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Abstract

We construct explicit isomorphisms between spaces of Maass wave forms and
cohomology groups for discrete cofinite groups Γ ⊂ PSL2(R).

In the case that Γ is the modular group PSL2(Z) this gives a cohomological
framework for the results in Period functions for Maass wave forms. I, of J. Lewis

and D.Zagier in Ann. Math. 153 (2001), 191–258, where a bijection was given
between cuspidal Maass forms and period functions.

We introduce the concepts of mixed parabolic cohomology group and semi-ana-
lytic vectors in principal series representation. This enables us to describe cohomol-
ogy groups isomorphic to spaces of Maass cusp forms, spaces spanned by residues
of Eisenstein series, and spaces of all Γ-invariant eigenfunctions of the Laplace
operator.

For spaces of Maass cusp forms we also describe isomorphisms to parabolic
cohomology groups with smooth coefficients and standard cohomology groups with
distribution coefficients. We use the latter correspondence to relate the Petersson
scalar product to the cup product in cohomology.
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Introduction

These notes proceed from the ideas and results of [21], in which Maass forms
for the full modular group were studied, but now treating arbitrary Fuchsian groups
and stressing the cohomological interpretation. They can be read independently
of [21].

The classical theory linking holomorphic automorphic forms to cohomology
starts with Eichler [10], and Shimura [31]. To an automorphic form F on the upper
half-plane with even weight k ≥ 2 one associates a cocycle with values in the space
of polynomial functions of degree at most k−2 by ψγ(t) =

∫ z0
γ−1z0

(t−τ )k−2 F (τ ) dτ ,

with a base point z0 in the upper half-plane. If F is a cusp form, one can put the
base point at ∞. The coefficients of the resulting polynomials are then values of
the L-function of F . All this has important number theoretical consequences. (See,
e.g., Manin [23].)

With the base point at ∞, the cocycle is, in the case of the modular group
SL2(Z), determined by its value on S =

(
0
1
−1
0

)
,

ψS(t) =

∫ i∞

0

(t− τ )k−2 F (τ ) dτ ,

called the period function (or period polynomial) of F , and the condition of being
a cocycle is equivalent to the two functional equations

(1) ψ(t) + tk−2 ψ
(
−1

t

)
= 0 , ψ(t) + tk−2 ψ

(
1− 1

t

)
+ (1− t)k−2 ψ

( 1

1− t

)
= 0 .

In this case, it is also known that the map assigning to a cusp form F (τ ) the odd
part of the polynomial ψS is an isomorphism between the space of cusp forms of
weight k and the vector space of odd polynomials ψ(t) satisfying (1). An elementary
argument shows that this latter space can be characterized by a single functional
equation

ψ(t) = ψ(t+ 1) + tk−2 ψ(1 + 1/t) .

The starting point of [21] (see also the survey paper [20] and §2 of [33]) is the
observation that this functional equation is identical in form to the relation

(2) ψ(t) = ψ(t+ 1) + t−2s ψ(1 + 1/t)

that occurred in the work of the second author [19], which gave a bijection between
the space of even Maass wave forms with spectral parameter s on the full modular
group and a class of holomorphic functions satisfying (2). Since (1) is just the
cocycle condition for SL2(Z), this immediately suggests the possibility of describing
Maass forms for arbitrary Fuchsian groups by an appropriate generalization of the
functional equation (2) having an interpretation in terms of cohomology.

The principal goal of these notes is to carry out this generalization by con-
structing explicit isomorphisms between, on the one hand, spaces of Maass wave

vii
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viii INTRODUCTION

forms on discrete cofinite groups Γ ⊂ G := PSL2(R) and, on the other, certain
cohomology groups of Γ. Recall that a Maass wave form (or simply Maass form)
on Γ is a Γ-invariant function on H satisfying Δu = λu for some λ ∈ C, with poly-
nomial growth. Here H is the complex upper half-plane with the usual action of
G and Δ is the hyperbolic Laplace operator Δ = −y2(∂2

x + ∂2
y). The Maass wave

forms which are small at the cusps (this is relevant only for Γ\H non-compact) we
call Maass cusp forms.1 The eigenvalue λ is most naturally written as s(1− s) for
some s ∈ C (spectral parameter), and our cohomological description of Maass wave
forms will depend on picking one of the two roots of this equation. We assume
throughout that 0 < Re (s) < 1.

In [21] we studied the case of the full modular group Γ1 := PSL2(Z) in detail
and showed that the Maass cusp forms with eigenvalue s(1− s) are canonically in
one-to-one correspondence with the real-analytic functions ψ : (0,∞) → C which
satisfy

(3) ψ(x) = ψ(x+ 1) + (x+ 1)−2s ψ
( x

x+ 1

)
(x > 0)

and for which both ψ(x) and x2sψ(x) are bounded. It turns out that any such
function can be written (non-uniquely) as

(4) ψ(x) = h(x) − x−2s h(−1/x) (x > 0)

for some real-analytic function h : R→ C and that, when we do this, the map

(5)

(
0

1

−1
0

)
�→ 0 ,

(
1

0

1

1

)
�→
(
x �→ h(x+ 1)− h(x)

)
,

extends to a cocycle on Γ1 with values in the analytic vectors Vω
s of a model of the

principal series representation Vs. Changing the choice of h changes this cocycle by
a coboundary, and we get an isomorphism between the space Maass0s(Γ1) of Maass
cusp forms on Γ1 and a specific subspace of H1(Γ1;Vω

s ). Our goal in these notes is
to give an analogous result for all Γ.

To achieve this, we will use several descriptions of the principal series: The
model indicated above consists of functions on the boundary P1

R of the upper half-
plane. We shall also use models of the principal series in functions on H itself. The
relevant investigations led to the paper [4]. We shall recapitulate the results we need
in Sections 2 and 3. Specifically, the well known Poisson transformation realizes
the principal series representation with spectral parameter s as the space Es of all
solutions on H of the differential equation Δu = s(1 − s)u. For the construction
of the map from cohomology to Maass forms, we introduce a transverse Poisson
transformation P†s, which provides us with a model of the principal series in a
space of solutions of Δu = s(1 − s)u near the boundary of H in P1

C. Both Poisson
transforms are given by integration against the kernel function R( · ; z)1−s, where
R(t; z) = Im (z)/(t− z)(t− z̄), the integration being over P1

R for the usual Poisson
transformation, and from z to z̄ for the transverse one. We also need the inverse of
the Poisson transform. It can be given explicitly by integration of the differential
form [u,R(t; · )s], where [u, v] = ∂u

∂z v dz + u∂v
∂z̄ dz̄ is the Green’s form, already used

in [21], which is closed if u and v are eigenfunctions of Δ with the same eigenvalue.

1In [21] the word “wave form” was used for cusp forms only.
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INTRODUCTION ix

These facts are reviewed in Chapter 1. See §1.3 for the Green’s form and
Section 2 for the principal series. The Poisson transformation is recalled in §2.2,
and the transverse Poisson transformation is defined in §3.2.

In Chapter 2 we suppose that the discrete subgroup Γ ⊂ G is cocompact.
Here, Maass0s(Γ) is just the space EΓ

s of all Γ-invariant solutions of Δu = s(1− s)u.
Our first main result relates it to cohomology groups with values in the spaces of
analytic, infinitely-often, and finitely-often differentiable functions in Vs:

Theorem A. For cocompact Γ ⊂ G and s ∈ C, 0 < Re s < 1, the space EΓ
s

is canonically isomorphic to the cohomology groups H1(Γ;Vω
s ), H1(Γ;V∞

s ), and
H1(Γ;Vp

s ) for p ∈ N, p ≥ 2.
To describe this isomorphism we associate to a given Maass form u the analytic

cocycle

(6) rγ(t) =

∫ z0

γ−1z0

[u,R(t; · )s] ,

depending on a base point z0 ∈ H. In the other direction, the value of the Maass
form u(z) associated to a given analytic cocycle {ϕγ} is given in any compact subset
of H by an explicit finite sum of terms of the form P†s(ϕγ) | γ′ with γ, γ′ ∈ Γ.

Bunke and Olbrich, [6], [7], proved that EΓ
s
∼= H1(Γ;Vω

s ) ∼= H1(Γ;V∞
s ) in

a more general setting (for automorphic forms on rank 1 symmetric spaces and
torsion-free discrete cocompact groups). Our approach is more concrete and gives
the isomorphism EΓ

s
∼= H1(Γ;Vω

s ) much more explicitly. The integral in (6) gives
the map from Maass forms to cohomology. For the map from cohomology to Maass
forms, the starting point is the model Wω

s of the principal series in the solutions of
Δu = s(1 − s)u near the boundary. We use a space Gω

s of functions on the whole
of H such that Gω

s → Wω
s is surjective. The kernel Nω of this morphism consists

of compactly supported functions. A 1-cocycle on Γ with values in Wω
s gives rise

to a 2-cochain with values in Nω. Evaluation of this 2-cochain on a 2-cycle that
represents the fundamental class in H2(Γ;Z) provides us with an element f0 ∈ Nω,
which is unique up to linear combinations of the form f | (1− γ) with f ∈ Nω and
γ ∈ Γ. The locally finite sum u(z) =

∑
γ∈Γ f0(γz) is independent of all choices,

and is the Maass form we looked for.
The construction of maps in both directions between EΓ

s and H1(Γ;Vω
s ) is the

main result of Chapter 2.

Chapter 3 presents results concerning H1(Δ;Vω
s ) and related cohomology

groups for infinite cyclic subgroups Δ ⊂ PSL2(R). It turns out, for instance, that
the restriction map from H1(Γ;Vω

s ) to H1(Δ;Vω
s ) in the theorem above, where Δ

is the subgroup generated by any element γ0 ∈ Γ of infinite order, is injective,
so that a Maass wave form u ∈ EΓ

s can be reconstructed from the single element
rγ0

∈ Vω
s , without knowing the rest of the cocycle. The results for the case that

Δ is generated by a parabolic (rather than a hyperbolic) element of PSL2(R) are
used in the following chapter.

In Chapter 4 we consider groups Γ with cusps. Here the spaces Maass0s(Γ) ⊂
Maasss(Γ) ⊂ EΓ

s of, respectively, Maass cusp forms, Maass forms (at most polyno-
mial growth), and arbitrary invariant eigenfunctions, are all different. The dimen-
sion of EΓ

s is infinite, while the other two are finite dimensional. The approach used
for cocompact groups has to be modified in several ways, as follows.
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x INTRODUCTION

We have to look at more general cohomology groups. For Γ-modules V , the
parabolic cohomology group H1

par(Γ;V ) ⊂ H1(Γ;V ) is given by cocycles {ψγ} that
are of the form ψπ = aπ |π − aπ for all parabolic π ∈ Γ, with aπ ∈ V . For the
mixed parabolic cohomology group H1

par(Γ;V,W ) the cocycle {ψγ} has values in V
and the aπ are in a Γ-module W ⊃ V .

The example of the period functions for Γ1 = PSL2(Z) leads us to the space
Vω∗,∞
s of “semi-analytic vectors” in the principal series. This is a Γ-module sat-
isfying Vω

s ⊂ Vω∗,∞
s ⊂ V∞

s , consisting, in the standard model of the principal
series representation (functions on P1

R), of smooth (C∞) functions on P1
R that are

real-analytic except for finitely many points.
With these modifications one has the following analogue of Theorem A for cusp

forms on non-cocompact groups:

Theorem B. For cofinite discrete subgroups Γ ⊂ PSL2(R) and 0 < Re s <
1, the spaces Maass0s(Γ), H1

par(Γ;Vω
s ,Vω∗,∞

s ), H1
par(Γ;Vω∗,∞

s ), H1
par(Γ;V∞

s ), and

H1
par(Γ;Vp

s ) with p ∈ N, p ≥ 3, are canonically isomorphic. The relation between
Maass cusp forms and the associated analytic cocycle has the same structure as in
Theorem A.

• Example. In the case Γ1 = PSL2(Z), the cocycle determined by (5) represents
a class in the mixed parabolic cohomology group H1

par(Γ1;Vω
s ,Vω∗,∞

s ): its values

are in Vω
s , and its value on the parabolic generator T = ±

(
1
0
1
1

)
∈ Γ1 is of the form

h |T − h, with h ∈ Vω∗,∞
s . The period function ψ, on the other hand, is related to

a class in H1
par(Γ;Vω∗,∞

s ). It determines a cocycle with values in Vω∗,∞
s , defined on

the standard generators by

(7) ±
(
0

1

−1
0

)
�→
{

ψ(x) if x > 0 ,

−|x|−2sψ(−1/x) if x < 0 ;
±
(
1

0

1

1

)
�→ 0 .

This cocycle vanishes on the parabolic element ±
(
1
0
1
1

)
. Finally, the last isomor-

phism in Theorem B, applied to the modular group, implies that any C∞-function
on (0,∞) satisfying (3) and the growth conditions given there is in fact real-analytic,
giving a strengthening of the main result of [21].

We prove most of the isomorphisms in Theorem B in Chapter 4. The isomor-
phism with H1

par(Γ;V∞
s ) and H1

par(Γ;Vp
s ) is established in Chapter 5.

If s �= 1
2 , the correspondence between Maass forms and cohomology classes

in the Theorems A and B can be extended to the whole of EΓ
s . To do this, we

introduce two further spaces Vω∗, exc
s ⊃ Vω

s and Vω0, exc
s ⊃ Vω

s . The first consists of
functions on P1

R which are real analytic except for finitely many points and have
singularities of a special type (Definition 9.17) at these points, and the second is
the same except that the finitely many singularities must all be at cusps. Then we
have:

Theorem C. For cofinite discrete subgroups Γ ⊂ PSL2(R) and 0 < Re s < 1,

s �= 1
2 , the spaces EΓ

s , H1
par(Γ;Vω

s ,Vω∗, exc
s ) and H1

par(Γ;Vω0, exc
s ) are canonically

isomorphic.

For the modular group we show in Proposition 14.1 how H1
par(Γ1;Vω0, exc

s ) can
be described as a quotient of the space of all holomorphic functions on C� (−∞, 0]
that satisfy the three term equation (3). In Proposition 14.3 we show that the
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INTRODUCTION xi

mixed parabolic cohomology group H1
par(Γ1;Vω

s ,Vω∗, exc
s ) is a genuine subspace of

H1(Γ1;Vω
s ). We discuss briefly a notion of “quantum Maass forms” which provides

us with a space of objects with a modular flavor that corresponds bijectively with
H1(Γ1;Vω

s ).
If Γ has no cusps then parabolic cohomology is standard cohomology. Theorems

B and C give no more information than Theorem A in the cocompact case.
Bunke and Olbrich have shown that the space Maass0s(Γ) (which is equal to

EΓ
s for cocompact Γ) is isomorphic to H1(Γ;V−∞

s ), where V−∞
s denotes the space

of distribution vectors in Vs. In Chapter 6 we give an explicit realization of the
isomorphism on the cocycle level and use it to express the Petersson scalar product
in cohomological terms (Theorem 19.1).

• Holomorphic automorphic forms and Maass forms. We have mentioned at the
start of the introduction that the classical theory of cohomology classes attached
to holomorphic automorphic forms has similarities to what we do in these notes.
There are also many differences, due in particular to the anomalous behavior of the
principal series representation of SL2(R) when the spectral parameter is an integer.
We refer to Chap. IV, §2 of [21] for a discussion of the similarities and differences
in the modular case.

One of the differences is that here we need infinite-dimensional modules for
the cohomology, in contrast to the the spaces of polynomials in the classical the-
ory. Infinite-dimensional modules are also needed by Knopp [16], for the cocycles
attached to holomorphic cusp forms of arbitrary real weight.

• Selberg zeta function and transfer operator. As is well known, the values
of the spectral parameter s for which the space of Maass cusp forms is non-zero
occur among the zeros of the Selberg zeta function. The relationship between this
fact and the functional equation (2), in the case of the full modular group, can be
seen using the transfer operator of Mayer [24]: on the one hand, the Selberg zeta
function can be expressed as the product of Fredholm determinants built with this
operator, and on the other hand the solutions of (2), i.e., the period functions of
even Maass forms, give rise to eigenfunctions of this operator with eigenvalue 1 (or
−1 if the plus sign in (2) is changed to a minus sign, corresponding to odd Maass
wave forms). These connections are discussed in detail in [20], [21] (Chap. IV, §3),
and [34].

For a number of families of other Fuchsian groups, including the congruence
subgroups Γ0(p) of the modular group and the Hecke triangle groups, Möller and
Pohl [25] and Pohl [27, 28, 29] have obtained a similar relationship between the more
general period functions of Maass forms considered in these notes and eigenfunctions
of appropriate transfer operators. For the case of the full modular group again,
the paper [5] relates cocycles for the group to the eigenfunctions of a transfer
operator different from Mayer’s original one. It would be interesting to have a
similar relationship for general Fuchsian groups between the Selberg zeta function,
eigenfunctions of transfer operators and cohomology classes.

• Acknowledgements. The preparation of these notes has taken many years.
The Max Planck Institute in Bonn and the Collège de France in Paris have en-
abled us many times to work on it together. The two first-named authors thank
both institutions for this support and the excellent working conditions that they
provided.
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xii INTRODUCTION

• Notations and conventions. We work with the standing assumption that
s ∈ C satisfies 0 < Re s < 1, and use λs = s(1 − s). By N we denote the set
{n ∈ Z : n ≥ 0}.

We denote by G the Lie group PSL2(R) = SL2(R)/{±Id}, and denote by
[
a
c
b
d

]
the element ±

(
a
c
b
d

)
of G. We shall use various right representations of G, and use

g : v �→ v | g as a general notation for the action of G in a right G-module.
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CHAPTER 1

Eigenfunctions of the hyperbolic Laplace operator

This chapter has a preliminary character. It discusses concepts and results
needed in the next chapters. In Sections 1–3 we recall results concerning eigenfunc-
tions of the Laplace operator and principal series representations that we treat in
more detail in [4]. The averaging operators in Section 4 form another important
tool used in these notes.

1. Eigenfunctions on the hyperbolic plane

Maass forms are functions on the hyperbolic plane that satisfy Δu = λsu and
are invariant under a group of transformations. We define in this subsection the
space of all such eigenfunctions of the Laplace operator and introduce several related
spaces. An important result is Theorem 1.1, which plays for eigenfunctions of Δ
the role of Cauchy’s theorem for holomorphic functions.

1.1. The hyperbolic plane. By H we denote the hyperbolic plane. We
use two realizations as a subset of P1

C. The first is the upper half-plane model
H = {z = x+iy : y > 0}, the other the disk model D = {w ∈ C : |w| < 1}. In the
upper half-plane model, geodesics are Euclidean vertical half-lines and Euclidean
half-circles with their center on the real axis. In the disk model, geodesics are given
by Euclidean circles intersecting the boundary ∂ D = S1 = {ξ ∈ C : |ξ| = 1}
orthogonally and Euclidean lines through 0. The real projective line P1

R = R∪{∞}
is the boundary of the upper half-plane. See Table 1.1 for a further comparison
between both models.

• The space of eigenfunctions. By Es we denote the space of solutions of

(1.1) Δu = λs u in H, λs = s(1− s) .

The Laplace operator Δ = −y2∂2
x − y2∂2

y is an elliptic differential operator with
real-analytic coefficients. Hence all elements of Es are real-analytic functions. This
operator commutes with the action of the group G (on the right) given by

(u | g)(z) = u(gz) .

(We will use z to denote the coordinate in both H and D when we make statements
applying to both models of H.) Obviously, Es = E1−s. If U is an open subset of
H, we denote by Es(U) the space of solutions of Δu = λsu on U , thus defining
Es as a sheaf on H. We will refer to elements of Es = Es(H) and of Es(U) as
λs-eigenfunctions of Δ.

So Es denotes a sheaf as well as the space of global sections of that sheaf. For
other sheaves we will allow ourselves a similar ambiguity.

1
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2 1. EIGENFUNCTIONS OF THE HYPERBOLIC LAPLACE OPERATOR

model of H H D

coordinate z = x+ iy = i 1+w
1−w w = z−i

z+i

Laplace operator Δ −y2
(
∂2
x + ∂2

y

)
−
(
1− |w|2

)2
∂w∂w̄

= (z − z̄)2∂z∂z̄

infinitesimal distance y−1
√
(dx)2 + (dy)2

2
√

(dRew)2+(d Imw)2

1−|w|2

hyperbolic distanced

ρ( · , · ) = cosh(d( · , · )) 1 + |z−z′|2
2yy′ 1 + 2|w−w′|2

(1−|w|2)(1−|w′|2)

volume element dμ dx dy
y2

4 dRew d Imw
(1−|w|2)2

orientation preserving
isometry group G = PSL2(R) G ∼= PSU(1, 1)[
A
C

B
D

]
=
[
1
1
−i
i

][
a
c
b
d

][
1
1
−i
i

]−1
[
a
c
b
d

]
: z �→ az+b

cz+d

[
A
B̄

B
Ā

]
: w �→ Aw+B

B̄w+Ā

maximal compact subgroup K PSO(2) PSU(1)

point fixed by K i 0

boundary ∂H ∂H = P1
R ∂D = S1

Table 1.1. Upper half-plane model and disk model of the hyper-
bolic plane H.

1.2. Examples. The functions is,0(z) = ys on H is an element of Es that
occurs in the constant term of Fourier expansions of Maass forms. That term is a
linear combination of is,0 and i1−s,0, or of i1/2,0 and �1/2,0(z) = y1/2 ln y if s = 1

2 .

This function �1/2,0 is the value at s = 1
2 of the family �s,0 = 1

2s−1 (is,0 − i1−s,0)
of N -invariant elements of Es. The other terms of those Fourier expansions may
contain the following elements of Es:

(1.2)

ks,α(z) =
√
y Ks−1/2(|α|y) eiαx ,

is,α(z) =
Γ
(
s+ 1

2

)
|α/2|s−1/2

√
y Is−1/2(|α|y) eiαx ,

for α ∈ R � {0}, with the modified Bessel functions Iμ( · ) and Kμ( · ). These

functions on H transform according to the character
[
1
0
x
1

]
�→ eiαx of N =

{[
1
0
∗
1

]}
⊂ G.

The group K = PSO(2) ⊂ G has characters
[

cos θ
− sin θ

sin θ
cos θ

]
�→ e2inθ with n ∈ Z.

Functions transforming according to such a character are easiest described in the
disk model, with Legendre functions or with hypergeometric functions:

Ps,n(re
iθ) = Pn

s−1

(1 + r2

1− r2

)
einθ

=
Γ(s+ n)

|n|! Γ(s− |n|) r
|n|

2F1

(
1− s, s; 1 + |n|; r2

r2 − 1

)
,

(1.3a)
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§1. EIGENFUNCTIONS ON THE HYPERBOLIC PLANE 3

Qs,n(re
iθ) = Qn

s−1

(1 + r2

1− r2

)
einθ

=
(−1)n

2

Γ(s) Γ(s+ n)

Γ(2s)
r−n (1− r2)s 2F1

(
s− n, s; 2s; 1− r2

)
.

(1.3b)

(Note the shift in the spectral parameter in Pn
s−1 and Ps,n.) We have Ps,n = P1−s,n ∈

Es and Qs,n ∈ Es(D� {0}).
Section A.1.3 in the appendix of [4] gives also formulas for elements of Es that

transform according to a character of the group A =
{[

y1/2

0
0

y−1/2

]
: y > 0

}
⊂ G.

Of these functions we will use fR
s,α and fL

s,α. See (4.2).

Starting from the λs-eigenfunctions of Δ considered up till now, we can produce
other ones by translating them. If g · 0 = w′ for g ∈ G and w′ ∈ D, then r = |g−1w|
satisfies 1+r2

1−r2 = ρ(w,w′), with ρ as in Table 1.1. The functions

(1.4)
ps(w,w

′) = Ps,0(g
−1w) = P 0

s−1

(
ρ(w,w′)

)
,

qs(w,w
′) = Qs,0(g

−1w) = Q0
s−1

(
ρ(w,w′)

)
,

are point-pair invariants, i.e., they depend only on the hyperbolic distance between
w and w′. Hence they are symmetric in w and w′, and satisfy for all g ∈ G:

(1.5) ps(gz, gz
′) = ps(z, z

′) , qs(gz, gz
′) = qs(z, z

′) .

They are λs-eigenfunctions of Δ in both variables. One calls qs the free-space
resolvent kernel. We have ps( · , w′) ∈ Es, and qs( · , w′) ∈ Es(D � {w′}) for fixed
w′ ∈ D.

Shifting is,0 : z �→ ys by
[

0
−1

1
t

]
, with t ∈ R, gives

(1.6) R(t; z)s =
(
Im

1

t− z

)s
=

ys

|t− z|2s .

We have R(t; · )s ∈ Es. Moving t off the real line gives rise to a multivalued function

(1.7) R(ζ; z)s =
ys

(ζ − z)s(ζ − z̄)s
.

For ζ ∈ C it is an element of Es(U) for simply connected U ⊂ H not containing ζ
or ζ̄. We choose the branch such that arg(ζ − z) + arg(ζ − z̄) = 0 for ζ ∈ R.

For α ∈ R and Re s > 1
2 , we can integrate eiαtR(t; z)s over R to obtain

(1.8) eiαx
∫ ∞

−∞
eiαt

ys dt

(y2 + t2)s
=

⎧⎨⎩
√
π

Γ(s− 1
2 )

Γ(s) i1−s,0(z) (α = 0) ,
√
π 23/2−s |α|s−1/2

Γ(s) ks,α(z) (α �= 0) .

This continues meromorphically, holomorphically in s if α �= 0, and having in the
region Re s > 0 only a first order singularity at s = 1

2 if α = 0.

1.3. Green’s form. We recall the bracket operation from [21], already men-
tioned in the introduction. There are two versions, which differ by an exact form:

(1.9) [u, v] = uz v dz + u vz̄ dz̄ , {u, v} = 2i [u, v] − i d(uv) .

These formulas make sense in both the upper half-plane and the disk model of H,
and have the properties

[u ◦ g, v ◦ g] = [u, v] ◦ g for each g ∈ G ,(1.10a)

[u, v] + [v, u] = d(uv) ,(1.10b)
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4 1. EIGENFUNCTIONS OF THE HYPERBOLIC LAPLACE OPERATOR

d[u, v] =
1

2i
(uΔv − vΔu) dμ ,(1.10c)

{v, u} = −{u, v} .(1.10d)

So [u, v] is a closed 1-form on U if u, v ∈ Es(U) for an open U ⊂ H.
The bracket with qs gives for elements of Es a substitute for Cauchy’s theorem:

Theorem 1.1. Let C be a piecewise smooth simple closed curve in H and u
an element of Es(U), where U ⊂ H is some open set containing C and its interior.
Then for w ∈ H� C we have

(1.11)

∫
C

[u, qs( · , w)] =

{
πi u(w) if w is inside C,

0 if w is outside C,

where the curve C is traversed in the positive direction.

See Theorem 2.1 in [4].

2. Principal series

All the coefficient modules used in the cohomology groups mentioned in the
introduction are spaces of vectors in the principal series representation associated
to the spectral parameter s. The standard realizations of the principal series rep-
resentation use spaces of functions on the boundary ∂H of the hyperbolic plane.
With the Poisson transform we can also use a realization in Es.

We write Vs to denote “the” principal series representation when we do not
want to specify precisely the space under consideration. Spaces V∞

s and Vω
s of

smooth and analytic vectors are identified with the appropriate superscript.
In [4] we treat the material in this section in more depth. In particular, we

study the various models more systematically. Each of the models of Vs has its
advantages and disadvantages.

2.1. Models of the principal series on the boundary of the hyperbolic
plane. We list some standard models of the principal series.

• Line model. In the introduction we already mentioned the well known model
of Vs, consisting of functions on R with the transformation behavior

(2.1) ϕ
∣∣
2s

[
a

c

b

d

]
(x) = |cx+ d|−2sϕ

(ax+ b

cx+ d

)
under

[
a
c
b
d

]
∈ G. To get a sensible result at x = −d

c , we need to require that ϕ
behaves well as |x| → ∞. By V∞

s , the space of smooth vectors in Vs we denote the
space of ϕ ∈ C∞(R) that have an expansion

(2.2) ϕ(t) ∼ |t|−2s
∞∑

n=0

cn t
−n

as |t| → ∞. Similarly, the space Vω
s of analytic vectors consists of the ϕ ∈ Cω(R)

(real-analytic functions on R) for which the series appearing on the right-hand side
of (2.2) converges to ϕ(x) for |x| ≥ x0 for some x0. Analogously, we define Vp

s ,
p ∈ N, as the space of ϕ ∈ Cp(R) satisfying (2.2) with the asymptotic expansion
replaced by a Taylor expansion of order p.

We call this the line model of Vs. It is well known and has a simple transforma-
tion formula (2.1) that reminds us of the transformation behavior of holomorphic
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§2. PRINCIPAL SERIES 5

automorphic forms. It has the disadvantages that we need to specify the behavior
as |x| → ∞ separately, and that it requires some work to check that the spaces Vω

s ,
V∞
s , . . . are preserved under the action of G.

Often we shall write ϕ | g instead of ϕ|2s g if there is no danger of confusion.

• Projective model. The relation

(2.3) ϕP(t) = (1 + t2)sϕ(t)

gives a model for which Vω
s , V ∞

s , and the Vp
s correspond to respectively Cω(P1

R),
C∞(P1

R) and Cp(P1
R) of respectively real analytic, smooth and p times continuously

differentiable functions on P1
R. The action of G is described by the more complicated

formula

(2.4) f
∣∣P
2s

[
a

c

b

d

](
t
)

=
( t2 + 1

(at+ b)2 + (ct+ d)2

)s
f
(at+ b

ct+ d

)
.

The factor
(

t2+1
(at+b)2+(ct+d)2

)s
is real-analytic on the whole of P1

R. Thus it is immedi-

ately clear that the action of G preserves real-analyticity, smoothness and p times
continuous differentiability. A drawback is that the point i, corresponding to the
choice of K as maximal compact subgroup, plays a special role. In §1.1, [4], we
mention the plane model of the principal series that does not have this drawback.

• Circle model. The circle model is directly related to the projective model by
the inverse transformations ξ = t−i

t+i and t = i 1+ξ
1−ξ , in P1

C , identifying the projective

line P1
R to the unit circle S1 in C. This leads to the circle model of Vs , in which

the action of g =
[
a
c
b
d

]
∈ PSL2(R) is described by g̃ =

[
1
1
−i
i

]
g
[
1
1
−i
i

]−1 =
[
A
B̄

B
Ā

]
in

PSU(1, 1) ⊂ PSL2(C), with A = 1
2 (a+ ib− ic+ d), B = 1

2 (a− ib− ic− d) :

(2.5) f
∣∣S
2s
g
(
ξ
)
= |Aξ +B|−2sf

(Aξ +B

B̄ξ + Ā

)
(|ξ| = 1) .

The factor |Aξ+B| is non-zero on the unit circle, since |A|2−|B|2 = 1. The relation
with the previous models is given by

(2.6) ϕS(e−2iθ) = ϕP
(
cot θ
)

= | sin θ|−2s ϕ(cot θ) .

• Realization of Vω
s in holomorphic functions. The restriction of a holomorphic

function on a neighborhood of S1 in C to S1 is real-analytic, and since every real-
analytic function on S1 is such a restriction, Cω(S1) can be identified with the
space lim−→O(U), where U in the inductive limit runs over all open neighborhoods

of S1 and where O(U) denotes the space of holomorphic functions on U . One

can rewrite the automorphy factor in (2.5) as
(
(Ā+ B̄ξ)(A+Bξ−1)

)−s
, which is

holomorphic near S1. It can be extended to a holomorphic and one-valued function
on a neighborhood of S1 in P1

C, in fact, outside a path from 0 to −B/A and a path
from∞ to −Ā/B̄. In other words, in the description of Vω

s as lim−→
U

O(U), the action

of G becomes

(2.7) ϕ|S2s g (w) =
[
(Ā+ B̄w)(A+ B/w)

]−s
ϕ(g̃w) .
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6 1. EIGENFUNCTIONS OF THE HYPERBOLIC LAPLACE OPERATOR

In the projective model, we have similar descriptions. Now U runs through
neighborhoods of P1

R in P1
C. The action (2.4) can be rewritten as

(2.8) f |P2s
[
a

c

b

d

]
(z) =

(
a2 + c2

)−s
( z − i

z − g−1(i)

)s ( z + i

z − g−1(−i)
)s

f
(az + b

cz + d

)
.

This unwieldy formula shows that the automorphy factor is holomorphic on P1
C

minus a path from i to g−1i and a path from −i to g−1(−i).
• Topology. We have not yet discussed topologies on the spaces in Vs. For the
cohomology groups, we will use Vω

s , V∞
s , and other spaces in Vs, algebraically.

The natural topology on Vp
s is given by the finitely many seminorms ‖ϕ‖j ,

0 ≤ j ≤ p, where

(2.9) ‖ϕ‖j = sup
x∈∂H

∣∣ϕ|2s Wj(x)
∣∣ ,

and where W =
[

0
−1

1
0

]
in the Lie algebra of G. By ϕ �→ ϕ|2s W we denote the

corresponding action in Vs. In the circle model, W corresponds to the differential
operator 2i ξ ∂ξ, in the projective model to (1 + t2) ∂t, and in the line model to
(1 + x2) ∂x + 2s x. The natural topology on the space V∞

s =
⋂

p∈N Vp
s is given by

the collection of all seminorms ‖ · ‖p, p ∈ N.
The topology on Vω

s
∼= lim−→O(U) can be defined as the inductive limit topology

given by the supremum norms on the sets U . The inclusion Vω
s → V∞

s is continuous
with dense image. With these topologies, Vω

s and V∞
s are irreducible continuous

representations of G. Here the restriction 0 < Re s < 1 is essential. Irreducibility
does not hold when s ∈ Z.

• Hyperfunctions. We put

(2.10) H(S1) = lim−→
U

O(U � S1) , H(P1
R) = lim−→

V

O(V � P1
R)

where U runs over the neighborhoods of S1 in C and V over the neighborhoods of
P1
R in P1

C. The spaces C−ω(S1) and C−ω(P1
R) of hyperfunctions on S1, respectively

P1
R, are the quotients in the exact sequences

(2.11)
0 −→ Cω(S1) −→ H(S1) −→ C−ω(S1) −→ 0 ,

0 −→ Cω(P1
R) −→ H(P1

R) −→ C−ω(P1
R) −→ 0 .

See, e.g., §1.1 of [30]. Actually, the quotients O(U�S1)/O(U) and O(V �P1
R)/O(V )

do not depend on the choice of U , respectively V , so they give models for C−ω(S1)
and C−ω(P1

R) for any choice of U , respectively V . Intuitively, a hyperfunction is
the jump across S1, respectively P1

R.
The actions in (2.7) and (2.8) make sense on the spaces of holomorphic functions

in deleted neighborhoods O(U � S1) and O(V � P1
R). This gives an action of G

on H(S1) and H(P1
R), and hence on the corresponding spaces of hyperfunctions.

We call Hs the space H with this action, in the realizations H(S1) and H(P1
R),

and V−ω
s the resulting representation of G in the hyperfunctions. Thus we have an

exact sequence of G-modules

(2.12) 0 −→ Vω
s −→ Hs −→ V−ω

s −→ 0 ,

realized in the circle model and in the projective model. The line model is incon-
venient for hyperfunctions.
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§2. PRINCIPAL SERIES 7

We can embed the space Cω(S1) of analytic functions on S1 in the following
way:

(2.13) ϕ ∈ O(U) �→ w �→
{

ϕ(w) if w ∈ U, |w| < 1 ,

0 if w ∈ U, |w| > 1 .

Let [f ] ∈ C−ω(S1) be the hyperfunction represented by f ∈ O(U � S1). Then
[f ] ∈ Cω(S1) if and only if the restrictions of f to U ∩ {|w| < 1} and U ∩ {|w| > 1}
both extend holomorphically across the circle. In the projective model we have a
similar embedding.

• Duality. Let ϕ, ψ ∈ H(S1) be represented by f, h ∈ O(U � S1) for some
neighborhood U of S1. There is an annulus e−a ≤ |w| ≤ ea contained in U . Let C+

be a contour |w| = c+ ∈ [e−a, 1) encircling 0 once in the positive direction, and let
C− be a similar contour |w| = c− ∈ (1, ea]. Then the integral

(2.14) 〈ϕ, ψ〉 =
1

2πi

(∫
C+

−
∫
C−

)
f(w)h(w)

dw

w

is independent of the choice of the contours, as long as they are continuously de-
formed within U � S1. So the actual neighborhood is not important. Moreover, if
f and h are both in O(U), then Cauchy’s theorem gives 〈ϕ, ψ〉 = 0. Thus, we get
an induced pairing Cω(S1)× C−ω(S1)→ C, which we denote also by 〈 · , · 〉.

The description in the projective model is

(2.15)

〈ϕ, ψ〉 =
1

π

(∫
C+

−
∫
C−

)
· ϕ(z) g(z) dz

1 + z2
,

where ϕ ∈ O(U) for some neighborhood
U of P1

R in P1
C, and g ∈ O(U �P1

R) rep-
resents ψ ∈ C−ω(P1

R). The contours
C+ ⊂ H ∩ U and C− ⊂ H− ∩ U are
homotopic with P1

R. The orientation in
C of C+ is positive and the orientation
of C− negative. It turns out that for all
g ∈ G

�
�
i

−i

C+

C−

�
�

(2.16) 〈ϕ|2−2s g, ψ|2s g〉 = 〈ϕ, ψ〉 .
Thus, we have a bilinear invariant pairing Vω

1−s × V−ω
s → C.

From (2.14) we see that for fixed h ∈ O(U�S1) the map f �→ 〈f, h〉 is continuous
with respect to the supremum norm of f on U . Thus ϕ �→ 〈ϕ, ψ〉 is a continuous
linear form on Vω

1−s for fixed ψ ∈ V−ω
s . It turns out that this gives an identification

of V−ω
s with the continuous dual of Vω

1−s.
It may happen that ϕ �→ 〈ϕ, ψ〉 can be continuously extended to V∞

s for the
topology on V∞

s . Such linear forms are distribution vectors in Vs. The space V−∞
s

consists of the distribution subspace of V−ω
s . It can be identified with the continuous

dual of V∞
1−s.

• Basis. There are elements es,n ∈ Vω
s , n ∈ Z, such that 〈e1−s,n, es,m〉 = δn,−m:

es,n(t) = (t2 + 1)−s
( t− i

t+ i

)n
,(2.17a)
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8 1. EIGENFUNCTIONS OF THE HYPERBOLIC LAPLACE OPERATOR

ePs,n(t) =
( t− i

t+ i

)n
,(2.17b)

eSs,n(ξ) = ξn .(2.17c)

Fourier theory gives an expansion ϕ =
∑∞

n=−∞ cn es,n of each element ϕ ∈ V−ω
s .

We have

(2.18)

Vω
s =

{∑
cn es,n : cn = O

(
e−a|n|) for some a > 0

}
,

V∞
s =

{∑
cn es,n : cn = O

(
(1 + |n|)−A

)
for all A > 0

}
,

V−∞
s =

{∑
cn es,n : cn = O

(
(1 + |n|)a

)
for some a > 0

}
,

V−ω
s =

{∑
cn es,n : cn = O

(
eA|n|) for all A > 0

}
.

• Isomorphism. For 0 < Re s < 1, the G-modules V−ω
s and V−ω

1−s are isomorphic.

The intertwining operator Is : V−ω
s → V−ω

1−s can be given on the basis vectors in
(2.17):

(2.19) Ises,n =
Γ(s) Γ(1− s+ n)

Γ(1− s) Γ(s+ n)
e1−s,n .

• Sheaves. The definitions of Vω
s , V∞

s and the Vp
s , are local. We can form

the corresponding sheaves. We shall use this often for Vω
s . We formulate this for

the projective model and leave the analogous definitions in the other models to the
reader.

For each open set I ⊂ P1
R, we define

(2.20) Vω
s (I) = lim−→

U

O(U) ,

where U runs through the neighborhoods of I in P1
C. Note that we allow ourselves

to write Vω
s instead of Vω

s (P1
R).

We also use the notation

(2.21) Vω
s [F ] = Vω

s

(
P1
R � F

)
where F is a finite subset of P1

R. We will simply write Vω
s [ξ1, . . . , ξn] instead of

Vω
s [{ξ1, . . . , ξn}]. If we impose a condition on the sections of Vω

s at the points ξj we
write Vω,cond

s [ξ1, . . . , ξn]. For instance, ϕ ∈ Vω,∞
s [ξ1, . . . , ξn] is an element of V∞

s

with analytic restriction to P1
R \ {ξ1, . . . , ξn}.

The G-module Vω
s is naturally included in the G-module

(2.22) Vω∗

s = lim−→
F

Vω
s

(
P1
R � F

)
,

where F runs through the finite subsets of P1
R. So Vω∗

s can be viewed as the union of
all Vω

s [F ], with identification of f ∈ Vω
s [F1] with its image in Vω

s [F ] if F1 ⊂ F . The
space Vω∗

s is not a subspace of V−ω
s . We call Vω∗

s the space of semi-analytic vectors
in the principal series representation. With an additional condition we write

(2.23) Vω∗,cond
s = lim−→

F

Vω,cond
s

(
P1
R � F

)
.

By BdSing (f) for f ∈ Vω∗

s we denote the minimal finite set {ξ1, . . . , ξn} ⊂ P1
R

such that f ∈ Vω
s [ξ1, . . . , ξn]. We call these ξj the singularities of f .
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§2. PRINCIPAL SERIES 9

• Terminology. Usually one denotes by Vp
s the space of p times differentiable

vectors in a Hilbert space VL2

s in Vs, for which the es,n form a complete orthogonal
system. We use Vp

s to denote functions that are p times continuously differentiable
in the projective of circle model. This space is smaller than the space of p times

differentiable vectors in VL2

s .
Our spaces Vω

s , V∞
s coincide with the spaces of analytic and smooth vectors

in VL2

s , and similarly for V−∞
s and V−ω

s . It seems hard and hardly interesting to

characterize spaces like Vω∗

s in terms of the Hilbert space VL2

s . To summarize: our
upper indices in V∗

s refer to the behavior of functions in the circle and projective
model, not to the behavior of vectors in a representation.

2.2. Poisson transform. The Poisson transform in this section provides us
with Es as a realization of V−ω

s . It and its inverse can be described with the function
R(t; z)1−s in (1.6) as the kernel function. (For more details see §2.3 of [4].)

On V0
s the Poisson transformation is the linear G-equivariant map given in the

line model by the simple formula
(2.24)

Psα(z) =
1

π

∫ ∞

−∞

(( t− x

y

)2
+ 1
)s−1

y−1+sα(t) dt =

∫ ∞

−∞
R(t; z)1−sα(t)

dt

π
.

The image is in Es, since R(t; · )1−s is in Es for all t ∈ R. Since R( · ; z)1−s is an
element of Vω

s (line model), the G-equivariance follows from

(2.25) R( · ; gz)|2s g = R( · ; z)s for all g ∈ Γ .

A comparison of this invariance property with (1.5) shows that R( · ; · )s is similar
to ps and qs.

We can write the Poisson transform as

(2.26) Psα(z) = 〈R( · ; z)1−s, α〉 .
This can be used to define the Poisson transformation as a linear map Ps : V−ω

s →
Es, satisfying Ps(α | g) = (Psα) | g for all g ∈ G. The following diagram, involving
the isomorphism Is in (2.19), commutes:

(2.27)

V−ω
s

Is

��

Ps
�����

���

Es = E1−s

V−ω
1−s

P1−s �������

We also have (
PsR( · ; z′)s

)
(z) = ps(z, z

′) ;(2.28)

Is R( · ; z′)s = R( · ; z′)1−s .(2.29)

(See (2.25) and (2.32) in [4].) In the other models, the Poisson kernel has the form:

RP(ζ; z)1−s = ys−1

(
ζ − i

ζ − z

)1−s(
ζ + i

ζ − z̄

)1−s

=

(
R(ζ; z)

R(ζ; i)

)1−s

,(2.30a)

RS(ξ;w)1−s =

(
1− |w|2

(1− w/ξ)(1− w̄ξ)

)1−s

(2.30b)
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10 1. EIGENFUNCTIONS OF THE HYPERBOLIC LAPLACE OPERATOR

• Bijectivity. Crucial for these notes is that Ps : V−ω
s → Es is an isomorphism

of G-modules. This follows from the next result of Helgason (Theorem 4.3 in [13])
and the G-equivariance of Ps.

Theorem 2.1. The Poisson transformation Ps : Vs → Es is an isomorphism of
G-modules for all s ∈ C with 0 < Re s < 1.

Thus, Es is a model of the principal series representation. This model has
several advantages: the action of G involves no automorphy factor at all, the model
does not give a preferential treatment to any point, and all vectors correspond to
actual functions, with no need to work with distributions or hyperfunctions.

Theorem 3.2 in [4] and the discussion preceding it give an explicit way to
describe the inverse of the Poisson transformation:

Theorem 2.2. Let u ∈ Es, and z0 ∈ H. Then the hyperfunction α on ∂H = P1
R

represented by the following function g on U �P1
R for a neighborhood U of P1

R in P1
C

g(ζ) =

⎧⎨⎩
∫ ζ
z0

[
u, RP(ζ; · )s

]
+ u(z0)R

P(ζ; z0)
s if ζ ∈ H ,∫ z0

ζ̄

[
RP(ζ; · )s, u

]
if ζ ∈ H−.

is independent of the choice of the base point z0, and u = Psα .

• Polynomial growth. We define E−∞
s , E∞

s and Eω
s as the images under Ps

of V−∞
s , V∞

s and Vω
s , respectively. For E−∞

s we can indicate here an indepen-
dent characterization: We say that a function f on D has polynomial growth if(
1− |w|2

)a
f(w) = O(1) as |w| ↑ 1 for some a ∈ R. For functions on H, this

corresponds to z �→
(

y
|z+i|2

)a
f(z) being bounded for some a.

Theorem 2.3. (Lewis; Theorem 4.1 and Theorem 5.3 in [18]) Let 0 < Re s <
1. The space E−∞

s = Ps
(
V∞
s

)
consists of the functions in Es having at most poly-

nomial growth.

3. Boundary germs and transverse Poisson transform

In a comparison of the eigenfunctions Ps,n and Qs,n introduced in (1.3), a nice
property of Ps,n is that it is defined on the whole of D, whereas Qs,n has a sin-
gularity at 0. On the other hand, near the boundary ∂D the expression in (1.3b)
of Qs,n in terms of a hypergeometric function implies a simple asymptotic relation
Qs,n(re

iθ) ∼ c (1 − r2)s einθ as r ↑ 1, whereas Ps,n(re
iθ) has a more complicated

behavior at the boundary. We can observe a similar distinction between the eigen-
functions is,α and ks,α, with α �= 0, in (1.2). The asymptotic behavior of the mod-
ified Bessel functions implies that ks,α(z) is quickly decreasing as y →∞, whereas
is,α(z) has exponential growth. Near R ⊂ ∂H however we have is,α(z) ∼ eiαx ys as
y ↓ 0, whereas ks,α has a more complicated behavior.

We capture the special boundary behavior of is,α and Qs,n by defining in Sub-
section 3.1 a space of eigenfunctions on Ω∩H for a neighborhood Ω of ∂H in P1

C with
a special behavior near the boundary. Actually, we use germs of such eigenfunctions
by taking an inductive limit over all such neighborhoods Ω. In this way we define
a space of boundary germs Wω

s isomorphic to Vω
s . The isomorphism Vω

s → Wω
s is

described explicitly in Subsection 3.2 by an operator that we call the “transverse
Poisson transformation”. In our study of cohomology groups the space Wω

s will
turn out to be an excellent model of Vω

s .
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§3. BOUNDARY GERMS AND TRANSVERSE POISSON TRANSFORM 11

For cohomology with coefficients in V∞
s we shall also need an isomorphic space

W∞
s . This cannot be a space of germs of eigenfunctions. In Subsection 3.3 we will

define it as a space of expansions.
This whole section is a brief presentation of results discussed in much more

detail in §4 and §6 of [4].

3.1. Boundary germs. We turn to λs-eigenfunctions only defined near the
boundary ∂H of the hyperbolic plane. Our aim is to use such functions to define a
space Wω

s isomorphic to Vω
s .

• The space of all boundary germs. Put

(3.1) Fs = lim−→
Ω

Es (Ω ∩H) ,

where Ω runs over the neighborhoods of ∂H in P1
C. This is a large space. The action

of the group G is induced by f | g(z) = f ◦ g(z) = f(gz) on representatives f . We
identify Es with its image in Fs.

Functions representing an element of Fs may grow fast near the boundary. We
define a subspace Wω

s by prescribing the boundary behavior:

Definition 3.1. The space Wω
s is the subspace of Fs represented by functions

f ∈ Es(Ω∩D) for some neighborhood Ω of S1 in P1
C such that f(w) = 2−2s

(
1−|w|2

)s
fS(w), where fS ∈ Cω(Ω).

In the projective model there is a similar definition, with f(z) =
(

y
|z+i|2

)s
fP(z)

where fP is real analytic on a neighborhood of P1
R in P1

C. The spaceWω
s is invariant

under the action of G in Fs.
The definition can be localized to define Wω

s (I) for open sets I ⊂ ∂H. Then fS

or fP is real analytic on a neighborhood Ω of I in P1
C. For I ⊂ R, the line model

is most convenient. Then each element of Wω
s (I) is represented by f ∈ Es(Ω ∩ H)

for a neighborhood Ω of I in C, and f(z) = ysf̃(z) on Ω∩H for some real analytic

function f̃ on Ω.
We use the notationWω

s [F ] =Wω
s (H�F ) for finite subsets F ⊂ ∂H, and define

(3.2) Wω∗

s = lim−→
F

Wω
s (∂H� F ) ,

like in (2.21) and (2.22). For a given f ∈ Wω∗

s , the set of singularities BdSing f
is the minimal finite set F ⊂ ∂H such that f ∈ Wω

s [F ]. The Bd in this notation
reminds us that we consider singularities on ∂H, and not at points of H near ∂H
where the functions fS or fP may have a singularity.

• Decomposition. Suppose f ∈ Es(U), with U = {w ∈ D : 1 − δ < |w| < 1},
represents a germ in Fs. Taking a closed curve C in the annulus U going round
once in the positive direction, with the Green’s form in (1.9) we form the integral∫

C

[f, qs( · , w)] .

