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PREFACE 

This is the second and final volume of proceedings for the Conference 

on Modular Forms held in Bonn in July 1976. The first volume appeared as Lecture 

Notes n ° 601, under the title "Modular Functions of One Variable V" (cf. Lecture 

Notes n ° 320, 349, 350 and 476). 

Jean- Pierre Serre Don Zagier 
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Values of Diriohlet Series at Integers in the Critical Strip 

by 

Michael J. Razar 

~i. Introduction 

This note is primarily a summary of some recent work on the val- 

ues at integer points in the critical strip of Dirichlet series assoc- 

iated to newforms on F (N). The first such results seem to be due 
O 

to Shimura [9], who derived them for the Dirichlet series Z m(n)n -s 
n:l 

associated to the cusp form A(z) of weight 12 for the full modu- 

lar group. Somewhat later, Manin [4] extended these results to cusp 

forms of arbitrary integral weight for the full modular group. In 

the interim, Birch had introduced the ~'modular symbol" for cusp forms 

of weight two on F (N) and these were studied and used by Manin 
o 

[2] and [3], Mazur and Swinnerton-Dyer [5] and others. Recently, 

V. Miller in his thesis [6] extended the definition of the modular 

symbol to Fo(N). Just this year (1976), Shimura [ii], using totally 

different methods, has extended almost everything to F(N) and has 

obtained rationality results similar to those describe l below. 

The main result of the present note is Theorem 4. The proof 

consists of two main parts. The first is based on Shimura's isomor- 

phism between cusp forms and Eichler cohomology with real coefficients. 

In this respect it is similar to the techniques of Manin [4]. The 

second part is the interpretation of the coefficients of an Eichler 

cocycle as residues at poles of the Mellin transform of a multiple 

integral of the corresponding cusp form. This is based on the Hecke 

correspondence (Preposition i) and on an additive character analog of 

Weil's theorem (Proposition 2). Well has also developed such a pro- 

cedure recently in a paper delivered at the Takagi conference (1976). 

International Summer School on Modular Functions 

Bonn 1976 
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One advantage of proceeding in this way is that the same methods are 

applicable in other settings. For example, they work for Eisenstein 

series. This is discussed briefly in §4. 

Detailed proofs of everything discussed here will appear in [7] 

and [8]. It is convenient in the present note to stick to cusp forms 

of Hauptypus for Fo(N) since the Shimura isomorphism only makes 

sense for eusp forms with respect to a real character. However, in 

[8] a modified version of the Shimura isomorphism is used to prove 

analogous results for arbitrary cusp forms of Nebentypus. 

§2. The Shimura isomorphism 

We begin with a brief discussion of the Eichler cohomology and 

its relationship to the space of cusp forms. Fix a Fuchsian group 

of the first kind G e SL2(IR), an integer k, and a real character 

v of G. Assume G contains translations. If f is a function on 

the upper half plane, define 

(flk,v~)(z) = v(~)(cz + d) -k f\c-~]' ~ = 

Let K be a subfield of ~ such that G c SL2(K ) and denote by 

X(K) = Xk_2,v(K) the space of polynomials of degree at most k-2 

with coefficients i~ K and G-module structure given by (i), but 

with k replaced by 2-k. 

HI(G,X(K)) and ZI(G,X(K)) are respectively the first cohomol- 

ogy and first oocycle groups of G with values in Xk_2,v(K). Let 

HI(G,X(K)) be the subspaoe of HI(G,X(K)) consisting of those co- 

homology classes whose restriction to every (cyclic) parabolic sub- 

group of G is trivial. Let ZI(G,X(K)) consist of those cocyoles 

P: a~-~P~(z) such that if ~ ( G is parabolic, then for some 

= Qll v~ - Q and such that furthermore, if ~ is a Q (X(K), P 2-k, 
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translation, then P = 0. The only coboundaries in ZI(G~X(K)) are a 

the constant multiples of the eoboundaries a~iJa - I. Thus 

dim ~i = dim ~i _ i. 

Let Sk,v(G) be the space of eusp forms and let k be the pos- 

itive number such that { i k~ generates the group of translations in 
\ 0 1 I 

G. Let f 6 Sk,v(G) and suppose that f(z) has the Fourier expan- 

sion 

2~inz 
k 

f(z) : [ane (2) 
n:l 

Denote by f*(z) the (k-l)-fold integral of f(z) given by 

f*(z) : 

2ninz 

~ a n e 
n ; I  

(3) 

Let Pa = f* - f*I2_k,v G . ,  Then Pa E X(¢) for all a ( G and so 

P (ZI(G,X(~)). Define homomorphisms 6o:Sk,v(G)-- .  ZI(G,X(¢)) and 

5:Sk,v(G)--~ HI(G,X(~)) by 

5of = P and 5f = cohomology class of 5of. (4) 

The maps 5 and 5 are injective and the image of 5 has di- 
O 

mension (over ¢) equal to half that of HI(G,X(¢)). To get an iso- 

morphism, Shimura ([9] and [i0]) defines maps Po and p from 

Sk(G) to ZI(G,XaR)) and HI(G,XGR)) respectively, by letting 

po f be the "real part" of the cocycle 6of. ("Real part" here 

applies only to coefficients of polynomials, not to the variable z.) 

Then pf is the cohomology class of po f and the map p is an iso- 

morphism. Furthermore, p commutes with the action of Heeke opera- 
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tots (double cosets) on Sk(G) and HI(G,X(K)) and thus is an iso- 

morphism of Hecke modules. 

0- and suppose that e normalizes G. Define the 

action of E on functions f on the upper half plane by (fls)(z) : 

f(-Z). (Note that c is only ~-linear, not { linear.) If f(z) 

has a Fourier expansion (2)~ then fle = f if and only if the 

Fourier coefficients a n are real and fIs = -f if and only if 

(if) Is = f. The action of s on a cocycle P is given by (PIE) 

= Psa -lit and this action induces an automorphism of order two on 

HI(G,XaR)). Denote the eigenspaces of s corresponding to eigen- 

values ±I by Z~(G,XGR)) and HI(G,XCIR))+ and let Sk(G)~.) be 

the space of cusp forms with real coefficients. Since po(fls) = 

(pof)ls, p restricts to isomorphisms from Sk(G)(R) to H~(G,X(IR)) 

and iSk(G)~R) to HI(G,X(19))._ If f (Sk(G)(19) , then 

P : f* - f*la : P+ + iP- 
<I G 

(5) 

where P = po(f) E Z (G,X k 2 
G - -  ,V 

- ZI(G'Xk 2,v (19)) and Pa : Po (-if) ( _ aR)). 

In the case of F (N) we can take advantage of the fact that P 
O 

is a Hecke-module isomorphism. The action of the Hecke operators 

Tp, Uq, Wq (see [I]) on Fo(N) can be used to break Sk(Fo(N)) 

into spaces of newforms and oldforms and the space of newforms breaks 

up into one-dimensional eigenspaces with distinct families of eigen- 

values for the T . This decomposition is carried over by p into 
P 

HI(G,X(~)). In fact it is carried over by Po into ~I(G,X(R))~ 

since the coboundaries lie in the same eigenspaee for the Heeke alge- 

bra as an Eisenstein series for F (N). Note that ZI(G,XaR)) has 
O 

a basis in ZI(G,X(Q)) and this latter space is preserved by the 

Hecke operators. Finally, by the theory of Atkin-Lehner the newforms 
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are actually cusp forms on G : F *(N), the group generated by 
O 

Fo(N) and  t h e  i n v o l u t i o n s  Wq, q lN .  Thus we g e t  t h e  f o l l o w i n g  

theorem. 

Theorem i: Let f(z) be a newform (of Hauptypus) of weight k on 

F (N). Suppose f(z) = Z a e 2~inz 
o n:l n 

, a I = i and f*(z) = (2~i) 
-k+l 

a n -k+l 2~inz 
e Let K be the (totally real) field generated 

n:l n 
+ 

over ~ by the a . There exist real numbers w and w (depend- 
n 

ing only on f) such that for all a ( F *(N), there are polynomials 
O 

A:(z) and A~(z) of degree at most k-2 with coefficients in K 

such that 

+A + (f* - f*I2 ka)(z) : w (z) + iw A (z). (6) 

3. Coefficients of the Eiehler cocycles 

In order to apply Theorem i, we must relate the coefficients of 

+ 
the polynomials A-(z) to f. The principal tool used is the Hecke 

correspondence between Fourier series and Dirichlet series via Mellin 

transform as described in the following Proposition. 

Proposition i. Let k > 0, f(z) = ~ an e2~inz/k, g(z) = 

n=O 
b e 2~inz/x, ~(s) : Z a n -s, ~(s) = ~ b n -s, ~(s) = (2~/k) -s 

n:0 n n:l n n:l n 

r(s)9(s), Y(s) : (2~/x)-SF(s)9(s). Assume that for some real num- 

ber c, the complex numbers an, b n satisfy an, b n : 0(nC). Let 

y, k ( C. The following are equivalent. 

A. 9(s) : yZ(k-s) and there is a rational function R(s) such 

that }(s) - R(s) is entire and bounded in vertical strips (EBV). 

B  Res () where = ) z-Sds ' the sum is 



6 

over the poles of R(s). 

Next, observe that differentiation of f(z) essentially corre- 

sponds to changing ~(s) to ~(s-l). In general this leads to a 

more complicated functional equation. However, let k be an integer, 

k ~ 2 and let Q*(s) : ~(s+k-l) and ~*(s) : ~(s+k-l). In this 

case, if @*(s) = (2~/k)-sF(s)~*(s) and y*(s) = (2~/k)-sF(s)@*(s), 

and if @ and Y satisfy condition A of Proposition i, then 

@*(s) : (-l)k-Iyy*(2-k-s). (7) 

In addition, there is a rational function R*(s) such that @*(s) - 

R*(s) is EBV. A residue computation yields the following Theorem. 

Theorem 2: Let f(z) = [ a e 2~inz/k g(z) = ~ b e 2~inz/k 
n:O n ' n:O n ' 

k - 1  

f*(z) : (k-l)' + a n e , 
• n:O n 

k-i (k i) ( boZ -k+l 2~inz/X 
g*(z) -- (k-l): + ~ b n e 

n=O n 
and 

~(s) = Z a n -s 
n:l n 

If k is a positive integer and Y a complex num- 

ber such that f(z) y -k ~ ±~ i ~ = g - , then 
\ z! 

f*(z) = ¥zk-2g, _ + ~ ~(k _-j) 

j=0 

Let G be a subgroup of SL2(I~) , v a character of G and k 

a positive integer. Let ~ = (a b) ~ G with c # 0. If f is any 

function on the upper half plane, define f by 

Z d) 
f (z) : f l~l c " 
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The following Proposition is immediate. 

(~ d b) The following are equivalent: Proposition 2: Let @ ( G, ~ = . 

A. f Ik,v ~ : f. 

1 B. f~(z) : (sgnc)-kv(~)z -k f _l(-~ ). 

Thus, modulo some regularity conditions, f is an automorphic 

form on G if and only if the f satisfy condition B of Proposi- 

tion 2 for all ~ ( G -- or even for a set of generators of G. By 

Proposition l, this condition can be restated in terms of functional 

equations for the related Dirichlet series. We do not do so explicit- 

ly but simply combine Proposition 2 and Theorem 2: 

Theorem 3" Let f be an automorphic form of weight k and multi- 

plier v on a discrete subgroup G of SL2(IR). Suppose G contains 

a (minimal) translation i ' X > 0, and that z) has the 

Fourier expansion f(z) : [ a e 2~inz/k 
n:0 n 

For each ~ ( G, ~ : (a b) 
C 

2~ind 
" cX -s 

c ¢ 0, let $a(s) : Z e a n 
n=l n 

Let f*(z) be the (k-l)- 

k-i 
a z 
o fold integral of f(z), f*(z) = ~ . T  + 

2~inz/k 
a e Then 
n 

-(k-l) 

j = O  " 

-(k-l) . 
-k+l 

Zn 
n=l 

-- (z+ d)j. (S) 
C 

Now let f(z) be a newform of weight k for Fo(N), 

f(z) = ~ a e 2~inz , a I = i. Define mixed Dirichlet-Fourier series 
n:l n 

~(s,u) : Z a e 2~inu n -s +( -s - 
n:l n ; ~ s,u) = Z a (cos 2~nu) n ;~ (s,u) : 

n:l n 
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a (sin 2~nu) n -s 
n=l n 

Let K be the field generated over Q by the 

a 
n 

+ 
and let w and w- be the real numbers defined by Theorem i. 

Theorem 4: Let c be a positive integer such that ((N,c), N/(N,c)) 

= i. If d is any integer such that (d,c) = i, then ~(s, -d/c) 

is an entire function and if j is any integer, 0 i j ~k-2, then 

-+ 

~J ~-+(k-l-j, -d/c) ~Kw¥ 
if j is even 

if j is odd. 

Proof: This is a direct consequence of Theorems i and 8 provided 

there is a matrix ~ (Fo*(N) such that e (s) = @(s, -d/c). If N 

divides c, there is such a @ in Fo(N). The others occur in 

Fo*(N) because of the presence of the Wq for qlN. 

Remark: Using the fact that a = 0 if q is a prime such that 
q 

q2!N, it is possible to remove the condition on c from the hypoth- 

eses of Theorem 4. However, in this case K may have to be replaced 

by the maximum real subfield of K(e2Wi/c). 

§4. Eisenstein Series 

Theorem 3 is valid for Eisenstein series as well as cusp forms. 

In [8], the period polynomials for the Eisenstein series of arbitrary 

level N are evaluated. We describe here one consequence of a spec- 

ial case of this computation. Let Gk(Z) be the Eisenstein series 

for the full modular group F: 

Gk(Z) = ~ (cz + d) -k 
e,d = - 

(k> 2, k even). 

It was mentioned above (just before Theorem i) that the cobound- 

a r i e s  i n  ~1 a r e  e i g e n v e c t o r s  f o r  t h e  Hecke  o p e r a t o r s  Tp. Le t  

~I(G,X(K)) be the space of cocycles P such that P = 0 if a is 
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translation. Then 5o(G k) E ZI(F,Xk_2(¢)) and the eocycle a 

is an eigenvector for the Hecke operators T with the same 
P 

Raz-9 

8o(G k) 

eigen- 

values as the coboundaries. The eigenspace corresponding to these 

eigenvalues is just two dimensional. Thus the theory discussed in §2 

predicts that the (k-l)-fold integral G~(z) of Gk(Z) should sat- 

isfy the condition 

*I2.kO)(z) = Q (z) + ~(i - iI2_k~), c ( F, (G (z) - G k 

where the Q (z) are polynomials with rational coefficients and 

is a constant. 

In [8] it is shown that the coefficients of Qc(z) are general- 

ized Dedekind sums involving Bernoulli polynomials. But perhaps 

more surprisingly, the constant ~ turns out to be 

(2~i)-(k-l)~(k-l), where ~(s) is the Riemann zeta function! 
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O. INTRODUCTION. 

This is a survey of the results that have been obtained by studying 

the analytic properties of the Euler products of automorph~c representa- 

tions on the group GL2(A) over the rationals. We shall use as far as 

possible the notation of Gelbart's monograph [2]. Also implicit in our 

presentation is the frequent use of the well known correspondence be- 

tween automorphic representations and automorphic forms that are eigen- 

functions of all the Hecke operators. Full details of our proofs will 

appear elsewhere. 

1. THE RANKIN TRICK. 

The significance of Rankin's convolution idea in the study of Euler 

products is now well understood. For convenience we examine some of 

its implications in the simplest possible situation. Let ~ and 7' be 

auotmorphic representations which are unramified everywhere, that is, 

each local component is a class one representation~ assume furthermore 

that the components at the infinite prime belong to the same holomorphie 

discrete series parametrized by the weight k. To these representations 

one associates in a natural way an Euler product L(s,~ × ~)~ the mero- 

morphic continuation of this Euler product is provided by the following 

integral formula whose form clearly embodies the essence of Rankin's 

trick : 

,l+s f L~--~--,~ × ~') = f(z)g(z) E(z~s)(Im z)kd~, 

F 

where f and g are respectively primitive cusp forms associated to 
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and w', F is a fundamental domain in the Poincar6 upper half plane for 

the modular group F, d~ is an SL2-invariant measure and E(z,s) is the 

Eisenstein series for F. The functional equation for L(s,~ x ~'), and 

hence its meromorphic continuation, can be read off immediately from 

the well known ([4], p. 46) functional equation 

where 

A(s) 
E(z,s) = A s ~  E(z,-s), 

l+S I-S 
A(s) 2 

(Im z) 2 + A(s-~ (Im z) 

is the constant term of the Fourier expansion of E(z,s); in fact A(s) 

is non other than Riemann's zeta function completed with its local fac- 

tor at infinity. The resulting functional equation for L(s,~ x ~') is 

.1+s ~ , A(s) L(~- ~ x ~,) L{--F-,,, x~ ) = ~ , . 

When the components of ~ and ~' at the infinite prime are arbitrary and 

ramification is allowed at the finite primes the above functional equa- 

A(s)  
tion has to be replaced by a vector equation and the scalar A(s+l--~ has 

to be replaced by the constant term matrix of suitably constructed 

Eisenstein series. In many cases one actually gets scalar functional 

equations. In the general situation the construction of the necessary 

Eisenstein series depends on the type of local components at infinity, 

the conductors and the central characters of the two representations 

and ~'; when this data coincides and the central character of ~' is the 

complex conjugate of that of ~ the resulting Eisenstein series has a 

simple pole at s - 1. The residue of L(s,~ x ~') is a constant multiple 

of the Petersson inner product (f,g). This fact applied to an automor- 

phie representation ~ and its contragredient leads to the interesting 

result, already known to Rankin in special cases, that the Fourier 
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coefficients of the associated cusp form satisfy on the average the 

Petersson-Ramanujan conjecture. When ~T' is not the contragredient of 

~, the Euler product L(s~ x 7') is free of poles or zeros to the right 

of the line Re(s) = 1. The appropriate generalization ([3], p. 127) of 

the ideas of Rankin leads to the following interesting result, which we 

view as the main consequence of RankinTs trick : let ~ be an automor- 

phic representation of GL2(A) and L(s,~) its associated Euler product; 

then L(s,~) does not vanish outside the critical strip which is compri- 

sed between 0 < Re(s) ~ 1. 

Langlands [5] has constructed some very general Euler products and 

it is a problem of considerable interest, we believe, to isolate the 

precise location of the critical strips. 

2. ZERO-FREE REGIONS. 

Rankin had already realized that the further investigation of the lo- 

cation of the zeros of the Euler product L(s,~) of an automorphic re- 

presentation within the critical strip depends on the analytic proper- 

t~es of L(s~z x ~,)~ he was in fact able~ at least in the case of the 

automorphic representation ~ = ~(A) connected with Ramanujan's modular 

form of weight twelve, to extend to these Euler products the method 

that Hadamard and de la Vall~e Poussin had successfully used in proving 

the non-vanishing of A(s) on the line Re(s) = 1. A simple generaliza- 

tion of Rankin's method leads to the following result : if ~ is an auto- 

morphic representation of GL2(A) and L(s,~) is the associated Euler pro- 

duct, then L(s,~) ~ 0 for Re(s) = 1. In fact we can strengthen this 

result to show that L(s,~) does not vanish on regions inside the criti- 

cal strip which are similar to those that occur in the theory of Dirich- 

let L-functions. Here the estimates for these zero-free regions de- 

pend in an essential way on three parameters : 
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a) the type of the local component corresponding to the infinite prime, 

b) the conductor of the representation and 

c) the size of the representation measured in terms of the Petersson in- 

ner product II~II. 

The parameters a) and b) arise in a natural way from the consideration 

of F-factors and the presence of the conductor in the functional equa- 

tion. The third parameter seems to be unnatural and enters into the 

eomputations when use is made of the fact that the Petersson-Ramanujan 

conjecture is true on the average. This seems to be necessary if one 

wants to get results of some generality, which apply for example to real 

analytic cusp forms. If one assumes that the local component for the 

infinite prime of the representation ~ belongs to the holomorphic dis- 

crete series, then one can use the theorem of Deligne on the size of the 

eigenvalues of the Hecke operators and obtain zero-free regions which 

can be effectively described in terms of the conductor and the local 

component at the infinite prime. 

The corresponding problems for the Euler products L(s,~ × 7') are mo- 

re difficult and somewhat incomplete at the present moment. Neverthe- 

less it can be proved, again using another idea of Rankin~ that except 

for the possible simple pole at s : 1 the Euler product L(s:~ x ~') is 

free of zeros or poles in a logarithmic region of exactly the same type 

as for the Euler product L(s,~). 

The best results that have been obtained thus far for the zero-free 

regions for the Euler products L(s,~) is the following density estimate : 

(p  = B + i y  : L ( p , ~ )  = O , B ~ ,  Iy l  ~ T }  ~ T c ( 1 - ~ ) ,  

where the implied constants depend on the parameters a), b) and c) al- 

ready mentioned above . The proof of this result for any automorphic 
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representation w uses the techniques of the large sieve as developed 

by Gallagher [1]. We believe that further improvement of these tech- 

niques, say along the lines of the recent work of Montgomery and Sel- 

berg, will lead to improved estimates for the constants. 

3. EXPLICIT FORMULAS. 

The study of the analytic properties of the Euler products L(s,~) 

owes its interest to the possibility of relating the behaviour of the 

characters of the local factors of the automorphic representation 

= ~ ~ to the distribution of the zeros of L(s,~) as Riemann had al- 
P 

ready realized in the case of A(s). A problem in analytic number theo- 

ry which promises to touch on much fertile ground and whose implica- 

tions have not yet been fully noted is the working out of Riemann's 

program [7] for the Euler products of automorphic representations of 

linear reductive groups. One of our earlier results, which is in fact 

relatively easy to prove, is the following yon Mangoldt formula which 

for simplicity we only state for the Ramanujan automorphic representa- 

tion ~ : ~(A) : 

n p = -- - log(X-l) 
p X p P 2 " ~ t ) ( 0 , ~ )  

where T(p) : ~ +~ is Ramanujan's arithmetical function, L(s,~) is 
P P 

the well known Euler product for T(p) normalized so that. its critical 

strip lies in -~-- < Re(s) < -- and the sum Z runs over all zeros of 
P 

L(s,~) in the critical strip. 

For arbitrary automorphic representations ~ of GL2(A) we have ob- 

tained similar explieit formulas which have a more complex appearance 

but which in principle, as is to be expected, relate the characters of 

the local factors ~p of ~ and the zeros of the Euler product L(s,~). 
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This last remark suggests the useful role that explicit formulas will 

play in the arithmetic study of automorphic representations. In this 

connection it should be remarked that the above explicit formula is de- 

rived from truncated explicit formulas where only a finite number of 

zeros appear explicitely. 

4. ZETA DISTRIBUTIONS. 

In analytic number theory the explicit formulas that are most fre- 

quently used are the truncated ones. There is a generalized explicit 

formula, considered by Weil [14], which seems to have received little 

attention up to now but that in the long run may prove to be more use- 

ful. To avoid introducing much notation we describe this formula in 

a simple but already significant situation. Let ~ = ~ ~ be an auto- 
P 

morphic representation of GL2(A). For our convenience we make the res- 

trictive assumption that it is unramified, i.e. each ~ is a class one 
P 

representation. Let {gp} be the semisimple conjugacy class in GL2(C) 

associated to the zonal spherical function of ~p. Let r : sym 3 be the 

third symmetric power of the standard 2-dimensional representation of 

GL2(C) and let X be its complex character. For the infinite prime 

p : ~ we consider the characteristic polynomial 

det(1-r(g~)T) : (1-11T)(1-12T)(1-13T)(1-14T). 

The Euler product 

S-h. 
4 - ~. s-l. 

L(s,~,r) = i~=l ~ 2 F(~).H det(1-p-Sr(gp)) 
P 

was introduced by Langlands [ 5 ] ;  its functional equation 

L(s,~,r) = s(~,r)L(1-s,~,~), 

where r is the contragredient of r and Is(~,r) l = 1, has been 

-1 
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established, using Langlands' theory of general Eisenstein series, by 

S. Shahidi [11]. 

Let [ be the class of complex valued functions h on the real line 

satisfying the following three conditions : 

i) there is a real number a > @ such that the function 

h(x)exp(~ +a)Ix I is integrable on the real line; 

ii) h is continuous and continuously differentiable everywhere ex- 

cept at a finite number of points {e} where h and its deriva- 

tive h' have only a discontinuity of the first kind such that 

h(~) = l(h(~+)+h(~-)) ; 

1 iii) there is a real number b > 0 such that h(x)exp(~+b)Ix I and 

h'(x)exp(l+b)Ixl decay to zero as Ixl ~ ~. 

Define the Hellin transform of a function h in i by 

h(s) : h(t)e dt. 

For each finite prime p and h in i we define a local distribution by 

n 

2 W(~p,r)h = - [ p 
n:l 

x(g~)h(log pn)log p; 

for the infinite prime we put 

]~ l_e-(m+l)2x 

W(~ , r ) h  = m~lim {-  l - e  - 2 x  
0 

_x 4 ~ .x 
2 l e ( ~ e )h(x)dx + 2h(O)log m} ; 

i:l 

adding up the local terms leads to a global distmibution 

W(~,r) = ~ W(~p,r) 

P 

where the sum is taken over all primes. The symmetry arising from the 

functional equation of L(s,w,r) is also reflected in the explicit for- 

mula; to exhibit its presence we now introduce the concept of a Weyl 
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transform which applied to the distribution W(~,r) defined above gives 

a new distribution W{o(~,r) according to the rule 

W~(z,r)h(t) = W(~,r)h(-t), 

for any function h in L, where r is the contragredient of r. 

We now have the explicit formula : for any function h in L, 

h(p) : (W(~,r) + W~(~,r)).h, 

P 

where the sum [ runs over the zeros (and poles) of L(s,~,r). The most 

P 
commendable atribute of this formula is the remarkable resemblance, 

which Jndeed ~s not accidental, of the right hand side with the constant 

term of an Eisenstein series associated with a rank one parabolic sub- 

group of a reductive linear group. One can almost visualize the right 

hand side as an average of distributions parametrized by the elements 

of a Weyl group, which in our case contains only 2 elements. An elemen- 

tary argument, already used by Weil [14], shows that the Euler product 

1 
L(s,~,r) is an entire function and that its zeros have real part ~ if 

and only if the distribution W + W ~ is positive. Because of this last 

remark it is to be expected that the symmetric nature of the distribution 

W + W ~ is closely related to the Hermitian property of positive distribu- 

tions ([8], p. 131). The next step in this direction will be to develop 

similar explicit formulas for Euler products in more than one complex 

variable. 

Another significant problem that must be solved here is to determine 

the correct structure of the contribution to the distribution W + W ~ 

when ~ admits ramification. At present we are only able to obtain a 

term which exhibits no obvious Weyl symmetry. We have now undertaken a 

study of the Herbrand distribution attached to automorphic representa- 

tions of GL2(A) similar to those that appear in "[14]. 
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5. ZEROS ON THE REAL LINE. 

The principle of the argument applied to the Euler product L(s,~) 

of an automorphic representation ~ GL2(A) together with simple estima- 

tes for the F-factors shows that the multiplicity of a real zero of 

L(s,~), if it has any at all, is bounded from above by an absolute con- 

stant times log(100 12f(~)), where ~ is the eigenvalue of the casimir 

operator that parametrizes the local factor ~ of ~ and f(~) is the con- 

ductor of ~. In the particular case when ~ belongs to the holomorphic 

discrete series Serre obtains, using the finer arguments of Stark and 

Odlyzko, that the multiplicity m(p) of a real zero p of L(s,~) is boun- 

3 log(k2f(~)) where k is the "weight" of ~. Fur- ded by m(p) ~ 2.4 + ~ 

ther improvements in this direction would complement the Birch and 

Swinnerton-Dyer conjecture about the relation between the rank of the 

Mordell-Weil group of an elliptic curve and the multiplicity of the 

real zero of the Hasse-Weil zeta function at the real point on the cri- 

tical line. 

The principle of the argument applied to the Hasse-Weil zeta func- 

tions of algebraic varieties defined over number, fields ([10], p. 3) 

also leads to conjectural logarithmic estimates for the ranks of Picard 

groups of these varieties ([13], p. 104). 

When the Hasse-Weil zeta function of an elliptic curve E defined 

over the rationals is the Euler product of an automorphic representa- 

tion of GL2(A) , then its Hasse-Weil zeta function L(s,E,k n) over the 

cyclotomic extension k n containing the n-th roots of 1 can be written 

out explicitly . If R is a fixed rectangle in the critical strip one 

can apply the methods of Siegel ([12], p. 47) to study the asymptotic 

distribution of the zeros of L(s,E,k n) inside R as n ~ ~. It is of 

some interest to investigate more closely the nature of these asymptotic 
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results as the rectangle R decreases in area. 

Mor-~O 

6. INFINITE PRIME NUMBER THEOREMS. 

Let A be the automorphie representation connected with the Ramanujan 
l__!l 
2 

modular form. Let T(p) = 2p cos 0p, 0 < 8p < ~ be Ramanujan's arithme- 

tical function. As a natural generalization of the prime number theorem 

v 
for arithmetic progressions, Cebotarev's density theorem and Hecke's theo- 

rem on the uniform distribution of the arguments of grossencharacters 

one is led to consider the problem of the distribution of the complex 

parameters Sp that index the spherical functions associated with almost 

all the local components of an automorphic representation ~. An example 

of this type of question is the problem of the distribution of the an- 

gles e . It is known ([9],1-25) in this situation that if all the Euler 
P 

products L(s,A,r), as r runs through all the symmetric powers of the 

standard two dimensional representation of SU(2), do not vanish on the 

line Re(s) =1, then the angles e are uniformly distributed in [0,~] 
P 

with respect ot the measure ~ sin2¢d¢ The arguments that lead to this 

type of prime number theorem involve the use of an infinite number of 

Euler products and it is not clear how to get error terms comparable to 

those that are possible in the classical prime number theorems without 

making heavy assumptions on the distribution of the zeros of all the 

Euler products L(s,A,r). The problem of improving the error terms in 

distribution results like the Sato-Tate conjecture leads one to con- 

sider the following formal identity. Let S be a subset of the space of 

conjugacy classes in SU(2). Let XS be the characteristic function of S, 

or a smooth approximation of it, and consider the Fourier expansion of 

XS according to the characters Xr of the finite dimensional complex re- 

presentations of SU(2) : 

Xs(g) = ~ ar(S)Xr(g)- 
r 
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Now using the notation of our §4 we have for ~ an automorphic represen- 

tation of GL2(A) , h a function of the class L and W(w,r) the associa- 

ted zeta distribution, formally the identity 

ar(S) ~ h(P) : ~ ar(S)(W(~,r) + W~(~,r)).h, 
r P(r) r 

where for a fixed representation r, the second sum ~ runs over all 
o(r) 

the zeros of L(s~r). A rigorous derivation of this formula as well as 

truncated forms of it, at least for special types of functions h, will 

undoubtedly be of some significance to the problems of finding the dis- 

tribution of the eigenvalues of Hecke operators. These problems have 

obvious generalizations to automorphic representations of reductive linear 

groups whose clear formulation will be done elsewhere. 

7. EFFECTIVE COMPUTABILITY. 

w 

The known effective versions of the Cebotarev density theorem can be 

used to establish the following result. If ~ and ~' are two continuous 

representations of GaI(Q/Q) of the same degree and of the same conductor 

f(~) with characters X and X', then there is an effectively computable 

constant c depending on the degree of the representation ~ but not on 

f(~) such that if X(gp) = x'(gp) for all the Frobenius conjugacy classes 

gp associated to primes p ~ f(~)c then ~ and u' are equivalent. Expe- 

rimental evidence seems to suggest that the numerical values obtained 

for the constant c by making effective the known large sieve techniques 

do not give the truth. In fact if ~ and o' are of degree 2 and if 

their corresponding Artin L-functions are actually Euler products of 

automorphic representations ~(~) and ~(~') of GL2(A) whose infinity com- 

ponents belong to the holomorphic discrete series, then a simple dimen- 

sionality argument shows that the constant c can be taken to be smaller 

than 2. A simple geometric implication of the effective ~ebotarev den- 

sity theorem is that one can effectively decide whether two cubic 
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surfaces, defined by equations with integer coefficients, have the same 

Hasse-Weil zeta function. Along these lines one can also make the fol- 

lowing observation : let E and E' be elliptic curves defined by equa- 

tions with integer coefficients and of the same conductor f; if their 

Hasse-Weil zeta functions are actually Euler products of automorphic 

representations and if the reductions modulo p of E and E' have the same 

congruence zeta function for all primes p ~ f2 then E and E' are iso- 

genous. 

At the other extreme of the spectrum Casselman and Miyake have proved 

a strong version of the multiplicity one theorem; namely if ~ and 7' 

are two automorphic representations of GL2(A) and if all, except a fi- 

nite number~ of their local components are equivalent~ then the repre- 

sentations ~ and ~' are themselves equivalent. Both proofs depend on 

the converse theorem of Jacquet-Langlands' version of the Hecke theory 

and are clearly ineffective since one must be able to twist by an in- 

finite number of grossencharacters. 

Over the rationals one can prove an effective version of the Cassel- 

man-Miyake theorem by simple dimensionality arguments. This has been 

done for automorphic representations that correspond to holomorphic cusp 

forms by Winnie Li (thesis) and in the real analytic case by persuing a 

simple idea of Mass. A weakened form of the conclusion is that if 

and ~' are two automorphic representations of GL2(A) with the same con- 

ductor f, then the unitary equivalence of the local components ~p and 

~' for all primes p less than some power of the conductor f, then 
P 

and '~' are equivalent. 

At the present time we are unable to prove an effective version of 

the Casselman-Miyake theorem for automorphic representations of GL2(A) 
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over arbitrary number fields. Nevertheless a combination of the Rankin 

trick~ our explicit formulas for the Euler products of automorphic re- 

presentations of GL2(A) and the large sieve technique yields a proof 

of the following result. If z and ~' are two automorphic representations 

of GL2(A) whose conductors have norms bounded by N, then there is a 

constant c depending on ~ and ~ such that if the local components ~p 

and ~' are equivalent for all primes p ~ N c, then ~ and ~' have the same 
P 

Euler product L(s,~) = L(s,~'). It can be shown that the constant c is 

effectively computable if Satake's analogue of the Petersson-Ramanujan 

conjecture holds for automorphic representations of GL2(A). The reason 

why we are unable to show that ~ is equivalent to ~' is again the neces- 

sity, inherent in the converse theorem to the Hecke theory, of having 

to twist by an infinite number of grossencharacters. Without taking 

into consideration this difficulty, we believe that a problem in the 

theory of automorphic representations, whose solution will be of great 

significance in diophantine analysis, is the establishment of an effec- 

tive strong multiplicity one theorem : one should be able to tell whether 

two automorphic representations are equivalent by comparing only a fi- 

nite number of their local components. 

8. THE MONTGOMERY PHENOMENON. 

Some conjectural investigations of H. Hontgomery ([6], p. 184) con- 

cerning the distribution of the zeros of Riemann's Euler product A(s) 

on the critical line have led him to some interesting speculations. 

In the framework of the theory of automorphic representations these ob- 

servations of Montgomery can be extended, without much technical diffi- 

culty, to say that if ~ is an automorphic representation of GL2(A) with 

associated Euler product L(s,~) and if the corresponding zeros are lo- 

on the line Res = ~, then the pair correlation function of the cated 

zeros of L(s,~ is identical with the pair correlation function of the 
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eigenvalues of a random complex hermitian or unitary matrix of large 

order. It would be of some interest to understand Montgomery's pheno- 

menon fop automorphie representations from the point of view of harmonic 

analysis on GL2(A) and related groups. 

9. THE VALUES OF EULER PRODUCTS AT INTEGER POINTS. 

To end this circle of ideas we mention an elementary, though quite 

pretty, result that falls out immediately from Rankin's trick already 

stated in @1. To simplify our notation we assume that ~ and 7' are two 

automomphic representations which ape both unramified and have the same 

local component at infinity~ say a member of the holomomphie discrete 

series~ assume furthermore that their corresponding cusp forms on the 

Poinear6 upper half plane are f and g. Now~ if ~ and 7' are not equi- 

valent~ then L(s~z × ~') in the notation of §17 is regular at s = 1 and 

in fact its value is given by 

L(1,~ × ~')=-~ [ (Im z)kf(z)g(z)log(Im z) 6 
W 

F 

where A(z) is Ramanujan's modular form. The proof of this result is 

an exepeise in the use of Kronecker's limit formula to write the con- 

stant term in the Laurent expansion about s = i of the Eisenstein se- 

ries E(s,z). Similar results~ which involve more complicated expres- 

sions are also possible for arbitrary automorphie representations. 
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INTRODUCTION 

Se-St-1 

In his Annals paper on modular forms of half integral weight [8], 

Shimura mentions several open questions. One of them is the following : 

is every form of weight 1/2 a linear combination of theta series in one 

variable ? 

We show that the answer is positive. The precise statements are gi- 

ven in §2, Theorems A and B; they give an explicit basis of modular 

forms (and cusp forms) of weight 1/2 and given level. The proof uses 

the fact that, for weight 1/2, the formula defining the Hecke operator 

T(p 2) introduces unbounded powers of p in the denominators of the coef- 

ficients -unless some remarkable cancellations take place (§5). But it 

is a familiar fact that coefficients of modular forms (on congruence 

subgroups) have bounded denominators. Hence the above cancellations do 

hold, and they give us the information we need, when combined with basic 

properties of "newforms" ~ la Atkin-Lehner-Li (§§ 3,4). The details are 

carried out in §§ 6,7. As an Appendix, we have included a letter from 

Deligne sketching an alternative method, using the "group-representation" 

point of view. 

In the above proofs, arithmetic arguments play an essential role. It 

would be interesting to have a more analytic proof; a natural line of 

attack would be to adapt Shimura's Main Theorem ([8]2 §3) to weight 1/2, 

but we have not investigated this. 

We mention a possible application of Theorems A and B : since the 

weights 1/2 and 3/2 occur together in dimension formulae and trace 
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formulae ([9], §5)~ the explicit knowledge of forms of weight 1/2 gives 

a way of computing these dimensions_and traces for weight 3/2. 

§ I .  SOME NOTATION 

1.1. Upper half-plane and modular ~Oups. 

We use standard notations, cf. [3], [7]. The letter H denotes the 

upper half-plane {zIlm(z) > 0}. If z • H, we put q = e 2~iz Let 

GL2(R) + be the subgroup of GL2(R) consisting of matrices A = (~ 5) with 

det(A) > 0; we make GL2(R) + act on H by 

z ~ Az = (az+b)/(cz+d). 

Let N be a positive integer divisible by 4. 

FI(N) the subgroups of SL2(Z) defined by : 

b) • r'o(N) 

We denote by F0(N) and 

c ~ 0 (mod N) 

a ~ d ~ 1 (mod N) and c ~ 0 (mod N). 

The g r o u p  F I ( N )  i s  a n o r m a l  s u b g r o u p  o f  Fo(N) , and  t h e  map [~ ~] ~ d i n -  

d u c e s  an isomorphism of F0(N)/FI(N) onto (Z/NZ) ~ 

1.2. Characters. 

If t • Z, we denote by Xt the primitive character of order ~ 2 corres- 

ponding to the field extension Q(tl/2)/Q. If t is a square, we have 

X t = 1. It t is not a square, and the discriminant of Q(tl/2)/Q is D, 

then Xt is a quadratic character of conductor IDI , and we have 

xt(m) = (~) (Kronecker symbol). 
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In particular, xt(m) : O if and only if (m,D) ~ 1. (Recall that, if 

t = u2~, with u e Z, and d is square-free, we have D = d if d ~ 1 

(mod 4), and D : 4d otherwise.) 

