique, Ann., Inst.
Fourler 6 (1956) 1-42



922,

93,

94.

9§,

96. .

97.

98.

99.

100,

101,

262

Serie, J.-P,: Coufs d‘Arithmétique, Pressesg Universitaires de

France, Parisg (1970)

Siegel, C.L.: A simple proof of M=1/T) = n(T)/T/T , Mathematixa

1 (1954) 4 [Gesamnelte Abhandlungen, Bana III, Springer-
Verlag, Berlin-Heidelberg-New York (1966) 188]

Thom, R.: Quelques propristés globales des variétés différentiables.
Comm. Math, Helv. 28 (1954) 17-8g

----- t Léds classes caractéristiques de Pontrjagin des variétéaes
triangulées, Symp. Intern. Top. Alg. 195¢ ¢+ Univ. de Mexico
(1958) s54-67 '

wall, c.T.cC.: Surgerz on Comglct Manifolds, Acadenmic Press, London-
- ——————
New York (1970)

Zagier, D.: Explicit constructions of exotic spheres, Diploma thesis,
Oxford (1969)

----- : Equivariant Pontrjagin Classes ana Applications to Orbit
Spaces, Lecture Notes in Mathematics No, 290, Springer-
Verlag, Berlin-Heidelherg-Nev York (1972)

----- : The Pontrjagin c€lass of an orbit space, Topology ll (1972)
253-264

----- : Higher-dimensional Dedekind Sums, Math. Ann. 202 (1973)
149-172

Zolatareff, M.: Nouvelle démonstration de la loi de réciprocité
de Legendre, Nouvelles Ann. de Math. (2) 11 (1872)
354-362