This integral represents functions u ∈ Es(I) and v ∈ Es(E), where I is the region
inside the curve C, and E the annulus outside C. In Proposition 4.2, [4], we show
that v represents an element of Wω

s , which vanishes if f ∈ Es. Moving the curve C
closer and closer to S1 = ∂D, we see that u extends to D and is an element u ∈ Es.
Theorem 1.1 shows that 1

πif = u − v. Thus we have obtained Fs = Es +Wω
s . If
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12 1. EIGENFUNCTIONS OF THE HYPERBOLIC LAPLACE OPERATOR

the original function f is in Es, then v = 0 and u = 1
πif , also by Theorem 1.1. So

Es ∩Wω
s = {0}, and

(3.3) Fs = Es ⊕Wω
s .

• Restriction to the boundary. If w represents an element of Wω
s , then

f(w) = (1− |w|2)sfS(w) near the boundary, with fS extending analytically across
the boundary. Thus ρsf(ξ) = fS(ξ) is a well defined analytic function on S1, which
is an element of the circle model of Vω

s . This restriction map ρs intertwines the
actions of G in Wω

s and Vω
s . We should note that fS is real analytic on a neighbor-

hood Ω of S1 in P1
C, and that ϕ = ρsf is a real analytic function on S1 extending

as a holomorphic function on some neighborhood Ω1 of S1 in P1
C. These functions

ϕ and f̃ coincide on S1, not on the whole intersection Ω1 ∩ Ω.
In the upper half plane model of H, we obtain ρsf = fP in the projective model

of Vω
s on P1

R. The restriction ρs also gives linear maps ρs : Wω
s (I) → Vω

s (I) for

open I ⊂ ∂H. In particular, for I ⊂ R, we obtain ρsf = f̃ in the line model.

3.2. Transverse Poisson map. The restriction map ρs :Wω
s → Vω

s is bijec-
tive. In §4.2 of [4] we explicitly describe the inverse, in two different ways.

One way is by an integral transform, with the following expression in the three
models: (

P†sϕ
)
(z) =

1

i b(s)

∫ z

z̄

R(ζ; z)1−s ϕ(ζ) dζ ,(3.4a)

(
P†sϕ

P
)
(z) =

1

i b(s)

∫ z

z̄

RP(ζ; z)1−sϕP(ζ)
dζ

1 + ζ2
,(3.4b)

(
P†sϕ

S
)
(w) =

1

2 b(s)

∫ 1/w̄

w

RS(η;w)1−sϕS(η)
dη

η
,(3.4c)

where b(s) = B
(
s,

1

2

)
=

√
π Γ(s)

Γ(s+ 1
2 )

.(3.4d)

An element ϕ ∈ Vω
s (I) for some open I ⊂ ∂H extends holomorphically to some

neighborhood Ω of I in P1
C. The integrals in (3.4) define P†sϕ on Ω ∩ Ω̄ ∩H, repre-

senting a germ that can be shown to be an element ofWω
s (I). (By Ω̄ we denote the

image under complex conjugation.) On the other hand, Theorem 4.7 in [4] gives
also an integral representation of ϕ in terms of u = P†sϕ, showing that if (in the
line model) u = ysA with A real analytic on a simply connected open set Ω = Ω̄
intersecting R then ϕ is holomorphic on Ω.

The integral transformation in (3.4) has the same kernel function as that in
the Poisson transformation. The path of integration is different. We call P†s the
transverse Poisson transformation.

Theorem 3.2. The restriction map ρs : Wω
s (I) → Vω

s (I) is an isomorphism
for each open set I ⊂ ∂H. Its inverse is given by P†s.

The other way to describe the transverse Poisson transformation works locally
with the line model. The action of G allows restriction to an interval I ⊂ R. Any
f ∈ Wω

s (I) is of the form f(z) = ysA(z), with A real-analytic on a neighborhood Ω
of I in R. Let ϕ = ρsf . Then it turns out that the fact that f ∈ Es(Ω∩H) implies
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§3. BOUNDARY GERMS AND TRANSVERSE POISSON TRANSFORM 13

that A has the expansion

(3.5) A(z) =

∞∑
k=0

(−1/4)k Γ
(
s+ 1

2

)
k! Γ
(
s+ 1

2 + k
) ϕ(2k)(x) y2k .

(See Theorem 4.6 in [4].) If Ωx ⊂ Ω is an open neighborhood of x ∈ I on which
the power series of ϕ at x converges, then (3.5) converges on Ωx as well.

This relation between the expansions of A and ϕ illustrates that being a λs-
eigenfunction of Δ is a very strong property. Note that the description in (3.4) shows
that if ϕ is holomorphic on Ω, then A is real-analytic on Ω, but that conversely if A
is real-analytic on Ω1, we know only that ϕ is holomorphic on some neighborhood
Ω of I that may be much smaller than Ω1.

• Examples. For the functions in (1.2), (1.3a), (1.6) and (1.4) we have:

P†se
iαx = is,α on R in the line model ,(3.6a)

P†ses,n =
(−1)n Γ(s+ 1

2 )√
π Γ(s+ n)

Qs,n on ∂H ,(3.6b)

P†sR( · ; z)s (z′) = b(s)−1 qs(z, z
′) on R in the line model .(3.6c)

The first two examples are easily checked by computing the restriction ρs of the left
hand side. The third example is equation (4.19) in [4]. See §A.3 in the appendix
of [4] for more examples.

• Splitting of Eω
s . For s �= 1

2 , Proposition 6.3 in [4] gives the following description
of Eω

s = PsVω
s :

(3.7)
Psϕ = c(s)P†sϕ+ c(1− s)P†1−sIsϕ ,

c(s) =
tanπs

π
b(s) ,

with the intertwining operator Is in (2.19), and b(s) as in (3.4d). This implies that
each of the isomorphic G-spaces Eω

s , Wω
s and Wω

1−s is contained in the sum of the
other two, and that each two of these spaces have intersection {0}.
• Duality. The G-invariant duality of Vω

s × V−ω
1−s → C in (2.14) can be trans-

ported to a G-invariant duality Wω
s × E1−s → C by

(3.8) 〈P†sϕ,P1−sα〉 = 〈ϕ, α〉 (α ∈ V−ω
1−s , ϕ ∈ Vω

s ) .

In Proposition 4.8 in [4] it is shown that for u ∈ E1−s and f ∈ Wω
s we can

describe this duality with the Green’s form of §1.3:

(3.9) 〈f, u〉 =
b(s)

πi

∫
C

[f, u] = −b(s)

πi

∫
C

[u, f ] ,

where C is homotopic to ∂H in the domain of a representative of f , going around
once in the positive direction. Actually,

∫
C
[f, u] is well defined for f ∈ Fs, u ∈ E1−s,

being zero for f in the component Es = E1−s of the splitting F1−s = E1−s ⊕Wω
1−s

in (3.3). The second equality in (3.9) follows from (1.10b) and the fact that C is a
closed curve.
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14 1. EIGENFUNCTIONS OF THE HYPERBOLIC LAPLACE OPERATOR

3.3. Boundary jets. In Chapter 5 we study cohomology with differentiable
coefficients. We need a substitute Wp

s for p = 2, 3, . . . ,∞ for the space Wω
s of

boundary germs. In §4.4 of [4] we have constructed these spaces as a quotient. We
recall the definitions and main results. For p = 2, . . . ,∞, ω we consider the space of
functions f ∈ C2(D) for which f̃(w) = (1 − |w|2)−sf(w) extends to a Cp function

on some neighborhood of S1 in C. By Δ̃s we denote the differential operator on f̃
corresponding to Δ− λs on f . We define Gp

s and N p
s as the subspaces of functions

f = (1− |w|2)sf̃ that satisfy the conditions

(3.10a) Δ̃sf̃(w) =

⎧⎪⎨⎪⎩
o
(
(1− |w|2)p

)
if p ∈ N ,

o
(
(1− |w|2)q

)
for all q ∈ N if p =∞ ,

0 if p = ω ,

respectively

(3.10b) f̃(w) =

⎧⎪⎨⎪⎩
o
(
(1− |w|2)p

)
if p ∈ N ,

o
(
(1− |w|2)q

)
for all q ∈ N if p =∞ ,

0 if p = ω ,

as |w| → 1 in some annulus 1 − ε < |w| < 1. In [4], Lemma 4.10 it is shown that
N p

s ⊂ Gp
s . We define the space of boundary jets Wp

s as the quotient Gp
s/N p

s for
p = 2, 3, . . . ,∞, so that the following sequence is exact by definition:

(3.11) 0 −→ N p
s −→ Gp

s −→Wp
s −→ 0 .

For p = ω this agrees with our previous definition ofWω
s because a function f ∈ Gω

s

is in Nω = C2
c (D) if and only if it represents the zero element of Wω

s . The group
G acts on Gp

s and N p
s by (f | g)(w) = f(gw). This induces an action in Wp

s .
These definitions also work locally. For I ⊂ S1 open we define Gp

s (I), N p
s (I)

as above (with f still defined on all of D) but with the extendability across S1

and the growth conditions (3.10) near S1 required only near I. Thus, Gp
s and

N p
s are sheaves on S1. We define Wp

s as the quotient sheaf. One can show that
Wp

s (I) = Gp
s (I)/N p

s (I) for all I. In the upper half plane model we have correspond-

ing definitions with the factor (1− |w|2)s replaced by
(

y
|z+i|2

)s
(or simply by ys on

I ⊆ P1
R with ∞ /∈ I).

We define G-equivariant sheaf morphisms ρs : Gp
s → Vp

s by sending f ∈ Gp
s (I)

to the restriction to I of a Cp extension of 22s(1 − |w|2)−sf(w) (resp. of
(
y/|z +

i|2
)−s

f(z)). In Theorem 4.11 of [4] we prove:

Theorem 3.3. The restriction ρs induces a sheaf isomorphism ρs : Wp
s → Vp

s

for p = 2, . . . ,∞, ω.

Notice that we have global representatives in Gp
s (I) ⊂ C2(H) of elements of

Wp
s (I), even if I ⊂ ∂H is a tiny interval. We impose twice differentiability in all

of H in order to be able to apply Δ freely. Even in the analytic case p = ω the
representatives f ∈ Gω

s (I) need not be analytic on all of H, and satisfy Δf = λsf
only near the boundary.

Definition 3.4. For any f : H → C the set of singularities Sing f of f is the
complement of the maximal open set U ⊂ H such that f ∈ Es(U).

This is a rather broad notion of singularity. It depends on the spectral pa-
rameter s, and even an analytic function may have singularities in our sense. For
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f ∈ Gω
s the set Sing f is a compact subset of H. This set may be empty. The

function is,0(z) = ys is an element of Es and of Gω
s (R), with Sing is,0 = ∅. Note

that is,0 represents an element of Wω
s (R) which can be considered as an element of

Wω∗

s , as defined in (3.2). As such BdSing is,0 = {∞}.

4. Averages

For v in any G-module V all finite sums v |
∑

i gi =
∑

i v | gi converge. Some
infinite sums converge as well, for certain modules. In this section we discuss infinite
sums that will be used in the next chapters. It has turned out that these operators
form a useful tool when dealing with transfer operators. (See [5], [21].)

The infinite sums that we discuss in this section are

(4.1) Av+
g

=

∞∑
n=0

gn , Av−
g

= −
−1∑

n=−∞
gn , Av

g
=

∞∑
n=−∞

gn = Av+
g
−Av−

g
,

for g ∈ G with infinite order. If we can make sense of the convergence of such sums,
the one-sided averages Av+

g
and Av−

g
provide us with a substitute for (1 − g)−1.

The average Av
g
produces a g-invariant vector.

The elements of G of infinite order are either hyperbolic or parabolic. We treat
these two cases separately, and consider the one-sided averages and the spaces of
invariants for spaces in Vs, in particular for Vω

s .

• Notation. We shall use both f |Av
g
and Av

g
(f) to denote the average of f

over the powers of g. The latter notation emphasizes the average as an operator,
whereas the former stresses that Av

g
is an element of the completion of the group

ring of Γ.

4.1. Invariants and averages for hyperbolic elements. We start with
the easiest case, where g is hyperbolic.

Any hyperbolic η ∈ G leaves fixed two points of P1
C, which are situated on P1

R:
The repelling fixed point α(η) and the attracting fixed point ω(η). The latter is
characterized by limn→∞ ηnx = ω(η) for all x ∈ P1

R� {α(η)}. By conjugation in G,

we can arrange η =
[√

t
0

0
1/

√
t

]
with t > 1. Then α(η) = 0, ω(η) =∞.

By V g we denote the elements of V invariant under g ∈ G for any G-module V .

Proposition 4.1. The spaces (Vp
s )

η are {0} for p = 2, . . . ,∞, ω, and also the
spaces (Vω

s [0])η and (Vω
s [∞])η are zero.

See (2.21) for the definition of Vω
s [ξ].

Proof. It suffices to consider V0
s (R) = V0

s [∞] and V0
s (P

1
R � {0}) = V0

s [0]. Let
f ∈ V0

s (R) be given in the line model. Then tsf(tx) = f(x) for all x ∈ R. There
is a periodic function p on R with period log t such that f(x) = x−sp(log x) for
x ∈ (0,∞). This implies that limu→−∞ p(u) = limu→−∞ esuf(eu) = 0. Hence
f = 0 on (0,∞), and analogously on (−∞, 0). Conjugate with

[
0
1
−1
0

]
to obtain the

statement for V0
s (P

1
R � {0}). �

With the isomorphism P†s, we obtain also that the corresponding spaces (Wp
s )

η

all vanish.
For larger spaces in the principal series, the spaces of η-invariants are large.

They contain all functions transforming according a the character
[√

y
0

0
1/

√
y

]
�→ yiα
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16 1. EIGENFUNCTIONS OF THE HYPERBOLIC LAPLACE OPERATOR

with α ∈ 2π
log tZ. For each α ∈ R we give in (A.20) of [4] functions fR

s,α and fL
s,α

in Es that form a basis for the invariant functions for the character specified by α.
We have for z = ρeiφ ∈ H, ρ > 0, 0 < φ < 2π:
(4.2)

fR
s,α(ρe

iφ) =

√
π Γ(s+ 1

2 )

Γ( s+iα+1
2 ) Γ( s−iα+1

2 )
ρiα (sinφ)s2F1

(s+ iα

2
,
s− iα

2
;
1

2
; (cosφ)2

)
−

2
√
π Γ(s+ 1

2 )

Γ( s+iα
2 ) Γ( s−iα

2 )
ρiα cosφ (sinφ)s2F1

(s+ iα+ 1

2
,
s− iα+ 1

2
;
3

2
; (cosφ)2

)
,

and we obtain fL
s,α by taking the sum of the two terms instead of the difference. We

have chosen the basis such that fR
s,α represents an element ofWω

s (0,∞) and fL
s,α an

element of Wω
s (−∞, 0). We have BdSing fR

s,α = {∞} ∪ (−∞, 0], and BdSing fL
s,α =

[0,∞) ∪ {∞}. Note that the first term in (4.2) is invariant under z �→ −z̄, and the
second term anti-invariant.

Let ϕ ∈ Vω
s . For large |x| it is of the form ϕ(x) = |x|−2sϕ∞(1/x) with ϕ∞ the

real-analytic function on a neighborhood of 0 given in (2.2). For x �= 0 we have

ϕ|2s ηn(x) = tnsϕ(tnx) = t−ns|x|−2sϕ∞(t−nx−1)

as n→∞. Since Re s > 0 and t > 1, the series
∑∞

n=0 t
nsϕ(tnx) defining Av+

η
(ϕ)(x)

converges with exponential rapidity for x �= 0, so that this function is defined and
real-analytic on P1

R�{0}. It may have a singularity at 0, so in general it will belong
to the larger space Vω

s [0]. In fact, we may allow ϕ itself to belong to this larger
space, since then the convergence goes through. For Av−

η
(ϕ) we proceed similarly.

Now the point∞ may be a singularity. We have obtained the following left inverses
of 1− η:

(4.3) Av+
η

: Vω
s [0] −→ Vω

s [0] and Av−
η

: Vω
s [∞] −→ Vω

s [∞] .

If ϕ ∈ Vω
s , then the total average Av

η
(ϕ) = Av+

η
(ϕ)−Av−

η
(ϕ) is defined and belongs

to Vω
s [0,∞]η.

Proposition 4.2. The following three statements are equivalent for ϕ ∈ Vω
s :

(4.4) 1 : Av+
η
(ϕ) ∈ Vω

s , 2 : Av−
η
(ϕ) ∈ Vω

s , 3 : Av
η
(ϕ) = 0 .

Proof. (1) ⇒ (3): If Av+
η
(ϕ) ∈ Vω

s , then Av
η
(ϕ) = Av+

η
(ϕ) − Av−

η
(ϕ) ∈

Vω
s [∞]η = {0}, by Proposition 4.1. (2) ⇒ (3) goes similarly. (3) ⇒ (1)&(2): If
Av

η
(ϕ) = 0, then Av+

η
(ϕ) = Av−

η
(ϕ) ∈ Vω

s [0] ∩ Vω
s [∞] = Vω

s . �

Corollary 4.3. The kernel of Av
η
: Vω

s → Vω
s [0,∞]η is equal to Vω

s | (1− η).

Proof. Clearly, Vω
s | (1 − η) ⊂ KerAv

η
. If Av

η
(ϕ) = 0, then ϕ = ϕ |Av+

η
|(1 −

η) ∈ Vω
s | (1− η). �

For other hyperbolic elements we have

(4.5) Av+
gηg−1 : f �→ f | gAv+

η
g , Av+

η−1 = −ηAv−
η

= −Av−
η
η .

• Averages in Gp
s . With the transverse Poisson transformation these statements

can be transformed into analogous statements for Gp
s .
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§4. AVERAGES 17

For f ∈ Gp
s , with p = 2, . . . ,∞, ω, we use that, in the line model, f(z) = ys

|z|−2sf∞(1/z) on Ω ∩ H where f∞ ∈ Cp(Ω) for some neighborhood Ω of 0 in C.
This implies that Av+

η
f(z) = ys|z|−2s

∑∞
n=0 t

−nsf∞
(
1/tnz

)
converges absolutely,

uniformly on compact sets in H. We see that for each neighborhood Ω1 of ∞ in P1
C

not containing 0 there is A ∈ N such that for z ∈ C the function

z �→ t−nsf∞
(
1/tnz

)
is in Cp(Ω1). This shows that Av+

η
f ∈ Gp

s

(
P1
R � {0}

)
. Similarly we get Av−

η
f ∈

Gp
s (R). Observe that Av+

η
f is in general not an element of Gp

s = Gp
s (P

1
R).

The following lemma will be needed for the proof of Theorem A (see Lemma 7.7).

Lemma 4.4. Suppose that for f ∈ Gω
s the set SingAv+

η
f is compact in H. Then

Av+
η
f ∈ Gω

s .

Proof. The singularities of Av−
η
f (see Definition 3.4) are contained in⋃

n≤−1

η−nSing f .

Since Sing f is compact there exists ε > 0 such that

SingAv−
η
f ⊂ Sε :=

{
z ∈ H : y > ε , ε < arg z < π − ε

}
.

0 ε/ tan ε−ε/ tan ε

Sε

� �������
�����

Decreasing ε > 0 if necessary, we arrange that the compact set SingAv+
η
f is also

contained in Sε. So the η-invariant function Av
η
f = Av+

η
f − Av−

η
f determines an

element h ∈ Es(H� Sε), which satisfies h(tz) = h(z) whenever z, tz �∈ Sε. Hence h
extends as an element of Es(H)η. Thus, h has a Fourier expansion with α running
through 2π

log tZ:

(4.6) h(z) =
∑
α

hα(z) , hα(z) =
1

log t

∫ log t

0

e−iαuh(euz) du .

For each such α, the function hα is a linear combination of the functions fR
s,α and

fL
s,α in (4.2).

The function h represents an element of Wω
s [0,∞]. Hence near R it has the

form h(z) = ysh̃(z), with h̃ real analytic on a neighborhood of R � {0} in C. For
x > 0 and small values of θ > 0:

hα(xe
iθ) = (x sin θ)s

1

log t

∫ log t

0

e−iαuh̃(euxeiθ) du

= (x sin θ)s · (real-analytic on a neighborhood of (0,∞)) .

So hα represents an element of Wω
s (0,∞), and the coefficient of fL

s,α is zero. Pro-

ceeding similarly near (−∞, 0) we obtain that the coefficient of fR
s,α vanishes as well.

This works for all α ∈ 2π
log tZ, and hence h = 0. This means that Av

η
f ∈ Gω

s (R).
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18 1. EIGENFUNCTIONS OF THE HYPERBOLIC LAPLACE OPERATOR

Since Av−
η
f ∈ Gω(R), we have also Av+

η
∈ Gω

s (R). For all f ∈ Gω
s , we have

Av+
η
f ∈ Gω

s

(
P1
R � {0}

)
. Hence Av+

η
f ∈ Gω

s (P
1
R) = Gω

s . �

4.2. Invariants and averages for parabolic elements. For parabolic el-
ements of G the invariants in subspaces of Vs with high regularity vanish, like for
hyperbolic elements. The convergence of the averages is more delicate than in the
hyperbolic case.

Each parabolic element of G is conjugate in PSL2(R) to T =
[
1
0
1
1

]
or to T−1.

Parabolic elements have only one fixed point, situated on P1
R. The element T fixes

∞ ∈ P1
R.

Proposition 4.5. The space (Vp
s )

T is zero for p = 2, . . . ,∞, ω.

Proof. Each ϕ ∈ Vp
s (line model) satisfies ϕ(x) = x−2sϕ∞(1/x) = o(1) as

x→∞. If ϕ is also periodic, then it must vanish identically. �

For ϕ ∈ Vp
s (line model with p = 2, . . . ,∞, ω), the averages

(4.7) Av+
T
(ϕ)(x) =

∞∑
n=0

ϕ(x+ n) , Av−
T
(ϕ)(x) = −

−1∑
n=−∞

ϕ(x+ n) ,

converge if Re s > 1
2 or if Re s > 0 and the number C = ϕP(∞) vanishes. In general

we have ϕ(x) = C|x|−2s + O(|x|−2s−1) as |x| → ∞ and we define (for Re s > 0,
s �= 1

2 )

(4.8)

Av+
T
(ϕ)(x) =

∞∑
n=0

(
ϕ(x+ n) − C

(n+ 1)2s

)
+ C ζ(2s) ,

Av−
T
(ϕ)(x) = −

∞∑
n=1

(
ϕ(x− n) − C

n2s

)
− C ζ(2s) .

Since differentiation only improves the convergence, we see that if ϕ ∈ Vp
s , then

Av±
T
ϕ is in Cp(R). So we have Av±

T
: Vp

s → Vp
s [∞] = Vp

s (R), and more generally

(4.9) Av+
T

: Vp
s ((b, a)c) → Vp

s (b,∞), Av−
T

: Vp
s ((b, a)c) → Vp

s (−∞, a+ 1)

for a, b ∈ R with a < b, where we use the convenient notation (b, a)c for the “cyclic
interval” (b,∞) ∪ {∞} ∪ (−∞, a) ⊂ P1

R. It is clear that these one-sided averages
satisfy

(4.10) ϕ | (1− T ) |Av±
T

= ϕ |Av±
T
| (1− T ) = ϕ .

Furthermore, if we denote by Cm (0 ≤ m ≤ p) the coefficient of xm in the Taylor
expansion of ϕ|2s

[
0
1
−1
0

]
(x), then using the Euler-Maclaurin summation formula or

arguing as in [21], Chap. III, §3, we find that the functions Av+
T
(ϕ) and Av−

T
(ϕ)

have the one-sided asymptotic behavior

(4.11) Av±
T
(ϕ)(x) = |x|−2s

p−1∑
m=−1

C∗
m x−m + O

(
|x|−2s−p

)
as ±x→∞

(in the line model) with the coefficients C∗
m in both cases given explicitly by

(4.12) C∗
m =

(−1)m+1

m+ 2s

m+1∑
k=0

Bk Cm+1−k

(
m+ 2s

k

)
,
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§4. AVERAGES 19

where Bk is the kth Bernoulli number. If p = ∞ or p = ω, then (4.11) must be
interpreted as an infinite asymptotic expansion (not necessarily convergent for any
x, even in the analytic case).

For other parabolic π ∈ G, we define Av±
π

by conjugation and the relations

Av+
π−1 = −πAv−

π
and Av−

π−1 = −π−1Av+
π

= −Av+
π
π.

Using the transverse Poisson transformation P†s in §3.2 we can transport the
one-sided averages to Wp

s = Gp
s/N p

s for p = 2, . . . , ω. But we can also define the
maps Av±

T
directly at the level of Gp

s in the obvious way (for instance, Av+
T
f(z) is

defined as
∑∞

n=0 f(n+z) if C = fP(∞) vanishes and otherwise as
∑∞

n=0

(
f(n+z)−

Cys/(n+1)2s
)
+ Cζ(2s)ys). We thus obtain maps as in (4.9) with V replaced byW

or G, still satisfying the relations (4.10). The new aspect is that, as partners of the
asymptotic relations (4.11) on R, we get new asymptotic relations for Av±

T
f(x+ iy)

as y →∞.

Lemma 4.6. Let f ∈ Gp
s (I), with p = 2, . . . ,∞, ω, for some interval I ⊂ P1

R

containing ∞. For s �= 1
2 , we have

Av±
T
f(z) = ±

√
π Γ(s− 1

2 )

2 Γ(s)
fP(∞) y1−s + O

(
fP(∞) x y−s

)
+ O
(
y−s
)
.

as y →∞, uniformly in x.

Proof. If fP(∞) = 0, then f(z) = O(ys|z|−2s−1) for |z| large, so

Av+
T
f(z) =

∞∑
n=0

O

(
ys

|n+ z|2s+1

)
= O

(
ys
∫ ∞

−∞

dt

(t2 + y2)s+1/2

)
= O

(
y−s
)
.

To treat the general case, it suffices to consider one function f with fP(∞) �= 0.
We choose f = Fs, where Fs(z) = ys|z|−2s. If Re s > 1

2 we have

Av+
T
Fs(z) = ys

∞∑
n=0

(
1

((x+ n)2 + y2)s
−
∫ x+n+1

x+n

dt

(t2 + y2)s

)

+ ys
∫ 0

x

dt

(t2 + y2)s
+ c(s) y1−s .

where c(s) =
∫∞
0

(t2+1)−sdt =
√
π Γ(s− 1

2 )/2Γ(s). The sum on the right converges

for Re s > 0 and the formula remains true in this domain (for s �= 1
2 ) by uniqueness

of meromorphic continuation. We then have the uniform estimate

Av+
T
Fs(z) − c(s) y1−s � ys

∑
n∈Z

|x+ n| + 1

((x+ n)2 + y2)s+1
+ ys

∫ 0

x

y−2s dt

= O
(
y−s
)
+ O
(
xy−s

)
.

This completes the proof for Av+
T
. The estimate for Av−

T
is exactly similar. �
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CHAPTER 2

Maass forms and analytic cohomology:
cocompact groups

In this chapter, we define a map from the space EΓ
s of Γ-invariant λs-eigenfunc-

tions of the Laplace operator to the cohomology group H1(Γ;Vω
s ). In Section 5 this

is carried out for any discrete Γ ⊂ PSL2(R). If Γ has elements of infinite order, this
map is injective. In Section 7 we prove that the map is a bijection if Γ is cocompact,
thus proving part of Theorem A. As mentioned in the introduction, it is known that
EΓ
s and H1(Γ;Vω

s ) are isomorphic for cocompact Γ. Here we construct a map from
cohomology to Maass forms explicitly. This also forms a preparation for Chapter 4,
where groups with cusps are considered.

The constructions in Section 7 require a description of the cohomology using a
complex based on the geometry of the action of Γ on H. We discuss this description
in Section 6.

5. From Maass forms to analytic cohomology

This section starts with a review of the standard definitions of group coho-
mology. In §5.2 we construct a map EΓ

s → H1(Γ;Vω
s ) for any discrete Γ ⊂ G =

PSL2(R).

5.1. Group cohomology. See, e.g., [1], Chap. I and Chap. III, §1, for a
general reference.

• Resolutions. For the moment let Γ denote an arbitrary group. We recall that
the homology and cohomology groups of Γ with coefficients in a (right) Q[Γ]-module
V are defined with help of a projective resolution

· · · ∂3−→ F2
∂2−→ F1

∂1−→ F0
ε−→ Q −→ 0

of the trivial Q[Γ]-module Q as the (co)homology of the induced complexes

· · · ∂2−→ F1 ⊗Q[Γ] V
∂1−→ F0 ⊗Q[Γ] V −→ 0 ,

0 −→ HomQ[Γ](F0, V )
d0

−→ HomQ[Γ](F1, V )
d1

−→ · · · ,
namely

(5.1) Hi(Γ;V ) = Ker (∂i)/Im (∂i+1) , Hi(Γ;V ) = Ker (di)/Im (di−1) .

We work with coefficients in Q because this gives us more freedom in the construc-
tion of projective resolutions (c.f. §6.1). These cohomology groups do not depend

on the choice of the projective resolution. If F. and F̃. are two projective resolutions
of the trivial Q[Γ]-module Q, the identity map Q → Q can always be lifted to an
augmentation preserving chain map between the resolutions. This lift is unique up
to homotopy, and induces isomorphisms of the homology and cohomology groups

21
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22 2. MAASS FORMS AND ANALYTIC COHOMOLOGY: COCOMPACT GROUPS

determined by the resolutions. The construction of such a chain map F. → F̃. may
depend on many choices, so it may take work to describe the corresponding iso-
morphism of the (co)homology groups explicitly. For this reason it is important
for explicit cohomological constructions to choose a specific resolution with good
properties.

• Standard resolution. The standard model of group cohomology is obtained
from the standard resolution F gr

. , where F gr
i is the free Q[Γ]-module Q[Γi+1]. The

boundary maps ∂i, the augmentation ε, and the Γ-action are induced by

(5.2)
∂i(γ0, · · · , γi) =

i∑
j=0

(−1)j(γ0, · · · , γ̂j , · · · , γi) ,

ε(Γ0) = 1 , (γ0, · · · , γi) | γ = (γ0γ, · · · , γiγ) .

In this model, an i-cochain is represented by a Γ-equivariant map c : Γi+1 → V ,
which is then extended by linearity to c : F gr

i → V . The equivariance implies that c
is completely determined by its restriction ψ to Γi×{1} ⊂ Γi+1, and one often uses
this inhomogeneous version. (The last variable is then omitted from the notation
and the definition of the coboundary map is modified in the obvious way.)

Each F gr
i is a free Q[Γ]-module. In dimension i > 0 the rank is infinite if

|Γ| = ∞. In dimension i = 0, the cocycles satisfy c(γ) = c(1)v | γ, and hence are
determined by c(1) ∈ V Γ, and since there are no cochains in dimension −1 we have

(5.3) H0(Γ;V ) = V Γ = {v ∈ V : v | γ = v for all γ ∈ Γ} .

For homology we find that H0(Γ;V ) = VΓ, where VΓ is the submodule of coinvari-
ants V/〈v | (1− γ) : v ∈ V, γ ∈ Γ〉.

In dimension i = 1 the standard model gives homogeneous cocycles (γ0, γ1) �→
c(γ0, γ1) ∈ V satisfying for all γj ∈ Γ:

c(γ0, γ1) | γ2 = c(γ0γ2, γ1γ2) and c(γ0, γ1) + c(γ1, γ2) = c(γ0, γ2) .

Such a 1-cocycle is a coboundary if c(γ0, γ1) = f(γ0) − f(γ1) for some f : Γ → V
satisfying f(γ1γ2) = f(γ1) | γ2. Going over to inhomogeneous cocycles γ �→ ψγ =
c(γ, 1), we get the following well-known description of the first cohomology group:

(5.4)

H1(Γ;V ) = Z1(Γ;V )/B1(Γ;V ) ,

Z1(Γ;V ) = {ψ : Γ −→ V : ψγδ = ψγ | δ + ψδ for all γ, δ ∈ Γ} ,

B1(Γ;V ) = {γ �→ v | (γ − 1) : v ∈ V } .

5.2. From invariant eigenfunctions to cohomology. Let Γ ⊂ G be an
arbitrary subgroup, provided with the discrete topology. We now shall explicitly
define a linear map r : EΓ

s → H1(Γ;Vω
s ), and show that it is injective if Γ has

elements of infinite order.

• Definition of analytic cocycles associated to invariant eigenfunctions. Let
u ∈ EΓ

s . We associate to it three inhomogeneous cocycles (rγ) ∈ Z1(Γ;Vω
s ),

(pγ) ∈ Z1(Γ; Eω
s ) and (qγ) ∈ Z1(Γ;Wω

s ) which correspond to one another under
the isomorphisms Vω

s
∼= Eω

s
∼= Wω

s given by the Poisson transformation and the
transverse Poisson transformation. These cocycles are obtained by integrating the
Γ-invariant closed 1-forms

[u,R(ζ; · )s] , [u, ps( · , z)] , [u, qs( · , z)] .
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§5. FROM MAASS FORMS TO ANALYTIC COHOMOLOGY 23

The Γ-invariance follows from (1.10a), (2.25) and (1.5). We choose a base point
z0 ∈ H, and integrate over a path from γ−1z0 to z0:

rγ(ζ) =

∫ z0

γ−1z0

[u,R(ζ; · )s] ,(5.5a)

pγ(z) =

∫ z0

γ−1z0

[u, ps( · , z)] ,(5.5b)

qγ(z) =

∫ z0

γ−1z0

[u, qs( · , z)] .(5.5c)

So rγ ∈ Vω
s , pγ ∈ Es. We identify qγ with the element of Wω

s represented by it.
Changing the choice of the base point changes the cocycles by a coboundary. Thus,
we find respectively ru ∈ H1(Γ;Vω

s ), pu ∈ H1(Γ; Eω
s ) and qu ∈ H1(Γ;Wω

s ), which
depend linearly on u. Relations (2.28) and (3.6c) imply that

(5.6) p = Psr , q = b(s)P†sr ,

with b(s) as in (3.4d).
The Poisson kernel R in (5.5a) is considered to be general. Strictly speaking,

(5.5a) defines the cocycle γ �→ rγ in the line model of Vω
s . In the projective model,

work with RP, and in the circle model with RS and a base point in D. See (2.30).

• Symmetry s ↔ 1 − s. Since Eω
s = Eω

1−s, we can carry out the construction
with s replaced by 1− s. Denote the corresponding cocycles by r̂γ , p̂γ and q̂γ . For
s �= 1

2 we have r̂γ = Isrγ , p̂γ = pγ , by (2.28) and (2.29), and pγ = tanπs
π

(
qγ − q̃γ

)
,

by (3.6c) and (3.7).

(5.7)

H1
(
Γ;Vω

1−s

)b(1−s)P†1−s��

P1−s

�����
���

���
��

H1
(
Γ;Wω

1−s

)

H1 (Γ; Eω
s ) EΓ

s

r̂

��
q̂

���������������p		

r

��

q



��
���

���
���

���

H1 (Γ;Vω
s )

b(s)P†s ��

Ps

�������������

Is

��

H1 (Γ;Wω
s )

• Formulation with hyperfunctions. Another point of view uses the isomor-
phism EΓ

s
∼= (V−ω

s )Γ induced by the Poisson transformation. The short exact se-
quence (2.12) induces a long exact sequence of cohomology groups, which gives a
connecting homomorphism (V−ω

s )Γ = H0(Γ;V−ω
s ) → H1(Γ;Vω

s ). To describe this
map explicitly, we choose for a given α ∈ (V−ω

s )Γ a representative g ∈ Hs. This
gives the inhomogeneous cocycle γ �→ ψγ = g | (γ − 1) with values in Vω

s .
For a given u ∈ EΓ

s let α ∈ (V−ω
s )Γ be chosen such that Psα = u. Theorem 2.2

gives an explicit choice (depending on u and a base point z0 ∈ H) for a represen-
tative g of α, in the projective model of the principal series. Using the same base
point in (5.5a), we find for ζ ∈ H near P1

R and γ ∈ Γ:

ψP
γ(ζ) = u(z0)R

P( · ; z0)s|P2s γ (ζ) +
∫ γζ

z0

[
u(z′), RP( · ; z′)s|P2s γ (ζ)

]
z′

− u(z0)R
P(ζ; z0)

s −
∫ ζ

z0

[
u,RP(ζ; · )s

]
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24 2. MAASS FORMS AND ANALYTIC COHOMOLOGY: COCOMPACT GROUPS

= u(z0)R
P( · ; z0)s|P2s (γ − 1) (ζ) +

∫ ζ

γ−1z0

[
u,RP(ζ; · )s

]
−
∫ ζ

z0

[
u,RP(ζ; · )s

]
= u(z0)R

P( · ; z0)s|P2s (γ − 1) (ζ) + rPγ(ζ) ,

where we have used (1.10a), (2.25) and the Γ-invariance of u. For ζ in the lower
half-plane, near P1

R, we also use (1.9) and (1.10d) to find the following equality.

ψP
γ(ζ) =

∫ z0

γζ

[
RP( · ; z′)s|P2s γ (ζ), u(z′)

]
−
∫ z0

ζ̄

[
RP(ζ; · )s, u

]
=

(∫ γ−1z0

ζ̄

−
∫ z0

ζ̄

)(
−
[
u,RP(ζ; · )s

]
+ d
(
uRP(ζ; · )s

))
= rPγ(ζ) + u(γ−1z0)R

P(ζ; γ−1z0)
s − u(z0)R

P(ζ; z0)
s

= rPγ(ζ) + u(z0) R
P( · ; z0)s|P2s (γ − 1) (ζ) ,

which is the same expression as we obtained for ζ ∈ H. By holomorphic continuation
this description also holds for ζ ∈ P1

R. Thus, the cocycle γ �→ ψγ represents the
same cohomology class ru as γ �→ rγ .

Proposition 5.1. If the discrete subgroup Γ ⊂ G is infinite, then r, p and q
are injective.

Proof. For the injectivity it suffices to consider only r, since p and q are
isomorphic transforms of r. The formulation with hyperfunctions shows that r
corresponds to the connecting homomorphism δ in the part

−→ HΓ
s −→ (V−ω

s )Γ
δ−→ H1(Γ;Vω

s ) −→
of the long exact sequence associated to (2.12). Hence it suffices to show that
HΓ

s = {0}.
We use the circle model. Let g = gS ∈ HΓ

s � {0}. Interchanging if necessary
the roles of the interior and exterior of S1, we can assume that g is holomorphic
and non-zero on the annulus R = {c ≤ |w| < 1} for some c < 1. Then the 1-form

ω = d log g = g′(w)
g(w) dw is meromorphic on R, with integral residues. Since D � R

is compact and Γ is infinite and discrete, we can choose γ =
[
A
B̄

B
Ā

]
∈ Γ such that

R∪ γR = D. The Γ-invariance implies g(γw) = g(w)
(
(Ā+ B̄w)(A+Bw−1)

)s
, and

hence

ω ◦ γ − ω = s
( 1

w + Ā/B̄
− 1

w
+

1

w +B/A

)
near ∂D. It follows that ω has a meromorphic continuation to all of D and has
integral residues everywhere except at w = 0, where its residue equals s. (Note
that the point −B/A = γ−10 lies in R.) This is a contradiction since 1

2πi

∫
|w|=c

ω =
1

2πi

∫
|w|=c

d log g ∈ Z and s �∈ Z. �

6. Cohomology for cocompact groups

The description of group cohomology in §5.1 with the standard resolution F gr
.

does not use the fact that Γ acts on the hyperbolic plane. We will mention in §6.1
and §6.2 several resolutions of geometrical nature, and describe group cohomology
with these resolutions in §6.3. There we also formulate the linear maps r, p and q
in terms of these geometrical resolutions.
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§6. COHOMOLOGY FOR COCOMPACT GROUPS 25

6.1. Projective resolutions of geometric nature. Group cohomology can
be computed based on a free action of the group on a contractible set. Here we
consider cocompact discrete Γ ⊂ G, i.e., discrete subgroups for which the quotient
Γ\H is compact. The space H is contractible. However the action of Γ on H is not
free if Γ has elliptic elements, which have finite order. We circumvent this problem
by working only with Γ-modules that are vector spaces over Q.

First we discuss a resolution that is similar to F gr
. in §5.1, but rather large.

More practical are smaller resolutions, based on a Γ-tesselation of H.

• Chain complex on H. The action of Γ on the contractible space H is taken

into account in the complex F hyp
. defined by F hyp

i = Q[Hi+1], with boundary maps
∂i, augmentation ε, and group action determined by

(6.1)

∂i(P0, · · · , Pi) =

i∑
j=0

(−1)j(P0, · · · , P̂j , · · · , Pi) ,

ε(P0) = 1 ,

(P0, · · · , Pi) | γ = (γ−1P0, · · · , γ−1Pi) .

In low dimensions, we can think of the generators of Q[Hi+1] as geometric objects:
(P ) corresponds to the point P ∈ H, and (P,Q) corresponds to the geodesic segment
oriented from P to Q (degenerate if P = Q). The generator (P,Q,R) corresponds
to a (possibly degenerate) triangle with a numbering of it vertices.

The Q[Γ]-modules Q[Hi+1] need not be free if Γ has elliptic elements, which fix
points in H. To see that Q[Hi+1] is a projective Q[Γ]-module, we have to show that
there is a Q[Γ]-linear lift s : Q[Hi+1] → B for each given t : Q[Hi+1] → C in each
exact sequence of Q[Γ]-modules:

(6.2)

0 �� A �� B �� C �� 0

Q[Hi+1]

s

��

t



���������

This is done by taking lifts bx ∈ B of t(x) ∈ C for a set of x ∈ Hi+1 generating the
Q[Γ]-module Q[Hi+1], and determining s by s(x) = 1

|Γx|
∑

γ∈Γx
bx | γ, where Γx is

the stabilizer of x in Γ. Then s can be extended Q[Γ]-linearly. See [1], Chap. I, §8,
for a further discussion of projective modules.

There are augmentation preserving chain maps F gr
. → F hyp

. and F hyp
. → F gr

.
that induce isomorphisms in the cohomology groups. The latter requires uncount-
ably many choices to be made. The former can be obtained with only one choice:
Take a base point P0 ∈ H. This leads to the explicit chain map induced by
(γ0, · · · , γi) �→ (γ−1

0 P0, · · · , γ−1
i P0).

This description of (co)homology, with the chain complex on H as the projective
resolution, can be used to describe group cohomology for any discrete subgroup
Γ ⊂ G for which the isotropy groups of elements of H are finite.

The symmetric group Si+1 acts on F hyp
i by π(P0, . . . , Pi) = (Pπ0, . . . , Pπi).

Let F hyp−
i be the subspace on which Si+1 acts by the sign character. These spaces

form a subcomplex F hyp−
. ⊂ F hyp

. , which is also a projective resolution of Q. A
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26 2. MAASS FORMS AND ANALYTIC COHOMOLOGY: COCOMPACT GROUPS

chain map F hyp
. → F hyp−

. is the antisymmetrization A. determined by

(6.3) Ai : (P0, . . . , Pi) �→
1

(i+ 1)!

∑
π∈Si+1

sign(π) (Pπ0, . . . , Pπi) .

This variant F hyp−
. (in which, for example, (P,Q,R) now corresponds to a triangle

which is still oriented, but no longer has a numbering of its vertices) is often more
convenient than the resolution F hyp

. itself. (One could avoid introducing denomi-
nators by defining F hyp−

. as a quotient complex rather than a subcomplex of F hyp
. ,

but in any case they do not disturb us since we work over Q.)

• Resolutions based on a tesselation. The models that we like best are geomet-
rical, and finite in two ways: Each Fi is finitely generated as a Q[Γ]-module, and
Fi vanishes for i > 2. Here we use that Γ ⊂ G is discrete and cocompact.

By a tesselation we mean a locally finite Γ-invariant covering T of H by compact
polygons with geodesic boundary segments. The polygons overlap at most in their
boundaries. Such a covering gives rise to the set X2 = XT

2 of polygons of T
(with the orientation inherited from that of H), the set X1 = XT

1 of oriented edges
of T (with each element of X1 arising as a boundary component of two neighboring
elements of X2), and the set X0 = XT

0 of vertices. For vertices P we have ε(P ) = 1.
Each e ∈ X1 is the oriented edge eP,Q (or e(P,Q) when we want to avoid subscripts)
joining some vertex P of T to a neighboring vertex Q. Thus eQ,P = −e in Q[X1],
so that we have chosen only one of the two possible orientations of the edge in
defining X1. We then define ∂1 : Q[X1] → Q[X0] by ∂1e = (Q) − (P ). A polygon
V ∈ X2 has vertices P1, · · · , Pl, ordered corresponding to the orientation of H. The
boundary is ∂2V = eP1,P2

+ eP2,P3
+ · · ·+ ePl−1,Pl

+ ePl,P1
. The Γ-action is induced

by P �→ γ−1P in H. In this way, we have for each tesselation T a resolution F T
. :

(6.4) 0 −→ Q[X2]
∂2−→ Q[X1]

∂1−→ Q[X0]
ε−→ Q −→ 0

of the trivial Q[Γ]-module Q. So F T
i = Q[Xi] for i = 0, 1, 2, and F T

i = {0}
otherwise. As above, we can check that the Q[Xi] are projective.

If f =
∑

l αlxl ∈ F T
i with xl ⊂ B for all l for some subset B ⊂ H, then we say

that f is supported in B. The support Supp f of f is the intersection of all such B.
It is a compact subset of H, or empty if f = 0.

It is clear that F T
. is a complex. We check the exactness. We pick a base point

P̃ ∈ X0. Suppose that f =
∑

P∈X0
aP (P ) is in the kernel of ε. If f �= 0, take

P ∈ Supp f with maximal distance to P̃ , where the distance is computed along
edges in X1. If there is a neighbor Q of P with smaller distance to P̃ subtract
∂1
(
aP eQ,P

)
from f . This removes P from the support of f . Otherwise, choose an

ordering of the points with maximal distance to P̃ , and remove them successively.
(Each of them has a neighbor that has at most the same distance from P̃ .) This

process stops when f = 0, or Supp f ⊂ {P̃}, and then εf = 0 also implies f = 0.
We call a 1-chain an element C =

∑
e∈X1

ae e ∈ Z[X1]; so all ae ∈ Z. We may

view C as a (possibly non-connected) path in H along edges of T , with integral
multiplicities. If ∂1C = 0, we call it a 1-cycle. In this case, the number of times
that a point P ∈ XT

0 occurs as the terminal point of an edge in C (counted with
multiplicities) is equal to the number of times that it occurs as the initial point of
an edge in C. Thus, a 1-cycle corresponds to a combination of closed paths along
edges in XT

1 . To each z ∈ H not on the edges in C is associated a winding number
mC(z) ∈ Z of C around z. This function mC has bounded support, and is constant
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§6. COHOMOLOGY FOR COCOMPACT GROUPS 27

on the interior of the polygons in XT
2 . The 2-chain D =

∑
V ∈X1

mC(V )V ∈ Z[XT
2 ]

satisfies ∂2D = C. In particular, the kernel of ∂1 : Z[X1] → Z[X0] is equal to
∂2Z[X2]. Since Z[Xi] has no torsion, tensoring with Q gives the exactness of F T

.
at dimension 1.

If f =
∑

V ∈X2
aV V ∈ Q[X2] is non-zero, consider an edge e in the boundary

of Supp f . So e is a boundary segment of only one V ∈ X2, and aV �= 0. In ∂2f ,
this edge occurs with coefficient aV or −aV . This shows that ∂2 is injective.

If the tesselation S is a refinement of the tesselation T , there is an augmentation
preserving chain map F T

. → FS
. , where each x ∈ XT

i is mapped to the sum of the
y ∈ XS

i into which it is subdivided. This induces an isomorphism in homology and
cohomology. Since any two tesselations have a common refinement, this permits an
explicit identification of the (co)homology groups constructed using the resolutions
coming from distinct tesselations.

A triangulation is a tesselation for which all polygons V ∈ X2 are triangles.
Any tesselation can be refined to a triangulation. By Δ(P,Q,R) we denote the
triangle with vertices P , Q and R ordered by the positive orientation of H.

Let T be a Γ-invariant triangulation. An augmentation preserving chain map
a. : F

T
. → F hyp−

. can be defined by

(6.5)

a0(P ) = (P ) (P ∈ X0) ,

a1eP,Q =
1

2
(P,Q)− 1

2
(Q,P ) (eP,Q ∈ X1) ,

a2Δ(P,Q,R) =
1

6

∑
π∈S3

sign(π) (πP, πQ, πR) Δ(P,Q,R) ∈ X2) .

Since every tesselation can be refined to a triangulation, this gives explicit chain
maps between any F T

. and F hyp
. .

Next we discuss an augmentation preserving chain map f. : F gr
. → F T

. for
any tesselation T . Choose a base point P0 ∈ XT

0 , and define F gr
0 → F T

0 by
f0(γ) = γ−1P0. In dimension 1, choose for each γ ∈ Γ a path pγ ∈ Z[X1] from P0

to γ−1P0 along edges in XT
1 , and extend the definition f1(1, γ) = pγ to F gr

1 in a
Q[Γ]-linear way. For (1, γ, δ) ∈ F gr

2 , the sum C = f1(1, γ) + f1(γ, δ) + f1(δ, 1) is a
1-cycle in Z[XT

1 ]. Take D ∈ Z[XT
2 ] such that ∂2D = C. The map f2 is determined

by f2(ε, γε, δε) = ε−1D. For i > 2, put fi = 0.

The resolutions coming from tesselations and the chain maps between them
work with coefficients in Z instead of Q. We need the order of elliptic elements as
denominators for the projectivity, and we have used the denominators 2 and 3 in
the construction of the chain map a. : F

T
. → F hyp

. .

6.2. Choices of tesselations. We shall use four special types of tesselations
in particular, leading to four models of cohomology.

Tesselations of type Fd: Let F be a connected closed fundamental do-
main of Γ\H with finitely many geodesic sides. Use the tesselation T with
the Γ-translates γF as the set of polygons X2 = XT

2 = {γF : γ ∈ Γ}. If
an elliptic fixed point occurs at the center of an edge e in ∂F, we add this
point to X0, and divide the edge e into two edges.

In the resulting resolution, Q[X2] is a free Q[Γ]-module of rank one,
with basis (F). The fundamental domain has an even number 2n of of
edges in its boundary. There exists a set E of n of these edges and a set
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28 2. MAASS FORMS AND ANALYTIC COHOMOLOGY: COCOMPACT GROUPS

of generators {γe : e ∈ E} of Γ such that ∂2F =
∑

e∈E

(
e − γ−1

e e
)
. The

module Q[X1] is a free Q[Γ]-module with the e ∈ E as a basis. If Γ has
elliptic elements, then Q[X0] is not free.