1.3. Theta multiplie r . 

Let 0(z) : ~ (1-q2n)(1+q2n-1) 2 +~ n2 
: ~ q 

n=l _~ 

be the standard theta function. If 

have 

= 1 + 2q + 2q 4 + ... 

A = lac ~) belongs to F0(4), we 

0(Az) = j(A,z)e(z), 

where j(A,z) is the "e-multiplier" of A. Recall (cf. for instance [8]) 

that, if c ~ 0, we have 

j(A,z) = Sd I Xc(d)(cz+d)l/2~ 

where Sd = I 1 if d ~ 1 (mod 4) 

k i if d ~ -1 (mod 4), 

and (cz+d) 1/2 is the "principal" determination of the square root of 

cz + d, i.e. the one whose real part is > @ (more generally, all frac- 

tional powers in this paper have to be understood as principal values). 

If c = 0, we have A = ±1, and j(A,z) is obviously equal to 1. 

1.4. Modular forms of half integral weight. 

Let X : (Z/NZ) ~ ~ C ~ be a character (mod N), and let < be a positive 

odd integer. A function f on H is called a modular form of type 

(K/2,X) o_nn F0(N) if : 

a) f(Az) = x(d) j(A,z)Kf(z) for every A = [~ ~] in F0(N) ~ this 

makes sense since41N ; 

b) f is holomorphic, both on H and at the cusps (see [8]). 
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One then calls K/2 the weight of f, and X its character. The space 

of such functions will be denoted by M0(N,K/2,X) ; it is clear that 

M0(N,K/2,X) consists only of 0 unless X is even, i.e. X(-1) = 1. We put 

MI(N,~/2) : @ M0(N,K/2,X), 
X 

where the sum is taken over all (even) characters of (Z/NZ)~; this space 

is the space of modular forms of weight ~/2 on FI(N). 

A modular form which vanishes at all cusps is called a ~us2 form. 

The subspace of M0(N,K/2,X) (resp. MI(N,K/2)) made up by cusp forms 

will be denoted by SO(N,~/2,X) (resp. SI(N,K/2)). 

EXAMPLE : theta series with characters. 

Let @ be an even primitive character of conductor r = r(4). 

2 
4(n)qn e 4 ( z )  = 

We put 

When 9 : 1, 99 is equal to 0. When 9 # 1, 89 is equal to : 

2 
2 Z 4(n)q n = 2(q +4(2)q 4 + ...) 
n~l 

(n,r):l 

e 4 • M0(4r2,1/2,4), cf. [8], p.457. This implies that, if We have 

t is an integer ~ 1, the series 94, t defined by 

4(n)q tn2 
9?,t(z) = 0?(tz) = 

belongs to M0(4r2t,1/2,Xt4)~ see for instance Lemma 2 below. 

2 
Warning .  One s h o u l d  n o t  c o n f u s e  04 w i t h  t h e  s e r i e s  Z 4 ( n ) 2 q  n o b t a i n e d  

by t wistin~ @ with the character 4, ef. ~7. 

1.5. Petersson scalar product. 

If z e H, we put x : Re(z), y : Im(z). The measure dxdy/y 2 is 
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+ 
invariant by GL2(R) If f,g belong to MI(N,~/2) , the function 

(z) = f(z)g(z)y </2 Ff,g 

is invariant by FI(N). Hence Ff~g(Z)y-2dxdy is invariant by FI(N) and 

defines a measure ~f,g on H/FI(N). One checks immediately that ~f,g is 

a bounded measure in each of the following two eases : 

i) one of the forms f,g is a cusp form~ 

ii) K = 1 (this was first noticed by Deligne). 

In each case, the Petersson scalar product < f,g> of f and g is de- 

fined as the (absolutely convergent) integral : 

<f,g>= 1 I 1[ 
c~ ~f,g - c(N) 

H/FI(N) 

where c(N) is the index of FI(N) in SL2(Z). 

f(z)g(z) yK/2-2dxdy, 

This is a hermitian scalar product. One has < f,f> > 0 if < f~f> is 

defined and f ~ 0. 

§2. STATEMENT OF RESULTS 

2.1. Basis of modular forms of weight 1/2. 

Our main result (Theorem A below) states that every modular form of 

weight 1/2 is a linear combination of theta series with characters. 

More precisely, let X be an even character (mod N); let ~(N,x) be the 

set of pairs (~,t), where t is an integer ~ 1, and ~ is an even primi- 

tive character with conductor r(~)~such that : 

(i) 4r(~)2t divides N, 

(ii) x(n) : ~(n)xt(n) for all n prime to N. 

Condition (~i) is equivalent to saying that ~ is the primitive character 

associated with XXt; hence @ is determined by t and X. Conversely, t 
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and ~ determine X- 

THEOREM A. The theta series 8@, t 

make up a basis of M0(N,1/2,X). 

This will be proved in §6. 

= I @(n)q tn2, with (@,t) e ~(N,x) , 

Call ~(N) the set of pairs (@,t) satisfying condition (i) above~ this 

set is the union of the ~(N~x) , for all even characters X (mod N){ hence 

Theorem A implies : 

COROLLARY 1. The series e~,t, with (@,t) e ~(N), make up a basis of the 

space M1(N,1/2) of modular forms of weigh[ 1/2 on FI(N). 

In particular : 

COROLLARY 2. If f : Z a(n)q n is a modular form of weight 1/2 o__nn FI(N) , 
n:0 

then a(n) = 0 if n is not of the form tm 2, where t is a divisor of N/4, 

and mE Z. 

COROLLARY 3. Let f = ~ a(n)q n be a formal power series with complex 
n=0 

coefficients. The following properties are equivalent : 

1) f is a modular form of weight 1/2 on some FI(N). 

2) f is a linear combination of theta series 

0n ~p~t = 
0 n ~ n O (mod r) 

n E Z 

2 
tn 

q 

3) For each square-free integer t ~ 1~ ~here is a periodic function 

~t on Z such that : 

3.1) a(tn 2) = ~t(n) for every n ~ 1~ 

3.2) each s t is even (i.e. st(n) = st(-n) for all n e Z)~ 

3.3) ~t is 0 for all but finitely many t; 
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1 
3.4) a(0) : 7 [et (°)" 

t 

PROOF. The equivalence of 2) and 3) is elementary, The fact that a the- 

ta series is a modular form is well known (cf. for instance [8], 62); 

hence 2) implies 1). Corollary 2 above shows that 1) implies 3). 

4. Let f = [ a(n)q n be a non-zero modular form of weight COROLLARY 1/2 
n:0 

on some F (N). Then : 
1 

a) la(n)l : 0(1)~ 

b) for every p ~ 0, there is a constant c > 0 such that 
P 

la(n)I p = c x 1/2 + 0(1) for x ~ ~. 
n ~ x P 

(If p = 0 and a(n) = 0, we put la(n)I p = 0.) 

PROOF. This follows from Corollary 3. 

REMARK. If f and g are modular forms of weight 1/2 on FI(N) , their 

product F = f.g is a modular form of weight 1. By Theorem A, F is a 

linear combination of series 

an2+bm 2 
~(n)B(m) q 

n,m 

where ~ and 6 are characters. This shows that F is a linear combination 

of Eisenstein series and cusp forms of dihedral type associated with 

~maginary quadratic fields (cf. [3], §4). Hence, one cannot use pro- 

ducts of forms of weight 1/2 to construct "exotic" modular forms of 

weight 1. 

2.2. Cusp forms of weight 1/2. 

If ~ is a character with conductor r, one may write ~ in a unique 

way as ~ = ~ ~p, where the conductor of ~p is the highest power of p 

plr th 
dividing r; we call @p the p -component of ~ (in the Galois interpre- 

tation of characters, ~p is just the restriction of ~ to the inertia 
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group at p). We say that ~ is totally even if all the @p'S are even, 

i.e. if ~p(-1) : 1 for all plr~ this is equivalent to saying that ~ is 

the _square of a character (which can be chosen of conductor r, if r is 

odd, and of conductor 2r, if r is even). 

Denote by ~e(N,x) the subset of ~(N~x) (see above) made up of the 

(~,t) such that @ is totally even, and put 

~c(N~x) : ~(N~x) - 2e(N,x). 

Define similarly 

~e(N) : U ~e(N,x) , ~e(N) : U ~c(N,x). 
X X 

THEOREM B. The series 0~,t, with (~,t) E ~c(N,x), make u E a basis of the 

space S0(N,1/2,X) of cusp forms of M0(N,1/2,X). The series 8~,t, with 

(@,t) e ~e(N,x)~ make up abasis of the orthogonal complement of S0(N,1/2,X) 

in M0(N,1/2,X) for the Petersson scalar product. 

This theorem will be proved in §7, It implies : 

COROLLARY 1. The series 8~,t, with (~,t) • ~c(N), make up a basis of 

the space $1(N,1/2) of cusp forms of weight 1/2 o_~n FI(N). 

COROLLARY 2. We have $I(N,1/2) ~ 0 if and only if N is divisible by ei- 

ther 64p 2 where p is an odd prime, or 4p2p '2, where p and p' are dis- 

ti___nct odd primes. 

Indeed, Cor. I shows that $1(N~1/2) is non-zero if and only if there 

exists an even character ~ with conductor r(~), which is not totally 

even, and which is such that r(@) 2 divides N/4. Since ~ is even, at 

least two pth-components of ~ are odd; this shows that r(@) is divisi- 

ble by either 4p, where p is an odd prime, or by pp', where p and p' 

are distinct odd primes; hence N is divisible by either 4.(4p) 2 = 64p 2 

or 4(pp') 2 = 4p2p '2. Conversely, if N is divisible by 64p 2 (resp. by 

4p2p'2), one takes for ~ the product of an odd character of conductor 



Se-St-9 
97 

p by an odd character of conductor 4 (resp. p'){ it is clear that 

has the required properties. 

EXAMPLES. The above results allow an easy determination of the spaces 

of modular form of weight 1/2 on F0(N) and FI(N) : all one has to do is 

to make a list of the divisors t of N/4, and, for each such t, deter- 

mine the even characters ~ with conductor r(~) such that r(@) 2 divides 

N/4t. The pairs (~,t) thus obtained make up the set ~(N). We give two 

examples : 

i) N = 4Pl...ph , where the Pi'S are distinct primes. In this case t 

is a product of some of the Pi'S, and r(~) must be equal to 1, hence 

= 1. Applying Cor. 1 to Th. A, we see that the series 

8(tz) ~ q in2 = (where t divides pl...ph ) 

make up a basis of M1(N,1/2). Moreover, we have 9(tz) • M0(N,1/2,Xt) ; 

since the Xt'S are pairwise distinct, each M0(N,1/2,X t) is one-dimen- 

sional, and we have M0(N,1/2,X) : 0 if X is not equal to one of the 

Xt'S (in particular if X is not real). 

ii) Let us determine $1(N,1/2) for N < 900. If this space is ~ 0, 

Cor. 2 to Th. B shows that N is divisible by either 64p 2 or 4p2p '2 

where p,p' are distinct odd primes; the first case is possible only if 

N = 576 = 64.32; the second one is impossible (since it implies 

N ~ 4.3252 = 900, which contradicts the assumption made on N). Hence 

we have N = 576, and it is easy to see that the only element of 9c(N) 

is the pair (@,t) with t = 1 and ~ = X3 (which has conductor 12). The 

corresponding theta series is 

2 2 
8 : [ qn _ [ qn 

X3 nm±l (mod 12) nm±5 (mod 12) 

121 169 = 2(q-q25 -q49 +q + q +...). 
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It follows from a classical result of Euler (cf. for instance [4], 

1 
p. 931 or [8], p. 457) that 7 0X3 is equal to 

n(24z) : q H (1-q24n). 
n=l 

Up to a scalar factor, this series is thus the only cusn form of weight 

1/2 and level N < 900. 

§3. OPERATORS 

3.1. Conventions o n  characters. 

From now on, all characters are assumed to be primitive~ this is ne- 

cessary when dealing with different levels. We say that such a charac- 

ter X is definable (mod m) when its conductor r(X) divides m. The pro- 

duct XX' of two characters X and X' is the primitive character associa- 

ted with n ~ x(n)x'(n) ; hence, we have 

(XX')(n) = x(n)x'(n) 

if n is prime to r(x)r(x') but maybe not otherwise. 

3.2. The group G . 

Following Shimura [8], we introduce the group extension ! of GL2(R) + 

r s] belongs to whose elements consist of pairs {M,~(z)}, where M = (t u 

GL2(R) + and #(z) 2 : e det(M)-i/2(tz+u), with lel = 1. The multiplica- 

tion law in G is given by 

{ M , % ( z ) } { N , @ ( z ) }  = { H N , % ( N z ) @ ( z ) } .  

When dealing with forms of weight </2 it is convenient to define the 

"slash operator" fl<~ : fl~ by : 
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(fI~)(z) : ¢(z)-<f(Hz) where 6 : {H,@} e ~, 

and, for ~i e _G and c i • C : 

fl([ ei~ i )  = [ c±(flei). 

If A • F0(4) , we define A ~ • G by A ~ = {A,j(A,z)}, where j(A,z) is the 

8-multiplier of A, ef. §1. Thus, if f • M0(N,</2, X) and 

i = (ca ~) E F0 (N) , we have fIA ~ : x(d)f. 

It follows from the definition of j that 

(1) A~B ~ = (AB) { if A,B • F@(4). 

Computations in G are greatly aided by making use of (I) whenever poss- 

ible. 

3.3. Hecke operators. 

For a prime p, with p ~N, we define T(p 2) on M0(N,</2,X) as in 

Shimura [8] by : 

p2-1 
T(p2) : pK/2-2[ 

j=0 

- 1  

+ x(p2){ Iop 2 o ,p -1 /~  

where ~p = 1 or i according as p ~ 1 or 3 (mod 4), cf. §1. 

prime p with p I N (for instance p = 2), we define T(p 2) by 

2_ 1 
,pl/2 

j=o 

and, if 4p I N, we define T(p) by 

For a 

T(p) = pK/4-1 Pi I {( 01 plJ ~pl/4}. 

j=0 

LEMMA 1. Let f = Z a(n)q n be an element of M0(N,K/2~X) , and let 
n=0 

f JT(p  2) = ~ b (n )q  n. Then f JT(p  2) be longs  to  M0(N,~/2,X) a l s o ,  and 
n=0 
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we have 

a(np2) i_!f p I N, 
b(n) d 

a(np2) + p(K-3)/2 ( ) + ) (<-i)/2 (~)a(n) 
X P X_4(P 

+ pK-2X(p2)a(n/p2) if p ~ N, 

where (~) is the Legendre symbol. 

M0(N,K/2,XX p) and i s  equal  to  ~ 
n=0 

commute. 

If 4p I N, then fiT(p) belongs to 

a(np)qn. Any two such operators 

PROOF. The statements about T(p 2) are proved in Shimura, loc. cit. 

Those about T(p), when 4p J N, are proved by a simple computation. 

3.4. Other operators. 

3),m-1/4} which acts by We need the shift V(m) = m-K/4 {(~ 1 

[flV(m)](z) = f(mz). 

We need also the symmetry W(N) : {[~ %1),N1/4(-iz)1/2}, which acts 

[flW(N)](z) : N-~/4(-iz)-K/2f(-1/Nz), 

so that [flW(N)]IW(N) = f for all f. 

The conjugation operator H is defined by : 

(flH)(z) : f(-~) = a~n)q n if f : [ a(n)q n. 
n:0 n:O 

by 

LEMMA 2. The operators V(m), W(N) and H take M0(N,K/2,X) t~o 

M0(Nm,K/2,XX m) , M0(N,K/2,XXN) and M0(N,K/2,X) respectively. 

if f belongs to M0(N,K/2,X) , we have : 

[fjV(m)][T(p 2) : [fJT(p2)]IV(m) when p ~m, 

[ f [H] IT(p  2) : [ f I T ( p 2 ) ] l H ,  

[ f lW(N)]JT(p 2) : X(p2) [ f lT(p2) ]JW(N)  when p ~N. 

Further, 
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PROOF. Again, the proof involves simple computations in ~ and is left 

to the reader. Care should be exercised in the commutativity results 

since the definition of T(p 2) depends on the character appearing in the 

space containing the function to which T(p 2) is applied. 

The following operators will be used in 54 only. To define the 

first one, suppose the prime P0 divides N/4, and write F0(N/P0) as a 

disjoint union of cosets modulo F@(N) : 

F 0 ( N / P 0 )  = ~ F 0 ( N ) A  j ,  w i t h  A. = , a n d  ~ = ( F 0 ( N / p 0 )  : F 0 ( N ) ) .  
j = 2  ] c d j  

We define the trace operator S'(X) = S'(x,N,p 0) on M0(N,K/2,X) by 

S' X) = x(aj A ~ : [ ~(dj)A~ 
j=l ) j j:l ]" 

It is easily seen that this operator does not depend on the choice of 

the AD.'s. Moreover, if X is definable (mod N/P0), S'(X) takes 

M0(N,K/2, X) to MO(N/Po,K/2,X) and commutes with T(p 2) for p ~N; if f 

belongs to Mo(N/Po,K/2,X) , we have 

flS'(×) = ~f. 

For our purposes, it is more important to find an operator which 

goes from level N to level N/P0 and which undoes the action of the 

shift operator V(P0). To do this, we define S(X) = S(x,N,p 0) on 

M0(N,K/2, X) by : 

1 K/4 S' 
S(X) : ~ P0 W(N) (XxN)W(N/P0). 

LEMMA 3. Let p@ b__e a prime such tha!t 4P0[N , and XXp0 is definable 

(mod N/P0). Then : 

a) The operator S(x~N,p 0) maps M0(N,~/2,X) into Mo(N/Po,K/2,XXpo). 
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If m is prime to P0' and f belongs to M0(N,</2,X), then 

flS(x,N,p 0) = flS(x,Nm,P0). 

S(X) commutes with all T(p2), for p ~N. 

__If g • Mo(N/Ro,~/2~XXp 0), then gIV(P0) • M0(N,KI2~x) and 

[gIV(Po)]IS(x,N,Po) : g. 

Let p be a prime such that 4p[N~ p ~ p0 ~ and XXp is definable 

(mod N/p). If g • Mo(N/p,~/2,X×p) , we have 

[g]V(p)] lS(x,N,p O) : [glS(XXp,N/P,pO)]lV(p). 

PROOF. Assertion a) follows from Lemma 2 and from the fact that 

X×N : X--Xpo×N/Po 
is definable (mod N/P0). 

If <~ ~] belongs to F0(Nm/P0) , with (m~p 0) = 1, then 

W(Nm)[~ ~]~W(Nm/p 0) {m~l} W(N)[e~m b~] ~ : W(N/Po), 

and b) follows, since fI{m,1} = f. 

Assertion c) follows from the commutativity of the T(p2), p ~ N, with 

W(N),S'(~X N) and W(N/P0). 

As for d), we have 

{(~0 ~),p81/4}W(N ) : {P0,1}W(N/po), 

hence 

-~/4 
[glV(P0)llW(N) : P0 glW(NIp0)" 

1 _ 
by sent to g by W(N/P0), whie This is invariant [ S'(XXN) , and is p0 K/4 

proves d). 

As for e), we have 4P0PlN , and XXp@Xp is definable (mod N/pp0). Fur- 

ther : 
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 )'P-lj4}w(N  : 

W(N/Po) = W(N/pp@){ (~ ~] ,p-1/4} ,  

and XX N = X-XpXN/p. The formula 

[glV(p)]Is(×,N,p0) : [glS(×Xp,N/p,p0)]IV(p) 

follows from this, after a simple computation. 

Let p be any prime. We shall need the operator 

K(p) = 1 - T(p,Np)V(p), 

where T(p,Np) is the Hecke operator T(p) relative to the level Np (see 

above). 

LEMMA 4. If f = [ a(n)q n belongs to M0(N~K/2,X), then flK(p) belongs 
n:0 

t__oo M0(Np2,K/2,X) and is equal to ~ a(n)q n. Further, if p' ~ Np, 
2 (n,p):l 

then T(p' ) and K(p) commute. 

PROOF. This is immediate. 

REMARK. All the above operators take cusp forms to cusp forms. 

§4. NEWFORMS 

4.1. Definitions. 

Let f e M0(N,K/2,X ) be an eigenform of all but finitely many T(p2). 

We say that f is an oldform (compare [1], [5]) if there exists a prime 

p dividing N/4 such that : 

either X is definable (mod N/p) and f belongs to M0(N/p,K/2,×), 

or XXp is definable (mod N/p) and f = glV(p), with g • Mo(N/p,~/2,XXp). 
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We denote by~id(N,~/2,X ) the subspace of M@(N,</2,X) spanned by old 

forms. If f e Mo(N,K/2,X ) is an eigenform of all but finitely many 

(p2 ~°id(N,~/2,X) , we say that f is a T ), and f does not belong to ~0 

newform of level N. 

LEMHA 5. The szmmetry o_perator W(N) : MO(N,~/2,X) ~ M0(N,~/2,XXN) and 

!he cgnjugation operator H : M0(N,K/2,X) ~ M0(N,K/2,~) take oldforms 

to oldforms and newforms to newforms. 

PROOF. By Lemma 2, W(N) and H take eigenforms to eigenforms. If f is 

an oldform of the first type above, i.e. f e Mo(N/p,K/2,X), then 

ffw(H) : S / 4 [ f f w ( N / p ) ] f V ( p )  

i s  an  o l d f o r m  o f  t h e  s e c o n d  t y p e .  C o n v e r s e l y ,  i f  f = g l V ( p )  i s  an  o l d -  

f o r m  o f  t h e  s e c o n d  t y p e ,  t h e n  f l W ( N )  = p - K / 4  g l W ( N / p  ) i s  an  o l d f o r m  o f  

t h e  f i r s t  t y p e .  H e n c e  W(N) t a k e s  o l d f o r m s  t o  o l d f o r m s ~  t h e  same i s  o b -  

v i o u s l y  t r u e  f o r  t h e  c o n j u g a t i o n  o p e r a t o r  H. T h a t  W(N) a n d  H t a k e  n e w -  

f o r m s  t o  n e w f o r m s  f o l l o w s  f r o m  t h i s ~  a n d  f r o m  t h e  f a c t  t h a t  t h e i r  s q u a r e  

i s  t h e  i d e n t i t y .  

old 
LEHHA 6. Let h e M 0 (N,K/2,X) be a non-zero eigenform of all but fini- 

tely many T(p2). Then there is a divisor N 1 of N, with N 1 < N, a cha- 

racter @ definable (mod N 1) and a newform g i_nn M0(N1,K/2,@) such that 

h and g have the same e!$envalues for all but finitelK many T(p2). 

PROOF. We use induction on N. By construction, M~Id(N,K/2,X) has a ba- 

sis (fi) consisting of forms of the type g, or gIV(p), where g is an 

eigenform of all but finitely many T(p2), and is of lower level. Hence 

h is a linear combination with non-zero coefficients of some of the 

fi's' and each fl" occurring in h has the same eigenvalue for T(p 2) as 

h does. The Lemma then follows from the induction assumption. 
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LEMMA 7. Let p be a prime, and let f : ~ a(n)q n be a non-zero ele- 
n:0 

ment of M0(N,K/2,X) such that a(n) = 0 for all n not divisible by p. 

Thei p divides NI4,XXp is definable (mod N/p) and f = glV(p) with 

g • M0(N/p,K/2,XXp). 

PROOF. Put 

: fczJp  : Z a pn qn = p / flf( 
n = O  

L e t  N'  = N / p  i f  4pIN a n d  N'  = N o t h e r w i s e .  L e t  P o ( N ' , p )  be  t h e  s u b -  

o f  F o ( N ' )  c o n s i s t i n g  o f  m a t r i c e s  (~ _ _ ~} w i t h  b ~ O (mod p )~  i f  group 

A = (~ ~) is such a matrix, put A 1 = (~c b/~). We have A~ • F0(N) , 

and 

hence 

o p114} i • A[{  1 0 14}, {(~ p}, : {1,Xp(d)} (o p}'Pl 

glA ~ = Xp(d)x(d)g. 

Since d is relatively prime to both p and N, this can be rewritten 

as 

(~) gIA ~ = (XXp)(d)g. 

By hypothesis, g has a q-expansion in integral powers of q, hence (~) 

holds for A = I~ ~I" Since F0(N') is generated by F0(N~, p) and 

(~ ~I, this shows that (~) holds for any A E F0(N'). Since g is 

non-zero, this implies that XXp is definable (mod N')~ this is easily 

seen to be possible only if p divides NI4, in which case N ~ = N/p and 

(~) shows that g belongs to M0(N/p,~/2,XXp). 

REMARKS. (1) If f is a cusp form, it is clear that g is also a cusp 

form. 

(2) The above Lemma gives a characterization of oldforms of the second 

type. 
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THEOREM 1. Let m be an inte@er ~ 1, and let f = [ a(n)q n be an ele- 
n:O 

ment of M0(N,K/2,X) such that a(n) = 0 for all n with (n,m) = 1. Then 

f can be written as 

: fpl , • Mo(N/p,K/2,XXp), f [ V(p) with fp 

P 

where p runs through the primes such that p[m, 4piN , and XXp is defin= 

able (mod N/p). 

If f is a cusp form, the f can be chosen to be cusp forms. If f is an -- p -- 

eigenform of all but finitely many T(p'2), then the f may be further 
P 

chosen so that they, too, are eigenforms of all but finitely many T(p'2), 

and have the same eigenvalues as f. 

(Compare with the integral weight case, in [1] or [5].) 

PROOF. Clearly, we may assume that m is square-free. We proceed by 

induction on the number r of prime factors of m. If r = @, then m = 1 

and all a(n) are zero by hypothesis~ there is nothing to prove. How 

suppose r ~ 1 and that Theorem 1 has been proved for all m's which are 

products of strictly less than r primes (and all levels). Let P0 be a 

prime divisor of m. Put m = P@m0, and 

h : ~ a(n)q n : fl ~ K(p), cf. §3. 

(n,m0)=l Plm 0 

If h = 0, we may replace m by m@, and Theorem 1 follows from the in- 

duction hypothesis. Hence, we may assume that h ~ @. By Lemma 4, we 

have h • M0(Nm~,K/2,X). If (n,m 0) = 1 and a(n) ~ 0, by hypothesis we 

have (n,P0) ~ 1 and Lemma 7 shows that 4P01Nm~, XXp0 is definable 

2 
(mod Nm0/P@) and h : gPoIV(Po) with gPo • M@(Nm~/P0,~/2,XXp0). This 

implies that 4PolN and that XXp0 is definable (mod N/p@). 

Zoreover~ we have 

f-h = f- gp IV(P0) = [ b(n)q n, 
0 n=0 
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with b(n) = 0 if (n,m 0) : 1. By the induction hypothesis (applied to 

2 
m 0 and to the level Nm0) , this shows that f- gP01V(P0) can be written 

as 

f- gPoIV(Po) : p [ gpIV(P)' 

where p runs through the primes such that plm 0 and XXp is definable 

(mod Nm~/p), with gp e Mo(Nm~/p,K/2,××p). We now apply the operator 

S(×) = S(x,N,Po) of §3 to f. Using Lemma 3, the above formula gives 

2 
flS(x) - gp : [ [gpIS(XXp,Nmo/P,Po)]IV(P). 

0 p 

be flS(x). We have fp0 e Mo(N/Po,K/2,XXpo). Moreover the Let now fPo 

above formula shows that the n th coefficient of fo = f - fpoIV(Po ) is 0 

if (n,m O) = i; this allows us to apply the induction hypothesis to fo 

and mo, and we get the required decomposition of f. As for the other 

assertions of Theorem 1, they follow from the inductive eonstruction of 

the f 's and from Lepta 3. 
P 

COROLLARY. If the form f of Theorem 1 is an eigenform of all but finite- 

ly many T(p'2), then f belongs to M~Id(N,~/2,X). 

§5. THE "BOUNDED DENOMINATORS" ARGUMENT 

5.1. Coefficients of modular forms of half integral weight. 

LEMMA 8. (a) There is a basis of M0(N,K/2,X) consisti~ of forms whose 

coefficients belong to a number field. 

(b) l_~f f : [ a(n)q n belongs to M0(N,~/2,X) and the a(n) are algebraic 

numbers, then the a(n) have bounded denominators (i.e. there exists a 

non-zero integer D such that D.a(n) is an algebraic integer for all n). 
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PROOF. The analogous statement for modular forms of integral weight is 

well known (cf. for instance [7], Th. 3.5.2 or [3], Prop. 2.7). We 

shall reduce to that case by the familiar device of multiplying by a 

fixed form f0" We choose for f0 the form 

e 3K = (1 + 2q + 2q 4 + ...)3~ = 1 + 6Kq + ... 

The map ~ : f ~ 83~f sends M0(N,K/2~X) into the space M0(N,2K,X) of mod- 

ular forms of type (2K,X) on F0(N). By the results quoted above, it 

follows that, if the coefficients of f are algebraic, those of e3Kf 

have bounded denominators; dividing by 83K does not increase denomina- 

tors, hence b) follows. As for a), one has to check that the image 

Im(%) of % can be defined by linear equations with algebraic coeffi- 

cients. This is so because e does not vanish on the upper half-plane 

(as its expansion shows), nor at any cusp except those congruent mod 

F0(4) to 1/2; hence a modular form F in M0(N,2~,X) belongs to Im(~) if 

and only if it vanishes (with prescribed multiplicities) at these cusps, 

i.e. if some of the coefficients of its expansions at these cusps are 

zero; since it is known that these coefficients are algebraic linear 

combinations of the coefficients of F at the cusp ~, the result follows. 

REMARKS. (1) A similar argument shows that MI(N,K/2) has a basis made up 

of forms with coefficients in Z, and that the action of (Z/NZ) { is Z- 

linear with respect to that basis. This implies that, if f = ~ a(n)q n 

belongs to M@(N,~/2,X) and a is any automorphism of C, the series 

f~ = ~ ~(a(n))q n 

belongs to Mo(N,K/2,Xa), just as in the integral weight case ([3], 2.7.4). 

We will not need these facts. 

(2) On noncongruence subgroups, part (a) of Lemma 8 remains true, but 

part (b) does not, as was first noticed by Atkin and Swinnerton-Dyer [2]. 

A simple example is 
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_ 1 2 3 q3 11 4 
f(z) : 0(z) 1/2 8(3z) 1/2 = 1 +q 7 q +7 +-8- q "'" ' 

which is a modular form of weight 1/2 on a subgroup of index 2 of F1(12) , 

and whose coefficients have unbounded powers of 2 in denominator (if n 

is a power of 2, the 2-adic valuation of the n th coefficient of f is 

l-n). Similar examples exist in higher weights, integral as well as 

half integral : take for instance 

fm(Z) : 0(z) 1/2 e(3z) m/2, with m odd ~ 1, 

which is of weight (m+1)/4. 

5.2. Eigenvectors of the Hecke operators for weight 1/2. 

From now on, we restrict ourselves to weight 1/2, i.e. we take ~ = 1. 

LEMMA 9. Let f = Z a(n)q n be a non-zero element of M0(N,1/2, X) and 
n:0 

T(p 2 ) • C. let p be a prime, with p ~N. Assume that fl : Cpf, with Cp 

Let m ~ 1 be such that p2 ~ m. Then : 

a(mp2n ) ~ n (a) we have : a(m)x(p)n( ) for every n ~ 0. 

(b) l_ff a(m) ~ 0, then p ~ m and Cp = X(p)(~)(l+p-1). 

PROOF. Since T(p 2) maps forms with algebraic coefficients into them- 

selves (ef. L~mm 1), it follows from Lemma 8 that the eigenvalue c is 
P 

algebraic, and that the corresponding eigenspace is generated by forms 

with algebraic coefficients. Hence we may assume that the coefficients 

a(n) of f are algebraic numbers. Consider the power series 

A(T) : Z a(mp 2n)Tn, 
n=0 

where T is an indeterminate. By [8], p. 452, we have 

A(T) : a(m) 1 - sT 

(1-BT)(1-yT) 
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with ~ = X(p)p-l(~) and 6 + Y = Cp, BY = X(p2)p -1 (note the negative 

exponent of p, which comes from the fact that K = 1). This already 

shows that a(m) = 0 implies A(T) = 0, i.e. a(mp 2n) : 0 for all n ~ 0. 

Hence we may assume that a(m) ~ 0~ in which case A(T) is a non-zero ra- 

tional function of T. If we view A(T) as a p-adic function of T (over 

a suitable finite extension of the p-adic field Qp), Lemma 8 (b) shows 

that A(T) converges in the p-adic unit disk U defined by ITlp < 1; hence 

A(T) cannot h~ve a pole in U. However, since 6y = X(p2)p -1~ either 

8 -1 or y-1 belongs to U~ assume it is 6 -1 . In order that A(T) be holo- 

morphic at 6 -1, it is necessary that the factors 1 - 8T and 1 - sT cancel 

each other. We then have ~ : 6 and 

A(T) : a(m)/(1-yT), so that a(mp 2n) : yna(m). 

Since BY ~ 0 we have e ~ 0, hence p ~ m. Moreover, 

This shows that a(mp 2n) = yn a(m) = a(m)x(p)n(~) n which proves (a). p ' 

As for the last assertion of (b), it follows from c = B + y = ~ + y. 
P 

THEOREM 2. Let f = ~ a(n)q n be a non-zero element of M0(N,1/2,X) 
n=0 

and let N' be a multiple of N. Assume that, for all p ~ N', we have 

flT(p 2) = Cpf, with Cp • C. Then there exists a unique square-free 

i__nnteger t ~ 1 such that a(n) = 0 if n/t is not 9 square. Moreover : 

(i) tiN'. 

(ii) Cp = X(p)(~)(l+j -1) if p ~ N'. 

(iii) a(nu 2) = a(n)x(u)(~) if (u,N') = 1, u ~ 1. 

PROOF. Let m and m' be two integers ~ 1 such that a(m) ~ 0 and 

a(m') ~ 0. We show first that m'/m is a square. Let P be the set of 

primes p with p ~ N'mm'. If p E P, Lemma 9 shows that 
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hence 

×(p)(~)(1+p -I) : Cp : ×(p)(~)(i+~-i), 

(p) : (~) for all p e p. 

It is well known that this implies that m'/m is a square. We may write 

m and m' as m = tv 2, m' = tv '2 with v,v' ~ 1 and t square-free ~ 1 

This proves the first part of the Theorem, i.e. the existence of t. 

Write now v as pnu, with p ~ N t and (p,u) : 1, so that m = tp2nu 2. By 

Lemma 9, applied to tu 2 we have a(m) : X(p)n(tu2)na(tu2) hence a(tu 2) ~0 
' p 

and Lemma 9 (b) shows that p ~ tu 2, hence p ~ t, and Cp = X(p)(~)(l+p-1). 

Hence every prime factor of t divides N'~ since t is square-free, this 

shows that tiN' , and (i) and (ii) are proved. As for (iii), it is 

enough to check it when u : p with p ~ N'; in that case, one writes n 

2a p2 
as mop , with ~ mo, and applies Lemma 9 (a). 

COROLLARY. If a(1) ~ 0, then t : 1 and c : X(p)(l+p -1) for p ~ N'. 
-- p 

(Note that, in this case, the Cp'S determine the character X.) 

now ~ a(n)n -s be the Dirichlet series associated with f. Let Let 
n=l 

be the character XXt, so that ~(p) = X(P)(~) if p ~ N'. Assertions 

(i) and (iii) of Theorem 2 can be reformulated as : 

THEOREM 2' Under the assumptionsof Theorem 2, we have 

a(tn2)n -2s) ~ (1 -~(p)p-2S) -1 
n:l ~ a(n)n-S = t-S(n~N'~ p~ N 

(The notation AIB ~ means that A divides some power of B, i.e. that every 

prime factor of A is a factor of B.) 
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§6.  PROOF OF THEOREM A 

6.1. Structure of newforms of weight 1/2. 

Let f : [ a(n)q n be a newform of level N (cf. §4) belonging to 
n:0 

M0(N,1/2,X). By Theorem 2, there is a unique square-free integer t ~1 

such that a(n) = @ if n/t is not a square. 

LEMMA 10. We have t = i and a(1) ~ 0. 

PROOF. The product expansion of Z a(n)n -s given in Theorem 2' shows 
n:l 

that, if a(1) = 0, we have a(n) = 0 for every n such that (n,N') = 1; 

the Corollary to Theorem 1 then shows that f belongs to M~Id(N,1/2,X), 

contrary to the assumption that f is a newform. Hence a(1) ~ 0, and 

this implies t : 1, cf. the Corollary to Theorem 2. 

This Lemma allows us to divide f by a(1); hence we may assume that 

f is normalized~ i.e. that a(1) = 1. 

LEMMA 11. Let g E M0(N,1/2,X ) be an eigenform of all but finitely many 

T(p2), with the same ei~envalues as f. Then g is a scalar multiple of f. 

PROOF. Let c be the coefficient of q in the q-expansion of g, and set 

h = g - cf, 

so that the coefficient of q in the q-expansion of h is 0. Suppose 

h ~ 0. By Lemma 10, h is not a newform~ since it is an eigenform of 

all but finitely many T(p2), it belongs to M~Id(N,1/2,X). Hence, by 

Lemma 6, there are NIIN , with N 1 < N, a character ~ definable (mod N 1) 

and a normalized newform gl in M0(N1,1/2,~) with the same eigenvalues 

(p2 's Cp as f and h, for all but finitely many T ). Since the Cp 
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determine the character (cf. the Corollary to Theorem 2) we have X = 

and so gl belongs to M~Id(N,1/2,X). On the other hand, the coefficient 

of q in the q-expansion of f -gl is 0; the same argument as above then 

shows that f- gl belongs to M~!d(N,1/2,X ) . _  Hence f = gl + (f-g1) belongs 

,old.. 
to ~0 ~'1/2'X)" This contradicts the assumption that f is a newform. 

Hence h = 0, i.e. g = cf. 

LEMMA 12. The form f is an eigenform of every T(p2). If we pu~ 

fIT(p 2 ) = Cpf, we have 

(~) ~ a(n)n -s : ~ (1 -2s) H (1 - X(p)p -2s) 
n:l pIN -epp p~ N 

-1 

Further, if 4piN, then c : 0. 
P 

PROOF. If we apply Lemma 11 to g : fiT(p2), we see that g is a multi- 

ple of f. Hence f is an eigenform of every T(p2), and the Euler pro- 

duct (~) follows from this and Theorem 2' (applied with N' = N, t = 1, 

: X ) .  

If 4pIN, then Lemma 1 shows that 

~ 2 

fiT(p) : [ a(np)q n : [ a(m2p2)q pm : c fIV(m) 
n:0 m:0 P 

0 Lemma 7 applied to fiT(p) and to belongs to M0(N,1/2,XXp). If Cp , 

the character XXp shows that X is definable (mod N/p) and that 

fiT(p) : gIV(p) with g e Mo(N/p,1/2~X ). We have CpflV(p) : glV(p)~ 

hence Cpf = g; this shows that f belongs to Mo(N/p,1/2, X) and contra- 

dicts the assumption that f is a newform. Hence c = 0. 
P 

LEMMA 13. The level N of the newform f is a square, and flW(N) is a 

multiple of flH. 

(Recall that W(N) and H are respectively the symmetry and conjugation 

operators, ef. §3.) 
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PROOF. If p ~N, we have flT(p 2) : c f with c = (l+p-1)X(p), and, by 
P P 

Lemma 2, 

[flW(N)]IT(p 2) = ~(p)2ep flW(N) : ~p fl W(N), 

[flH]IT(p 2) = (c f)IH = [ flH since H is anti-linear. 
P P 

But flW(N) and flH are newforms of level N and characters ~X N and ~ res- 

pectively, ef. Lem~la 5. Since they have the same eigenvalues ~p for all 

T(p2), p ~ N, and these eigenvalues determine the character (cf. the Co- 

rollary to Theorem 2), we have XX N = X and N is a square. The fact that 

fIW(N) and fIH are proportional follows from this and from Lemma 11. 

THEOREM 3. If f is a normalized newform in M0(N,1/2,X) , and r is the 

i 
conductor of X, then N = 4r 2 and f = T %X" 

PROOF. We write f = [ a(n)q n as above, and put 
n:0 

-i X(p)p_2S)-i F(s) : ~ a(n)n -s : ~ (1 -c p-2S) ~ (1 - 
~:i pIN P p ~ N 

~(s) = [ a(n)n -s 
n=l 

The Dirichlet series F and ~ converge for Re(s) large enough. Using 

Mellin transform~ ~ and Lemma 13, we obtain by a standard argument the 

analytic continuation of F and F as entire functions of s (except for 

a simple pole at s = 1/2 if a(@) # 0), and the functional equatio~ 

-(I/2-s) 1 - 1 
(2w) -s F(s)F(s) = C1( ) F(~-s)F(7-s), 

where C 1 (and C2, C3, C 4 below) is a non-zero constant. 

On the other hand, we know that the functions 

p)p_2S) -1 
G(s) = L(2s,x) = ~ x(n)n -2s : ~ (1 -X( 

n=l p ~ r 

G(s) = L ( 2 s , ~ )  
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satisfy the functional equation 

-(1/2-s) 
(2~) -s F(s)G(s) C2 (2~_) 1 -- 1 : F (~-s)G(~-s) 

4r 2 

Dividing these equations, we find 

(~) 
-2s f > ] 

R plm tl-×(P)P -2s) C^(N~) ~̀ 4rL 
~ l-Cp p2s-1 

H 

where m is the product of the prime divisors p of N such that c ~X(P)- 
P 

If, for some plm, we have X(P) ¢ @, then the left side of (~) has an 

infinity of poles on the line Re(s) = 0, only finitely many of which 

can appear on the right side. This shows that plm implies X(P) = 0, 

(i.e. plr) and c ¢ 0 since e ~ X(P). We may now rewrite (~) as : 
P P 

S 

r~ (1-Cpp -2s) = c 4 (Nm2) n (1-c~p-2S)> 
pim 4r 2 plm 

where c' = p/~ . The same argument as above (using zeros instead of 
P P 

poles) shows that, for every plm, we have ep = c~, i.e. lepl 2 = p~ 

the above equation then gives C 4 = 1 and Nm 2 = 4r 2 But by Lemma 12 

we have Cp = 0 when 4piN. This shows that m = 1 or 2, and that m = 2 

can occur only when 8 ~ N and X(2) = 0; in the last case, r is divisible 

by 4 and the equation Nm 2 = 4r 2 shows that N is divisible by 16, 

which contradicts 8 ~ N. Hence only the case m = 1 is possible, and we 

have N = 4r 2, F(s) = G(s). This shows that, for every n ~ 1, the coef- 

½ i 
ficients of qn in f and in 0 X are the same. Hence f-7 8 X is a 

constant, and, since it is a modular form of weight 1/2, it is 0. This 

concludes the proof. 

6.2. Alternative arguments. 

1 agree, we could have (1) To show that the constant term of f and 7 0X 

used the well-known fact that they are equal to - F(0) and - G(0) 
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respectively. 

(2) Another way to rule out ICp] 2 : p is to prove a priori that ICpl (l- 

This may be done as follows. Choose D ~ 1 such that p is inert in 

Q(-~), and consider the modular form of weight 1 : 

g(z) : f(z)e(Dz) : ( [ a(u)qU)( [ q Dv2) : [ a(u2)q u2+Dv2 

U:0 -~ U~V 

The p2n-th coefficient of g is a(p 2n) = (c)n. By [3], Cor. 9.2, 
P 

this coefficient is 0(p 2n~) for every ~ > 0. This obviously implies 

ICpl ~ 1. 

Theorem 3 has a converse : 

1 
THEOREM 4. I_ff X is an even character of conductor r, then ~ %X 

normalized newform in M0(4r2,1/2~X). 

(Recall that all characters are assumed to be primitive.) 

is a 

PROOF. Let N : 4r 2, We know that 0 X belongs to M0(N,1/2,X) and it is 

e a s i l y  c h e c k e d  t h a t  i t  i s  an e i g e n f o r m  o f  a l l  T ( p 2 ) ,  w i t h  e i g e n v a l u e  

c : (l+p-1)X(p) if p ~ N (cf. Lemma 1). 
P 

Thus, if 0 X is not a newform, Lemma 6 shows that there are a divisor N 1 

of N, with N 1 < N, a character 9 definable (mod N 1) and a newform f in 

M0(N1,1/2,@) such that f and 0 X have the same eigenvalues for all but 

finitely many T(p2). We thus have 

(l+p-1)9(p) = c = (l+p-1)X(p) for almost all p, 
P 

and this implies @ = X~ hence N 1 = 4r 2 by Theorem 3. This contradicts 

1 is obviously normalized. N 1 < N. Hence e X is a ncwform~ and 7 eX 

6.3. Proof of Theorem A. 

Let X be an even character definable (mod N). With the notations of 
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§2, we want to prove that the theta series @~,t : 8~ IV(t)' with 

(@,t) • Q(N,x) , make a basis of M0(N,1/2,X). The proof splits into 

two parts : 

a) Linear independence of the @~,t" 

Since t and X determine ~, every t occurs as the second entry of at 

most one (#,t) in ~(N,x). Suppose then that we have 

11 e@l ,t I +...+ im @@ m,t m : 0, 

t I . 
i . ~ 0 for all i, The coefficient of q mn with t I < t 2 --...< t m and l I 

8~l,t I 8@j , , . 
is equal to 2~ in ,tj J > 2 it is equal to 0 This shows 

that 211 = 0, hence ~1 = 0. This contradiction proves the linear inde- 

pendence of the 8~,t" 

b) The @ 
~,t -- 

We need : 

with (~,t) e ~(N,x) , generate M0(N,1/2,×). 

LEMMA 14. There is a basis of M0(N,1/2,X) consisting of eigenforms for 

all the T(p2), p ~ N. 

PROOF. Put on M0(N,1/2,X) the Petersson scalar product < f,g>, cf. §1. 

A standard computation shows that, if p ~ N, we have 

< f[T(p2),g > = ×(p2)< f,~iT(p2) >, 

hence X(p)T(p 2) is hermitian. The Lemma follows from this, and from 

the fact that the T(p 2) commute. 

We can now prove assertion b), using induction on N. By Lemma 14, it 

is enough to show that any eigenform f of all T(p 2), p ~ N, is a line- 

ar combination of the 8~, t with (~t) e ~(N,x). If f is a newform, 

this follows from Theorem 3. If not, we may assume f is an oldform of 

one of the two types of §4 : 

either X is definable (mod N/p) and f belongs to Mo(N/p,1/2,X) , 
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or XXp is definable (mod N/p) and f = gIV(p) with g e Mo(N,N/p,1/2,XXp). 
In the first case, the induction assumption shows that f is a linear 

combination of the 8~, t with (},t) e ~(N/p, X) and afortiori with 

(~,t) e ~(N,x). In the second case, g is a linear combination of the 

8~,t, with (~,t) e ~(N/p,XXp),and hence f is a linear combination of 

the 8~,tp, with (9,tp) e ~(N,x). 

REMARK. It is possible to prove Lemma 14 without using Petersson pro- 

ducts. Indeed, assume that some T(p2), p ~ N, is not diagonalizable. 

Then there exists an eigenvalue c of T(p 2) and a non-zero element g of 
P 

M0(N,1/2,X) such that 

glU ~ 0 and glU 2 : 0, where U = T(p 2) ~ c . 
P 

Using Lemma 8, one may further assume that the coefficients of g are 

algebraic numbers. A computation similar to that of Lemma 9 then shows 

that these coefficients have unbounded pgwers of p in denominators, and 

this contradicts Lemma 8. Hence, each T(p 2) is diagonalizable. Since 

these operators commute, Lemma 14 follows. 

§7.  PROOF OF THEOREM B 

7.1. Twists. 

Let f = [ a(n)q n be a modular form of weight k = </2 on some FI(N). 
n:0 

Let M be an integer ~> 1, and ~ a function on Z with period M (i.e. a 

function on Z/MZ). We put 

oo 

f • c = [ a(n)~:(n)q n. 
n=O 

Let ~ be the Fourier transform of e on Z/MZ, defined by : 
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1 
~(m) : H [ s ( n )  exp(-2sinm/H). 

n e Z/MZ 

We the o have 

hence 

a ( n )  : 
m e Z/MZ 

~(m) exp(2~inm/H), 

(f ~ s)(z) = [ ~(m)f(z+~). 
m E Z/MZ 

From this, one deduces easily that f • s is a modular form of weight k 

on FI(NM2). 

7.2. Characterization of cusp fgi<ms" 

We keep the above notation, and we put 

%f(s) : [ a(n)n -s. 
n:l 

THEOREM 5. The following properties are equivalent : 

i) f vanishes at all cusps m/My with m e Z; 

ii) for every function s on Z, with period M, the function 

~ f  ~ s ( s )  = ~ a ( n ) s ( n ) n  - s  i s  h o l o m o r p h i c  a t  s = k .  
n = [  

(This is also true when k is an integer, instead of a half integer; 

the proof is the same.) 

PROOF. Consider first the case where M = 1. Assertion i) then means 

that f vanishes at the cusp 0, and assertion ii) that @f(s) is holo- 

morphic at s = k. If we put 

g = flW(N) : [ b(n)q n, 
n:O 

then i) is equivalent to : 

i') g vanishes at the cusp ~, i.e. b(0) is 0, 

while the functional equation relating ~f(s) and ~g(k-s) shows that ii) 

is equivalent to : 
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ii') (2~)-SF(s)% (s)~ is holomorphic at s : 0, i.e. %g(0) : 0. 

The equivalence of i') and ii') then follows from the known relation 

b(0) :-~ (0). 
g 

Consider now the general case. By applying the above to f • s (with N 

replaced by NM2), we see that ii) is equivalent to : 

iii) for every function E on Z, with period M, the modular form f • s 

vanishes at the cusp 0. 

Using the above formulae, this is in turn equivalent to : 

iv) for every m E Z/MZ, the modular form f(z+~) vanishes at the cusp @, 

and it is clear that iv) is equivalent to i). 

COROLLARY. The following properties are equivalent : 

a) f is a cusp form; 

b) for every periodic function ~ o_~n Z~ the function %f ~ E(s) is holo- 

morphic at s = k. 

Indeed, Theorem 5 shows that b) is equivalent to the fact that f van- 

ishes at all cusps ~ ~ since ~ is Fl(N)-equivalent to l/N, this means 

that f is a cusp form. 

REMARK. When f belongs to some M0(N,~/2,X) , it is enough to check pro- 

perty b) for functions s with period N. Indeed, by Theorem 5, this 

implies the vanishing of f at all cusps m/N, with m e Z, and it is 

known that every cusp is r0(N)-equivalent to one of these. 

We now go back to the case K = 1, k = 1/2 : 

LEMMA 15. Let ~ be an even character which is not totally even (cf. §2). 

Then 84 is a cusp form. 

PROOF. Let s be a periodic function on Z. By the Corollary to Theorem 
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5, it is enough to prove that the Dirichlet series 

Fs(S) = 2 [ s(n2)?(n)n -2s 
n=l 

is holomorphic at s = 1/2. Let M ~ 1 be a period of ~, which we may 

assume to be a multiple of the conductor r(~) of ~. We have 

F (s) : 2 [ s(m2)@(m)Fm,M(2S) 
c m • Z/MZ 

where 
Fm,M(S) : [ n -s 

n~m (mod M) 
m~l 

It is an elementary fact that Fm,M(S) has a simple pole at s = 1 with 

residue 1/M. Hence Fc(s) has at most a simple pole at s = 1/2, with 

residue R(s,@)/M, where 

R(s ,t~) = )[ s (m2) t~ (m)  , 
m e Z/MZ 

and we have to prove that R(s,~) = 0. By assumption, there is a prime 

1 dividing r($) such that the /th component ~l of @ is odd. Let us 

write M as /aM', with (/,M') = 1, so that the ring Z/MZ splits as 

z//az × Z/M'Z. Let x I be the element of Z/MZ whose first component (in 

the above decomposition) is -1, and the second component is 1. The 

fact that ~l is odd means that $(×/) = -1. Since x I is invertible in 

Z/MZ, we have 

R(c , t~ )  = )[ s ( ( x / m ) 2 ) t ~ ( x g m )  : [ s ( m 2 ) @ ( x / m )  
m •Z/MZ m •Z/MZ 

: - [ s(m2)@(m) : -R(e,@) 
m • Z/MZ 

which shows that R(E,~) = 0, as wanted. 

LEMMA 16. Let ~ be a totally even character, and T a finite set of inte- 

gers ~ 1. If the modular form f = t @~ T ct@~'t (ct • C) 
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is a cusp form, then all c t are 0. 

PROOF. Assume the c t are not all 0, and let t O be the smallest t • T 

such that c t # @. Choose an integer M ~ 1 which is divisible by 2r(?) 

and by all t e T. The first divisibility condition, together with the 

assumption that @ is totally even, implies that there is a character 

definable (mod M) such that 2 = ~. Define now a periodic function c 

on Z by 

We have 

and 

s(n)  = I ~(n/t@o 
if t01n and n/t 0 is prime to M 

otherwise. 

a(t0n2 ) : ~(n) 

L0 
if (n,M) = 1 

if (n,M) ~ 1 

s(tn 2) : 0 if t e T, t > t O (since (tn2,M) ~ t > to). 

Using the minimality of to, this shows that the Dirichlet series 

~f ~ s(s) is equal to 

2Cto ( ton 2 -s  t-So -2s Z ~(n)~(n) ) = 2ct0 Z n 
(n,M):l (n,M):l 

n~l n~l 

The same argument as in the proof of Lemma 15 shows that the residue of 

this function at s = 1/2 is equal to 

CtotO1/2 ~(M)/M = CtotO1/2 ~ (1 -~) 
plM P ' 

which is ~ 0. By Theorem 5, we thus see that f is not a cusp form. 
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7.3. Proof of Theorem B. 

Let N,X,~c(N,x),~e(N,x) be as defined in §2. We have three asser- 

tions to prove : 

a) The ¢~,t' with (~,t) e ~c(N,x)~are cusp forms. 

Indeed, Lemma 15 shows that e~ is a cusp form, and this obviously 

implies the same property for e~, t- 

b) No linear combination (except 0) of the e~,t, with (~,t) e ~e(N,x), 

is a cusp form. 

Let V be the space of the linear combinations of the 8~,t, with 

(~,t) e ~e(N,x), which are cusp forms. It is clear that V is 

stable under the T(p2), p ~ N. Hence, if V is non-zero, it con- 

tains a common eigenform f of the T(p2), p ~ N. Since the eigen- 

-1 
value of e~, t is (l+p )@(p), the form f has to be a linear com- 

bination of the 8~, t for a fixed character 4, and this contradicts 

Lemma 16. 

c) If (~,t) e ~c(N,x) and (~',t') • ~e(N,x), then e@, t and e~,,t , 

are orthogonal for the Petersson scalar product. 

Indeed, since @ ~ 9', there is a p ~ N such that @(p) ~ @'(p). 

Hence, 0@, t and e@,,t , are eigenforms of T(p 2) corresponding to 

different eigenvalues. Since X(p)T(p 2) is hermitian (cf. the 

proof of Lemma 14, §6) this implies that these two functions are 

orthogonal. 

7.4. The space El(N,1/2). 

Let E0(N,1/2,X) be the space of linear combinations of the e~, t with 

(~,t) e ~e(N,x). By Theorem B, we have the orthogonal decomposition 

M0(N,1/2,X) = E0(N,1/2,X) ® S0(N,1/2,X), 

where S0(N,1/2,x) is the space of cusp forms. Similarly, if we put 
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El(N,1/2) : ® E0(N,1/2,X) , we have 

M1(N~1/2) : El(N,1/2) @ $1(N,1/2). 

The elements of El(N,1/2) can be characterized as follows : 

THEOREM 6. Let f be an element of M1(N,1/2). The followin~__properties 

are equivalent : 

i) f belongs to El(N,1/2). 

ii) f is a linear combination of 8(az+b), with a • Z, a ~ 1, and b •Q. 

iii) f is orthogonal to all cusp forms of all levels. 

PROOF. Clearly ii) implies iii) since 8 is in El(M,1/2) for every M, 

and so is orthogonal to all cusp forms; the same is then true of 

8(az+b) for any a and b. We have already shown that iii) implies i). 

Finally, if @ is a totally even character, we may write ~J as 2 where 

the character ~ is ramified at the same primes as ~; we have 8~ : 8 • ~, 

hence 8@ is a linear combination of the e(z+b), with b e Q; this shows 

that 8~ has property ii), hence that i) implies ii). 

REMARK. Maass [6] has shown that 8(z) can be defined as an "Eisenstein 

series", by analytic continuation ~ la Hecke. The same is true for 

all the 8(az+b), hence for all the elements of El(N,1/2). 
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APPENDIX 

Free translation of a letter from Pierre DELIGNE, 

dated March 1, 1976 

... Using the same trick as in my Antwerp's paper (vol. II, p.90, proof 

of 2.5.6)~ one can deduce directly from your Theorem 2 the structure 

of the modular forms of weight 1/2 (on congruence subgroups of SL2(Z)). 

The final result is : 

THEOREM. The q-expansions of the modular forms of weight 1/2 are 

(1) ~ ~ ~t(u)qtU2~ 

t uE Z 

where t runs through a finite subset of Q~+, and, for each t, %t is a 

periodic function on Z (i.e. the restriction of a locally constant func- 

tion on 8). 

PROOF. Let H be the space of modular forms of weight 1/2, and @ the sub- 

space of H consisting of the theta series (1). We put on H the Peters- 

son scalar product (which always converges). The metaplectic 2-covering 

~2(Af) of SL2(A f) acts on H, preserves the scalar product, and leaves 

@ stable. Under this action, H decomposes into a direct sum of irredu- 

cible representations. Let H i be one of them. We want to prove that 

H i is contained in @. 

One checks immediately that, if N and X are suitably chosen, H i has a 

non-zero intersection with M0(N,1/2,X). The Hecke operators T(p 2) asso- 

ciated with all primes p (including those dividing N) come from the ac- 

tion of (the group ring of) ~2(Af), and commute with each other. Hence 

they have a non-zero common eigenvector f in H i n M0(N,1/2,X ). By 
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your Theorem 2, one has 

f= Z 
uCZ 

a(tu2)q tu2 
(t square-free, tiN) ~ 

and 

a(mu 2) : a(m)9(u) 

a(mp 2) = k a(m) 
P 

Consider now 

if (u,N) = 1, @ being some character (mod 2N)5 

if piN (cf. Shimura [8], 1.7). 

2 
g : [ a(tu2)q tu 

(u,N)=l 

It is clear that g is a non-zero element of @. On the other hand, g 

is (up to a scalar factor) the transform of f by H Lp, where L is 
p!N P 

the operator which transforms h(z) into h(z) - Iph(p2z). Since Lp can 

[p 0 ) of the groun ring of SL2(Qp) be defined by the element 1 -Ip 0 p-i ~ ' 

this shows that g belongs to Hi, hence H i n @ e @. Since H i is irre- 

• C @, q.e.d ducible, this implies H l ~ . 

Yours, 

P. Deligne 

PS. These arguments should extend to any totally real number field. 
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C-0-I 

DIMENSIONS DES ESPACES 

DE FORMES MODULAIRES 

par H. COHEN et J. OESTERLE 

I) Introduction. 

La connaissance explicite des dimensions des espaces de formes 

modulaires est n~cessaire dans de nombreux probl~mes. Les formules qui 

les donnent sont connues de beaucoup de gens et il existe plusieurs 

m6thodes permettant de les obtenir (th~or~me de Riemann-Roch, applica- 

tion des formules de trace donn~es par Shimura dans [37). N~anmoins on 

ne les trouve pas dans la litt~rature courante ; cet expose, tout en 

s'abstenant de fournir les d~monstrations, se propose donc de combler 

cette lacune. En outre, une table donnant dim Sk(Fo(N),x) et 

dim(~(Fo(N),X) pour k6 ½+~ , N~ 200 , et tout caract~re X, figure 

la fin de l'article. 

II) Notations. 

Soit ~ = {z6 ~/Im z>O} le demi-plan de Poincar~ sur lequel agit 

a b _ az+b 
SL2(~) par : (c d )'z cz+d 

Soit N un entier naturel non nul et notons F (N) le sous- 
o 

ab 
groupe de SL2(~) form~ des matrices (c d ) telles que c~O(N). 

Soit X un caract~re multiplicatif modulo N , i.e. un homomor- 

phisme de (~/N~) dans ¢ . Soit f le conducteur de X • c'est-~- 

dire le plus petit diviseur de N tel que X se factorise ~ travers 
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(~/f~) 

Soit k E ½Z un entier ou demi-entier. 

Nous ferons les hypoth6ses suivantes : 

- Si k est entier, X(-I) = (-I) k 

- Si k 6 ½+~ , N est multiple de 4 et X(-J) = I 

c) * NOUS d~finirons le symbole (~ pour c E ~ , et dE ~ par les 

conditions suivantes : 

c) 
d ~ (d est compl~tement multiplicative 

(_~) =-I si c<O et (~) = I si c>~O 

(~) = (-I) (c2-I)/8 si c est impair 

(p) est le symbole de Legendre si p est premier impair 

et c premier ~ p 

(d) = 0 si pgcd(c,d) / I 

La notation a b pour a E C * , et b E C d~signera 

exp(b(loglal +i Arg a)), avec -~<Arg a~ <~ . 

Nous noterons Mk(Fo(N),x) (resp. Sk(~o(N),x)) et nous appelle- 

rons espace des formes modulaires enti&res (resp. paraboliques) de 

poids k , de niveau N et de caract&re X l'espace des fonctions f 

d~finies sur ~ ayant les propri~t~s suivantes : 

a) f est holomorphe sur ~ . 

b) Si k E ~ f(az+b% ' cz+d" = X(d) (cz+d)kf(z) pour toute matrice 

(ac bd) ~ Fo(N) et tout z E ~ . 

• f~az+b~ c) -I )-k(cz+d)kf(z) pour b') Si kE½+~ "c-~-~" =x(d)(d ( d 

a b 
toute matrice (c d ) ~Fo(N) et tout z~ • 

c) f est holomorphe (resp. s'annule) aux pointes (cf. [2] 

pour la signification de cet ~nonc~). 

On d~montre que les espaces ~(Fo(N),x) et Sk(Fo(N),x) sont 

de dimension finie. On a m~me les r~sultats suivants : 
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(i) dim Sk(Fo(N),x)=O si k~<O , 

(ii) dim ~(Fo(N),x) =0 si k<O , ou bien si k=O et 

n'est pas le caract~re trivial X ° , 

(iii) dim Mo(Fo(N),x o) = I 

III) Les r6sultats. 

Dans les th~or~mes I et 2, nous allons donner la valeur de 

dim Sk(Fo(N),x)- dim M2_k(Fo(N),x), valable pour toute valeur de k 

dans ½Z , le th~or~me I traitant le cas o~ k est dans ~ , et le 

th~or~me 2 le cas o~ kE ½+~ . 

Compte tenu de (i), (ii), (iii), les formules ainsi obtenues per- 

mettent de calculer la valeur de dim Sk(Fo(N),X) pour k~2 , et 

aussi celle de dim ~(Fo(N),x) pour k~2 (faire k= 2-k dans la 

formule). 

Pour k= I/2 et k= 3/2 , les formules donnent la valeur de 

dim SI/2(Fo(N),x)- dim M3/2(Fo(N),x) et de 

dim S3/2(Fo(N),x)- dim MI/2(Fo(N),x). 

Pour un N et un X fix~, Serre et Stark exhibent dans [I] une 

base explicite de SI/2(Fo(N),x) et MI/2(Fo(N),X). Les formules pr~- 

c~dentes permettent alors d'obtenir la dimension de M3/2(Fo(N),x) et 

S3/2(Fo(N),x) • 

Th~or~me I . Soit k E ~ (et donc X(-I) = (-1)k) . On a : 

dim Sk(Fo(N),x) - dim M2_k(Fo(N),x) = 

~ p~N 1 1 p~N k(rp, Sp,p) + ¢ k E X(x) 
N (I +~) - 2 x mod N 

x2+1 m O(N) 

+ ~k Z X(x) 
x mod N 

x2+x+1 ~O(N) 

avec les notations suivantes : 

s i pin , rp (resp. Sp) d~siqne l'exposant de p dans la d~compo- 

sition en facteurs premiers de N (resp. de f) 
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. i(rp, Sp,p) vaut : 
r' r'-1 

p +p si 2s <r =2r' 
P P 

r' 
2p si 2s ~r =2r'+I 

r -s P P 
2p p P si 2s > r 

P P 

• ~k vaut : O si k impair 

- ¼ si km 2 (mod 4) 

1 si k m 0 (mod 4) 

• ~k vaut : O si k ~ I (mod 3) 

- ½ si k~2 (mod 3) 

si k m 0 (mod 3) 

Remarques concernant l'~nonc~ du th~or~me : 

s omme 
cIN 
N IN (c,~)~ 

produit qui est le plus maniable en pratique. 

2 ° ) Si X = X o , caract~re trivial, la somme 

(resp. 

x2+I =O (resp. x2+x+1 = 0) dans ~/N~ . Ce nombre vaut : 

I ° ) L'expression I I l(rp, Sp,p) est en fait ~gale ~ la 

E ~((c,~)) oQ ~ est la fonction d'Euler. Mais c'est le 
c 

z x(x)  
x mod N 

x2+I m O(N) 

E X(x)) est ~gale au nombre de racines de l'~quation 
x mod N 

x2+x+1 ~ O(N) 

0 si 41N 0 si 91N 

{~ (I + (~)) si 4~N (resp. { ~ (I + (~)) si 9~N ~ 

pin pin 

Th~or~me 2. Soit kE ½+~ (et donc 41N e_!t X(-J) = I ). on ~ : 

dim Sk(ro~),×)-dim M2_k(~o(N),×) = ~ ~F (I +I p~ 
piN P) -~ ~ (rp, Sp,p) 

p~2 
O_~U k, r et s ont m~me siqnification qu~au th~or~me I, et ou p -- p 

est d~fini par le diaqramme suivant : 
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r2>~4 

r2=3 

r2=2 

= l ( r 2 , s 2 , 2 )  

~=3 

Condition (C) ~ = 2 

= 3/2 
k-lE~ 

s2=O 

s2=2 

s2=O 

s2=2 

non (C) 

3 

= 5/2 

= 5/2 

= 3/2 

La condition (C) ~tant la condition suivante : 

< 2s (C) ¢---} 3p premier, p~ 3(4), piN , rp impair ou O< rp 
P 

Par suite : 

non (C) ~, ~> (Vp premier), (p~ 3(4) et piN y rp pair et r~2Sp). 
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TABLES : DIMENSIONS EN POIDS DEMI-ENTIER 

I) Rappel des notations. 

k E ½+ ~ , N est un entier naturel multiple de 4 et X un carac- 

t6re multiplicatif modulo N de conducteur f tel que X(-I) = I ; on 

note ~(Fo(N),x), Sk(Fo(N),X), Ek(Fo(N),x) l'espace des formes modu- 

laires enti~res, paraboliques, d'Eisenstein respectivement, relative- 

ment au groupe Fo(N) et au caract6re X , et de poids k . 

X 6tant astreint ~ ~tre pair, f ne peut prendre que des valeurs 

distinctes de 3 et 4 et non congrues & 2 modulo 4. 

II) Pr69entation des tables . 

Les tables qui suivent permettent de calculer facilement les valeurs 

des dimensions des espaces y~(Fo(N),x), Sk(Vo(N),x) , ~(Fo(N),x) pour 

tout k 6 ½+~ , et tout caract6re X modulo N , pourvu que le niveau 

N soit inf6rieur ou 6gal ~ 200. 

Une premi6re table donne les valeurs d'une certaine quantit6 

a(N) en fonction de N . 

Une deuxi~me table, ordonn6e en quatre colonnes, donne les valeurs 

de certaines quantit6s b(N,f) et c(N,f) qui ne d~pendent que du 

niveau N, et du conducteur f de X . Dans la premi6re eolonne figu- 

rent les valeurs de N . Dans la seconde colonne figurent les valeurs 

de f . Parfois, cette colonne est vide ; cela signifie que pour le 

niveau N correspondant, b(N,f) et c(N,f) sont en fait ind6pendants 

de f . Parfois, on trouvera sur une m~me ligne de cette seconde 
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colonne, plusieurs valeurs de f distinctes, s~par~es par une virgule ; 

cela signifie que b(N,f) et c(N,f) sont les m~mes pour toutes ces 

valeurs de f . 

Une troisi~me table donne la dimension, que nous noterons d(N,x), 

de l'espace MI/2(Fo(N),x). Des r~gles g~n6rales permettant de trouver 

d(N,x) y figurent, et elles sont suivies de la liste des exceptions. 

III) R~sultats. 

Avec les notations pr~c~dentes on a : 

si k<O 

si k = !  2 

si k =3 
2 

si k = 2k'+ ½ avec k'~ I 

avec k'~ I si k = 2k'+ 3 

dim Sk(Co(N),X)=dim Mk(Fo(N),x)=0 

dim SI/2(Fo(N),x) =0 (attention : ceci 

n'est plus vrai si N> 200) 

dim MI/2(Fo(N),X)=d(N,X) 

dim S3/2(Fo(N),X) = d(N,x) +b(N,f) - c(N,f) 

dim M3/2(Fo(N),X)=b(N,f) 

dim Sk(Fo(N),X)= a(N)k'-b(N,f) 

dim ~(Co(N),X)= a(N)k' -b(N,f) + c(N,f) 

dim Ek(Fo(N),x)= c(N,f) 

dim Sk(Fo(N),X)= a(N)k' +b(N,f)- c(N,f) 

dim Mk(Fo(N),X)= a(N)k' +b(N,f) 

dim ~(Fo(N),X)= c(N,f) 

16re table : 

N 

a(N) 

4i 8 12i 16 20 24 28 32 36 40 44 48 52 561 6Oi 64 66 

I 
i 

I 2i 4 4; 6 8 8 8 12 12 12 16 14 16 24! 16 16 

N 72 76 80 84 88 92 96 100 104 108 I12  116 120 124 t28  132 136! 

a (N)  24 20~ 24! 32 24 24 32 30 28 36 32 30 48 32 32 48 36 

N 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 

a(N) 48 48 38 40 56 48 42 64 44 48 72 48 48 64 56 60 
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N f c(N, f) b(N, f) N f c(N, 

4 
8 

12 
16 1 

8 
16 

1 , 5  
2O 

1 , 8  
16 
32 
1 

12 
9 , 3 6  

1 , 1 2  
8 , 2 4  

1 6 , 4 8  
1 , 1 3  
52 

1 , 8  
16 
32 
64 

1 , 1 7  
68 

1,8,12,24 
9,36,72 

1 ,5,20 
8,40 

1 6,80 

I ,8,12,24 
16,48 
32,96 
1,5 
2O 
25 

I O0 

1,9,12,36 
27, I08 

2 
3 
4 
6 
4 
2 
4 
4 
6 
4 
8 
4 
2 
8 
8 
4 
6 
4 

12 
8 
4 
4 
4 
6 
8 

12 
8 
4 
2 
4 
4 

12 
6 
4 

12 
8 
4 
8 
6 
4 

16 
8 
4 

12 
12 
4 
4 
6 

12 
4 

I 
2 
3 
4 
3 
2 
3 
4 
5 
4 
6 
4 
3 
6 
8 
5 
6 
5 

I0 
8 
6 
5 
6 
7 

I0 
10 
8 
6 
5 
6 
7 

12 
9 
7 

12 
I0 
8 

12 
9 
8 

16 
12 
I0 
12 
15 
9 

I0 
I0 
15 
11 

2O 

24 
28 
32 

36 

40 
44 
48 

52 

56 
60 
64 

68 

72 

76 
8O 

84 
88 
92 
96 

I O0 

104 
I O8 

f) b(N, f) 

112 1,7,28 12 14 
8,56 8 12 

16,112 4 10 
116 1,29 4 9 

116 4 I0 
12C 12 18 
124 4 10 
12~ 1 , 8 , 1 6  16 16 

32 8 12 
64 4 I 0 

128 2 9 
132 8 16 

36 6 12 
4C 8 16 

144 I, 12 24 24 
8,24 16 20 
9,36 12 18 

16,48,72 8 16 
144 4 14 

148 1 ,37  4 11 
148 4 12 

152 6 13 
156 8 18 
160 1,5,8,20,40 16 20 

16,80 8 16 
32, I 60 4 14 

164 1,41 4 12 
164 4 13 

168 12 22 
172 4 13 
176 I ,11,44 12 18 

8,88 8 16 
16,176 4 14 

180 1,5,15 16 24 
12,20,60 16 28 

9,36,45,180 8 22 
184 6 15 
188 4 14 
192 1,12,8,24 24 28 

16,48 16 24 
32,96 8 20 
64, 192 4 18 

196 I ,7 16 20 
28 16 24 

49,196 4 16 
200 I , 5, 8,20, 40 18 24 

25,100,200 6 18 
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3&me table : Valeurs de d(N,x) =dim M½(Fo(N),x) pour N<200. 

- Premier cas : X n'est pas le caract&re unit& et n'est pas d'ordre 2. 

Dans ce cas on a d(N,X) =O sauf dans le cas suivant : 

Si N= 196 et que X est l'un des deux caract&res d'ordre 3 et 

de conducteur 7 , alors d(N,X) = I 

- Deuxi&me cas : X est le caract&re unit&, i.e : X = X o 

Dans ce cas, on a la table suivante : 

N 4i 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 

~(N ,  Xo)  1 1 I 2 1 1 1 2 2 1 1 2 1 1 1 3 1 

N 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 

d(N,x ° ) 2 I 2 I I I 2 2 I 2 2 I I I 3 I I 

N 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 

~(N,x o ) I 4 I I I 21 I I I 2 2 I I 3 2 2 
i 

- Troisi@me cas : X est d'ordre 2. 

Dans ce cas d(N,X) = I , sauf pour la table d'exceptions que 

nous pr&sentons ci-dessous avec en premi&re colonne la valeur de N , 

en seconde colonne l'entier f (il est & remarquer que si X quadra- 

tique pair, alors X = (~) o4 f est son conducteur) ;dans la troi- 

si@me colonne on trouve d(N,X). 

N f d(N,X) N f d(N,x) 

32 8 2 108 12 2 
48 12 2 112 28 2 
64 8 2 1 28 8 3 
72 8 2 1 44 8 2 
80 5 2 1 2 2 
96 8 2 160 8 2 

12 2 5 2 
24 2 40 2 

100 5 2 176i 44 2 
I 

N f d(N,X) 

180 5 2 
192 8 2 

12 3 
24 2 

200 8 2 
5 2 

40 2 
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IV) Exemples. 

I ° ) Calcul de 

78 

dim[S3/2(Fo(108), (I--2))]. Remarque : (I_22) est le 

caract6re d'ordre 2 associ6 & l'extension ~(~)/~ ; son conducteur 

est 6gal & 12. 

On a : d(IO8,(I~2)) = 2 

b(IO8,12) = 15 

c(I08,12) = 12 

Donc : dim $3/2(Vo(IO8),(I-~2))= 2+15-12= 5 

(cf 36me table, 3e cas, exceptions) 

(26me table) 

(26me table) 

ou X est un caract~re 

= 2 

(16re table) 

(2~me table) 

(26me table) 

5 6 x 2 - 1 8 + 8  = 1 0 2  . 

2 ° ) Calcul de dim[Mg/2(Fo(156),X) ] 

d'ordre 19 et de conducteur 39. 

On a : 9 1 = 2k' +~ avec k' 

a( 1 56) = 56 

b(156,39) = 18 

c(156,39) = 8 

Donc la dimension cherch~e est 
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FACTEURS GAMMA ET EQUATIONS FONCTIONNELLES 

! 

par M.-F. VIGNERAS 

Introduction. 

On consid6re des s6ries de Dirichlet ~(s) de la forme 

(I) E a n -s , s6 C , a E ~ 
n n n>1 

v~rifiant une 6quation fonctionnelle : 

(2) {(s) =A -s Y(-s) , A>O 

avec les conditions suivantes : 

I) ~(s) converge pour Re s) assez grand vers une fonction non 

identiquement nulle. 

2) %(S) est une autre s~rle de Dirichlet v~rifiant I), de la 

forme (I), ~ (s) =nE)ibn n -s , s ~ C , b n E ~ . 

3) ~I (s), A2(s) sont des facteurs gamma 

G 

Al(S) = Z F(pfs+cf) 
(3) f=1 

~Z 

&2(s) = ~ F(pgS +Cg) 
g=G+1 

o~ G>~ I , H-G>~ I , les constantes cf , Cg sont des nombres complexes 

et les constantes pf , pg des nombres rationnels strictement positifs. 

On pose 
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4) Les fonctions 

(4) 

P = Pl +'''+ PH 

Pl PH 
P = Pl ×'''× PH 

• (s) = (2P~) -s/2 At(s) ~(s) 

Y(s) = (2P~) -s/2 &2(s) *(s) 

admettent des prolongements holomorphes & l'ext6rieur d'un ensemble 

born6, tels que pour tout ~I ' ~2 finis 

lim ~(~+it) = lim Y(~+it) = O uniform6ment pour ~I ~ ~ ~2 
Itl ~ Itl~ 

On dira que (A, 9(s) , &1 (s) , &2(s)) sont les donn6es de l'6qua- 

tion fonctionnelle v~rifi~e par ~(s). On a utilis& les notations de 

Bochner [1]. On remarquera que l'6quation fonctionnelle avec k-s , au 

lieu de -s , k E C 

~(s) = A -s Y(k-s) 

se ram6ne & une 6quation fonctionnelle du type pr&c6dent avec les 

donn~es (A,(2P~) -k/2 *(k+s), 61(s), &2(k+s)). 

Bochner ~tudie dans [I] les ~quations fonctionnelles des s~ries de 

Dirichlet g6n6rales, c'est-&-dire les ~quations fonctionnelles (2), 

v6rifiant I) & 4) mais o~ ~(s), %(s) ne sont plus astreintes & la 

condition d'etre de la forme (I) et sont des s6ries de Dirichlet g~n~- 

rales, de la forme : 

q0(s) = ~ a ~-s a E C O<l <~ .< I ~ 
i • 

(I ' ) n>~1 n n n I 2" " n 

~(s) = ~ b -s b 6C O<~i <~2...< ~ ~ 
n>~1 n n ' n ' n 

Nous d6montrerons dans le paragraphe I que les r~sultats de Bochner 

[ I] ont pour cons&quence les th6or6mes I et 2 suivants : 

Th~or&me I. Ii n'existe pas d'~quation fonctionne!!e v~rifiant I) & 4) 

I 
s__~i ~ pf ~ E pg ou si E pf < ~ . 
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Si l'on suppose : 

= I 
5) E pf = E pg 

les solutions des ~quations fonctionnelles s'obtiennent & partir des 

fonctions z~ta partielles 

~a,A(S) = ~ Inl -s ~_~,A(S)~ = E nlnl -s , a,AE N. 
nE~ nE~ 

n--a (mod A) n~a (mod A) 
n~O n~O 

Plus pr~cis~ment : 

Th~or~me 2. Soit ~(s) une s~rie de Dirichlet de la forme (I) v~rifiant 

une ~quation fonctionnelle (2) satisfaisant I) ~ 5). Alors, 

- les facteurs qamma de l'~quation fonctionnelle sont de la forme : 

s+c. s+c 2 
~1(s) = V(--~)f1(s ) &2(s) = 7(--~--)f2(s ) 

O_~U f1(s) e t f2(s) sont deux fonctions enti~res d'0rdre I et oQ c I 

e t c 2 sont deux nombres complexes v~rifiant : 

c1+c 2 = I o__uu 3 

- AEN 

- S i c1+c 2 = I , ~(s) 

fonctions : 

- S i c1+c 2 = 3 , ~(s) 

fonctions : 

est une combinaison lin~aire quelconque des 

~a,A(S+Cl) , a = O ..... A-I 

est une combinaison lin~aire quelconque des 

~a,A(S+Cl) , a = O, .... A-I 

Ce th~or&me admet le corollaire suivant qui peut s'interpr~ter 

comme une g~n~ralisation de la caract~risation de la fonction z~ta de 

Riemann par son &quation fonctionnelle, donn~e par Hamburger E4~ : 
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Corollaire I. Les s6ries de Dirichlet de la forme (I) v6rifiant une 

6quation fonctionnelle (2) satisfaisant I) ~ 5) sont les combinaisons 

lin6aires des fonctions L(s,x) de Dirichlet, o~ les caract6res X 

sont soit tous pairs, soit tous impairs. 