Tesselations of type Dir: Fix a point P0 ∈ H that is not an elliptic fixed
point of Γ. Form the Dirichlet fundamental domain F consisting of all
points P ∈ H for which d(P, P0) ≤ d(γP, P0) for all γ ∈ Γ. This funda-
mental domain F shares sides with finitely many translates α−1F, α ∈ Γ.
These α’s form a finite set A = A−1 generating Γ. We take X0 = ΓP0,
and X1 =

{
γ−1eP0,α−1P0

: γ ∈ Γ; α ∈ A
}
. The elements of X1 divide H

into polygons indexed by the Γ-orbits of the vertices of F. This tesselation
is dual to the tesselation of type Fd for the same Dirichlet fundamental
domain. Q[X0] is free on the generator (P0). The fundamental domain F

is not necessarily the union of elements of X2.
Tesselations of type Mix: Start with a tesselation T of type Fd for a

Dirichlet fundamental domain F with a base point P0 in the interior of F.
We add to XT

0 the Γ-translates of P0, and to XT
1 the Γ-translates of the

edges from P0 to the vertices of F. We call the resulting refinement S of
T a tesselation of type Mix. It is a triangulation.

Tesselations of type Mix′: This is a further refinement of a triangulation
of type Mix. We add the Γ-translates of the intersection points of the
geodesic segments from P0 to α−1P0, with α ∈ A as above, and the sides
of F. We also add the Γ-translates of the resulting edges from P0 to the
new points. The resulting refinement is a triangulation.

• Fundamental class. Let T be a tesselation of type Fd. Since V ⊗Q Q = VΓ,
for the trivial Q[Γ]-module Q, we have

H2(Γ;Q) ∼= Ker
(
(F T

2 )Γ −→ (F T
1 )Γ
)

= (F T
2 )Γ ∼= Q ,

with the class of (F) in (F T
2 )Γ as its generator. This element of H2(Γ;Q) is the

fundamental class. We denote it by [Γ\H]. If the fundamental domain F on which
T is based is a Dirichlet fundamental domain, we have the chain map constructed
above to the resolution FS

. for the refinement S of T of type Mix or Mix′. This
chain map induces an isomorphism in homology. The fundamental class is also
represented by (F) =

∑
V ∈XS

2 , V⊂F
(V ) in the descriptions of these types. In the

description of type Dir, the fundamental class is not represented by an element of
Z[X2].

6.3. Cocycles. In each of the models, the group cohomology of Γ with values
in a right Q[Γ]-module V is obtained up to isomorphism as the cohomology of the
complex C

.
(F.;V ) = HomQ[Γ](F., V ). If Fi = Q[Xi], this is equal to the complex

Map(X., V )Γ, where we define Map(Xi, V ) as the Q-linear space of all functions
Xi → V , with the action fγ(x) = f(γx) | γ. We denote by Zi(F.;V ) the kernel of
di : Ci(F.;V )→ Ci+1(F.;V ), and by Bi(F.;V ) the image di−1 Ci−1(F.;V ).

• Dimension 0. In all models, it is easy to check that H0(Γ;V ) = V Γ.

• Dimension 1. In the model based on a chain complex on H, the 1-cochains
are the maps c : H2 → V that satisfy

(6.6) c(γ−1P, γ−1Q) = c(P,Q) | γ (Γ-equivariance) .
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§6. COHOMOLOGY FOR COCOMPACT GROUPS 29

For c to be a 1-cocycle, the additional condition is

(6.7) c(P,Q) + c(Q,R) = c(P,R) (cocycle relation) .

This implies that c(P, P ) = 0 and that c(Q,P ) = −c(P,Q). The 1-cocycle c is a
1-coboundary if c(P,Q) = f(P )− f(Q) for some Γ-equivariant map f : H→ V .

In models built from a tesselation, the description is similar. A 1-cochain is
determined by an equivariant map c : X1 → V . We can define c(p) for any path p
along edges in X1 by linearity. If c is a cocycle, then c(p) depends only on the
end points of p, so we get a map c : X2

0 → V satisfying (6.6) and (6.7). There is
always a map f : X0 → V such that c(P,Q) = f(P ) − f(Q). (Choose f(P0) ∈ V
arbitrarily for some P0 ∈ X0 and define f(P ) as f(P0) + c(P, P0).) The 1-cocycle
c is a 1-coboundary if such an f can be found satisfying f(γ−1P ) = f(P ) | γ for all
γ ∈ Γ.

For a 1-cocycle c in the model using a chain complex on H, or in a model built
on a tesselation, the choice of a base point P0 gives a corresponding group cocycle
ψγ = c(γ−1P0, P0) in the standard model in §5.1.
• Dimension 2. Here the most convenient choice is a projective resolution of
type Fd, based on the tesselation T derived from a fundamental domain F, since
Q[F2] is free with basis (F). Any v ∈ V determines a 2-cochain by (F) �→ v,
which is automatically a 2-cocycle since F3 = {0}. It is a 2-coboundary if there is
c ∈Map(X1, V )Γ such that

v =
∑
e∈∂F

c(e) =
∑
e∈E

c(e) | (1− γe) .

Since the c(e) ∈ V can be chosen arbitrarily and since the elements γ ∈ E generate
Γ, we have

(6.8) H2(Γ;V ) ∼= H2(F T
. ;V ) ∼= VΓ := V

/ ∑
γ∈Γ V |(1− γ) .

The space VΓ is called the space of coinvariants.
For general projective resolutions, the isomorphism (6.8) is obtained by eval-

uating a 2-cocycle b on a representative of the fundamental class. With the cap
product

〈 · , · 〉 : H2(Γ;V )⊗H2(Γ;Q) −→ H0(Γ;V ) ∼= VΓ ,

we can formulate this as b �→ 〈[b], [Γ\H]〉. (See, e.g., §3, Chap. V of [1].) This is a
case of Poincaré duality for Γ\H, which holds since Γ\H is a rational cohomology
manifold.

In the model using the chain complex on H, a 2-cocycle corresponds to a Γ-
equivariant map b : H3 → V satisfying

(6.9) b(P,Q,R) + b(P,R, S) = b(P,Q, S) + b(Q,R, S) .

Such a cocycle is not necessarily an alternating function of its three arguments. If
we antisymmetrize it by composition with A2 in (6.3), then we get an alternating
cocycle in the same cohomology class.

• Cocycles associated to Maass forms. In (5.5) we defined cocycles r : Γ→ Vω
s ,

p : Γ → Eω
s and q : Γ → Wω

s associated to u ∈ EΓ
s in the standard model of group

cohomology. In the model built on the chain complex on H, the corresponding
cocycles are defined for P,Q ∈ H as follows:

rP,Q(ζ) =

∫ Q

P

[u,R(ζ; · )s] ,(6.10a)
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pP,Q(z) =

∫ Q

P

[u, ps( · , z)] ,(6.10b)

qP,Q(z) =

∫ Q

P

[u, qs( · , z)] .(6.10c)

These cocycles describe the linear maps r, p and q of §5.2 in terms of the description
of the cohomology groups with a tesselation. We identify qP,Q with the element
of Wω

s represented by it. Note that the function qP,Q is not in Gω
s ⊂ C2(H) (it

may jump across the path from P to Q). The Γ-equivariance follows from that of
the bracket operator and that of the kernel functions. The cocycle relation (6.7)
is ensured by the fact that [u, v] is a closed form if u and v are λs-eigenfunctions
of Δ. See (1.10c). The same formulas work for models based on a tesselation T ,
provided P,Q ∈ XT

0 .

6.4. Algebraic description of cycles and chains. This subsection gives
some algebraic results expressing 1-chains and 1-cycles in terms of the group ring.

Let R denote the group ring Z[Γ] of an arbitrary group Γ and R0 ⊂ R the
augmentation ideal, consisting of

∑
j nj γj ∈ R such that

∑
j nj = 0. For a finite

subset A of Γ we consider the map

πA : RA → R0 , ξ �→
∑
α∈A

(1− α) ξ(α) .

Since R0 is spanned by the elements 1 − γ with γ ∈ Γ, the identity 1 − γα =
(1−α)+(1−γ)α and an obvious induction show that the image of πA is the kernel
of the natural map from R to Z[Γ/Δ], where Δ is the subgroup of Γ generated
by A. In particular, πA is surjective if (and only if) A generates Γ. As to its kernel,
we have:

Lemma 6.1. Suppose that A generates Γ and ξ ∈ KerπA. Then

(6.11)
∑
α∈A

ψα | ξ (α) = 0

holds for all Q[Γ]-modules V and all cocycles ψ ∈ Z1(Γ;V ).

Proof. For a coboundary ψ = db, we have
∑

α∈A ψα | ξ (α) = −b |πA (ξ). So
if πA(ξ) = 0, then (6.11) holds for coboundaries. Any Q[Γ]-module is a submodule
of an injective Z[Γ]-module I, for which H1(Γ; I) = {0}. (See [11], §1.4, Théorème
1.2.2.) So any cocycle ψ ∈ Z1(Γ;V ) is a coboundary in B1(Γ; I), and (6.11) holds
for all cocycles. �

Now we again take Γ to be a discrete cocompact subgroup of G, and choose
A = A−1 to be the system of generators associated to a Dirichlet fundamental
domain F with base point P . Let T be the tesselation of type Dir associated to F.
The edges in XT

1 starting from P are of the form eP,α−1P with α running through

the set A. Since every oriented edge in XT
1 is the image under Γ of one of these,

any 1-chain C ∈ Z[XT
1 ] can be written as

∑
α∈A eP,α−1P | ξ(α) for some ξ ∈ RA.

Then ∂1C =
∑

α∈A

(
[P ]− [α−1P ]

)
| ξ(α) = [P ] |πA(ξ), so C is a 1-cycle if and only

if ξ ∈ KerπA.
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7. From cohomology to Maass forms

In §5.2 we constructed an injective map from EΓ
s to H1(Γ;Vω

s ) for any infinite
discrete subgroup Γ of G. In this section we prove the bijectivity of this map when
Γ is cocompact (Theorem A), and give explicit descriptions of the inverse map
H1(Γ;Vω

s )→ EΓ
s .

The fact that H1(Γ;Vω
s ) and EΓ

s are isomorphic for cocompact groups Γ fol-
lows from the work of Bunke and Olbrich. 1 Our approach is different and more
elementary, and will also form the basis for the proofs in the non-cocompact case.

The map from Maass forms to cohomology was given in three versions p, q and
r in §5.2 (defined by (5.5) for the standard model of cohomology and by (6.10) for
the model based on a tesselation), depending whether we use the model Vω

s , Wω
s

or Eω
s for the analytic vectors in the principal series representation. For the inverse

direction we will work withWω
s and the map q. We construct an explicit one-sided

inverse of q in §7.1, and give a second description of it in §7.2. The injectivity of this
inverse map is proved in §7.3. Most of the proofs use the description of cohomology
with resolutions based on a tesselation discussed in §6.1; in Theorem 7.2 we also
give a formulation in terms of the standard model of group cohomology.

7.1. Construction of a Maass form from a given cocycle. We start
with a cocycle ψ ∈ Z1(F T

. ;Wω
s ), given in a resolution based on a tesselation T

as described in §6.1. This means that for each edge e ∈ XT
1 the boundary germ

ψ(e) ∈ Wω
s = Gω

s /Nω is given. To make this concrete, we take representatives

ψ̃(e) in Gω
s of the ψ(e). This can be done in a Γ-equivariant way: FT

1 has a finite

Q[Γ]-basis B ⊂ XT
1 , and we lift each ψ(b) ∈ Wω

s to ψ̃(b) ∈ Gω
s and then extend

by Γ-equivariance to get a cochain in C1(F T
. ;Gω

s ) = HomQ[Γ](X
T
1 ;Gω

s ). This is in
general not a cocycle, but the cocycle property dψ = 0 implies that the values of
dψ̃ are in Nω = C2

c (H). This defines an Nω-valued 2-cocycle which we still denote

by dψ̃, although it is now no longer a coboundary.
We now construct a λs-eigenfunction uψ of Δ on H. Recall that the set of

singularities Sing f of an element f ∈ Gω
s is defined as the smallest subset of H

outside of which f is a λs-eigenfunction of the Laplace operator, and is compact.
For compact x ⊂ H we denote by Nr(x) the r-neighborhood of x with respect to

the hyperbolic distance. We choose R such that Sing ψ̃(b) is contained in NR(b)

for each b in the finite set B. Then by Γ-equivariance it follows that Sing ψ̃(e) is
contained in the R-neighborhood NR(e) of e for every edge e ∈ XT

1 . For z ∈ H we
define

(7.1) uψ̃(z) =
1

πi
ψ̃(C)(z) ,

1By Theorem 1.1 in [6] the hyperfunction cohomology group H1(Γ;V−ω
s ) has finite dimension

for torsion-free cocompact Γ. It is the dual of the analytic cohomology group H1(Γ;Vω
1−s); this is

obtained in Proposition 5.2 with Poincaré duality. Proposition 7.2 in [7] gives the same duality for

the distribution cohomology group H1(Γ;V−∞
s ) and the smooth cohomology group H1(Γ;V∞

1−s).

Corollary 7.3 states the equality Hi(Γ;V−∞
s ) = Hi(Γ;V−ω

s ) in all degrees i.

Without the assumption of cocompactness the isomorphism of H1(Γ;V−∞
s ) with a space

of Maass forms is derived in [7]. The vector bundle E in §2 is, in our situation, the constant
vector bundle C over G/K ∼= H. The operator B in §3 corresponds to Δ − λs. The space EY
in §6 corresponds to C∞(Γ\H). The space EY (B)cusp at the bottom of p. 71 is the space EΓ of

invariant eigenfunctions if Γ is compact. If Γ has cusps it is the space Maass0s(Γ) of Maass cusp

forms. Proposition 8.1 in [7] gives the isomorphism between EY (B)cusp and H1(Γ;V−∞
s ).
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where C is a cycle in Z[XT
1 ] going around z once in the positive direction at a

distance greater than R. We claim that this is independent of the choice of C.
Indeed, if C1 is another 1-cycle with the same properties as C, we can deform C
into C1 in finitely many steps, where in each step we add to or subtract from C
the boundary of a polygon V ∈ XT

2 whose distance to z is greater than R. The

difference between ψ̃(C)(z) and ψ̃(C1)(z) is the sum of contributions ψ̃(∂V )(z) =

dψ̃(V )(z). Each function dψ̃(V ) is a λs-eigenfunction outside of NR(V ) and is
compactly supported, so vanishes identically outside of NR(V ) (because NR(V ) is

simply connected). In particular, each dψ̃(V ) vanishes near z, so (7.1) is the same
for C and C1. (An alternative argument would be to choose a larger R for which

dψ̃(V ) vanishes outside the R-neighborhood NR(V ) for every V ∈ XT
2 , which is

possible by equivariance since XT
2 /Γ is finite. Then the vanishing of dψ̃(V ) near z

is immediate.)
The function uψ̃ satisfies Δuψ̃ = λsuψ̃, since by the definition of R the point z

lies outside the singularities of ψ̃(e) for every e in C. It is also obviously Γ-invariant,

since we can use the cycle γC in defining uψ̃(γz) and ψ̃ is equivariant. Moreover,

uψ̃ is independent of the lifting ψ̃, and can hence be denoted simply uψ, because

any two choices of ψ̃ differ by an equivariant C2
c (H)-valued on XT

1 , so that if we

choose the cycle C far enough away from z the two values of ψ̃(C) agree. Finally,
uψ depends only on the cohomology class of ψ, because if we replace ψ by another
cocycle ψ1 = ψ+ dF in the same class, where F is an equivariant map from XT

0 to

Wω
s , then we can lift F equivariantly to a map F̃ : XT

0 → Gω
s and hence, choosing C

in (7.1) suitable for ψ and ψ1, find uψ(z)−uψ1
(z) = uψ̃(z)−uψ̃+dF̃ (z) = F̃ (∂C) = 0.

This completes the construction of the map H1(Γ;Wω
s )→ EΓ

s .
We can also use the isomorphism between the various models of cohomology to

write u[ψ] in terms of the standard model. We first observe that our construction
is independent of the tesselation chosen, since any two tesselations are contained in
a common one and a cycle C that works in (7.1) for a given tesselation also works
for any finer one. If we use a tesselation of type Dir, with a set A = A−1 ⊂ Γ of
generators of Γ giving the transition from the Dirichlet fundamental domain F to
the adjacent fundamental domains α−1F, then every edge e ∈ XT

1 can be written

uniquely as γ−1eα−1P0,P0
with γ ∈ Γ and α ∈ A, where P0 ∈ F̊ is the base point of

the tesselation, so we can associate to any group cocycle c : Γ → Wω
s a cocycle ψ

on XT
1 by setting ψ(e) = c(α)|γ. It also follows that uψ has the property stated in

Theorem A that (up to a constant factor depending on the normalization) it can
be represented on any compact subset of H by a fixed finite Z-linear combination
of functions P†s(ϕγ)|γ′ with γ, γ′ ∈ Γ, where ϕ : Γ→ Vω

s represents the cohomology
class.

We now show that the map just constructed is a left inverse to q. Start with
u ∈ EΓ

s . The class qu is represented by the map q : XT
1 →Wω

s defined by

q(e)(z) =

∫
e

[u, qs( · , z)] .

Notice that the element q(e) itself is not in Gω
s , because it is singular on e. We

choose a lifting of q to a map ψ̃ : XT
1 → Gω

s by multiplying q(b) for b ∈ B by a
smooth function that is 1 near ∂H and 0 near b and then extending equivariantly.
Now we apply formula (7.1) with C chosen far enough from z that ψ̃(C) and q(C)
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agree near z, obtaining by Theorem 1.1 the identity

(7.2) uqu(z) = uψ̃(z) =
1

πi
ψ̃(C)(z) =

1

πi

∫
C

[u, qs( · , z)] = u(z) .

In summary, we have constructed an explicit map αω
s : [ψ] �→ uψ from the

cohomology group H1(Γ;Wω
s ) to EΓ

s such that the restriction of the function uψ to
any compact subset of H is a finite linear combination of translates ψγ | γ′ (γ, γ′ ∈
Γ), and such that uqu = u for u ∈ EΓ

s .

7.2. Construction of a Maass form from a cocycle as an average. In
the previous subsection, we constructed the Maass from uψ associated to a Wω

s -
valued cocycle ψ using the surjective map Gω

s → Wω
s , where Gω

s is a space of
functions defined on the whole of H. (Recall that Wω

s is a space of boundary
germs.) We now give an alternative description in which uψ is represented as the
sum of the Γ-translates of a compactly supported function. This will be used in
§7.3 for the proof of the injectivity of the map [ψ] �→ uψ.

We choose our tesselation T so that there is a fundamental domain F for Γ\H
consisting of finitely many elements ofXT

2 . (This can be done by choosing T of type
Fd or by refining any given tesselation appropriately.) By deforming the 1-cycle C
used in the definition of uψ, we can assume that it bounds a region D consisting of
finitely many Γ-translates of this fundamental domain. Then

πi uψ(z) = ψ̃(C)(z) = ψ̃(∂D)(z) = dψ̃(D)(z) =
∑

γ∈Γ; γ−1F inside C

dψ̃(F)(γz) .

But dψ̃(γ−1F)(z) = dψ(γ−1F)(z) = 0 for γ−1F outside C, because ψ is a cocycle.
Hence

(7.3) uψ(z) =
1

πi

∑
γ∈Γ

dψ̃(F)(γz) .

Let us define the averaging operator on Γ for f : H→ C as follows:

(7.4) Av
Γ
(f) = f |Av

Γ
=
∑
γ∈Γ

f | γ .

(This is not really an average since we do not divide by |Γ|, but the term is conve-
nient.) If the sum converges absolutely on H, the result is a Γ-invariant function.
For compactly supported f the sum Av

Γ
f is locally finite, and hence absolutely con-

vergent. Note that the function dψ̃(F) is compactly supported. We have obtained:

Proposition 7.1. Suppose that the Γ-invariant tesselation T contains a fun-
damental domain F. Then for ψ ∈ Z1(F T

. ;Wω
s ) and all lifts ψ̃ ∈ C1(F T

. ;Gω
s ) of ψ,

we have

uψ =
1

πi
Av

Γ

(
dψ̃(F)

)
.

It is remarkable that Av
Γ

(
dψ̃(F)

)
is an analytic function on H, whereas dψ̃(F) ∈

Nω = C2
c (H) is not (unless it is zero). We consider this a little more concretely.

Let fb be representatives of ψ(b) for b ∈ B and choose a closed non-selfin-

tersecting curve C̃ ⊂ H (for instance, a circle near ∂H) such that all the fb are

λs-eigenfunctions of Δ on and outside C̃. Now choose ψ̃(b) ∈ Gω
s which agrees with

fb outside C̃ and has singularities only in the ε-neighborhood Nε(C̃) of C̃ for some
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ε� 1. (For instance, we can multiply fb by a smooth function which is 1 outside C̃

and vanishes on the bounded component of H�Nε(C̃).) We extend ψ̃ equivariantly

as usual. Then all singularities of all ψ̃(e) are contained in ΓNε(C̃), and the same

holds for dψ̃(F) = ψ̃(∂F) and for Av
Γ

(
dψ̃(F)

)
. Moving C̃ and changing the f̃b on

C̃ε corresponds to adding to ψ̃ a cochain with values in Nω = C2
c (H). This means

for dψ̃ that we add an element of
∑

γ∈ΓNω | (1− γ), which is annihilated by Av
Γ
,

so uψ = (πi)−1Av
Γ
(dψ̃(F)) is unchanged. Since we can deform C̃ so that Nε(C̃)

avoids the Γ-orbit of any given point in H, this makes it clear why uψ cannot be
singular anywhere.

7.3. Injectivity. It remains to show that the map αω
s : [ψ] �→ u[ψ] of the

previous section is injective. This map fits into the commutative diagram

(7.5)

H1(Γ;Wω
s )

αω
s

��

δ �� H2(Γ;Nω)

∼= 〈 · ,(F)〉
��(

Nω
)
Γ
= Nω/

∑
γ Nω|(1− γ)

AvΓ
��

Es(H)Γ � � ⊂ �� C2(H)Γ

in which δ is the connecting homomorphism in the long exact sequence

(7.6) · · · −→ H1(Γ;Gω
s ) −→ H1(Γ;Wω

s )
δ−→ H2(Γ;Nω) −→ · · ·

corresponding to the exact sequence (3.11) with p = ω and the vertical isomorphism
is the one given in (6.8). We will show the injectivity of Av

Γ
in Proposition 7.3 and

the vanishing of H1(Γ;Gω
s ) (and hence injectivity of δ) in Proposition 7.4. Together

with what we have already done this gives a proof of the following theorem, which
is a somewhat more detailed statement of Theorem A in the analytic case.

Theorem 7.2. Let Γ be cocompact. There is an isomorphism αω
s : H1(Γ;Vω

s )→
EΓ
s , given by ϕ �→ uPsϕ as defined in (7.1), inverting q introduced in §5.2.

In the description of cohomology based on a tesselation T , the function uP†sϕ

associated to a given Vω
s -valued cocycle ϕ can be given on each compact set in H by

a finite linear combination of Γ-translates of P†sϕ(b) where b runs through a finite
set of edges in XT

1 . In the standard description of cohomology the function uP†sϕ

associated to a cocycle ϕ : Γ → Vω
s can on any compact set in H be given as a

multiple of a finite sum of translates P†sϕγ |γ′ (γ, γ′ ∈ Γ).

We prove the injectivity of Av
Γ
in slightly more generality.

Proposition 7.3. The map Av
Γ

: Cp
c (H)Γ → Cp(H)Γ is injective for p =

0, 1, . . . ,∞.

Proof. We have to show that f ∈
∑

γ∈Γ C
p
c (H) | (1−γ) for a given f ∈ Cp

c (H)

with Av
Γ
(f) = 0. Choose χ ∈ C∞

c (H) such that
∑

γ∈Γ χ|γ = 1 on H. (For instance,

choose Φ ∈ C∞
c (R) with C �= 0, where C is the constant value of the integral∫

H
Φ
(
ρ(z, z′)

)
dμ(z′), with ρ( · , · ) = cosh d( · , · ) as in Table 1.1 in §1, and set
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χ(z) = 1
C

∫
F
Φ
(
ρ(z, z′)

)
dμ(z′).) Then

f = f −Av
Γ
(f)χ =

∑
γ∈Γ

(
χ|γ−1 · f − χ · f |γ

)
=
∑
γ∈Γ

(
χ|γ−1 · f

)
| (1− γ) .

In the last expression we can replace Γ by the set
{
γ ∈ Γ : γ−1Supp (χ) ∩

Supp (f) �= ∅
}
, which is finite because both χ and f have compact support. �

Proposition 7.4. If Γ is cocompact, then H1(Γ;Gω
s ) = {0}.

The proof of this proposition will occupy the rest of this subsection.

Let T be a Γ-invariant tesselation, as in §6. We put XH
0 = XT

0 ∪ H, where
H ⊂ ∂H is the orbit of a fixed point of a hyperbolic element of Γ. A given element of
Z1(F T

. ;Gω
s ) can be viewed as a Γ-equivariant function c : XT

0 ×XT
0 → Gω

s satisfying
the cocycle relation (6.7). We will extend c to a function cH on XH

0 ×XH
0 with the

same properties, with values in a larger space.
For each ξ ∈ H let ηξ be the generator of Γξ for which ξ = α(ηξ), the repelling

fixed point of ηξ. We put

(7.7) Gω∗,H
s = Gω

s +
∑
ξ∈H

Av+
ηξ
Gω
s ,

where Av+
ηξ

is the one-sided average defined in §4.1. This average maps Gω
s into

Gω
s

(
∂H � {ξ}

)
. Thus the elements of Gω∗,H

s represent germs in the space Wω∗

s

defined in (3.2). Definition 3.4 gives Sing (f) for any f : H→ C as the smallest set
such that f is a λs-eigenfunction on H � Sing (f). For f ∈ Gω∗,H

s , the set Sing f is
not necessarily compact in H. Its closure in P1

C may contain points of H.

Lemma 7.5. The map c : X0 × X0 → Gω
s corresponding to a cocycle c ∈

Map(X1,Gω
s )

Γ can be extended to a map cH : XH
0 × XH

0 → Gω∗,H
s satisfying the

conditions (6.6) and (6.7) for a Γ-cocycle.

Proof. Let ξ = α(η) ∈ H, with η = ηξ as above. For P ∈ X0 we set

(7.8) cH (P, ξ) = −cH (ξ, P ) = Av+
η
c(P, η−1P ) ∈ Gω∗,H

s .

Since the convergence of Av+
η

(
c(P, η−1P

)
(z) is absolute for each z ∈ H, we have

Av+
η

(
c(P, η−1P

)
(z) = lim

N→∞

N∑
n=0

c(η−nP, η−n−1P )(z) = lim
N→∞

c(P, η−N−1P )(z) ,

where the second equality follows from the cocycle property. For P,Q ∈ X0:

(7.9)

cH
(
P, ξ
)
− cH

(
Q, ξ
)

= lim
N→∞

N∑
n=0

(
c(η−nP, η−n−1P )− c(η−nQ, η−n−1Q)

)
= lim

N→∞

(
c(Q,P ) | ηN+1 − c(Q,P )

)
= −c(Q,P ) = c(P,Q) .

For ξ, ξ1 ∈ H we define

(7.10) cH (ξ, ξ1) = cH (P, ξ1)− cH (P, ξ) .

In (7.9) we see that this does not depend on the choice of P ∈ X0. This defines c
H

on XH
0 ×XH

0 satisfying the cocycle relation.
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Let ξ1 = γ−1ξ with γ ∈ Γ. Then ηξ1 = γ−1ηξγ. The Γ-equivariance follows:

cH
(
γ−1P, γ−1ξ

)
= c
(
γ−1P, γ−1η−1γγ−1P

)
|Av+

γ−1ηγ

= c
(
γ−1P, γ−1η−1P

)
| γ−1 Av+

η
γ = c

(
P, η−1P

)
|Av+

η
γ = cH(P, ξ) | γ . �

The construction of cH shows that for P ∈ X0 and ξ, ξ1 ∈ H:

(7.11) Sing c(P, ξ) ∩ ∂H ⊂ {ξ} , Sing c(ξ, ξ1) ∩ ∂H ⊂ {ξ, ξ1} .

We have defined cH( · , · ) as a Gω∗,H
s -valued function with the one-sided averaging

operator. Of course, we think of cH(P, ξ) as c evaluated on an infinite path from
P to ξ.

Lemma 7.6. Let cH be as in Lemma 7.5. Then cH(ξ1, ξ2) ∈ Es for all ξ1, ξ2
∈ H.

Proof. Write ηj for ηξj (j = 1, 2). We look for a path p from ξ1 to ξ2
consisting of three pieces:
(1) The union

⋃
n≥0 η

−n
1 pη−1

1 P1,P1
, with

a chain pη−1
1 P1,P1

∈ Z[X1] from η−1
1 P1

to P1 for some P1 ∈ X0.
(2) a chain pP1,P2

∈ Z[X1] from P1 to
P2 ∈ X0.
(3) The union

⋃
n≥0 η

−n
2 pP2,η

−1
2 P2

for a

chain pP2,η
−1
2 P2

from P2 to η−1
2 P2.

�ξ1

�
ξ2

Z

���P1

��
�P2

As in §7.1, there exists large R > 0 such that Sing e is contained in the R-neigh-
borhood NR(e) for every e ∈ X1. We can choose the path p such that NR(p) =⋃

e⊂p NR(e) does not intersect any given compact set Z. Then the singularities of

cH(p) = Av+
η1
c(η−1

1 P1, P1) + c(pP1,P2
) + Av+

η2
c(P2, η

−1
2 P2)

do not meet Z. Since cH(p) = cH(ξ1, ξ2) does not depend on the path p, but only
on ξ1 and ξ2, there are no singularities at all. �

Lemma 7.7. Let cH be as in Lemma 7.5. Then cH(P, ξ) ∈ Gω
s for all P ∈ X0,

ξ ∈ H.

Proof. We have Sing (cH(P, ξ))∩
∂H ⊂ {ξ}. Let ξ1 be an-
other point of H. Then
cH(P, ξ) = cH(P, ξ1) − cH(ξ, ξ1), so
Sing

(
cH(P, ξ)

)
= Sing

(
cH(P, ξ1)

)
by

Lemma 7.6. Hence Sing (cH(P, ξ))∩∂H
⊂ {ξ1}∩ {ξ} = ∅. Thus Sing

(
cH(P, ξ)

)
is a compact subset of H. Now apply
Lemma 4.4, using (7.8) and (4.3). �

�ξ

�
ξ1

Sing cH(P, ξ)

Sing cH(P, ξ1)

Lemma 7.8. We have cH(ξ1, ξ2) = 0 for all ξ1, ξ2 ∈ H.

Proof. For P ∈ X0 we have cH(ξ1, ξ2) = cH(P, ξ2) − cH(P, ξ1) ∈ Es ∩ Gω
s by

the two preceding lemmas. But Es ∩Gω
s = {0} by virtue of the splitting (3.3). �
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§7. FROM COHOMOLOGY TO MAASS FORMS 37

Proof of Proposition 7.4. For a cocycle c ∈ Z1(F T
. ;Gω

s ), we have con-
structed the extension cH to XH

0 × XH
0 . For P ∈ XT

0 and ξ ∈ H we have for all
γ ∈ Γ

c(γ−1P, P ) = cH(γ−1P, γ−1ξ) + c(γ−1ξ, ξ) + cH(ξ, P ) = 0 + cH(P, ξ) | (γ − 1) .

Lemma 7.7 shows that cH(P, ξ) ∈ Gω
s . Thus γ �→ c(γ−1P, P ) is a coboundary, and

the cohomology class [c] ∈ H1(Γ;Gω
s ) is trivial. �
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CHAPTER 3

Cohomology of infinite cyclic subgroups of PSL2(R)

The general theme of these notes is the relation between Γ-invariant eigenfunc-
tions and cohomology with values in the principal series, i.e., between the cohomol-
ogy groups H0(Γ, Es) and subspaces of H1(Γ; Es), where Γ is a discrete and cofinite
subgroup of G = PSL2(R).

In this chapter we consider the corresponding question when Γ is replaced by
an infinite cyclic subgroup Δ = 〈γ〉 generated by a hyperbolic or parabolic element
γ of G. This case is of course far easier, since the structure of Δ and the geometry
of Δ\H are much simpler than those of Γ and Γ\H, so that we can get very explicit
descriptions of the corresponding cohomology groups. This will give information
for the case of real interest, since the natural morphisms Hi(Γ; Es) → Hi(Δ; Es)
are injective for both i = 0 and i = 1 and we can therefore identify the Γ-invariant
eigenfunctions and the cohomology groups of Γ with subspaces of explicit vector
spaces. In particular, we show in §8.3 that a Vω

s -valued 1-cocycle corresponding
to an Γ-invariant eigenfunction in EΓ

s can be reconstructed from its value on a
single hyperbolic or parabolic element of Γ. And in the Propositions 9.11 and 9.15,
and in Theorem 9.20 we give a cohomological characterization of various spaces
of eigenfunctions invariant under a parabolic element of Γ. These results will be
essential in Chapter 4, where Γ is a discrete subgroup with cusps. The results in
the present chapter are the technical heart of these notes.

As in §4, we arrange by conjugation that in the parabolic case Δ = 〈T 〉, with
T =

[
1
0
1
1

]
leaving fixed ∞, and in the hyperbolic case Δ = 〈η〉, with η =

[
t
0

0
1/t

]
,

t > 1, leaving fixed α(η) = 0 and ω(η) = ∞. By conjugation the results that we
obtain are valid for general infinite cyclic Δ ⊂ G. It is convenient to work in the
upper half plane model of H.

8. Invariants

The elements of EΔ
s have a periodicity under z �→ z + 1 (parabolic case) or

z �→ tz (hyperbolic case). In §8.1 we discuss the corresponding Fourier expansions,
and in §8.2 we show how to associate Δ-invariant holomorphic functions to elements
of EΔ

s . In §8.3 we show how we can recover u from the value rγ of a cocycle r
representing ru, where r : EΔ

s → H1(Δ;Vω
s ) is the injection given in §5.2.

8.1. Fourier expansion. Recall that Propositions 4.1 and 4.5 show that(
V0
s

)Δ
= {0}. On the other hand, (V−ω

s )Δ ∼= EΔ
s has infinite dimension. We

now consider this space in more detail.

• Parabolic case. Each u ∈ ET
s has an absolutely convergent Fourier expansion

(8.1) u = A0 i1−s,0 + B0 is,0 +
∑
n�=0

(
An ks,2πn + Bn is,2πn

)
.

39
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40 3. COHOMOLOGY OF INFINITE CYCLIC SUBGROUPS OF PSL2(R)

with ks,ν , is,ν as in (1.2). For s = 1
2 the Fourier term of order zero must be replaced

by a0 is,0 + b0 �s,0 with �s,0 defined as in §1.2. The terms with a factor Bn represent
elements of Wω

s (R). We will sometimes write An = An(u) and Bn = Bn(u).
The well known asymptotic behavior of the modified Bessel functions ([32],

§7.23), Ks−1/2(t) ∼ e−t
√
π/2t and Is−1/2(t) ∼ et/

√
2πt as t → ∞, implies the

following necessary and sufficient conditions for the convergence of (8.1) in the
upper half plane:

(8.2) An = O
(
eε|n|
)
, Bn = O

(
e−|n|/ε) for all ε > 0 .

For s �= 1
2 , we write

(8.3) ET
s = Ks ⊕ Is ,

where elements of Is have only terms with is,2πn in their Fourier expansion, and
elements of Ks have only ks,2πn and i1−s,0. The space K0

s inside Ks is characterized
by the additional condition B0 = 0. So K0

s is the space of elements of ET
s that have

only ks,2πn, n �= 0, in their Fourier expansion. This characterization works also to
define K0

1/2, whereas K1/2 is undefined.

The K-Bessel function and all its derivatives have exponential decay at ∞, as
follows from §7.23 and §3.71 in [32]. This implies that if u ∈ K0

s then ∂l
z∂

m
z̄ u(z)

has exponential decay for all choices of l,m ∈ N.

• Hyperbolic case. Here we use the eigenfunctions fR
s,α and fL

s,α in (4.2). Each
u ∈ Eη

s has an absolutely convergent Fourier expansion

(8.4) u =
∑
α

(
Aα fR

s,α +Bα fL
s,α

)
,

where α runs through 2π
log tZ.

Lemma 8.1. The coefficients in (8.4) satisfy

(8.5) Aα , Bα � e−π|α|/2 (|α| → ∞) .

Proof. It is convenient not to use the basis
{
fR
s,α, f

L
s,α

}
of the space of func-

tions transforming according to
[√

y
0

0
1/

√
y

]
�→ yiα, but the basis

{
f+
s,α, f

−
s,α

}
in

(A.17) of [4].
We write the Fourier terms as pαf

+
α,s+ qαf

−
α,s. For each ϕ ∈ (0, π) the terms in

the Fourier expansion of u(ρeiϕ) are bounded, uniformly in α ∈ 2π
log tZ. The same

holds for the derivatives with respect to ϕ. Then equation (A.18) in [4] implies
that the pα and qα are bounded. We express Aα and Bα in pα and qα by inverting
relation (A.20) in [4], and use of Stirling’s formula to obtain (8.5). �

8.2. Holomorphic functions associated to periodic eigenfunctions. We
can encode elements of EΔ

s by a pair of holomorphic functions or by a holomorphic
function and a hyperfunction. To do this we use the growth conditions (8.2) and
(8.5) for the coefficients in the Fourier expansions.

• Parabolic case. Let s �= 1
2 . For u ∈ ET

s , the formula

(8.6) β(u)(ζ) =
∑
n∈Z

Bn e
2πinζ
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§8. INVARIANTS 41

defines β(u) ∈ O(C)T , and each element of O(C)T occurs in this way. Alternatively,
one may use

∑
n Bn q

n ∈ O(C∗), with q = e2πiζ . The coefficients An give rise to

(8.7) α(u) =
∑
n∈Z

An e
P
s,n ∈ C−ω(P1

R) ,

with ePs,n as in (2.17b). Thus, the bijective correspondence u↔
(
α(u), β(u)

)
codes

elements of ET
s as pairs consisting of a hyperfunction in C−ω(P1

R) and a holomorphic
function in O(C)T . The following proposition shows that the function β(u) can be
related independently to the Vω

s -valued cocycle r associated to u in (5.5a).

Proposition 8.2. Let s �= 1
2 , u ∈ ET

s , z0 ∈ H.

i) With rT (ζ) =
∫ z0
z0−1

[u,R(ζ; · )s], and with the average Av
T
in §4.2 and the

gamma factor b(s) in (3.4d):

(8.8) β(u)(ζ) =
−b(s)
πi

Av
T
(rT )(ζ) =

−b(s)
πi

∫ iy0+∞

iy0−∞

[
u,R(ζ; · )s

]
.

ii) Put Rs(t; · ) = Av
T

(
R(t; · )s

)
. Then Rs(t, z) = R1

s(z − t) where R1
s ∈ ET

s

has the Fourier expansion

(8.9) R1
s(z) =

√
π
Γ
(
s− 1

2

)
Γ(s)

i1−s,0(z) +
2πs

Γ(s)

∑
m �=0

|m|s− 1
2 ks,2πm(z) .

iii) The functions β(u) and Rs are related by

(8.10) β(u)(t) =
−b(s)
πi

∫ z0

z0−1

[u,Rs(t; · )] .

The integral in (8.8) converges absolutely if Re s > 1
2 , and has to be understood

in the regularized sense discussed in §4.2 if 0 < Re s ≤ 1
2 .

Before giving the proof of Proposition 8.2, we state the corresponding result
for the hyperbolic case, which will be proved in §8.3.
• Hyperbolic case. Elements u ∈ Eη

s are coded by two holomorphic functions

(8.11)

βR(u)(ζ) =
∑
α

Aα ζiα with Re ζ > 0 ,

βL(u)(ζ) =
∑
α

Bα (−ζ)iα with Re ζ < 0 ,

where α runs through 2π
log tZ. The Fourier coefficients Aα and Bα are those in (8.4).

The holomorphic functions βR(u) and βL(u) are invariant under ζ �→ tζ. We shall
prove:

Proposition 8.3. Let u ∈ Eη
s , and z0 = iy0, y0 > 0, and put

rη(ζ) =

∫ iy0

iy0/t

[
u,R(ζ; · )s

]
.

Then

(8.12)
−b(s)
πi

Av
η
(rη)(ζ) =

{
βR(u)(ζ) for Re ζ > 0 ,

−βL(u)(ζ) for Re ζ < 0 .
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42 3. COHOMOLOGY OF INFINITE CYCLIC SUBGROUPS OF PSL2(R)

Proof of Proposition 8.2. We can assume that Re s > 3
2 since the Fourier

expansion (8.1) with fixed coefficients An and Bn gives an analytic continuation of
the function u(z) (still belonging to ET

s ), and hence also of rT (ζ), to all complex
values of s (with β(u) ∈ O(C)T constant), and since all of the expressions in
(8.8), (8.9) and (8.10) are meromorphic in s. For Re s > 3

2 the sum defining the
average Av

T
(rT ) converges absolutely and by (1.9) and partial integration we get

for |Im ζ| < y0

Av
T
(rT )(ζ) =

∫
Im z=y0

[
u,R(ζ; · )s

]
=

∫
Im z=y0

−i
2

{
u,R(ζ; · )s

}
= − i

2

∫ ∞

−∞

(
R(ζ; y0 + x)s

∂u

∂y
(y0 + x)− u(y0 + x)

∂

∂y
R(ζ; y0 + x)s

)
dx .

The function u and its derivatives may be unbounded when z varies in H. On a
horizontal line however, they stay bounded. We insert the Fourier expansion of u,
and consider the term of order m, which has the form fm(y) e2πimx.

(8.13)
− i

2

∫ ∞

−∞
e2πimx

(
f ′
m(y0)R(ζ; z)s − fm(y0)

∂

∂y
R(ζ; z)s

∣∣
y=y0

)
dx

= − i

2
e2πimζ (f ′

m(y0)Lm(y0)− fm(y0)L
′
m(y0)) ,

where

Lm(y) =

∫ ∞

−∞
e2πimx R(0; z)s dx = ys

∫ ∞

−∞

e2πimx

(x2 + y2)s
dx .

The last expression is considered in (1.8). The contribution of the term of order m
is given by a Wronskian, and can be computed with use of the definitions in (1.2)
and (A.4) in [4]. We find:

(8.14) Av
T
(rT )(ζ) = − πiΓ(2s)

22s−1 Γ(s)2

∑
m

Bme2πimζ = −πi b(s)−1 β(u)(ζ) .

Now equation (8.9) is obtained with the summation formula of Poisson, and finally

Av
T
(rT )(ζ) =

∑
n

∫ z0−n

z0−n−1

[u,R(ζ + n; · )s] =

∫ z0

z0−1

[u,Rs(ζ, · )] . �

8.3. Reconstruction. Proposition 5.1 has shown that u �→ rγ is injective,
both for γ = T and γ = η. To reconstruct u explicitly from rγ , we first pass to the
image qγ = b(s)P†srγ under the transverse Poisson transform and then reconstruct
u from qγ .

With the base point z0 ∈ H as in the previous subsection, we have

Av
T
(qT )(z) =

∫
Im z′=z0

[u, qs( · , z)] , Av
η
(qη)(z) =

∫ i∞

0

[u, qs( · , z)] .

The second integral converges absolutely for Re s > 0, while the first has to be
understood in the regularized sense, under the assumption s �= 1

2 . Both integrals
define λs-eigenfunctions of the Laplace operator outside the path of integration.
Thus we have uD, uU , uL, uR in Es(X), where X in each case is a component of H
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§8. INVARIANTS 43

minus the path of integration:∫
Im z′=y0

[u, qs( · , z)] =

{
uD(z) for z below the path ,

uU (z) for z above the path ,
(8.15a)

∫ i∞

0

[u, qs( · , z)] =

{
uL(z) for z on the left of the path ,

uR(z) for z on the right of the path .
(8.15b)

Local deformation of the path of integration shows that these four functions extend
to H, yielding four elements of Es. Theorem 1.1 implies that

(8.16) uU (z)− uD(z) = uL(z)− uR(z) = πi u(z) .

In the parabolic case, uD represents an element of Wω
s (R). We use that the

restriction to the boundary ρs inverts the transverse Poisson transformation. With
(5.6), §4.2 and Proposition 8.2, we have for ξ ∈ R:

(ρsAvT qT )(ξ) = b(s) (ρsAvTP
†
srT )(ξ) = b(s) (Av

T
rT )(ξ) = −πi β(u)(ξ) .

Since is,2πn(z) ∼ yse2πinx as y ↓ 0, this implies that

uD(z) = −πi
∑
n

Bnis,2πn(z) .

This Fourier expansion identifies −uD as the component of πi u in Is in the direct
sum decomposition ET

s = Ks ⊕ Is of (8.3). Then uU is the component in Ks. We
have obtained:

Proposition 8.4. Let s �= 1
2 . Each function u ∈ ET

s can be recovered as

(8.17) u = (πi)−1uU − (πi)−1uD ∈ Ks ⊕ Is
from the value qT ∈ Wω

s of the cocycle q in (5.5c) representing qu, by the regularized
integral in (8.15a).

Remark. By (3.6c) the transverse Poisson transform of the function Rs( · , z′) oc-
curring in part ii) of Proposition 8.2 is the resolvent kernel function

(8.18) Qs(z, z
′) = b(s)−1

(
Av

T
qs(z, · )

)
(z′)

on {(z, z′) ∈ H2 : Im z �= Im z′}. It satisfies Qs(z, z
′ + 1) = Qs(z, z

′) = Qs(z
′, z).

On Im z′ < Im z we use Pse
iαx = is,α to obtain the expansion

(8.19)

Qs(z, z
′) = b(s)

(
PsR(z( · , z)

)
(z′) =

1

s− 1
2

i1−s,0(z) is,0(z
′)

+
2πs+ 1

2

Γ(s+ 1
2 )

∑
m �=0

|m|s− 1
2 k2,sπm(z) is,−2πm(z′) .

In the hyperbolic case, uL represents an element of Wω
s (−∞, 0), and uR an

element of Wω
s (0,∞). Thus (πi)−1uL is given by the part of the Fourier expansion

of u with fL
s,α, and −(πi)−1uR by the part with fR

s,α:

(8.20) uL = πi
∑
α

Bαf
L
s,α , uR = −πi

∑
α

Aαf
R
s,α .

Hence ρsuR(ξ) = −πi βR(ξ) for ξ > 0, and ρsuL(ξ) = πi βL(ξ) for ξ < 0. This
proves Proposition 8.3. Furthermore, we have obtained:
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44 3. COHOMOLOGY OF INFINITE CYCLIC SUBGROUPS OF PSL2(R)

Proposition 8.5. Let u ∈ Eη
s , and let q ∈ Z1(〈η〉,Wω

s ) be a cocycle represent-
ing qu. The integral in (8.15b) reconstructs u from qη as u = (πi)−1 (uL − uR),
with the two terms corresponding as in (8.20) to the fL and fR terms in the Fourier
expansion (8.4).

9. Coinvariants

In this section the subject of study is Vω
s

/(
Vω
s | (1− γ)

)
, for γ = η and γ = T ,

as before. The parabolic case γ = T is more complicated than the hyperbolic case
γ = η. The parabolic case will lead us to consider several G-modules between Vω

s

and Vω∗

s , like Vω∗,∞
s and Vω∗, exc

s mentioned in the introduction.
The main theme in this section is the correspondence between various spaces

of T -invariant eigenfunctions and cohomology groups. The main results are Propo-
sition 9.11, Proposition 9.15 and Theorem 9.20. We will use these and other results
from this section in Chapter 4, where we study the cohomological characterization
of various spaces of Γ-invariant eigenfunctions for discrete subgroups Γ ⊂ G with
cusps.

9.1. The first cohomology group and averaging operators. Let γ = T
or η and Δ = 〈γ〉 as in the previous section. We have H1(Δ;Vω

s ) ∼= (Vω
s )Δ ∼=

Vω
s /
(
Vω
s | (1 − γ)

)
, by associating to v ∈ Vω

s the cocycle ψ with ψγ = v. (This
can be seen as a special case of Poincaré duality, since VΔ = H0(Δ;V ) and the
classifying space of Δ is a circle.)

To apply the averaging operator Av
γ
defined in §4, we assume in the parabolic

case that s �= 1
2 . Since v | (1 − γ) |Av±

γ
= v, the space Vω

s | (1 − γ) is contained

in the kernel of Av
γ
= Av+

γ
− Av−

γ
: Vω

s →
(
Vω∗

s

)γ
. So Av

γ
induces a linear map

H1(Δ;Vω
s )→

(
Vω∗

s

)Δ
.

The hyperbolic case is easy to treat. Here the image of Av
γ

is contained

(Vω
s [0,∞])Δ ∼= Vω

s (−∞, 0)Δ ⊕ Vω
s (0,∞)Δ (cf. (2.21)), and we have:

Proposition 9.1. Let Δ = 〈η〉 with η hyperbolic. Then the map

Av
η
: H1(Δ;Vω

s ) −→ Vω
s [0,∞]Δ

is injective, and the natural map H1(Δ;Vω
s )→ H1(Δ;Vω∗

s ) is zero.

Proof. The first statement is equivalent to Corollary 4.3. For v ∈ Vω
s we set

h = Av
η
(v) ∈ Vs[0,∞]Δ and define f ∈ Vω∗

s by f(x) = − log |x|
log t h(x). Since h|η = h,

the function f satisfies f | (1− η) = h. �

The parabolic case is more complicated. In that case the map Av
T
: (Vω

s )Δ →
(Vω

s [∞])Δ is no longer injective.

9.2. Invariant eigenfunctions on subsets of the upper half-plane. In
the main theorems of these notes, we give isomorphisms between on the one hand
spaces of Maass forms and larger spaces of invariant eigenfunctions, and on the
other hand cohomology groups. In this section we study similar relations, but now
between spaces of T -invariant eigenfunctions and cohomology groups for 〈T 〉. This
subsection serves to define such spaces of T -invariant eigenfunctions.
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Definition 9.2. We put

(9.1)

E↑
s = lim−→

Y

Es
(
{z ∈ H : Im z > Y }

)
,

E↓
s = lim−→

ε

Es
(
{z ∈ H : 0 < Im z < ε}

)
.