On rappelle que la fonction L(s,x) de Dirichlet est d6finie par 

(5) L(S,X) E X(n) n -s = , Re(s) > I 
n~1 

Pour son 6quation fonctionnelle voir [10]. 

La transformation de Mellin permet d'appliquer les r6sultats de 

Bochner [I] aux formes modulaires. Ii y a lieu de consid~rer les s~ries 

th~ta : 

8a,A(Z ) = E exp(2i~n2z) 8a,A(Z) = E n exp(2i~n2z) a,AE N. 
n ~ ~ n ~ 

n~a(mod A) n~a(mod A) 

Th6or6me 3. Soit f(z) = E a exp(2i~nz) une forme modulaire de poids 
n)O n 

k/2 (k ent~er) pour un qroupe de conqruence. Supposons qu'il existe 

un ensemble D fini d'entiers positifs, sans facteurs carr6s, deux 

deux distincts tel que a = 0 s_~i n n'est pas de la forme dm 2 , avec 
n 

d6 D , mE ~ . Alors, 

- k/2 = I/2 o_~u 3/2 . 

- S__~i k/2 = I/2 , f(z) est une combinaison lin6aire quelconque des 

s&ries th~ta 

8a,A(dZ) , d 6 D , a= 0 ..... A-I , AE ~ . 

- S_ii k/2 = 3/2 , f(z) es tune combinaison lin~aire quelconque des 

s6ries th~ta 

8a,A(dZ) , d6D , a=O ..... A-I , A6~. 

Les s6ries de Dirichlet peuvent v6rifier plusieurs 6quations fonc- 

tionnelles provenant des relations entre facteurs qamma, exclusivement 

(th6or6me 4 dun ° 4), paragraphe I). Ces relations sont donn6es dans 



83 

l'appendice 6crit par J.-P. Serre. 
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L'auteur remercie Jean-Pierre Serre qui 6nonga comme probables ces 

th6or6mes dans son eours de 1976-1977 au Coll6ge de France, et qui 

l'aida consid6rablement par ses suggestions. 

§I. D6monstration des th6or@mes I e__t 2. 

I) Un th@or~me de Bochner [I]. 

En ~tendant une idle de Siegel [8] pour d@montrer la caract~risation 

de la fonction z@ta de Riemann par son ~quation fonctionnelle, Bochner 

d~montre le th@or6me suivant ([I], th. 2.6, th. 3.2, th. 3.4), concer- 

nant les ~quations fonctionnelles des s@ries de Dirichlet g~n@rales 

avec p = A = I 

au voisinaqe de i 

au voisinaqe de -i 

oO l'on a pos@ 

Th@or6me (Bochner [I]). I) Soit p=A= I , il n'existe pas d'@quations 

fonetionnelles de s@ries de Dirichlet q6n6rales si E pf ~ E pg ou si 

la densit@ de Polya de l'une des suites (I ) o__uu (~ ) est nulle. 
n n 

pg I pour tout r g ~ assez qrand, 2) S__ii A = I e_!t E pf = E = ~ , 

l'@quation fonctionnelle (2) des s6ries de Dirichlet q@n@rales 

1 -s ~(s) = E b -s implique une relation de la forme ~(s) = E an n ' n n 

-2~ z 
(6) E b r e n = K (z) + E a ~-r ~r(Z/~n) 

n)1 n n r n>1 n n 

v@rifi@e pour z6 • , Re(z) >O , o~ K (z) est une fonction r@siduelle 
-- r 

holomorphe de log z e__tt ~r(Z), holomorphe pour Re(z) >O , admet pour 

seules sinqularit6s sur l'axe imaqinaire les points +i et l'on a : 

~ (z)~ C(iz+1) -~-r 
I 

(z)~ Ce -2~id (-1)H+G+r(-iz+1) -~-r 
r 

I 
Ch = Ch-2 ' h=1 ..... H 

G H H 
c 

f=1 f g=G+I g 2 g=G+1 g 



84 
Vi-6 

C est une constante d6pendant des donn~es A , ~(s), 9(s), ~I (s)' 

A2(s) et de r . 

La d~monstration de Bochner est suffisamment claire et ~l~gante 

pour qu'il ne soit pas utile de donner plus d'indications sur ce th~- 

or6me, quoiqu'il ne soit pas ~nonc6 exactement ainsi dans [I]. Les 

id6es principales sont les suivantes : par transformation de Mellin, on 

obtient la relation (6), puis on applique un th~or~me de Polya [5, p.89] 

et la th~orie classique de Frobenius-Fuchs ~ une certaine 6quation diff6- 

rentielle lin~aire v6rifi6e par ~r(Z). 

La remarque suivante sera essentielle : le membre de droite de la 

relation (6) admet sur l'axe imaqinaire pour seules sinqularit~s non 

nulles les points +i }~ tels que a #O . Au voisinaqe d'un des deux 
n n 

points $i Xn tels que a n ~O , il est 6quivalent 
o o 

l-r ~r(Z/l n ). an n 
o o o 

En effet, soit ~ E ~ et consid6rons la somme restreinte aux n 

tels que I n#~l : 

E' a ~-r ~r(i~/~n) " 
n>~1 n n 

Ii existe N(1)>O , tel que pour n>~N(l), on ait ll/ln] < I ; et une 

constante M(r)>O , telle que pour ]yl < ~ • l~r(iY) l <M(r). On suppose 

que r est choisi assez grand pour appartenir au domaine de convergence 

absolue de la s~rie E a ~-s . On en d~duit que la somme pr~c~dente 
n~1 n n 

est convergente, d'oQ la remarque pr~c6dente. 

On rappelle qu'une suite (mn) de nombres r~els strictement crois- 

sante a pour densit~ de PQiya 6 si 

lim (~n+1- ~ ) > O et si 6 = lira _~n 
n~ ~ n n-~ ~ n 
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2) Cons@quences du th6or6me de Bochner. 

a) Soit une @quation fonctionnelle satisfaisant I) ~ 4) avec 

les donn~es (A,~(s),~(s),A1(s),&2(s)) o~ ~(s) et ~(s) sont deux 

s~ries de Dirichlet de la forme (I) : 

%0(s) = Z a n -s @(s) = Z b n -s 
n>~ I n n>~ I n 

On voit facilement que l'~quation fonctionnelle ~crite en s est 
P 

une @quation fonctionnelle avec les hypotheses de Bochner pour les 

donn~es (j,~(s),~(s),A 1 (p),~2(~s)), o~ : 

~(s) = z a ~-s 7(s) : z b ~s 
n>~j n n ' n>1 n 

n = nl/p ' ~n : ~ (T)2~n I/p 

Les densit6s de Polya des suites (F~n) et (~n) sont bien 

d6finies et 6gales, selon les valeurs de p , ~ : 

0 si p<1 

I et A respectivement, si p = I 

si p> I 

Le th6or6me I r6sulte imm~diatement du th@or6me de Bochner. 

Examinons maintenant le cas d'une ~quation fonctionnelle (2) satis- 

faisant I) ~ 5). On se ram~ne aux hypotheses de la deuxi~me partie du 

th~or~me de Bochner en posant : 

l =n n 
n ~n=A " 

Le premier membre de la relation (6) est alors une fonction p6ri- 

odique de p@riode iA . Cette information jointe ~ la connaissance des 

sinqularit6s du deuxi6me membre sur l'axe imaginaire permettra d'obtenir 

le th6or~me 2. 

On se famine ~ ~+r 6 ~ , en remplagant ~(s) par ~(s+c) ou c 

est une constante convenable. En effet l'~quation fonctionnelle (2) au 

point s+c , est @quivalente 
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(2P~) -s/2 AI(S+C) <o(S+C) = A-S(2p~) s/2 A2(-S-C) (2P~/A)C~(-S-C) 

qui est une ~quation fonctionnelle du m~me type, associ6e & A=A, et 8: 

71(s) = ~1(s~) , Z2(s) = ~2(s-c) 

Z(s) = ~(s+c) , ~(s) = (2P~/A)C% (s-c) ; 

dont la constante ~ correspondante est 6gale ~ :+c . 

La p6riodicit&, de p6riode iA , et le fait que les pSles sur l'axe 

imaginaire sont tous de la forme Sin , n E [~ , montrent que A est un 

entier. 

Au voisinage d'un point in , tel que a n~O , le second membre de 

(6) est 6quivalent 

C a 
n 

n ( i z + n )  

et au voisinage de -in , 

C a 
n 

n ~ (-I)H+G+~ e-2i~d (iz_n)-C-r 

La p&riodicit& montre que si n~b (mod A), O~b~A-J , on a : 

b ~ : aA b(A_b)~( H+G+~ -2i~d (7) ann = a b _ -I) e 

En appliquant ~ (6) l'operateur z ~ f(z) , on obtient une relation (6') 

ayant les m~mes propri~t~s essentielles que (6) 
n -2~:z 

(6') E Zn (~)r e A = K (z) + E Z n -r ~r(Z/n). 
n>1 r n>1 n 

Le second membre de (6') est equivalent au voisinage d'un point in , 

tel que a ~ O 
n 

[ n ~ (_1)H+G+re2i~d (iz+n) -~-r 
n 

et au voisinage de -in , & 

a n ~ (-1)C+r (iz_n)-~-r 
n 

La p6riodicit6, de p6riode iA , du premier membre, montre que 

(8) ab b: (-I)H+G+r e2i~d = aA-b(A-b- )c (-I )c+r 

Les relations (7) et (8) montrent que 2d 6 ~ et que l'on a, pour tout 



87 Vi-9 

n m b (mod A) 

a n n = a b b ~ = (-I)H+G+~+2d aA_b(A_b)~ 

Nous d~montrons ainsi qu'il existe une constante c1 telle que 

~(s) soit une combinaison lin6aire, soit des fonctions z~ta partielles 

~a,A(S+Cl) , soit des fonctions ~ a,A(S+Cj) - 

3) Rappels sur les fonctions z~ta d'Hurwitz. 

Le fait que les fonctions z6ta partielles {a,A(S) et ~a,A(S) 

v~rifient une ~quation fonctionnelle avec les facteurs 

s+1 (s+3 
A1(s ) = F(~) &2(s) = F(T) et F, T) respectivement 

est d~ & Hurwitz ([IO]). On d6montre que les fonctions z~ta, index~es 

par ~ E ]O,I] , d~finies sur le demi-plan Re(s) > I par les s~ries 

Z(s,~) = E (n+~) -s 

n>~O 

admettent un prolongement analytique sur tout le plan, avec un pSle 

simple en s = I et v6rifient une ~quation fonctionnelle 

sin ~(~+2m~) 
Z(s,~) - 2r(1-s) ~ 

(2~) 1-s m= I m 1-s 
, Re(s) < O 

qui peut s'~crire sous la forme 

~s/27 (~) ~ ~s/2~ ( I -~+____~I ) ~ sin 2~m~ 
E cos 2nm~ + E 1-s 

Z(s,~) = 1-_~S m=1 m 1-s 1-s m= I m 
7 ( ~ ) ~  2 7(9-~-/-)~ 2 

On en d~duit l'~quation fonctionnelle des s~ries de Dirichlet 

a 
Ca,A(S) = AS(z(s,A ) + Z(s,1-~)) 

a a 
~,A(S) = As(z(s-1,~)-Z(s-1,1-~)) 

Ii reste ~ d ~ t e r m i n e r  l e s  f a c t e u r s  gamma p o u r  a e h e v e r  l a  d ~ m o n s t r a t i o n  

du th@or&me 2. 

4) Facteurs qamma des ~quations fonctionnelles. 

Une s~rie de Dirichlet ~(s) peut v~rifier plusieurs ~quations 

fonctionnelles provenant des relations entre facteurs gamma. On note F 
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l'ensemble des donn~es des ~quations fonctionnelles satisfaisant I) & 4) 

v~rifi~es par ~(s). On suppose F/~ , et on se donne 

(A,~(s),&1(s),&2(s)) 6 F . 

Afin d'~viter les changements triviaux d'~quation fonctionnelle, 

provenant de : 

(A,#(s) = E b n -s) ~ (AB , E b (nB) -s) 
n~1 n n~1 n 

on supposera que : 

, B entier, B~ 2 

6) Le p.g.c.d, des n tels que b /O est egal ~ I. 
n 

On notera ~ un nombre r~el positif, ~(s) une s&rie de Dirichlet 

satisfaisant 2) et 6), ~1(s), ~2(s) des facteurs gamma satisfaisant 3) ~. 

On note E le groupe des fonctions de la forme e as+b , a,b~ ~ (voir 

l'appendice (Serre)). 

~ ~ ,71 ),7 2 Th~or~me 4. Pour qu e (A,e(s) (s (s)) ~ F , il faut et il suffit 

que A=A e t qu'il existe f(s) E E , telle que ~(s) = f(O) ~(s) e__tt : 

(9) 
~I (s) ~2(-s) 

= f(s) ~ . 

On a alors : 

f(s) = f(O) (P)s 

~=p 

c~-~ c = ~ cf-E c 
g g 

D~monstration : On suppose que (~,~(s),~j (s),~2(s)) E F . On doit avoir 

~w 

 io) Is) c-sl 
- 

On peut d~terminer M , tel que pour Re(s) <-M , le second membre 

de (10) n'ait ni pSle, ni z~ro. Le hombre de pSles de &1 (s) dans 

Re(s)<-R est equivalent & R ~ Pf quand R tend vers l'infini, et 

&1 (s) ne s'annule pas. On en d6duit que E pf = Z p~ et d'apr~s le 
f 

th~or~me I, p=~ . On pose alors 

~ se d6finit comme x . 
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k = n I/p ~ 2~ <~q> I/p I{l I/p 
n ' ~n = ~ = bn 

de faqon & se ramener aux hypoth&ses de Bochner. On a alors pour r 

assez grand : 

-2~ z 
(11) E a xr e n =~r(Z)+ E ~ ~-r~r(Z 

n>~1 n n n>1 n bn /~n ) " 

Cela r&sulte de la relation (6) appliqu6e au couple (~(s),g(s)) 

au lieu du couple (~(s),t~(s)). Les fonctions ~r(Z), ~r(Z) ont respec- 

tivement les m&mes propri&t&s que Kr(Z), @r(Z). Le premier membre de 

(11) est d6termin& par ~(s). En particulier son comportement sur l'axe 

imaginaire est connu : 

a) ses singularit&s : +i ~ lorsque ~ ~0 
n n 

b) leur ordre : O+r 

c) le coefficient : D b m , o~ ~ est une constante 
n n 

ind&pendante de n . 

On d6duit de a) que lorsque ~ ~0 , il existe m~ I , entier, tel 
n 

= C I que b m~O et n bm ; est &quivalent & dire que n=m(~) I/p . La 

condition 6) implique A= A . 

On d&duit de b) que E %-E c = E cf-E c (se reporter & la 
g g 

d&finition de ~ , th6or6me de Bochner, paragraphe I). 

On d6duit de a), b) et c) que ~ = C b o~ C est une constante 
n n 

ind&pendante de n . Comme ~n= bn ' on a ~(s) =C %(s). La relation 

(10) s'6crit alors : 

s ) ~1(s) = c(p) ~2(-s 

La r~ciproque est imm&diate. 

Corollaire. A chaque couple (~1(s),~2(s) de facteurs qamma satisfai- 

sant 2) e__tt (9), correspond une et une seule &quation fonctionnelle de 

~(s) satisfaisant I) ~ 4) e__tt 6). 
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On introduit de nouvelles notations : soit a(z), z E ~ des entiers 

presque tous nuls, on pose pour s ~ • : 

G (s) = ~ F(s+z) a(z) , H (s) = G (-s) 
a z6¢ a a 

Un nombre rationnel q~O est dit admissible pour (gl (s),&2(s)) 

s'il existe f1(s), f2(s) E E et deux familles d'entiers a(z) ~0 , 

b(z) > 0 , presque tous nuls, tels que : 

&j(s) = Ga(qS) fl (s) , &2(s) = Gb(qs) f2(s) 

Les familles a(z), b(z) ainsi que les fonctions f1(s), f2(s) 

sont u n i q u e s  ( c f .  A p p e n d i c e ,  l e m m e  2 ) .  L e s  f o r m u l e s  d e  m u l t i p l i c a t i o n  
n - 1  

G a u s s  F ( n s )  = lI F ( s + ~ )  f ( s )  , f ( s )  I~ E , m o n t r e n t  q u e  d e  1 ' ensemble 
k=O 

des nombres admissibles est infini. 

Soit qE Q , un nombre admissible pour (&j (s),A2(s)) et 

(~1(s),~2(s)), la relation (9) est ~quivalente & 

O (s) = f(s) H (s) 
a-a b-b 

Serre a d&montr6 (appendice) : 

Th6or~me (Serre). Pour qu'un couple (~1 (s),~2(s)) de facteurs qamma 

satisfaisant 2), v~rifie la relation (9), il faut et il suffit qu.'~ 

existe un nombre qE Q admissible pour (&1(s),&2(s)) e__t (~1(s),~2(s)) 

tel que l'on ait les deux conditions suivantes : 

(~) pour tout z 6 C , E ~(z) - a(z) = 0 
o z~z (mod ~) 

o 

(~) pour tout z E C , ~(z) - a(z) +~(1-z) - b(1-z) = O . 

On dit que 2 couples de facteurs gamma (~1(s),~2(s)) et (Al(S), 
&2(s ) )  sont  & q u i v a l e n t s  mod E , s ' i l  e x i s t e  f l ( s ) ,  f 2 ( s )  6 E t e l s  que 

~1(s) = A1(s)f1(s) ~2(s) = A2(s)f2(s) . 

Ii est clair qu'il faut et qu'il suffit qu'il existe un nombre qE 

admissible commun tel que pour tout z ~ ¢ , on ait 

Elles d~pendent de q , bien entendu. 
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~(Z) = a(z) et ~(z) = b(z) 

Soit A les classes d'&quivalence des couples 

satisfaisant 2) et(9). 

(~1 (s),72(s)) 

Vi-13 

Corollaire. L'ordre de A est ~qal ~ I dans les cas suivants : 

a) II existe q6 Q admissible pour (~1(s),~2(s)) tel que 

pour tout z OE ¢ , tousles a(z) ou tousles b(-z), tels que z~ Zo 

(mod ~) soient nuls. 

s+1 r2 
b) II existe rl,r 26 N tel que At(s) = C(~)rIF(-~--) ~ e__tt 

~2(s )  = A I ( s + I ) -  

L'ordre de A est ~qal ~ 2 Ik-11 s'il existe k E ~ tel que 

A I (s) = T(s) , ~2(s) = V(s+k). 

Le cas a) implique & 6quivalence pr&s mod E , l'unicit6 des fac- 

teurs gamma des fonctions z~ta partielles Ca,A(S) et ~a,A(S) ainsi 

que des s~ries de Dirichlet associ&es aux formes modulaires de poids 

demi-entier. Le cas b) montre l'unicit6 des facteurs gamma des fonctions 

L d'Artin g~n&ralisant les fonctions L de Dirichlet. Le cas c) mon- 

tre que les s~ries de Dirichlet associ6es aux formes modulaires de poids 

entier k poss&dent, & &quivalence pr&s mod E , 2 k-1 &quations fonc- 

tionnelles. 

D~monstration du corollaire : 

a) Si tousles a(z) (resp. tousles b(z)) tels que z~ z ° 

(mod ~) sont nuls, la condition (~) implique qu'il enest de m~me pour 

tousles a(z) (resp. tousles ~(z)) et la condition (ee) implique 

que ~(1-z O) = b(1-z O) (resp. ~(1-z o) = a(1-Zo)). On d6termine ainsi 

tousles ~(-z) et ~(z) (resp. tousles ~(-z) et ~(z)) tels que 

z ~ z (mod ~). 
o 

b) Soit (~1(s),~2(s)) un autre couple de facteurs gamma. On 

peut d~terminer un entier n> I tel que ~n soit admissible pour ce 

couple. Pour ~ , les fami!les d'entiers a(z) et b(z) sont d~finies 
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par : 

k = O, I .... n-1 
a ( 2 k  ) . . 2 k + 1  , 2 k + 1  2 k + 2  ) 

~-~ = b[-~) = r I , a~--~) = b(-~- n -- = r 2 

a(z) = 0 et b(z) = 0 pour les autres z . 

On d&montre que (~1(s),~2(s)) est &quivalent modulo E 

s rl (s+1~r2 (s+1 .s+2.r2. 
(F(~) F,-~-. , F ,-~--)rIF~-~-) ) en v~rifiant que les relations (~) 

et (ee) admettent pour seule solution a(z) =a(z) , ~(z) =b(z) , pour 

~ 2k+I 
tout z E ~ . En effet, on voit facilement que pour z -- , ~ , on a 

a(z) =b(1-z)=0 ; on en conclut que a(z) =~(1-z)=0 gr[ee & (ee). Si 

z=~-2k ou 2k+In .... ' la relation (~) permet de voir que ~(z) =a(z) et 

Z(1-z) =b(1-z). 
~un nombre admissibl~ 1 1 

c) Le raisonnement est analogue : on montre que pour-- - < - n Ik~+2 

(n6 ~), les relations (*) et (**) admettent 2 !k-t1 solutions. On note 

X (resp. Y) l'ensemble des entiers compris entre 0 et n-1 (resp. 

1-k et n-k). Pour le nombre admissible ! , les familles a(z) et 
n 

b(z) sont d&finies par : 

0 z~ j/n , j E X ~0 z~ j/n , j E Y 
a(z) = b(1-z) = 

I z= j/n , j E X I z= j/n , j Ey 

On en conclut grace & (~) que pour z~ , j EXU Y , on a 

a(z) = ~(]-z) = 0 . Pour z = ~ , j E XN Y , on v~rifie facilement que 
o n 

si Z m z 0 (mod ~) alors z ~ ~ , j E X U Y , on en eonclut grace & (~) 

que ~(z O) = ~(1-z O) = I 

On a un bijection de Y-(XnY) sur X-(YnX) en posant j' = j + (sign k)n 

j~Y, j~X. Pour z = ] et z = j' , on &erit avee (~) les &galit&s 
n n 

~(z) +~(z' = 1 ~(1-z) +~(1-z ) = 1 

et avec (ee) les &galit&s 

a(z) +~(1-z) = I a(z') +~(1-z' = I 

Ce sont les seules relations que doivent v~rifier ces quatre 

entiers naturels. Elles sont ~quivalentes ~ : 
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a(z) = ~(1-z') a(z') = ~(1-z) ~(z) +a(z') = I 

Elles admettent deux solutions. Le nombre d'~l~ments de Y-(XnY) est 

k-1 . Le corollaire est d~montr&. 

Toutefois, si l'on cherche ~ d~terminer les couples de facteurs 

gamma admettant I comme hombre admissible, on s'apergoit qu'il n'y a 

que deux couples modulo E , repr~sent6s par (F(s),F(k+s)) et 

(U(s+1-k),T(s+1)). Ils proviennent de l'~galit~ F(s) F(I-s) = ~/sin ~s 

d'o~ on tire la relation 

F(s) F(1-s) = (-I) k F(s+k) r(1-k-s) 

Weil a utilis~ ces deux ~quations fonctionnelles pour retrouver des 

relations v~rifi$~ par les int~grales d'Eichler [9]. 

Probl~me : Existe-t-il des ~quations fonctionnelles avec ½ < E pf < I 

ou plus g6n~ralement avec E pf ~ n/2 , n 6 He ? 

§2. Le th. 3 sur les formes modulaires. 

La d~monstration a lieu en deux temps. On suppose d'abord que D 

a un seul ~l~ment. En utilisant la m~thode de Siegel [8~ pour la d~mons- 

tration du th~or~me de Hamburger (caract~risation de la fonction z~ta 

de Riemann par son ~quation fonctionnelle), ou plutSt la g~n~ralisation 

de cette m~thode de Bochner et Chandrasekharan[2~, on obtient une rela- 

tion du type (6), d'o~ on d~duit le th~or~me. Puis on raisonne par r~- 

currence sur le nombre d'~l~ments de D ; on utilise alors, de faqon 

essentielle que la "tordue" d'une forme modulaire est une forme modu- 

!aire. 

Premiere partie : D = {d} . 

On suppose que f(z) = E a exp(2i~n2dz) est une forme modulaire 
n~O n 

de poids k/2 (k entier) pour un groupe de congruence, de niveau N 

(pour une d~finition d~taill~e, se reporter & Shimura [77 ou 
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Serre-Stark [6]). 

Ii existe une forme modulaire g(z) = E b I exp(2i~nz) 
n~O n 

poids et de m~me niveau, telle que 

de m~me 

g(z) : z -k/2 f(-I/Nz) 

Cette relation 6crite au point z = ix/2 en posant b n = b~(i/2) k/2 I I 

d o n n e  : 

(12) E b exp(-~nx) : x -k/2 E a exp(-4~n2d/Nx) . 
n~O n n>~O n 

I) La transformation de Sieqel-Bochner-Chandrasekharan. 

Elle permet de transformer la relation pr6c6dente en une relation 

du type (6), c'est-~-dire avec un membre p6riodique et l'autre avec des 

p61es connus. L'id6e est d'utiliser les deux formules 616mentaires 

suivantes : 

(13) 

(14) 

exp(_~t2x_ ~a2/x) x½ dx exp(-2~at) a>O 
t 3o x = 

~ dx 
exp(-~ax) x -- = 7(~) (~a) -~ , a>O , ~E ~ 

On consid6re la fonction H(t,x) = t exp(-~t2x) et on multiplie 

chaque terme de la somme du deuxi6me men@0re de la relation modulaire 

(12) par x~-IH (t,x) , en posant ~ = k+!, En int~grant de 0 ~ 
o 2 " 

en x , on obtient : 

(15) t ~ an exp(_~t2x - 4~n2d/Nx) x½ dx _ ~) 0 -~ - an exp(-2~nt ~ . 

La s6rie de terme g~n6ral le second membre de (15) est absolument con- 

vergente pour t> O et d6finit par prolongement analytique une fonction 

holomorphe pour tE ~ , Re t>O . 

En effectuant la m~me op6ration sur chaque terme de la somme du 

premier membre de (12), on obtient : 

~ ~ dx (16) tb exp(-~(t2+n)x) x -- = tb 7(~)(~(t2+n)) -~ 
n O x n 

Si la s6rie de Dirichlet E b n -s converge absolument pour 
n>~1 n 

s=~ , la s6rie de terme g6n6ral le second membre de (16) d6finit une 
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fonction holomorphe pour tG¢ , Re t>O . Sinon, on utilise l'id6e de 

Bochner et de Chandrasekharan [2] , qui consiste & remplacer la fonction 

auxiliaire H (t,x) par sa d&riv&e en t d'ordre assez ~lev~ : on pose 
o 

d 2r 
Hx(t'x) = d~ H°(t'x) 

et on effectue les op&rations juste d~crites avec H (t,x) au lieu de 
r 

Ho(t,x). Le premier membre de (12) donne des termes de la forme 

d 2r 
(16r) r(~)~-~ bn d~ (t(t2+n)-~) 

Si r est assez grand, la s~rie de terme g~n~ral (16) converge 
r 

absolument, et d~finit sur tout compact ne contenant pas les pSles 

+i~ , si b n/O , une fonction holomorphe. Le second membre de (I 2) 

donne des termes de la forme 

~) an n exp(-2~nt ~) (15 r) (-2~ 4d 2r 2r 

qui d&terminent une s6rie absolument convergente pour t 6 { , Re t>O . 

Nous avons obtenu la proposition suivante : 

Proposition I. La relation (12)implique la relation suivante, pour tout 

r 6~ assez qrand : 

d 2r n~ 4~ 2r 
(17) ~ b (t(t2+n) -~) = (-2~ ~-~) 

n~O n d~ 

d 
2r -2 n ~  

E a n e 
n 

n ) O  

Une connaissance plus precise du comportement du premier membre aux 

pSles nous sera utile. On a par un calcul ~l~mentaire le r~sultat suivant: 

Lemme I. S_!i u = t-i~ tend vers O , on a 1 6quivalence suivante : 

(18) 
d 2r 

(t(t2+n) -~) ~ ½(2i~) I-~ [u-~-2r(-~)(-~-1)...(-~-2r+1) + 
dt 2r 

+ u1-~-2r (2-~)(I-~)(-~)...(-~-2r:2)]. 
2iV~ 

2) La d~monstration du th~or&me 3. 

On applique le m~me raisonnement que dans le paragraphe I, 2). Le 

second membre de (17) ~tant p~riodique, de p~riode i~4 ~ , on en conclut 

que si i~ est un pSle c'est-&-dire b n~O , alors i(~+~) est 
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aussi un pSle, donc est ~gal & i~Cmm , mEN . 

On doit avoir simultan~ment, d'apr&s (18) : 

~(2i~)I-~-~(2i~)I-~](-~)(-~-I)...{-~-2r+I) = 0 

( 2 i}Cnn ) -~ -~ . . . .  -~(2i~Fmm) (2-c~)(I-c~)(-~) (-cz-2r-2) = O 
I -~ I -~ 

La premi&re &galit& donne, car ~>O , b n 2 b m 2 = , et la 
n m 

seconde (2-~)(I-~) = O , c'est-&-dire ~= I ou 2 , ou encore k= I ou 

3 . On a : 

- si le poids k/2 = I/2 , b = b 
n m 

- si le poids k/2 = 3/2 , bn/~ = bm/~ . 

L'6galit& ~ = ~ + ~ d  implique que N/4d est un entier et que 

nN/4d est un entier. Apr&s avoir 6crit N = 4dd'A 2 , &criture unique si 

l'on suppose d et d' sans facteurs carr&s, on en d~duit que 

n=d'n~ o~ n I 6[q . On modifie alors les notations en &crivant bj ce 

que l'on avait not~ b n , si n = d' j2 . On conclut que : 

- g(z) est de poids k/2 = I/2 ou 3/2 

- g(z) = E b exp(2i~n2d'z) 
n 

n~O 

= bn+ A , = - si k/2 = I/2 , on a b n et si k/2 = 3/2 on a b n nb n 

avec b ' n = bn+A 

Autrement dit, g(z) est une combinaison lin6aire soit des ea,A(d'z), 

soit des 8a,A(d'z). Le th&or&me s'obtient en utilisant la sym~trie en 

f(z) et en g(z) de (12). 

Deuxi~me partie : r&currence sur le nombre d'~l&ments de D 

I) Trois lemmes. 

Lemme 2. Etant donn&s deux nombres entiers d>~ I , d'>~ I , distincts et 

sans facteurs carr~s et deux siqnes E =-+I , ~' =-+I , il existe une 

d '  
infinit~ de nombres premiers p tels que ( ) = ¢ e__~t (7) = ¢' 

R~f~rence : Borevitch-Chafarevitch [3] p. 383 exercice 4. 
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Pour tout entier N>~ I , on note : 

{ ab ab 10 N} 
~(N) = (c d) 6 SL2(~) , (c d) ~ (O i) mod 

C d ) (c d ) -= (0 I ) mod 

Lemme 3. S_~i f(z) = E a exp(2i~nAz) est une forme modulaire de poids 
n~O n 

k/2 pour F(N), alors g(z) = f(z/A) est modulaire pour ~I(N/(N,A)) 

si le poids est entier, et pour FI(N/(N,A)),~ si le poids est demi-entier. 

D~monstration : On a 

- g(z) = g(z+1) 

A O { a b)E SL2(~) - si ~ = (0 1 ) , alors SL2(~) N ~-IF(N)~ = (c d 

b~O mod NA , c ~0 mod N/(N,A)} 

Le groupe engendr& par ~-Iv(N)~ et (O ) est le groupe 

FI(N/(N,A)). On en d&duit le lemme si le poids de f(z) est entier. Si 

le poids est demi-entier, soit 8(z) = Z exp(2i~n2z) la s&rie th~ta 
I n>O 

usuelle de poids ~ . Le lemme est vrai pour la forme modulaire 

8(Az)f(z) de poids entier k+__~1 de niveau 4AN/(4A,N) donc 
2 ' 

8(z)f(z/A) est modulaire pour FI(N/(~,A)). On en d&duit le lemme. 

Lemme 4. S__~i f(z) = E a exp(2i~nz) une forme modulaire de poids 
n~O n 

k/2 , de niveau N , et si X est un caract&re de conducteur M pre- 

mier & N , alors f~x(z) = E a x(n) exp(2i~nz) 
n n>~o 

laire de poids k/2 , de niveau NM 2 

est une forme modu- 

R~f~rences : [6, §7] et [7, §5~. 

2) La d~monstration du th&or&me 3. 

On suppose que les hombres n2d tels que a 2 ~ O sont premiers 
nd 

entre eux. Si ee n'est pas le cas, on remplace f(z) par f(z/A) o~ 

A est le p.g.c.d, de ces nombres (lemme 3). L'ensemble D est remplac~ 

par {d/6, dE D, 8 = p.g.c.d.{d,d6 D}} , mais son nombre d'61~ments 

reste le m~me. 
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Soient d et d' deux 61~ments distincts de D . 

Ii existe (lemme 2) une infinit~ de hombres premiers p tels que 

= I , (~) =-I . On choisit un tel nombre p , assujetti en outre 
(~) d" 

~tre premier au niveau N , et ~ tousles ~l~ments de l'ensemble fini 

D . L'application d ~ (p) d~finit une partition de D en deux sous- 

ensembles D I et D 2 non vides. Les deux fonctions : 

fl (z) = 2 E Z a 2 exp(2i~n2dz) 

dED I (n,p)=1 n d 

f2(z) = 2 E E a 2 exp(2i~n2dz) 

d6D 2 (n,p)=1 n d 

respectivement la somme et la difference des formes modulaires (lemme 4) 

P est le caract~re trivial modulo p , sont F.X O(z) et F~( ) (z) , o~ 7. 0 

des formes modulaires de poids k/2 , de niveau Np 2 . Elles ne peuvent 

pas ~tre toutes les deux nulles, sinon tousles nombres n tels que 

a /0 seraient divisibles par p , ce qui est contraire ~ l'hypoth6se 
n 

que nous avons faite. Par r~currence, on en d6duit que le poids est 

k/2 = I/2 ou 3/2 . 

Pour chaque d , tel que l'un des a 2 , avec (n,p) = I , est non 
n d 

nul, on a 4dlNp 2 , d'oCl 4diN puisque p~4d . La grande libert~ de 

choix des nombres p nous permet de choisir pour tout n2d tel que 

a 2 ~ 0 , un nombre p tel que (n,p) = I . Ceci montre que les 616- 

n d 
ments 4d , d E D divisent N . 

Soit d E D , on pose N = 4dd'A 2 , o~ d' E ~ est sans facteurs 

carr~s, et on note aj ce que l'on avait not~ a n , si n = j2d . Soit 

n , tel que a n ~ O ; on choisit deux nombres premiers p et q dis- 

tincts, premiers ~ n et n+A , avec les propri~t~s pr~c~dentes. Enfin 

soit ~,~ E ~ tels que lp+~q = I 

- si k/2 = I/2 , on a par r~currence, an+~A p a n (car (n,p) = I) , 

mais on a aussi par r~currence, an+~A p = an+ A (car (n+A,q) = I et 

~Ap + ~Aq = A) donc a n an+ A ; 

- si k/2 = 3/2 , on raisonne de m~me avec a n an/n 

On en conclut le th~or~me 3. 
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Appendice (J.-P. Serre) 

Relations entre facteurs qamma 

I. Relations entre sinus. 

La variable est not6e s . Je d6signe par E le groupe des fonc- 

tions de la forme e as+b , a,b6 ~ , autrement dit le groupe des fonc- 

tions enti6res d'ordre I sans z~ro. 

Consid~rons un produit 

sin ~(s+z) a(z) = F (s) , 
z~ a 

ou les a(z) sont des entiers, nuls sauf un nombre fini d'entre eux. 

Lemme I. Pour que F (s) appartienne ~ E , il faut et il suffit que a 

la condition suivante soit satisfaite : 

(.) pour tout z E ~ , on a E a(z) = O . 
o z~z (mod ~) 

On a alors F (s) = ~I o 
a 

Ii est clair que Fa(S) appartient ~ E si et seulement si Fa(S) 

n'a ni z~ro ni pSle. Or l'ordre de F (s) au point -z est ~gal ~ la 
a o 

somme des a(z) pour z~ z (mod ~) : on trouve bien la condition (*). 
o 

as+b 
Si cette condition est satisfaite, F est de la forme e , et, a 

comme F (s) est p~riodique de p~riode 2 , le hombre a est de la a 

forme ~iN , avec N 6 ~ . Si l'on prend s de la forme it , avec t 

b-ntN d' r~el ~ +~ , il s'ensuit que F (it) = e . Mais autre part, on a a 

sin ~(s+z)~ e~te-i~z/(-2i) pour s=it , comme on le voit facilement. 

On en conclut que F (it) est 6quivalent ~ (e~t/(-2i))Se -i~A , o~ 
a 

S = E a(z) , A = E za(z) . Vu (*), on a S=O (c'est clair), et 
zE¢ zE~ 

AE ~ (regrouper les termes za(z) correspondant & une classe donn6e 

z mod.~ , et remarquer que la somme partielle en question est ~gale 
o 

E(Z-Zo)a(z) , qui est un entier). On obtient finalement Fa(S) = (-I) A, 

d'o~ le r~sultat cherch~ (avec en prime la d~termination du signe). 
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~is 
Variante. On aurait pu aussi tout exprimer en terme de T = e 

faqon ~ avoir une fonction rationnelle de T . 

de 

Reformulation du lemme I. Consid~rons le groupe ab61ien form~ par les 

a = (a(Z))zE ~ tels que F (s) E E . Le lemme I est ~quivalent ~ dire a 

que ce qroupe est enqendr~ par les a du type suivant : a(z)=O pour 

z/z O , Zo+1 , a(z O) = I , a(Zo+1) =-I . En d'autres termes (plus par- 

lants et moins precis) toute "relation F (s)E E" est consequence des a 

"relations ~l~mentaires" 

sin ~(S+Zo)/Sin ~(S+Zo+1) = -I 

2. Relations entre les F(s+z). 

Ii n'y en a pas : 

Lemme 2. Soit a(z) une famille d'entiers presque tous nuls. Pour que 

le produit 

G (s) = H F(s+z) a(z) 

a zE~ 

appartienne ~ E , il faut et il suffit que tousles a(z) soient nuls 

(auquel cas le produit en question n'a aucun m~rite ~ ~tre 6gal & I ..~. 