Thus, elements of E↑
s may be viewed as eigenfunctions defined on some half-

plane Im z > Y , where Y may depend on the function. Similarly, elements of E↓
s

are defined on some strip 0 < Im z < ε. Representatives of elements of (E↑
s )

T and
(E↓

s )
T have Fourier expansions of the form indicated in (8.1) (modified as indicated

there if s = 1
2 ) converging on some half-plane or strip. The Fourier coefficients

satisfy weaker growth conditions than those indicated in (8.2), namely
(9.2)

u ∈ (E↑
s )

T ⇔ An = O
(
eε|n|
)
for some ε > 0 and Bn = O

(
e−|n|/ε) for all ε > 0 ,

u ∈ (E↓
s )

T ⇔ An = O
(
eε|n|
)
for all ε > 0 and Bn = O

(
e−|n|/ε) for some ε > 0 .

Definition 9.3. For s �= 1
2 , we define K↑

s = Ks∩E↑
s as the subspace of elements

of (E↑
s )

T represented by functions with only terms ks,2πn, n �= 0, and i1−s,0 in their
Fourier expansion. For all s we define (K0

s )
↑ as the subspace of (E↑

s )
T of elements

represented by a Fourier expansion containing only terms ks,2πn, n �= 0, and I↓
s as

the subspace of elements of (E↓
s )

T with representatives containing only terms is,2πn
in their Fourier expansion.

The cocycles r, p and q on 〈T 〉 in (5.5) make sense for u ∈ (E↑
s )

T , provided we
take Im z0 sufficiently large. The proof of Proposition 8.2 can be extended to give:

Lemma 9.4. Let s �= 1
2 . Let u ∈ (E↑

s )
T . The cohomology class ru is repre-

sented by the cocycle r determined by rT (ζ) =
∫ z0
z0−1

[u,R(ζ; · )s] for Im z0 suffi-

ciently large. The average Av
T
(rT ) ∈ Vω

s [∞]T is represented by the holomorphic

function −πi b(s)−1 β(u), where β(u) ∈ O(C)T is defined by an expansion similar
to (8.6) with Bn the coefficient of is,2πn in the Fourier expansion of u.

We note that although u ∈ (E↑
s )

T is represented by a function on some half-
plane Im z > Y , the corresponding series

∑
n Bnis,2πn converges on all of H, and

hence β(u) is holomorphic on C.
The average Av

T
(rT ) in Lemma 9.4

is defined on a neighborhood of R in C.
The average Av

T
(qT ) makes sense on

two regions in H. We now consider the
consequences of this fact.

Let h be a function on H represent-
ing an element ofWω

s . Such an element
is in Es(H�C) where C ⊂ H is compact.

R

h

C

The averaging operator defines two λs-eigenfunctions of the Laplace operator,
on regions Im z > Y and 0 < Im z < ε, where ε > 0 and Y > 0 are such that the
regions {z ∈ H : y ≤ ε} and {z ∈ H : y ≥ Y } are both contained in the domain
of h. We obtain:

(9.3)
Av↑

T
(h) represented by Av

T
(h) on a region Im z ≥ Y ,

Av↓
T
(h) represented by Av

T
(h) on a region 0 < Im z < ε .
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46 3. COHOMOLOGY OF INFINITE CYCLIC SUBGROUPS OF PSL2(R)

R

C

Av↓
T
(h)

Av↑
T
(h)

Im z=ε

Im z=Y

Lemma 9.5. i) If s �= 1
2 , then for all boundary forms h ∈ Wω

s

Av↓
T
(h) ∈ I↓

s , Av↑
T
(h) ∈ K↑

s .

ii) If the boundary form h ∈ Wω
s satisfies (ρsh)

P(∞) = 0 then for all s with
0 < Re s < 1

Av↓
T
(h) ∈ I↓

s , Av↑
T
(h) ∈

(
K0

s

)↑
.

Proof. Using the restriction ρs :Wω
s → Vω

s , we put ϕ = ρsh ∈ Vω
s . We follow

the reasoning in the proof of Proposition 8.2 with u replaced by Av↓
T
(h), keeping the

integral on a line with y0 < ε. Thus, we get a holomorphic 1-periodic function on
|Im ζ| < ε. Applying P†s, we get a series expansion for Av↓

T
(h) in the eigenfunctions

is,2πn.

Next we turn to Av↑
T
(h). There is no corresponding “Av↑

T
(ϕ)”. Let first s �= 1

2 .

Lemma 4.6 implies that Av
T
(h)(z) = Cy1−s +O(y−s) as y →∞. This shows that

the Fourier expansion of this periodic function consists of multiples of i1−s,0 and
ks,2πn, n �= 0. If (ρsh)

P(∞) = 0, the same lemma gives an estimate O(y−s), which
shows that we have only terms ks,2πn, n �= 0. �

Proposition 9.6. For u ∈ (E↑
s )

T put h(z) =
∫ z0
z0−1

[u, qs( · , z)]. Then Av↓
T
(h) ∈

Is, and u is reconstructed from h by

(9.4) u(z) = (πi)−1Av↑
T
(h)(z)− (πi)−1Av↓

T
(h)(z) (Im z sufficiently large) ,

giving the decomposition (E↑
s )

T = K↑
s ⊕ Is, which generalizes (8.17).

Proof. The definition of h generalizes the cocycle q in (5.5c). We have to take
z0 in the domain of a representative of u. The function h is inWω

s by the properties
of the kernel function qs. Following the reasoning in §8.3 we get the decomposition
(8.17), and obtain also that Av↓

T
(h)(z) doe depend on z0 with Im z0 > Im z. This

implies that Av↓
T
(h) ∈ Is. �

9.3. Smooth semi-analytic vectors. It will turn out, in (12.6) and (14.8a),
that the period functions ψ attached to modular Maass cusp forms in the introduc-
tion are elements of the space Vω∗,∞

s defined in (2.23), which is equal to Vω∗

s ∩V∞
s .

We call it the space of smooth semi-analytic vectors in Vs.
For W we use the analogous notational convention Wω∗, cond

s as for V in (2.23)
and below (2.21), where “cond” denotes a condition imposed at the singularities.
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The space Wω∗,∞
s consists of the elements of Wω∗

s with representatives f(z) =(
y

|z+i|2
)s

aP(z) with aP real analytic on an open set Ω ⊂ P1
C with P1

R � Ω finite,

such that ρs : ξ �→ aP(ξ) on P1
R ∩ Ω extends as an element of V∞

s .

The G-modules Vω∗,∞
s and Wω∗,∞

s are isomorphic with the inverse isomor-
phisms

(9.5) ρs :Wω∗,∞
s −→ Vω∗,∞

s , P†s : Vω∗,∞
s −→Wω∗,∞

s .

We can produce elements of Vω∗,∞
s by the following integral, discussed in [21],

Chapter 2, §2:

Proposition 9.7. Let u ∈ (K0
s)

↑. Then

(9.6) fz0(ζ) =

∫ ∞

z0

[u,R(ζ; · )s] ,

with Re z0 sufficiently large, defines fz0 ∈ Vω,∞
s [∞], independent of the path of

integration from z0 to ∞, provided ∞ is approached along a vertical line.
As z0 tends to ∞ along a vertical half-line, then fz0 tends to 0 in the topology

of V∞
s , defined by the seminorms ‖ · ‖n in (2.9) for all n ∈ N.

The second part of this proposition is one of the few places in these notes where
we mention the topology of principal series spaces. We will use this part in the proof
of Theorem 19.1.

Proof. In part I, the first statement has been proved with the proposition
in §2 of Chap. II and use of L-functions. Here we also consider the limit in the
topology of V∞

s .
It suffices to consider z0 = iy0 with y0 > 1. We work in the projective model.

From (2.30) and (1.9) we conclude for ζ ∈ R:

(9.7) fiy0
(ζ) =

∫ ∞

y0

ys
(

ζ2 + 1

ζ2 + y2

)s(
i uz(iy) +

s

2y
u(iy)

ζ − iy

ζ + iy

)
dy .

The exponential decay of u and uz implies convergence. The coefficients in the

expansion in ζ − ζ0 of

(
ζ2+1
ζ2+y2

)s

and of y−1

(
ζ2+1
ζ2+y2

)s
ζ−iy
ζ+iy at a given ζ0 ∈ R are

bounded functions of y. Hence after integration we get a converging power series
representing fiy0

(ζ) on a neighborhood of ζ0. So fiy0
∈ Vω

s [∞].
On a neighborhood of ζ =∞ we use the variable ξ = 1

ζ :

(9.8) fiy0
(1/ξ) =

∫ ∞

y0

ys
(

1 + ξ2

1 + y2ξ2

)s(
i uz(iy) +

s

2y
u(iy)

1− iyξ

1 + iyξ

)
dy .

This converges as well. The coefficient of ξn in the expansion of the integrand
at ξ = 0 contains a term ys+nu(iy). So analyticity at ∞ seems out of the question.
Differentiation with respect to ξ can be carried out inside the integral. This shows
that fiy0

∈ V∞
s .

Next we estimate the supremum norm ‖fiy0
|Wn‖∞ on R for all n ∈ N, where

the differential operator W is given by (1 + ζ2)∂ζ on R, and by −(1 + ξ2)∂ξ on a

neighborhood of ζ = ∞. From (9.7) we check that
(
(1 + ζ2)∂ζ

)n
fiy0

(ζ) is a linear
combination, with coefficients depending only on s and n, of integrals∫ ∞

y0

fj(y, ζ)Uj(y) dy ,
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48 3. COHOMOLOGY OF INFINITE CYCLIC SUBGROUPS OF PSL2(R)

where

fj(y, ζ) = ys+aj

(
ζ2 + 1

ζ2 + y2

)s

(ζ − i)bj (ζ + i)cj (ζ − iy)−dj (ζ + iy)−ej ,

Uj(y) = uz(iy) , aj = 0 , or Uj(y) = u(iy) , aj = −1 ,
bj , cj ∈ [0, n] , −1 ≤ dj ≤ n , 0 ≤ ej ≤ n+ 1 ,

bj + cj = dj + ej + n .

For ζ in a bounded interval [−A,A] and y ≥ y0 we have fj(y, ζ)�s,n Anys. With
the exponential decay of u and its derivatives we obtain on [−A,A]:

(9.9)
(
(1 + ζ2)∂ζ

)n
fiy0

(ζ) �s,n,ε A
nys0e

−εy0 ,

with ε ∈ (0, 2π).
For |ξ| ≤ A−1 < 1, we have a similar linear combination of finitely many

integrals
∫∞
y0

gj(y, ξ)Uj(y) dy with Uj as before and

gj(y, ξ) = ys+aj

(
1 + ξ2

1 + y2ξ2

)s

(1− iξ)bj (1 + iξ)cj (1− iyξ)−dj (1 + iyξ)−ej ,

aj , dj ≥ −1 , bj , cj , ej ∈ N , dj + ej ≥ 0 , aj ≤ n .

Now we have gj(y, ξ)�s,n ys+aj (1 + y2ξ2)−(dj+ej)/2 � yn+s. This leads to

(9.10)
(
−(1 + ξ2)∂ξ

)n
fiy0

(1/ξ) �s,n yn+s
0 e−εy0 .

This estimate and (9.9) show that limy0→∞
∥∥fiy0

|Wn
∥∥
∞ = 0 for each n ∈ N. �

Applying the transverse Poisson transformation P†s to fz0 in Proposition 9.7
and multiplying by the gamma factor b(s), we obtain with use of (3.6c)

(9.11) hz0(z) =

∫ ∞

z0

[u, qs( · , z)] ,

representing an element of Wω,∞
s , also called hz0 .

Let q be a cocycle as in (5.5c), representing qu, u ∈ K0
s. We would like to write

qT = hz0−1 − hz0 . To do that, we need the following extension of Theorem 1.1:

Proposition 9.8. Suppose that C is a piecewise smooth positively oriented
simple closed curve in H ∪ {∞}. Suppose that near ∞ the curve C consists of
geodesic half-lines. For each u ∈ K0

s:

1

πi

∫
C

[u, qs(uU , z)] =

{
u(z) if z is inside C ,

0 if z is outside C .

Proof. Approximate C by Ca, where near ∞ we have replaced the part of
C in the region y ≥ a by a curve la along {x+ ia : x ∈ R}. Theorem 1.1 can be
applied to Ca. The integral

∫
la
[u, qs( · , z)] tends to zero as a→∞ for each z ∈ H,

by the exponential decay of u and its derivatives. The same holds for the difference
of the integrals over C and Ca. The results follows. �

We apply Proposition 9.8 to the curve C that consists of geodesic paths from
∞ to z0 − 1, to z0, and then back to ∞. For z outside C:∫ z0

z0−1

[u, qs( · , z)] = hz0−1(z)− hz0(z) .
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So qT = hz0−1 − hz0 in Wω∗

s . Application of restriction map ρs :Wω∗,∞
s → Vω∗,∞

s

gives for the cocycle r, with fz0 ∈ Vω∗,∞
s as in (9.6):

(9.12) rT = fz0−1 − fz0 .

Thus we have, with Δ = 〈T 〉:

(9.13)
rK0

s ⊂ Ker
(
H1(Δ;Vω

s ) −→ H1(Δ;Vω∗,∞
s )

)
,

qK0
s ⊂ Ker

(
H1(Δ;Wω

s ) −→ H1(Δ;Wω∗,∞
s )

)
.

Notation. We will often deal with such kernels of natural maps between cohomol-
ogy groups. For Δ-modules V ⊂W we put

(9.14) H1(Δ;V,W ) = Ker
(
H1(Δ;V ) −→ H1(Δ;W )

)
.

For Δ = 〈T 〉 one may view this as a mixed parabolic cohomology group, as we will
discuss in Definition 10.1. We reformulate:

(9.15) rK0
s ⊂ H1(Δ;Vω

s ,Vω∗,∞
s ) , qK0

s ⊂ H1(Δ;Wω
s ,Wω∗,∞

s ) .

Proposition 9.9. The following statements are equivalent for ϕ ∈ Vω
s :

a) ϕP(∞) = 0 and Av+
T
(ϕ) = Av−

T
(ϕ).

b) There exists h ∈ Vω∗,∞
s such that h | (1− T ) = ϕ in Vω

s .

If a) and b) hold, then there is only one h ∈ V∞
s as in b), namely h = Av+

T
(ϕ) =

Av−
T
(ϕ).

Proof. Suppose that a) is satisfied. Since ϕP(∞) = 0 the averaging operators
Av+

T
and Av−

T
converge absolutely on ϕ, without regularization and without the

assumption s �= 1
2 . In (4.12) the constant C0 vanishes. Hence the expansions in

(4.11) start at m = 0. From Av+
T
(ϕ) = Av−

T
(ϕ) we conclude that the averages define

an element h ∈ Vω,∞
s [∞], which satisfies b).

Suppose that b) is satisfied. This implies that ϕP(∞) = 0. Hence the averages
converge without regularization. If s �= 1

2 we immediately obtain a) from Proposi-

tion 9.14 below. In a proof valid for all s with 0 < Re s < 1, we note that Av+
T
(ϕ)

converges without regularization and satisfies Av+
T
(ϕ)(x) = O(|x|−2s) as x → ∞.

Since h has the same behavior, and since h− Av+
T
(ϕ) is periodic we conclude that

h = Av+
T
(ϕ). From the behavior as x ↓ −∞ we obtain h = Av−

T
(ϕ). �

Corollary 9.10. The kernel of Av
T
: Vω

s → Vω∗

s contains the space of ϕ ∈ Vω
s

that satisfy the equivalent conditions a) and b) in Proposition 9.9, but is larger than
this space.

Proof. The first statement follows directly from Proposition 9.9. For the
second statement, consider u ∈ K0

s, u �= 0, and put ϕ(ζ) =
∫ z0
z0−1

[u,R(ζ; · )s]
for some z0 ∈ H. Then ϕ ∈ Vω

s , and it satisfies condition b) in Proposition 9.9
(by Proposition 9.7). Since ϕ = rT as defined in (5.5), the injectivity of r in
Proposition 5.1 shows that the class ru in H1(Γ;Vω

s ) represented by r is non-zero.
So ϕ �∈ Vω

s | (1− T ). �
In §9.6 we shall prove:

Proposition 9.11. The maps r and q give the following isomorphisms.

(K0
s)

↑ r−→ H1
(
〈T 〉;Vω

s ,Vω∗,∞
s

)
, (K0

s)
↑ q−→ H1

(
〈T 〉;Wω

s ,Wω∗,∞
s

)
.
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50 3. COHOMOLOGY OF INFINITE CYCLIC SUBGROUPS OF PSL2(R)

9.4. Semi-analytic vectors with simple poles. We turn to a G-module
between Vω

s and Vω∗

s that obtained by replacing the condition of smoothness at the
singularities by the condition “simple”, which allows simple singularities:

Definition 9.12. We define Vω∗, simple
s as the space of f ∈ Vω∗

s such that for
each ξ ∈ BdSing (f) the function x �→ cξ(x)f

P(x) is smooth at ξ, where cξ is a local
coordinate on P1

R at ξ, e.g., c∞(x) = 1
x , and cξ(x) = x − ξ if ξ ∈ R. We define

Wω∗, simple
s as the space of those elements of Wω∗

s for which ρsf ∈ Vω∗, simple
s .

The spaces Vω∗, simple
s and Wω∗, simple

s are isomorphic G-submodules of Vω∗

s re-
spectively Wω∗

s , by P†s and ρs.
We have the following generalization of Proposition 4.5:

Proposition 9.13. The spaces (Vω∗, simple
s )T and (Wω∗, simple

s )T are zero for
s �= 1

2 .

Proof. Consider the expansion ϕ(t) ∼ |t|−2s
∑∞

n=−1 cnt
−n at ∞ in the line

model, and insert the T -invariance. If cl is the first non-zero coefficient, it follows
that (l + 2s)cl = 0. �

Proposition 9.14. Let s �= 1
2 . For ϕ ∈ Vω

s the following statements are
equivalent:

a) Av
T
(ϕ) = 0.

b) Av+
T
(ϕ) = Av−

T
(ϕ).

c) There exists f ∈ Vω∗, simple
s such that f | (1− T ) = ϕ.

If these statements holds, then f in c) is unique, and is equal to Av±
T
(ϕ).

Proof. The equivalence of a) and b) is clear. If a) and b) hold, then apply the
asymptotic behavior in (4.11) to conclude that f = Av+

T
(ϕ) = Av−

T
(ϕ) ∈ Vω∗, simple

s .

Conversely if f ∈ Vω∗, simple
s satisfies f | (1 − T ) = ϕ ∈ Vω

s , then f − Av+
T
(ϕ) has

for x ↑ ∞ an asymptotic behavior as indicated in (4.11). Since f − Av+
T
(ϕ) ∈

(Vω∗, simple
s )T = {0} (Proposition 9.13), this implies f = Av+

T
(ϕ). Proceed similarly

for Av−
T
(ϕ). �

In §9.6 we shall prove:

Proposition 9.15. If s �= 1
2 , the maps r and q give isomorphisms

K↑
s

r−→ H1
(
〈T 〉;Vω

s ,Vω∗, simple
s

)
, K↑

s
q−→ H1

(
〈T 〉;Wω

s ,Wω∗, simple
s

)
.

9.5. Semi-analytic vectors with support condition on the singulari-
ties. For a cohomological characterization analogous to Propositions 9.11 and 9.15
of the much larger spaces r(E↑

s )
T and q(E↑

s )
T we need to introduce yet another

space of semi-analytic vectors.
To show the need for this larger space, we consider ϕ representing an element

of Vω
s , in the line model. The corresponding function ϕP in the projective model

is holomorphic on a neighborhood of P1
R in P1

C. Hence ϕ is holomorphic at least
on a strip |Im ζ| < ε and on half-planes Re ζ > 1

ε and Re ζ < − 1
ε for some small

positive ε. For s �= 1
2 , the one-sided averages

Av+
T
(ϕ)(ζ) =

∞∑
n=0

ϕ(ζ + n), Av−
T
(ϕ)(ζ) = −

−1∑
n=−∞

ϕ(ζ + n)
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are both holomorphic on the strip |Im ζ| < ε. Furthermore, Av+
T
(ϕ) is also holo-

morphic on Re ζ > 1
ε , and Av−

T
(ϕ) on Re ζ < − 1

ε , provided ε is sufficiently

small. Suppose now that Av
T
(ϕ) extends holomorphically as an element of O(C)T .

(Proposition 8.2 shows that this is the case if ϕ = rT associated to u ∈ ET
s .)

Then Av+
T
(ϕ) = Av

T
(ϕ) + Av−

T
(ϕ) has a holomorphic extension to the half-plane

Re ζ < − 1
ε . Hence Av+

T
(ϕ) ∈ Vω∗

s , and also Av−
T
(ϕ) ∈ Vω∗

s have representatives with

large domains containing both a left and a right half-plane. They are elements of
the space Vω∗, exc

s that we now start to define.

Definition 9.16. Let F ⊂ P1
R be finite. We call a set Ω ⊂ P1

C an excised
neighborhood of P1

R \ F if it contains a set of the form

(9.16) U \
⋃
ξ∈F

Wξ ,

where U is a (usual) neighborhood of P1
R in P1

C and where Wξ is the set containing
ξ and the sectors in H and H− between two geodesic half-lines with final point ξ.

ξ1 ξ2Ω

Ω

Ω� ��

Wξ1

�

Wξ1

W∞

�

W∞

�

�
�
�
�

�
�
�
��

� �
�

Figure 9.1. An excised neighborhood Ω of P1
R \ {ξ1, ξ2,∞}.

In the upper or lower half-plane, the sets W∞ in this definition are the region
between two vertical half-lines. For ξ ∈ R sets Wξ are the regions between to half-
circles through ξ with centers on R to the left and the right of ξ. See Figures 9.1
and 9.2 for sketches of excised neighborhoods.

Definition 9.17. Let F ⊂ P1
R be finite. We say that ϕ ∈ Vω∗

s [F ] satisfies the
condition “exc” if ϕ is represented by an element of O(Ω) for an excised neighbor-
hood of P1

R � F .

This means that Vω∗, exc
s is the direct limit lim−→

Ω

O(Ω) where Ω runs over excised

neighborhoods of P1
R � F with F finite. Figure 9.3 depicts the relation of Vω∗, exc

s

with other principal series subspaces that we have defined up till now. The space
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52 3. COHOMOLOGY OF INFINITE CYCLIC SUBGROUPS OF PSL2(R)

Figure 9.2. An excised neighborhood of S1�{e−πi/4, 1, eπni/4, i}
for the disk model.

Vω∗, simple
s is defined only for s �= 1

2 . The definition of Vω∗, exc
s makes sense for s = 1

2
as well.

Vω
s
� � ��
� �

��	
		

		
		

		
Vω∗,∞
s

� � ��� �



��
��

V∞
s

� � �� V−∞
s

� � �� V−ω
s

Vω∗, simple
s � �














Vω∗, exc
s

� � �� Vω∗

s

Figure 9.3. Subspaces of the principal series space Vs.

The space Vω∗, exc
s is a G-invariant subspace of Vω∗

s . The elements Av±
T
(ϕ)

discussed in the introduction of this subsection are in Vω, exc
s [∞]. We have even

more:

Proposition 9.18. Let s �= 1
2 . For ϕ ∈ Vω

s the following statements are
equivalent:

a) Av
T
(ϕ) ∈ O(C)T .

b) Av+
T
(ϕ) and Av−

T
(ϕ) are elements of Vω,exc

s [∞].

Proof. We have already discussed the implication a)⇒ b).
For a) ⇐ b) we suppose that Av+

T
(ϕ) and Av−

T
(ϕ) are in Vω,exc

s [∞]. By con-

struction, they are in Vω
s [∞]. They are given by holomorphic functions on a region

{ζ : |Im ζ| < ε} ∪ {ζ : |Re ζ| > ε−1} for some ε > 0. On |Im ζ| < ε we have
Av

T
(ϕ) = Av+

T
(ϕ) − Av−

T
(ϕ). So Av

T
(ϕ) extends holomorphically to Re ζ > ε−1,

and the invariance under T stays valid by analytic continuation. The T -invariance
on a right half-plane implies that Av

T
(ϕ) extends holomorphically to C. �

We will now define the condition “exc” for the behavior of sections of Wω∗

σ at
singularities:
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§9. COINVARIANTS 53

Definition 9.19. An element ofWω∗

s satisfies the condition “exc” at the points

of the finite set F ⊂ P1
R if it has a representative of the form f(z) =

(
y

|z+i|2
)s

aP(z)

on Ω ∩ H, where

a) Ω is an excised neighborhood of P1
R � F for some finite set F .

b) aP is real analytic on Ω.

The transverse Poisson transformation gives a G-equivariant isomorphism

P†s : Vω∗, exc
s −→ Wω∗, exc

s .

To see this we use the integral representations of P†s and its inverse in Theorem 4.7
in [4]. To apply this we note that the intersection Ω∩ Ω̄ of an excised neighborhood
Ω of P1

R � F is again an excised neighborhood of P1
R � F , for finite sets F ⊂ P1

R.
Propositions 9.11 and 9.15 can be viewed partly as specializations of the fol-

lowing result:

Theorem 9.20. If s �= 1
2 , then the maps r and q give isomorphisms

(E↑
s )

T r−→ H1
(
〈T 〉;Vω

s ,Vω∗, exc
s

)
, (E↑

s )
T q−→ H1

(
〈T 〉;Wω

s ,Wω∗, exc
s

)
.

We shall give a proof in §9.6.
Definition 9.21. We define Gexc

s as the space of f ∈ C2(H) that are in Es(H∩Ω)
for an excised neighborhood Ω of P1

R minus a finite set, and we put

Gω∗, exc
s =

{
f ∈ Gexc

s : f represents an element of Wω∗

s

}
.

The minimal closed set X ⊂ H such that f ∈ Es(H�X) is the set of singularities
Sing (f).

Examples: The function is,0(z) = ys is an element of Es that represents an
element ofWω

s (R), also called is,0, and BdSing (is,0) = {∞}. So is,0 �∈ Gω
s . We have

is,0(z) =
(

y
|z+i|2

)s (
x2 + (y + 1)2

)s
. We conclude that aP(z) =

(
x2 + (y + 1)2

)s
is real analytic on C. Hence is,0 ∈ Gω∗, exc

s , and Sing
(
is,0
)
= ∅, BdSing

(
is,0
)
=

{∞}. To get more examples of elements of Wω∗, exc
s , we consider ϕ ∈ Vω

s such that
Av

T
(ϕ) ∈ O(C)T , as in Proposition 9.18. If s �= 1

2 , then P†sAv
+

T
(ϕ) = Av+

T
(P†sϕ) and

P†sAv
−
T
(ϕ) = Av−

T
(P†sϕ) are elements of Wω∗, exc

s .

For general h ∈ Wω
s , the average Av

T
h may very well have singularities in

horizontal strips in the upper half-plane. Then the average is not in Gω∗, exc
s .

The example of is,0 shows that if f ∈ Gω∗, exc
s represents h ∈ Wω∗, exc

s , then the

set BdSing (h) can be larger than Sing (f)∩∂H. On the other hand, the zero element

n ∈ Wω
s satisfies BdSing (n) = ∅. It may be represented as an element of Wω∗, exc

s

by any f ∈ C2(H) that is equal to 0 outside the region |x| ≤ 1, y ≥ 1, and equal

to 1 on |x| ≤ 1
2 , y ≥ 2. In this example, Sing (f) ∩ ∂H is larger than BdSing (h).

Definitions 9.19 and 9.21 imply that we can always represent h ∈ Wω∗, exc
s by an

element f ∈ Gω∗, exc
s such that Sing (f) ∩ ∂H ⊂ BdSing (h).

The exact sequence (3.11) extends to an exact diagram

(9.17)

0 0 0
↓ ↓ ↓

0 → Nω → Gω
s → Wω

s → 0
↓ ↓ ↓

0 → Nω∗, exc → Gω∗, exc
s → Wω∗, exc

s → 0
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54 3. COHOMOLOGY OF INFINITE CYCLIC SUBGROUPS OF PSL2(R)

We recall that Nω = C2
c (H), and define Nω∗, exc as the kernel in the lower row. The

support of an element of Nω∗, exc need not be compact; it may contain regions be-
tween geodesic half-lines to the same point of ∂H. Siegel domains of Γ1 = PSL2(Z)
are examples of such sets.

Lemma 9.22. The spaces (Wω∗, exc
s )T ∼= (Gω∗, exc

s )T are equal to Is, and the
space (Nω∗, exc)T is zero.

Proof. If f ∈ (Gω∗, exc
s )T , then the set BdSing (f) is a T -invariant finite subset

of P1
R, and hence is contained in {∞}. The set Sing (f) is also T -invariant. It is

contained in the union of a compact set and finitely many vertical regions. Hence
Sing (f) = ∅ and f ∈ ET

s . Since f represents an element of Wω
s [∞], it is in Is. If

f ∈ (Nω∗, exc)T , then Sing (f) = ∅ implies f = 0.

We are left with the proof of (Wω∗, exc
s )T ∼= (Gω∗, exc

s )T . Clearly, each element
of (Gω∗, exc

s )T = Is represents an element of (Wω∗, exc
s )T . Restriction of a given

h ∈ (Wω∗, exc
s )T gives ρsh ∈ (Vω

s [∞])T . Hence h has a representative f ∈ Es(H�Wε),
where

(9.18) Wε = {z ∈ H : |Re z| ≤ ε−1, Im z ≥ ε}

for some ε > 0. By extending f as a C2-function on Wε, we obtain a representative
f ∈ Gω∗, exc

s . So f | (1− T ) ∈ Nω∗, exc. After diminishing ε, we have f(z) = f(z+1)
on H � Wε. Since f represents an element of Wω

s [∞], it has a Fourier expansion
with only is,2πn, and hence is in I↓

s . This expansion converges on H and defines
another representative of h, which is in Is. �

Lemma 9.23. Suppose that q̂ ∈ Gω∗, exc
s satisfies:

a) Sing (q̂) is a compact subset of H.
b) q̂ | (1− T ) ∈ Gω

s .

Then there exists p ∈ Is such that q̂ − p ∈ Gω
s .

Proof. From a) it follows that q̂ represents an element q in the space Fs

defined in (3.1). The direct sum decomposition (3.3) implies that there are unique
p ∈ Es and f ∈ Wω

s such that q = p+f . Condition b) implies that q | (1−T ) ∈ Wω
s .

Hence p | (1 − T ) = q | (1 − T ) − f | (1 − T ) ∈ Wω
s ∩ Es = {0}. So p ∈ ET

s , and
p = q − f ∈ Wω∗, exc

s . As in the proof of the previous lemma, this implies p ∈ Is.
Now, q̂−p ∈ Gω∗, exc

s is a lift of f ∈ Wω
s , for which Sing (q̂−p) = Sing (q̂) is compact.

Hence q̂ − p ∈ Gω
s . �

9.6. T -invariant eigenfunctions and cohomology. In this subsection we
prove Theorem 9.20 and Propositions 9.11 and 9.15. We treat these three proofs in
parallel, since the statements are closely related.

• Images. First we consider u ∈ (E↑
s )

T and s �= 1
2 . We represent ru by the

cocycle r determined by rT (ζ) =
∫ z0
z0−1

[u,R(ζ; · )s] with a suitable base point z0.

Relation (4.10), Lemma 9.4 and Proposition 9.18 show that rT = Av+
T
(rT ) | (1−T ) is

in the space Vω∗, exc
s | (1−T ). So rmaps (E↑

s )
T to the subspace H1(〈T 〉;Vω

s , V ω∗, exc
s ).

Applying the transverse Poisson transform, we see that q(E↑
s )

T is contained in the
space H1(〈T 〉;Wω

s ,Wω∗, exc
s ).
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§9. COINVARIANTS 55

If u ∈ K↑
s , then Lemma 9.4 shows that Av

T
(rT ) = 0. Hence Av+

T
(rT ) = Av−

T
(rt),

and then Av+
T
(rT ) ∈ Vω∗, simple

s by Proposition 9.14. This show that

rKT
s ⊂ H1(〈T 〉;Vω

s ,Vω∗, exc& simple
s ) ⊂ H1(〈T 〉;Vω

s ,Vω∗, exc
s ) .

Again we apply P†s to get the analogous statement for q. (The space Vω∗, exc& simple
s

is equal to Vω∗, exc
s ∩ Vω∗, simple

s , since at the singularities both the conditions “exc”
and “simple” are imposed.)

We have seen in (9.15) that q(K0
s)

T ⊂ H1(〈T 〉;Wω
s ,Wω∗,∞

s ), even if s = 1
2 .

Since the restriction map ρs is an isomorphism onWω
s andWω∗,∞

s , the correspond-
ing statement for r follows. The integrals in (9.6) and (9.11) show that r and q

map (K0
s)

↑ to H1(〈T 〉;Vω
s ,Vω∗, exc&∞

s ), respectively H1(〈T 〉;Wω
s ,Wω∗, exc&∞

s ).

• Comparison result. For Propositions 9.11 and 9.15 it is important to have:

Lemma 9.24.

H1(〈T 〉;Vω
s ,Vω∗, exc&∞

s ) = H1(〈T 〉;Vω
s ,Vω∗,∞

s ) ,(9.19a)

H1(〈T 〉;Wω
s ,Wω∗, exc&∞

s ) = H1(〈T 〉;Wω
s ,Wω∗,∞

s ) ,(9.19b)

and if s �= 1
2

H1(〈T 〉;Vω
s ,Vω∗, exc& simple

s ) = H1(〈T 〉;Vω
s ,Vω∗, simple

s ) ,(9.19c)

H1(〈T 〉;Wω
s ,Wω∗, exc& simple

s ) = H1(〈T 〉;Wω
s ,Wω∗, simple

s )(9.19d)

Proof. We have H1(〈T 〉;Vω
s ,Vω∗, simple

s ) ⊃ H1(〈T 〉;Vω
s ,Vω∗, exc& simple

s ). Con-
versely, if ψT ∈ Vω

s is of the form ψT = f | (1 − T ) with f ∈ Vω∗, simple
s , then

Av
T
(ψT ) = 0 (Proposition 9.14), and hence Av+

T
(ψT ),Av

−
T
(ψT ) ∈ Vω∗, exc

s (Propo-

sition 9.18). This gives (9.19c). For (9.19a), we proceed similarly, with use of
Proposition 9.9 to obtain Av

T
(ψT ) = 0.

The transverse Poisson transformation provides us with an injection

P†s : Vω∗, exc& simple
s −→ Wω∗, exc& simple

s ,

and a bijection
P†s : Vω∗, simple

s −→ Wω∗, simple
s .

The resulting commuting diagram

H1(〈T 〉;Vω
s ,Vω∗, exc& simple

s )
= (9.19c) ��

P†s
��

H1(〈T 〉;Vω
s ,Vω∗, simple

s )

P†s
∼=
��

H1(〈T 〉;Wω
s ,Wω∗, exc& simple

s ) �
� �� H1(〈T 〉;Wω

s ,Wω∗, simple
s )

shows the equality in (9.19d). For (9.19b) we proceed similarly. �

• Injectivity. This is Proposition 5.1.

• Surjectivity in Theorem 9.20. Since Vω∗, exc
s and Wω∗, exc

s are isomorphic it
suffices to prove that for s �= 1

2

q :
(
E↑
s

)T −→ H1
(
〈T 〉;Wω

s ,Wω∗, exc
s

)
is surjective.

We recall that q associates to u ∈ (E↑
s )

T the cohomology class qT +Wω
s | (1−T ),

where qT can be represented by q̃T ∈ Gω
s given by q̃T (z) =

∫ z0
z0−1

[u, qs( · , z)] outside
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56 3. COHOMOLOGY OF INFINITE CYCLIC SUBGROUPS OF PSL2(R)

a small neighborhood of the line segment from z0 − 1 to z0. The class does not
depend on the choice of z0 with Im z0 sufficiently large. In this proof we will mainly
work with representatives in Gω

s and Nω. See the diagram (9.17).

For the proof of the surjectivity we start with f ∈ §ω∗, excs such that h :=
f | (1 − T ) belongs to Wω

s . The aim is to construct u ∈ (E↑
s )

T whose associated
function qT satisfies h− 1

πiqT ∈ Wω
s | (1− T ).

Let f̂ ∈ Gω∗, exc
s and ĥ ∈ Gω

s be representatives of f and h, respectively. Since
the set BdSing (f) is finite and T -invariant, it is contained in {∞}. We choose
N > 2 sufficiently large and ε ∈ (0, 1) sufficiently small to achieve the following
situation:

(9.20)

Sing
(
ĥ
)
⊂ [−N,N ]× i[ε,N ] Sing

(
f̂
)
⊂ [−N,N ]× i[ε,∞)

−N N

iN

iε� ��
�

(singularities)

−N N

iε� ��
(singularities)

The difference k = ĥ− f̂ | (1− T ) is an element of Nω∗, exc. It satisfies

(9.21) Supp k ⊂ [−N − 1, N ]× i[ε,∞) .

We set

(9.22) u(z) = Av
T
(k)(z) for Im z > N .

This will turn out to represent the element of (E↑
s )

T corresponding to the cocycle
on 〈T 〉 given by h. We prove this in several steps.

Lemma 9.25. The function u represents an element of
(
E↑
s

)T
.

Proof. The average Av
T
k is given by a locally finite sum. For z = x + iy ∈

[−1, 1]× i(0,∞) we have

Av
T
(k)(z) =

N+1∑
n=−N−2

k(z+n) = f̂(z+N +2)− f̂(z−N − 2)+
N+1∑

n=−N−2

ĥ(z+n) .

The terms f̂(z + N + 2) and f̂(z − N − 2) have no singularities in the region

Im z = y > ε, |x| ≤ 1, and ĥ has no singularities in the region y > N . Hence
Av

T
(k) is a λs-eigenfunction of Δ on the region y > N , |x| < 1. Since it is 1-

periodic, it is a λs-eigenfunction on y > N . �

We take y0 > N + 2ε, and define

(9.23) q̂T (z) =

∫ iy0

iy0−1

[u, qs( · , z)]
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§9. COINVARIANTS 57

outside the box [−1−ε, ε]×i[y0−ε, y0+
ε], and extend q̂T inside the box as a
C2-function. Thus we obtain q̂T ∈ Gω

s

representing qT . Our aim is to show

that ĥ− 1
πi q̂T ∈ Gω

s | (1− T ) +Nω. �
−1 0

�
q̂T given by
integral

� � iy0iy0−1

We apply Proposition 9.6, which writes

(9.24) u =
1

πi

(
u↑ − u↓) =

1

πi

(
Av↑

T
(q̂T )−Av↓

T
(q̂T )
)
,

with u↑ := Av↑
T
(h) ∈ K↑

s equal to Av
T
(q̂T ) on the region Im z > y0 + ε and u↓ :=

Av↓
T
(q̂T ) ∈ Is equal to Av

T
(q̂T ) on Im z < y0 − ε. Both functions do not depend on

the choice of y0.

The next step is to relate Av
T
(q̂T ) to Av

T
(k), Av

T
(ĥ) and f̂ . To do this, we use

the functions p+ and p− in the next lemma:

Lemma 9.26. The following two functions p± belong to Is:

p+ = Av+
T
(ĥ)−Av+

T
(k)− f̂ , p− = Av−

T
(ĥ)−Av−

T
(k)− f̂ .

Proof. Av+
T
(k) is given by a locally finite sum, and Av+

T
(ĥ) can be under-

stood in regularized sense, since ĥ ∈ Gω
s . Hence p+ is defined on H, except

for its singularities, which occur on a locally finite union of curves in the region

{z ∈ H : x ≤ N , y ≥ ε}. From (ĥ − k) |Av+
T
|(1 − T ) = ĥ − k = f̂ | (1 − T ) it fol-

lows that p+|(1 − T ) = 0. Since p+ has no singularities in the region x > N , the
T -invariance implies that there are no singularities at all. Hence p+ ∈ ET

s .

On 0 < y < ε, we have k = 0. Moreover, Av+
T
(ĥ) represents an element of

Wω
s [∞], and f̂ ∈ Gω, exc

s [∞]. So p+ represents an element of Wω
s (R). Hence it is

in Is.
The case of p− goes similarly. �

Lemma 9.27.

1

πi
Av

T
(q̂T ) =

{
Av

T
(ĥ) on Im z > y0 + ε ,

p+ − p− on Im z < y0 − ε .

Proof. On the region Im z > N we have

u = Av
T

= Av
T
(ĥ) + p− − p+ .

Lemma 4.6 implies that Av
T
(ĥ) = c1y

1−s + O(y−s) as y → ∞ for |x| ≤ 1. By

T -invariance this estimates holds for all x, and shows that the restriction of Av
T
(ĥ)

to y > N is in K↑
s . Lemma 9.26 gives p+ − p− ∈ Is. Hence we have obtained the

terms in the decomposition of u in (E↑
s )

T = Ks↑ + Is given in Proposition 9.6:

u+ = Av↑
T
(q̂T ) = πiAv

T
(ĥ) , u− = Av↓

T
(q̂T ) = πi (p+ − p−) .

The averages Av↑
T
(q̂T ) and Av↓

T
(q̂T ) are both given by Av

T
(q̂T ) on the regions Im z >

y0 + ε and Im z < y0 − ε, respectively. �
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58 3. COHOMOLOGY OF INFINITE CYCLIC SUBGROUPS OF PSL2(R)

We will choose a function g ∈ C2(H) that will turn out to satisfy g | (1− T ) ∈
ĥ− 1

πi q̂T +Nω. First we prescribe g on the union of the three overlapping regions
H, R and L, indicated in Figure 9.4.

−N N

y=y0+ε
H

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��
�
��

−N N

R
y=ε

x=N

�� �� �� �� �� �
��

�
�

�
�

−N N

y=ε

x=N

L
�����������

��

�
��

�
��

Figure 9.4. The regions H =
{
z ∈ H : y > y0 + ε

}
, R =

{
z ∈

H : x > N or y < ε
}
, and L =

{
z ∈ H : x < −N or y < ε

}
.

(9.25) g(τ ) =

⎧⎪⎨⎪⎩
Av+

T
(ĥ)− 1

πiAv
+

T
(q̂T )− p+ on H ,

f̂ +Av+
T
(k − 1

πi q̂T ) on R ,

f̂ +Av−
T
(k − 1

πi q̂T ) + p− − p+ on L .

To see that this is possible, we have to do some checking on the intersections.
On y < ε, i.e., on R ∩ L, we check:

Av+
T
(k − 1

πi
q̂T )−

(
Av−

T
(k − 1

πi
q̂T ) + p− − p+

)
= 0− 1

πi
Av

T
(q̂T ) + p+ − p− since k = 0 on y < ε

= 0− p+ + p− + p− − p+ = 0 by Lemma 9.27 .

On H ∩R, i.e., for y > y0 + ε and x > N :

f̂ +Av+
T
(k − 1

πi
q̂T )−

(
Av+

T
(ĥ− 1

πi
q̂T )− p+

)
= 0 by Lemma 9.26 .

On H ∩ L, i.e., for y > y0 + ε and x < −N :

f̂ +Av−
T

(
k − 1

πi
q̂T
)
+ p− − p+ −

(
Av+

T

(
ĥ− 1

πi
q̂T
)
− p+

)
= Av−

T
(ĥ)− 1

πi
Av−

T
(q̂T )−Av+

T
(ĥ) +

1

πi
Av+

T
(q̂T ) by Lemma 9.26

= −Av
T
(ĥ) +

1

πi
Av

T
(q̂T ) = 0 by Lemma 9.27 .

Thus, we have g onH∪R∪L, i.e, only on the exterior of the box [−N,N ]×i[ε, y0+ε].
We extend it by 0 on the box, and change it on an (ε/2)-neighborhood of the
boundary to bring it into C2.

Lemma 9.28. We have g ∈ Gω∗, exc
s and g | (1− T ) ∈ Gω

s .

Proof. The function f̂ + Av+
T
(k − 1

πi q̂T ) = f̂ − 1
πiAv

+

T
(q̂T ) on R ∩ L represents

an element of Wω
s (R). The singularities of g are contained in the box [−N,N ] ×

i[ε, y0 + ε]. Hence g ∈ Gω∗, exc
s .
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§9. COINVARIANTS 59

On the region R:

g | (1− T ) = f̂ | (1− T ) + k − 1

πi
q̂T = ĥ− 1

πi
q̂T .

Since ĥ− 1
πi q̂T ∈ Gω

s , the equality g | (1−T ) = ĥ− 1
πi q̂T extends to the region in H

outside the box [−N − 1, N ]× i[ε, y0 + ε]. So there is g1 ∈ Nω such that

(9.26) g | (1− T ) = ĥ− 1

πi
q̂T + g1 ∈ Gω

s . �

For the given h ∈ Wω
s and f ∈ Wω∗, exc

s with h = f | (1 − T ) we have given
u ∈ (E↑

s )
T , and have given in (9.23) a representative q̂T of the corresponding qT ∈

Wω
s which determines the cocycle qu. In Lemma 9.28 we see that ĥ − 1

πi q̂T ∈
Nω + Gω∗, exc

s | (1 − T ). Hence h − 1
πiqT ∈ Wω∗, exc

s | (1 − T ). This completes the
proof of the surjectivity in Theorem 9.20.

• Surjectivity in Proposition 9.15. We need only prove the surjectivity of q.
Applying Theorem 9.20 to a given c ∈ H1(〈T 〉;Wω

s ,Wω∗, exc
s ∩Wω∗, simple

s ), we obtain
a unique u ∈ (E↑

s )
T such that qu = c. We have to check that u ∈ K↑

s .
In the proof of the surjectivity that we have just given, we now have the addi-

tional information that f ∈ Wω∗, exc
s ∩Wω∗, simple

s . Hence Av
T
(h) = 0 (by Proposi-

tion 9.14), and Av
T
(ĥ) vanishes near R. Since k also vanishes near R, the difference

p+ − p− ∈ Is in Lemma 9.26 vanishes near R as well, and hence q+ − p− = 0
everywhere. In Lemma 9.27 we see that Av

T
(q̂T )

↓ = 0. Hence (9.21) takes the form

u = 1
πiAvT (q̂T )

↑ ∈ K↑
s .

• Surjectivity in Proposition 9.11. Now s may be equal to 1
2 . This forces a

further review of the proof of the surjectivity of q for Theorem 9.20.
We start with f ∈ Wω∗, exc

s ∩Wω∗,∞
s with h = f | (1− T ) ∈ Wω

s . This implies

that h(z) =
(

y
|z+i|2

)s
aP(z) with aP(∞) = 0. So Av±

T
(h) and Av±

T
(ĥ) converge

without the need for regularization. The absolute convergence of Av±
T
(k) is clear

anyhow. We have by Lemma 9.25 a function u ∈ (E↑
s )

T given on y > N by Av
T
(k).

We cannot yet use the one-sided averages of q̂T , but still have p+ and p− in ET
s in

Lemma 9.26. Proposition 9.9 and an application of the isomorphisms ρs :Wω∗,∞
s →

Vω∗,∞
s and P†s : Vω∗,∞

s → Wω∗,∞
s imply that Av+

T
(ĥ) = Av−

T
(ĥ) near R. Near R,

we also have k = 0. So p+ − p− = Av
T
(ĥ) − Av

T
(k) vanishes first near R, and

then everywhere on H. On y > N we have Av
T
(ĥ) = Av

T
(k) + p+ − p− = Av

T
(k)

as in the proof of Lemma 9.27. Hence Av
T
(ĥ) = u on y > N . Lemma 4.6 gives

u(z) = Av
T
(ĥ)(z) � y−s as y → ∞. So u can have only terms with ks,2πn, n �= 0,

in its Fourier expansion. Thus, u ∈ (K0
s)

↑.
With q̂T as in (9.23), we use (9.11) and Proposition 9.8 to write q̂T as an

element of hiy0
| (T − 1) + Nω∗, exc, with hiy0

∈ Gω∗,∞
s , Sing (hiy0

) ⊂ i[y0,∞) and

BdSing (hiy0
) ⊂ {∞}. In particular, (ρsq̂T )

P(∞) = 0, and Av+
T
(q̂T ) and Av−

T
(q̂T )

converge absolutely. Now we can proceed as before.
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CHAPTER 4

Maass forms and semi-analytic cohomology:
groups with cusps

In this chapter we start the generalization of the results for the modular group
PSL2(Z) mentioned in the introduction to general cofinite discrete subgroups Γ ⊂ G
with cusps. We will prove those statements in Theorems B and C that concern
cohomology groups with semi-analytic coefficients. The results concerning smooth
(C∞) and differentiable (Cp for some p ∈ N) coefficients will be proved in Chapter 5.

In Section 12 we consider the isomorphismsMaass0s(Γ)
∼= H1

par(Γ;Vω
s ,Vω∗,∞

s ) (in

Theorem B), EΓ
s
∼= H1

par(Γ;Vω
s ,Vω∗, exc

s ) (in Theorem C), and a similar isomorphism

using the space Vω∗, simple
s ⊃ Vω∗,∞

s introduced in §9.4. The method of proof is the
same as that followed for cocompact groups in Chapter 2. The presence of cusps
makes it necessary to look at geometrical models for cohomology again, especially
in connection with parabolic cohomology. That is the subject of Section 11, where
we also discuss an interpretation of our approach to parabolic cohomology in terms
of sheaf cohomology.

In Section 13 we prove the isomorphisms H1
par(Γ;Vω

s ,Vω∗,∞
s ) ∼= H1

par(Γ;Vω∗,∞
s )

(in Theorem B) and H1
par(Γ;Vω

s ,Vω∗, exc
s ) ∼= H1

par(Γ;Vω0, exc
s ) (in Theorem C), where

Vω0, exc
s consists of the elements of Vω∗, exc

s that have singularities in cusps only.
This requires an analysis of the set of singularities of cocycles. In §13.2 we give a
recapitulation of the proof of Theorem C.

This chapter generalizes results of [21], where Maass cusp forms on SL2(Z)
were related to “period functions”. The link with the period function is discussed
in Section 10, where we also give some general definitions, and in Section 14. In (8.6)
we gave a holomorphic function associated to a λs-eigenfunctions invariant under
the parabolic element T =

[
1
0
1
1

]
of G. Such linear maps to the space of 1-periodic

holomorphic functions on C can also be defined for Γ-invariant eigenfunctions. That
is the subject of Section 15.

10. Maass forms

Throughout this chapter the group Γ ⊂ G = PSL2(R) is assumed to have cusps.
For such groups we discuss several spaces of Maass forms and general invariant
eigenfunctions, which coincide for cocompact groups discussed in Chapter 2.

The image of the map from invariant eigenfunctions to cohomology with values
in the space Vω

s of analytic vectors in the principal series is contained in a mixed
parabolic subgroup, of which we will give a preliminary definition in this section.

Here the upper half-plane H is the natural model of H. A discrete subgroup
Γ ⊂ G is called cofinite if the quotient Γ\H has finite volume for the measure
induced by the invariant measure dμ on H. The cusps of Γ are points κ ∈ P1

R

61

Licensed to Max-Planck Institut fur Mathematik.  Prepared on Fri Mar 27 11:48:34 EDT 2015for download from IP 192.68.254.102.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



62 4. MAASS FORMS AND SEMI-ANALYTIC COHOMOLOGY: GROUPS WITH CUSPS

for which the isotropy subgroup Γκ = {γ ∈ Γ : γκ = κ} is non-trivial, and hence
infinite cyclic with a parabolic generator. We denote by C the set of cusps of Γ.
This set depends on Γ. It is infinite, but consists of finitely many Γ-orbits.

For each κ ∈ C we fix gκ ∈ G such that gκ∞ = κ and such that πκ = gκTg
−1
κ

generates Γκ, with T =
[
1
0
1
1

]
. This leaves some freedom in the choice of the gκ.

We arrange the gκ such that gγκ ∈ γgκT
Z within each Γ-orbit of cusps.

The standard example is the modular group Γ1 = PSL2(Z), generated by T
and S =

[
0
1
−1
0

]
, with relations S2 = (TS)3 = 1. Its set of cusps C = P1

Q forms one
Γ1-orbit.

10.1. Notations and terminology. We call the elements of EΓ
s invariant

eigenfunctions, and reserve the notation Maasss(Γ) for the finite-dimensional space
(E−∞

s )Γ of invariant eigenfunctions with polynomial growth, whose elements we call
Maass forms. An invariant eigenfunction u ∈ EΓ

s has polynomial growth if and only
if
(10.1a)

u (gκ(x+ iy))� ya as y →∞ for some a ∈ R, uniform in x, for all κ ∈ C .
Inside Maasss(Γ) the space Maass0s(Γ) of (Maass) cusp forms is determined by the
stronger condition of quick decay at all cusps:

(10.1b) u (gκ(x+ iy))� ya as y →∞ for all a ∈ R, uniform in x, for all κ ∈ C .
By the Γ-invariance, it suffices that these growth conditions hold for one representa-
tive κ of each Γ-orbit of cusps. In [21] we used Maasss to denote the space which we
now call Maass0s(Γ1). For cocompact groups, the spaces Maass0s(Γ) ⊂ Maasss(Γ) ⊂
EΓ
s coincide.

Let u ∈ EΓ
s . For each κ ∈ C, the function u | gκ : z �→ u(gκz) is in ET

s , and
has a Fourier expansion (8.1), with coefficients An(u | gκ) and Bn(u | gκ), and also
a0(u | gκ) and b0(u | gκ). The space Maasss(Γ) is characterized by Bn(u | gκ) = 0 for
n �= 0 for all κ, and the space Maass0s(Γ) by the additional requirement A0(u | gκ) =
B0(u | gκ) = 0 (for s �= 1

2 ), or a0(u | gκ) = b0(u | gκ) = 0 (for all s), for all κ. The
form of the Fourier expansion implies that we can weaken (10.1b) by replacing “for
all a ∈ R” by “for some a < min(Re s, 1− Re s)”.

For s �= 1
2 we define the space Maass1s(Γ) ⊂ EΓ

s by the condition Bn(u | gκ) = 0

for all κ ∈ C and all n ∈ Z. We have Maass0s(Γ) ⊂ Maass1s(Γ) ⊂ Maasss(Γ). It

may happen that Maass11−s(Γ) �= Maass1s(Γ) ( e.g., if Γ = Γ1 and 2s is a zero of the

Riemann zeta function), whereas Maass0s(Γ), Maasss(Γ) and EΓ
s are invariant under

s �→ 1− s.

10.2. Invariant eigenfunctions and parabolic cohomology. We start
with an example. A 1-cocycle ψ on the modular group Γ1 with values in a right
Q[Γ1]-module V is, in the group model of cohomology, determined by ψT and ψS on
the generators S =

[
0
1
−1
0

]
and T =

[
1
0
1
1

]
, subject to the relations ψS | (1 + S) = 0

and ψTS | (1 + TS + TSTS) = 0 (and ψTS = ψT |S + ψS). There are various
possibilities of normalization. We may for instance require that ψS = 0, which
can be arranged by subtracting da from ψ, with a ∈ V given by 1

2 ψS . Another
normalization is by arranging ψTS = 0; then ψ is determined by ψS = ψT satisfying
ψS |S = −ψS . For the cocycle r in (5.5a) associated to an invariant eigenfunction,
the former normalization is arranged by choosing the base point z0 equal to i, and
the latter by choosing z0 = 1

2 (1 + i
√
3).
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§10. MAASS FORMS 63

In general, it is impossible to choose ψ in its cohomology class such that ψT = 0.
However, in the case of a cusp form u ∈ Maass0s(Γ1), and r as in (5.5a), we know

from (9.12) that rT is of the form fz0 | (T −1), with fz0 ∈ Vω∗,∞
s . Thus, subtracting

dfz0 from r, we obtain a Vω∗,∞
s -valued cocycle satisfying ψT = 0. This cocycle is

determined by its value ψS . Since (Vω∗,∞
s )T ⊂ (V∞

s )T = {0} (Proposition 4.5), this
cocycle is unique. This motivates the following definition:

Definition 10.1. Let V ⊂W be Q[Γ]-modules. We define the mixed parabolic
cohomology group H1

par(Γ;V,W ) as Z1
par(Γ;V,W )/B1(Γ;V ), where

Z1
par(Γ;V,W ) =

{
ψ ∈ Z1 (Γ;V ) : ψπ ∈W | (π − 1) for all parabolic π ∈ Γ

}
is the space of mixed parabolic cocycles.

We define the parabolic cohomology group H1
par(Γ;V ) as H1

par(Γ;V, V ), and call

the elements of Z1
par(Γ;V, V ) parabolic cocycles.

It suffices to impose the parabolic condition only for π = πκ with κ running
through a set of representatives of Γ\C. The mixed parabolic cohomology group
H1

par(Γ;V,W ) is the kernel of the natural map

(10.2) H1(Γ;V ) −→
⊕

κ∈Γ\C
H1(Γκ;W ) .

We may view the group H1(〈T 〉;V,W ) in (9.14) as a mixed parabolic cohomology
group.

Returning to the case Γ = Γ1, we see that the Vω∗,∞
s -valued cocycle ψ with

ψT = 0 associated above to a Maass cusp form u satisfies ψS ∈ Vω∗, exc&∞
s , since

fz0 ∈ Vω∗, exc&∞
s . (See Definition 9.17 for Vω∗, exc

s .) Actually, the singularities of
ψS = rS − fz0 | (S − 1) can occur only in ∞ and 0 = S∞. So the cocycle ψ has

values in Vω0, exc&∞
s , where we use the following definition:

Definition 10.2. Let Vω0

s be the Γ-submodule consisting of the f ∈ Vω∗

s such
that BdSing (f) ⊂ C. With a condition “cond” imposed on the singularities, we put

Vω0, cond
s = Vω0

s ∩ Vω∗,, cond
s .

For W∗
s we follow the same convention.

We recall that elements of Vω∗

s can have a finite number of arbitrary singularities
on ∂H = P1

R, those of Vω∗, simple
s (Definition 9.12) have a “simple pole” ( i.e., τ �→

(τ−τ0)(smooth) at real points τ0), and the singularities of elements of Vω∗, exc
s occur

outside an excised neighborhood of P1
R minus a finite set (Definition 9.16).

Proposition 10.3. The injective maps r and q determined by (5.5) have im-
ages in the following equal cohomology groups.

rMaass0s(Γ) ⊂ H1
par(Γ;Vω

s ,Vω0,∞
s ) = H1

par(Γ,Vω
s ,Vω∗,∞

s ) ,(10.3a)

qMaass0s(Γ) ⊂ H1
par(Γ;Wω

s ,Wω0,∞
s ) = H1

par(Γ,Wω
s ,Wω∗,∞

s ) .(10.3b)
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64 4. MAASS FORMS AND SEMI-ANALYTIC COHOMOLOGY: GROUPS WITH CUSPS

If s �= 1
2 , then we also have

rMaass1s(Γ) ⊂ H1
par(Γ;Vω

s ,Vω0, simple
s ) = H1

par(Γ,Vω
s ,Vω∗, simple

s ) ,(10.3c)

qMaass1s(Γ) ⊂ H1
par(Γ;Wω

s ,Wω0, simple
s ) = H1

par(Γ,Wω
s ,Wω∗, simple

s ) ,(10.3d)

r EΓ
s ⊂ H1

par(Γ;Vω
s ,Vω0, exc

s ) = H1
par(Γ,Vω

s ,Vω∗, exc
s ) ,(10.3e)

q EΓ
s ⊂ H1

par(Γ;Wω
s ,Wω0, exc

s ) = H1
par(Γ,Wω

s ,Wω∗, exc
s ) .(10.3f)

Proof. By definition, H1
par(Γ;Vω

s ,Vω0, exc
s ) ⊂ H1

par(Γ Vω
s ,Vω∗, exc

s ). Consider a

parabolic cocycle c ∈ Z1
par(Γ;Vω

s ,Vω∗, exc
s ) and a parabolic element π = πκ, κ ∈ C.

Then cπ | (1 − π) ∈ Vω
s implies that the π-invariant set BdSing (cπ) is contained

in {κ}. So [c] ∈ H1
par(Γ;Vω

s ,Vω0, exc
s ). This proves the equality of these cohomology

groups. The same proof works for the other equalities of parabolic cohomology
groups.

For the inclusion r EΓ
s in H1

par(Γ;Vω
s ,Vω∗, exc

s ) we take u ∈ EΓ
s , and suppose that

s �= 1
2 . Let z0 ∈ H be the base point in the definition in (5.5a) of the cocycle

r : Γ→ Vω
s . Let κ ∈ C. The value rπκ

on the generator πκ = gκTg
−1
κ of Γκ satisfies

rπκ
(ζ) =

∫ z0

gκT−1g−1
κ z0

[u,R(ζ; · )s] =

∫ g−1
κ z0

T−1g−1
κ z0

[
u | gκ, R( · , · )|2s g−1

κ (ζ)
]
,

where we have used the G-equivariance of the Green’s form [ · , · ] in (1.10a) and of
R( · ; · )s in (2.25). Hence

rπκ
| gκ (ζ) =

∫ g−1
κ z0

T−1g−1
κ z0

[u | gκ, R(ζ; · )s] ,

which shows that rπκ
| gκ = rκT , where rκ is a cocycle on 〈T 〉 that represents

r(u | gκ) ∈ H1(〈T 〉;Vω
s ), with the base point g−1

κ z0. Theorem 9.20 shows that

r(u | gκ) ∈ H1(〈T 〉;Vω
s ,Vω∗, exc

s ) ,

as defined in (9.14). Hence there is aκ ∈ Vω∗, exc
s such that rκT = aκ | (T − 1), and

rπκ
= aκ | (T − 1) | g−1

κ = (aκ | g−1
κ ) | (πκ − 1) .

This works for all κ ∈ C, and hence ru ∈ H1
par(Γ;Vω

s ,Vω∗, exc
s ).

The other assertions go similarly, using also Propositions 9.11 and 9.15, and
taking into account that Maass1s(Γ) is characterized in EΓ

s by u | gκ ∈ Ks for all
cusps κ ∈ C, and Maass0s(Γ) by u | gκ ∈ K0

s for all κ ∈ C. �
We can use Proposition 8.4 to reconstruct u ∈ EΓ

s from the value qπ of the
cocycle q in (5.5c) on any parabolic π ∈ Γ.

11. Cohomology and parabolic cohomology for groups with cusps

We now turn to a more geometrical description of the cohomology of cofinite
discrete groups with cusps, like we did in §6 for cocompact discrete subgroups
of G. For the standard cohomology groups we do not work with resolutions built
on H, but on a contractible subset HY ⊂ H, where Y is a parameter. For the
parabolic cohomology, we work on H∗ ⊃ H, where all cusps of Γ are added to H.
Using tesselations of H∗ we will define Hi

par(Γ;V,W ) for all i ≥ 0, extending Def-
inition 10.1. In Proposition 11.8 we will relate these mixed parabolic cohomology
groups Hi

par(Γ;V,W ) to sheaf cohomology groups.
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§11. COHOMOLOGY AND PARABOLIC COHOMOLOGY FOR GROUPS WITH CUSPS 65

11.1. Resolutions. For κ ∈ C and a > 0, we define the horocycle Ha(κ) and
the open horocyclic disk Da(κ) as follows:

(11.1)
Ha(κ) = gκ(ia+ R) ,

Da(κ) = {gκz : Im z > a} .

Da(∞) is a euclidean half-plane,
whereas Da(κ) is a euclidean disk
touching R in κ if κ ∈ R. We denote
Ha = H�

⋃
κ∈C Da(κ).

We provide the extended upper half-
plane H∗ = H∪C (depending on Γ via C)
with its usual topology that induces the
standard topology on H, and has the
extended horocyclic disks Da(κ) ∪ {κ},
a > 0, as a basis of open neighborhoods

R

Ha(∞)

Da(∞)

Da(κ)

Ha(κ)

κ

of κ ∈ C. This topology is finer than that induced by the inclusion H∗ ⊂ H̄ ⊂ P1
C.

• Fundamental domain. We shall work with a fundamental domain F for Γ\H
that satisfies the following conditions: We require that F is a Dirichlet fundamental
domain, constructed from a base point P0 that is not an elliptic fixed point. There
is a finite set A = A−1 ⊂ Γ such that αF, α ∈ A, runs through the Γ-translates
of F that have an edge in common with F. We add the cusps in the closure of F in
H∗ to F. We require that this extended fundamental domain meets each Γ-orbit of
cusps exactly once. This is possible ([17], Chap. IV, §7G on p. 151). In particular,
Fcu = F ∩ C can and often will be used as a set of representatives for Γ\C.

The standard fundamental domain F = {z ∈ H : |x| ≤ 1
2 , |z| ≥ 1} for the

modular group satisfies these requirements, with Fcu = {∞}.

• Tesselations. For a fundamental domain F as above, we choose Y > 0
large enough that all DY (κ) are pairwise disjoint and that the following geodesic
segments are contained in the interior of HY : the segments e(P0, α

−1P0) for α ∈ A,
all segments connecting P0 to the vertices of F ∩ HY , and all segments connecting
those vertices.

In the sequel we will need tesselations of the following four types.

i) Tesselation of type Dir. With

X0 = ΓP0 , X1 = Γ
{
e(P0, α

−1P0) : α ∈ A
}
,

and X2 equal to the collection of the closures of the connected regions
enclosed by the edges in X1, we get a tesselation of a contractible region
contained in HY . This leads to a projective resolution F. = Q[X.], which
computes the group homology and the group cohomology of Γ.

ii) Tesselation of type Fd. The fundamental domain F gives a tesselation T
of H. We add to the edges the Γ-translates of the intersections of F with
∂DY (κ) for κ ∈ Fcu. These edges are not geodesic segments. In this way,
F = FY ∪

⋃
κ∈Fcu Vκ, where FY = F∩HY , and where Vκ = {gκz : Im z ≥

Y , xκ−1 ≤ Re z ≤ xκ} for some xκ ∈ R, is a triangle with infinite height
and finite hyperbolic area, with vertices κ, Pκ = gκ(xκ + iY ) ∈ ∂HY and
π−1
κ Pκ = gκ(xκ − 1 + iY ) ∈ ∂HY .

Licensed to Max-Planck Institut fur Mathematik.  Prepared on Fri Mar 27 11:48:34 EDT 2015for download from IP 192.68.254.102.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



66 4. MAASS FORMS AND SEMI-ANALYTIC COHOMOLOGY: GROUPS WITH CUSPS

We write eκ = e(Pκ, κ) and fκ = e(Pκ, π
−1
κ Pκ) ⊂ ∂HY (κ) ∩ F. So eκ

is a geodesic half-line and fκ is a horocyclic segment. We have

(11.2) ∂Vκ = eκ − π−1
κ eκ − fκ .

There is a finite set E of edges e of FY and corresponding γe ∈ Γ such
that

(11.3) ∂FY =
∑

κ∈Fcu

fκ +
∑
e∈E

e−
∑
e∈E

γ−1
e e .

We denote

(11.4) B = E � {eκ, fκ : κ ∈ F
cu} .

See Figure 11.1 for an illustration in the modular case.
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� �
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FY

��

�

��

������

� ��
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Figure 11.1. Modular group, parts of tesselations of type Fd
(left) and Dir (right).

We put
(11.5)

XY
0 = Γ {vertices of FY } , X0 = XY

0 � C ,
XY

1 = Γ {fκ : κ ∈ Fcu} ∪ ΓE , X1 = XY
1 � Γ {eκ : κ ∈ Fcu} ,

XY
2 = Γ(FY ) , X2 = XY

2 � Γ {Vκ : κ ∈ Fcu} .

Here, and in the sequel, we consider the elements of the setsXj as compact
subsets of H∗. We have arranged that all elliptic fixed points are elements
of XY

0 .
The translates of FY form a tesselation T of the contractible space

HY , and F T ,Y
. = Q[XY

. ] is a projective resolution of the Q[Γ]-module Q.
It is contained in the chain complex F T

. = Q[X.], which is not projective,
due to the cusps in C ⊂ X0. The set B in (11.4) is a Q[Γ]-basis of F T

1 ,
and the following set is a Q[Γ]-basis of F T

2 :

(11.6) {FY } ∪ {Vκ : κ ∈ Fcu} .

All other tesselations that we consider (apart from type Dir), are
refinements of a tesselation of type Fd.
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§11. COHOMOLOGY AND PARABOLIC COHOMOLOGY FOR GROUPS WITH CUSPS 67

iii) Tesselation of type Mix. Add to a tesselation T of type Fd based on
a Dirichlet fundamental domain as above the interior base point P0 and
the edges from P0 to the vertices of FY . Taking Γ-translates of the new
points and edges we obtain a refinement of T , which turns out to be a
triangulation. See Figure 11.2.

iv) Tesselation of type Mix′. Take the common refinement T of tesselations
of type Mix and Dir built on the same Dirichlet fundamental domain.
Add all Γ-translates of the geodesic half-lines from P0 to the cusps in Fcu

and the resulting additional vertices on the edges fκ. We call the resulting
triangulation a tesselation of type Mix′. See Figure 11.2.

�� �

� �

�
�� �

� ��

� ��

Figure 11.2. Modular group, part of tesselations of type Mix
(left) and Mix′ (right).

• Chain complex on H∗. The chain complex on H∗ gives the resolution F hyp
i =

Q
[
(H∗)i+1

]
, with boundary maps, augmentation and group action as in (6.1). It

has a subcomplex F hyp,Y
i = Q[Hi+1

Y ].

11.2. Cohomology groups for Γ. For all tesselations T that refine a tesse-
lation of type Fd, the complex F T ,Y

. is a subcomplex of F T
. that gives a projective

resolution of Q and can be used to compute the cohomology groups H
.
(Γ;V ). For

this purpose, we can also use the complex corresponding to a tesselation of typeDir,
and the complex F hyp,Y

. .

If there are cusps, then H2(Γ;V ) = {0}. In model Fd, F T ,Y
2 is generated

by FY . For a cocycle c, the freedom in c(FY ) is determined by a coboundary
db(FT ) =

∑
e∈E b(e) | (1− γe) +

∑
κ∈Fcu b(fκ). The b(fκ) ∈ V can be freely chosen.

11.3. Parabolic cohomology. We will base the definition of parabolic coho-
mology groups on parabolic resolutions defined below. For the definition of mixed
parabolic cohomology groups we use resolutions based on a tesselation of type Fd
or a refinement of such a tesselation. To put these definitions in context, we shall
prove (Proposition 11.8) that the resulting cohomology groups are isomorphic to
certain cohomology groups in sheaf cohomology. Moreover, we will show that in
dimension 1 these cohomology groups are isomorphic to those in Definition 10.1.
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68 4. MAASS FORMS AND SEMI-ANALYTIC COHOMOLOGY: GROUPS WITH CUSPS

• Parabolic resolutions. For all resolutions obtained from a refinement of a
tesselation of type Fd there is an exact sequence

−→ F3
∂3−→ F2

∂2−→ F1
∂1−→ F0

ε−→ Q −→ 0

of Q[Γ]-modules such that

a) F0 has a set G0 of generators over Q[Γ], such that for each x ∈ G0 the
subgroup Γx ⊂ Γ fixing x is either finite, or equal to Γx with x ∈ C. (In
the modular case, with a tesselation of type Fd based on the standard

fundamental domain we may take G0 consisting of i, 1+i
√
3

2 , P∞ and ∞.)
b) For each κ ∈ C the Q-subspace (F0)

πκ has dimension 1, and the augmen-
tation ε is non-trivial on this subspace. (In the modular case, (F0)

T =
Q(∞).)

c) The Fi, i ≥ 1, are free Q[Γ]-modules.

In resolutions coming from a tesselation of H∗, we have Fi = 0 for i ≥ 3.
We call any resolution with the properties a)–c) a parabolic resolution of Q.

For the moment, we have only the example of resolutions based on a refinement of
a tesselation of type Fd. In Chapter 6, we will use another example, obtained by
taking tensor products.

Most of the properties of projective resolutions carry over:

Lemma 11.1. If f. : F. → F. and g. : F. → F. are augmentation preserving chain
maps of a parabolic resolution F. of Q, then they are homotopic.

Proof. In dimension 0, we have for each κ ∈ C a unique element bκ ∈ F0 such
that πκbκ = bκ, and εbκ = 1. This forces f0bκ = g0bκ. From ε ◦ f0 = ε ◦ g0, we
conclude that there is a Γ-equivariant map h0 : F0 → F1 such that ∂1h0 = f0 − g0.
It satisfies h0bκ = 0 for all κ ∈ C. The further construction of a homotopy between
f. and g. goes in the same way as for projective resolutions. See [1], Lemma 7.4 in
Chap. I. �

Lemma 11.2. If F. and F ′
. are parabolic resolutions of Q, then there exists an

augmentation preserving chain map f. : F. → F ′
. .

Proof. For each κ ∈ C, we are forced to have f0bκ = b′κ. The further con-
struction of the fi on the generators can be carried out as for projective resolutions.
See [1], §7 of Chap. I. �

Definition 11.3. The parabolic cohomology groups Hi
par(Γ;V ) of Γ with values

in a Q[Γ]-module V are the cohomology groups of the complex

HomQ[Γ](F., V ) ∼= Map(X., V )Γ

for any parabolic resolution F. of Q.

The parabolic cohomology groups for different parabolic resolutions are canon-
ically isomorphic.

In the case of the parabolic resolutions F T
. based on a refinement T of a tesse-

lation of type Fd, there is a subcomplex F T ,Y
. which forms a projective resolution

of Q. We use such parabolic resolutions to define the mixed parabolic cohomology
groups:
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§11. COHOMOLOGY AND PARABOLIC COHOMOLOGY FOR GROUPS WITH CUSPS 69

Definition 11.4. Let V ⊂ W be an inclusion of Q[Γ]-modules. We define
Ci(F T

. ;V,W ) to be the space of Γ-equivariant maps c : XT
i → W such that

c
(
XT ,Y

i

)
⊂ V . We define coboundary maps di : Ci(F T

. ;V,W ) → Ci+1(F T
. ;V,W )

by dic(x) = (−1)i+1c(∂i+1x). We call the cohomology groups of the resulting com-
plex

0 −→ C0(F T
. ;V,W )

d0

−→ C1(F T
. ;V,W )

d1

−→ C2(F T
. ;V,W ) −→ 0

the mixed parabolic cohomology groups Hi
par(Γ;V,W ):

(11.7)

Hi
par(Γ;V,W ) = Zi(F T

. ;V,W )/Bi(F T
. ;V,W ) ,

Zi(F T
. ;V,W ) = Ker

(
di : Ci(F T

. ;V,W ) −→ Ci+1(F T
. ;V,W )

)
,

Bi(F T
. ;V,W ) =

{
di−1Ci−1(F T

. ;V,W ) if i > 0 ,

0 if i = 0 .

The definition is justified by Lemmas 11.1 and 11.2, which show that up
to canonical isomorphisms the space Hi

par(Γ;V,W ) is independent of the choices

made. Note that Hi
par(Γ;V,W ) = {0} for i > 2. In the case V = W we denote

Hi
par(Γ;V, V ) by Hi

par(Γ;V ). Since F T
. is a parabolic resolution, Definitions 11.3

and 11.4 lead to isomorphic parabolic cohomology groups. Finally, this definition is
a redefinition in the case i = 1; in Proposition 11.5 we will see that Definitions 10.1
and 11.4 lead to isomorphic spaces H1

par(Γ;V,W ).

• Dimension 0. For all V ⊂W , we have H0(Γ;V,W )=V Γ (use that XT ,Y
0 �=∅).

• Dimension 1. Consider the newly defined H1
par(Γ;V,W ) in a tesselation T

of type Mix. If c ∈ Z1(F T
1 ;V,W ), then ψγ = c(γ−1P0, P0) is a cocycle on Γ with

values in V . For κ ∈ C:

ψπκ
= c(P0, κ) | (πκ − 1) ∈W | (1− πκ) .

So ψ is a parabolic cocycle. If c = db is a coboundary, then ψγ = b(P0) | (γ − 1),
so ψ ∈ B1(Γ;V ). This gives a map from H1

par(Γ;V,W ) defined here to the mixed
parabolic cohomology group in Definition 10.1.

Conversely, since F T ,Y
. is a projective resolution, there is associated a cocycle

c ∈ Z1(F T ,Y
. ;V ) to each parabolic cocycle ψ on Γ. For each P ∈ XY

0 , the cocycle
γ �→ c(γ−1P, P ) is in the same cohomology class as ψ, and hence is parabolic. For
each cusp κ ∈ Fcu, there is wκ ∈W such that c(fκ) = c(π−1

κ Pκ, Pκ) = wκ | (πκ−1).
Extend c in a Q[Γ]-linear way to X1 by defining c(eκ) = −wκ for all κ ∈ Fcu. Then
c ∈ Z1(F T

. ;V,W ) corresponds to the parabolic cohomology class [ψ]. Thus, we
have:

Proposition 11.5. The mixed parabolic cohomology group H1(Γ;V,W ) defined
in Definition 11.4 is isomorphic to that defined in Definition 10.1.

• Dimension 2. The second mixed parabolic cohomology groups do not neces-
sarily vanish:

Proposition 11.6. If |Γ\C| = 1, then for each κ ∈ C:

H2
par(Γ;V,W ) ∼= W

/(
W | (1− πκ) +

∑
γ∈Γ

V | (1− γ)

)
,
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70 4. MAASS FORMS AND SEMI-ANALYTIC COHOMOLOGY: GROUPS WITH CUSPS

Proof. We work with a tesselation of model Fd. Let Fcu = {κ}. Any cocycle
a ∈ Z2(F T

. ;V,W ) = C2(F T
. ;V,W ) is determined by its values a(FY ) ∈ V and

a(Vκ) ∈ W . The freedom consists of adding dc with c ∈ C1(F T
. ;V,W ). Choosing

c(e) ∈ V for e ∈ E changes a(FY ) by c(e) | (1 − γe) and leaves a(Vκ) unchanged.
These elements generate

∑
γ V | (1 − γ). Choosing c(eκ) ∈ W changes a(Vκ) by

c(eκ) | (1 − πκ) and leaves a(FY ) unchanged. Finally, the choice of c(fκ) ∈ V
changes

(
a(FT ), a(Vκ)

)
by
(
c(fκ),−c(fκ)

)
. Thus, we can arrange a(FT ) = 0, and

get a(Vκ) ∈ W with freedom in W | (1 − πκ) +
∑

γ∈Γ |V (1 − γ). This completes
the proof, and implies that the description is up to isomorphism independent of
the choice of κ in its Γ-orbit C. To make this isomorphism explicit we consider
δ ∈ Γ, and note that w �→ w|δ leaves W and V invariant, and sends W | (1− πκ) +∑

γ∈Γ V | (1− γ) to

W |δ(1− δ−1πκδ) +
∑
γ

V |δ(1− δ−1γδ) = W |(1− πδ−1κ) +
∑
γ

V |(1− γ) . �

Along the same lines, we arrive at the following more complicated description
for the general case. We recall, from §11.1, that we use a fundamental domain F

for which Fcu is a system of representatives of the finitely many Γ-orbits of cusps.

Proposition 11.7. For any cofinite group Γ with cusps the mixed parabolic
cohomology group H2

par(Γ;V,W ) is isomorphic to the space
⊕

κ∈Fcu W modulo the
sum of the following three subspaces:⊕
κ∈Fcu

W |(1− πκ) ,
⊕

κ∈Fcu

∑
γ∈Γ

V |(1− γ) ,
{
(vκ) ∈

⊕
κ∈Fcu

V :
∑
κ

vκ = 0
}
.

In the special case V = 0, we have Hi
par(Γ; 0,W ) = {0} for i = 0, 1, and

(11.8) H2
par(Γ; 0,W ) =

⊕
κ∈Fcu

W /(W | (1− πκ)) .

If V = W , then

(11.9) H2
par(Γ;V ) ∼= VΓ .

This isomorphism is given by evaluation on the fundamental class represented by

(11.10) (F) = (FY ) +
∑

κ∈Fcu

(Vκ) .

Thus we have
(11.11)

H0
par(Γ;V,W ) = H0

par(Γ;V ) = H0(Γ;V ) = V Γ ,

H1
par(Γ;V ) ⊂ H1

par(Γ;V,W ) ⊂ H1(Γ;V ) ,

H2
par(Γ;V,W ) ⊃ H2

par(Γ;V ) = VΓ ⊃ H2(Γ;V ) = {0} .

• Sheaf cohomology. We now show that the mixed parabolic cohomology
groups can be identified with cohomology groups of certain sheaves on Γ\H∗. This
will then be used to give a long exact sequence for mixed parabolic cohomology
groups (Proposition 11.9).

The topological space X := Γ\H∗ is compact. It contains the open subspace
Y = Γ\H and the closed subspace YY := Γ\HY . We denote the projection map
by π : H∗ → X. Let V ⊂ W be Q[Γ]-modules. On H∗ we have the constant
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§11. COHOMOLOGY AND PARABOLIC COHOMOLOGY FOR GROUPS WITH CUSPS 71

sheaf W × H∗ with subsheaf (V × HY ) ∪ (W × (H∗ � HY )). The group Γ acts by
(w,P ) | γ = (w | γ, γ−1P ). The quotient

(11.12) FV,W =

(
(V × HY ) ∪

(
W × (H∗ � HY )

))/
Γ

is a sheaf on X. For open U ⊂ X the space FV,W (U) consists of all locally constant
Γ-equivariant functions π−1(U) → W that take values in V on the components of
π−1(U) that intersect π−1(YY ).

For a given P ∈ X, choose z ∈ H∗ with P = πz. The stalk (FV,W )P is

isomorphic to V Γz if P ∈ YY and to WΓz if P ∈ X� YY . The isotropy group Γz is
trivial for all but finitely many P ∈ X.

Proposition 11.8. Let V ⊂W be an inclusion of Q[Γ]-modules. Then

Hj
par(Γ;V,W ) ∼= Hj(X;FV,W ) for all j ≥ 0 .

Proof. For any refinement T of a tesselation of type Fd, we form for z ∈ X0

the open set

Ωz = {z} ∪ {̊e : e ∈ X1, z ∈ e} ∪
{
V̊ : V ∈ X2, z ∈ V

}
.

in H∗. By e̊, we mean e minus its end points, not the (empty) interior as a subset

of H∗. For z ∈ X0 ∩ H, the set Ωz contains finitely many e̊ and V̊ . If κ ∈ C, then
Ωκ is equal to DY (κ)∪{κ}. If Γz is non-trivial, the set Ωz necessarily contains Γz-
equivalent points. We require that the tesselation T is such that all Ωz contain no
more Γ-equivalent points than necessary: If Γz = {1}, then Ωz should not contain
Γ-equivalent points; otherwise, if z1, γ−1z1 ∈ Ωz for γ ∈ Γ, then γ ∈ Γz. We
also require that X2 consists of triangles. A tesselation of type Mix′ satisfies these
conditions.

The set A = {πΩz : z ∈ X0} is a finite open covering of X. The intersection
of two different elements of A, if non-empty, contains the image πe̊ for exactly
one Γ-orbit of e ∈ X1. The non-empty intersection of three different elements of
A corresponds to the πV̊ for exactly one Γ-orbit of elements V ∈ X2. In this
way, we can check that the complex C ·(F., V,W ) is isomorphic to the complex(
Ci (A,FV,W )

)
i
in Čech cohomology. This implies the following isomorphism:

Hi
par(Γ;V,W ) ∼= Ȟi (A;FV,W ) .

See, e.g., [12], Chap. III, §4 for Čech cohomology.
Leray’s theorem (Exercise 4.11, loc. cit.) gives Ȟi (A;FV,W ) ∼= Hi (X;FV,W )

if Hk (U ;FV,W |U ) = {0} for all intersections U of elements of A for all k ≥ 1. To
finish the proof, we have to check that this condition holds in the present situation.

We first consider a connected set U that does not contain the image of an
elliptic or parabolic fixed point of Γ. It may happen that U is contained in YY
or in X � YY . Then the restriction G = FV,W |U is the constant sheaf V or W,
and Hi (U ;FV,W |U ) = 0 for i ≥ 1, since constant sheaves have trivial cohomology.
The other possibility is that U is a neighborhood of πe̊ for some edge e contained
in ∂HY . Then G(U1) = W if U1 ⊂ X � YY and G(U1) = V otherwise. The set
U0 = U ∩ YY is closed in U . Let k : U0 �→ U denote the inclusion. We have an
exact sequence of sheaves of Q-vector spaces on U :

(11.13) 0 −→ G −→W −→ k∗(W/V) −→ 0 ,
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72 4. MAASS FORMS AND SEMI-ANALYTIC COHOMOLOGY: GROUPS WITH CUSPS

where W is the constant sheaf given by W on U , and W/V the constant sheaf on
U0 given by W/V . For i ≥ 1, we have Hi (U ;W) = {0}, and Hi (U ; k∗ (W/V)) ∼=
Hi (U0;W/V) by Lemma III.2.4, loc. cit., and hence also H1(U ; k∗(W/V)) = {0}.
The long exact sequence corresponding to (11.13) starts with

0 → V → W → W/V → H1(U ;G) → H1(U ;W) →
||
0

Since W →W/V is surjective, this implies that H1(U ;G) = {0}. The later parts

→ Hi−1(U ; k∗(W/V) → Hi(U ;G) → Hi(U ;W) →
|| ||
0 0

of the long exact sequence show that Hi(U ;G) = 0 for i ≥ 2.

Suppose now that U contains the image of a parabolic or elliptic fixed point.
Then U = πΩz where z ∈ C or z is an elliptic fixed point. We treat the case
z = κ ∈ C. The other case goes similarly.

Let P = π κ. The restriction of G to U � {P} is the constant sheaf W. With
the injection k : {P} → U , we have the following exact sequence of sheaves on U :

0 −→ G −→W −→ k∗ (W/Wκ) −→ 0 ,

where Wκ is the constant sheaf W/WΓκ on {P}. We proceed as in the previous
case. �

This proposition shows that the concept of mixed parabolic cohomology in
Definition 11.4 can be interpreted as sheaf cohomology. Since a sequence of sheaves
is exact if all corresponding sequences of stalks are exact, we have:

Proposition 11.9. Suppose that the rows in the following diagram of Q[Γ]-
modules are exact

(11.14)

0 �� V ′ ��� �

��

V ��� �

��

V ′′ ��� �

��

0

0 �� W ′ �� W �� W ′′ �� 0

and that for each κ ∈ Fcu the sequence

(11.15) 0 −→ (W ′)
Γκ −→WΓκ −→ (W ′′)

Γκ −→ 0

is exact as well. Then there is a long exact sequence of mixed parabolic cohomology
groups

· · · −→Hi−1
par (Γ;V

′′,W ′′) −→ Hi
par(Γ;V

′,W ′) −→ Hi
par(Γ;V,W )

−→Hi
par(Γ;V

′′,W ′′) −→ Hi+1
par (Γ;V,W ) −→ · · ·

Parabolic cohomology groups are sometimes defined as the kernel of the re-
striction to the boundary in the Borel-Serre compactification, e.g., in [8], §2. In
dimension 1 this leads to parabolic cohomology groups isomorphic to the groups
H1

par(Γ;V ) defined here.

The category with as its objects inclusions V ⊂W of Q[Γ]-modules and the ob-
vious morphisms is not abelian. To get a fully satisfactory cohomological treatment
of mixed parabolic cohomology, one should extend Definition 11.4 to morphisms
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§12. MAASS FORMS AND COHOMOLOGY 73

V → W of Q[Γ]-modules. We refrain from carrying out this extension, and men-
tion only one case, which will be used in Section 13. Let V ↪→W be an inclusion of
Q[Γ]-modules. Define QW/V as the quotient in the exact sequence of sheaves on X

(11.16) 0 −→ FV,W −→ FW,W −→ QW/V −→ 0 .

SoQW/V (U) = 0 if the open set U is contained in X�YY andQW/V (U) = W/V oth-

erwise. By generalizing the proof of Proposition 11.8 one sees that Hi(X;QW/V ) ∼=
Hi(Γ;W/V ) for all i ≥ 0. As a consequence of the exactness of (11.16) we obtain
a long exact sequence

(11.17)
. . . −→Hi−1(Γ;W/V ) −→ Hi

par(Γ;V,W ) −→ Hi
par(Γ;W )

−→ Hi(Γ;W/V ) −→ Hi+1
par (Γ;V,W ) −→ . . .

12. Maass forms and cohomology

This section generalizes the results concerning the relation between Maass forms
and analytic cohomology given in Chapter 2 for cocompact groups to groups with
cusps. We follow the same method as for cocompact groups, with some modifi-
cations to handle the complications caused by the cusps. The presence of cusps
brings also a simplification: The cusps are vertices of the tesselations situated on
∂H. There is no need to extend cocycles to hyperbolic fixed points on ∂H, like we
needed to do in §7.3.

12.1. From invariant eigenfunctions to parabolic cocycles. The linear
maps r and q from invariant eigenfunctions to cohomology classes have been de-
scribed in (5.5) only in the group model of cohomology. In a model based on a
tesselation T of type Fd or a refinement of it, cocycles r and q representing ru,
respectively qu, for u ∈ EΓ

s , are determined by:

(12.1) r(x)(ζ) =

∫
x

[u,R(ζ; · )s] , q(x)(z) =

∫
x

[u, qs( · , z)] for x ∈ XT ,Y
1 .

We know from Propositions 10.3 and 11.5 that ru is a parabolic cohomology class
in H1

par(Γ;Vω
s ,Vω∗, exc

s ), where Vω∗, exc
s consists of elements with finitely many sin-

gularities of a special type, discussed in Definition 9.17. The following result gives
explicit cocycles in the classes ru and qu.

Proposition 12.1. Let T be a tesselation refining a tesselation of type Fd.
For a cusp form u ∈ Maass0s(Γ), the cocycles r and q in (12.1) have unique

extensions r ∈ Z1(F T
. ;Vω

s ,Vω∗,∞
s ) and q ∈ Z1(F T

. ;Wω
s ,Wω∗,∞

s ), given by the in-
tegrals in (12.1) for all x ∈ XT

1 .
If u ∈ Maass1s(Γ) and s �= 1

2 , the cocycle r has a unique extension as an element

of Z1(F T
. ;Vω

s ,Vω∗, simple
s ) determined by

r(eP,κ) = −Av+
πκ
r(eπ−1

κ P,P ) = −Av−
πκ
r(eπ−1

κ P,P )

for κ ∈ C and P ∈ XT
1 on the horocycle VY (κ). (See §4.2 for the one-sided aver-

ages.)
If s �= 1

2 and u ∈ EΓ
s is a general invariant eigenfunction, then r can be extended,

non-uniquely, as an element of Z1(F T
. ;Vω

s ,Vω∗, exc
s ) by defining

r(eP,κ) = −Av+
πκ
r(eπ−1

κ P,P )

for κ ∈ C and for P ∈ XT
1 on the horocycle VY (κ).

In all cases q = b(s)P†sr gives an extension q ∈ Z1(F T
. ;Wω

s ,Wω∗, exc
s ).
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74 4. MAASS FORMS AND SEMI-ANALYTIC COHOMOLOGY: GROUPS WITH CUSPS

Proof. If u is a cusp form, then the integral in (12.1) converges also when
one end point of x is a cusp. Use Proposition 9.7 and (9.12), and Proposition 4.5
for the uniqueness. In the general situation, we have r(eπ−1

κ P,P ) ∈ Vω
s , and hence

Av+
πκ
r(eP,π−1

κ P ) ∈ Vω
s [κ]. Lemma 9.4 and Proposition 9.18 imply, after conjugation,

that Av+
πκ
r(eπ−1

κ P,P ) ∈ Vω, exc
s [κ]. The Γ-equivariance of r follows from πγ−1κ =

γ−1πκγ. For the cocycle property it suffices to consider dr on the triangles Vκ at
the cusps κ ∈ Fcu:

dr(Vκ) = r(ePκ,κ) | (1− πκ) + r(eπ−1
κ Pκ,Pκ

)

=
(
−Av+

πκ
r(eπ−1

κ Pκ,Pκ
)
)
| (1− πκ) + r(eπ−1

κ Pκ,Pκ
) = 0 .

If u ∈ Maass1s(Γ), then r(eπ−1
κ P,P ) ∈ Vω∗, simple

s | (1 − πκ) by Proposition 9.15.

The choice r(eP,κ) = Av+
T
r(eπ−1

κ P,P ) = Av−
T
r(eπ−1

κ P,P ) is unique. See Propositions

9.13 and 9.14. �

12.2. From parabolic cocycles to invariant eigenfunctions. The ideas
in §7.1 and §7.2 can be applied, with some modifications. In this subsection, we
construct an element of EΓ

s starting from a parabolic (Wω
s ,Wω∗, exc

s )-valued cocycle
in two ways: a local representation as a sum of values of the cocycle, like in §7.1,
and as an average over Γ, like in §7.2.

We work with a tesselation T of type Fd based on a Dirichlet fundamental
domain F. A difference with the cocompact case is the presence of edges in XT

1

with a cusp as one of their end points. For the interior edges e ⊂ HY we can work
with R-neighborhoods NR(e), like in §7.1. The R-neighborhoods with respect to the
hyperbolic distance of edges eP,κ with κ ∈ C intersect infinitely many Γ-translates
of eP,κ. We define instead for R > 0

(12.2) NR(eP,κ) =
{
gκz : |Re z| ≤ R , Im z ≥ 1/R

}
.

This is the set gκW1/R with W1/R as defined in (9.18). It is of the form H� Ω for

an excised neighborhood Ω of P1
R � {κ}. It contains eP,κ if R ≥ Y .

For a given cocycle ψ ∈ Z1(F T
. ;Wω

s ,Wω∗, exc
s ) we choose a Γ-equivariant lift

ψ̃ ∈ C1(F T
. ;Gω

s ,Gω∗, exc
s ) by first choosing lifts of ψ(b) for b in a Q[Γ]-basis B of F T

1 ;
e.g., B = E ∪ {fκ, eκ : κ ∈ Fcu}. For interior edges e ∈ E or e = fκ, we choose

any lift ψ̃(e) ∈ Gω
s of ψ(e) ∈ Wω

s . For the edge eκ to the cusp κ ∈ Fcu it is sensible
to take a lift of ψ(eκ) ∈ Wω∗, exc

s satisfying

(12.3) ψ̃(eκ) ∈ Gω∗, exc
s , Sing ψ̃(eκ) ⊂ NR(eκ) for some R ≥ Y .

To see that this is possible, we note that ψ(eκ) | (1 − πκ) = ψ(fκ) ∈ Wω
s . Hence

BdSingψ(eκ) ⊂ {κ}.
Next we fix R ≥ Y large enough that Sing ψ̃(e) ⊂ NR(e) for all e ∈ XT

1 . Let Z
be a finite union of Γ-translates of F. We can find cycles C ∈ Z[XT

1 ] with winding
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§12. MAASS FORMS AND COHOMOLOGY 75

number 1 on Z such that NR(C) =
⋃

e⊂SuppC NR(e) does not intersect Z.

ZC

��	
	
������������ ������ 	
	
��	

The cycle C has to pass through the finitely many cusps in Z.

We define uψ on Z by

(12.4) uψ(z) =
1

πi
ψ̃(C)(z) .

Like in §7.1 this does not depend on the choice of the cycle C, on the choice of the
lift ψ̃, or on the choice of ψ in its cohomology class, and satisfies uψ(δz) = uψ(z),
and leads to uψ = u[ψ] ∈ EΓ

s .

Suppose that ψ is the cocycle q in (12.1) representing qu, with u ∈ EΓ
s . We

can take a lift ψ̃(b) ∈ C2(H) of q(b), for b ∈ B, equal to the value of the integral in
(12.1) outside Nε(b). If ε is sufficiently small, then there is a non-empty open set

V ⊂ F̊Y not intersecting the ε-neighborhood of any e ∈ XT
1 . With Theorem 1.1

and Proposition 9.8 we obtain for z ∈ V :

uψ(z) =
1

πi

∫
∂FY

[u, qs( · , z)] = u(z) .

By analyticity uψ = u everywhere on H.

If s �= 1
2 , we have qEΓ

s ⊂ H1
par(Γ;Wω

s ,Wω∗, exc
s ), from Theorem 9.20. Thus,

ψ �→ uψ induces a one-sided inverse of q. For s = 1
2 , we have uq = u only for

those u ∈ EΓ
1/2 for which qu ∈ H1

par(Γ;Wω
1/2,W

ω∗, exc
1/2 ). This includes the Maass

cusp forms in Maass01/2(Γ).
We summarize:

Proposition 12.2. There is a linear map ψ �→ uψ from Z1(F T
. ;Wω

s ,Wω∗, exc
s )

to EΓ
s . The invariant eigenfunction uψ depends only on the parabolic cohomology

class [ψ] ∈ H1
par(Γ;Wω

s ,Wω∗, exc
s ) and can be given on each compact set in H by a

(finite) C-linear combination of translates of ψ(e), where e runs through the Q[Γ]-
basis B of F T

1 in (11.4). If s �= 1
2 the induced map αω

s : H1
par(Γ;Wω

s ,Wω∗, exc
s )→ EΓ

s

satisfies αω
s q = Id on EΓ

s .

In §12.4 we will discuss the question under what conditions on ψ the invariant
eigenfunction uψ is in Maass0s(Γ) or Maass1s(Γ).

Now we have generalized the approach in §7.1 leading to Theorem 7.2. To
generalize §7.2, we use the diagram (9.17). It satisfies the exactness condition
(11.15), as follows from Lemma 9.22. Proposition 11.9 implies that there is a long
exact sequence associated to (9.17), from which we use the following part:

−→H1
par(Γ;Gω

s ,Gω∗, exc
s ) −→ H1

par(Γ;Wω
s ,Wω∗, exc

s )

−→ H2
par(Γ;Nω,Nω∗, exc) −→
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76 4. MAASS FORMS AND SEMI-ANALYTIC COHOMOLOGY: GROUPS WITH CUSPS

We choose a lift ψ̃ ∈ C1(F T
. ;Gω

s ,Gω∗, exc
s ) of ψ ∈ Z1(F T

. ;Wω
s ,Wω∗, exc

s ) as above.

Then dψ̃ ∈ Z2(F T
. ;Nω,Nω∗, exc). As in §7.2, we obtain

(12.5) uψ =
1

πi
Av

Γ

(
dψ̃(F)

)
,

independent of the choice of the lift ψ̃. The support of dψ̃(F) ∈ Nω∗, exc is not
compact, but meets only finitely many Γ-translates of F. So the sum defining
Av

Γ

(
dψ̃(F)

)
is locally finite and converges absolutely. The representation of uψ as

an average does not depend on the choice of the lift ψ̃ satisfying (12.3).

12.3. Injectivity. Starting from a cocycle ψ ∈ Z1(F T
. ;Wω

s ,Wω∗, exc
s ) and a

lift ψ̃ of ψ satisfying (12.3), we have constructed in two ways, (12.4) and (12.5), a
Γ-invariant eigenfunction uψ, thus obtaining a linear map

αω
s : H1

par(Γ;Wω
s ,Wω∗, exc

s )→ EΓ
s .

Now we will prove:

Proposition 12.3. Let s ∈ C, 0 < Re s < 1. The map

αω
s : H1

par(Γ;Wω
s ,Wω∗, exc

s ) −→ EΓ
s

in Proposition 12.2 is injective.

With Proposition 12.2 and with the fact that the transverse Poisson map gives
isomorphisms Vω

s
∼=Wω

s and Vω∗, exc
s

∼=Wω∗, exc
s , this implies:

Proposition 12.4. Let s ∈ C, 0 < Re s < 1, s �= 1
2 . Then

H1
par(Γ;Vω

s ,Vω∗, exc
s ) ∼= EΓ

s .

To prove Proposition 12.3 we use the following results, of which we postpone
the proofs.

Proposition 12.5. The cohomology group H1
par(Γ;Gω

s ,Gω∗, exc
s ) is zero.

Lemma 12.6. Suppose c ∈ C2(F T
. ;Nω,Nω∗, exc) satisfies the following condi-

tions:

i) There exists R > 0 such that Supp c(Vκ) ⊂ NR(eκ) for all κ ∈ Fcu.
ii) Av

Γ

(
c(F)
)
= 0.

Then the class [c] ∈ H2
par(Γ;Nω,Nω∗, exc) is the zero class.

Proof of Proposition 12.3. For a given cocycle ψ ∈ Z1(F T
. ;Wω

s ,Wω∗, exc
s )

we suppose that uψ = 0. We have to show that [ψ] = 0 in H1
par(Γ;Wω

s ,Wω∗, exc
s ).

To obtain uψ from ψ we have chosen a lift ψ̃ ∈ C1(F T
. ;Gω

s ,Gω∗, exc
s ) satisfy-

ing (12.3). The assumption implies that Av
Γ

(
dψ̃(F)

)
= πi uψ = 0. For each κ ∈ Fcu

we have

dψ̃(Vκ) = −ψ̃(fκ) + ψ̃(eκ)|(1− πκ)

as an identity in Gω∗, exc
s . The singularities of ψ̃(fK) are contained in a compact

subset of H, and those of ψ̃(eκ), and hence also of ψ̃(eκ)|(1−πκ), in a set Nr(eκ) as
in (12.2). So there is an open neighborhood Ω of P1

R � {κ} in P1
C that is an excised

neighborhood of P1
R � {κ}, for which dψ̃(Vκ) ∈ Es(Ω ∩ H). Since the cochain ψ̃

represents the cocycle ψ we have dψ̃(Vκ) = 0 on Ω∩H. In particular Supp dψ̃(Vκ) ⊂
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§12. MAASS FORMS AND COHOMOLOGY 77

NR(eκ) if R is sufficiently large. Now we can apply Lemma 12.6 to conclude that

the class [dψ̃] in H2
par(Γ;Nω,Nω∗, exc) is zero.