Supposons que les a(z) ne soient pas tous nuls, et soit X l'en- 

semble (fini) des z tels que a(z) /O . Soit z E X un ~l~ment tel 
o 

que Re(z O) ~ Re(z) pour tout z E X . On ne peut avoir 

-z = -z-n , avec z E X , n entier ~ O , 
o 

que si z= z O , n=O . On en conclut que le point -z ° ne peut ~tre un 

pSle d'aucune des fonctions F(s+z), zE X - {z O} . Iien r~sulte que 

l'ordre de Ga(S) en -z O est ~gal ~ -a(z O) ~O , ce qui montre bien 

que G (s) n'appartient pas & E . a 

3. Relations entre les F(s+z) et les F(-s+z). 

On va consid~rer deux familles a(z) , b(z) comme ci-dessus, et 

s'int~resser aux fonctions 
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G (s) = ~ F(s+z) a(z) , Hb(S) = N r(-s+z) b(z) 
a z6~ z6C 

Th~or&me. Pour qu'il existe f(s) E E tel que 

Ga(S) = f(s).~(s) , 

il faut et il suffit que les deux conditions suivantes soient satis- 

faites : 

(e) pour tout z E ~ , on a 
o z~z (mod ~) 

o 
(~) a(z) +b(1-z) = O pour tout z6 C . 

On a alors f(s) = ~I 

a{z) = o ; 

On va, bien s~r, se servir de la relation F(s)T(J-s) = T/sin ~s . 

En remplaqant s par s+z , elle donne 

F(s+z)~(-s+1-z) : ~/sin ~(s+z) 

Convenons de noter a' la fonction d6finie par 

a' (z) = a(1-z) 

et d~finissons de m~me b'. L'identit~ ci-dessus donne : 

= ~A/Fa(S) o~ A = E a(z) Ga(S).Ha, (s) 
zE¢ 

Ceci ~tant, supposons que l'on ait Ga(S) = f(s).~(s) , avec f(s) E E . 

En multipliant par Ha, , on en tire : 

~A/Fa(S) = f(s) .Ha, (S) 

Mais le membre de droite n'a pas de z~ros et pas de pSles pour 

Re(s) ~ M , avec M convenable, alors que le membre de gauche est 

p~riodique de p~riode 2. Iien r~sulte que les deux membres n'ont ni 

z~ro ni pSle. On en conclut qu'ils appartiennent ~ E . En particulier, 

d'apr~s le lemme I, On a la condition (~), A=O , et F = ~I . Et, a 

d'apr&s le lemme 2, on a a'+b = O , ce qui est justement la condition 

(ee). On en conclut que f(s) = Fa(S) = ~I (et on sait d~terminer le 

signe). 
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Inversement, supposons (e) et (~) v&rifi&es. On a 

Ga.H a, = I/F a = -+I d'apr&s le lemme I .Comme I/H a, = H b , on voit bien 

que a a = - + ~  . 

Reformulation. Iei encore, on peut reformuler le th6or&me en disant que 

les relations Ga/H b6 E sont cons&quences des relations &16mentaires 

r (S+Zo) F (S+Zo+1) = -r (-S-Zo) F (-s+1 -z o) 
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Introduction 

For over a hundred years it has been known that there exist identities 

expressing the coefficients of certain modular forms as finite sums involving 

class numbers of imaginary quadratic fields; these identities, the so-called 

"class number relations," arose classically in the theory of complex multipli- 

cation but have reappeared since in several other contexts, e.g. in the Eichler- 

Selberg formula for the traces of Hecke operators and in the calculation of 

intersection numbers of curves on Hilbert modular surfaces [8]. Recently 

Cohen [~ , using Shimura's theory of modular forms of half-integral weight, 

constructed modular forms whose Fourier coefficients are given by finite sums 

similar to those occurring in the class number relations, but with the class num- 

bers replaced by values of Dirichlet L-series (or equivalently, of zeta functions 

of quadratic numbe~ fields) at integral arguments. In this paper we construct 

modular forms whose Fourier coefficients are given by infinite sums of zeta 

functions of quadratic fields, now at an arbitrary complex argument. The 

result includes both the classical class number relations and the modular forms 

constructed by Cohen, and further provides an expression for the latter as 

linear combinations of Hecke eigenfunctions f(z), the coefficients being certain 

values of the associated Rankin zeta functions ~ a(n)2 (where fiT(n) = 
S 

n=l n 

a(n)f ). From this we obtain formulas for the values of the Rankin zeta function 

at integral values within the critical strip, a typical identity being 

T(n)  2 2 420 29 ~(9)  (l)  
n=l n 20 245 20! ~ ~(18)  ( A , ~  , 

where ~(s) is the Riemann zeta function, A(z) = ~ T(n) e 2~inz the 

n=| 

discriminant function, and (A,A) the Petersson product of A with itself. As 

another corollary of the main identity we obtain a new proof of a recent result 

of Shimura [21] on the holomorphy of the Rankin zeta function. Finally,by combin- 
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ing the method developed in this paper with the results of [2 4 we obtain 

applications to the Doi-Naganuma lifting from modular forms of Nebentypus to 

Hilbert modular forms in two variables and also to the mapping in the other di- 

rection which was constructed in [~ in terms of the intersection numbers of 

modular curves on Hilbert modular surfaces. In particular, we give partial re- 

suits in ~he direction of the conjecture made in [8] that these 

two maps are adjoint to one another with respect to the Petersson scalar product. 

In § | we describe the main result of the paper, namely the construction of 

a modular form whose Fourier coefficients are infinite linear combinations of 

zeta functions of quadratic fields (with Legendre functions as coefficients) 

and whose Petersson product with an arbitrary Hecke eigenform is the correspond- 

ing Rankin zeta function. We also show how this can be used to obtain identities 

for special values of the Rankin zeta function like the one cited above and discuss 

the relationship between these identities and other known or conjectured 

results on the values at integral arguments of Dirichlet series associated to 

cusp forms. In § 2 we reduce the proof of the main result to the evaluation 

of an integral involving kernel functions for Hecke operators. This integral 

is calculated in § 3, while § 4 contains the properties of zeta-functions and 

Legendre functions which are needed to deduce identities like (1) above. In 

§ 5 we describe an alternate method for proving such identities by expressing 

the product of a theta series and an Eisenstein series of half-integral weight 

as an infinite linear combination of Poincar& series. The applications to 

Hilbert modular forms are contained in § 6. 

Note: The identities expressing ~a(n)2n -5 for special integral values 

of s in terms of (f,f) and values of the Riemann zeta function have been 

discovered independently by Jacob Sturm (Thesis, Princeton 1977). 
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§ 1 Identities for the Rankin zeta function 

We use the following notation: 

H = {z = x + iyly > O} 

on H, 

jk(7,z) = (cz + d) -k 

(flk~l(z) = 

the upper half-plane, dV = dx dy 
2 

Y 

ab 
(Y= (c d ) ~ SL2(R)' k e 2, z 6 H), 

jk(y,z) f(yz) (f any function on H). 

the invariant metric 

Throughout §§ | - 4 we restrict ourselves to modular forms for the full 

modular group F = SL2(Z)/{±|} ; the results could be generalized to arbitrary 

congruence subgroupS, but this would involve considerable technical complication 

and no essentially new ideas. We denote by 

the space of cusp forms of weight k on F, 

scalar product 

(f,g) = ~ f(z) ~ yk dV 
F\H 

and by {fi}bgiidim Sk the basis of S k 

eigenforms, with 

k an even integer >2, by S k 

equipped with the Petersson 

(f, g £ Sk), 

consisting of normalized Hecke 

fi(z ) = ~_~ ai(n ) qn, ai(1) = I, fi IT(n) = ai(n) fi 
n-I 

(where as usual 2~iz) 
q = e . For each normalized Hecke eigenform f ( z )  =~a(n) qn 

we set 

- -s -I - 2 -s.-I 
(2) Df(s) = ~ (I - U~ P-S)-I(I - Up ~pP ) (I - Up P ) 

P 

where the product is over all primes and Up, ~p are defined by 

k-I 
Up + ~p ffi a(p), C*p ~p " P 

(Re(s) > k) ,  

(by Deligne's theorem, previously the Ramanujan-Petersson conjecture, the numbers 

Up and Ep are complex conjugates). The function Dr(S) is related to the 

Rankin zeta function by 
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(3) Df(s) = ~ (2s-2k+2) 
~'(s-k+ I ) 

a(n)  2 
s n=l n 

and hence, by the results of Rankin [17], has a meromorphic continuation to 

the entire complex plane, satisfies the functional equation 

/s-k+2x ffi D ; ( 2 k - l - s ) ,  (4) D; ( s )  = 2-sw -3 s /2  £(S) £~=--~--=)Df(s) 

and is related to the norm of f in the Petersson metric by 

= ( k - l ) !  
(5) ( f , f )  22k_ 1 wk+l Df(k) .  

For the statement of the main identity we will also need a certain zeta 

function, defined as follows. Let A be any discriminant, i.e. A E Z and 

A E O or I (mod 4). We consider binary quadratic forms 

¢(u ,v )  = au 2 + b u v  + cv 2 (a ,  b,  c E ~) 

with discriminant I¢I = b 2 - 4ac - A. The group F operates on the set of 

such forms by Yo¢(u,v) = ¢(au + cv, bu + dv) (y= (a b) e r) the number of 
c d 

equivalence classes being finite if d ~ O. We define 

>2 ) '  (6) ~(S,A) = . ,  I (Re(s)  > ]), 
I mod£ (m,n)~Z2/Aut(~) ¢(m,n) s 
¢{- A ¢(m,n)>  o 

where the first sum is over all F-equivalence classes of forms ~ of discriminant 

A and the second over inequivalent pairs of integers with respect to the group 

of units Aut(~) = {yEFI7~ = ¢} of the form. If A is the discriminant of 

a (real or imaginary) quadratic field K, then ~(s,A) coincides with the 

Dedekind zeta function ~K(S) (the first sum corresponds to the ideal classes of 

K, the second to the ideals in a given class, with ¢(m,n) - N(Z~)), while 

~(s,&) for A = I and A = O is equal to ~(s) 2 and to ~(s) ~(2s-l), 

respectively. If A = Df 2, with D equal either to I or to the discriminant 

of a quadratic field and f a natural number, then ~(s, A) differs from 

~(s,D) only by a finite Dirichlet series. Thus in all cases ~(s,A) is 
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divisible by the Riemann zeta function, i.e. 

(7) ~(S,A) = ~ ( s )  L(s ,A)  

where L(s,A) is an entire function of 

which case L(s,&) has a simple pole at 

and residue I otherwise). 

s (unless A is a perfect square, in 

l 
s = I with residue ~ if A = 0 

Finally, for real numbers 

1 
< Re(s) < k we define 

Ik(A,t;s) = ~ S 
0 -o0 

(8) 

A and t satisfying A < t 2 and s C ~ with 

k+s-2 
Y dx dy 

(x 2 + y2 + ity - ¼A) k 

k+s-2 , 

r ( k )  0 (y2 + i t y  - ~ ) 
dy , 

where the second integral converges absolutely for I - k < Re(s) < k (unless 

A = O, in which case we need ½ < Re(s) < k) and can be expressed in terms of 

the associated Legendre function pk-l t (~) (see § 4). We can now formulate the 
S-| 

main result. 

Theorem l: 

(9) 

where L(s, A) 

Let k > 2 be an even integer. For m = 1,2,... and s £ ¢ set 

k(t 2 - 4m,t;s) + ~(t 2 - 4m, -t;s) L(s,t 2 - 4m) 
t=-co 

"[_l)k/2 r(k+s-l) ~(2s) u k-s-I if m u 2 
22s+k-3 s-l = , u > O, + ~ ~ r(k) 

0 if m is not a perfect square, 

and Ik(A,t;s) are defined by equations (6), (7) and (8). Then 

i) The series (9) converges absolutely and uni.forml ~ for 2-k< Re(s)< k-l; 

ii) The function 

~, 2~imz 
(IO) ~s(Z) = Cm(S) e (z E H, 2-k<Re(s)< k - l) 

m=l 

is a cusp form of weisht k for the full modular sroup; 

iIi) Let f ~ S k be a normalized Hecke eigenform. Then the Petersson product 



Za-7 

111 

of ~ and f is given by 
s 

(11) (Os,f) . Ck r(s+k-I)  Df(s+k-l) 
(4~) s+k- I 

whet e Df(s) is defined by (2) and 

(_|)k12 
(12) Ck 2 k-3 (k-l) 

We must say a few words concerning assertion i). If t 2 - 4m is a perfect 

square, then L(s, t 2 - 4m) has a pole at s = l, as mentioned above. However, 

for t 2 - 4m ~ 0 the coefficient [& (t 2 - 4m, t; s) + Ik(t2 - 4m, -t; s~ 

has a simple zero at s = I (or any other odd integral value between O and k), 

as we will show in § 4, so the expression [~(t 2 - 4m, t; s) + ~(t 2 - 4m, -t; s)] 

L(s, t 2 - 4m) makes sense even at s - l, and the sum of these numbers as t 

runs from -~ to ~ is absolutely convergent. Similarly, if m is a square 

l 
then the second member of (9) has a simple pole at s = ~, but in this case the 

terms t = ±2~m in the first sum involve the function 

~ s  r(s-½) r(k-s) t ls-  k 
413) Ik(O;t ;s)  + Ik(O,- t ; s )  = 2~(-I) k/2 cos -~- r(k) r(½) ] 

which also has a simple pole at s = ½, and the two poles cancel; then i) 

states that the sum of the other terms of the series (9) is finite. Thus the 

expression defining Cm(S) is holomorphic in the region 2-k < Re(s) < k-l. 

From equation (ll) we deduce that Df(s+k-l) is also holomorphic in this region. 

On the other hand, the Euler product defining Dr(S) is absolutely convergent 

for Re(s) > k, so Dr(S) is certainly holomorphic in this half-plane and, by 

the functional equation, also in the half-plane Re(s) < k-l. Theorem I therefore 

implies the following result, which was proved by Shimura [21] in |975 by a different 

method. 

Corollary | (Shimura): The function Df(s) defined by (2) has a holomorphic 

continuation to the whole complex plane. 
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(14) 

or to 

Secondly, we observe that statement iii) of Theorem I characterizes the 

cusp form ~s' since the space S k is complete with respect to the Petersson 

metric. Indeed, since the eigenfunctions f. form an orthogonal basis of Sk, 
l 

equation (ll) is equivalent to 

dims k 

~s(Z ) . Ck r(s+k-l) ~ 1 Df(s+k-1) fi(z) 
(4~) s+k-I = (fi'fi) i 

(15) 
dim Sk" ai(m) Df(s+k-1) . 

Cm(S ) = Ck r(s+k-1) > ~ i 
(4~) s+k-I i-I 

In particular, if we take s = I and use formula (5), we find 

dim S k 

(16) Cm(1) = ~ C k i ~ l  ai(m)' 

On the other hand, the Fourier coefficients 

at the same time their eigenvalues for the 

ai(m) of the functions f. 
I 

m th Hecke operator T(m), so 

d•, sk , ai(m) = Tr(T(m), Sk). 
i=l 

are 

Thus Theorem 1 includes as a special case a formula for the trace of T(m). To see 

that this agrees with the well-known formula of Selberg and Eichler, we must inves- 

tigate the various terms of (9) for s = I. If t 2 - 4m is negative, then (as 

we will show in § 4) 

- mk-I [~(t2_4m, t;l) + Ik(t2-4m,t;l)] c k l  

(17)  

! ~ ( t ,m) ,  = -4 Pk,I 

where 

(18) 

a n d  

(19) 

k - 2  ! 
Pk~l  ( t i m )  ~ c o e f f i c i e n t  o f  x i n  2 I - tx+mx 

k - I  - k - I  =P  - p  (p + ~ = t, p~ =m) 

L(!,t2-4m) = ~(4m-t2) -~H(4m-t 2), 
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where (with the same notation as in (6)1 

( 2 o 1  

(This equals 

and -n/f 2 

H ( n )  = 
mod F Aut(~) (n > O). 

i~i=-n 

2~. h',(-n/f2) , where the sum ranges over f > O such that f21n 
w(-n/f 2) 

is congruent to O or l modulo 4 and h(A), w(A) denote the 

class number and number of units, respectively, of the order in ~(~) of dis- 

criminant A.) If t 2 - 4m > O, then the coefficient ~(t2-4m, t;s) + 

~(t2-4m,-t;s) vanishes at s = I, as mentioned above, so the contribution of (9) 

is 0 unless L(s,t2-4m) has a pole at s = I, i.e. unless t2-4m is a perfect 

square. In this case, we will show that 

lim - m k-| S÷ l Ck I [Ik(t2-4m, t;s) + ~(t2-4mrt;s)] L(s,t2-4m) 

( 2 1 )  

= 4 =u, u>O). 

Notice that there are only finitely many t with t2-4m a perfect square, and 

that they are in l:l correspondence with the positive divisors of m: 

t 2 - 4m = u 2 <==~ m = dd', d, d' = Ii ill 
+ 

U 

2 

Therefore the series (9) for s = | becomes a finite sum and we obtain 

Corollary 2 (Eichler, Selberg): 

, 2  Tr(T(m), Sk) = - ~ teZ 

t2<4m 

t 
k - I  
i iT  

+ 

o 

where Pk,l(t,m) and H(4m-t 2) 

For k > 2 an even integer~ m > 1 

I ~ min(d,d, )k-I Pk, l(t,m) H(4m-t 2) - 

dd'~m 
d,d'>O 

k-2 u 2 
u if m= , u> O, 

if m is not a perfect square, 

are defined by equations (18) and (20). 

It is perhaps worth remarking that we could have obtained the trace formula 

by specializing Theorem | to s = 0 instead of s = I. At s = O, the c~- 

efficient [Ik(t2-4m,t;s) + Ik(t2-4m~t;s)~ does not vanish for any t, but 
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L(t2-4m,O) is zero whenever t2-4m is positive and not a square, so again we 

get a finite sum. 

If we specialize Theorem 1 to s = r (or s = 1 - r), where r is an odd 

integer between I and k - l, then again the terms with t2-4m> O vanish 

(including those for which t2-4m is a perfect square, if r > |), and the series 

defining Cm(S ) reduces to a finite sum. In this case we recover the modular 

forms constructed by Cohen ~]. We recall his result. 

For r ~ I, r odd, Cohen defines an arithmetical function H(r, N) which 

generalizes the class number function H(N) = H(I, N) introduced above. The 

function H(r, N) is defined as ~(I - 2r) if N = O and as a simple rational 
o o  

multiple of ~-r Z (~_NN) n-r if N > O, N E O or 3 (mod 4). It is related 
n=| 

to the function L(s,A) defined above by 

I 

(22) H(r, N) = (-l)(r-l)/2 (r-l)! N r-~ L(r,-N) (r ~ I odd, N ~ O) 
2r-I r 

or, even more simply, by 

(23) H(r, N) = L(! - r, -N) ( r  ~ I o d d ,  N £ Z ) .  

Then :  

Theorem (Cohen ~3], Theorem 6.2): Let 3.< r~< k - l, r odd, k even, and set 

( 2 )  ~,__ 2Z imz 
(24) Ck,r(Z) = m=O t6. Z Pk,r(t,m) H(r,4m-t 2) e (Z 6. H), 

t2~< 4m 

where Pk,r(t,m) is the polTnomial defined by 

(25) Pk,r(t,m) = coefficient of x k-r-I in 1 
(1 - t x  + rex2) r 

(Gegenbauer polynomial). Then Ck, r is a modular form of we.i~ht 

modular group. If r < k - l, it is a cusp form. 

We shall show in § 4 that, for r = |,3,5,...,k-|, 

k for the full 
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(26) 

- mk-I [ik(tZ-4m, t;r ) + Ik(t2-4m,-t;r)] Ckl 

I (_ ~)(r+l)/2 (4m_t2)r-~z F(k-r) F(r) 
r(k-~) 

0 

Pk,r(t,m) if t 2 < 4m, 

if t 2 ~ 4m. 

Together with (22), this shows that the series ~r(Z) 

multiple of the function (24) if 3 $ r ~ k - 3. For 

edge of the strip in which the series (9) is absolutely convergent. 

show in § 4 that 

~+1 k 
lim Cm(S) (-|) ~ H(k-l,4m-t 2) 

s'+k-I 2 k-! (k- | ) !  t 2 ~ 4m 

(27) 

(where Ok_l(m) = 

defined by (|O) is a 

r = k - l we are on the 

We will 

2~ rCk-~)r(~) ~(2k-2) (m) 
- k--"T " r(k) ~(k) Ok-I 

~.d k-I as usual), so that in this ease the cusp form 
dLm 

~k_l(Z) - lim ~ (z) is a linear combination of Cohen's function Ck,k_ I and 
s÷k-I s 

the Eisenstein series of weight k. Thus Cohen's theorem is a consequence of 

statement ii) of Theorem I, while statement iii) implies the following result: 

Theorem 2: Let r, k be integers with 3 ~ r ~ k - |, r od ~, k even. The 

Petersson product of the modular form Ck, r defined by (24) with an arbitrary 

Hecke ei~enform f C S k is given by 

(r+k-2)!(k-2)l ! Df(r+k-I), (28) (f" Ck,r) = - (k-r-I)!  4r+k-2 2r+k- I  

where Dr(s) is the function defined by (2). 

Since the Fourier coefficients of Ck, r are rational numbers, Ck, r is a 

linear combination of eigenforms with algebraic coefficients, and we deduce : 

Corollary: Let f be a Hecke eigenform in Sk. The values of Df(s)/~ 2s-k+! 

for s = k, k ÷ 2, k + 4,..., 2k - 2 are al~ebraic multiples of (f, f). 

(The case s = k is a consequence of equation (5) rather than (28).) By virtue 

of the functional equation (4), the numbers Df(s)/~s(f,f) (s - |,3,5,...,k - |) 
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are also algebraic. 

Example: For k ffi 12, the only normalized eigenform in S k 

function 

A(Z) ffi q I t (I  - q n ) 2 4  = ~ T(n)  qn.  
n=l  n=l  

is the discriminant 

The number r in Theorem 2 must be 3, 5, 7, 9 or II. By computing 

Fourier coefficients of Cohen's functions Ck, r we find 

180 
C l 2 , 3  = - 7 A, C t 2 , 5  = - 210A , C12,7  ffi - l120A , 

the first few 

where 

C12,9 = - 20736A , C12,11 .. - 

65520 ~ qn 
El2  = I + 69---"~ Ol I (n)  

n=l  

77683 7 x I01 
12x23 El2 23 x 691 A 

is the normalized Eisenstein series. Thus 

from (28) we get five identities like (I), namely 

•L• 4 s 2 s - l l  ~ ( s  - 11) (A,A) (29)  T(n)2 a 
n =  I n s s ~T" ~ ~ ( 2 s  - 22) 

(s  ffi 14, 16, 18, 20,  22) 

with 

1 I 2 7 7  7 × II  
a14 = 1, a16 = 6 '  a18 = ~ "  a20 = 2--4~' a22 ffi 31786 ffi 2 × 23 x 691 " 

The numerical values of the series on the left-hand side of (291, calculated 

by taking 250 terms of the series, are 

1 .06544 ,  1 .0109865184 ,  1 .00239992152 ,  1 .00056976587 ,  1 .00013948615 .  

Substituting any of these values (except the first, where the series converges 

too slowly to give 12-digit accuracy) into (29) we obtain the numerical value 

( A , A )  = 1.O35 362 056 79 x i 0  - 6  

for (the square of) the norm of A in the Petersson metric. The previously 

published valued 1.O35 290 481 79 x IO -6 (Lehmer [12]), obtained by integrating 

iA(z)i2 ylO numerically, is false in the 5 th decimal place. 

Finally, we make a few general remarks about values of Dirichlet series 
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attached to modular forms. The series Df(s) can be thought of as the 

"symmetric square" of the Mellin transform 

(30) Lf(s) ffi ~ a(n) n-S ]'--[ (| - ~pp-S)-l(l - - -s -I = CtpP ) (Re(s)>> O) 
n=l  p 

o f  f ,  w h i c h  i s  an  e n t i r e  f u n c t i o n  o f  s wi~h  t h e  f u n c t i o n a l  e q u a t i o n  

(31) L;(s) ffi (271") -s r(s) Lf(s) = (-I) k/2 Lf(k-s), 

By the theorem of Eichler-Shimura-Manin on periods of cusp forms (cf. Chapter V 

of [,,]), the ratios L~(,): L~(3):...: ~(~-,) and ~;(2): ~(4):...: L~(~-2) 

are algebraic (and in fact belong to the number field generated by the Fourier 

coefficients of f) For f ffi 4, for example, there are real numbers w and • + 

~_ with 

192 L~(3)  = L~(9)  - 16 L~(5)  ffi L2(7 )  ffi 8 L ~ ( I )  ffi L ~ ( I I )  ffi ~ -  ~+,  I - ~  ~ + '  ~ ~+ '  

(32)  

L2(~ ) . ~To). 38~ ~, L~(,). ~(8) - ~0 ~_, ~2(~). 32 ~_ 

where by calculating the values of LA(IO) and L(II) (which are the most 

rapidly convergent of the series) numerically we find 

~+ ffi 2 . 1 4 4  606 670 68 × 10 - 2  , ~_ = h . 8 2 7  748 001 × 10 - 5  

On the other hand, Rankin ([18], Theorem 4) showed that for any normalized eigenform 

k 
f q S k and any even integer q with ~ + 2 .< q ~< k - 4 one has 

~ )q/2 2k-3 B B 
(33) Lf(q)Lf(k-l) = (-I __~ k-q (f,Eq Ek_ q) 

q k-q 

where E i is the normalized Eisenstein series and the B i are Bernoulli numbers, 

% is an algebraic multiple so the product of the two independent periods of Lf 

of (f, f). For f = A, for example, (33) says 

L~(||) L~(8) 7680 
ffi 691 (A,A) 

or, using (321, that 

~+ ~_ = (A,A). 
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We can therefore restate the Corollary to Theorem 2 as saying that the values 

of Df(s) for s = 1,3,5,...,k-l, k, k+2,...,2k-2 are of the form 

n 
(algebraic number). 0J 0J w , + -- 

while ~he result of Eichler-Shimura-Manin says that the values of Lf(s) for 

n n 
s = I)2 .... )k-I are of the form (alg.).0~+n or (alg.).~0_~ . Both statements 

= ~-~ n -s is any fit into a general philosophy of Deligne that, if L(s) z__~c n 

"motivated" Dirichlet series (i.e. one arising from a natural mathematical object 

such as a number field, a Galois representation, an algebraic variety, or a 

modular form) and satisfies a functional equation of the form 

L~'(s) = y(s) L(S) = w L~(C-s) 

with some r-factor y(s), then the value of L(s) at any integral value of s 

for which neither s nor C-s is a pole of y(s) should be given by a "closed 

formula" L(s) = A.w, where A is algebraic and ~ is a "period" about which 

something nice can be said (for instance, the twisted functions Lx(S) ffi 

~,CnX(n) should have values AX.~ with the same period ~, the n-S and 

algebraic numbers A should have nice p-adic properties as X varies). Now the 
X 

series Lf(s) and Df(s) are just the first two cases of the Dirichlet series 

m 
Lm'f(s) = ~ ~0= (I - ~pi ~ip p-S)- '  (Re(s)>> O) 

attached to the symmetric powers of the representation associated to f, and 

these functions are conjectured [19] to be holomorphic and to satisfy the functional 

equations 

L~m,f (s) = Ym(S) Lm, f (s) = -+ L:,f ( (k-l)m+{-s), 

r-] 
I (2~) -rs ~ r(s-j(k-l)) if m = 2r-l, 

j=o 

Ym(S) = -s/2 ~/s [r(k-l)l~ ~1~ - L ~ J  ] Y2r-| (S) i f  m = 2r. 

In a letter to the author (February 1976), Serre suggested that, in accordance 

with the above philosophy, the values of Lm,f(s) may be given by a formula 
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Lm,f(s ) b n of the type = (alg.). a ~_ , probably with a+b=m, possibly with 

la-bl~< I , for those integral values of s for which Ym(S) and ym((k-1)m+1-s) 

are finite. For f=A and m=3 or 4 this would mean that there are identities 

2 n 2 2 n 
L3,A(S)= A~±m ~ (s=18,19,20,21,22), Lh,A(S)= A~+~_~ (s=2h,26,28,30,32) 

with A 6 ~ , ng~. (We have given only those values of s for which the 

Dirichlet series converge absolutely.) However, the numerical computation of 

the values in question (done by G.K6ckritz and R.Schillo on the IBM 370/168 

at Bonn University, using 32-digit accuracy and over 1000 terms of the Euler 

products) did not lead to any simple values of A and n satisfying these 

formulas. At the Corvallis conference (July 1977), Deligne gave a revised and 

sharper conjecture for the values of Lm,f(s) : if f is an eigenform with ratio- 

nal Fourier coefficients (i.e. k=12,16,18,20,22 or 26), then one should have 

r(r+1) r(r-1) 
L 2 r _ l , f ( s )  = (rat .) . (2w) r s - r ~ ( k - 1 )  C 7 C z 

i rs_r~(k_1) r(r+1) 
(rat.).(2~) (C+C_) 2 

L2r,f(s) = (r+1)s_r~(k_1) r(r+1) 

(rat.).(2~) (C+C_) 2 

where C+ and C_ are real numbers depending on f 

k=12, f= A, and m=1 or 2, for instance, we have 

but not on 

(r-1<k_-~sl ~r,(-1)s=±1), 

(r-1<k-~14r, s odd), 

S (r<~-~T~r+l, s even), 

r or s. For 

s (2w)-SF(s)L1 ,A(S) 

6 i/2x3×5 C 
+ 

7 i/2 2 7 c 

8 i/23, 3 c 
+ 

9 1/2x32 C 

1 0  2/52 C 
+ 

1t 2.325/691 C 

= 2 3x5 ~ , C = 25/3x5 e+. where C+ < _ _ 

0+~0.046 346 380 811 850 816 182 4, 

C C 
+ -- 

12 

16 

18 

20 

22 

(2w)-2s+11F(s)L2,A(s) 

i /2  c c 
+ - 

I/2~7 C+C 

1/253 C C 
+ -- 

i/2% 3%5 c c 
+ - 

I/2×5 2 7 2 c c 
+ - 

7/2 2 23×691 C C 
+ - 

The computer calculation gives 

C ~ 0.045 751 608 975 539 581 74, 

= 211(A,A)~ 0.002 120 421 h92 335 249 248 968 328 831 h38 
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and suggests overwhelmingly the following identities (in accordance with 

Deligne)s general conjecture) 

s (2w)-2s+11F(s)L3,A(s) 

18 22/5 c3c + -- 

19 3/7 C C 3 
÷ - 

2O I/5 c~c_ 

21 5/72 C C 3 + - 

22 2×3/5×23 C~C_ 

for m=3 and 4 : 

24 

26 

28 

30 

32 

(2~)-3s+33F(11)-Ir(s)r(s-11)Lh,A(s) 

25~32 C3C 3 
+ - 

25~ 3x5 C3C 3 + - 

22x23~691/72 C3C 3 + - 

23653 C3C 3 + - 

2~3x34891/7 C3C 3 + - 

§ 2. An integral representation for the coefficients Cm(S ) 

In proving Theorem I, we will reverse the order of the statements i) - iii). 

For s ~ C with Re(s) > I the numbers Df(s+k-l) are finite (since the series 

in (3) is absolutely convergent in the half-plane Re(s) > k) and so there 

exists a unique cusp form ~ s £ Sk satisfying 

(34) (¢s' f) = Ck F(s+k-1) 
(4n)s+k_ l Df(s+k-l) 

for all eigenforms f C Sk, namely the function given by the right-hand side of 

equation (14). We define ~m(S) (m = 1,2 ..... ) as the m th Fourier coefficient 

of ~ (= the expression on the right-hand side of (15)) and must show that s 

C~m(S) = em(S). To do this, we will write ~m(S) as an integral involving a 

certain kernel function ~m which was first introduced by Petersson. 

We recall the definition of the kernel function. As in § |, we fix an even 

integer k > 2 which will be omitted from the notations. For m = 1,2,... set 

(35) ~m(z,z, ) = ~ I (z, z'~ H). 
a,b,e,dEZ (ezz'+dz'+az+b)k 
ad-bc=m 

The series converges absolutely and therefore defines a function holomorphic in 

both variables, and one can see easily that it transforms like a modular form of 
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weight k with respect to the action of r 

also checks easily that ~ is a cusp form. 
m 

on each variable separately. One 

Proposition l (Petersson [16]): The function Ckl m k-l ~m(Z, -z') (C k as in 

equation (3)) is the kernel function for the m th Hecke operator with respect to 

the Petersson metric, i.e. 

(36) Ck ! mk-I I f(z) ~m(Z, _-~r~ yk dV = (flT(m))(z') (V f e S k, z' ~ H). 
F\H 

Equivalently, ~m(Z,Z') has the followin$ representation as a linear combination 

of Hecke eigenforms: 

dim S k a.(m) 

(37) mk-I ~m (z,z') = C k Zi=1 ~ l  fi(z ) fi(z,). 

Proof: The equivalence of (36) and (37) is immediate from the fact that the 

eigenforms fi form an orthogonal basis of S k. Also, it is easily seen that 

k-! ~m(Z,Z ) is obtained from ~l(Z,Z') by applying the Hecke operator T(m) m i 

with respect to (say) the first variable, so it suffices to prove (36) for m = I. 

We can write (35) for m = l in the form 

~l(Z,Z, ) = ~, 1 (cz+d)-k. 
ad-bc=l (z, + az+b~k 

cz+d } 

For fixed c, d 6 ~ with (c,d) = I, the pairs of integers 

are all of the form 

solution. Thus 

a ° + nc, bo + nd (n 6 ~), where ao, bo 

~l(Z,z') = 
c,d ~ g --(cz+d) k 
(c,d)=1 

Using the identity 

(38) ~ (T + n) -k  = (2~i)k 
n=- ~ (k-l)! 

a, b with ad-bc = 1 

is any fixed 

h a z +b -k. 1 ( z '  + o o +n) 
cz+d 

n=-~ 

co 

y k- 1 2n i r [  
r e 

r=! 
(T C H), 

we find oo 

(2~i)k Y 
(39) o31(z,z') = 2 (k-l)' ' 

• r= 1 

2wirz ' 
rk-| GrfZ)._ e 
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where Gr(z) is the Poincar& series 
a z+b 

2~ir o o 

- -  e (r = 1,2 ..... z ~ H) 
1 I cz+d 

(40) Gr(Z) = ~ c,d~ (cz+d) k 

(c,d)=l 

(with ao, b ° again representing any integers with aod - boC = l; in a more 

~, jk(y,z) e 2~irYz invariant notation = , where the sum~nation is over Gr(Z) ¥ F 

l n 
representatives for the right cosets of roo = {-+ (0 1 ) I n E ~} in r). But, as 

is well known (see, for example [6], p. 37), G r is a cusp form of weight k 

and satisfies 

(k-2)! a(r) for f(z) = ~, a(n) qn C S k 
(41) (f'Gr) = (4Wr) k-I n=l 

(this is proved in the same way as Rankin's identity below). Equation (36) for 

m = I follows immediately from equation (39) and (4;). (For a different proof 

of Proposition l, not using Poincar~ series, see [25] .) 

The other main ingredient for the proof of Theorem I is Rankin's integral 

representation of the function (3), namely 

oo 

r(s+k-l) La(n}L 2 If(z) l 2 E(z,s)y dV 
# (42) ~(2s) s+k-! 

(4~) s+k-I n=| n F\H 

(valid for any cusp form f(z) =E a(n) qn 6 S k and s C ¢ with Re(s) > l), 

where E(z,s) is the Epstein zeta-function 
! \ , 

I s > 1 
(43) E(z,s) = ~ y 

m,nem~ imz+nl 2s 

(here L denotes a sum over non-zero pairs of integers). 

case of a more general identity, namely that 

(44) 

(z = x+iy ~ H, S 6 ¢, Re(s) > l) 

This is a special 

f ;I h(z) E(z,s) dV = ~(2S) h(x+iy) yS-2 dx dy 
r\H O O 

for any F-invariant function h on the upper half-plane for which the integrals 

in question converge absolutely. To see this, we write each pair of integers 
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m, n in (43) as re, rd with r > I and (c,d) = I and note that there is a 

2 : I correspondence between the pairs c, d and the right eosets of F 

in F, so 

E(z,s) = E r=l c,d62~ r2Slcz+dI2S ~(2s) y6LkF 

(c,d)=l 

Also, if F is a fundamental domain for the action of F on H, then 

is a fundamental domain for the action of F~. Hence 

J h(z) E(z,s) dV = ~(2s) S ~ Im(yz)S h(yz) dV 
r\H F ver~r  

= ~(2s) ~ ; Im(z)S h(z) dV 
ver~ r yF /- 

= ~(2s) J h(z) Ira(z) s dV, 
F\H 
co 

and (44) follows by choosing the fundamental domain {z ~ H IO ~< x < l} 

action of Foo . Equation (44) says that J h(z) E(z,s) dV 
FXH 

the Mellin transform ho(Y ) yS-2 dy of the"constant term" 
0 

Fourier expansion 

h(z) 
2zinx 

= hn(Y) e 

Im(yz) s. 

U 
yer~\ r 

of the function h (which is F- invariant and hence periodic). 

now follows by taking for h the F-invariant function 

h(z) 

yF 

for the 

is ~(2s) times 

ho(Y) in the 

Equation (42) 

= yklf(z) i2 = yk ~ ~ a(n)a(m)e2~ri(n-m)Xe -2~(n+m)y 

m=] n=| 

with ho(Y ) = yk~. I a(n) 12 e-4~ny 

If f is a Heeke eigenform, then the series in (42) is related to Df(s) 

by equation (3) (note that a(n) is real in this case, so a(n) 2 = la(n)]2). 

Therefore (42) permits us to deduce the meromorphy of Df(s) and the two formulas 

(4) and (5) from the corresponding properties of E(z,s), namely that E(z,s) 

extends meromorphically to the whole s-plane with a simple pole of residue 2 
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(independent of z!) 

functional equation 

(45) 

at s = | as its only singularity and satisfies the 

E~(z,s) = -s r(s) E(z,S) = E~(Z,I-s). 

Putting together equations (37), (3) and (42), we obtain the integral 

representation 

(46) ~(s) C'~m(S) =mk-| F~H ~m(Z'-E) E(z,s) yk dV (m = |,2 ..... s 6 C) 

for the function C~m(S) defined by the right-hand side of (|5). In the next para- 

graph we will compute the integral on the right-hand side of (46), =hereby com- 

pleting the proof of Theorem ]. 

§ 3. Calculation of / ~m(Z,-E) E(z,s) yk dv 
F\H 

The computation of the integral in equation (46) will be carried out by a 

method similar to that used in [25] for the simpler integral 

~m(Z,_~) yk dV 
F\H 

(which, by virtue of Proposition ! above, equals Ckm-k+] times the trace of the 

Hecke operator T(m) on Sk). The extra factor E(z,s) in the integrand will 

actually simplify both the formal calculation and the treatment of convergence, 

which was handled incorrectly in [25] (see Correction following this paper). 

The definition of ~m(Z,Z'), equation (35), involves a sum over all matrices 

of determinant m. We split up this sum according to the value of the trace of 

the matrix and observe that there is a I : ] correspondence between matrices of 

2 
and determinant m and binary quadratic forms of discriminant t - 4m, trace t 

given by 

C  (uv) . cu2÷ (da)uv by2 
(½(t-b)~ - c ) 

~(u,v) = au 2 +buv + cv 2 e-~ % a T(t+b) 
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Therefore 

(47 )  

k ,yk 
Y ~m(Z,-~) f f i  ,, 

t= -~ a,b,c,d6~ (clzl 2 + d~ - az - b) k 

t 

J 

ad-bc--m 
a+dffit 

ffi ~ ~ R~(z,t), 
t ~-°~ i+l  -4m 

waere the inner sum is over all quadratic forms ~ of discriminant t2-4m 

and where we have written 

k 
7 (z  = x + i y  6 H, t 6 ~ )  

(48 )  R ~ ( z , t )  ( a j z l  2 + bx  + c - i t y )  k 

for a form ~, ~(u,v) - au 2 + buy + cv 2. The sum (47) converges absolutely for 

all z ~H, and we have 

P r o p o s i t i o n  2: F o r  s ~  ~ w i t h  s # I an~d 2 - k < R e ( s )  < k - 1, 

t=-~o r \ H  ] O[ = t 2 - 4 m  

we have 

By virtue of this proposition, which we will prove at the end of the section, 

we may substitute (47) into (46) and interchange the order of summation and 

integration to obtain 

tffi -°° F\ll J~j=t2-4m 

Theorem I is then a consequence of the following result, which is of interest in 

its own right. 

Theorem 3: Let k be an even in=e~er > 2, A a discriminant (i.e. A ~ ~, 

A E O or I (mod 4)), t a real number with t 2 > A. For each binary quadratic 

form ~ of discriminant A let R~(t,z) (z 6 H) be the function defined by (48). 

Then for s E( with s # I, I - k < Re(s) < k, 
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(49) 

i Iz v 
= ~(s,~) {~(A,t;s) + ~(A,-t;s)} 

I (_l)k/2 F(s+k-l)C(s)C(2s) itl-s-k+l if A = O, 
(2~) s-! F(k) 

0 if A # O, 

where ~(s,A) and Ik(A,t;s ) are given b~ (6) and (8), respectively. 

Proof: We observe first that 

Ry~(z,t) = R~(tYz,t) (Yfi F , ty = transpose of Y ), 

so that the (absolutely convergent) series i= ~ R(z,t) defines a function 

in the upper half-plane which is invariant under r . Moreover, this function is 

O(y |-k) as y = Im(z) ÷ ~ , as we will show in the proof of Proposition 2 below, 

while E(z,s) = O(y max(~I-~) for y ~ ~ (O = Re(s)). Hence the integral on 

the left hand side of (49) makes sense and is holomorphic (for s # l) in the 

range specified. On the other hand, ~(s, ~ also has a holomorphic continuation 

for all s # I and the integral defining Ik(A,t;s) converges for l-k < O < k 

I 
(unless A = O, in which case the integral has a pole at s = ~ compensating 

the pole coming from ~(2s) in the expression on the right-hand side of (49)). 

It therefore suffices to prove (49) under the assumption l < @ < k and then 

extend the result to I - k < o < k by analytic continuation. 

Suppose, then, that 

left-hand side of (49) is 
I 

s (50) 
r\H IOt=A m,neZ 

Re(s) > I. Written out in full, the expression on the 

s 

Y dV. 
R~(z,t) imz+nl2S 

The action of F on z ~H permutes the terms of this sum, transforming the 

form ~ and the pair ±(m,n) ~(~ - {(O,O)}) / {±I} in such a way that ¢(n,-m) 

remains invariant. In particular, the sum of the terms with ~(n,-m) > O in the 
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integrand of (50) 

pairs (~, (m,n)) with 

moment, we have 

I'\H 

Making =he substitution 

2 an -bnm + c 2 > O), 

is r-invariant. Also, the group F acts freely on the set of 

~(n,-m) > O. Therefore, ignoring convergence for the 

s 

R#(z,t) Y dV 
l~I" ~ m,n Im~+nl 2s 

~(n,-m)>O 

¢ +_(m,n) H 
~(n,-m)>0 
mod F 

1 
nz - ~bn + cm 

1 
-mz + an - xbm 

we find 

S 

R¢(z,t) Y dV. 
Imz+nl 2s 

( which maps H to H if 

s I k+s yk ~ dV 1 y dV . . . . . . . . . .  = 

H (alzl2+bx+c-ity) k imz+nl 2s (an2-bnm+em2) s H (Izl2-~&-ity) k 

so that the right-hand side of (5]) is equal to ~(s,A) ~(A,t;s). Since the 

sum defining ~(s,A) and the integral defining Ik(A,t;s) converge absolutely for 

| < Re(s) < k, it follows ~ posteriori that the expression on the left-hand side 

of (51) was absolutely convergent in this range. The terms with ~(n,-m) < 0 

can be treated in a similar manner (or simply by observing that R_¢(z,t) = 

R~(z,-t)) and contribute ~(s,A) Ik(A,-t;s ). 

Finally, we must treat the terms in (50) with ~(n,-m) = O. They occur only 

if ~ is a perfect square. These terms are not absolutely convergent in (50) (if 

we replace each R~(z,t) by its absolute value, then the sum in the integrand 

converges for each z but the integral diverges). We argue as in the proof of 

equation (44). First, by removing the greatest common divisor of m and n, we 

can write (50) as ~(2s) times the corresponding sum with the extra condition 

(m,n) ~ I. Since any relatively prime pair of integers (m,n) is F-equivalent 

to the pair (O,|) by an element of r which is well-defined up to left multi- 

plication by an element of F~, the terms of (50) with ~(n,-m) = 0 give 
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C(2s) R (z,t) yS dV 

¢(I ,o):o 

I k y s 

~(2s) £~ ~'H a ,b , c  6 Z  (a [z i2+bx+c- i ty )  k y dV 
b2-4ac=A 
a=O 

(52) = ~(2s) . l s+k-2 
O O b2=A o= (bx-ity+c) k y dx dy. 

The sum over c can be evaluated using (38) and equals 

(2hi) k ~ k-I 2wir(±bx + ilt[y) 
(k-l)! r e 

r= 1 

if -+t > O (note that t 2 > A and A is a square, so t # O). If & # O, 

then this expression involves only terms e 2~inx with n # O, so the integral 

(52) is identically zero. For A = O, the expression (52) becomes 

{(2s)  (k-(2'rfi)kl) ! 0 0 r=l rk-  le-2~r i t I yys÷k-2dx dy = (2~i)k(k- 1 ) ! ~(2s)~(s) (2~r(s+k-ll t l )s+k-I ) 

This completes the proof of Theorem 3. 

Proof of Proposition 2: 

{z I lzt > ,, jxl.< {} • 
O = Re(s) it will suffice to show that 

2 / j  
t : - "  I -'~ l C~!=t -4m 

for C < k - I. 

We choose for F k H the standard fundamental domain 

Since E(z,s) = O(y O + yl-o) as y = Im(z) ÷ ~ , where 

yO-2 dx dy < 0% 

Also, the above proof shows that the integral occurring in (53) 

is finite for each fixed value of t (even in the larger range O < k), so we 

can ignore the finitely many values of t for which t2-4m is a perfect square. 

If t2-4m is not a square, then 
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(54) 

i¢ i=t2_4 m ~ ( z , t )  = 

a=| a 

2 Re 2_ 4 -4m (a I z I 2+bx+c-ity) k 

b(mod 2a) 
b2=t2-4m (mod 4a) 

~, t2_4 m -k _r b 22i a ) 
itx+~? +n) +y - 

n =- oo 

But it is easily shown that 

[(x+n) 2 . L2] -k = O(L 1-2k) 

uniformly for x 6 ~ and L £ ¢ with Re(L) bounded away from O. We apply this 

with L 2 2 t2-4m it.2 m " y - ity (y - ~a ) +--~ . Since m is fixed and a > I, 
4a 2 a 

t + ~, y* ~ in the sum (54), we can write 

~, t2-4m] b 2 (x + "~ + n) 2 + y - a 
n ~ -  o o  

-k - it -2k+l * 

Also, the number of solutions b(mod 2a) of the congruence b 2 =_ t 2 - 4m 

is O(a e) as a ÷ ~ for any e > O. Therefore (54) gives the estimate 

1¢1" -4m 

where the constant implied by O( ) depends on m and k but not on y 

. -e -k+l+e. 
This expression is O(y l-k) in the range y >~ t and 0ty t ) for 

as one checks by splitting up the sum according as a ~< t/y or a > t/y. 

R (z,t)yO-2dxdy =OItl-k+e ; 

' I~t 

(mod 4a) 

or t. 

t > y, 

Hence 

yO-2+Edy + ;  y-k+O-ldy) 

t 

= O ( t ° - k ) ,  

so the sum (53) converges for k - o > I. 
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§ 4. Properties of the functions ~(s,A) and Ik(A,t;s) 

In order to deduce from Theorem ! the various corollaries discussed in § i, 

in particular the trace formula and the formula for the Petersson product of an 

eigenform with the modular forms constructed by Cohen, we will need various 

properties of the functions ~(s,A) and Ik(A,t;s) defined by Equations (6) 

and (8). We begin with the zeta-function. 

Proposition 3: Let ~(s, A) 

s £ ~, Re(s) > I. Then 

i) ~(s,A) = ~(2s) ~ n(a) 
S a=l a 

be the zeta-function defined by (6), where A 6 ~, 

, where n(a) is the number of solutions b (mod 2a) 

of the consruence b 2 ~ A (mod 4a). 

ii) ~(s,A) has a meromorphic continuation to the . whole complex plane and, if 

# O, satisfies the functional equation 

y(s,A) ~(s,A) = y(l-s,A) ~(]-s,A), where 

Y(s,A) I 
(2~) -s IAi s/2 r(s) if_ A < 0 

-s s/2 ~)2 
A r( if A > O 

iii) ~(S,A) can be expressed in terms of standard Dirichlet series as follows: 

I 
" O if A- 2 or 3 (rood 4) 

g(s,A) = g(s) g(2s-l) i_[f A = 0 

~(S)LD(S) ~(d)di f (-D)d-SO'd J-zs" (f)o i_ff A- O or l (mod4),A#O, 

where if A - O or I (mod 4), A # O we have written A = Df 2 with f 6 iN, 
co 

D the discriminant of @(~J~), (D) the Kronecker symbol, LD(S ) = (D) n-S 

the associated L-series, and ow(m) = d~m d ~) (m ~ ~), ~) 6 ~). In parti- 

d>O 

cular, the function L(s,A) defined by (7) is entire except for a simple pole 

(of residue _I if A = O and l if A # O) if A is a square. 
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iv) For A <O, the values of L(s,A) a__~_t s = I and s = O are ~iven by 

L ( I , A )  = w T[ 

where H(n) is the class numb e.r .defined by equation (20). More ~enera_{l[, if 

r is a pos.itive odd inteser then L(r,A) and L(I-r,A) are given by 

equations (22) and (23), where H(r,N) is the function defined in E3]. 

Proof: i) This identity is equivalent to the main theorem of the theory of 

binary quadratic forms (cf. [I 4, Satz 203~ according to which n(a) is the 

number of SL2(~) - inequivalent primitive representations of a by binary 

quadratic forms of discriminant A. We can prove it directly by arguing as for the 

proof of (44) or (52): Let # denote the set of binary quadratic forms of dis- 

eriminant A and X = (Z 2 - {(O,O)})/ {±I}. For # £ ~ and ±(m,n) ~ X 

set ~ • x ffi ~(n,-m). Then r acts on ¢ x X preserving the pairing ~ ' x 

and we can write (6) as 

~(s,A) ffi ~ >' (¢.x) -s = ~ i (¢ • x) -s 
¢~/F x6X/F~ (¢,x)6 (~xX)/F 

x ~ x/I" C g ¢ / r x  

where r~, rx denote the isotropy groups of ~ and x in r. The orbits of 

under r are in l:l correspondence with the natural numbers, since t(m,n) is 

F-equivalent to 

±(O,r) is F. 

;(S,A) 

±(O,r) (r = g.c.d of m and n), and the isotropy group of 

Hence 

r=l ¢e¢Ir® ¢(r,o) s 

~(2s) ~, ~ a -s 
a=] b(mod 2a) 

b 2 -A (rood 4a) 

ii) This follows from iii) and the functional equations of ~(s) and LD(S). 

However, we can also deduce it from Theorem 3 together with the easily-proved funct- 
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ional equations of E(z,s) (equation (45)) and Ik~,t;s) (Proposition 4, iii~, 

so that Theorem 3 gives as a corollary new proofs for the functional equations of 

the zeta functions of both real and imaginary quadratic fields. 

iii) This can be deduced without difficulty from i).The details are given in [8], 

Prop. 2, pp. 69 - 7] (our n(a) is denoted there by r~(f,a), where A = Dr2). 

iv) From iii) and the Dirichlet class-number formula we get 

L(I,A) = LD(]) ~ ~(d) (D~) d-| (~_|(f/d) 

~ Cdif f 

ffi 211" h(D) e (I- (D 
w(D) e l f  p) p-l)  

= 27 ~ h(De 2) Ir H(jA I). 

el f  w(De 2) 

(e=cd) 

The general case follows similarly from ii) and iii) and the formula given by 

Cohen in [~, c), p. 273. 

Proposition 4: Let A,t be real numbers with A < t 2. Then 

i) The first integral in (8) converges absolutely for s ~ ¢ with 

k > Re(s) > l 
l-k i ! a<O 

0 if A>O 

I/2 if A = 0 

and is then equal to the second integral. 

ii) For A # O, the second integral in (8) converges for s q ¢ with 

I - k < Re(s) < k. The function ~(A,t;s) which it defines has a mero- 

morphic continuation to all s whose only singularities are simple poles at 

S = k, k + I, k + 2,.., and s - -k + I, - k, - k - I, .... , 

and which satisfies the functional equati0n 
! 

S-- 

lk(  t,s) - 2 

1 
S-- 

If ~S ! 2 ] - c o t . r  i A> o. 

if A<O, 
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iii) For A = O, ± t > 0 one has 

+iT 
~ ( O , t ; s )  = e_~--(s-k) 

r(~) r(s-}) r(k-s) 
r(k) 

ltl-k÷s 

iv) Fo__Kr A <0 an___d 0 <r < k, one has 

Ik(b,t;l-r) + Ik(A,-t;l-r)J = 

k-r-] 

< _ ¼ ~  ~ F(k-r)F(r)F(k) Pk,r( f'---~/t2-A~ 

where Pk,r is the polynomial defined b~ (25). 

V) For A > 0 

2 I k ( A ' t ; O )  = i s ign  ( t )  I k ( A , t ; 1 )  = (71)k/2w 1 
k-I (i t l  +,4)k-~ 

k+s-2 Proof: i) The integrand y (I z{ 2 + ity - 1A)-k (z = x + iy 6 H) has no 

poles in the upper half-plane H but grows on the boundary of H like 

Iz]-k+~-2 as z ÷ira 

k+~-2 
y as y ÷ 0 

Iz - a] 0-2 as z * a if A = 4a 2 > 0 

k+O-2 (x2+y)-k y as z * 0 if A t 0 

where o= Re(s). The assertions about the convergence follow. The equality of 

the two integrals in (8)~granted the convergence, is a consequence of the identity 

(551 
r (})  ' 

(x2+a) -~ dx F(~) a~-V (a e c - (-~,o], Re(v) > ½). 

ii) 

(56) 

Set 

oo k+s-2 
= x dx 

Ik's(Z) 0 (x2+2xz+l) k-I/2 
(l-k < Re(s) < k, z ~ C - (-o% -l]) ; 

P (z) ("associated Legendre this is related to the standard Legendre function ~v 

function Of the first kind") by 
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k-l 
2l-k F ( ½ )  - -  

Ik,s(Z) = r(k-l+s) r(k-s) (z2-1) 2 ~l:k(s ) (z E C-(-~,+I] 
r (k-~) 

cf. [5], 3.7 (33), p. 160). For A < 0 the substitution y = ~ v x in (8) 

gives 

s-k 

(57) ik(A,t;s) = (_~ !AI)2 F(k-~)F(~)F(k) ~,s ( i~> 

For A > 0 we can also express Ik(A,t;s ) in terms of ~,s(Z). Indeed, since 

t 2 > d > 0 we have t # O. If t is positive, then the poles of the integrand 

in the second integral of (8) lie on the negative real axis, and by shifting the 

1 
path of integration to the positive imaginary axis and substituting y = ~¢~-x 

we obtain 

s-k iw (s-k) 
(iA) (58a) Ik (A, t ; s) 1 2 2 r (k-~) r(-~)r(k) 

Similarly, if t < 0 

s-k " 

(58b) Ik(A,t;s)= (/A)2 ~(s-k)F(k-½)F(-~)e F(k) ~,s( tJ!~ Iv~- (A > O, t < O). 

The assertions about ~(A,t;s) ( A # O) now follow at once from the corresponding 

properties of Ik,s(Z) : the function Ik,s(Z) satisfies the functional equation 

Ik,s(Z) = Ik,l_s(Z) (as one sees by making the substitution x ~+ x -I in (56)) and 

has a meromorphic continuation to the whole s-plane whose only singularities are 

simple poles of residue -An(Z ) and +~n(Z) at s = k + n and s = l - k - n~ 

n ~ O, where ~n(Z) is the polynomial of degree n defined by the asymptotic 

expansion 

1 
-k+7 y, 

(l + 2xz + x 2) ~ d (z) x n (x+ 0). 
n=O n 

iii) For A = O, the same argument as for A > O gives 

(sign t) .i~(s-k)/2 F(k-½) r(½) i xS-3/2dx ~k(O,t;s) = e 
r(k) J0 (x+Itl) k-½ 

which is equivalent to the formula given. 
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iv) We have to prove that 

<t_~_4~)k- ' i k-r-, y 1 k-r-I 
2 • i k'3/2 dy ffi (-[) F(~)F(r)F(k-r)F(k_~) Pk,r (t' t24--"-~A~ 

k-r- ] 
This follows by comparing the coefficients of u 

identity 

f • f (y +lyt--~+21y~) dy = ¼____~A 

-~ r(r+~) 

in the two sides of the 

~+tu+ u2 ) -r, 

which in turn can be proved by taking 

t2-A (l + tu + t2 
a = 4 4Au2),Z ~ = 

in (55) and making the substitution x 

! 
r+~ 

= y+1(~+ ). 

v) These formulas (which are equivalent to one another by virtue of (58) and 

the functional equation Ik,s(Z ) = ~,i_s(Z)) follow from the identities 

dy = 4 y- 21it 

2 i 0 (y2+ity-~A) 3/2 t2-A /y +ity-~A 

¢o 

.... ~dy = 4 ~ity+~ i = 2i sign <t> 

2 . l i O (y2+itY_¼A)3/2 t2-A ~y-~A O /A-+ I= i 

by differentiating k - 2 times with respect to t. This completes the proof 

of Proposition 4. 

We can now prove the various assertions made in § ! about special values of 

the series c (s) defined in (9). Consider first s = I. The contribution of 
m 

the (finitely many) terms in (9) with t 2 < 4m can be calculated from equations 

(17) and (19), which are special cases of Prop. 4, iv), and Prop. 3, iii), 

respectively. The contribution of the (finitely many) terms with t 2 - 4m a 

non-zero square is given by (2|), which is a consequence of Prop. 3, iii) and Prop. 

4, ii) and v). The contribution of the two terms with t 2 - 4m = 0 when m is 
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a square can be calculated from equation (13) (which follows from Prop. 4, iii)) 

and the equation L(s, O) = ~(2s-l) (Prop. 3, iii)}. Finally, the (infinitely 

many) terms with t 2 - 4m a positive non-square in (9) give O for s = I 

because L(|, t 2 - 4m) is finite and Ik(t2-4m,t;l) + Ik(t2-4m,-t;l) vanishes 

(by virtue of the functional equation, Prop.4,ii)). Putting all of this into the 

formula for cm(1) we obtain from (16) the Eichler-Selberg trace formula. 

For s = r ~ {3,5,7,..., k - 3} the calculation is even easier, since the 

terms in (9) with t 2 - 4m = u 2 > O now give no contribution (the factor 

Ik(t2-4m,t;s) + ~(t2-4m,-t;s) is again O because of the functional equation, but 

L(s, t2-4m) is now finite). From equations (9), (22) (= Prop. 3, iv)) and (26) 

(which is a consequence of ii) and iv) of Prop. 4) we obtain 

r,%l r-___il 2r_l ~r 

Cm(r ) = Ck .(_~) 2 F(k-r)r(r)F(k_l) (-I) 2 F(r) t 2< 4m Pk'r(t'm) H(r'4m-t2) 

-1) (k+r-2) ! ~r+luk-r- 1 
2k-Z(k-1)! (Zr-I)! ~(I-2r) 

+ 
0 

1 F(k-r) wr ~ H(r,4m_t2) 
= -4- Ck r(k-t) t2<4m Pk,r (t'm) 

2 
if m=u 

if m # square 

or (with the notations of (IO) and (24)) 

r(k-r) ~r 
@r (z) = -~ Ck r(k-1) Ck,r (z) (r = 3,5,.,,,,k-3) 

This together with Theorem I shows that Ck, r is a cusp form of weight k whose 

Petersson product with an arbitrary Hecke eigenform f is given by (28), 

For s = r = k - | the same calculation shows that the value of the series 

(9) is given by equation (59), but the function (IO) is no longer a modular form 

since we have left the region of convergence. On the other hand, it follows from 

ii) and iii) of Theorem I that the function 
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~k_l(Z) = lim ~s(Z) 
s~k-I 

is a cusp form of weight k satisfying 

(60) (~k-l' f) = Ck r(2k-2) Df(2k-2) 
(4w) 2k-2 

th for each Hecke eigenform f 6 S k. We want to show that the m Fourier coeffi- 

cient ~m(k-l) of #k-l is given by equation (27). Each term of the series (9) 

is continuous at s = k-l, and each term with Itl > 2~ has the limit O 

as s ÷ k - I. Therefore 

( 6 1 )  ~m(k-l)  = c ( k - l ) + l i m ( m  k-I [ I k ( t 2 - 4 m , t ; k - I - ¢ ) + I k ( t 2 - 4 m , - t ; k - l - ¢ )  ] 
- ~o\ 1t1>2¢~ 

~L(k-l-e,t2-4m)) . 

By (59) the first term on the right is equal to the first term on the right-hand 

side of (27). From (58) we find 

Ik(t2-4m, t ; k - l - ¢  ) + I k ( t 2 - 4 m , - t ; k - l - ¢ )  

2cos, , ,2 

- 2 7  r (k-})r (½) 
r(k) Ik,k-I (I) 

r (k-kgr (~) ? ! t [  
r(k) Ik,k-l-E ~t2~_4m , /  

c t - l -E( l+O(¢)  + O ( t - l ) ) ,  

with I 
x2k-3dx y I x 

Ik,k_ I (I) = = u 2k-3 du = 2k-2 (u = ~l)" 
O (x2+2x+l) k O 

Also L(t2-4m,k-l-¢) = L(t2-4m, k-l) + O(e), with both terms uniformly bounded 

in t. Therefore the second term in (61) equals 

(62) - W r(k-v)r(@) k-! tim ¢ i~¢ L(k_ I t2_4m 
k-1 r(k) ~-,0 ttl>2~m ' 

On the other  hand, Prop. 3 ) i )  g ives  
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L(k-l,t2-4m) - 
K,,(2k-2) 
~(k-I ) a=l ak,] ~{b (mod 2a) I b 2 E t2-4m (mod 4a)} 

~(,2k-2) / $  i 
~(k-l) a=l ak_l 4~[d (rood a) I d(t-d) E m (rood a)}, 

t-b 
where in the last line we have set d = ~ . The condition d(t-d) - m (mod a) 

depeads only on the residue class of t (mod a), and for a fixed residue class 

t (rood a) one has 
O 

e+O j tj>2/mm ti+¢ a e+ O a 

t-t (mod a) 
O 

so (621 equals 

(63) 2/[ F (k-2i)F (½1 ~ (2k-2) k-I I p(a) 
- k - ' l  P ( k )  ~ ( k - I )  m k' ' 

a = 1 a 

where 0 (a) ffi ~t{d,d' (mod a) [dd' E m (mod a)}. The function a ~+ 0(a) is 

multiplicative and for a prime power a ffi pV is given by 0(p ~) ffi (p-l)p 9-I 

if p + m and by 

0(P 9) ffi ~(~+J) p~ - ~pg-I if O K 9 ~ 

( +I) (pV - pg-l) if ~ > 

in general, where p~ is the largest power of p dividing m. Hence 

k = ---f + +. .1 (I + + 3_p_i=/~ 
• 2k +'' 

a=l a pTm p p p~Im p p 
~>~ 

(~+I)p~+1 _ (~l)p ~ 
+ (~+l)k + '" ") 

P 

p l-p l-k p~/Ilm + p +'" "+ 
~>. I 

,4 
p~k 

= ~ ( k - I , , )  O l _ k ( m ) ,  

and substituting this into (63) we obtain the second term in equation (271. There- 

fore 
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(64) 

where 
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= ~ ~m(k-I)e 2~rimz = (-l)k/2+lTr 
m=l 2k_l(k_l)! Ck,k_ l(z) 

- (-l)k/2 (21r) 1-k 
k-1 r(k-})r(}) ;(2k-2) Ek(Z) 

is the normalized Eisenstein series of weight k (the formula 

Ck,k_l(Z) is defined by (24) and 

(-I)k/2~2~)k i 2~imz 
Ek(Z) = I + F(k)~(k) m=l Ok_l(m) e 

H(k-l,0) = 

~(3-2k) implies that the constant term on the right-hand side of (64) is zero). 

Equations (60) and (64) and the fact that E k is orthogonal to all cusp forms 

imply that equation (28) holds even in the case r = k - I, when Ck, r is 

not a cusp form. 

Finally, we should say something about the case k = 2. Up to now we have 

excluded this case because it presents the most awkward convergence questions 

and because there are no cusp forms of weight 2 on SL2(~) anyway. However, the 

case k = 2 is also important, both for the generalization of Theorems 1 and 2 

to congruence subgroups and for the applications to Hilbert modular forms given in 

§ 6. For k > 2 the interesting range of values for s was I < Re(s) < k - I, 

and the two extreme values s = I and s = k - I created extra terms (and 

extra difficulties) as given by formulas (21) and (27). For k = 2, the only 

interesting value is s = I, and one has all of the convergence difficulties 

which occured previously for s = I and for s = k - I, and some new diffi- 

culties due to the fact that the series expression (35) for the kernel function 

~m(Z,Z') is no longer absolutely convergent, so that at first sight the whole 

method of proof appears to break down. To get around this, one must define 

as lim ~ where 
m ~ m,E' 

(- 1)k/2+l~r k 
2k_l(k_l)t [Ck,k_l(Z)- ;(3-2k) Ek(Z)] , 
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') ~ (czz'+dz'+az+b) -k Iczz'+dz'+az+bl -E 
~m,E (z,z = ad-bc=m 

("llecke's trick"). As in Appendix 2 of [24], one can show that ~m is a cusp 

form of weight 2 with the properties given by Proposition I (of course for SL2(Z) 

this simply means 0J ffi O). Then one carries out the whole calculation of 
m 

§§ 2 - 4 with ~m,~ instead of ~m' taking in Theorem I a value of s with 

! < Re(s) < l + E, and at the end lets g tend to O. I omit the calculation, 

which is awful. The result is as simple as one could hope: for k ffi 2 and 

s ffi | the m th Fourier coefficient C~m(l) of =he cusp form ~l defined by (34) 

is given by the sum of the expression previously obtained for k > 2, s = l 

(i.e. for the trace formula) and of the extra contribution previously obtained 

for k > 2, s = k - ! (second term of (27)), i.e. 

~ ( I )  ffi ~ t t (4m- t  2) + m i n ( d , d ' )  - 2o l (m)  
2 2 " 

t ~<4m d d ' , ~  
d,d'>O 

Since ~l(Z) is a cusp form of weight 2 on SL2(Z ) all coefficients must be 

zero and we obtain the class number relation 

2 ~ H(4m-t2)= K 
t ~<4m dd'=m 

d>0 

max (d,d') 

due to Hurwitz [9]. If, however F' C F is a congruence subgroup for which 

there are cusp forms of weight 2, then we obtain an expression 

for the trace of the Recke operator T(m) on S2(F'). 
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§ 5. The series £n k-l-s G 2(z) and the convolution of L-series 
n 

associated to modular forms 

Let s be a complex number with Re(s) > I and ~ the unique cusp form 
s 

in  S k s a t i s f y i n g  (34) for  a l l  normalized Hecke e i g e n f o ~  f E S k. Our 

starting point for the calculation of the Fourier coefficients of ~ in §§ 2 - 3 
s 

was the i d e n t i t y  (3) express ing  Df(s) in terms of the Rankin ze t a - func t ion  

a(n)2n -s (where f ~ ~a(n) qn). But Df(s) also satisfies the identity 
n=! 

Df(s) ~ ~(2s-2k+2) ~ a(n2)n - s ,  
n=! 

as is well-known and easily verified using the multiplicative properties of the 

a(n). Thus the equation defining ~s is equivalent to 

r (s+k-|) ~, a(n2)n -s-k+ | 
(65) (~s, f) = C k ~(2s) 

(4z) s+k-| n=! 

and since this equation is linear in the coefficients a(n), it must hold for 

all cusp forms f = ~a(n) qn ~ Sk ' not just for eigenforms. Equation (65) 

determines ~s uniquely, and by comparing it with equation (41) we obtain the 

identity 

(66) ~ (z) - C k F(s+k-l) ~(2s) ~ ~ n k-|-s (z) 
s (4w) s F(k-1) n=! Gn2 

expressing 
S 

as an infinite linear combination of Poincar~ series. 

It is now natural to ask whether one can obtain a proof of Theorem ! (which 

states that ~ = ~ for Re(s) < k - l, where ~ is defined by (9) and 
S S S 

(|0)) by combining (66) with known facts about Poincar~ series. Two methods 

suggest themselves: 

I. One can substitute into (66) the formula for the m th Fourier coefficient 

grm of Gr(Z), namely 
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grm 
k-l L 47 /~-~) 

= 6rm + 21T(-l)k/2(m/r)T Hc(r'm) Jk-| (-¢" 
¢=| 

(where 6 
rm 

is the Kronecker delta, Jk-I a Bessel function, and 

l Ya 2~i(ra+md)/c 
Hc(r,m) = - c e 

a,d (mod c) 
adl l  (mod c) 

a Kloosterman sum), and try to show directly that the sum equals Cm(S). I 

do not know whether this can be done, but it is amusing to note that the term 

6rm in the formula for grm produces in (66) exactly the extra contribution to 

Cm(S) occurring in (9) when m is a square. 

One can substitute into (66) the defining equation (40) of the Poincar& 2~ 

series and interchange the order of summation to obtain 

F(s+k- l )  ~(2s) , j k ( y , z )  n k - l - se2g in2~z  
"~'s(Z) = Ck (4~) s r ( k - l )  yc%,,r n=l 

(67) 

(this is certainly legitimate for Re(s) > 2, since the double series is ab- 

solutely convergent in that region). Again, I have not been able to deduce from 

this that ~ = # in general. But if 
S S 

teger, then the series ~nk-l-Se 2zin2z 

a derivative of the theta-series 

O(z) = ~. e 2~in2z" 

n=| 

k - | - s is a non-negative even in- 

occurring in (67) is (up to a factor) 

and therefore transforms nicely under the action of the modular group, and in this 

case it i__ss possible to deduce from (67) the expression for Cm(S) as a finite 

sum of values of zeta-functions, thus obtaining a different (and conceptually 

simpler) proof of Theorem 2 and of the identities for special values of Dr(S) 

discussed in § I. To present the idea as clearly as possible, we begin with 

the special case s = k - I. 

For r = k - l, the modular form (24) figuring in Theorem 2 is given by 
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(r >i 1) is defined by 
r 

~r(Z) = Z R(r,N) qN (q = e2~iz) 
N=O 

= (O~(k_l)[ U4, 

Za-39 

and U 4 is the operator which sends ~a(n) qn to ~a(4n) qn  In [3], 

proved that ~ is a modular form of weight r + _I namely 
r 2 ' 

l 

(69) ~(r(Z) = ~(l-2r) L r+-2 (z) + (l-i)(4z) 2 E~4+$ 

where 

m(41 (z) 
2 i (e a b)~ro~\ro(4) ( e z + d ) r + | i 2 - -  

Cohen 

is the Eisenstein series of weight r + ~ on ro(4) (for conventions concerning 

modular forms of half-integral weight, see [20]). It follows that "~k_l(z) O(z) 

th 
is a modular form of weight k on ro(4) having the property that its m 

Fourier coefficient is 0 for all m E 2 (mod 4), and since one easily shows 

(directly or using results in [13]), that U 4 maps all forms on to(4) with 

this property to forms on the full modular group, one obtains Ck,k_ I ~ Mk(SL2(Z)). 

We want to show how (67) implies that the cusp form Ck,k_ 1 - ~(3-2k) E k is a 

multiple of ~k-]" 

Equation (67) for s = k - I can be written 

where 

- 1 

~k-l(Z)  ffi Ck (4~) k-1 r (k - l )  Ycr~r 

2 k-~ r(k) YE r~r 

= ~ (3-2k) gk(z) - jk(y,z)O(yz . 

Z k-I r(k) y~rjro(h ) 

Tr 4 : Mk(ro(4)) ÷ Mk(SL2(~)) is the map defined by 
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Tr4|(f) = ~i fIk Y = ~ ', 
YE ro(4)\r n(mod 4) 

ab 
(cf. ~13]). Also, for Y = (c d ) ~ to(4)' 

c -4 -i/2 i/2 
O(¥z) = (~)(-~-) (cz+d) 0(z), 

so 

~ ' jk(y,z)Q(yz) = Q(z) E(4~ (z). 
Yer kro(4) k-~ 

Therefore 

~+1 2k-I 
Tr~ (OE(k4?!) = Ek * (_1)2 rCk) 

2 ~k (3_2k) ~k-I" 

, o  
fl k(n I ) + 2n ) 

n(mod 2) 

Equation (64) can now be obtained from this by using equations (68) and (69) 

and the explicit description of the way the series @ and E (4) transform under 
k-I/2 

O-I 
the operation of (4 0 ) and of the matrices involved in the definitions of Tr4 l 

and U 4. We omit the details. 

We observe that the argument used here for ~G 2(z) would apply to any 
~ n 

series b(n) G(z), where the b(n) are the Fourier coefficients of a modular 

form (here Q(z)). Since this principle is not very well known (although it 

was already used by Rankin in |952), we give a general formulation of it, 

applicable also to forms of non-integral weight. 

Let F' C F be a congruence subgroup and k > 0 a real number. We consider 

multiplier systems v : F'--~ {t e ~ lltl = l} such that the automorphy factor 

J(y,z) = v(y)-l(cz+d) -k (y = (~ ~)E F', z e H) 

satisfies the cocycle condition 

J (YIY2 ,z ) 

and such that v(y) 

on the coset of Y 

= J(YI'Y2 z) J(Y2' z) (yi,Y2 ~ r', z ~ H) 

= I for y @_ F" = F' (~ r~ (then J(~,z) depends only 

in F~N F, ~ i.e. on the second row of Y). We write Mk(F',v) 
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(Sk(r',v)) for the 
transform by 

spaces of modular forms (cusp forms) on r' which 

f(z) = J(Y,z) f(Yz) (Y £ r', z e H). 

(If k 6 ~, then v is a character on r' and this agrees with the usual 

notation; if k ~ • + ½, then our notation conflicts with that of [21] but has 

l(F',vl) (F',v2) lies in the advantage that the product of forms in M k and Mk2 

Mk|+k2(r',VlV2).) If k > 2, we have the Eisenstein series 

E~(z) = ~ J(Y,z) e MkCr',v) 
Y ~ r'\r' 

and for each natural number n the Poincar& series 

G~(z) = 
Te r~\r' 

where w = [rc~ : r~] is the width of F'; 

(70) (f,G~) = I f(z)G~(z) yk dV = 

F'\H 

for any form f = ~ a(n)e 2Winz/w 

J(Y,z) e2Winyz/wc Sk(r',v) ' 

the same proof as for (41) shows that 

r(k-l)wk a(n) 

(4wn) k-| 

in ~(r',v). With these notations we have: 

Proposition 5: Let Ji(Y,z) = vi(Y)-l(cz+d)-ki (i = 1,2) be two automorphy 

factors on r', where kl,k 2 are real numbers with k 2 ~ k I + 2 > 2. Let f(z) = 

a(n) e 2~inz/w and g(z) = b(n) e 2~inz/w be modular forms in 
n = l ...... n=O 

Skl+k 2 (r',vlv 2) and ~l(r',vl), respectively, and E'k2(Z) the Eisenstein series 

__in Mk2(r',v 2) as defined above. Then the Petersson product of g(z) E'k2 (z) and 

f(z) is given by 

(7~) (f,gE~z) = 

Proof : 

r(kl+k2 -l) kl+k 2 

(4w)kl+k2. l w 

Set 

o~ 

a (n)b (n) 

n ~ l 

k = kl+k 2 , v = vlv2, J(Y,z) = v(y)(cz+d) -k = Jl(y,z) J2(y,z). 

If k2> k I + 2 , then 
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g(z) E' (z) 
k 2 

= / i J2(y,z) g(z) 
Y ~ r-\r ' 

= ~ J2(Y,z) Jl(Y,z) g(yz) 
Y e [-kr ' 

= ~ £ b(n) J(y,z) e 2~inYz/w 

y e r - \ r '  n=0 

= bOO) EI~(Z) + ~ b(n) Gn(Z), 
n=] 

because the double series is absolutely convergent; if k 2 = k: + 2, we obtain 

the same equation by multiplying J2(Y,z) by yg Icz+d1-2g and letting g ~ O 

(Hecke's trick). Equation (70) now implies the statement of the proposition. 

k2/2 
(The series in (71) converges for k 2 > 2 because a(n) = O(n ~ and b(n) = 

o(nkl- l ) . )  

The method we have just described was used by Rankin (for forms on the full 

modular group) in [18]; his identity (33) is obtained by taking k| = q, 

k 2 = k - q, g(z) = mq(Z) = I - B 2~ ~ Oq_l(n) e 2~inz and f = 
q 

E a ( n )  e2ginzE Sk an eigenform and using the identi ty 

Or(n) a(n) Lf(s) Lf(s-r) k+! 
(72) ~ (Re(s) > r + ~ ). 

s ~ (2s-r-k+1) n=] n 

We remark that equation (71) is in fact true under weaker restrictions than those 

given. For example, Rankin's identity (33) is ~till valid for q-~_ (the reader can 

check this for k=12, f=A, using (32)). It is also worth remarking that the 

identity (33), together with the non-vanishing of Lf(s) in the region of absolute 

convergence and the fact that the Hecke algebra acts on M k with multiplicity |, 

imply that for q ~ k Ek_q(Z ) + | the modular form Eq(Z) generates M k as a 

module over the Hecke algebra. I do not know any elementary proof of this fact; 

k 
a direct proof in the case q = E would imply the non-vanishing of Lf(k/2). 

We now prove a generalization of Prop. 5 which can be used to give another 

proof of Theorem 2 (i.e. of the proportionality of ~r and Ck, r) and hence 

of the identities for Df(r+k-l), where r is an odd number satisfying 
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I < r < k - I. 

defined bilinear operators 

by the formula 

(73) 

To prove that C. is a modular form when r < k - I, Cohen 
~ ' r k l , k  2 

F~ = ~ (~ 6 ~, kl,k 2 E ~) on smooth functions 

,0 
F (kl+V) F (k2+~) 3~fl ~-IJf 2 

F~(fl'f2)(z) = ~l~ (-l)V-~J ¢))~J F(kl+lJ) F(k2+~)-P) ~zIJ ~z~)-~J 

and showed ([~ , Theorem 7.1) that 

(74) F~(fl;klY , f2lk2Y) ffi F~)(fl,f2)ikl+k2+2 v Y 

for all Y ~ GL~ (R). From this it follows that if fl and f2 are modular 

forms on some group F', with weights k I and k 2 and multiplier systems v! 

and v2, respectively, then F~(fl,f2) is a modular form on F' of weight 

k I + k 2 + 2~ and with multiplier system vlv 2 and is a cusp form if ~ > O. 

(Of course Fo(fl,f2) = flf2.) The fact that Ck, r (r < k - 1) is a cusp form of 

weight k on SL2(~ ) then follows by the same argument as in the case r = k - 1 

from the identity 

(75) Ck, r = (2~i) -~ F(~+r) F (@, °~r) IU4 (~ = k-r-l) 
F(r) F (k-r) 2 

We now give a formula for Fv(fl,f2) when either F 1 or F 2 is an Eisenstein 

series; this proposition in conjunction with (69) and (75) can be used to 

give another proof of the identity 

1Ck F(k-r) r (r 3,5,..., k-3), ~r(Z) = - g ~ Ck,r(Z) = 

which is equivalent to Theorem 2. 