We use the part

H1
par(Γ;Gω

s ,Gω∗, exc
s ) −→ H1

par(Γ;Wω
s ,Wω∗, exc

s )
δ−→ H2

par(Γ;Nω,Nω∗, exc)

of the long exact sequence associated to the diagram (9.17) by Proposition 11.9.

Since [dψ̃] = δ[ψ] we have [ψ] = 0 by Proposition 12.5. �

Proof of Lemma 12.6. The cocycle c is determined by its values on the basis
{FY } ∪ {Vκ : κ ∈ Fcu} of F T

2 .

The support of c(FY ) is a compact
subset of H. Condition i) in the lemma
ensures that we can find a large a ≥ Y
such that Supp c(FY ) ⊂ ΓFa and that
Supp c(Vκ) ⊂ Γ(Fa ∪ V a

κ ) for all κ ∈
Fcu. In particular Supp c(Vκ) does not
intersect ΓV a

λ for some λ �= κ, λ ∈ Fcu.
Condition ii) implies that Av

Γ

(
c(Vκ)

)
=

0 on ΓV̊ a
κ .

V a
∞

V a
λ

Fa

λ

We take α ∈ C∞
c (R) such that

∑
n∈Z α(x + n) = 1 for all x ∈ R, and β ∈

C∞(0,∞) equal to 0 on (0, a) and equal to 1 on (a + ε,∞) for some ε > 0. We
define for each κ ∈ Fcu the function χκ ∈ Nω∗, exc by χκ(gκz) = α(x) β(y). Let ĉ
be given by ĉ(FY ) = c(FY ) and for each κ ∈ Fcu

ĉ(Vκ) = c(Vκ)−
∑
n∈Z

(
c(Vκ) · (χκ|πn

κ)
)
|(1− π−n

κ ) = χκ

∑
n∈Z

c(Vκ)|π−n
κ .

The cocycles ĉ and c are in the same cohomology class, and Av
Γ

(
ĉ(F)
)
= Av

Γ

(
c(F)
)
.

Since the support of c(Vκ) is contained in Γκ

(
V a
κ ∪ Fa

)
we have for z ∈ V̊ a+ε

k

Av
Γ

(
c(Vκ)

)
(z) = χκ(z)

∑
n∈Z

c(Vκ)|π−n
κ (z) = ĉ(Vκ) ,

and on the other hand Av
Γ

(
c(Vκ)

)
(z) = Av

Γ

(
c(FY )

)
= 0. Since ε > 0 was arbitrary

we conclude that ĉ(Vκ) has compact support for each κ ∈ Fcu. Hence ĉ(F) has
compact support, and is an element of Nω.

The proof of Proposition 7.3 works for ĉ(F), although the support of the func-
tion χ constructed there is not compact and intersects infinitely many fundamental
domains. Thus we see that ĉ(F) ∈

∑
Nω|(1−γ). The cocycle ĉ is in the same class

as the cocycle c̃ given by c̃(FY ) = ĉ(F) (which is in
∑

γ Nω|(1− γ)) and c̃(vκ) = 0
for κ ∈ Fcu. The cocycle c̃ is a coboundary. �

Proof of Proposition 12.5. Let ψ ∈ Z1(F T
. ;Gω

s ,Gω∗, exc
s ), where T is a tes-

selation of type Fd. The presence of cusps gives us directly ψP,Q = ψ(eP,Q) ∈
Gω∗, exc
s for all P,Q ∈ XT

0 , including the cusps. There is no need of an extension

to hyperbolic fixed points as in Lemma 7.5. For P,Q ∈ XT ,Y
0 = XT

0 ∩ H, we have
ψP,Q ∈ Gω

s .
The cocycle ψ is determined by its values on the Q[Γ]-basis B = E∪{fκ}∪{eκ}

in (11.4). For interior edges we have ψ(e), ψ(fκ) ∈ Gω
s . Since ψ is a cocycle, we

have ψ(eκ) | (1− πκ) = ψ(fκ). This implies that (12.3) holds automatically for the
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78 4. MAASS FORMS AND SEMI-ANALYTIC COHOMOLOGY: GROUPS WITH CUSPS

cocycle ψ. Thus, we know that there is a number R > 0 such that Singψ(x) ⊂ NR(x)
for all x ∈ XT

1 , with NR(·) as defined in §12.2.
Let cusps ξ, η ∈ C be given, and let Z ⊂ H be compact. There is a chain

p =
∑

j εj ej ∈ Z[XT
1 ], representing a path from ξ to η, with εj ∈ {1,−1}, ej ∈ XT

1

such that NR(ej) ∩ Z = ∅ for all j. For z ∈ Z we have

ψξ,η(z) = ψ(p)(z) =
∑
j

εj ψ(ej)(z) .

So ψξ,η ∈ Es
(
Z̊
)
. The path can be adapted to any compact Z ⊂ H, and hence

ψξ,η ∈ Es for each pair of cusps.

Let P ∈ XT ,Y
0 . From ψP,ξ | (1−πξ) = ψP,π−1

ξ P ∈ Gω
s it follows that Sing (ψP,ξ)∩

∂H ⊂ {ξ}. Let η ∈ C, η �= ξ. In the relation ψξ,η = ψP,η − ψP,ξ singularities near ξ
of ψP,ξ cannot be canceled by singularities of ψP,η. So Sing

(
ψP,ξ

)
is a compact set

in H.
We apply Lemma 9.23 with q̂ = ψP,ξ | gξ. Since ψP,ξ | (1−πξ) = ψP,π−1

ξ P ∈ Gω
s ,

condition b) is satisfied as well. So there is pξ ∈ Gω∗, exc
s ∩Eπξ

s such that ψP,ξ− pξ ∈
Gω
s . For η = γ−1ξ, γ ∈ Γ, we take pη = pξ | γ. The πξ-invariance of pξ implies that

this does not depend on the choice of γ such that η = γ−1ξ.
Let h ∈ C0(F T

. ;Gω
s ,Gω∗, exc

s ) be given by h(Q) = 0 if Q ∈ XT
0 ∩ H, and by

h(ξ) = pξ for ξ ∈ C. So h takes values in Es. We go over to the cocycle ψ̂ = ψ− dh

in the cohomology class of ψ. Then ψ̂ξ,η ∈ Es for all ξ, η ∈ C, and ψ̂P,ξ = ψP,ξ−pξ ∈
Gω
s . So ψ̂ξ,η = ψ̂P,η − ψ̂P,ξ ∈ Es ∩ Gω

s = {0}, as follows from (3.3). Taking the base

point in C we obtain a group cocycle corresponding to ψ̂ that is zero. �

12.4. Restriction to subspaces. The map αω
s : H1

par(Γ;Wω
s ,Wω∗, exc

s )→ EΓ
s

has been constructed in §12.2 for all s with 0 < Re s < 1. Under the additional
condition s �= 1

2 it is an isomorphism. Now we turn to its restriction to subspaces

of H1
par(Γ;Wω

s ,Wω∗, exc
s ).

Proposition 12.7. Let s ∈ C, 0 < Re s < 1. The following linear maps are
isomorphisms:

(12.6) H1
par(Γ;Vω

s ,Vω∗,∞
s )

P†s−→ H1
par(Γ;Wω

s ,Wω∗,∞
s )

αω
s−→ Maass0s(Γ) .

Under the additional condition s �= 1
2 , the following linear maps are isomorphisms

as well:

(12.7) H1
par(Γ;Vω

s ,Vω∗, simple
s )

P†s−→ H1
par(Γ;Wω

s ,Wω∗, simple
s )

αω
s−→ Maass1s(Γ) .

Proof. We consider two cases: (a) W = Wω∗,∞
s , s = 1

2 allowed; (b) W =

Wω∗, simple
s , s �= 1

2 . Consider a group cocycle ψ ∈ Z1
par(Γ;Wω

s ,W ). Proposition 12.2
implies that [ψ] = quψ.

Consider a cusp κ ∈ Fcu. Propositions 9.11 and 9.15 imply that there is a
unique eigenfunction vκ such that the class qvκ ∈ H1(Γκ;Wω

s ,W ) is represented
by the restriction of ψ to Γκ, i.e., ψπκ

= vκ. We have vκ ∈ (K0
s)

↑ in case (a),
and vκ ∈ K↑

s in case (b). Proposition 5.1 shows that vκ = uψ. Since this holds

for all cusps κ ∈ Fcu, we conclude that uψ ∈ Maass0s(Γ) in case (a), and uψ ∈
Maass1s(Γ) in case (b). Proposition 10.3 shows that αω

s gives isomorphisms in (12.6)
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and (12.7). The proof is completed by the fact that the transverse Poisson map
gives isomorphisms Vω

s →Wω
s and Vω∗, exc

s →Wω∗, exc
s . �

13. Parabolic cohomology and mixed parabolic cohomology

In this section we shall prove the isomorphism

(13.1a) H1
par(Γ;Vω

s ,Vω∗,∞
s ) ∼= H1

par(Γ;Vω∗,∞
s )

in Theorem B, and also, under the assumption s �= 1
2 , the isomorphisms

H1
par(Γ;Vω

s ,Vω∗, simple
s ) ∼= H1

par(Γ;Vω∗, simple
s ) ,(13.1b)

H1
par(Γ;Vω

s ,Vω∗, exc
s ) ∼= H1

par(Γ;Vω0, exc
s ) .(13.1c)

Together with the previous section, this will complete the proof of Theorem C.

We recall that Vω0, exc
s consists of the f ∈ Vω∗, exc

s for which the set of singulari-
ties BdSing (f) is contained in the set C of cusps of Γ. In Proposition 13.7 we shall

give an example that shows that there are Γ for which we cannot replace Vω0, exc
s

by Vω∗, exc
s in (13.1c). The proofs will show that (13.1c) still holds if we replace

Vω0, exc
s by the Γ-module of those f ∈ Vω∗, exc

s for which BdSing (f) does not contain
hyperbolic fixed points.

13.1. Space of singularities. The Q[G]-module Ss = Vω∗

s /Vω
s is the space of

singularities of semi-analytic vectors in the principal series. For ξ ∈ ∂H we denote
by Ss,ξ the subspace represented by elements of Vω

s [ξ]. For each g ∈ G the map
f �→ f | g induces an isomorphism

Ss,ξ −→ Ss,ξ | g = Ss,g−1ξ .

Clearly, Ss contains the direct sum of all Ss,ξ with ξ ∈ P1
R = ∂H. We note that Ss,ξ

is a subspace of Ss, not a stalk of a sheaf.

Proposition 13.1. The space Ss is equal to
⊕
ξ∈P1

R

Ss,ξ.

Proof. For a representative f ∈ Vω∗

s of an element of Ss we write BdSing (f) =
{ξ1, . . . , ξn}. We identify f (in the circle model) with a holomorphic function f ∈
O(Ω), where Ω ⊂ C is an open set such that S1 � Ω = {ξ1, . . . , ξn}. We choose
open sets Ω1 and Ω2 such that

Ω = Ω1 ∩ Ω2 ,

ξ1 ∈ Ω1 , ξ2, . . . , ξn �∈ Ω1 , ξ1 �∈ Ω2 , ξ2, . . . , ξn ∈ Ω2 .� �

�
Ω1

ξ1

ξ2ξ3

� �

�
Ω2

ξ1

ξ2
ξ3

A theorem in complex function theory (e.g., [14], Proposition 1.4.5) gives the exis-
tence of f1 ∈ O(Ω1), f2 ∈ O(Ω2), such that f = f1+f2 on Ω. (Apply Theorem 1.45
in [14] to the covering {Ω1,Ω2} of Ω1 ∪ Ω2, and put g1,2 = −g2,1 = f on Ω1 ∩ Ω2.
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The theorem gives gj ∈ O(Ωj) such that g1,2 = g1 − g2 on Ω1 ∩Ω2.) Thus we have
BdSing (f1) ⊂ {ξ1} and BdSing (f2) ⊂ {ξ2, . . . , ξn}. Repeating this construction
gives f + Vω

s as an element of
⊕

ξ∈P1
R

Ss,ξ. �

• Exact sequence. For any Q[Γ]-module W with Vω
s ⊂ W ⊂ Vω∗

s , we conclude
from (11.17) that the following sequence is exact

(13.2) H0(Γ;W/Vω
s ) −→ H1

par(Γ;Vω
s ,W ) −→ H1

par(Γ;W ) −→ H1(Γ;W/Vω
s ) .

Since all Γ-orbits in ∂H are infinite, we have (W/Vω
s )Γ ⊂ SΓ

s = {0}. Hence the
natural map H1

par(Γ;Vω
s ,W )→ H1

par(Γ;W ) is injective. If the image of H1
par(Γ;W )

in H1(Γ;W/Vω
s ) is zero, then this map is surjective as well.

It seems unnatural that we go from parabolic cohomology to standard coho-
mology. The following lemma makes this step more explicit in the description of
cohomology based on a tesselation T of type Fd, discussed in §11.1.

Recall that XT
1 has three kind of edges: the edges going to a cusp, which are

the Γ-translates of finitely many eκ (κ ∈ Fcu), the edges in ∂HY , which are the

Γ-translates of finitely many fκ ∈ XT ,Y
1 (κ ∈ Fcu), and the interior edges in XT ,Y

1

of the form γ e with γ ∈ Γ, e ∈ E.

Lemma 13.2. Let c1 ∈ Z1(F T
. ;W ). There is a cocycle c in the same cohomology

class such that c(e) = 0 for all edges e going to a cusp and for all edges contained
in ∂HY .

Proof. For each κ ∈ Fcu, the edge eκ goes from a point Pκ ∈ ∂HY to κ.
Define f ∈ Map(XT

0 ,W )Γ by f(Pκ) = c1(eκ) for all κ ∈ Fcu, and f = 0 on all other
Γ-orbits in XT

0 . Take c = c1 − df , then c(eκ) = 0 and c(fκ) = c(eκ) | (1− πκ) = 0
for all κ ∈ Fcu. �

The new cocycle c is effectively a 1-cocycle on F T ,Y
. , and this resolution com-

putes the standard group cohomology, as we have discussed in §11.2. Actually, the
condition that c(fκ) = 0 for all κ ∈ Fcu for some c in a cohomology class can be
used to characterize H1

par(Γ;W ) inside H1(Γ;W ).

Definition 13.3. We call a Q[Γ]-module W such that Vω
s ⊂ W ⊂ Vω∗

s locally
defined if the image SW

s of W in Ss has the form

SW
s =

⊕
ξ∈P1

R

SW
s,ξ ,

where SW
s,ξ = SW

s ∩ Ss,ξ.

Since W is a Q[Γ]-module, the local summands satisfy SW
s,ξ | γ = SW

s,γ−1ξ for all

ξ ∈ P1
R. The subspaces Vω∗,∞

s , Vω∗, simple
s , Vω0, exc

s and Vω∗, exc
s of Vω∗

s are all locally
defined.

If W is a locally defined Q[Γ]-module between Vω
s and Vω∗

s , we have

(13.3) H1(Γ;SW
s ) ∼=

⊕
x∈Γ\P1

R

H1
(
Γ;SW

s (x)
)
,

where SW
s (x) is the Q[Γ]-module

⊕
ξ∈x SW

s,ξ. So for the bijectivity of the natural

map H1
par(Γ;Vω

s ,W )→ H1
par(Γ;W ) it suffices to show that the image of

H1
par(Γ;W ) −→ H1

(
Γ;SW

s (x)
)
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is zero for all Γ-orbits x ∈ Γ\P1
R.

The main result of this subsection is the following proposition:

Proposition 13.4. Let W be a locally defined Q[Γ]-module between Vω
s and

Vω∗

s . Let ξ0 ∈ P1
R. If ξ0 is a hyperbolic fixed point fixed by η ∈ Γ, η �= 1, we assume

that the map

(13.4) 1− η : SW
s,ξ0

−→ SW
s,ξ0

is injective. Then the image of H1
par(Γ;W ) in H1

(
Γ;SW

s (Γξ0)
)
vanishes.

This implies that H1
par(Γ;Vω

s ,W ) ∼= H1
par(Γ;W ) for all locally defined W be-

tween Vω
s and Vω∗

s for which the map in (13.4) is injective for all hyperbolic fixed
points of Γ.

Proof. The proof is long. Starting from c ∈ Z1
(
F T ,Y
. ;SW

s (Γξ0)
)
representing

a class in the image of H1
par(Γ;W ), we will show that c is a coboundary, separating

the cases where Γξ0 is trivial, hyperbolic or parabolic.
We can assume by Lemma 13.2 that c(fκ) = 0 for each κ ∈ Fcu, and hence

c(f) = 0 for any edge f ∈ XT ,Y
1 with support contained in ∂HY .

Let ξ0 ∈ P1
R. For h ∈ SW

s (Γξ0) and ξ ∈ Γξ0 we denote by hξ the component
of h in the summand SW

s,ξ. We have

(13.5)
(
h | γ
)
ξ
= hγξ | γ .

We put for ξ ∈ Γξ0:

(13.6) D(ξ) = {e ∈ XT ,Y
1 : c(e)ξ �= 0} .

Lemma 13.5. For each ξ ∈ Γξ0 the set D(ξ) consists of finitely many Γξ-orbits.

Proof. From (13.5):

γe ∈ D(ξ)⇐⇒ c(γe)ξ = c(e)γ−1ξ | γ−1 �= 0⇐⇒ c(e)γ−1ξ �= 0⇐⇒ e ∈ D(γ−1ξ) .

This implies that ΓξD(ξ) = D(ξ).

For each interior edge e ∈ XT ,Y
1 , the set {ξ ∈ Γξ0 : c(e)ξ �= 0} is finite, since

BdSing (f) is finite for each f ∈ Vω∗

s . We use that XT ,Y
1 =

⊔
e∈E Γ e �

⊔
κ∈FC Γ fκ,

where E∪{fκ} is the finite Q[Γ]-basis of F T ,Y
1 mentioned in §11.1. Since c(fκ) = 0,

we have

D(ξ) =
⋃
e∈E

{γe : γ ∈ Γ , c(e)γ−1ξ �= 0} ,

which consists of finitely many Γξ-orbits. �
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• Case Γξ0 = {1}.
Let κ ∈ Fcu , and γ ∈ Γ. If γ ∈ Γκ,

then c(γ−1Pκ, Pκ) = 0, since there is a
path from γ−1Pκ to Pκ along the horo-
cycle of Pκ. If γ �∈ Γκ, then γ−1Pκ is
on another horocycle. For each ξ ∈ Γξ0
the set D(ξ) is finite. Hence there is a
path p from γ−1Pκ to Pκ along edges of

XT ,Y
1 none of which is in D(ξ). (It does

not matter if the path goes through an
end point of an edge in D(ξ).) Hence
c(γ−1Pκ, Pκ)ξ = c(p)ξ = 0. This holds
for all ξ ∈ Γξ0, so c(γ−1Pκ, Pκ) = 0.

�

�

�

�

κ

Pκ

γ−1Pκ

γ−1κ

D(ξ)
p

Take Pκ as the base point for the transition to group cocycles. This leads to
the cocycle ψ satisfying

ψγ = c(γ−1Pκ, Pκ) = 0 (γ ∈ Γ) .

This shows that c represents the trivial cohomology class.

• Case ξ0 ∈ C.

C

D(ξ)
ξ
�

�
γ−1κ

�
γ−1Pκ��

��
�
�Pκ

κ

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

We take κ = ξ0, and use Pκ as
the base point. As before, we have
c(γ−1Pκ, Pκ) = 0 if γ ∈ Γκ. Let
γ ∈ Γ � Γκ. For each ξ ∈ Γκ the
edges in the Γξ-invariant set D(ξ) are
all contained in a horocyclic disk C
at ξ. If ξ �= κ and ξ �= γ−1κ, a
path from γ−1Pκ to Pκ along edges

of XT ,Y
1 may be forced to pass

through C, but if so, the pieces of the

path that are inside C can be chosen along edges in ∂HY , on which c vanishes.
Thus we conclude that c(γ−1Pκ, Pκ)ξ = 0 for ξ �∈ {κ, γ−1κ}.

The group cocycle ψγ = c(γ−1Pκ, Pκ) is of the form

(13.7) ψγ = (ψγ)γ−1κ + (ψγ)κ ∈ SW
s,γ−1κ ⊕ SW

s,κ .

Let γ, δ ∈ Γ such that δ �∈ Γκ and γδ �∈ Γκ. Writing out the cocycle relation
ψγδ = ψγ | δ + ψδ, we find for the components in SW

s,κ:

(13.8) (ψγδ)κ = (ψδ)κ .

This implies that there is bκ ∈ SW
s,κ such that (ψγ)κ = bκ for all γ ∈ Γ � Γκ. For

such γ:

(ψγ−1)γκ + bκ = ψγ−1 = −ψγ | γ−1 = −(ψγ)γ−1κ | γ−1 − bκ | γ−1 .

Hence

(ψγ)γ−1κ = −(ψγ−1)γκ | γ−bκ | γ−bκ
(13.5)
= −

(
ψγ−1 | γ

)
κ
−bκ | γ−(ψγ)κ = −bκ | γ .

We arrive at

(13.9) ψγ =

{
0 if γ ∈ Γκ ,

bκ | (1− γ) if γ ∈ Γ� Γκ .
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§13. PARABOLIC COHOMOLOGY AND MIXED PARABOLIC COHOMOLOGY 83

For δ ∈ Γκ, γ ∈ Γ�Γκ, the cocycle relation implies ψδγ = ψγ . Hence bκ | (1−δγ) =
bκ | (1 − γ), so bκ ∈ (SW

s,κ)
Γκ . Thus we have ψγ = bκ | (1 − γ) for all γ ∈ Γ, and c

represents the trivial cohomology class.

• Case where ξ0 is a hyperbolic fixed point.

We now suppose that ξ0 is fixed by
a hyperbolic η ∈ Γ. We fix κ ∈ Fcu.
Proceeding as in the previous cases we
find c(γ−1Pκ, Pκ) = 0 if γ ∈ Γκ.

Let γ ∈ Γ � Γκ and consider ξ ∈
Γξ0. Let η ∈ Γ be a generator of Γξ;
say ξ is the attracting fixed point ω(η)
of η. Then η also generates Γξ′ , where
ξ′ = α(η) is the repelling fixed point.

�

�

�

�

κ

Pκ

δ−1Pκ

δ−1κ

�ξ

�
ξ′

D(ξ)
�γ−1κ �γ−1Pκ

The set D(ξ) consists of finitely many Γξ-orbits. If κ and γ−1κ are in the same
cyclic interval (ξ, ξ′)c ⊂ P1

R or (ξ′, ξ)c ⊂ P1
R, then we can find a path from γ−1Pκ

to Pκ not containing edges in D(ξ), and hence c(γ−1Pκ, Pκ)ξ = 0. If δ−1κ and κ
are separated by ξ and ξ′ in P1

R, then D(ξ) may form a barrier between δ−1Pκ and
Pκ. But now we have c(Pκ, η

−1Pκ)ξ = 0 and c(δ−1Pκ, η
−1δ−1Pκ)ξ = 0, since κ and

η−1κ are not separated by ξ and ξ′, and similarly for δ−1κ and η−1δ−1κ. Thus we
have (

c(δ−1Pκ, Pκ) | (1− η)
)
ξ
= c(δ−1Pκ, η

−1δ−1Pκ)ξ − c(Pκ, η
−1Pκ)ξ = 0 .

The injectivity of the map in (13.4) implies by conjugation that 1 − η is injective
on SW

s,ξ, and hence c(δ−1Pκ, Pκ)ξ = 0. We proceed as in the case Γξ0 = {1}.
This completes the proof of Proposition 13.4. �

Proposition 13.6. For the spaces Vω∗,∞
s , Vω∗, simple

s and Vω0, exc
s the map (13.4)

in Proposition 13.4 is injective for all hyperbolic fixed points.

Proof. Suppose after conjugation that η =
[√

t
0

0
1/

√
t

]
with 0 < t < 1, fixing 0.

If f ∈ Vω∗,∞
s then f has an asymptotic behavior f(x) ∼

∑∞
n=0 an x

n as x → 0 for
some an ∈ C. Then f | (1 − η) (x) = f(x) − tsf(tx) ∼

∑∞
n=0(1 − tn+s) an x

n. If
f | (1− η) ∈ Vω

s , then (1− tn+s) an = O(Cn) for some C > 0, and consequently an
is also O(Cn), since 1 − tn+s tends to 1 for n large, so f ∈ Vω

s . This shows that
Vω∗,∞
s satisfies the condition.

If f ∈ Vω∗, simple
s , then f(x) ∼

∑∞
n=−1 anx

n. Now the assumption that f | (1−η)

is analytic at x = 0 implies (a − ts−1)a−1 = 0, and hence a−1 = 0 since Re s �= 1.
So f is analytic at 0 as before.

Finally, of course, the condition is vacuous for Vω0, exc
s . �

For the space Vω∗, exc
s the map in (13.4) is not injective. This one sees by

considering η =
[
t
0

0
1/t

]
with t > 0. The function given by

(13.10) ϕ(z) = z−s for Re z > 0 , ϕ(z) = 0 for Re z < 0

determines a non-zero η-invariant element of Vω∗, exc
s (line model), with singular-

ities 0 and ∞. However, of course, the subspace of those f ∈ Vω∗, exc
s for which
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84 4. MAASS FORMS AND SEMI-ANALYTIC COHOMOLOGY: GROUPS WITH CUSPS

BdSing (f) does not contain hyperbolic fixed points also satisfies the conditions of
Proposition 13.4.

• Counterexample. To show that the injectivity of the map in (13.4) is necessary,
we give a counterexample, based on the commutator subgroup Γc = [Γ1,Γ1] of the
modular group. It is a subgroup of Γ1 of index 6. It is free on the hyperbolic
generators C =

[
2
1
1
1

]
and D =

[
2

−1
−1
1

]
. It has one cuspidal orbit P1

Q, and (Γc)∞ is

generated by T 6 = CDC−1D−1. See [17], Chap. XI, §3E, on p. 362.

Proposition 13.7. Denote φ = 1+
√
5

2 . Then H1
par(Γc;Vω∗, exc

s ) has non-zero

image in H1
(
Γc;SW

s (Γcφ)
)
, where W denotes Vω∗, exc

s .

Proof. The element D is conjugate to η =
[
φ2

0
0

φ−2

]
, and fixes −φ and φ−1.

The example in (13.10) shows that we can find f ∈ WD with BdSing (f) =
{−φ, φ−1}.

Define ψ ∈ Z1(Γc;W ) in the group model of cohomology by ψC = f and
ψD = 0. This determines a parabolic cocycle:

ψT 6 =
(
ψC |2s (D−1)+ψD|2s (1−C)

)∣∣
2s
C−1D−1 = f |2s (D−1)C−1D−1+0 = 0 .

Suppose that the image of [ψ] in H1(Γc;SW
s (Γφ) is zero. Then the image of ψ

is of the form dF with F ∈ SW
s (Γφ). From F | (D − 1) = 0 it follows that F =

F−φ +Fφ−1 ∈ SW
s,−φ⊕SW

s,φ−1 , since −φ and φ−1 are the fixed points of D. Further,

f + Vω
s = F | (C − 1) = (F |C)C−1(−φ) + (F |C)C−1 φ−1 − F−φ − Fφ−1 . The points

C−1(−φ), C−1 φ−1, −φ and φ−1 are all different. Since BdSing (f) = {−φ, φ−1},
we conclude that 0 = (F |C)C−1(−φ) = F−φ |C and 0 = (F |C)C−1φ−1 = Fφ−1 |C.
Hence F = F−φ + Fφ−1 vanishes, a contradiction. �

13.2. Recapitulation of the proof of Theorem C. Let s �= 1
2 . The injec-

tive map

r : EΓ
s −→ H1(Γ;Vω

s )

in Proposition 5.1 has image in H1
par(Γ;Vω

s ,Vω0, exc
s ) ∼= H1

par(Γ;Vω
s ,Vω∗, exc

s ), ac-
cording to Proposition 10.3. Proposition 12.4 shows that it is an isomorphism.

The space Vω0, exc
s is locally defined and satisfies the conditions of Proposition 13.4

according to Proposition 13.6. SoH1
par(Γ;Vω

s ,Vω0, exc
s ) ∼= H1

par(Γ;Vω0, exc
s ) by Propo-

sition 13.4.

14. Period functions and periodlike functions for the
full modular group

We return to the modular group Γ1 = PSL2(Z), which was the sole discrete
subgroup of PSL2(R) considered in the earlier paper [21]. We give a cohomolog-
ical interpretation of the period functions and the periodlike functions considered
there. We show that the cohomology group H1(Γ1;Vω

s ) is larger than the image
rEΓ1

s , and end by describing briefly the generalization of Γ-invariant eigenfunctions
corresponding to the classes in this larger cohomology group: the quantum Maass
forms.
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§14. MODULAR PERIOD FUNCTIONS AND PERIODLIKE FUNCTIONS 85

14.1. Periodlike functions and cocycles. The space FEs(C
′) of periodlike

functions on C′ = C � (−∞, 0] is defined, in Chap. III of [21], as the space of
functions ψ : C′ → C that satisfy the three term equation on C′:

(14.1) ψ(τ ) = ψ(τ + 1) + (τ + 1)−2s ψ
( τ

τ + 1

)
.

The subspace of holomorphic functions in FEs(C
′) is denoted FEs(C

′)ω. Similarly,
the space of functions on R+ = (0,∞) that satisfy (14.1) is denoted FEs(0,∞), with
subspaces FEs(0,∞)ω ⊂ FEs(0,∞)∞ ⊂ FEs(0,∞)p of real analytic, respectively
smooth, respectively p times differentiable periodlike functions.

The main theorem in [21] shows that Maass0s(Γ1) is isomorphic to the space of
period functions FEs(C

′)0ω, characterized inside FEs(C
′)ω by the growth conditions

(14.2) ψ(x) =

{
O(1) (x ↓ 0) ,

O(x−2s) (x→∞) .

These growth conditions also define FEs(0,∞)0∞ inside FEs(0,∞)∞, and FEs(0,∞)0p
inside FEs(0,∞)p. (These last notations and the next are not used in [21].) In
Section 3, Chap. IV of [21] a discussion of eigenfunctions of the transfer operator
leads to the less strict condition that there are c0, c∞ ∈ C such that

(14.3) ψ(x) =

{
c0 x

−1 +O(1) (x ↓ 0) ,
c∞ x1−2s +O(x−2s) (x→∞) .

We use this condition to define FEs(0,∞)1ω ⊂ FEs(0,∞)ω. In Section 3, Chapter III
of [21] we see that general elements of FEs(R+)∞ have in their asymptotic behavior
at ∞ an additional term Q∞(x), and at 0 a term x−2s Q0(1/x), with periodic
functions Q∞ and Q0. So being in FEs(R+)

1
ω is a strong condition, almost as

strong as being in FEs(R+)
0
ω.

Periodlike functions are related to cocycles. Suppose that ψ ∈ FEs(R+)ω.
Define ψ on (−∞, 0) by ψ(x) = −|x|−2s ψ(−1/x). One verifies that

(14.4) ψ(x) = ψ(x+ 1) + |x+ 1|−2s ψ
( x

x+ 1

)
for all x ∈ R�{−1, 0} by separately considering the cases −1 < x < 0 and x < −1.
This extended function ψ satisfies in Vω∗

s

(14.5) ψ|2s S = −ψS , ψ = ψ2s| (T + T ′) ,

with T ′ =
[
1
1
0
1

]
. These relations are equivalent to the parabolic cocycle relations

(14.6) ψ|2s (1 + S) = 0 , ψ|2s (1 + ST + STST ) = 0 .

Hence ψ ∈ FEs(R+)ω determines a parabolic cocycle c ∈ Z1
par(Γ1;Vω∗

s ) given on the
generators S and T of Γ1 by cT = 0 and cS = ψ. Conversely, a parabolic cocycle
c ∈ Z1

par(Γ1;Vω∗

s ) such that cT = 0 and such that the set of singularities BdSing (cS)
is contained in {0,∞} determines a periodlike function in FEs(R+)ω by restriction
to (0,∞).

Proposition 14.1. The cohomology group H1
par(Γ1;Vω0, exc

s ) is isomorphic to

the space FEs(C
′)ω/
{
h|2s (1− S) : h ∈ O(C)T

}
.
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Proof. For a given ψ ∈ FEs(C
′)ω we define c ∈ Z1

par(Γ1;Vω0, exc
s ) by

(14.7) cT = 0 , cS(τ ) =

{
ψ(τ ) if Re τ > 0 ,

−(−τ )−2s ψ(−1/τ ) if Re τ < 0 .

If ψ = h|2s (1− S) with h ∈ O(C)T , then cS = h|2s (1− S). If c = df , f ∈ Vω∗, exc
s ,

then cS = f | (S − 1), and from cT = f | (T − 1) = 0 we conclude that f |T = f ,
first on an excised neighborhood of R = P1

R� {∞} and then on C. Thus, we obtain

a map from FEs(C
′)ω to H1

par(Γ1;Vω0, exc
s ) with kernel

{
h | (1− S) : h ∈ O(C)T

}
.

Conversely, a given cohomology class in H1
par(Γ1;Vω0, exc

s ) can be represented

by a cocycle such that cT = 0. In view of Theorem C there is η ∈ Vω0, exc
s such that

the equivalent cocycle c−dη has values in Vω
s . From η | (1−T ) ∈ Vω

s it follows that
BdSing (η) ⊂ {∞} and BdSing (cS) ⊂ {0,∞}.

Restriction of cS to (0,∞) gives ψ ∈ FEs(R+)ω. Moreover, ψ has a holomorphic
extension to a right half-plane. The second step in the bootstrap procedure in §4,
Chap. III of [21] can be applied, to see that ψ extends to C′ and provides an element
of FEs(C

′)ω. �

Proposition 14.2.

H1
par(Γ1;Vω∗,∞

s ) ∼= FEs(R+)
0
ω ,(14.8a)

H1
par(Γ1;Vω∗, simple

s ) ∼= FEs(R+)
1
ω (s �= 1

2
) ,(14.8b)

H1
par(Γ1;V∞

s ) ∼= FEs(R+)
0
∞ ,(14.8c)

H1
par(Γ1;Vp

s )
∼= FEs(R+)

0
p (p ∈ N , p ≥ 2) .(14.8d)

Proof. Each cohomology class in one of these four cohomology groups con-
tains a unique cocycle such that cT = 0. The uniqueness follows from Propositions
4.5 and 9.13. In cases (14.8a) and (14.8b) we conclude that BdSing (cS) ⊂ {0,∞} in
the same way as in the proof of Proposition 14.1. Restriction of cS to (0,∞) gives
us ψ ∈ FEs(R+)ω in cases (14.8a) and (14.8b), ψ ∈ FEs(R+)∞ in case (14.8c), and
ψ ∈ FEs(R+)p in case (14.8d). In cases (14.8a) and (14.8c), the fact that cS ∈ V∞

s

implies that ψ satisfies (14.2). In case (14.8b), we get (14.3) from Definition 9.12.
Conversely, starting from a periodlike function on (0,∞), we construct a cor-

responding cocycle in each of the four cases. The hardest point is the behavior
at 0 and ∞. We have the estimate (14.2) or (14.3), and want to derive the ap-
propriate asymptotic behavior. We use averaging operators similar to the trans-
fer operator discussed in §3 of Chap IV in [21]. From the three term relation
cS |2s (1 − T ) = cS |2s T ′ on R � {−1, 0} we conclude that cS = cS |2s T ′|2s Av+T on

(0,∞) and cS = cS |2s T ′|2s Av−T on (−∞,−1). The asymptotic formula (4.11) im-

plies that cS has the desired behavior near ∞ in each of the three cases, and also
near 0 since cS |2s S = −cS . �

14.2. Reconstruction. A periodlike function ψ ∈ FEs(C
′)ω determines a co-

homology class in H1
par(Γ1;Vω0, exc

s ) (Proposition 14.1), which in turn determines

an invariant eigenfunction u ∈ EΓ1
s , provided s �= 1

2 (Theorem C). We want to
construct u directly from the periodlike function ψ.

For a period function ψ ∈ FEs(C
′)0ω we need not use cohomology. Proposition 2

in §2, Chap. I of [21] shows how to associate to ψ a function f ∈ O (C� R)T which
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§14. MODULAR PERIOD FUNCTIONS AND PERIODLIKE FUNCTIONS 87

in turn determines ψ. The Fourier expansion of f gives the Fourier coefficients
Bn(u) of u, hence determines u explicitly. This also works if ψ ∈ FEs(C)

1
ω. For

general periodlike functions ψ there still is a holomorphic 1-periodic function f ,
and its Fourier coefficients still give the Bn(u), but the coefficients An(u) cannot
be read off from it directly. (They are hidden in the behavior of f near points of Q.)
In this case we will use the theory developed in these notes instead.

To a given ψ ∈ FEs(C
′)ω we have associated in the proof of Proposition 14.1

an explicit cocycle c ∈ Z1
par(Γ1;Vω0, exc

s ) by (14.7). To apply the method in §12
directly, we have to find h ∈ Vω, exc

s [∞] such that

c− dh ∈ Z1
par(Γ1;Vω

s ,Vω0, exc
s ) ⊂ Z1(Γ1;Vω

s ) .

The existence of such a function h follows from (13.1c). The proof of Proposi-
tion 13.1 shows that the construction of a suitable h is not explicit. It seems better

to apply the method in §12 directly to the cocycle ψ̂ ∈ H1
par(Γ1;Wω0, exc

s ) given by

ψ̂γ = P†scγ . So ψ̂T = 0 and ψ̂S = P†scS ∈ Wω0, exc
s ∩Wω

s [0,∞].

The first step is to determine a cocycle corresponding to ψ̂ in a model of
cohomology based on a tesselation. We use the fundamental domain

F1 =
{
z ∈ H : 0 ≤ Re z ≤ 1 , |z| ≥ 1 , |z − 1| ≥ 1

}
in Figure 14.1, which differs from the standard fundamental domain in Figure 11.1
on p. 66. Here we work with parabolic cohomology, not with mixed parabolic coho-

� ��i i+ 1
ST−1e2

e2

e1T−1e1

1+i
√
3

2

F1 ��

��
 ��� � ��

F1

−1 0 1 2

C

�

Figure 14.1. Fundamental domain F1 for the modular group, and
a 1-cycle around it.

mology. So there is no need to give the neighborhood of cusps a special treatment.
In particular, we do not need an edge f∞. We use the tesselation T obtained from
all Γ1-translates of F1. In Figure 14.1 we have indicated a Q[Γ1]-basis {e1, e2} of
Q[XT

1 ]. The tesselation T is not exactly a tesselation of type Fd as discussed
in §11.1.

To find a cocycle c ∈ Z1(F T
. ;Wω0, exc

s ) corresponding to ψ̂ we write c = df ,

with the following f ∈ Map(XT
0 ;Wω∗, exc

s ). We put, with ρ = 1+i
√
3

2 ,

(14.9) f(∞) = 0 , f(ρ) =
1

3
ψ̂S | (1− ST−1) , f(i) =

1

2
ψ̂S ,
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88 4. MAASS FORMS AND SEMI-ANALYTIC COHOMOLOGY: GROUPS WITH CUSPS

and check that f satisfies f(P ) | (1− δ) = ψ̂δ if δ P = P for P ∈ {∞, ρ, i}, δ ∈ Γ.

Next we extend f to XT
1 by f(γ−1P ) = f(P ) | γ + ψ̂γ for all γ ∈ Γ. Taking ∞ as

the base point we see that c = df corresponds to the cohomology class [ψ̂].
On the Q[Γ1]-basis {e1, e2} of F T

1 :

(14.10) c(e1) =
1

2
ψ̂S |T−1 , c(e2) = −1

2
ψ̂S |T−1 +

1

3
ψ̂S | (1− ST−1) .

To represent the corresponding invariant eigenfunction u on F, we take the
following 1-cycle C around F

(14.11) C = e2,∞ + e∞,−1 + e−1,0 + e0,1 + e1,2 ,

which is indicated in Figure 14.1. It turns out that

e0,∞ = (1− S)T−1e1 ,

C = (T 2 − T−1 − STS + ST−1S + T 2ST )e0,∞

= (T 2 − T−1 − STS + ST−1S + T 2ST )(1− S)T−1e1 .

Application of the transverse Poisson transformation to the function in (14.7) gives

a representative ψ̂S ∈ Gω∗, exc
s of ψ̂S ∈ Wω∗, exc

s with Sing (ψ̂S) ⊂ i (0,∞). We have

c(e0,∞) = c(e1) |T (1− S) = ψ̂S , and hence Sing
(
c(e0,∞)) ⊂ i (0,∞). This implies

that the singularities of ψ(C) are contained in the support of C. Thus, for z ∈ F1

we have

(14.12)

u(z) =
1

πi
ψ(C)

=
1

πi
ψ(e0,∞) |

(
T−2 − T − ST−1S + STS + T−1ST−2

)
=

1

πi

(
ψ̂S(z − 2)− ψ̂S(z + 1)− ψ̂S

(
z

z + 1

)

+ ψ̂S

(
z

1− z

)
+ ψ̂S

(
1− z

z − 2

))
.

Each of these values of ψ̂S(z1) can be expressed by a transverse Poisson integral
from z̄1 to z1 of the original periodlike function ψ. See (3.4).

14.3. The image of the invariant eigenfunctions in the first cohomol-
ogy group. In the previous section we have shown that rEΓ

s = H1
par(Γ;Vω

s ,Vω∗, exc
s )

for s �= 1
2 . We now show that for Γ = Γ1 the image is not the total first cohomology

group with analytic coefficients:

Proposition 14.3. Let s �= 1
2 . The inclusion

H1
par(Γ1;Vω

s ,Vω∗, exc
s ) ⊂ H1(Γ1;Vω

s )

is not an equality.

Proof. We determine a cohomology class [ψ] ∈ H1(Γ1;Vω
s ) by taking in the

line model

(14.13) ψTS = 0 , ψT = a ∈ Vω
s with a(τ ) =

−4i τ
(1 + τ2)s+1

.
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§14. MODULAR PERIOD FUNCTIONS AND PERIODLIKE FUNCTIONS 89

(See the introduction of §10.2 for the relations.) The sum

(14.14) Av
T
(ψT )(τ ) =

∑
n∈Z

−4i (τ + n)(
1 + (τ + n)2

)s+1

converges without regularization, and has singularities in the points of ±i+ Z. So
Av

T
(ψT ) does not extend as a holomorphic 1-periodic function on C, which it should

according to Proposition 8.2 if [ψ] were in H1
par(Γ1;Vω

s ,Vω∗, exc
s ) = r EΓ1

s . �

14.4. Quantum Maass forms. The notion of quantum modular forms was
introduced by the third author based on several examples ranging from Dedekind
sums to quantum invariants of knots [35]. Roughly, these forms are functions
f : Q → C whose “failure of modularity” f − f ◦ γ (or more generally f − f |γ for
some group action f �→ f |γ involving a non-trivial automorphy factor) has some
kind of continuity or analyticity property that is not shared by the function f
itself. Example 1 in [35] was related to the period function, in the sense of [21], of
a particular Maass form (on Γ0(2) and with eigenvalue 1/4), and this was extended
by the first author in [3] with the application in this subsection in mind.

More precisely, we will discuss how to fill the gap indicated by a question mark
in the following diagram of inclusions and isomorphisms (in which the underlying
group is the full modular group Γ1, omitted from the notations, and s �= 1

2 ) by
putting an appropriate space of quantum Maass forms in that position.
(14.15)

Maass0s
� � ����

∼=
��

Maass1s
� � �= ����

∼=
��

EΓ1
s��

∼=
��

?

H1
par(Vω

s ,Vω∗,∞
s ) �

� �� H1
par(Vω

s ,Vω∗, simple
s ) �

� �= �� H1
par(Vω

s ,Vω∗, exc
s ) �

� �= �� H1(Vω
s )

We first discuss the quantum Maass form associated to a cusp form u ∈
Maass0s(Γ1). In the main theorem in [21] we associate to u among other objects a
periodic holomorphic function fu on C� R given by

(14.16) fu(τ ) =

{ ∑
n>0 n

s− 1
2An(u) e

2πinτ if Im τ > 0 ,

−
∑

n<0 |n|s−
1
2An(u)e

2πinτ if Im τ < 0 ,

with the Fourier coefficients An(u) from the expansion (8.1). In [21], Chap. I,
§4, the function fu is expressed in terms of the L-functions of u by inverse Mellin
transformation. By moving the line of integration in this representation we obtain
an asymptotic expansion for fu(iy) as y → 0. This expansion is the same for y ↓ 0
and y ↑ 0. So fu has a smooth continuation through 0. Instead of approaching 0
vertically, we can let τ tend to 0 along a geodesic half-line in H or in H−. One may
show that there exists fu(0) ∈ C such that

(14.17) fu(τ ) = fu(0) + o(1) as τ
ga−→ 0 ,

where
ga→ (geodesic approach) indicates uniformity on sectors in the upper or lower

half plane bounded by geodesic half-lines.
The periodicity of fu and the formula fu(τ ) − τ−2sfu(−1/τ ) = ψu(τ ), where

ψu is the period function associated to u, leads to a unique extension of fu to Q
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90 4. MAASS FORMS AND SEMI-ANALYTIC COHOMOLOGY: GROUPS WITH CUSPS

that satisfies

fu(τ ) = fu(ξ) + o(1) as τ
ga−→ ξ for each ξ ∈ Q ,(14.18)

fu|2s γ(ξ) = fu(ξ)− cγ(ξ) for almost all ξ ∈ Q for all γ ∈ Γ1 ,(14.19)

where γ �→ cγ is the Vω∗,∞
s -valued group cocycle determined by cS = ψu on (0,∞).

The isomorphism (13.1a) implies that there exists η ∈ Vω∗,∞
s such that c̃γ =

cγ +η|2s (γ−1), γ ∈ Γ1, is a Vω
s -valued cocycle on Γ1. Replacing fu by f̃u = fu+η,

we obtain the relation f̃u|2s γ = f̃u − ψγ on Q, with ψ ∈ Z1
par(Γ;Vω

s ,Vω∗,∞
s ). If

we add to f̃u an element of Vω
s , then nothing essential changes. We say that f̃u

represents the quantum Maass form associated to u ∈ Maass0s(Γ1).

It is argued in [3] that to define quantum Maass forms for other invariant
eigenfunctions, we should work not with functions Q → C, but with systems of
expansions, giving for each ξ ∈ Q a short asymptotic expansion

(14.20) p(ξ, τ ) =
dξ

τ − ξ
+ cξ + o(1) (τ

ga−→∞) .

In the case of u ∈ Maass0s(Γ1), the function f̃u gives an system where dξ = 0 for
all ξ ∈ Q. Each ϕ ∈ Vω

s (line model) defines an uninteresting example with dξ = 0
and cξ = ϕ(ξ) for all cusps ξ.

The group Γ1 acts on the space Rs of all expansions as in (14.20) by

(14.21) p|2s
[
a

c

b

d

]
(ξ, τ ) =

(
(cτ + d)2

)−s
p(γξ, γτ ) + o(1) (τ

ga−→ ξ) ,

with γ =
[
a
c
b
d

]
∈ Γ1. We define the Γ1-module Qs as the quotient in the exact

sequence

(14.22) 0 −→ Vω
s −→ Rs −→ Qs −→ 0

and we call the elements of QΓ1
s /RΓ1

s quantum Maass forms, with the notation

(14.23) qMaasss(Γ1) = QΓ1
s

/
RΓ1

s .

In this way, we ignore elements of Vω
s and systems in Rs that are exactly Γ1-

invariant. One can show that there is an injection qMaasss(Γ1) → H1(Γ;Vω
s ).

Theorems 2 and 4 in [3] give for s �= 1
2 the following commuting diagram:

(14.24)

EΓ1
s � �

��

� �

r



��
���

���
���

�

qMaasss(Γ1)
∼= �� H1(Γ1;Vω

s )

Thus, qMaasss(Γ1) can take the place of the question mark in the diagram (14.15).
Proposition 3 in [3] relates the vanishing of A0(u), the coefficient of y1−s in the
Fourier expansion of u ∈ EΓ1

s , to the vanishing of the dξ in (14.20).
We expect that these results can be extended to all cofinite discrete Γ with

cusps.
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§15. MAASS FORMS AND HOLOMORPHIC FUNCTIONS 91

15. Maass forms and holomorphic functions

In §8.2 we have associated to u ∈ ET
s the holomorphic function β(u) ∈ O(C)T

given by

β(u)(ζ) =
∑
n∈Z

Bn(u) e
2πinζ ,

based on the coefficientsBn(u) in the Fourier expansion (8.1). To have a well defined
coefficient B0(u), we assume s �= 1

2 . For a Γ-invariant function u ∈ EΓ
s , where Γ is

a group with cusps, β(u | gκ) ∈ ET
s for each cusp κ ∈ C. In the introduction of §10

we have chosen the gκ such that β(u | gκ) depends only on the class of κ in Γ\C.
Thus we are led to define

(15.1) j : EΓ
s −→

⊕
κ∈Γ\C

O(C)T , ju =
(
β(u | gκ)

)
κ
.

The kernel of j is, by definition, the space Maass1s(Γ) introduced in §10.1. To
get information on the cokernel, we start with u, v ∈ EΓ

s and integrate the Green’s
form {u, v} in (1.9) over the boundary of a truncated fundamental domain FY .
Since {u, v} is closed, this integral vanishes. All edges of FY , except for the edges
fκ near the cusps κ ∈ Fcu, occur in Γ-equivalent pairs for which the integrals of
{u, v} cancel. Hence ∑

κ∈Fcu

∫
fκ

{u, v} = 0 .

Inserting the Fourier expansions and working with Wronskians, we obtain the fol-
lowing relation, valid for all u, v ∈ EΓ

s :

(15.2)

0 =
∑

κ∈Fcu

(
(2s− 1)

(
A0(u | gκ)B0(v | gκ)−B0(u | gκ)A0(v | gκ)

)
+ π

1
2−s Γ

(
s+

1

2

)
·
∑
n�=0

|n| 12−s
(
An(u | gκ)B−n(v | gκ)−Bn(u | gκ)A−n(v | gκ)

))
.