Proposition 6: Le__~t kl' k2 Jl' J2' g and E k >e as in Proposition 5, V 

22~inz/w 
non-negative integer, and f(z) = a(n) e a cusp form in Sk(F',v), 

n=l 

where k = k I + k 2 + 2v ~and v = VlV 2. Define F (g, E'k2 ) as in (73). 

(f F (g,E~2)) = (2~i)~ F(k-l) r(k2+Y) wk-~ /~ a(n) b(n) 
• ~ kl+k2 +'~-1 (4~)k-; r(k2) n 

Then 
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Proof: Let giVe(z) = 3Vg(z)v Then for y = (ac bd) ~ r' 
az 

x) r(kl+X>) 
(76) g(V) (Yz) = vI(Y) ~ (~) c v-~l (cz+d) k 1 +~+]a 

tJ=O 
g(~)(z). 

This can be proved by induction on V (the case ~ = O is just the transformation 

law of g), using the identities 

d g('~+l ) (Yz) = (cz+d)2 ~z g ('0) (Yz) 

and 

r(kl +V) "o r (kl+~) = ('o÷I F (kl+'J+l) . 

(~) r(kl+la) (kl+V+u) + (~_i) l'(kl+la-I ) - U ) r(kl+~a ) ' 

we leave the verification to the reader. Let 

Sk(F', v). Using the Fourier expansion 

= (2~i)'~ 2 n~b(n)e2~inz/w g(V)(z) _--$- 
n=O 

Gn(Z) be the Poincar~ series in 

and (76) we obtain 

( ' ~ )  n'°b(n) Gn(Z ) = 
n=O. 

~=O F(kI+U) 

v=o u) r(ki+v) 

~t v(y)-I (cz+d)-k g(V)(yz) 

~ er£xr' 

g(~)(z) ~, v2(Y)-I c 9-~ (cz+d) -k2-v+~ 
y 6r~\r t 

g(V)(z) • (-I) ~-u r(k2) E' (v-U)(z) 
r(k2+~-V) k 2 

r (k 2) 
F(k2+~ F (g ,  E'k2), 

and this together with (70) implies the statement of the Proposition. 

Applying Proposition 6 to the case F' = F, g an Eisenstein series, and f 

a Hecke eigenform, we obtain (using (72)) the following generalization of Rankin's 

identity (33): 

Corollary: Let ..... k I , k 2 ~ 4 be even inteKers wi~h k I # k 2 aRd Ekl, Ek2 
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the normalized Eisenstein series of weisht kl,k 2. Let ~ be a non-nesative 

inteser and f(z) = ~a(n) e 2~inz a normalized eisenform in Sk, k 

k I + k 2 + 2v. Then ' 

(771 (2~i) -v (f, Fg(EkI,Ek2)) = 
(_1)k2/2 2kl 2k2 r ( k - I )  

Bk I Bk 2 2 k - 1 F ( k  -~-l) 

* L~(k-~-I) L~(k2+~), 

where Bkl, Bk2 are Bernoulli numbers and Lf(s) is defined by equations 

(30) and (31).  

Remarks: I. If k 2 > k I ~ 4, we prove (77) by applying Proposition 6 directly; 

if k; > k2, we interchange the roles of k I and k2, using the functional 

equation (31). As in the case ~ = O, we observe that (77) remains 

valid also when k = k 2 . 
1 

2. Since (2wi) -~ F (Ekl,Bk2) has rational coefficients, the left-hand side 

of (77) is equal to the product of (f,f) with an algebraic number lying in the 

field generated by the Fourier coefficients of f. For any k ~ 16 there are 

sufficiently many triples (kl, k2, ~) satisfying the conditions of the Corollary 

to deduce that L~(a) L~(b) is an algebraic multiple of (f,f) whenever a and 

b are integers of opposite parity satisfying k < a,b < k (or simply O < a,b < k 

if we use (77) for k I = k2). For example, if k = 16 and f = A16 is the unique 

normalized eigenform in $16 , we find 

= 2|4(f,f) L~(|O) L~(15) 214(f,f) 

Lf(12) l,f(9) 214(f,f) L~(14) n~(ll) 

I x 3617 x 3.5,7 x 23'32"I~ 3 
2.3.5.13 2,3.7 3617 l 

l 

5.72 

5.7.11 
3 

22 
7 
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Thus we obtain a different proof of the result of Eichler-Shimura-Manin on 

periods of cusp forms mentioned in § I. 

3. For the six values of k with dim S k = I, equation (77) takes the form 

k 

Lf(k2) Lf(k-l) = (-I) ~- 12k-2 + Bkl (f,f) 
\ k I k 2 B k k I k 2 

if v = O (Rankin [18], Theorem 5) and 

Lf (k2+~)) Lf (k-~)- I ) = (-I) ~-I 2k-2 F (k-V- L) 
r(k-1) 

q F (kl+'O) F(k2+~) 1 
(-I) ~ + Bk| ~ Bk 2 (f,f) 

if V > O. 

4. Proposition 6 is similar to a recent result of Shimura ([22], Theorem 2). 

Also, the method sketched in this section for proving Theorem 2 is related to the 

method used by J.Sturm (cf. note at the end of the introduction). 
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§ 6 The Doi-Naganuma lifting and curves on Hilbert modular surfaces 

In |969 Doi and Naganuma [4] constructed a "lifting" from modular form on 

SL2(~) to Hilbert modular forms on SL2(~) , where @ is the ring of integers 

of a real quadratic field K = @(~D). Four years later, Naganuma [14] defined a 

similar lifting from Sk(ro(D), (~)) to Sk(SL2(~)); together, these maps give 

the subspace of Sk(SL2(@)) generated by eigenforms which are invariant under the 

action of GaI(K/Q). In [24] the author constructed a "kernel function" for the 

Naganuma mapping, i.e. a function ~(z, z'; ~) of three variables which is a 

modular form of Nebentypus (~) with respect to T and a Hilbert modular form 

with respect to (z, z') and whose Petersson product with any modular form 

f(T) of Nebentypus is the Naganuma lift ~(z, z') of f. The m th Fourier 

coefficient of ~(z, z'; T) (with respect to T) is a Hilbert modular form 

~m,D(Z,Z') defined by a series similar to that defining the function ~m = 

~m,| of § 2. By replacing ~m by Wm, D in the calculations of §§ 2 - 3 of 

this paper, we will obtain a theorem generalizing Theorem ! an~ as corollaries, 

i) new proofs that certain functions constructed in [3] and in [~, given by 

Fourier expansions whose coefficients involve finite sums of values of 

L-series at integer arguments, are modular forms; 

ii) characterization of these forms in terms of their Petersson product with 

Hecke eigenfor~zs; 

iii) proof that (f,f)/(f,f)2 is an algebraic number for any eigenform 

f e Sk(Fo(D), (~)); 
.partlal 

iv) /proof of a conjecture made in [8] expressing the adjoint map of the 

Naganuma lifting (w.r.t. the Petersson product) in terms of intersection 

of curves on the Hilbert modular surface H2/SL2(~). numbers 

Some of the results have been obtained independently by T. Asai and T. Odd in the 

period since the Bonn conference. In particular, both iii) and iv) Overlap with 

work of Odd. 

We recall the result of L24]. We suppose throughout that the discriminant 
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K is E I (mod 4) and denote by k some positive even integer. The D of 

forms ~0m, D are defined (if k > 2) by 

%------# 

(78) C0m,D(Z,Z') = >', (azz' + ~z + ~'z' + b) -k (z,z'eH, m=l,2 .... ), 
a,b 6 7z 
X¢# -J 

%% '-ab-m/D 

where ~' denotes the conjugate of % and ~= (/D) is the different of K; 

one checks without difficulty that ~m,D is a cusp form of weight k for the 

Hilbert modular group SL2(ff). The main result of [24] is that the function 

~ ,  2~imT 
(79) ~(z,z' ; T) ffi m k- I  ~m,D(Z,Z') e (z,z' , T 6 H) 

m=l 

is a cusp form on Fo(O ) of weight k and Nebentypus (~) with respect to the 

variable T whose Petersson product with any other cusp form f E Sk(Fo(D); (~)) 

is given by 

(80) 5 f(~) ~(~,z' ;-~)<I~ ~)kdV c k ~ c((~)~) e z~i(~ ÷ ~IZ' ) 
= - ) 

F\ H v >>O 

where C k is given by (12) and c(DL) (Ut an integral ideal) is an explicitly 

given finite linear combination of the Fourier coefficients of f at the various 

cusps of F (D). It is also shown that, if D is prime and f a normalized 
O 

Hecke eigenform, then Zc((W)Lg') e 2~i(vz+ w'z9 equals the Naganuma lift of f 

i.e. the coefficients c(-OL) are multiplicative and satisfy 

(81) c(~)) l 
a(p) 

= a(p) 2 + 2p k-I 

a(p) + a(p) 

(82) r c(~C) N ( ~ )  - s  
n~| 

if @~ = (p), ( ) = I, 

if p = (p), (D) = _i, 

if ~2= (p), (D) = O, 

Asai Ill has shown that equations (81) and (82) still hold (for f an eigenform) 

when D is not prime. 

Finally~for our generalization of Theorem | we must define the analogue of (2) 
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for forms of Nebentypus. Let f = ~a(n)q n ~ Sk(ro(D), (9)1 and set 

(83) Df(s) = U (l -0L 2 p - S ) - l ( |  - (D) C~p~p p-S)- l  (1_ E2 p-S )-1 
P P ' P 

where =p, ~p are defined by 

(84) ap + (p) Ep = a(p), C~pEp = pk-I 

or equivalently by 

(85) ~ a(n)n-S ~~ I • 
nffil p (I- ap p-S)(l-(D) Ep p-S) 

Then, with the same notations as in Theorem l, we have: 

Theorem 4: Let D E | (mod 4), D > l, be a square-free integer an d k > 2 a__nn 

even integer. For m ffi 1,2,... and s £ C, 2 - k < Re(s) < k - l se___~t 

! 
----S 

(86) Cm,D(S ) = mk-ID 2 [~(t2-4m, 

tZE4m (rood D) 

t;s)+l k(t2-4m,-t;s)] L(s,t~) 

Then the function 

I k-s-I (_i)k/2 r (s+k-l) ~(2s) u 
22s+k-3w s-I r (k) 

O 

co 

~s,D(Z) = ~, Cm,D(S) e 2Wimz 
m= l 

is a cusp form on F (D) of weight k and Nebentypus (~) 
O 

~s,D' f) = Ck F(s+k-i) (4~)s+k_ | Df(s+k-|) 

for any normalized Hecke eigenform f 6 Sk(Fo(D), (~)). 

2 if m = u , u > O, 

if m # square. 

and satisfies 
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Proof: We would like to imitate the proof of Theorem I in § 2 - 3 with m,D 

instead of ~m" We cannot use ~m,D(Z, -E) for this purpose, because (z,z') + 

(z, -z') is not compatible with the action of the Hilbert modular group. We 

can get around this by using ~m,D(EZ, e'~) if K has a unit ~ with £ > 0 > £' 

and in general by using the function ~0_m,D(Z , E), where ~-m,D is obtained by 

replacing m by -m in (78) and is defined for (z,z') 6 H × H_ (H_ = lower 

half-plane). Writing c instead of b in (78) and setting ~ = ~(b + ~D ), 

we obtain 

~_m,D(Z, ~) Z 
a,c e 
X~-! 

%)~ '-ac=-m/D 

(a]zl 2 + Xz + X'{ + c) -k 

a,b,c,t e~ 

(b2-t2/D)-ac=-m/D 

ity -k 
+ bx + C + ' ~ -  ) 

or~with the notation (48)~ 

yk~_m,D(Z,~) = 
^tc~ 

tz--4m (rood D) 

Re (z,t) . 

Theorem 3 (§ 3) now implies 

s+k- I 

(87)  Cm,D(S ) = ~ ( s ) - l D  2 m 0j_m,D(Z,E ) E(z,s) yk dV. 
F\H 

Hence 

_ s + k -  1 
-1 2 

(88) Cs,D(~) = ~(s) D I ~_(z,~; T) E(z,s) yk dV, 
F\H 

where 

~_(z,z'; z) 

co 

= 

m=| 

k-I 2~im T 
m 0J_m,D(Z,Z') e (z, T 6 H, z' E H.). 

The function ~_ has properties like those of ~, namely it is a cusp form of 

Nebentypus with respect to T and satisfies an equation like (80) but with the 

summation running over all ~ 6 t ~-| such that 9 > O > 9'. (This follows 
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directly from the results of [24] if K has a unit E with g > O > g', 

since then ~_(z,z'; T) equals ~(gz, g'Z';T ), and can be proved without this 

assumption by making the obvious modifications in the proofs given in [24].) There- 

fore (88) implies that ~s,D E Sk(ro(D) , (~)) and that 

_ s+k-I 

(¢s,D" f) = C k ~(s) -I D 2 hf(z) E(z,s) dV 
FXH 

for any f E Sk(ro(D), (~)), where 

hf(z) = yk y, c((v)1~) e 2~i(vz + V'~) (z E H). 

ve~  -I 
>0>V' 

The function hf(z) is SL2(Z)-invariant because ~ (z,z'; T) is a cusp form of 

weight k with respect to the action of SL2(O) on (z,z') E H x H_. 

Therefore we can apply the general principle (44) to obtain 

hf(z) E(z,s) dV = ~(2s) c((v)~) e 2~i(V + V')x-2~(v v' 

r\H 0 o 

The only terms that contribute to this integral are those with v + v' = O, 

i.e. v = n with n ~ ~, and we obtain the identity 
#D 

(89)  ( ¢ s , D , f )  = Ck r(s÷k-J)_ ~!2,S) , c((n))s+k_l 
(4~) s+k-1 n~l n 

v a l i d  f o r  a l l  f ~ Sk(Fo(D), (~) ) .  I f  f i s  an e igenfo rm,  then c ( ( n ) )  = c ( ( n ) )  

and the series ~7=c((n)) n -s has an Euler product whose terms can be computed 

using (81); a short computation then shows that the expression in brackets 

in (89) equals Df(s+k-l). 

We can now deduce several corollaries exactly as in the case D = I. First 

of all, the functions Df(s) is entire (proved by Shimura, [21], Theorem l) and 

satisfies a functional equation ~roved by Asai Eli, Theorem 3). Next, by taking 

s = r E {3,5 ..... k - 3} and using (22) and (26), we find that 

r 
= _ ~._ Ck F(k-r) 

er,D (z) 4 I" (k- I ) Ck, r,D(Z) ' 
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where 

Ck,r, D (z) = ~ Pk , r ( t ,m)  I t(r ,  ~ e 2"gimz 

t z -4m (mod D) 

For r = k - I we get an extra contribution which can be computed as in § 4, the 

only difference being that the multiplicative function p(a) occurring in 

equation (63) must be replaced by the multiplicative function 

PD(a) = ~6{b,t (mod 2a) b2 E t2-4mD (mod 4a)} 

which is calculated in [24] (Lemma 3, p. 27). We obtain an equation similar to 

(27) but with Ok_|(m) replaced by the m th Fourier coefficient of the Eisenstein 

series e~(z) in the space ~o(D),(~)) consisting of those modular forms in 

Mk~o(D),(~ ) whose m th Fourier coefficient vanishes whenever m is not a 

quadratic residue of D (M~(Fo(D) , (~)) is the subspace of Mk~o(O),(~)) 

fixed under all Atkin-Lehner involutions). Therefore Theorem 4 implies the result 

of Cohen ([3], Theorem 6.2) that the functions Ck,r, D are modular forms 

(cusp forms if r < k - |) and at the same time gives a formula for the 

Petersson product of these functions with Hecke eigenforms. In particular, since 

multzpllcity I" theorem that each Df(r+k-l) # O for r > I, we deduce from the " " " 

Ck,r, D generates the whole of Mk(ro(D) , (~)) (resp. of Sk(Fo(D), (~)) if 

r < k - I) under the action of the Hecke algebra. 

For r = I, we again find an extra contribution (given by (21)) coming from 

t2-4m 
the terms in (86) for which D is a perfect square. In contrast to the case 

D : I, there are in general infinitely many such terms, in I : I correspondence 

with the integers of norm m in K, and we find 

(90) ¢I,D (z) = - ~4 Ck" Ck, I,D(z) (k > 2) 

with 



157 Za-53 

(9|) Ck, l ,D(Z) = 
Z ~<4m ¢~ Xe@ / 

2_ X>O / 
t = 4m (mod D) %%'=m 

e2Wimz. 

Finally, if k = 2 then we find (as in the case D = l), that ~I,D equals 

- ~ C2,I, D plus a multiple of the Eisenstein series E~(z). Thus C2,1, D 

t 
M~(Fo(D), (~)) and Ck,|, D e Sk(Fo(D) , (~)) for k > 2. This result is con- 

siderably harder to prove directly than the modularity of Ck,r, D for r > I, 

because the function ~{r(Z) = ~ H(r,N)q N used by Cohen is no longer a 

modular form of half-integral weight when r=1. The fact that C2,1, D 

M~(No(D),(~)) was proved in [8], Chapter 2. 

Equation (90) together with Theorem 4 characterize the function Ck,l, D 

by the formula 

4 r(k) Df(k) (f 6 Sk(ro(D), (~)) an eigenform). (92) (Ck, l,D,f) w (4w) k 

To interpret this, we need some other product representations of Dr(s). Let 

A 

a(n) and c(~r~) be the Fourier coefficients of f and of the Naganuma lift f, 

respectively, ~p, ~p the numbers defined by(85), and A~ (~ C 0 a prime 

ideal) the numbers defined by 

f f (93) Ap = ~p if N(p) ~ p. 

Then (81), (82) are equivalent to the Euler product expansion 

p 

for the Mellin transform of f, and by applying the identity (3) (or rather its 

analogues for forms of Nebentypus and for Hilbert modular forms) to f and ~ we 

obtain 

(95) ~, c(~t) 2 N(~) -s = 
~Z ( s -k+ l )  
~K (2s-2k+2) D~(s), 

and 
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n=l n = ~ (2s-2k+2) p~u 

where 

and 

D~(s) = 

D}(s) = 

P 

(1 - (~) a 2 p - S ) - l ( l  - p k - l - s ) - I  (I - (~) ~2 p - S ) - I  
P p P 

(= the "twist" of Df by (~)). On the other hand, using (93) we deduce 

after some trivial manipulations 

(97) Dr(s) = Df(s) D~(s). 

Thus Df(s) is, up to a simple factor, the ratio of the Rankin zeta functions 

associated to ~ and to f. The above formulas (and more general ones corres- 

ponding to Hilbert eigenforms which are not liftings) have also been observed by 

As ai [2]. 

Using the analogue of formula (5) for f and 

dues on the two sides of equations (95) and (96) at 

we obtain 

(i.e. comparing the resi- 

s = k by Rankin's method) 

22k-I k + l  D- 1 (f,f), 
D~(k) = F(k) 

24k-I 2k+2 
W D-k-I ~ ~ (f,f), D~(k) = 

r(k) 2 

and hence, by (97), 

22k k+| ^ ^ 
7[ D-k (f,f) 

Df (k) F(k) (f, f) 

Substituting this into (92), we obtain 

Theorem 5: Let D E I (mod 4) be a square-free integer > I and k an integer 

2. Then the function Ck, l,D(Z ) defined b~ (91) is a modular form in 

Mk(ro(D), (~)) (a cusp form if k > 2). l_ff f £ Sk(ro(D) , (~)) is a Hecke 
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eigenform and ~ ~ Sk(SL2(@)) its lift under the Naganuma mapping, then 

A 

4 (f,f) 
(98) (Ck, |,D,f) = 

D k (f ,f) 

Since Ck,l, D has rational Fourier coefficients we deduce 

^ ~ ~ ,f)2 Corollary I: Let D, f,f be as in the Theorem. Then (f,f)/(f is an 

a.lsebraic number belongin$ to the field senerated by the Fourier coefficients 

of f. 

Doi informs me that this result has also been obtained recently by T. Oda. 

Secondly, since (~,~) and (f,f) are non-zero, we deduce from the 

"multiplicity I" principle: 

Corollary 2: The modular form Ck, l, D 

operators s~a ~ the space Sk(Fo(D),(~)) 

M2(ro(D),(~)) i ! k=2). 

to~ether with its images under all Hecke 

(r_espectively the space 

This corollary was conjectured in the case D prime, k = 2 by Hirzebruch 

and the author ([8], Conjecture |', p. 108) in connection with the intersection 

behaviour of modular curves on Hilbert modular surfaces. We devote the rest of 

this section to a discussion of the relation between the above results and the 

results of [81. 

We suppose from now on that 

T m C H x H by 

D is a prime. For each m ~ I define a curve 

m 
T m = {(z,z') i ~ a,b, e Z, % E0~ -| with ab - %%' = ~ } , 

i.e. T is the union of the divisors of all of the expressions figuring in the 
m 

definition of ~-m,D" The curve T m is invariant under SL2(@) 5 its image on 

X = SL2(~)\H x H being an affine algebraic curve (also denoted by Tm) each of 

whose components is isomorphic to the quotient of H by some arithmetic group. 

It was shown in [8] that 
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Tm 6 TI = ~ H(4m-t2) 
t ¢ ~ D 

t 2 ~ 4mm 
t 2~4m (mod D) 

if m is not a norm in K. In general, we must compactify X to a smooth 

surface ~ (by adding f in i t e ly  many "cusps" and resolving al l  s ingulari t ies  on the 

resulting surface). Then the closure of T represents a homology class in 
m 

H2(X) which we decompose as the sum of a class TCm in Im(H2(X) ÷ H2(~)) and of 

a linear combination of the classes represented by the curves of the singularity 

resolutions, and one has 

c Tc ~ hm~ 1 ~ rain (~ ~,). 
T l ~ = H( ) + CD m 

t6~ 
t2~<4m l>O 
t 2=4m (rood D) %~'=m 

Therefore we can write 

C2,I,D(Z) 12 m=l 

The formula for T c T c o (n,m 6 ~ arbitrary) was also given in [8] and can be 
n m 

compactly sumarized by 

(99) ~ (TnC ,~ Tm c) e2~imz = (C2,1,D 1 T÷(n))(z), 
m=O 

where T c is defined as a certain multiple of the volume form on ~ and T+(n) 
O 

is the composition of the n th Hecke operator on M2(~o(D) , (~)) with the 

canonical projection M2(Fo(D), (~)) ~ M~(Fo(D), (~)). By using these intersection 

number formulas in combination with a direct analytical proof (by means of non- 

holomorphic modular forms of weight 3/2) of the fact that C2,1, D E M2(Fo(D), (~)), 

the following theorem was proved in [8]: 

Theorem ([8], Chapter 3): For each hpmolo~y class K ~ H2(~; ¢) 

~K(Z) = ~, (K o T~) e 2~imz (z E H) 
m=O 

the series 

is a modular form in M~(Fo(D) , (~)). The mar # : K + ~K is in~ective on the 
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of H2(X; ~) ~enerated b7 the classes T c subspace 
n" 

On the other hand, the map ~ is zero on the orthogonal complement of a 

certain subspace U of H2(X; E) (defined in [7], p. 91) containing all the 

classes T c n' with 

D+19 ] = 
dim U - [ ~ dim M;(Fo(D ) (~)). 

On the basis of this 

jectured ([8], Conjecture l, p. 

the classes T c coincides with 
n 

is an isomorphism. But ~(T:) 

implies that the restriction of 

jective, thus proving the conjecture. 

and of numerical calculations for D < 200 it was con- 

108) that the subspace of H2(X; C) spanned by 

U and that the map ~ : U ÷ M;(Fo(D), (~)) 

= C2,I,DI T+(n) by equation (99), so Corollary 2 

to the space generated by the T c is sur- 
n 

We state this result as 

Corollary 3: The subspace of H2(X; ¢) generated by the homology classes 

FD+I9] 
rCn has dimension L"~'-J and is mapped isomorphically onto M;(ro(D), (~)) 

by ~. 

By associating to a Hilbert cusp form F ~ S2(SL2(ff)) the differential form 

[F(Ez E'~) dz A d z  - ~  + F(EZ', £'z) dz' A dzJ 
2 - 

( e = fundamental unit) and then applying the Poincar~ duality map to the 

cohomology class represented by this form, one obtains an injective map 

j : s 2 (SL 2 (~)) ÷ 

(see[7] or [8] for details). 

U°C U consisting of classes 

H2(~; ¢)  

U n d e r  t h i s  map ,  t h e  c o d i m e n s i o n  I s u b s p a c e  

x w i t h  xT c = 0 c o r r e s p o n d s  t o  t h e  s u b s p a c e  
0 

S~YmC S2(SL2(e)) generated by Hecke eigenforms F with F(z,z') = 

Thus ~ can be identified with a map from S~ ym to S~(Fo(D), (~)). 

hand, one has the Naganuma lifting %: f + ~ going the other way. 

conjectured in [8] (Conjecture 2, p. IO9) that the two maps ¢ o j : 

F(z' ,z) .  

On the other 

It was 

S~ ym 
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S:(Fo(D) ' (D)) and I : S2(Fo(D), (D))_~ S~Ym are, up to a constant, adjoint 

maps with respect to the Petersson scalar product. From the definition of ~ via 

intersection numbers with the classes T c and of t via the Petersson product 
m 

with ~Q = ~-~m~m, D e 2zim~ one sees that this is equivalent to the statement 

(lOO) j(m~m, D) = (const) . TC°m (m = 1,2 .... ), 

where 

Too = Tc (Tm To ) Tc 
m m (To c To c) o 

is the component of T c in 
m 

except that there 

U ° (equation (IO0) is conjecture 2' of E8], p. IIO, 

TOm was inadvertently written instead of T c°m ). 

There are two partial results in the direction of (1OO) which can be deduced 

from Theorem 5. First of all, a formal calculation using (80) shows that for 
-2 

k > 2 the Petersson product of mk-l~m, D and nk-l~n, D equals -~ Dktimes__ the 

th + 
m Fourier coefficient of Ck, l, D IT+(n) ~ where T+(n) = Sk(Fo(D), (~)) > 

S~(Fo(D), (~)) is the modified Hecke operator introduced above, while for 

k = 2 the same is true if we remove from C2,i, D a multiple of the Eisenstein 

+ 

series E2(z) 

-2 (~m,D, 0~n, D ) 

to get a cusp form. Using (99) and the equation j (~m,D) o j (~n,D) = 

([8], p. 109, equation (17)), we can state this result for k -- 2 

as 

j(m~,D) o j(n~,D) = ~2D2 T cO o T c° 
m n' 

which is compatible with (IOO) and gives the value of the constant occurring there 

as ±wD. Secondly, by letting s + I in (87) and using 

lira E(z,s)/ ~(s) = -~ 
s-+l 2 

we obtain the formula 

Cm,D(l ) = ~ D-k/2 mk-I ~ ~m,D(gZ, g,~) yk dV, 
£\ H 

and for k = 2 this can be interpreted (using (90) and (99) and the fact that T| 
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is the curve F\H C SL2(~)\H2, embedded by the diagonal map) as the statement 

~D TI,T~ O = T l o j(m~m,D) , 

which is again compatible with (IOO) and now gives the value of the constant 

exactly as ~D. It should be possible to prove this statement with T! replaced 

by T using similar methods; by virtue of Corollary 3, this would suffice to 
n 

establish (1OO) in full generality. 

We end this section by proving the analogue of (|00) for forms of higher 

weight. The principle is very, general and should be applicable to any cycles on 

automorphic varieties (i.e. quotients of bounded symmetric domains by arithmetic 

groups) and automorphic forms which have the same formal relation to one another 

as T m has to 60m, D. The proof we give would probably be carried over to the 

case of weight 2 (proving (I00)), by using the definition of tom, D as 

lim ~-~ (azz' + %z + %'z' + b) -2 lazz' + ~z +%'z' + bl -s 
~+0 

a,b,% 

(~24j , Appendix |) and carrying out the limit in the integrals. 

Equation (|00) (with the constant equal to ~D) is equivalent to the formula 

~D i ~ F(gZ, e'z -~) dz A d~ (VF 6 $2(SL2(0) ~ (101) (mWm,D,F) = - -~ - ,  

T 
m 

b e c a u s e  t h e  r i g h t - h a n d  s i d e  i s  j u s t  - ~gD t i m e s  t h e  i n t e r s e c t i o n s  number o f  

T co j(F) with T m (we can write T m instead of T c or because j(F) is 
m m 

orthogonal to the curves of the singularity resolutions and to the volume form 

T~). Let 

= {A eM2(O) I A ~ = A' }, 

a b (d -b. a' b' 
where A ~ and A' are defined for A = (c d ) E M2(~) as -c a ) and (c' ~')' 

respectively. The group G = SL2(O)/{±k} acts on ~ by M o A = M *~M'o Each 

A 6~ with det A > 0 defines a curve in H x H, namely its graph {(z, Az) I 

z @ H}, and T m consists of the images in SL2(~ ~ H 2 of these graphs for all A 
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with det A = m. The components of 

classes of A with det A = m. Let 

representatives of these classes and 

C0m correspond to the SL2(~)-equivalence 

A i = ci di (i = l ..... r) denote 

G. ( i = l,...,r) the isotropy groups 
i 

G. = {MeG I M~A.M ' = +A. }. 
1 1 l 

Then 

where the 

T 
m 

r 

tJ 
i=i 

.=h 
z component is embedded by 

~m,D(Z, z' ) 

r 

okI2 
i=l M £ G.\ G 

1 
r 

= Z ~(i)(z, z') 
i=l m,D 

z ~'~(z, Aiz), and ~m,D 

SM~A.M,(ez,e'z')k/2 
I 

is defined by 

(k>2) 

where 

~a b (z,z') 
(c d ) 

= (czz' - az + dz' - b) -2 

az+b.-2 
= (cz+d) -2 (z' -c--~-~) 

(of. [24] 11.4 - 5), and each function ~0 (i) is in Sk(SL2(O0) For k = 2, 
' m,D " 

co(i) Then equation (IOO) states that one has a similar splitting of C0m, D as ~ m,D " 

r r 

~ (F (i), -~D~ I (ci~+di)-2 F(ez, e'A.-~) dx dY 
i=l " c° m'D~ = i=l G.\H 

I 

for all F ~ $2(SL2(O)). The analogue we prove for forms of higher weight is the 

following. 

Theorem 6: Let k > 2, m > I Then 

r 

(F, mm,D ) = ½CkDk/2 

for all 

proportional to the integral of .... 

i=l 

and ~m,D the Hilbert modular form (78) 

I (ciz+di)-k F(ez, e'Ai--z) yk dV 

G.\H 
l 

F 6 Sk(SL2(O)), i.e. the Petersson product of 

F over the curve T m 

F with mk-1~ is 
,,, m,D -- 

in a suitable sense. 
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Proof: We have 

(i)~ 
(F, ~m, O - 

(|02) 

= D k/2 

F(ez e,z-~) m(i)(£~, g'z') yk y,k dV' dV 
m~u 

I I F(Ez, e'z %) ~Ai({,z,)k/2 yk ,k G.NH 2 Y dV~dV . 
i 

Since G i acts properly discontinuously on H, we can take for G'\H21 a 

fundamental domain of the form ~ x H, where ~ is a fundamental domain for the 

action of G. on H. Then the integral on the right-hand side of (|02) equals 
l 

G.~H H 

But one has the identity 

f(z)({_m)-k yk dV = ½ C k f(a) 
H 

for any holomorphic function f on H with 

p. 46), SO the inner integral in (103) equals 

(a E t~) 

~If(z) 12 yk dV < oo (cf. [-25], 
H 

C k F(Ez, e'Aiz). 2 

This proves the theorem. 

Remarks. I. Theorem 6 is contained in recent work of T. Oda ~5]. However, 

the explicit working out of his very general results for the case of the curve 

T has, so far as I know, not yet been given in the literature. 
m 

2. In the theorem we describe a way of integrating cusp forms of weight k over 

certain curves of X, whereas one would expect such an integral to make sense 

only for k = 2. Presumably there is some appropriate homology theory ~k(~) 

which has a natural pairing with Sk(SL2(e)) and such that the curves in question 

classes in ~k" The bilinear form on ~k corresponding to the Petersson yield 

product in Sk(SL2(~)) should then have a geometrical interpretation, i.e. for two 

compact curves C l and C 2 which meet transversally the intersection number of 
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C1 and C 2 in ~k 

points of C 1 and C 2. The intersection number of T n 

(assuming that n or m is not a norm and (n,m) = I) 

, k-l 

4<~nm4~m ok-I-~ 4nm-t 2 
t 2t2 O - ~ H(--~) , 

od D) 

should be a sum of local contributions from the intersection 

and T m in ~k 

must be given by 

I. Here ~--~H(D)anm-~2 is the number 

of intersection points of T n and Tm, and from the description of the local 

geometry near such an intersection point given in Chapter I of [8] we find that 

the number 0 at a point x £ T ~ T has a local description as the cross- 
n m 

ratio of the four tangent directions in the tangent space TxX given by ~z1,~z2 

and the directions of T and T at x. (This was suggested to me by Atiyah.) 
n 

(cf. (91)), where 0 + O = t 00 = 

3. For k > 12 the space S~YmC Sk(SL2(@)) is no longer the image of the 

Naganuma lifting I but the direct sum of this image with the image of the 

Doi-Naganuma lifting 

I o : Sk(SL2(Z)) -~ Sk(SL2(@)). 

We can give a description of the adjoint map (w.r.t. the Petersson product) of 

in terms of intersection numbers as follows: The curve T m is d~m I o Fro/d2 9 

where F m is defined in the same way as T m but with the condition that the triple 

(a, b, ~) not be divisible by any natural number > I. In a recent thesis 

("Kurven in Hilbertschen Modulfl~chen und Humbertsche Fl~chen im Siegel-Raum", 

Bonn 1977), H.-G. Franke proved that, for prime discriminants D, the curve F 
m 

is irreducible if D2~m and has exactly two components if D21m. Call these 

two components F+m and Fm; they are given by taking those triples (a, b, %) 

in the definition of F m for which (~) + (~) is positive or negative, res- 

pectively (note that ab E ~' (rood D) ~ (~) + (~) # O). Set 
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T ± = U F~D2/f2 
m f2im 

(so that T+m and T-m are unions of components of TmD2, with TmD 2 = Tm + 

T + + - We can break up e as ~ + ~+ + - in parallel way, 
m Tm)" mD2,D m,D m,D ~m,D a 

+ 

and the proof  of  Theorem 6 again  g ives  an i n t e r p r e t a t i o n  of  (F, ~ , D  ) as an 
± 

integral of F over T m The relation to the Doi-Naganuma mapping is given by 

Theorem 7: Let k > 2. The function 

2 F o0 a°(z,z';r) m k-I + (z,z') - L0 (z z') e 2~imT (z,z',T 6 H) 
= ~m,D ' 

m = I 

is a cusp form of wei sht k on SL2(Z ) with respect to 

factor, the kernel function of the Doi-Nasanuma lifting 

S k (SL 2 (~)). 

I omit the proof, which is analogous to that in ~4]. 

r and is, up to a 

1 o : Sk(SL2(~)) -+ 
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CORRECTION TO "THE EICHLER-SELBERG TRACE FORMULA ON SL2(Z)" 

by D. Zagier 

The paper in question is a translation of the author's paper "Trace des 

op&rateurs de Hecke" (S&minaire Delange-Pisot-Poitou, 17 e ann&e, 1975/6, n ° 23) 

and appeared as an appendix to Part I of Serge Lang's recent book 

Introduction to Modular Forms (Springer-Verlag, 1976, pp. hh-5h; all page and 

equation numbers below refer to this appendix). Its purpose was to give a self- 

contained account, in the language of the classical theory of modular forms, of 

the formula of Selberg and Eiehler for the trace of the Hecke operator T(N) 

acting on Sk(SL2(Z)). Unfortunately, as several people have pointed out to me, 

the calculation of the contribution from the hyperbolic matrices with rational 

fixed points ( Case 3 , p.53) is incorrect. The contribution from all such 

matrices with given determinant u 2 (ue Z, u> 0 , u2+hN =t 2 

by 
F 

(1) ) R(z) dxdy 2 
F Y 

where F = {z=x+iygH )Isl >I, Ixl<½ } 

of 8L2(~) on the upper half-plane H 

(2) R(z) = ~ ' 
,C~Z 

b2-4ac = u 2 

with tg~) is given 

is a fundamental domain for the action 

and 

k ¥ 
( a I z 12+bx+c-ity) k 

(z=x+iy a H). 

Substituting (2) into (I) 

(3) ~ R(z) dxdy 
3 y2 

F 

and interchanging the summation and integration gives 

= ul 
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with 

( 4 ) I = ~ dxdy 

H (Izl2-ity - ~u'1 '2)k Y2 

This integral is computed by integrating first over x 

O --~ 

and then over y ,i,e. as 

and it is claimed that this leads to the value 

(6) (-I)<k-2>/2 k-12~ u-1 (u+ltl)-k+1 

for I, which when multiplied by u gives the correct value for (I). However, 

the computation given contains a sign mistake (the integral (5) is correctly 

.k-2 dk-2 ~ I  4 I 
evaluated in the text as 2(k-l)! dtk-2 (- u u+Itl ) ' which is the negative 

of (6)), and in fact the integral (I) is not equal to u times expression (5). 

The reason is that the expression obtained by substituting (2) into (I) is not 

absolutely convergent, so that the interchange leading to (3) is not justified; 

moreover, equation (h) makes no sense until we specify the order of integration 

over H, since the integral is not absolutely convergent. 

The correct procedure is to replace the integral (I) by the limit as C + ~ of 

the integral over the compact region F c = {z=x+iy & F I y )C}, in which the 

convergence of the sum (2) is uniform. Then equations (3) and (4) remain valid 

integration over H in (4) is interpreted as lim I , where H if the is 
c~o JH E 

C 

obtained from H by removing all points which have imaginary part > I -- or which 
£ 

lie in the interior of a circle of radius ! tangent to the real axis at any 
c 

d 
rational point -- , (c,d) = I . Since the only poles of the integrand in (h) 

c 
I 

are at z= ±3 u , we can shrink all of these circles to zero except those tangent 

I I 
to the real axis at ~u and - ~ u. Hence 
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11 Ia,T - (7) I = - lim "u lim I , , 
e,-~u E+o c-~o 

where 11 is the integral (5) and 

2~ 

i I e,±~u 

0 

is the integral over the circle 

being carried out first over x 

i x= ±Tu + ca, y= eb, we find 

+,u+ ( ~ (x2+yI-ity- ~U2)-k d Yk-2 

±S y F 
dy 

+I tangent to the real axis at _Wu, the integration 

and then over y. Making the substitution 

SO 

u= g 

0 

2 

lime+o Ie'-+~u = i -~V~ 

0 
2 

bk-2 

( ±ua-itb+e ( a2+b 2 ) )k 

bk-2 

(±ua-itb) k 

I -I I { ~ -k+1 k-1 u (uq2b-bL-itb) 

0 

da db , 

da db 

+(u~+itb)-k+11 

2 -I I )-k+1 v dv 
- k_---~u (uv+it 

2 

b k-2 db 

2 
where in the last line we have made the substitution b = v~+1 . The latter 

integral can be evaluated easily by contour integration (for example, if t>O 

then the only pole of the integrand in the upper half plane is at v=i ) and 

equals the negative of expression (6). Since also 11 equals the negative of 

(6), as stated above, the expressions (7) and (6) are equal. 

A second and minor correction is that on page h9, line 3 and page 52, 

line 26, the h8 should be replaced by 24, and in the middle of page 52 the 

should be 
3" 
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A LIFTING OF MODULAR FORMS IN ONE VARIABLE 

TO HILBERT MODULAR FORMS IN TWO VARIABLES 

by Henri C O H E N  

§. I. - Introduction 

Let K be a real quadratic field of discriminant D ; write O K for the ring of 

integers of K , b for the different, and x' for the conjugate of x in I<. 