This is the so-called Maass-Selberg relation. See, e.g., §3 in Chap. IV of [22].
In particular, if v ∈ Maass1s(Γ), then

0 =
∑

κ∈Fcu

(
(2s− 1)B0(u | gκ)A0(v | gκ)

+ π
1
2−s Γ

(
s+

1

2

) ∑
n�=0

|n| 12−s Bn(u | gκ)A−n(v | gκ)
)
.

The right hand side of this expression makes sense if we replace the Bm(u | gκ) by
the coefficients bκm of an arbitrary element

(bκ)κ ∈
⊕

κ∈Γ\C
O(C)T , bκ(ζ) =

∑
m∈Z

bκm e2πimζ .

Note that the convergence of these series implies that

(15.3) bκn �A e−A|n| for n ∈ Z , κ ∈ Γ\C , for each A > 0 .

Thus, we have a linear map m from
⊕

κ∈Γ\C O(C)T to the dual space Maass1s(Γ)
∨.
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92 4. MAASS FORMS AND SEMI-ANALYTIC COHOMOLOGY: GROUPS WITH CUSPS

Theorem 15.1. Let 0 < Re s < 1, s �= 1
2 .

i) The following sequence is exact:

(15.4) 0 −→ Maass1s(Γ) −→ EΓ
s

j−→
⊕

κ∈Γ\C
O(C)T

m−→ Maass1s(Γ)
∨ −→ 0 .

ii) Every u ∈ EΓ
s is the specialization of a family (us′)s′∈U of elements us′ ∈

EΓ
s′ depending holomorphically on a parameter s′ on a neighborhood U of s.

Remark 1. Part ii) of the theorem will be used in Chapter 6, when we will study the
relation between Γ-invariant eigenfunctions and distribution-valued cohomology.
Remark 2. The proof will show that the restriction on the spectral parameter s is
non-essential.
Remark 3. This theorem is essentially known if almost all bκn vanish. Since the result
is peripheral to the main themes of these notes, we will only sketch the proof.

Proof. The surjectivity of the map m is clear since Maass1s(Γ) has finite di-
mension and already the restriction of m to

⊕
κ C[q], with q = e2πiζ , is surjective.

The Maass-Selberg relation shows that the image of j is contained in the kernel of
m. The main point is to show that Im j is equal to Kerm. We will sketch how
this follows from the spectral theory of automorphic forms. One may use [15] as a
general reference.

We use Eisenstein series and Poincaré series. These converge absolutely only for
Re s > 1. This forces us to consider also values of s outside the strip 0 < Re s < 1.

For Re s > 1, κ ∈ C, the Eisenstein series

(15.5) Eκ
s (z) =

∑
γ∈Γκ\Γ

(Im g−1
κ γz)s

converges absolutely and defines an element of EΓ
s . It depends holomorphically on

s, and has a meromorphic continuation to s ∈ C as a family of elements of EΓ
s .

The singularities in the region Re s ≥ 1
2 , s �= 1

2 are of first order and occur at

s = 1 and possibly at finitely many points in ( 12 , 1). The latter singularities are

absent for congruence subgroups of Γ1. If Eκ
s has a singularity at s0 ∈ ( 12 , 1) then

Ress0 E
κ
s ∈ Maass1s0(Γ) and for all u ∈ Maass1s0(Γ):

(15.6)

∫
Γ\H

u Res
s0

Eκ
s dμ = Aκ

0(u) .

Suppose that the collection (bκn) satisfies (15.3). The series

Fκ
s (z) =

∑
n∈Z

bκn is,2πn(g
−1
κ z)

converges absolutely for all s ∈ C and defines a holomorphic family of elements of
Eπκ
s ∩Wω

s [κ]. The Poincaré series

(15.7) Ps(z) =
∑

κ∈Γ\C

∑
γ∈Γκ\Γ

Fκ
s (γz)

converges absolutely for Re s > 1. It defines a holomorphic family of elements of
EΓ
s , and

(15.8) Bm(Ps | gκ) = bκm (m ∈ Z, κ ∈ Fcu) .
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§15. MAASS FORMS AND HOLOMORPHIC FUNCTIONS 93

We consider the following families of Γ-invariant functions, only the first of
which has values in EΓ

s :

Es =
∑

κ∈Fcu

bκ0 E
κ
s , P̃s(z) =

∑
κ∈Fcu

∑
γ∈Γκ\Γ

F̃κ
s (γz) ,

where
F̃κ
s (z) =

∑
n�=0

bκn(Im g−1
κ z)s e2πinRe (g−1

κ z) .

This defines P̃s ∈ C∞(Γ\H) for Re s > 1. The difference Ps −Es − P̃s is given by a

series converging absolutely for Re s > 0. Compared with Ps, the advantage of P̃s

is its square integrability. Its decay at the cusps implies that for any Maass form
u ∈ Maasss1(Γ), 0 < Re s1 < 1, s1 �= 1

2 , the integral
∫
Γ\H P̃s u dμ converges. Its

value can be explicitly computed:
(15.9)∫

Γ\H
P̃s u dμ =

∑
k∈Fcu

∑
n�=0

(π|n|) 1
2−s

4
Γ
(s+ s1 − 1

2

)
Γ
(s− s1

2

)
A−n(u | gκ) bκn .

This quantity occurs in the expansion of P̃s in the spectral decomposition of the
Laplace operator in L2(Γ\H). This expansion converges absolutely for Re s > 1.
On checks that the convergence is even better in the region 0 < Re s ≤ 1, except
for the terms that have singularities in this region. See, e.g., the reasoning in the
proof of Satz 6.2 in [26]. For 0 < Re s < 1, s �= 1

2 , these singularities have at most

first order and occur at values for which there are square integrable elements of EΓ
s

and at values at which an Eisenstein series has a pole, in other words, at values of s

for which Maass1s(Γ) �= {0}. This means that Ps = Es + P̃s +
(
Ps − Es − P̃s

)
has a

meromorphic continuation to Re s > 0, with singularities of at most order one at
the same points, and for such a point s0

Res
s0

Ps = Res
s0

Es +Res
s0

P̃s .

By analytic continuation the equality (Δ − λs)Ps = 0 goes through where Ps is
holomorphic. (Work first in distribution sense.) Furthermore,

(15.10) Bn(Ps | gκ) = bκn (κ ∈ F
cu, n ∈ Z) .

At points s for which Maass1s(Γ) = {0}, we thus have Ps ∈ EΓ
s with prescribed

Fourier coefficients Bm(Ps | gκ). This implies that the sequence (15.4) is exact for
these s, and that all elements of EΓ

s occur in holomorphic families on this region in
the parameter space.

It remains to consider s0 �= 1
2 , 0 < Re s0 < 1 for which Maass1s0 �= {0}. We

first take Re s0 ≥ 1
2 . Then all elements of Maass1s0 are square integrable, and

Maass1s0(Γ) �= {0} can occur only for s0 ∈ 1
2 + iR or s0 ∈

(
1
2 , 1
)
. Hence the space

Maass1s0(Γ) is invariant under complex conjugation. For u ∈ Maass1s0(Γ) we have
from (15.6) and (15.9):∫

Γ\H
u Res

s0
Ps dμ

=
∑

k∈Fcu

bκ0 A0(u | gκ) +
∑

κ∈Fcu

∑
n�=0

(π|n|) 1
2−s0

2
Γ
(
s0 −

1

2

)
bκn A−n(u | gκ) .
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94 4. MAASS FORMS AND SEMI-ANALYTIC COHOMOLOGY: GROUPS WITH CUSPS

This implies that the finite-dimensional space Maass1s0(Γ) is spanned by residues of
finitely many Poincaré series Ps, for choices of the bκn such that almost all of them
are zero. Hence elements of Maass1s0(Γ) occur as values of holomorphic families
s �→ (s− s0)Ps.

Now suppose that the bκn are chosen such that m(h) = 0 for h = (hκ)κ, hκ(ζ) =∑
n b

κ
n e

2πinζ . Then Ress0 Ps ∈ Maass1s0(Γ) is orthogonal to all ū ∈ Maass1s0(Γ). In

other words, Ress0 Ps = 0, and s �→ Ps is holomorphic at s = s0 and Ps0 ∈ EΓ
s0

satisfies jPs0 = h. Thus, the sequence (15.4) is exact for the value s0 of the spectral
parameter as well, and all elements of EΓ

s0 occur as the value of a holomorphic family

of Γ-invariant λs-eigenfunctions of Δ. This finishes the case 1
2 ≤ Re s0 < 1.

Since EΓ
s = EΓ

1−s, all elements of EΓ
s with 0 < Re s < 1

2 , s �=
1
2 , occur as values

of holomorphic families as well.
We are left with the kernel of m for s0 with 0 < Re s0 < 1

2 . Suppose that the

collection (bκn) satisfies (15.3) and that for all u ∈ Maass1s0(Γ)

(15.11)
∑

κ∈Fcu

(2s0−1) bκ0 A0(u | gκ)+π
1
2−s Γ

(
s+

1

2

)∑
n�=0

|n| 12−s bκn A−n(u | gκ) = 0 .

As in the case Re s0 ≥ 1
2 , it follows that Ress0 Ps is orthogonal to Maass0s0(Γ) which

is contained in Maass1s0(Γ). If Ress0 Ps �= 0 it is known that then it is a linear
combination of residues at s0 of Eisenstein series, and that A0(Ress0 Ps | gμ) �= 0 for
some μ ∈ Fcu. We apply the Maass-Selberg relation (15.2) to Eλ

s and the Poincaré

series P κ,n
s , which is the Poincaré series with bκn = 1 and all other bκ

′

n′ equal to zero.
This gives

2A0(P
κ,n
s | gλ) = (π|n|) 1

2−s Γ
(
s− 1

2

)
A−n(E

λ
s | gκ) .

Application of (15.2) to Eκ
s and Eμ

s gives A0(E
κ
s | gμ) = A0(E

μ
s | gκ), which is the

symmetry of the scattering matrix. Hence we have

A0(Res
s0

Ps | gμ) =
∑
κ

bκ0 Res
s0

A0(E
κ
s | gμ) +

∑
κ

∑
n�=0

bκn Res
s0

A0(P
κ,n
s | gμ)

=
∑
κ

bκ0 A0

(
Res
s0

Eμ
s | gκ

)
+
∑
κ

∑
n�=0

(π|n|) 1
2−s0

2
Γ
(
s0 −

1

2

)
A−n

(
Res
s0

Eμ
s | gκ

)
= 0 ,

by assumption (15.11) on the bκn. Hence Ress0 Ps = 0, and Ps0 ∈ EΓ
s0 has the

prescribed Fourier coefficients Bn(Ps0 | gκ) = bκn. This implies that the sequence
(15.4) is exact for s = s0.

Part ii) is a consequence of part i). For instance, if s does not belong to the
(discrete) set when Maass1s(Γ) is non-zero, then we can take us′ to be the preimage
of any holomorphic variation of ju ∈

⊕
κ∈Γ\C O(C)T , e.g., the constant family

s′ �→
(
β(u | gκ)

)
κ
.

In the proof of part i) we have seen that for any
(∑

n b
κ
ne

2πinζ)κ in the kernel
of m at s there is a family of Poincaré series s′ �→ Ps′ such that jPs or jRess′=s Ps′

is equal to
(∑

n b
κ
ne

2πinζ)κ. �
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CHAPTER 5

Maass forms and differentiable cohomology

In the chapters 2–4 we studied the relation between invariant eigenfunctions
and (semi)-analytic cohomology, and proved Theorem C and most of the statements
in Theorems A and B. In this chapter we turn to smooth and differentiable coho-
mology. We will give a proof of the isomorphisms H1

par(Γ;Vω∗,∞
s ) ∼= H1

par(Γ;V∞
s ) ∼=

H1
par(Γ;Vp

s ), p ≥ 3, in Theorem B. Actually, we will show that

(V.1) Maass0s(Γ)
∼= H1

par(Γ;V∞
s ) ,

and

(V.2) Maass0s(Γ)
∼= H1

par(Γ;Vp
s ) (p ∈ N , p ≥ 3) ,

which together with the previously proved results (in particular, (12.6) and (13.1a))
proves the remaining isomorphisms in Theorem B.

The isomorphism (V.2) will be established in §16 by a method analogous to
that used in §12.2, with adaptions to the differentiable context. In §17 this leads
to Theorem 17.1, which gives the isomorphism (V.1). A consequence is that the
space of modular Maass cusp forms is in bijective correspondence with the space
of smooth period functions. This result, Theorem 17.2, extends the main result
in [21].

Most of the proofs in this chapter work for general cofinite discrete subgroups
of PSL2(R). At the end of Section 16 we use separate approaches for cocompact
groups and groups with cusps. The cocompact case is the harder one. As in § 7.3
in Chapter 2 we need for cocompact groups to extend cocycles to hyperbolic fixed
points.

The isomorphy of EΓ
s and H1(Γ;V∞

s ) in the cocompact case is already known,
though with a quite different proof, from the work of Bunke and Olbrich [6].

16. Differentiable parabolic cohomology

In this section we relate the cohomology group H1
par(Γ;Vp

s ), p ∈ N, p ≥ 2, to

the space of Maass cusp forms Maass0s(Γ). The space Vp
s was defined in §2.1. Recall

that in Chapters 2 and 4 the map from parabolic cohomology to cusp forms was
constructed, not with cohomology with values in the space Vω

s of analytic functions
on ∂H, but in the isomorphic space Wω

s of boundary germs of λs-eigenfunctions
of the Laplace operator Δ. Here we work with the corresponding space Wp

s of
boundary jets, as defined in §3.3.

The construction of Maass forms from cocycles in §7.1 and §12.2 used locally
finite sums. To generalize this, in §16.1, to differentiable cocycles we will need
infinite sums. The resulting convergence questions require some geometric consid-
erations, carried out in §16.2. The proof for discrete groups with cusps is completed
in §16.3, where we prove that if p ≥ 3 the map that we have given is injective with

95
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96 5. MAASS FORMS AND DIFFERENTIABLE COHOMOLOGY

image in the cusp forms. (The surjectivity will be an easy consequence of that in
the analytic case.) The injectivity in the cocompact case is handled in §16.4.

16.1. Construction of a Maass form from a given cocycle. We start
with a cocycle ψ ∈ Z1(F T

. ;Wp
s ) with p ∈ N, p ≥ 2, and use a tesselation T of

type Fd. (See §6.2 and §11.1.) We choose a Γ-equivariant lift ψ̃ ∈ C1(F T
. ,Gp

s ) of
ψ, corresponding to the exact sequence

(16.1) 0 −→ N p
s −→ Gp

s −→Wp
s −→ 0 ,

with the space Gp
s of representatives and the space N p

s of functions with decay of

order p at the boundary, as introduced in §3.3. Then dψ̃ ∈ C2(F T
. ,N p

s ) and we put

(16.2) uψ(z) =
1

πi

∑
γ∈Γ

dψ̃(F)(γz) = Av
Γ
dψ̃(F)(z) (z ∈ H) .

Proposition 16.1. The series in (16.2) converges absolutely and uniformly on
compact sets in H. The sum it defines belongs to EΓ

s , and does not depend on the

choice of the lift ψ̃ or on the choice of the representative ψ in the cohomology class
[ψ] ∈ H1

par(Γ;Wp
s ).

If Z ∈ Z[XT
1 ] is a cycle consisting only of edges that are Γ-translates of edges

in ∂F that describes a simple positively oriented closed curve, then

(16.3) uψ =
1

πi

(
ψ̃(Z) +

∑
γ∈Γ, γ−1F outside Z

dψ̃(F)|γ
)
.

Proof. The function h = dψ̃(F) is in N p
s . Hence h(z) = o

((
y

|z+i|2
)s+p)

as z → ∂H. Since y
|z+i|2 =

(
2 + 2 cosh d(z, i)

)−1
(Table 1.1 in §1.1), we have

h(z) = o
(
e−(s+p) d(z,i)

)
as z → ∂H.

Let K ⊂ H be a compact set. For z ∈ K the number of γ ∈ Γ such that
d(γz, i) ≤ R is at most OK(eR) since the area of a hyperbolic circle with large
radius R is asymptotic to 4πeR. We get∑

γ∈Γ

∣∣h(γz)∣∣ �K

∞∑
R=1

eRe−(s+p)R < ∞ .

This proves the first statement of the proposition.
Our next observation, which will be used repeatedly, is that we have

ψ̃(Z) =
∑

γ∈Γ, γ−1F inside Z

h|γ

for any cycle Z as in the proposition, since h = dψ̃. This gives the expression (16.3)

for uψ. It also follows that uψ is the limit of 1
πi ψ̃(ZR) for any sequence of cycles

{ZR)}R∈N approaching the boundary, for instance those given in Lemma 16.3 below,
where ZR has distance at least R to i and consists of O(eR) edges. This observation

is useful both to prove that uψ is independent of the choice of the lift ψ̃ and that

it is an eigenfunction. For the former we observe that changing ψ̃ to ψ̃ + χ with
χ ∈ C1(F T

. ;N p
s ) each edge e in ZR contributes at most o(e−(s+p)R) to χ(ZR),

which gives χ(ZR) = O(eR) o(e−(s+p)R). Hence limR→∞ χ(ZR) = 0.
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§16. DIFFERENTIABLE PARABOLIC COHOMOLOGY 97

The definition of Ws
p implies that (Δ − λs)ψ̃ ∈ C1(F T

. ;N p
s ). It follows that

with {ZR} as above we have (Δ−λs) ψ̃(ZR) = O
(
eR e−(s+p)R) = o(1), this estimate

being uniform on compact sets. Hence we have with a test function θ ∈ C∞
c (H)

〈θ, (Δ− λs)uψ〉 =

∫
H

(
(Δ− λs)θ

)
uψ dμ (since Δ− λs is self-adjoint)

=
1

πi
lim

R→∞

∫
H

(
(Δ− λs)θ

)
ψ̃(ZR) dμ (since θ is compactly supported)

=
1

πi
lim

R→∞

∫
H

θ
(
(Δ− λs)ψ̃(ZR)

)
dμ (again since Δ− λs is self-adjoint)

= lim
R→∞

O

(∫
H

|θ| dμ sup
z∈Supp θ

∣∣(Δ− λs)ψ̃(ZR)(z)
∣∣)

= 0 (by the estimate (3.10a)) .

So (Δ− λs)uψ = 0 weakly. By elliptic regularity, (Δ− λs)uψ = 0 holds also at the
level of functions. This shows that uψ ∈ Es, and the Γ-invariance is obvious.

Finally, we add to ψ a coboundary df with f ∈ C0(F T
. ;Wp

s ). We can lift f to

f̃ ∈ C0(F T
. ;Gp

s ), and change the lift ψ̃ of ψ to the lift ψ̃ + df̃ of ψf . This changes

dψ̃(F) by ddf(F) = 0, and does not influence the definition of uψ. �

Thus we have defined a map αp
s : [ψ] �→ uψ from H1

par(Γ;Wp
s ) → EΓ

s . If q ∈ N,

q ≥ p, then ψ ∈ Z1(F T
. ;Wq

s ) also determines an element in Z1(F T
. ;Wp

s ). The
construction of uψ shows that αq

s[ψ] = αp
s [ψ]. For ψ ∈ Z1(F T

. ;Wω
s ) the sequence

ψ̃(ZR)(z) stabilizes, uniformly for z in compact sets, and this shows that uψ coin-
cides with uψ defined in §7.1 and §12.2. Thus αp

s [ψ] = αω
s [ψ] on H1

par(Γ;Wω
s ), with

αω
s as in Theorem 7.2 and Proposition 12.2. This implies that in the differentiable

case we also have uqu = u for u ∈ EΓ
s , where q : EΓ

s → H1(Γ;Wω
s ) is the map

constructed in §5.2, in the version given after (6.10c). Summarizing, we have:

Proposition 16.2. For each p, q ∈ N, q ≥ p ≥ 2 there are linear maps αp
s and

αq
s induced by ψ �→ uψ such that the following diagram commutes:

Maass0s(Γ)
� � �� EΓ

s

H1
par(Wω

s ,Wω0,∞
s ) ∼=

��
αω

s

∼=
���������������

H1
par(Wω0,∞

s ) �� Hpar(Wq
s ) ��

αq
s

��

Hpar(Wp
s )

αp
s

��������������

We have suppressed Γ in the notation for cohomology groups. See (13.1a) for

the isomorphism H1
par(Γ;Wω

s ,Wω0,∞
s )→ H1

par(Γ;Wω0,∞
s ).

It remains to be shown that the linear map αp
s is injective, and, if Γ has cusps,

that its image is in the space of cusp forms. Before turning to that question,
in §16.3 and §16.4, we prove the geometrical result that we used in the proof of
Proposition 16.1.

16.2. Geometrical lemmas. The result that we used is the following:

Lemma 16.3. Let R > 0. There exists a cycle Z = ZR ∈ Z[XT
1 ] consisting

of O(eR) edges contained in Γ ∂F and lying outside the open hyperbolic disk with
center i and radius R, with winding number 1 around i.
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98 5. MAASS FORMS AND DIFFERENTIABLE COHOMOLOGY

Remark. The circumference of a hyperbolic cycle with radius R is approximately
2π eR as R→∞. The lemma says that the conditions on Z do not force it to have
substantially more edges that is to be expected from the length of a hyperbolic
circle.

The proof of Lemma 16.3 will be very simple if Γ has no cusps, but if Γ has
cusps and R is large, the path corresponding to Z will always have to go through
some cusps, and in that case we will need a bound for the number of times that
the curve Z is forced to go through a cusp. We first estimate this quantity.

We recall that for groups with cusps the fundamental domain has a decompo-
sition F = FY ∪

⋃
κ∈Fcu Vκ where FY is compact and where Vκ is the closure of the

intersection of F with the open horocyclic disk DY (κ) in (11.1). The boundary of
DY (κ) is the horocycle HY (κ).

Lemma 16.4. The number of horocycles γ−1HY (κ), γ ∈ Γ, κ ∈ Fcu, that
intersect the hyperbolic circle CR around i with radius R is O(eR) as R→∞. The
number of cuspidal triangles γ−1Vκ, γ ∈ Γ, κ ∈ Fcu, that intersect the circle CR is
also O(eR) as R→∞.

Proof. Fcu is finite, so we may restrict ourselves to considering one cusp
κ ∈ Fcu, which we conjugate to ∞.

In the counting of the horocycles, γ runs over Γ∞\Γ. We write γ−1 =
[
a
c
b
d

]
.

The horocycle is determined by the first column

(
a
c

)
of γ−1. The maximum of

x �→
Im
(
γ−1(iY + x)

)
|γ−1(iY + x) + i|2 =

Y

(ax+ b− cY )2 + (aY + cx+ d)2

occurs for x = −ab−cd
a2+c2 , and has value (a2+c2)Y

(1+(a2+c2)Y )2
≤ 1

(a2+c2)Y . Since y
|z+i|2 ∼ e−R

on CR, the number of horocycles intersecting CR is bounded by N
(
eR/Y

)
, where

(16.4) N(B) := #
{
γ ∈ Γ∞\Γ : γ �∈ Γ∞ , a2 + c2 ≤ B

}
.

Lemma 2.10 in [15], applied with z = i and ga = 1, implies that N(B) = O
(
B
)
as

B →∞. This gives the first statement in the lemma.
For a fixed horocycle γ−1HY (κ), there may be many cuspidal triangles γ−1V∞

intersecting CR. Their number differs by no more than 2 from the number of

intervals
[
− 1

2+n, 1
2+n
]
, n ∈ Z, containing an element x with Im (γ−1(iY+x)

|γ−1(iY+x)+i|2 ≥ e−R.

If such x occur, the equation (ax+ b− cY )
2
+(aY + cx+ d)

2
= Y eR has solutions

x1 and x2. These solutions satisfy

(x2−x1)
2 =

4

a2 + c2
(
eR−2

)
Y −4Y 2− 4

(a2 + c2)2
≤ 4Y (1− 2e−R)

(a2 + c2)e−R
� Y eR

a2 + c2
.

So the number of sectors is bounded by

2 + |x2 − x1| �
√
Y eR√

a2 + c2
.
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§16. DIFFERENTIABLE PARABOLIC COHOMOLOGY 99

For γ ∈ Γ∞ this gives O
(√

Y eR
)

sectors. The number of other sectors to be

counted is estimated by∑
γ∈Γ∞\Γ, γ �∈Γ∞,

a2+c2≤eR/Y

√
Y eR√

a2 + c2
�

∞∑
l=0

∑
γ∈Γ∞\Γ, γ �∈Γ∞,

2−l−1eR/Y≤a2+c2≤2−leR/Y

√
Y eR

2−(l+1)/2
√
eR/Y

� Y

∞∑
l=0

2(l+1)/2 N(2−l eR/Y ) � eR ,

where in the last line we have again used N(B) = O(B). �

Proof of Lemma 16.3. Let Γ(R) =
{
γ ∈ Γ : γ−1F ∩ DR �= ∅

}
, where DR

denotes the hyperbolic disk around i with radius R. We put AR =
⋃

γ∈Γ(R) γ
−1F,

and take Z = ∂AR. Since ∂F has finitely many edges, Z consists of at most
O
(
#Γ(R)

)
edges. Each edge occurring in Z (with non-zero factor) has a distance

at least R to i. The curve Z encirclesDR once in the positive direction. To complete
the proof we show that #Γ(R) = O(eR) as R→∞.

We use that F is the union of a compact set FY and finitely many cuspidal
triangles Vκ, with κ ∈ Fcu. Lemma 16.4 estimates the number of γ ∈ Γ such that
γ−1Vκ intersects DR for some κ ∈ Fcu by O(eR). To count the number of γ−1FY

intersecting DR we note that the distance between any two points of γ−1FY is
bounded by some number t, independently of γ ∈ Γ. Hence if γ−1FY intersects
DR, then γ−1FY is contained in DR+t. This leads to an estimate by

area(DR+t)

area(FY )
= O(eR+t) = O(eR) . �

In the next subsection we will use the following modification of Lemma 16.3:

Lemma 16.5. Suppose that ξ and η are cusps of Γ. Let R > 0, and denote
by DR the open hyperbolic disk around i with radius R. There exists a chain A =
AR ∈ Z[XT

1 ] consisting of Oξ,η(e
R) edges in Γ∂F that describes a path from ξ to η

in the region H�DR and is homotopic in H̄�DR to the (oriented) arc in P1
R from

ξ to η.

Proof. Let C ∈ Z[XT
1 ] denote a path from ξ to η along edges of the tesselation.

It consists of Oξ,η(1) edges. Let ZR be a cycle as in Lemma 16.3, consisting of O(eR)
edges and encircling DR once. See Figure 16.1.

The cycle ZR and the direct path intersect each other in points of XT
0 . As

in the sketch on the right in Figure 16.1, this leads to a path with the desired
properties, with Oξ,η(1) +O(eR) +Oξ,η(1) edges, going from ξ along C to the first
intersection point, then counterclockwise along ZR to the last intersection point,
and then along C to η. �

16.3. Maass cusp forms associated to differentiable parabolic coho-
mology classes. In the cocompact case, Maass0s(Γ) = EΓ

s , and parabolic cohomol-
ogy coincides with standard cohomology. In this case it only remains to show that
the maps αp

s are injective. If Γ has cusps, we need to show not only that αp
s is

injective, but also that its image is in the space of Maass cusp forms Maass0s(Γ).
Surprisingly, the presence of cusps actually helps in proving the injectivity.
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100 5. MAASS FORMS AND DIFFERENTIABLE COHOMOLOGY
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Figure 16.1. Proof of Lemma 16.5; illustrations.

The cocompact case will be discussed in the next subsection. Here we suppose
that Γ has cusps. We use a tesselation T of type Fd. (See §11.1.)

Let u = uψ ∈ EΓ
s be the invariant eigenfunction associated to the cocycle

ψ ∈ Z1(F T
. ;Ws

p ) via a lift ψ̃ ∈ C1(F T
. ;Gp

s ). We use the following variant of the
formula (16.3) in Proposition 16.1: if ξ and η are distinct cusps of Γ, we have the
splitting

(16.5) u = uξ,η + uη,ξ

with

(16.6)

uξ,η =
1

πi

(
ψ̃(A) +

∑
γ∈Γ, γ−1F to the right of A

dψ̃(F)|γ
)
,

uη,ξ =
1

πi

(
−ψ̃(A) +

∑
γ∈Γ, γ−1F to the left of A

dψ̃(F)|γ
)
,

where the chain A ∈ Z[XT
1 ] represents a path from ξ to η without self-intersections,

following edges contained in Γ ∂F. The words “to the left” and “to the right” of A
depend on the orientation of A: “to the left of A” is equivalent to “to the right
of the opposite path −A.” The definitions of uξ,η and uη,ξ do not depend on the
choice of path from ξ to η for the same reason that the right hand side of (16.3)
was independent of the chosen path A.

Proposition 16.6. For cusps ξ, η, θ satisfying ξ < η < θ < ξ for the cyclic
order of ∂H, and γ ∈ Γ we have

uξ,θ = uξ,η + uη,θ ,(16.7a)

uγ−1ξ,γ−1η = uξ,η|γ ,(16.7b)

uξ,η ∈ Es .(16.7c)

Proof. The statements in (16.7a) and (16.7b) are clear from the definitions.
For (16.7c) we proceed as in the proof that u ∈ Es in Proposition 16.1, now with a
sequence of paths AR from ξ to η as in Lemma 16.5. �
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§16. DIFFERENTIABLE PARABOLIC COHOMOLOGY 101

The following lemma implies that uξ,η is relatively small near the arc from η
to ξ in ∂H.

Lemma 16.7. Let ψ, ψ̃ and uξ,η be as above. We denote by g = gξ,η the geodesic
from ξ to η. For any choice of path A from ξ to η we have

(16.8)

∑
γ∈Γ, γ−1F to the right of A

dψ̃(F)(γz) = O
(( y

|z + i|2
)s+p−2)

and uξ,η(z) = O
(( y

|z + i|2
)s)

.

In both estimates z → ∂H through the region to the left of g or on g.

We first apply this result, postponing its proof.

Proposition 16.8. Let p ≥ 2. The function uψ is an element of Maass0s(Γ)
for all ψ ∈ Z1(F T

. ;Wp
s ).

Proof. Since 0 < Re s < 1, it suffices to show that uψ is bounded on the
cuspidal sectors Vκ ⊂ F for any κ ∈ Fcu. (This follows from the Fourier expansion
at the cusp κ: see §10.1 and equation (8.1), and use the asymptotic behavior as
y → ∞ of the special functions in the expansion.) Take ξ, η ∈ C with κ between
ξ and η for the positive (counterclockwise) orientation of ∂H and such that Vκ is
between the geodesic gκ,η from κ to η and the geodesic gξ,κ from ξ to κ. Let R1, R2,
R3 denote the regions to the right of the geodesics gξ,κ, gκ,η, and gη,ξ, respectively,
as in the picture below. We have

(16.9) u = uξ,κ + uκ,η + uη,ξ .

By Lemma 16.7, uξ,κ is bounded on the complement of R1 (and hence also on
Vκ), uκ,η is bounded on the complement of R2 (and hence also on Vκ), and uξ,η

is bounded on the complement of R3 (and hence also on Vκ, since Vκ ∩ R3 is
compact). �

�κ�����
�����Vκ

�

�

η

ξ

R3

R1

R2

Proposition 16.9. The map [ψ] �→ uψ from H1
par(Γ;Wp

s ) to EΓ
s is injective for

p ≥ 3.

Proof. Suppose that uψ = 0. Let A be a path from the cusp ξ to the cusp η
as in the definition of uξ,η in (16.6). Lemma 16.7 shows that

(16.10) πi uξ,η(z) = ψ̃(A)(z) + O
(( y

|z + i|2
)s+p−2)

for z on or on the left of the geodesic from ξ to η, and also that πi uξ,η(z) =
−πi uη,ξ(z) satisfies (16.10) on the right of that geodesic. Hence (16.10) holds for
all z ∈ H.
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102 5. MAASS FORMS AND DIFFERENTIABLE COHOMOLOGY

Since ψ̃(A) ∈ Gp
s , there is a continuous function B on a neighborhood of P1

R

in P1
C such that

ψ̃(A)(z) =
( y

|z + i|2
)s

B(z) + O
(( y

|z + i|2
)s+1)

(z → ∂H) .

With (16.10), and with the assumption p ≥ 3, we get the same estimate for
πi uξ,η(z). Lemma 4.4 in [4] tells us that elements of Es satisfying an estimate
of this type vanish. We conclude that uξ,η = 0 for all cusps ξ and η.

Now we have by (16.10) that ψ̃(A) ∈ N p−2
s , so ψ(A) is 0 in Wp−2

s . Then
ψ(A) = 0 because Wp

s →Wp−2
s is injective (since Wp

s
∼= Vp

s ⊂ Vp−2
s

∼=Wp−2
s ).

Take a cusp ξ as base point. The group cocycle γ �→ ψ(Cγ−1ξ,ξ) with Cγ−1ξ,ξ a

path in Z[XT
1 ] from γ−1ξ to ξ is zero. Hence the class [ψ] ∈ H1

par(G,m;Wp
s ) is the

trivial cohomology class. �

We summarize the results in the following proposition:

Proposition 16.10. Suppose that Γ has cusps. For all p, q ∈ N, q ≥ p ≥ 3,
the following diagram is commutative and all arrows are isomorphisms.

Maass0s(Γ)

q�����
���

���
���

�

H1
par(Wω

s ,Wω0,∞
s ) ��

αω
s

���������������

H1
par(Wω0,∞

s ) �� Hpar(Wq
s ) ��

αq
s

��












Hpar(Wp

s )

αp
s

��























It remains to prove the estimate (16.8).

Proof of Lemma 16.7. Since ψ̃(C) ∈ Gp
s , the second estimate in (16.8) fol-

lows from the first.
By conjugation and symmetry it suffices to consider ξ = ∞, η = 0. Then

g = iR+ . We can assume that i ∈ F. Changing A means adding an element of
N p

s to the sum, and does not influence the estimate. So we can assume that A
runs from ∞ to 0 through the left half of the upper half-plane. It now suffices to
estimate for z ∈ H with Re z ≥ 0 the sum∑

γ

h(γz) �
∑
γ

( Im γz

|γz + i|2
)s+p

,

where γ ∈ Γ is such that γ−1F is in the left half of H and where h = dψ̃(F) ∈ N p
s .

For any γ =
[
a
c
b
d

]
in the sum we have Re γ−1i < 0, so ab+cd > 0. Moreover,∞

is a cusp of Γ, so Im γ−1i stays under a bound B∞, depending only on the group Γ
and the cusp ∞. Hence a2 + c2 ≥ 1

B∞
. For Re z ≥ 0, |z| ≥ 1:

(16.11a)

Im γz

|γz + i|2

/
y

|z + i|2 =
|z|2 + 2y + 1

(a2 + c2)|z|2 + 2(ab+ cd)x+ 2y + b2 + d2

≤ |z|2 + 2|z|+ 1

(a2 + c2)|z|2 ≤ 4B∞ .

We apply the reflection z �→ 1/z̄ to conclude that there is a bound B0 > 0 such
that for Re z ≥ 0, |z| ≤ 1:

(16.11b)
Im γz

|γz + i|2

/
y

|z + i|2 ≤ 4B0 .
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§16. DIFFERENTIABLE PARABOLIC COHOMOLOGY 103

In the proof of Lemma 16.3 we saw that the number of Γ-translates of F that
intersect the closed disk Dk around i with radius k is O(ek) as k → ∞. We use
this to estimate the size of the set Fk of γ occurring in the sum such that γ−1F

intersects Dk but does not intersect Dk−1. We use the estimates in (16.11) for the
sum up to k = k0 − 1, with k0 to be chosen later.

k0−1∑
k=0

∑
γ∈Fk

h(γz) �
k0−1∑
k=0

ek
( y

|z + i|2
)s+p

� ek0

( y

|z + i|2
)s+p

.

For the tail of the series, we employ another estimate. Applying the triangle
inequality d(γz, i) + d(z, i) ≥ d(γ−1i, i), and using y

|z+i|2 ∼ e−d(z,i) as z → ∂H, we

find

Im γz

|γz + i|2
y

|z + i|2 ∼ e−d(γz,i)−d(z,i) ≤ e−d(γ−1i,i) � Im γ−1i

|γ−1i+ i|2 ,

and if γ−1F has distance at least k − 1 to i, then

Im γ−1i

|γ−1i+ i|2 � e−k .

This leads to∑
k≥k0

∑
γ∈Fk

h(γz) �
∑
k≥k0

ek
( Im γ−1i

|γ−1i+ i|2
)s+p ( y

|z + i|2
)−s−p

�
∑
k≥k0

e(1−s−p)k
( y

|z + i|2
)−s−p

� e(1−s−p)k0

( y

|z + i|2
)−s−p

.

Combining both estimates we obtain for the total sum:∑
γ

h(γz) � ek0−(Re s+p)d(z,i) + e(1−Re s−p)k0+(Re s+p)d(z,i) .

We take k0 =
[
2d(z, i)

]
, and obtain

� e(2−Re s−p)d(z,i) ,

which gives the desired estimate of the sum. �

16.4. Injectivity of the map from differentiable cohomology to in-
variant eigenfunctions, cocompact case. We can also prove the injectivity of
the map from Wp

s -valued cohomology classes to invariant eigenfunctions in the co-
compact case, now even for p ≥ 2, but the proof in the absence of cusps is harder,
because the chain A used in (16.6) must be replaced by an infinite path. We will
show:

Proposition 16.11. Let Γ be cocompact, and let p, q ∈ N, q ≥ p ≥ 2. Then
the following diagram is commutative and all arrows are isomorphisms.

EΓ
s

q
�����

��
��
��
�

H1(Wω
s ) ��

αω
s

������������
H(Wq

s ) ��

αq
s

��

H(Wp
s )

αp
s

������������
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104 5. MAASS FORMS AND DIFFERENTIABLE COHOMOLOGY

Only the injectivity of [ψ] �→ uψ from H1
par(Γ;Wp

s ) to EΓ
s remains to be proved.

In the non-cocompact case we used the decomposition (16.5) to write the eigenform
uψ as a sum of two pieces associated to paths between cusps. Now there are no
edges in XT

1 that go to points of the boundary ∂H and we will use paths between

hyperbolic points instead. To do this we will extend a lift ψ̃ ∈ C1(F T
. ;Gp

s ) of ψ to
a function defined on infinite paths going from a point P ∈ XT

0 ⊂ H to a hyper-
bolic fixed point on ∂H, like we did in §7.3 in the analytic case, using a one-sided
average. However, because our knowledge of the behavior of the extension near the
hyperbolic fixed point is incomplete, we are forced to perform some complicated
estimates.

The proof will consist of five steps, of which steps a) and b) were not needed for
groups with cusps, and step d) requires more work than in the previous subsection.

a) Choice of paths from points of XT
0 to hyperbolic fixed points.

b) Extension of ψ̃ to these paths.
c) Definition of uψ̃(ξ1, ξ2) for hyperbolic fixed points ξ1 and ξ2.

d) Proof that if uψ = 0 then uψ̃(ξ1, ξ2) = 0.

e) Proof that if uψ = 0 then [ψ] is the trivial cohomology class.

• Step a). We assume that the tesselation T of type Fd is based on a Dirichlet
fundamental domain F. We choose once and for all a Γ-orbit H of hyperbolic fixed
points of Γ, and consider only hyperbolic points belonging to this orbit. For each
ξ ∈ H we denote by ηξ ∈ Γ the generator of Γξ that has ξ as its repelling fixed
point.

In the proof of Proposition 7.4 we extended a cocycle on XT
0 ×XT

0 to a cocycle

on
(
XT

0 ∪H
)
×
(
XT

0 ∪H
)
. Here we work with a cochain ψ̃, and have to deal

with actual paths between points of XT
0 ∪H. We choose for each ξ ∈ H and each

P ∈ XT
0 ⊂ H an infinite chain p(P, ξ) of elements of XT

1 , describing a path from P
to ξ. We require:

(i) Γ-equivariance, i.e., γp(P, ξ) = p(γP, γξ) for all γ ∈ Γ,
(ii) p(P, ξ) has no self-intersection,
(iii) for P,Q ∈ XT

0 and ξ ∈ H the difference p(Q, ξ)− p(P, ξ) is finite, i.e., it
is in Z[XT

1 ]

To see that such a choice is possible
we start with one ξ ∈ H, and abbrevi-
ate ηξ = η. Let s be the geodesic con-
necting ξ with the other fixed point ξ′

of η. (In the sketch on the right in the
upper half-plane model we place ξ at
0 ∈ P1

R and ξ′ at ∞ ∈ P1
R.) We choose

a point a on s and cover the segment of
s between a and η−1a with the finitely
many translates γF such that the clo-
sure γF contains the segment between
these two points.

�

� η−1a

a

s

ξ

ξ′

Next we take the infinite cover of s consisting of all translates by ηn, n ∈ Z, of
the cover of the segment between a and η−1a.
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§16. DIFFERENTIABLE PARABOLIC COHOMOLOGY 105

�

� η−1a

a

s

C

The union of all these translates
is a connected simply connected region
in H. The boundary of this region con-
sists of two components. We take the
component on the right of the geodesic
with respect to the direction from ξ′

to ξ.
This component can be described

as an infinite chain of the form C =∑∞
i=−∞ εi xi with xi ∈ XT

1 and εi ∈
{1,−1}. The chain is η-invariant: there
exists n ≥ 1 such that ηxi = xi+n. It
has no self-intersections.

We use this chain to form infinite paths from each P ∈ XT
0 to ξ. Through each

P ∈ XT
0 there is a unique geodesic gP that intersects s orthogonally. We denote

the intersection point by xP . If P happens to be a point of s we take xP = P .
First we consider those points P ∈

XT
0 for which xp is between a and η−1a,

or is equal to a. For each of these points
P we choose a chain r ∈ Z[XT

1 ] de-
scribing a path from P to a point Q in
C∩XT

0 . This can be done in such a way
that the path corresponding to r inter-
sects the path given by C only in Q.
Then we choose p(P, ξ) as the sum of r
and the part of the chain C describing
a path from Q to ξ.

�

� η−1a

a

s

C �P�
xP

�Q

The path x(P, ξ) that we have constructed has no self-intersection. If P,R ∈
XT

0 satisfy xP , xR ∈ [a, η−1a) then p(R, ξ) and p(P, ξ) form the same path, except
for an initial part. So requirement (iii) is satisfied. Thus we have completed the
choice of paths going to the fixed ξ ∈ H.

The condition on the intersection points xP implies that the set H × XT
0 is

freely generated by the (ξ, P ) for which we have defined p(P, ξ). We put p(ΓP, γξ) =
γp(P, ξ) for γ ∈ Γ to define p on H×XT

0 . This choice clearly satisfies requirements
(i) and (ii). For requirement (iii) we observe that p(η−nP, ξ) and p(P, ξ) differ only
in an initial part.

In the sequel we assume that p(P, ξ) for ξ ∈ H and P ∈ XT
0 has been chosen

such that requirements (i)–(iii) hold.

• Step b). The lift ψ̃ ∈ C1(F T
. ;Gp

s ) of the given cocycle ψ ∈ Z1(F T
. ;Wp

s )
is defined on paths in Z[XT

1 ]. For P ∈ XT
0 and ξ ∈ H we have arranged that

p(P, ξ)− η−1
ξ p(P, ξ) ∈ Z[XT

1 ]. So ψ̃
(
p(P, ξ)− η−1

ξ p(P, ξ)
)
is an element of Gp

s . We

use the one-sided average Av+
ηξ

discussed in §4.1 to define:

(16.12) Fψ̃(P, ξ) = Av+
ηξ
ψ̃
(
(1− η−1

ζ )p(P, ξ)
)
∈ Gp

s

(
∂H� {ξ}

)
.

The dependence of Fψ̃(P, ξ) on the choice of the path p(P, ξ) is not visible in the

notation. We think of Fψ̃(P, ξ) as ψ̃ evaluated on the infinite path p(P, ξ).
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106 5. MAASS FORMS AND DIFFERENTIABLE COHOMOLOGY

Near points of ∂H�{ξ} we have good information on the behavior of Fψ̃(P, ξ).

It is locally (in the disk model) of the form w �→
(
1− |w|2

)s · (analytic), as defined
in §3.3. The next lemma gives information concerning the behavior near the point ξ.
We formulate it in the upper half-plane model, with ξ at position zero, and use polar
coordinates H  z = ρeiϕ (ρ > 0, ϕ ∈ (0, π)).

Lemma 16.12. Let g ∈ G such that g · 0 = ξ, in the upper half-plane model,

and gηξg
−1 =

[√
t

0
0

1/
√
t

]
with t > 1. Then we have, uniformly for 0 < ϕ < π:

Fψ̃(P, ξ)(g · ρe
iφ) � 1 (ρ ↓ 0) ,

∂ρFψ̃(P, ξ)(g · ρe
iφ) � ρ−1 (ρ ↓ 0) .

Proof. This is a statement concerning H(ρeiφ) =
∑

n≥0 h(t
nx) for some h ∈

Gp
s . There are R∞ > R0 > 0 such that

h(ρeiφ) =

⎧⎪⎨⎪⎩
ρs(sinφ)sa0(ρ cosφ, ρ sinφ) for 0 < ρ ≤ R0 ,

O(1) for R0 ≤ ρ ≤ R∞ ,

ρ−s(sinφ)sa∞(−ρ−1 cosφ, ρ−1 sinφ) for ρ ≥ R∞ ,

with Cp-functions a0 and a∞ on a neighborhood of 0 in R2 containing a disk of
radius R0, respectively R−1

∞ . In the intermediate region we also have ∂ρh(ρe
iφ) =

O(1).

For ρ < R0 we split up the sum at B = − log(ρ/R0)
log t and A = − log(ρ/R∞)

log t . The

sum over 0 ≤ n < B contributes

to H(ρeiφ) :
∑

0≤n<B

tnsρs(sinφ)sa0(t
nρ cosφ, tnρ sinφ) � ρs(sinφ)stBs

� ρs(sinφ)sρ−s � 1 ,

to ∂ρH(ρeiφ) : �
∑

0≤n<B

ρs(sinφ)s
(
tnsρ−1 + tn(s+1)

)
� ρ−1 .

The sum over n ≥ A contributes

to H(ρeiφ) :
∑
n≥A

t−nsρ−s(sinφ)sa∞(−t−nρ−1 cosφ, t−nρ−1 sinφ)

� ρsρ−s � 1 ,

to ∂ρH(ρeiφ) :
∑
n≥A

t−n(s+1)ρ−s(sinφ)s
(
sρ−1O(1) + ρ−2O(1)

)
� ρ−1 .

The region B ≤ n < A contributes O
(
A − B

)
= O(1) to H(ρeiφ), and to

∂ρH(ρeiφ) ∑
B≤n<A

tnO(1) � tA � ρ−1 .

On this region we do not obtain a factor ρs(sinϕ)s. So we have to be content with
O(1) and O(ρ−1) as the final estimates. �

Let p( · , · ) and p̂( · , · ) denote two choices of paths, both satisfying the require-
ments. Then p̂(P, ξ)−p(P, ξ) can be written as an infinite sum

∑
γ∈Γ mγ (γ

−1F) of

elements of XT
2 , with mγ = ±1 if γ−1F is between both paths, with the choice of

the sign depending on the winding number of p̂(P, ξ) − p(P, ξ) around γ−1F, and
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§16. DIFFERENTIABLE PARABOLIC COHOMOLOGY 107

mγ = 0 for all other γ−1F. For the influence of the choice of the path on Fψ̃(P, ξ)
we would like to get an estimate of the sum

(16.13)
∑
γ

mγ dψ̃(γ
−1F) .

For later use we formulate this more generally. We need estimates for absolutely
converging sums over γ such that γ−1F is contained in a set X. Near pieces of the
boundary away from the closure of X in P1

C the estimates are better. In the proof
of Lemma 16.16 we will need also an estimate for derivatives of the sum.

For convenience we use in the following lemma the disk model H = D, with
coordinates w = reiθ, 0 ≤ r < 1 and θ ∈ R/2πZ.

Lemma 16.13. Let X be a union of Γ-translates of F. Denote by X̄ the closure
of X in D∪∂D. Let h ∈ N p

s , p = 2, 3, . . ., let {εγ : Γ} be a bounded set of complex
numbers, and put

H =
∑

γ∈Γ , γ−1F⊂X

εγ h | γ .

Then for any w ∈ D with hyperbolic distance d(w,X) to X at least equal to R ≥ 0
(16.14)

H(w) � e−(s+p−1)R , (1− r2) ∂rH(reiθ), (1− r2) ∂θH(reiθ) � e−(s+p−1)R .

The differential operators operators (1− r2) ∂r and r−1 (1− r2) ∂θ are natural
in the coordinates r and θ, since they are Γ-equivariant up to a factor of absolute
value one.

Proof. In fact, we will prove the estimates (16.14) for the functions obtained
by replacing all terms in the defining sums by their absolute values.

Near the boundary, h(reiθ) = (1 − r2)s a(reiθ) with a Cp-function a on a
neighborhood of the boundary, vanishing up to order p on the boundary. Hence
h(reiθ) = O

(
(1−r2)s+p

)
and ∂rh(re

iθ) and ∂θh(re
iθ) are O

(
(1−r2)s+p−1

)
. Since h

is a C2-function, we can use these estimate everywhere on D. To estimate ∂r
∑

h◦γ
and ∂θ

∑
h ◦ γ we use

∑∣∣dγw
dw hr(γw)

∣∣ and ∑∣∣dγwdw hθ(γw)
∣∣, and note that

∣∣dγw
dw

∣∣ =
1−|γw|2
1−|w|2 . (We use that hr and hθ are linear combinations of hw and hw̄ with bounded

coefficients.) So for H and for its derivatives we have to deal with sums of the type

(16.15)
∑

γ∈Γ, γ−1F⊂X

(
1− |γw|2

)s+q
,

with q = p or q = p− 1, and have to add a factor
(
1− r2

)
for the derivatives.

We can assume that 0 ∈ F. For all γ ∈ Γ

1− |γw|2 � e−d(γw,0) = e−d(w,γ−10) ≤ e−d(w,γ−1
F) .

An area consideration shows that the number of γ ∈ Γ such that d(w, γ−1F) ≤ R
is O
(
eR
)
. Hence the sum in (16.15) satisfies

�
∑
l≥1

ed(w,X)+l e−(s+q)(l+d(w,X)) � e−(s+q−1)d(w,X) .

This gives (16.14). �
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108 5. MAASS FORMS AND DIFFERENTIABLE COHOMOLOGY

X

�

�
I

Lemma 16.13 has as a direct conse-
quence that if I is a closed cyclic inter-
val in S1 = ∂D contained in the open
set ∂D � X̄, then as r ↑ 1, uniform in
eiθ ∈ I:

(16.16)
H(reiθ) � (1− r2)s+p−1 ,

∂rH(reiθ) � (1− r2)s+p−2 .

To see this we simply observe that
e−d(w,X) = O((1 − r2) uniformly, be-
cause the nearest point of X to any
point near I lies in a fixed compact sub-
set of X.

If we have two choices p̂(P, ξ) and p(P, ξ) for the path from P to ξ we get for

the difference of the corresponding values F̂ψ̃(P, ξ) and Fψ̃(P, ξ) the expression∑
γ∈Γ

mγ dψ̃(γ
−1F) =

∑
γ∈Γ

mγ dψ̃(F)|γ

with mγ as in (16.13). We have dψ̃(F) ∈ N p
s , and the estimate (16.16) shows that

this sum is estimated by O
(
(1 − r2)s+p−1

)
near points of ∂D \ {ξ} =: I. The

restriction morphism ρs : Wp
s (I) → Vp

s (I) in §3.3 is given by ρsf(ξ) = limr↑1
(
(1−

r2))−s f(reiθ)
)
on the class in Wp

s (I) represented by f ∈ Gp
s (I). Thus, we obtain

the following result:

Lemma 16.14. The element ρsFψ̃(P, ξ) ∈ Vp
s (∂D�{ξ}) does not depend on the

choice of p(P, ξ), and satisfies

(16.17) ρsFψ̃(γ
−1P, γ−1ξ) =

(
ρsFψ̃(P, ξ)

)
|γ (γ ∈ Γ) ,

and

(16.18) ρsFψ̃(P1, ξ) = ρsFψ̃(P, ξ) + ψ(r)

for P1, P ∈ XT
0 , ξ ∈ H and r ∈ Z[XT

1 ] corresponding to a path from P1 to P .

Thus we get a cocycle c on (XT
0 ∪H) × (XT

0 ∪H) with values in a Γ-module
containing Vp

s in which singularities at points in H are allowed. The restriction of c
to XT

0 ×XT
0 is related to ψ ∈ Z1(F T

. ;Wp
s ) by c(P,Q) = ρsψ(p), where p ∈ Z[XT

1 ]
is a path from P to Q. For P ∈ XT

0 and ξ ∈ H we have c(P, ξ) = ρsFψ̃(P, ξ).

• Step c). Let ξ1, ξ2 ∈ H, and choose P ∈ XT
0 . Motivated by (16.6) we might

consider

Fψ̃(P, ξ2)− Fψ̃(P, ξ1)

+
∑

γ∈Γ, γ−1F⊂X

dψ̃(F)|γ ,

where X is in the region indicated on
the left. However, this sketch is mis-
leading, because the paths p(P, ξ1) and
p(P, ξ2) may intersect each other.

�ξ1

�
ξ2

�P
X

We need to work with a sum
∑

γ mγ dψ̃(F)|γ, where mγ is the winding number

around γ−1F of the closed path −p(P,ξ2) + p(P, ξ1) from ξ2 via P to ξ1 and then
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§16. DIFFERENTIABLE PARABOLIC COHOMOLOGY 109

back to ξ2 along the positively oriented arc of ∂D from ξ1 to ξ2. (In the sketch
above, where p(P, ξ1) and p(P, ξ2) do not intersect each other except in P , we have
mγ = 1 if γ−1F ⊂ X and mγ = 0 otherwise.) We define

(16.19) uψ̃(ξ1, ξ2) =
1

πi

(
Fψ̃(P, ξ2)− Fψ̃(P, ξ1) +

∑
γ∈Γ

mγ dψ̃(F)|γ
)
.

There is a more general representation

(16.20) uψ̃(ξ1, ξ2) =
1

πi

(
ψ̃(A) +

∑
γ∈Γ

mγ dψ̃(F)|γ
)
,

where A is any infinite path given by an
infinite chain of the form −p(Q1, ξ1) +
r + p(Q2, ξ2), where Q1, Q2 ∈ XT

0 ,
where r ∈ Z[XT

1 ] corresponds to a path
from Q1 to Q2, and where mγ is the
winding number around γ−1F of the
closed path consisting of −A and the
positively oriented arc in ∂D from ξ1
to ξ2.

�ξ1

�
ξ2

�Q1

�Q2
r

Lemma 16.15. We have uψ̃(ξ1, ξ2) ∈ Es and

(16.21) uψ̃(ξ1, ξ2) + uψ̃(ξ2, ξ1) = uψ .

Proof. The second assertion follows directly from (16.2) and (16.20).
To see that uψ̃(ξ1, ξ2) is in Es we want to apply the same reasoning as in

Proposition 16.1. We need a sequence Al of infinite paths from ξ1 to ξ2 that have
distance at least l to a fixed point P0. To construct such a sequence we consider
first the sequences (η−n

1 P0) and (η−n
2 P0) tending to ξ1 and ξ2, respectively. Put

pn = η−n
1 p(P0, ξ1)− η−n−1

1 p(P0, ξ2). This is a finite path from η−n
1 P0 to η−n−1

1 P0,

and Fψ̃(P0, ξ1) is equal to
∑

n≥0 ψ̃(p0)|ηn1 . (The infinite chain
∑

n≥0 pn describes

an infinite path from P0 to ξ1, that will in general be different from p(P0, ξ1).) For
each n the maximum of the distance between two points of pn does not depend
on n. The sequence of finite paths qn = η−n

2 p(P0, ξ2)− η−n−1
2 p(P0, ξ2) has similar

properties.
For each l ≥ 1 there is by Lemma 16.3 a cycle Zl going around D once in the

positive direction in the region with hyperbolic distance at least l to P0. There
are points Pl ∈ XT

0 in the intersection of Zl with
∑

n≥0 pn, and Ql ∈ XT
0 in the

intersection of Zl with the infinite path
∑

n≥0 qn. Take n1 such that Pl is on the
finite path pn1

, and n2 such that Ql is on the path an2
. We form the chain Al as

the sum of the following chains:

from to
a1 = −

∑
n≥n1

pn ξ1 η−n1
1 P0 ,

a2 along edges of pn1
η−n1
1 P0 Pl ,

a3 along edges of Cl Pl Ql ,
a4 along edges of qn2

Ql η−n2
2 P0 ,

a5 =
∑

n≥n2
qn η−n2

2 P0 ξ2 .

To apply the method used in the proof of Proposition 16.1 we estimate for each
of these paths the funtion (Δ− λs)ψ̃(aj).
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110 5. MAASS FORMS AND DIFFERENTIABLE COHOMOLOGY

We have (Δ − λs)ψ̃(a3) = O(el)O(e−(s+p)l) = o(1). The paths a2 and a4
consist of finitely many edges, and have distance at least l − O(1) to P0. This

leads to (Δ − λs)ψ̃(ai) = o(1) for i = 2, 4. The path qn2
has distance at least

l − O(1) to P0, and there exists a factor α > 0 such that η−n
2 qn2

has distance at

least αn+ l−O(1) to P0. Hence (Δ− λs)ψ̃(a5)�
∑

n≥0 O
(
e−(s+p)(αn+l)

)
= o(1),

and similarly for a1.
Now we can proceed as in the proof of Proposition 16.1. �

• Step d). We now show:

Lemma 16.16. If uψ = 0, then uψ̃(ξ1, ξ2) = 0 for all ξ1, ξ2 ∈ H.

Proof. Since uψ = 0, equations (16.21) and (16.19) give

πi uψ̃(ξ1, ξ2) = Fψ̃(P, ξ2)− Fψ̃(P, ξ1) + Sψ̃(P, ξ1, ξ2)(16.22)

= −πi uψ̃(ξ2, ξ1) = −Fψ̃(P, ξ1) + Fψ̃(P, ξ2)− Sψ̃(P, ξ2, ξ1) ,

where

(16.23) Sψ̃(P, ξ, η) =
∑
γ∈Γ

mγ dψ̃(F)|γ ,

withmγ the winding number around γ−1F of the path consisting of −p(P, η), p(P, ξ)
and the positively oriented arc in ∂D from ξ to η.

Let w1 ∈ D. By Lemma 16.15 and (1.9) we can use Theorem 1.1 to write

(16.24) uψ̃(ξ1, ξ2)(w1) = −2π
∫
C

{
uψ̃(ξ1, ξ2), v} ,

where v(w) = qs(w,w1) and C is a curve encircling w1 once in the positive direction.

We will choose the path C consist-
ing of four pieces, two being small arcs
C1 and C2 near ξ1 and ξ2, and two be-
ing arcs D1 and D2 between ξ1 and ξ2.
(See diagram.)

Near ξj it is convenient to use the
upper half-plane model, writing ξj =
kj · 0, with kj ∈ PSO(2) ⊂ G =
PSL2(R).

�ξ1
C1

�
ξ2

C2

D1 D2

We choose the Cj depending on two small positive parameters ε and δ, as

indicated in the following sketch of k−1
j Cj in the upper half-plane:

0
δδ

k−1
j Cj|z| = ε

k−1
j zj�k−1

j z′j�

The points zj and z′j , where the arc Cj meets D1 and D2, correspond to wj =
zj−i
zj+i

and w′
j =

z′
j−i

z′
j+i in the disk model. The absolute value b := |wj | = |w′

j | (near 1) is
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§16. DIFFERENTIABLE PARABOLIC COHOMOLOGY 111

related to ε and δ (near 0) by an explicit formula (namely 1 − b2 = 4ε sin δ
1+2ε sin δ+ε2 ).

The arcs Dj are of the form w = beiθ where θ runs through an interval Ij in R/2πZ.
We must show that each of the four contributions to (16.24) tends to zero as δ → 0
and then ε→ 0.

We begin with Cj . In the upper half-plane model we use for z near ξj the

coordinate ρeiϕ = k−1
j z ∈ H, for which

{u, v} =
1

ρ

(
vuϕ − uvϕ

)
dρ+ ρ

(
uvρ − vuρ

)
dϕ ,

and hence simply {u, v} = ε
(
uvρ − vuρ)

)
dϕ on Cj , where ρ = ε is constant.

We have Fψ̃(P, ξj) = O(1) and ∂ρFψ̃(P, ξj) = O(ε−1) by Lemma 16.12. The

corresponding term for Fψ̃(P, ξj′), with j′ �= j, is smaller, since Fψ̃(ξ1, ξ2) ∈ Gp
s (J)

for an interval J containing ξj ; the derivative is O(ρs−1). Lemma 16.13 and its con-
sequence (16.16) applied to Sψ̃(P, ξ1, ξ2) = −Sψ̃(P, ξ2, ξ1) show that Sψ̃(P, ξ1, ξ2)
is bounded near ξj , and that near ξj the derivatives with respect to r and θ are
estimated by O

(
(1 − r2)−1

)
= O(ε−1). The derivative with respect to ρ can be

expressed in these derivatives with bounded coefficients. Finally, the functions v
and vρ for v = qs( · , w1) ∈ Wp

s are O(εs) and O(εs−1) respectively. All this leads
to the following estimate of the integral over Cj :∫ δ

π−δ

ε
(
O(1)O(ε1−s) + O(εs)O(ε−1)

)
dφ = O(εs) .

This estimate is uniform in δ ∈ (0, π/2).

Now we turn to Dj . In the disk model with coordinate w = reiθ ∈ D we have

{u, v} =
1

r

(
vuθ − uvθ

)
dr + r

(
uvr − vur

)
dθ ,

and hence {u, v} = b
(
uvr − vur) dθ on Dj , where r = b is constant. Since Ij has

length at most 2π = O(1), the contribution of the integral over Dj is bounded by
a multiple of the maximum of |uvr|+ |vur| over the arc Dj .

We use that Fψ̃(P, ξj) ∈ Gp
s (I) and that v represents an element of Wp

s to get

from Fψ̃(P, ξj)(re
iθ) = (1−r2)sa(r, θ) and v(reiθ) = (1−r2)sb(r, θ) the contribution

r(1− r2)2s
(
a(r, θ)br(r, θ)− ar(r, θ)b(r, θ)

)
dθ .

This contributes Oε

(
(1 − b2)2s

)
to the integral. (We note that the implicit con-

stant depends on the interval, hence on ε.) By Lemma 16.13 the contribution of
Sψ̃(P, ξ1, ξ2) or −Sψ̃(P, ξ2, ξ1) is Oε

(
(1− b2)2s+p−2

)
. Since p ≥ 2, the final estimate

of the integral over Dj is Oε

(
(1− b2)2s

)
.

We have arrived at

uψ̃(ξ1, ξ2) = O(εs) + Oε

(
(1− b2)2s

)
,

with the first term uniform in δ. Letting δ ↓ 0, and hence b ↑ 1, we arrive at the
bound O(εs) for all positive ε. Hence uψ̃(ξ1, ξ2) = 0. �

• Step e). If uψ = 0, then uψ̃(ξ1, ξ2) = uψ̃(ξ2, ξ1) = 0 by step d). Lemma 16.16

and (16.22) give for P ∈ XT
0 and ξ1, ξ2 ∈ H:

(16.25) Fψ̃(P, ξ2)− Fψ̃(P, ξ1) = Sψ̃(P, ξ2, ξ1) = −Sψ̃(P, ξ1, ξ2) .
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112 5. MAASS FORMS AND DIFFERENTIABLE COHOMOLOGY

The cocycle c on (XT
0 ∪ H) × (XT

0 ∪ H) introduced after Lemma 16.14 satisfies
c(ξ1, ξ2) = ρs

(
Fψ̃(P, ξ2) − Fψ̃(P, ξ1)

)
. We have Fψ̃(P, ξj)(w) = Aj(w) (1 − |w|2)s

where Aj is p times differentiable on a neighborhood Ωj of S1 \ {ξj} in P1
C. Es-

timate (16.16) shows that Sψ̃(P, ξ1, ξ2) is o
(
1 − |w|2

)p−1
near closed intervals in

(ξ2, ξ1)c and, with reversed roles of ξ1 and ξ2, also near (ξ1, ξ2)c. So A1 − A2 is in
Cp−1

(
Ω1 ∩ Ω2

)
. We glue A1 and A2 to obtain f ∈ Gp−1

s that represents c(P, ξj)

on S1 \ {ξj} for j = 1, 2. The sheaf Wp−1
s has no sections with support consisting

of one point, so Fψ̃(P, ξ1) and Fψ̃(P, ξ2) are in Wp−1
s and and their difference is

represented by an element of N p−1
s . The proof can now be completed in the same

way as in the last part of the proof of Proposition 16.9.

17. Smooth parabolic cohomology

We combine the results on Vp
s -valued cohomology of the previous section to

show that H1
par(Γ;V∞

s ) ∼= Maass0s(Γ). In this way, we complete the proofs of Theo-
rems A and B, and conclude that the main theorem of [21] extends to three times
differentiable period functions.

Theorem 17.1. Let 0 < Re s < 1. Let Γ be a cofinite discrete subgroup of
G = PSL2(R).

If Γ is cocompact then EΓ
s is isomorphic to H1(Γ;V∞

s ) and to H1(Γ;Vp
s ) for all

p ∈ N, p ≥ 2.
If Γ has cusps, then Maass0s(Γ) is isomorphic to H1

par(Γ;V∞
s ) and to H1

par(Γ;Vp
s )

for all p ∈ N, p ≥ 3.

Proof. With the restriction map ρs we obtain from Propositions 16.10 and
16.11, in the case that Γ has cusps and p ≥ 3

Maass0s(Γ)
∼= �� H1

par(Γ;Vω0,∞
s ) ��

∼=
��

H1
par(Γ;V∞

s ) �� H1
par(Γ;Vp

s ) ,

and if Γ is cocompact and p ≥ 2

EΓ
s

∼= �� H1(Γ;Vω
s ) ��

∼=
��

H1(Γ;V∞
s ) �� H1(Γ;Vp

s ) ,

where in both cases the composition is an isomorphism. So it suffices to show that
the natural maps H1

par(Γ;V∞
s ) → H1

par(Γ;Vp
s ) and H1(Γ;V∞

s ) → H1(Γ;Vp
s ) are

injective for all p.
We show this in the standard model of cohomology. Suppose that for ψ ∈

Z1(Γ;V∞
s ) there exists ap ∈ Vp

s such that ψγ = ap | (γ − 1) for all γ ∈ Γ. Since
all arrows in the diagrams in Propositions 16.10 and 16.11 are isomorphisms, there
are also aq ∈ Vq

s such that ψγ = aq | (γ − 1) for all γ. We take a hyperbolic γ ∈ Γ,
and conclude from Proposition 4.1 that all aq coincide, and hence give elements of
V∞
s . �

As a consequence of (14.8c) we obtain for the modular group the following
extension of the main theorem in [21] on period functions and Maass cusp forms:

Theorem 17.2. Let 0 < Re s < 1, and p ∈ N, p ≥ 3.

Maass0s(Γ1)
∼= FEs(R+)

0
ω = FEs(R+)

0
∞ = FEs(R+)

0
p .
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§17. SMOOTH PARABOLIC COHOMOLOGY 113

So thrice differentiable functions on (0,∞) that satisfy

f(x) = f(x+ 1) + (x+ 1)−2s f
( x

x+ 1

)s
and the estimates ψ(x) = O(1) as x ↓ 0 and ψ(x) = O(x−2s) as x →∞ automati-
cally are real analytic, and occur as the period function of a Maass cusp form.

17.1. Recapitulation of the proof of Theorem A. The definition in (5.5a)
induces an injective (Proposition 5.1) map r : EΓ

s → H1(Γ;Vω
s ). The isomorphism

Vω
s
∼=Wω

s (in §3.2) and Theorem 7.2 give a left inverse αω
s ◦ P†s of r, with

α : [ψ] �→ b(s) u[ψ] ,

with b(s) as in (3.4d). The injectivity of αω
s ◦ P†s follows from Proposition 7.3,

Proposition 7.4 and the exact sequence (7.6).
Proposition 16.2 extends αω

s to αp
s : H1(Γ;Wp

s )→ EΓ
s , in a compatible way for

different values of p. Theorem 17.1 shows that these extensions are injective, and
also determine an isomorphism H1(Γ;V∞

s )→ EΓ
s .

17.2. Recapitulation of the proof of Theorem B. The injective map r
in Proposition 5.1 from Maass0s(Γ) to H1(Γ;Vω

s ) has its image in the subspace
H1

par(Γ;Vω
s ,Vω∗,∞

s ), according to Proposition 10.3. Proposition 12.7 shows that

r : Maass0s(Γ) −→ H1
par(Γ;Vω

s ,Vω∗,∞
s )

is an isomorphism. Propositions 13.4 and the fact that Vω∗,∞
s is locally defined

(Definition 13.3) imply that

H1
par(Γ;Vω

s ,Vω∗,∞
s ) ∼= H1

par(Γ;Vω∗,∞
s ) .

Finally, Theorem 17.1 gives

Maass0s(Γ)
∼= H1

par(Γ;V∞
s ) .
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CHAPTER 6

Distribution cohomology and Petersson product

In the previous chapters we have considered the relation between automorphic
forms and cohomology groups with values in principal series spaces consisting of
functions, possibly with singularities. In this chapter we turn to cohomology with
values in the spaces V−∞

s and V−ω
s of distribution and hyperfunction vectors in the

principal series. For groups with cusps, H1(Γ;V−∞
s ) is isomorphic to Maass0s(Γ),

by a result of Bunke and Olbrich, [7].1 The natural map from H1(Γ;V−∞
s ) to

H1(Γ;V−ω
s ) turns out to be the zero map if Γ has cusps. This contrasts with the

cocompact case, where Bunke and Olbrich, [6], have shown that H1(Γ;V−∞
s ) =

H1(Γ;V−ω
s ).

The Petersson scalar product can be transformed into a bilinear form on the
space Maass0s(Γ). The isomorphisms with cohomology groups transform this bilin-
ear form into a duality between H1

par(Γ;V∞
s ) and H1(Γ;V−∞

1−s ). We will show in
Section 19 that this bilinear form coincides, up to a multiple, with that given by
the cup product, which we have to adapt to parabolic cohomology if the discrete
group has cusps.

18. Distribution cohomology

The obvious way to obtain a map from Maass forms to distribution cohomology
uses the natural homomorphism associated to V∞

s → V−∞
s . In §18.1 we see that

this leads to the zero map. In §18.2 we discuss another map from Maass forms to
distribution cohomology, which gives an isomorphism on cusps forms.

18.1. Vanishing image in distribution and hyperfunction cohomol-
ogy. The injective map r in Proposition 5.1 can be followed by the natural map to
H1(Γ;V∞

s ). The composition is injective for cusp forms:

Maass0s(Γ)
r
∼=

��
� �

��

H1
par(Γ;Vω

s ,Vω∗,∞
s ) ∼=

��
� �

��

H1
par(Γ;V∞

s )
� �

��
EΓ
s
� � r �� H1(Γ;Vω

s ) �� H1(Γ;V∞
s )

The inclusions V∞
s ⊂ V−∞

s ⊂ V−ω
s give further natural homomorphisms

(18.1) H1(Γ;V∞
s ) −→ H1(Γ;V−∞

s ) −→ H1(Γ;V−ω
s ) .

Proposition 18.1. The image of r EΓ
s under the natural maps in (18.1) van-

ishes in H1(Γ;V−ω
s ), and the image of rMaasss(Γ) vanishes in H1(Γ;V−∞

s ).

1See the footnote in §7 on p. 31.
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116 6. DISTRIBUTION COHOMOLOGY AND PETERSSON PRODUCT

Proof. Let u ∈ EΓ
s . In §5.2 we have seen that the class of ru is represented

by a Vω
s -valued cocycle ψγ = g|2s (γ − 1), where g ∈ H is a representative of the

hyperfunction Ps
−1u. Hence the image of ru inH1(Γ;V−ω

s ) is zero. If u ∈ Maasss(Γ)
then u has polynomial growth. Theorem 2.3 implies that Ps

−1u ∈ V−∞
s . Hence ru

is zero in H1(Γ;V−∞
s ). �

18.2. From cusp forms to distribution cohomology. In §2.4 of [4] we
have considered two spaces of second order eigenfunctions:

(18.2)
E ′
s = Ker

(
(Δ− λs)

2 : C∞(H) −→ C∞(H)
)
,

(E−∞
s )′ =

{
f ∈ E ′

s : f has polynomial growth
}
.

The space of eigenfunctions of polynomial growth is equal to E−∞
s = PsV−∞

s (The-
orem 2.3).

Propositions 2.6 and 2.7 in [4] show that the spaces of second order eigenfunc-
tions fit into the following exact sequences:

(18.3)

0 → Es → E ′
s

Δ−λs→ Es → 0

∪ ∪ ∪
0 → E−∞

s → (E ′
s)

−∞ Δ−λs→ E−∞
s → 0

The second of these exact sequences leads to a non-zero map from cusp forms
to distribution cohomology. Indeed, define b : Maasss(Γ) → H1(Γ;V−∞

s ) as the
composition

Maasss(Γ) = (E−∞
s )Γ = H0(Γ; E−∞

s ) −→ H1(Γ; E−∞
s ) ∼= H1(Γ;V−∞

s ) ,

of the connecting homomorphism in the long exact sequence associated to the sec-
ond row in (18.3) and the isomorphism provided by the Poisson transformation.

If Γ has cusps and u ∈ Maasss0(Γ) is the value us0 of a holomorphic fam-
ily s �→ us ∈ Maasss(Γ), then a Γ-invariant lift ũs0 ∈ (E ′

s)
−∞ can be obtained

by differentiation with respect to s, as in the proofs of Propositions 2.6 and 2.7
in [4]. So b vanishes on Eisenstein series. Bunke and Olbrich have shown in [7],
Proposition 8.1:

Proposition 18.2. Let 0 < Re s < 1. The map b : Maass0s(Γ)→ H1(Γ;V−∞
s )

is an isomorphism.

Their proof uses an exact sequence

0 −→ E−∞
s −→ C−∞ Δ−λs−→ C−∞ −→ 0 ,

where C−∞ consists of the f ∈ C∞(H) such that ∂n
z ∂

m
z̄ f has polynomial growth for

all n,m ∈ N.
In the cocompact case, this result amounts to EΓ

s
∼= H1(Γ;V−∞

s ). In [6], Bunke
and Olbrich have shown that

(18.4) EΓ
s
∼= H1(Γ;V−∞

s ) = H1(Γ;V−ω
s ) .

If Γ has cusps and s �= 1
2 , then all elements u ∈ Es occur in holomorphic families,

as we have seen in part ii) of Theorem 15.1. Differentiation with respect to s gives
for u ∈ EΓ

s a Γ-invariant lift in (E ′
s)

Γ. Hence the image of bu inH1(Γ;V−ω
s ) vanishes:
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Proposition 18.3. Let 0 < Re s < 1, s �= 1
2 . For groups with cusps the

composition

Maasss(Γ)
b−→ H1(Γ;V−∞

s ) −→ H1(Γ;V−ω
s )

is the zero map.

19. Duality

In this final section we give a cohomological description of the Petersson scalar
product.

19.1. Petersson scalar product. The Petersson scalar product on the space
of cusp forms Maass0s(Γ) is given by

(u, v) =

∫
Γ\H

u v̄ dμ .

It can be computed by integration over any measurable fundamental domain, for
instance over F as chosen in §6.2 in the cocompact case and §11.1 if Γ has cusps.

Instead of ( · , · ) we use the bilinear Petersson scalar product

(19.1) 〈u, v〉 =

∫
Γ\H

u v dμ
(
u, v ∈ Maass0s(Γ)

)
.

Since Maass0s(Γ) �= {0} only if s ∈
(
1
2 + iR

)
∪ (0, 1), the space Maass0s(Γ) is invariant

under conjugation. Hence (u, v) = 〈u, v̄〉 for all u, v ∈ Maass0s(Γ) for all s with
0 < Re s < 1.

19.2. Cup product. The cup product in cohomology can be described with
any augmentation preserving chain map F. → F.⊗F. of projective resolutions, called
a diagonal approximation, which gives an isomorphism in cohomology. In the stan-
dard model of group cohomology one may use the diagonal approximation described
in [1], Chap. V, §1. This leads to a linear map

∪ : Hi(Γ;V )⊗Hj(Γ;W ) −→ Hi+j(Γ;V ⊗W ) .

For i = j = 1 this is induced on 1-cocycles by (b ∪ c)(x) = −(b ⊗ c)(Δ2x)), where
Δ. denotes a diagonal approximation. For i = j = 1, the cup product ends up
in H2(Γ;V ⊗W ), which is isomorphic to (V ⊗W )Γ in the cocompact case. For
groups with cusps, the second cohomology groups vanish, and we need parabolic
cohomology to have a reasonable cup product. Applied in the cocompact case, we
get back the usual cup product.

For our purpose it suffices to consider a resolution F T
. based on a tesselation

T of type Mix, as discussed in §6.2 and §11.1. The tensor product G. = F T
. ⊗ F T

.
with Gi =

⊕i
a=0 F

T
a ⊗ F T

i−a gives a resolution of Q. The boundary maps are

determined by ∂i+jx ⊗ y = (∂ix) ⊗ y + (−1)ix ⊗ (∂jy) for x ∈ F T
i and y ∈ F T

j .

The augmentation is given by ε (P ⊗Q) = 1 for P,Q ∈ XT
0 . With minimal sets

Bi ⊂ XT
i of generators of F T

i , the sets

i⋃
a=0

{
x⊗ γ−1y : x ∈ Ba, y ∈ Bi−a, γ ∈ Γy\Γ

}
generate Gi over Q[Γ], and form a basis if i ≥ 1. For κ ∈ C:

Gπκ
0 = Q · κ⊗ κ .
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118 6. DISTRIBUTION COHOMOLOGY AND PETERSSON PRODUCT

These are the sole generators with an infinite isotropy subgroup. The conclusion is
that G. is a parabolic resolution as defined in §11.3.
• Explicit basis elements. For the sequel we need an explicit description of
generating elements of F T

i for the tesselation T of type Mix. The Dirichlet funda-
mental domain F underlying the tesselation has the following boundary:

(19.2) ∂F =
∑
e∈E

e | (1− γ−1
e ) +

{
0 (cocompact) ,∑

κ∈Fcu eκ | (1− π−1
κ ) (not cocompact) .

If Γ is cocompact, then Fcu is empty.
We introduce some notation, illustrated in Figure 19.1 for the modular group.

Define vertices Pe and Qe of FY (or of F if Γ is cocompact) such that e = e(Pe, Qe),
and also vertices Pκ of FY such that eκ = e(Pκ, κ) if Γ has cusps. Note that Qe

may occur as Pe′ for some e′ ∈ E.

		 	

	 	

a

e∞

P∞ = Qa

Pa = SPb
b

T−1P∞ =

T−1Qa

Pb =

T−1Pa
Qb =
SQb

P0

f∞




�

�

���

�

Figure 19.1. The points Pe and Qe in the standard fundamental
domain of the modular group.

So F T
0 is generated by P0, the Pe andQe with e ∈ E, the Pκ and κ, with κ ∈ Fcu.

We use the Q[Γ]-basis of F T
1 consisting of the e ∈ E, the edges e(P0, R) where R

runs through the set of vertices {Pe, Qe} ∪ {Pκ, π
−1
κ Pκ}, the eκ = e(Pκ, κ) and the

fκ = e(Pκ, π
−1
κ Pκ) with κ ∈ Fcu. A Q[Γ]-basis of F T

2 consists of the polygons in
XT

2 contained in F. For the tesselation T of type Mix these polygons are triangles.
Their sum represents the fundamental class. Denoting by Δ(A,B,C) the triangle
in XT

2 with boundary eA,B + eB,C + eC,A we have:

(F) =
∑
e∈E

(
Δ(P0, Pe, Qe) + Δ(P0, γ

−1
e Qe, γ

−1
e Pe)

)
(19.3)

+
∑

κ∈Fcu

(
Δ(P0, Pκ, π

−1
κ Pκ) + Vκ

)
,

where Vκ = Δ(π−1
κ Pκ, Pκ, κ).

Licensed to Max-Planck Institut fur Mathematik.  Prepared on Fri Mar 27 11:48:34 EDT 2015for download from IP 192.68.254.102.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



§19. DUALITY 119

• Explicit diagonal approximation. The cup product in parabolic cohomology
is induced by any augmentation preserving chain map δ. : F

T
. → F T

. ⊗ F T
. . With

the notations just introduced we indicate a special choice that will work well in
connection with the Petersson scalar product.

In dimension 0 there is only one sensible choice:

(19.4) δ0(P ) = (P )⊗ (P ) (P ∈ XT
0 ) .

This is continued Q[Γ]-linearly, and gives an augmentation preserving map.
In dimension 1 we prescribe δ1 on the basis discussed above. For each of the

basis elements eP,Q we put

(19.5) δ1eP,Q = P ⊗ eP,Q + eP,Q ⊗Q .

After Q[Γ]-linear extension, δ1 turns out to be compatible with the boundary maps:
∂0δ1 = δ1∂1.

For the basis elements of F T
2 we make the choice in Table 19.1, with e ∈ E,

κ ∈ Fcu. It is some work to check that this is compatible with ∂2 and ∂1. This

δ2Δ(P0, Pe, Qe) = P0 ⊗Δ(P0, Pe, Qe) + e(P0, Pe)⊗ e

+Δ(P0, Pe, Qe)⊗Qe

δ2Δ(P0, γ
−1
e Qe, γ

−1
e Pe) = P0 ⊗Δ(P0, γ

−1
e Qe, γ

−1
e Pe)

− e(P0, γ
−1
e Pe)⊗ e(γ−1

e Pe, γ
−1
e Qe)

+ Δ(P0, γ
−1
e Qe, γ

−1
e Pe)⊗ γ−1

e Qe

δ2Δ(P0, Pκ, π
−1
κ Pκ) = P0 ⊗Δ(P0, Pκ, π

−1
κ Pκ) + e(P0, Pκ)⊗ fκ

+Δ(P0, Pκ, π
−1
κ Pκ)⊗ π−1

κ Pκ

δ2Vκ = Pκ ⊗ Vκ − fκ ⊗ π−1
κ eκ + Vκ ⊗ κ

Table 19.1. Basis elements of F T
2 , with e running through E and

κ through Fcu.

choice has the special property

(19.6) δ2F
T
2 ⊂

(
F T
0 ⊗ F T

2

)
⊕
(
F T ,Y
1 ⊗ F T

1

)
⊕
(
F T
2 ⊗ F T

1

)
,

where the first factor of the (1, 1)-term is F T ,Y
1 .

• Cup product. Let V and W be Q[Γ]-modules. The cup product of cocycles
b ∈ Z1(F T ,Y

. ;V ) and c ∈ Z1(F T
. ;W ) is computed as (b∪ c)(x) = −(b⊗ c)(δ2x) for

x ∈ XT
2 . The tensor b⊗ c sees only the component of x in F T ,Y

1 ⊗ F T
1 . The result

represents an element of H2
par(Γ;V ⊗W ), which does not depend on the choice of

b and c in their cohomology classes. Thus, we have obtained

(19.7) ∪ : H1(Γ;V )⊗H1
par(Γ;W ) −→ H2

par(Γ;V ⊗W ) .
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120 6. DISTRIBUTION COHOMOLOGY AND PETERSSON PRODUCT

By evaluation on the fundamental class we obtain an element of H2
par(Γ;V ⊗

W ) ∼= (V ⊗W )Γ represented by:

(19.8)

(b ∪ c)(F) =
∑
e∈E

(
−b(P0, Pe)⊗ c(e) +

(
b(γeP0, Pe)⊗ c(e)

)
| γe
)

+
∑

κ∈Fcu

(
−b(P0, Pκ)⊗ c(fκ) + b(fκ)⊗ c(π−1

κ eκ)

)
.

• Duality. In the special case that there is a Γ-invariant bilinear form 〈 · , · 〉 :
V ×W → C we have a linear map (V ⊗W )Γ → C. Thus we have a linear form
H1(Γ, V )⊗H1

par(Γ;W )→ C given by

[b]⊗ [c] �→
〈
(b ∪ c)([Γ\H])

〉
,

where we denote by 〈 · 〉 the linear form on V ⊗W corresponding to the bilinear
form 〈 · , · 〉. We will use this with V = V−∞

1−s and W = V∞
s . See §2.1.

19.3. Cohomological interpretation of the Petersson scalar product.

Theorem 19.1. For 0 < Re s < 1 and all cofinite Γ ⊂ G, the bilinear
Petersson scalar product is given by the cup product of bu ∈ H1(Γ;V−∞

1−s ) and

rv ∈ H1
par(Γ;V∞

s ) evaluated on the fundamental class:

〈u, v〉 =
−b(s)
2i

〈(bu ∪ rv)([Γ\H])〉

for u, v ∈ Maass0s(Γ). See (3.4d) for the gamma factor b(s).

Remarks. 1. For discrete groups with cusps we understand the cup product in
the parabolic sense of the previous subsection.

2. The choice of the spectral parameter s such that λs = s(1− s) is the eigenvalue
of Δ on u and v is not visible in the notations b and r. Here it is important to
use opposite choices for the spectral parameter for bu and rv. For the Maass cusp
forms the choice does not matter: Maass01−s(Γ) = Maass0s(Γ).

Proof. The proof takes the remainder of this subsection, and consists of three
separate steps, which use several results from the previous chapters. For cocompact
Γ we use Fcu = ∅ throughout the proof.

• Use of a distribution-valued cocycle. First we use the description of cohomol-
ogy with cocycles on the group Γ.

The map b in §18.2 gives rise to

b⊗ id : Maass01−s(Γ)⊗Maass0s(Γ) −→ H1(Γ; E−∞
1−s )⊗Maass0s(Γ) ,

where we have used the identification V−∞
1−s

∼= E−∞
1−s by the Poisson transformation.

We define a linear map d : Z1(Γ; E1−s)⊗Maass0s(Γ)→ C by

(19.9) d(b⊗ v) = 2i
∑
e∈E′

∫
e

[bγ−1
e

, v] ,

where E′ = E∪{eκ : κ ∈ Fcu} and γe ∈ Γ for e ∈ E′ such that ∂F =
∑

e∈E′ e | (1−
γe). For e = eκ, κ ∈ Fcu, and hence γe = πκ, the convergence of the integral is
assured by the exponential decay of v and its derivatives, and the polynomial growth
of bγ−1 .
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Lemma 19.2. Definition (19.9) induces a linear map

d : H1(Γ; E−∞
1−s )⊗Maass0s(Γ) −→ C

such that the following diagram commutes:

Maass01−s(Γ)⊗Maass0s(Γ)

b⊗ id

��

〈 · , · 〉

�����
����

����
����

����

H1(Γ; E−∞
1−s )⊗Maass0s(Γ)

d �� C

Proof. Let b ∈ Z1(Γ; E−∞
1−s ) and v ∈ Maass0s(Γ). To see that d(b⊗ v) does not

depend on the choice of b in its cohomology class, we look at b = da ∈ B1(Γ; E−∞
1−s ).

d(b⊗ v) = 2i
∑
e∈E′

∫
e

[
a | γ−1

e − a, v
]
= 2i

∑
e∈E′

(∫
γ−1
e e

[a, v]−
∫
e

[a, v]

)
= 2i

∫
∂F

[a, v] = 0 .

Let u, v ∈ Maass0s(Γ) = Maass01−s(Γ). The exactness of the sequences in (18.3)
implies that bu can be represented by a cocycle γ �→ bγ = ũ | (γ − 1) with ũ ∈
(E ′

1−s)
−∞ such that (Δ− λs)ũ = u. Thus,

d(bu⊗ v) = d(b⊗ v) = 2i
∑
e∈E′

[
ũ | (γ−1

e − 1), v
]
= 2i

∫
∂F

[
ũ, v
]
.

Since (Δ − λs)ũ may be non-zero, the form [ũ, v] is not closed. For cocompact Γ
we obtain with (1.10c):

d
(
bu⊗ v

)
= 2i

∫
∂F

[
ũ, v
]
=

∫
F

uv dμ = 〈u, v〉 .

If Γ has cusps, we replace F by the truncated fundamental domain Fa = F ∩ Ha

with a large. (See §11.1 for Ha.) The exponential decay of v and the polynomial
growth of ũ and their derivatives shows that for all large values of a

d
(
bu⊗ v

)
= 2i

∫
∂Fa

[
ũ, v
]
+ o(1) =

∫
Fa

uv dμ+ o(1) = 〈u, v〉+ o(1) .

Taking the limit as a→∞ we obtain the desired equality. �

• Reformulation with a 2-cocycle. We switch to the description of coho-
mology with a tesselation T of type Mix, and define for b ∈ Z1(F T

. ; E−∞
1−s ) and

v ∈ Maass0s(Γ):

(19.10) ωP,Q =
[
b(P,Q), v

]
(P,Q ∈ XT

0 ) .

The map (P,Q) �→ ωP,Q defines a 1-cocycle on XT
0 ×XT

0 with values in the smooth
closed differential forms, satisfying ωγ−1P,γ−1Q = ωP,Q ◦ γ for γ ∈ Γ. For P,Q,R ∈
XT

0 we put

(19.11) C(P,Q,R) = −2i
∫ R

Q

ωP,Q ,

where the path of integration from Q to P follows edges in XT
1 .
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Lemma 19.3. Equation (19.11) defines a cocycle C ∈ Z2(F T
. ;C) and induces

a linear map

(19.12) a : H1(Γ; E−∞
1−s )⊗Maass0s(Γ) −→ H2

par(Γ;C)

such that the following diagram commutes:

H1(Γ; E−∞
1−s )⊗Maass0s(Γ)

d ��

a
�����

����
����

����
���

C

H2
par(Γ;C)

eval. on (F)

��

Proof. If P or Q is a cusp, the decay properties used in the proof of Lemma 19.2
ensure convergence here as well. The Γ-invariant C-valued 2-cochain Δ(P,Q,R) �→
C(P,Q,R) in C2(F T

. ;C), also called C, is automatically in Z2(F T
. ;C), since F T

3 =
{0}. To see that it does not depend on the choice of b in its cohomology class,
we suppose that b = da, with a Γ-equivariant a. Then ωP,Q = ηP − ηQ, with
ηP = [a(P ), v] also Γ-equivariant, and

(19.13)
i

2
C(P,Q,R) =

∫ R

P

ηP −
∫ Q

P

ηP −
∫ R

Q

ηQ = df(P,Q,R) ,

where f(P,Q) = −
∫ Q
P

ηP . So a : [b] ⊗ v �→ [C] can be extended to give a linear

map H1(Γ; E1−s)⊗Maass0s(Γ)→ H2(Γ;C).
We evaluate C on the representative of the fundamental class in (19.3):

(19.14)

C(F) =
∑
e∈E

(
C(P0, Pe, Qe)− C(γeP0, Pe, Qe)

)
+
∑

κ∈Fcu

(
C(P0, Pκ, π

−1
κ Pκ)− C(Pκ, π

−1
κ Pκ, κ)

)
,

where we have used the Γ-invariance of C.
Each term in the sum over e ∈ E contributes:

−2i
∫ Qe

Pe

(
ωP0,Pe

− ωγeP0,Pe

)
= 2i

∫
e

ωγeP0,P0
= 2i

∫
e

[
b(γeP0, P0), v

]
.

This is equal to the corresponding term in the definition of d(b ⊗ v) in (19.9),
provided we use P0 as the base point in the description of b in the standard model
of group cohomology.

The contribution of the terms for κ ∈ Fcu are also in accordance with (19.9),
as one sees from the following slightly more complicated computation:

1

2i

(
C(P0, Pκ, π

−1
κ Pκ) − C(Pκ, π

−1
κ Pκ, κ)

)
= −

∫ π−1
κ Pκ

Pκ

ωP0,Pκ
+

∫ κ

π−1
κ Pκ

ωPκ,π
−1
κ Pκ

= −
∫ κ

Pκ

ωP0,Pκ
+

∫ κ

π−1
κ Pκ

ωP0,Pκ
+

∫ κ

π−1
κ Pκ

(
ωP0,π

−1
κ Pκ

− ωP0,Pκ

)
= −

∫ κ

Pκ

ωP0,Pκ
+

∫ κ

π−1
κ Pκ

ωP0,π
−1
κ Pκ
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=

∫
eκ

(
−ωP0,Pκ

+ ωπκP0,Pκ

)
=

∫
eκ

[
bπ−1

κ
, v
]
. �

• Reformulation with cup product. The map

Maass0s(Γ)
q−→ H1

par(Γ;Wω
s ,Wω∗,∞

s ) −→ H1
par(Γ;Wω∗,∞

s )

induces a map

H1(Γ; E−∞
1−s ) ⊗ Maass0s(Γ)

id⊗q−→ H1(Γ; E−∞
1−s )⊗H1

par(Γ;Wω∗,∞
s )

∪−→ H2
par(Γ; E−∞

1−s ⊗Wω∗,∞
s ) .

Since E−∞
1−s

∼= V−∞
1−s and Wω∗,∞

s
∼= Vω∗,∞

s ⊂ V∞
s , there is a G-invariant C-bilinear

duality 〈 · , · 〉 : E−∞
1−s × Wω∗,∞

s → C. On the subspace E−∞
1−s × Wω

s we have the
description in (3.9):

〈f, g〉 = b(s) β(f, g) =
b(s)

πi

∫
C

[f, g] ,

with a suitable contour C. This leads to the following result:

Lemma 19.4. Fix f ∈ E−∞
1−s , and define g ∈ Wω∗,∞

s by g(z) =
∫
p
[v, qs( · , z)],

where v ∈ Maass0s(Γ) and p ∈ XT
1 . Then

(19.15) 〈f, g〉 = b(s)

∫
p

[v, f ] .

Proof. First we suppose that p ∈ XT ,Y
1 . Then Sing (g) ⊂ Supp (p) which is

compact in H, and g ∈ Wω
s . Let C be a positively oriented closed curve encircling

p once. With (3.9) and Theorem 1.1:

〈f, g〉 = b(s)

∫
C

[f, g] =
b(s)

πi

∫
z∈C

[
f(z),

∫
z′∈p

[
v(z′), qs(z, z

′)
]
z′

]
=

b(s)

πi

∫
z′∈p

[
v(z′),

∫
z∈C

[
f(z), qs(z, z

′)
]
z

]
z′

= b(s)

∫
p

[v, f ] .

The legitimicity of the interchange of the order of square brackets must (and can!)

be checked. Thus, we have obtained (19.15) if p ∈ XT ,Y
1 .

We still have to consider the case that p = e(P, κ) with P ∈ XT
0 ∩H and κ ∈ C.

We approximate p by pQ = e(P,Q) with Q ∈ H on p. Put, for Q ∈ p (including
Q = κ):

gQ(z) =

∫
e(P,Q)

[v, qs( · , z)] ,

rQ(ζ) =

∫
e(P,Q)

[v,R(ζ; · )s] .

With (3.6c) and Proposition 12.1 we have P†srQ = b(s)−1 gQ for all Q ∈ p. If Q �= κ
then rQ ∈ Vω

s . Proposition 9.7 implies that limQ→κ rQ = rκ in the topology of V∞
s .

Let β ∈ V−∞
1−s be such that f = P1−sβ.

〈f, g〉 = 〈β, b(s) rκ〉 = b(s) lim
Q→κ

〈β, rQ〉 = lim
Q→κ

〈f, gQ〉

= b(s) lim
Q→κ

∫
e(P,Q)

[v, f ] = b(s)

∫
e(P,κ)

[v, f ] .
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The last equality follows from the fact that
∫
e(P,κ)

[f, v] converges absolutely. �

Lemma 19.5. The following diagram commutes:

H1(Γ; E−∞
1−s )⊗Maass0s(Γ)

−b(s)
2i id⊗q

��

a

��������
�������

�������
�������

�������
��

H1(Γ; E−∞
1−s )⊗H1

par(Γ;Wω∗,∞
s ) ∪

�� H2
par(Γ; E−∞

1−s ⊗Wω∗,∞
s )

duality
�� H2

par(Γ;C)

Proof. We start with b ∈ Z1(F T
. ; E−∞

1−s ) representing a class in H1(Γ; E−∞
1−s ),

and with v ∈ Maass0s(Γ). The image qv ∈ H1
par(Γ;Wω∗,∞

s ) is represented by q ∈
Z1(F T

. ;Wω∗,∞
s ) given by

q(y)(z) =

∫
y

[v, qs( · , z)] (y ∈ XT
1 ) .

Let C1 ∈ Z2(F T
. ;C) be the cocycle obtained from the cup product

C1(V ) =
〈
(b ∪ qv)(V )

〉
(V ∈ XT

1 ) .

Our aim is to relate C1 to C ◦ δ2, where C is the cocycle in (19.11) representing
a([b]⊗ v), and where δ. : F

T
. → F T

. ⊗ F T
. is as in §19.2.

It suffices to consider C1 and C ◦δ2 on the generators in (19.3), given in the first
column of Table 19.2. For each of these generators we have (b∪q)(Δ) = −b(x)⊗q(y)

basis elt. Δ x ∈ XT ,T
1 y ∈ XT

1

Δ(P0, Pe, Qe) e(P0, Pe) e e ∈ E

Δ(P0, γ
−1
e Qe, γ

−1
e Pe) −e(P0, γ

−1
e Pe) γ−1

e e(Pe, Qe) e ∈ E

Δ(P0, Pκ, π
−1
κ Pκ) e(P0, Pκ) fκ κ ∈ Fcu

Vκ −fκ π−1
κ eκ κ ∈ Fcu

Table 19.2. Basis elements of F T
2

with x and y as indicated in Table 19.2. Lemma 19.4 shows that

C1(Δ) = −〈b(x), q(y)〉 = −b(s)
∫
y

[v, b(x)] .

With (19.10) and (19.11) we have C(Δ) = −2i
∫
y
[b(x), v]. In view of (1.10b):

i

2
C(Δ)− b(s)−1C1(Δ) =

∫
y

d
(
v b(x)

)
.

A computation on the basis elements of F T
2 in Table 19.2 shows that∫

y

d
(
v b(x)

)
= (dF )(Δ)
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where F ∈Map(F T
1 ;C)Γ satisfies

F
(
e(P0, P )

)
= −v(P ) b

(
e(P0, P )

)
(P ) for all vertices P of FY ,

F (e) = −v(Qe) b(e)(Qe) for e ∈ E ,

F (fκ) = −v(Pκ) b(fκ)(π
−1
κ Pκ) for κ ∈ Fcu .

Hence [C] = −2i b(s)−1 [C1]. (For Δ = Vκ with κ ∈ Fcu we use that v(κ) = 0, and
that F (eκ) is unimportant since F (π)κ−1eκ) = F (eκ)|πκ = F (eκ).) �

• Combination. We combine the commuting diagrams in the Lemmas 19.2,
19.3 and 19.5:

Maass01−s(Γ)⊗Maass0s(Γ)

b⊗ id

��

〈 · , · 〉

��������
�������

�������
�������

�������
����

H1(Γ; E−∞
1−s )⊗Maass0s

−b(s)
2i id⊗q

��

d ��

a

��������
�������

�������
�������

�������
C

H1(Γ; E−∞
1−s )⊗H1

par(Γ;Wω∗,∞
s ) ∪

�� H2
par(Γ; E−∞

1−s ⊗Wω∗,∞
s )

duality
�� H2

par(Γ;C)

eval. on (F)

��

Since V−∞
1−s

∼= E−∞
1−s and V∞

s ⊃ Vω∗,∞
s

∼= Wω∗,∞
s , this completes the proof of Theo-

rem 19.1. �
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69
modular group viii, x, 62, 84
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point-pair invariant 3
Poisson transformation 9
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polynomial growth 10, 62
principal series 4

projective line 1
projective model of principal series 5

quantum Maass form 90
quick decay 62

reconstruction 42
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repelling fixed point 15
restriction of boundary germs 12
right module xii

second order eigenfunction 116
semi-analytic vector in principal series x,

8
seminorms on Vp
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sheaf cohomology 70
singularity 8, 11, 14
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series 46
smooth vectors in principal series 4
spectral parameter viii, 4
standard fundamental domain 65
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support of chain 26

tesselation 26, 65
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transverse Poisson transformation 12
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(b, a)c 18
( · , · ) 117
〈g〉 39
〈 · 〉 120
〈 · , · 〉 7, 13, 117[ ∗
∗

∗
∗
]

xii

[ · , · ], { · , · } 3
[Γ\H] 28
‖ϕ‖j 6
∂i 22, 25, 117

F̊, e̊ (interior) 32, 71
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