When one computes the Fourier coefficients of the Hecke-Eisenstein series of 

weight k for SL2(OK), one obtains the following (see [l]) : 

PROPOSITION i. 1. - Let k_>Z be an even integer. Se_!t 

1 > ZNT(vz 1 +'4'z2) c(v ~)) 
Qk(Zl,Z 2)~-~ ~K(l-k)+ e 

, ~ b  - I  

~>> 0 

whe c(~b) =~ dk-I D) re -- (-~ ~kl(NK/~((~b)/d)) " 

dl(v~) 
d 6 ] N *  

T h e n  Qk i_s, up  to  a c o n s t a n t  f a c t o r ,  t h e  H e c k e - E i s e n s t e i n  s e r i e s  of w e i g h t  k fo_..Z 

K , a n d  t h u s  i s  a H i l b e r t  m o d u l a r  f o r m  on S L z ( O K ) .  

The appearance of (~k-I makes one think about the one variable Eisenstein 

series : 

g k ( z )  = ~  ~(1 - k ) +  O k _ i ( n ) q n  . 
l ...... 

n_>l 
T h u s  i t  i s  n a t u r a l  to  a s k  if  p r o p o s i t i o n  1. 1 c a n  b e  s l i g h t l y  m o d i f i e d  s o  t h a t  i t  h o l d s  

w i t h  O-k_l(n ) r e p l a c e d  b y  t h e  n t h  c o e f f i c i e n t  o f  a n  a r b i t r a r y  m o d u l a r  f o r m ,  f o r  

instance by r(n). 

The purpose of this paper is to show that this is indeed true, but with certain 

restrictions. 
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The result is as follows (A weaker result was given in [3] and [4]) : 

~ - -  n 
T H E O R E M  1.2.  - Le t  f= a(n) q ES k (Fo(N),  X) be a cusp . . form of we igh t  k 

n>_l 
and character X o_~n to(N). Set : 

E~(Zl'Zz)= V eZi~(VZl+V'zz) 

vEb -I 
v>> 0 

where 

c(,~ ~) 

c('O]O) -- ) dk-Ix(d) (41)) ~b 
d a ( N K / Q ( - ~ )  ) 

d ](,~b) 
d E]N *~ 

K 
Then if k>--3 is an integer, Ef is a Hilbert modular form of weight k and 

........... of SLz(OK) of level dividin. N character X°NK/~ on a congruence subgroup FNI . . . . .  

NlW , defined by 

rNI:~(~ ~)~S~z(OK), ~,6~z+Nlo K, y~N l(z+woK)} 
where NI=2N/(4, D,N), and w=Z if D~ i (mod 8) , w=! otherwise. 

§.Z. - Main tools for the proof 

One of the first things to check before attempting to prove that E K is a Hilbert 

modular form is that its restriction to the diagonal Ef(z,z) is an ordinary modu- 

2 n SL2(77,.) = to(N1)  . lar form of weight 2k and character X for FNI 

One finds easily that : 

o ) 

n_>l dln sE2~ 

where here and elsewhere we set a(x)= 0 if x~ IN . If for instance D-= i (rood 4), 

then clearly : g 

f(4z)@(z) =) qn() a(~_s_)) 

n _>1 sE2g 

and  so the fac t  tha t  E z, z) is a m o d u l a r  f o r m  of we igh t  2k and c h a r a c t e r  X on 

~o(N1) is  a c o n s e q u e n c e  of S h i m u r a ' s  t h e o r e m  on f o r m s  of ha l f  i n t e g r a l  w e i g h t  

( [ 1 1 ] )  as  i m p r o v e d  by  Niwa ( [8 ] ) ,  w h i c h  we s t a t e  as  f o l l o w s :  

\ 
THEOREM 2. i. (Shimura, Niwa)- Let g=? 

is squarefree, se_._J_t n_> 1 

b(n) qn E Sk+_~ (Fo(4N),  × ) If t_>l 



177 
Co-3 

S(g ; t )  (z) = q x(d) ( b((n/d)Zt) . 

n_>l d in  

Then if k>_3 is an integer, S(g;t)ESzk (Fo(ZN), X Z) • 

So it is clear from above that Shimura's theorem is closely tied in with our map- 

ping, and it will be (in a slightly generalized form) the first of our two main tools. 

Our other main tool is a combinatorial characterization of Hilbert modular 

forms. 

We need some notation. 

Let GL~ (IR)= [ (a b c d)EGLz(IR)I ad-bc> 0 } and let r~l be aninteger. 

If g is a function defined on the r-fold product of the upper half plane H r , 

. . . . . . . . . .  ( ai bi GL2(IR) for l--<i~r k = (k I k r) E mr , and y = (YI yr ) where yi = ) E 
c i d i 

we set : 
5,,, ki/Z -k i 

(glkY)(Z 1 ..... Zr)=l=J (aidi-bic i) (cizi+di) g(YlZl ..... YrZr ) • 

Then we have the following theorem ; 

THEOREM Z. 2. - For mE]N and G any analytic function on H×H , se_._~t 

(~m(G))(z) = ~ (_ 1)Le °(Jr ~m-~G)(z ,  z ) 
m, ~ z I z 2 

0--<L~<m 
-i 

where e = (C~(m-~):(kl+~-l)'(kz+m-~-I):) 
m,~ 

(We write freely xJ in place of Z'(x+l) ; furthermore if I~ is any symbol, 

an abbreviation for -S~ " ) Then : 

a) For any yEGL~(IR) 

: I(kl, kZ)(Y' • Cm(G)tzn~+kl÷kz¥ ¢ ( G  y)) 

b) Given XEE and yEGLz(IR ), the following 

where  

i) G I(kl, kz)(y,  y) : xG 

ii) F o r  all m>0 

~(G)lzn~+k l+k z 

c) When k t = k 2 = k  we have 

: × ¢m(G) 

~ ( G )  : (-1)no 

two statements are equivalent : 

(~+k-~-g /z ) :  z ~-z~ 
~ ( G ) ( z )  : (-1) ~ ~: (m-Z~): (k-3/Z): 

0---~-<m/Z 

is 

<Zk - Z): ~(O) 
(k-l) : {k+~ -I )j"(Z k+~ -Z): 
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It will be clear from the proof that this theorem can easily be generalized to 

a n y  n u m b e r  of  v a r i a b l e s .  

§. 3. - P r o o f  of t h e o r e m  Z.Z .  

a) S e t  E ( z ) = ( z - Z ) - l =  1 / Z i y ,  w h e r e  

p r o v e d  ( s e e  [ 2 3 ,  §, 7) : 

y=Imz . The following facts are easily 

- I f  f i s  a C f u n c t i o n  on H , t h e n  f o r  y E G L  (I19)  : 

(Sz f + k E i f )  lk+zY = ~z (fJk Y) + k E ( f l k Y )  

- For m_>0 set 
(z) 

F m (f) : (Sz+ (k+Zm-Z) E(z))(Sz+(k+Zm-4)E(z)) ... (~z + kE(z)) f 

then : 

i) r )(f): ( ) (k+~-l)." Z(~)m ~Zfz 
0_<&_<m 

and  i i )  F ~  ) ( f ) , k+Zm y = F(m z ) ( f , k  Y) 

C ~ H r N o w  l e t  f be  a f u n c t i o n  on . If  m : (m 1 . . . . .  m r )  a n d  

c a n  N e t  
F(Zl) (F(zZ) (Zr) 

F (z)(f)= . . ,  ( F  (f))...) . 
m m I m Z m r 

Then with the usual conventions for multiindices 

~ mi)'.L, ~ n., )m-£ r mi-£ i 
( ( ): ( n! : I I ! E(z : W E(z i) 

": i:l l i:l 

k = (k 1 . . . . .  k ) , iV e 
r 

1 

f , = 
t m 

z Z r 

m_>0 ~ Vi , m . > 0 )  i t i s  e a s y  to  
1 

N o w  f o r  z = (z 1 . . . . .  z r )  , t = 

Ff (z ,  t) = y  

m>_O 

Gf(z, t) = ~ - -  
m_>O 

r m i 
! Iti-= ' Iml= ml +'''+mr ' 

see that i) and ii) are still valid. 

(t 1 . . . . .  t r )  s e t  : 

(Zirr) trot t Zm F (z)  (f) 
m 

m l ( k + m - 1 )  l 

(Zi~)l m ItZm 3mf 
z 

m. '  ( k + m - 1 ) :  

Then as in [Zj one shows easily from i) that 
r Z 

Z i17 Z t i i=l E ( z i )  
Ff(~. t) = e Gf(., t) 

From this and ii) one deduces the following proposition : 
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PROPOSITION 3. I. - With the above notations, 

l 

Gf(aZcz+d + b , (adcz-+d b c ) ~ t )  = (ad  - b c )  - k / Z  (cz  + d ) k x s  x G ( f l k y ) ( z ,  t) 

whe re 

2i~ E 2 
S=e i=l ti ci/(cizi + di) 

If we specialize to the case r=2 and take t I =t=-it 2 and Yl =Y2 = Y ' one has 

S=l and theorem Z. 2. a) follows. 

b) The operator Jp (G) being linear in G, 
m l 

from a). So we need to prove Ji) = i). Replacing y by ¥/(det y)~ 

suppose ¥ E SL2(IR) • Set : 

h(z  1 , z Z) : ( O l ( k l  ' k z ) (  ¥, y ) ) ( z  1 , z z )  - x G ( z  1 , z z )  , 

that is : 

it is clear that i) = ii) follows 

, we can clearly 

-k I -k 2 aZl+b az2+b 

h ( Z l , Z 2 ) = ( C Z l + d )  ( c z z + d )  G ( c z l +  d , c z 2 +  d ) - X G ( Z l , Z 2 )  • 

Our hypothesis tells us that G is analytic on HxH, and so h is also. To 

prove that h-=0, it is thus enough to prove that (b: I. blz2 _h)(z,z)=0 VzEH and 
1 Z 

V(il,iZ)EINx]N . Call f~h the proposition : 

(~) - For all il,i Z such that il+i 2 < X and all zEH : 

i I i 
~z h)(~, z) = 0 

(bz I z Z 

We shall prove (f~X) by induction on X, using ii) at each step. 

X = 0 .  

(~) states that h(z,z)=0 . But clearly 
O 

-(kl +k Z ) 
h ( z , z ) = ( c z + d )  G ( y z ,  ¥z) - X G ( z ,  z) 

and so 

h ( z ,  z) = (k 1 -1 )2 (k 2 -1  )2 ( % ( G ) I k  1 +k 2 ¥- X % ( G )  ) : 0 

q~o(G) = G ( z , z ) / ( ( k  1 - 1 ) :  (k Z - l ) :  ) . 

So now we assume (f~k-l) and we want to prove (f~h) , where 

Differentiating with respect to z the known identities 

V i i i 0 ,  X-1 j : ~i ~',,-1-i h ( z , z )  = 0 , 
z I z Z 

we obtain : 

8i+1~-1 - i h ( z ,  z ) +  8i 8h-i h ( z ,  z)  = 0 , 
z I z Z z 1 z Z 

by ii) , using the fact that 

kkl . 

and consequently : 
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h(z,z)=(-1)  i b k h(z,z) . 
~iz I z 2 z z 

To prove that all these partial derivatives vanish it is thus sufficient to find one non 

trivial independent linear relation between them, and this relation will be given to 

us hy ii). First we need a lemma : 

LEMMA 3.2. - 
i i 

~zll3:2h(Zl,Z2)=) (CZl+d)-(kl+il+Jl)(czz+d)-(k2+iz+J2) × 

o-.Jl~i  1 
0--<jz --<i 2 

(il+kl -1)~ (iz+kz -1): ~ iz _c#l+i2-Jl-J2(~l ~zzG)(Yzl,J2 yz.)_X ~il ~iz 
(Jl+kl-l)l (jz+k2-1) ' (jl)(j2)( z I ~ z I z 2 

G(z 1 , z Z) • 

The proof of this lemma is by induction on i I and i 2 and simply checking that 

the coefficients are correct by differentiating with respect to i I (or i 2 ). The de- 

tailed calculation is left to the reader. 

LEMMA 3. 3. - For any m_>O 
) (-l)2~em, z~° (~i ~mZ-6h)(z'z)= 0 " 

O_<6_<m 

Proof. - We replace 2~ '~5"--Ch by its expression given by lemma 3.2, 
z I z Z 

The coeffieint of 

(cz+d)-(kl+k2+m+Jl+Jz)(-c)rn-Jl-J2((ll ::2 G)(a--Z+bcz+d' azj_~j~cz+d 

is equal to 

(~. +k 1 - 1 ): ( m - ~  +k z -  1 ) '  ~ '  ( ~  t )  
( -1 )~  e 

m, 6 (Jl+kl-1) : ( jz+kz-1) '  Jl : JZ: ('$-Jl): (m-'~-J2)7 
O<6_<m 

: i ) (-l) t 
Jl : Jz : (Jl+kl-l): (jz+kz-l): (6-jl): (m-i-jz): 

0<~m 

and this last sum is equal to 

(_1~ 1 

(m-j  1 -jz): 

and so vanishes if jl+J2< m . 

---- (-l)i' .rn-Jl-J2 

0~£'--<m-Jl -J2 

Hence : 
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e m (b ~ m - £ h )  (z, z) = 
, £ z 1 z 2 

0~5._<m 

(_i) ~ ( 2~ ~rn-Co(z ' -X 85" 
= em, ~ z I z 2 Z)!kl+kz+ZmY z I 

0_<5._<m 

: % ( G ) l Z m + k l + k 2  Y - X %(G) = 0 

using ii), and so 1emma 3.3 is proved. 

~m-5. G(z, z)) 
z 2 

Lemma 3. 3 gives us the missing relation : since by the induction hypothesis we 

proved that 
i 

bk-i h ) ( z , z )  = ( -1 ) i  (b x- h ) ( z , z )  
(~:1 zg z2 

we have from lemma 3. 3 : 

( L ex,  5.) (~k  h ) ( z , z )  = 0 
z 2 

0-<5._< k 

and since ek, 5>0 it follows that (@:?})(z, z) = 0 and so (%) is true by induction. 

This ends the proof of theorem 2.2. b). 

c) We f i r s t  need  a l e m m a  : 

L E M M A  3. 4. - 

i) (1 - 2 s t + p  tZ) - (k-½) 1 > 
- ( k  - 3 / 2  ): 

m_>0 

(m+k-6-3/2): 
tm (-I)£ i' (m-26): (2s)m-21Ps. 

0--<6~m/2 

ii) 

where 

5. m-~ 
(l-2(x-y)t+(x+y)ZtZ)-(k--~)=~tm[ > dm,45x Y ] 

m_>0 0--<~--<m 

d = (_l)m-£ (k-l): (k+m-l): (2k+m-Z)! 
m , ~  (2k-2): 5.: (m-i): (k+5.-l): (k+m-5.-l): 

Proof.- i) The left hand side satisfies the differential equation : 
dY + 1 

(i -2st+pt 2) -~-- (k -~-)(Zpt -2s) Y = 0 . 

) tm S e t t i ng  Y = a we o b t a i n  the r e c u r r e n c e  r e l a t i o n  
m 

m~O (m+l)am+l=ZS (m+k-½)am- P(m+Zk-Z)am-i 

with initial terms ao= i , a I= (Zk-l)s . 

It is now easy to see that the right hand side satisfies these conditions, so i) 

follows. 

ii) In the recurrence relation above we substitute 



Co-8 
182 

d cx  L m-L m, Y for a m 

0<_£<__m 
L m+l-C 

Identifying the coefficients of x y 

(x-y) for s and 

we obtain easily : 

(x+y) z for 

(m+l )dm+l ,  £ = (2m+ Zk-l)[dm, i_l-dm,£] 

- (m+Zk-Z) [ din_l, I~-Z + Zdm-l, ~-i + dm-I, ~ ] 

with initial terms 

do, o=l  d l , o :  -(Zk-1) d l ,1  : Zk-1 . 

Again it is an easy matter to prove that the expression given for din, ~ 

all these conditions, which proves ii). 

The proof of theorem 2. Z. c) can now be easily completed : 

From lemma 3.4. i) we have the formal identity 

L - 
tm~ m = (l-2(~Zl 3zz)t+(%l+ ~zz)ZtZ) -(k-½) 

and so we deduce from lemma 3.4. ii) that 

p . 

(k-l): (k+m-1): (Zk+m-Z): 
~m: (-l)m-Z (Zk-Z).' 4: (m-~): (k+~-1): (k+m-4-1): 

O_<%_~m 
from which the result follows by definition of % . 

satisfies 

z I z 2 

§. 4. - Proof of theorem I.g. Preliminaries 

c o  

be two C LEMMA 4. i. - Let fl 'fz 

numbers. Set : 

(kl+m_i) : (kz+ m-l) : 3m_~ 

rm(fl, fz) = (-1)~(~> (kl+m_~_~): (kz+~_l): 
O~6_<m 

Then : a) F o r  all yEGL;(IF[) we have 

Fn(fl l k 1Y' fZtk Z Y ) = L ( f l  ' fZ)tk l+kZ+Zn ¥" 

b) We have the identi ty 

Fm(f  1, f2) =~---- (-1 
O_<6<_m 

functions on C , and k I , k z be given real 

J~ 
fl x zf2 - 

(kl+m-l) ' (kl +kz+ 2m-t-Z) ; 

This lemma is proved in [2J theorem 7. i. 

from theorem 2.2. a) by taking 

G(z l, z 2) = fl(Zl) f2(Zz ) • 

Note that part a) follows easily 
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b) can be proved by expanding ;~z (f2 × 8z m-4 fl ) Part with Leibnitz' formula. 

LEMMA 4. g.- Let f=~-- a(n)qnEsk(%(N ), X) where kE]N , k>_3 . 

n_>l 
For every m~IN, set 

.... " ~  > a((n/d)2 I CKm(f)= q n E ~  dm+k-1 pK (n/d,s) D-s  g x(d)( ) m 4 ') 
n_>l dJn sff2K 

where 

Co-9 

l ~ )~. (m+k-~.-3/g). ~ ,n)ggD~..gs)m-g~, pK(n/a, s)-(k_3/Z). (-1 ..: (m-Z..): q 
m ~ 

0-- ~ ~ ~ m/2 

Then CKm(f) ESgk+Zm(Fo(N1), X g) with N 1 = 2N/(4, D,N) . 

Proof. - When m is odd, terms in s and -s cancel and so C K (f)=0 . So we may 
m 

suppose m even. 

Consider first the case where D--0 (rood 4). Take 

fl(z): @(z) , fg(z): f(z), kl : I/2 , k2= k , where 

.~ 2irrnZz 
@(z) = e is the usual theta function of weight I/2 

SE Z 
on Fo(4 ). Thenusing n~ (n-l/Z): = (Zn): z-Zn~/~, one sees from lemma 4. l that 

(gi~)-m/gFm(fl--z ' fg) =(~+k-3/Z)'m' 2-m Z qn[~62 Qm(n's) a(n-s2) ] n _ > l  

where Qm(n,s)= (-1) ~ ~.: (m_22~). ~ n~'(gs 
0~s m/z 

and Fm/g(f], fz)ESm+k+~(Fo(EN, 4] ), X(-4) k) . 

It is now easy to check that, with the notations of theorem 2. 1 : 

S((Zi~)-m/Z ~ / Z ( q ,  %) ,7)=D m:(m/2 + k(k-~/Z)~ - 3/Z): z-Zm CKm (f) 

and thus lemma 4. g follows from theorem g. 1 in the case D~-0 (mod 4) . 

If D= 1 (rood 4), we take fz(z)=f(4z) instead of f(z) and one shows similar- 

ly that 

m : (k-3/g) : 2-m GK 
S((2ir0-m/Z Fm/Z(fl' fg);D) = (m/2 +k-3/2): m (f) 

hence lemma 4.2 follows. 
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COROLLARY 4.3. - When k>_3 is an integer, Ef K is a Hilbert modular form of 

weight k and character X oNK/Q on the congruence subgroup F~ of GLz(OK) 

generated by %(NI) and the matrices (~0 ~ I ¢2 ) where ~i'  ~;3 are units, e 1¢2>>0 

and I!tEO K . 

Proof.  - Set 
z i::(~ ] +~z )/z zi::(: l -~z )/z j5 

q =e T=e 

Writing ~ = (s+n~)/Zj:~ , it is clear that we have : 

=> d ~ n  4D) ) sd a(In/d)ZD-sZ EK(zl ' z2 ) qn d k-1 x(d)('--~- T 4 

n>_l s G ~  

Note that the inner sum is finite since by convention a(x) = 0 for x~ikl . It is 

easy  to see that : 

now 

and so 

%(E~()(z) = (2i:)m > qn > dk+no-lv(d)(.~) ~ . ~m(n/d ' s) a((n/d):D-s~) 
n > l  dln sE~Y~ 

~om(EfK) = (gi:)m CKm(f) 

:Om(E~i)GSzk+Zm(Fo(NI),× 2) for all m_>O , 

are units such 

so by ]emma 4.2, and we deduce from 

(a b 
theorem 2.2. b) that for every y = c d)EFo(NI) : 

ElK( az 1 +b az2+b 
CZl+ d ' cz2+ d ) = xZ(d)(CZl+d) k (cz2+d)k E l< f (Zl' z z) • 

On the other hand it is clear from the definition of E K that if ¢1' ¢2 

that ~'le2 >>0 and ~O K , then : 

K aZl+~ Ct'z2+~' 
(~) Ef (~Zl+ 6 ' y'-~Z+~7)= X(88')(YZl+8)k(Y'Zz+O')k EK(zl ,z  2) 

is true for (:X ~)=(01 j3 Y ¢g). Thus (~) is valid for the group F'NI generated by 

¢ l %(NI) and the matrices ( 0 ~Z ) . This group is described in detail in [4]. Let 

us simply show why it is a congruence subgroup. 

Let (l,~) be a 2g-basis of O_ , and let U=Ul+U_ ~ be a totally positive unit. 
: o u-1 o ~ , 1  o , . u  o .  / 1  o 

Then (NlU i) ' for ( EVN 1 0 i ) (N 1 1 )(0 1 ) = (NlU 1 ) " 

Thus for any pair (c I , c 2) E 25 × 2E we have 

NlU2(Cl+C2~) 1 NlC2U N] (clq2-Czql) 
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I 0 12.' soforany YENIU20 K wehave (y l) 6 NI . Since for any ~EOF[ wehave 

(0 ~ ~ 
I ) 6  8 ~  , w e  d e d u c e  f r o m  a d e e p  t h e o r e m  of  V a s e r s t e m  [ 1 2 ]  t h a t  : 

1 

F~lm [(C~y ~)E SL2(O K) , Co, 8E t +NlU20 K , Y~NlU20 g } 

and so F~ is a congruence subgroup of level dividing NlU 2. 
I in [43 . 

H o w e v e r  t h e  g r o u p  w e  w a n t  i s  a b i t  l a r g e r ,  a n d  s o  w e  h a v e  to  l o o k  b a c k  a t  w h a t  

w e  h a v e  d o n e .  W e  h a v e  e s s e n t i a l l y  u s e d  t h e  i n f i n i t e s i m a l  i n f o r m a t i o n  a r o u n d  t h e  

d i a g o n a l  z l = z 2 = z  w i t h  t h e  h e l p  of  t h e o r e m  2. 2. b).  B u t  o n e  c a n  a l s o  u s e  t h e  

" t w i s t e d  d i a g o n a l s "  z I = u  z , z 2 = u ' z  , w h e r e  U i s  a t o t a l l y  p o s i t i v e  i n t e g e r  o f  

K , s o  w e  c a n  h o p e  t o  e n l a r g e  o u r  g r o u p  ( I  a m  i n d e b t e d  to  N. K a t z  f o r  t h i s  s u g -  

g e s t i o n ) .  

Much more i s  shown 

§. 5. - T w i s t e d  t h e o r e m s  

L e t  u s  f i x  a t o t a l l y  p o s i t i v e  i n t e g e r  u E O  K ,  a n d  w r i t e  M = N K / Q U  = ~tU' . W e  

s h a l l  s u p p o s e  w i t h o u t  l o s s  o f  g e n e r a l i t y  t h a t  U i s  p r i m i t i v e ,  i . e .  ~ t / e E O  K a n d  

e E  2Z i m p l i e s  e = +  1 . 

K a+b~/D with a==-bD (mod 2) If Set F(z l,z2)= Ef (U z I , ~'z 2) and ~ = g 

e=(a,b), the primitivity condition is equivalent to e =i or Z , and 
a b 

e =2 = ~- ~ ~-D (rood 2). It is easy to see that this is equivalent to the existence of 

A, BE ~ such that 
Aa+Bb=e 

AZD - B 2 -=0 

Set k = AbD+B a. Thenwe have 
e e 

(AZD - B z 
k 2 = D - e2 ) 4M = D 

Zirr(Zl +z2 )/2 Zin(z  1 -zz)/Z ~ 
LEMMA 5. 1. - Setting again q=e , r=e we have : 

K n T d k - 1  . 4 D ) ~  d s  ( ( N / d )  2 D - s  2 
F(z l,z2)= q ~ x(d) (--~- ? ~ a 4M ) 

n~_~l d l n  (2M) 

(rood e z) . 

( r ood  4 M )  . 

P r o o f .  - W r i t i n g  ~tv = ( s + n ~ r ~ ) / 2 ~ r ' D  , i t  i s  c l e a r  t h a t  : 
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F ( Z l ' Z z ) =  n~>_ i qnTS ~ _ _  d k - l x ( d ) ( ~ - ) a ( ( n / d ) Z D - ( s / d )  Z 
4M ) 

Is i s  nJn d '(a+bJ~)/Z 

.4D) > ds (n /d)  z D  - 2 
:~/N)-- qn dk-I x(d) (7 T a( 4M ) " s 

n_>l dln aib~"D s + (n/d) ~f~ 
2 2 

-- s+(n/d) ~/-D 
One checks immediately that the condition a+b~D I ' " is equivalent to 

2 2 
the system of congruences : 

as -bD(n/d) ~ 0 (rood ZM) 

bs -a(n/d) z 0 (rood 2M) 

(n /d)ZD - s  2 - 0 (rood 4M) . 

From the first two congruences we obtain 

s m (Abe D + Ba)(d ) (rood ~e 

n 
that is s-= }~ [ (rood ~ . 

n Z 
W r i t e  s = X~  + -- M 0 . We h a v e  

e 

s z _ ( n / d ) Z D  = ( B  z - AZD e2 ) 4M(( t  )2 + 4Me n ± 4 M Z Z 

If e=  1 , th i s  is i n d e e d  c o n g r u e n t  to 0 rood 4M . 

If e = 2 ,  s 2 -  ( n / d ) Z D  ~ 2M 0 l ( n / d ) + M  2 0 2: (rood 4M) so  the t h i r d  c o n g r u e n c e  

a b o v e  i m p l i e s  
2 0 k(n/d)+M0 Z ~- 0 (nnod 4) . 

But since ~ is primitive, a/2 ~ bD/Z (mod 2) and so M is odd. Thus we must 
n 

h a v e  p e v e n ,  i . e .  s ~  k ~  (rood 2M) .  C o n v e r s e l y  if  th is  is t r u e  the t h r e e  c o n g r u e n c e s  

above  a r e  e v i d e n t l y  s a t i s f i e d ,  so 1 e m m a  5. 1. fo l lows .  

COROLLARY 5. Z. - 

¢#m(F)(z)=(Zir;)m>11>-- I' qn >~, dk+m-ix(d)~i~ ) > ......... prn(n/d,s)a((n/d)4ZMm-s2) . 

a ln s ~ k 'n (rood aM) 
d 

This is immediate from lemma 5. I by definition of %0 m and Pm " 

Our goal is now to prove that q~m(]F) is a cusp form on some group. The diffi- 

culty lies in the condition s =- ~.(n/d) (rood 2M). We shall deal with this congruence 

by the usual method of summing over characters (rood 2M). 

]For any integer m write I for the group of characters modulo m . ]Further- 
m 
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more set 

Then we have : 

e 1 = ( X , M )  , k' = X/e  I M ' =  M / e  I . 

P R O P O S I T I O N  5 . 3 . -  S u p p o s e  t h a t  M is  odd w h e n  D-=I  ( rood 4 ) .  T h e n  : 

~0m(F)(z)=(2iTT)m ) (e~n /~(M'/ez)) L ~'l(k') ~(F;Xl)(eZz) 

e 2 I M' Xl~ ~M,/e Z 
whe re 

cp(}~;X1)(z)=~----  q n ) . dk+rr~-I x(d)('-~--4D) ~ l ( d  ) × 

n>_l dln 

( n / d )  z D -e i z 

~ )  X l ( S ) % ( n / d '  e l s )  a (e  Z.  4 M / e  Z 

s E ~  

Z 
8 

• ) . 

P r o o f .  - W e  s h a l l  f i r s t  s h o w  t he  f o l l o w i n g  l e m m a  : 

L E M M A  5. 4 . -  Suppose t h a t  M is  odd if D ~ I  (rood 4 ) .  

T h e n  if  ( n / d )  2 D - s  z ~ 0 (rood 4M)  : 

s ~ k ( n / d )  ( rood 2M) ~ s ~ X ( n / d )  ( r o o d  M) . 

Indeed suppose s-=k(n/d) (mod M), i.e. s : k(n/d)+pM . Then 

Z (B Ze 2- AZD ) ('d'n)Z 0Z IVlZ s - ( n / d ) Z D  = 4 M + 2 0  k d M +  I 

If D-=-I (rood 4 ) ,  M is  odd and  so  s Z - ( n / d )  Z D - - 0  ( rood 4M)  i m p l i e s  
Z 

Z o X ( n / d ) + D 2 M -  = 0 (rood 4) s o  p =0 (rood Z) h e n c e  s ~ k ( n / d )  (rood Z M ) .  

If D~0 (rood 4), then since k2~- D (rood 4M), k is even and so 

s Z- (n/d) ZD=- 0 (rood 4M) is equivalent to 

2 
O M ~  0 ( rood  4)  , 

But D/4=- 2 or 3 (rood 4) and so one checks that 

( a / Z ) 2 - b Z ( n / 4 ) s  0 ( rood 4) = a / 2  a~ b ~ 0 ( rood Z) = ~ / g ~ O  K 

in  c o n t r a d i c t i o n  w i t h  the  p r i m i t i v i t y  of ~ . So we m u s t  h a v e  M ~  0 (rood 4 ) ,  a n d  so  

i t  f o l l o w s  a g a i n  t h a t  p m u s t  be  e v e n ,  w h e n c e  l e m m a  5. 4. 

T h u s  we h a v e  : 
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(2irT) -m ~rn(F)(z)= 5 qn 5 dk+m-1X(d)('4~) x 
n_> 1 d In 

(n/d) 2 D- eZl s 2 K 
x ? Pm (n/d, e l s ) a  ( 4M 
s ~-k'(n/d) (rood M') 

: ~-"- ~" ' -  qn L dk+m-1 x(d)( d × 

e z IM' n>_ 1 (n/d, dI'n) : e z 

(n/d) z D- e S k 
× 2 Pm (n/d, ets  ) a( 4M ) 

s ~ t ' ( n / d ) ( m ~ d  M') 

=> e?~- ' - -  qezn ~ ............ d k+m-I /d'/4D) 
Xt )t'-d-- × 

e2tM' n a l  dln 
(n/d, M'/e2)= 1 

(n/d)ZD - e~ s 2 K ,2 Pm(n/d' els) a(e2 4M/;Z ) 
s -= k'(n/d) (rood h/f/e2) 

using the homogeneity in n/d and s Z of P 
m 

Since (n/d, M ' / e z ) : l  and (k', M' /e2)=l  by definition of 

~1(X')~l(n/d)x1 (s): [0 if S~ k'(n/d) 

X16tM,/e 2 ~(M'/e2) if s ~ k'(n/d) 

Proposition 5.3. now follows immediately. 

e I , 

(rood M'/e 2 ) 

(rood M'/e z ) 

it is clear that 

Our aim is now to prove : 

PROPOSITION 5.4. - 

~0(F; X1)E Szk+2 m (I'o(N 1 M3/e le : ) ,  X 2) . 

Proof. - We can clearly suppose XI(-I)= (-l)m since otherwise the terms s and 

-s canceland so ~(F;X1)= 0 

Set %l (Z)=>  Xl(s)q sZ when XI(-1 ) = 1 
s E Z  

Z 
8Xl(Z)= Xl(S ) sq  when Xl(-1)= -1 . 
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Then it is well known (see for instance [ i l ]  ) that  

@X1 E M1/Z(Fo(4M'Z/e2), X1 ) when XI(-1)= 1 

@)(1EM3/2(I'o(4M'Z/ez2), Xl(4))  when XI(-1 )= -1 . 

F u r t h e r m o r e  we have the following lemma : 

Co-15 

LEMMA 5. 5. - Let g(z)= ~ - - )  b(n)qnEsk(Fo(N), X) • Then 

X b(e2n) qnE Sk(Fo(e2N), X) / 
n > l  

Proof. - Recall that the Hecke operator T acts on Fourier coefficients by 
m 

Tm g(z) = ) 
n> 1 

qn( ) x(d) dk-1 b(nm/dZ)) 

d l(m, n) 

:) 
dim 

Thus : 

)~ X (d')d'k-lg/(d')(T(ez/d,)(g))(d'z) = )  

d'le z dlle z 

where we have written d I =dd' , and so this is equal to 

last sum is zero if dl/l 

Lemma 5. 5. follows immediately. 

x(d) d k-1 ? . b ( ~ . n )  q dn 

n~>l 

)d ~-I~---1 2 ezn dln,C---- 
x(d I b(qT-)q ) u(H') 

n_> i I d,¢l dl ' 

b(ezn)q , since the 

We dist inguish again the cases D-= 0 

In l emma 4. 1, take 

Z z) and ) a(e2 n__n__) n 
fl(z) = @Xl(el f2 (z) = M/e2 q 

n~l 
Then by lemma 5. 5. fzE Sk(I'o(MN), X) , and 

eXl(el2z)E M½+.~ (Fo(4MZ/eZ),xI(2-~4) v ) .  if XI(-1)=(- t )  v and 

So lemma 4. 1 shows that 

• (-4)v-~k) 
F(m_v)/z(f 1, fz)~Sk+m+½(Fo(4M2 N/ez(4, N)) XX 1 

and fur thermore  that 

or i (rood4). Suppose D-=0 (mod4). 

v=0 or i . 
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(2i~) 
V m 2 -m ~, _- ! n 

el F(m-v)/2 (fl'f2) (m+v-3 ~ q × 
----y-- + k) : 

2 2 
n-e I s 

× Xl(S)%(n, els)a(e 2 M/e 2 ) " 

sc~ 

As in the proof of lemma 4. 2, we would like now to use Shimura-Niwa's theorem 2.1. 

However this will not exactly give us our function ¢p(F; X1 ) since there is a 

Xl(n/d) in its definition. So we need a twisted version of theorem 2. i. 

This is as follows : 

\ 
THEOREM 5. 6. - Let g :~ b(n) qn Sk+~(ro(4N), X). Suppose that 

n>__l 

X =XIX2(-4) k. on (~/4N~)* , where XI EENI X2 E EN2 , where we assume 

NIN214N and N 21N . Write F Z-- conductor of X2 . Then for any squarefree t , 

if we set : 

; t ;  1 n) b((n/d)Zt) S(g X 1 , X 2 ) ( z )= ~ - - - -q n )  d k- X l ( d ) ( ~ )  ~Z(~ 
n _ l  dtn 

we have for ke3 : S(g;t;XI,Xz)ESzk(%(ZN(N2/F2)), XIZ). 

Assuming this theorem for the moment, we deduce from above that : 

S(×l(2). (2i~1-(m~2 v ~ n m: 2-Zm(k-3/2) : 
e 1F(m_v)/z(f 1,f2);~ - ;X, X1 )= .re+v-3 ~o(F; X1 

/---~ + k)'  

and proposition 5. 4 follows in the case D -- 0 (mod 4). 

In case D-= i (mod 4) we must replace f2(z) by 

) n n 
f2(z)= a(e 2 4M/e 2 ) q 

n~ 1 

and take t=D instead of D/4 in theorem 5. 6. The proof is entirely similar. This 

shows proposition 5.4. 

It remains to prove theorem 5. 6. We shall do this by a simple modification of 

Niwa's proof [81. We sketch these modifications, using his notations. 

N 
We take the lattice L' =~__ ~®-~ and in the definition of @(z,g) we re- 

Z 
place ~l(Xl) by 

~ l  ( x l )  ~2(x2 Nz/N) • 

We must also change the definition of @l,a(z) : 
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@1, ¢(z)= ) x z ( h N z / N )  S(z ,  f l ,  ¢ ' h )  

h 4L . ; /L  

where L=N• , L'=(N/Nz)W . 

The transformation formulae can then be easily proved, with some characters 

X2 popping up, and the rest of the proof is practically identical. 

However the result obtained is not quite theorem 5. 6, but the theorem obtained 

by rep lac ing  ~z(n/d)  with 

T(X 2 , n / d ) =  ~ X2(h )e Zi'whk/N2 

h ~ 2K/N 2 2~ 

This  Gauss  sum comes  up in the F o u r i e r  expans ion  of the funct ion @re(z) . 

Since T ( x z , n / d ) = ~ z ( n / d ) T ( X 2 )  where  T(XZ) is a non z e r o  constant  when 

XZ is p r i m i t i v e ,  t h e o r e m  5. 6 is p roved  fo r  XZ p r imi t ive .  

If XZ is not p r i m i t i v e ,  cal l  42 the p r i m i t i v e  c h a r a c t e r  rood F 2 equivalent  

to X2 . Then : 

2_ 
n>_l 

k 
qn d~n dk-lxl(d)( -l~d 4t)-xz(n/d)b(n/d)Zt) = 

= ~,~ qn 7 ....... dk-i l(d)(~"~z(n/d)b((n/d)Zt) / _ x 

n>_ i (n/d~n Nz/F2)=I 

and using the usual trick of introducing the Mbbius function to get rid of conditions 

of the type (n,m)=1 , this is equal to 

> D(e)~z(e)~ en ~ dk-I (d)(~~Z(d)b(eZ(n/d)Zt) q X I 
e I(N2/F2) n>_l din 

Now acco rd ing  to [11] p ropos i t i on  1. 5, we s t i l l  have 

b(eZn)qnEsk+~ (Fo(4N), X ) since eZIN. 

n>l 

We deduce from theorem 5. 6 applied to (X 1,4Z ) , where 42 is now primitive, that 

K qn> dk-1 X1 (d)(~)~2(d)b(eZ(n/d)Zt)ESzk (L(ZN) ' X~) 

n>_ 1 d In 

and so theorem 5. 6 follows in general. 



192 
Co-18 

Remark. - It is possible that the extra factor N2/F g 

However for our purposes it does not matter. 

in the level can be removed. 

§. 6. - End of the proof of theorem I. g. 

Recall first the following group-theoretical theorem : 

T H E O R E M  6. 1. - Le t  q 2 , N  be f ixed i n t e g e r s .  Then  the g roup  g e n e r a t e d  by 

Fo(N) and all matrices (~ ?) and ( ] 0 Nqg Y I ) (8, Y 60 K ) is the set of matrices 

((~ g)E SL2(O K) such that : 
Y 

i) a,6 E2g+NO K 

ii)  y E N(m+(q2,  N)OK)  

i i i )  Le____t v = Z  i f  1- -~vg(N)<vz(qg ) , v = l  

o f  O K and  if  one w r i t e s  : 

y : N(Cl+ Cg(qg, N)(9) 6 : dl+dzN (9 

we must have 

d 2 ( C l + l ) ~  c z (rood v) 

(This  c o n d i t i o n  is of c o u r s e  e m p t y  if v=  1. ) 

otherwise. Then if (l, 8) is a Z-basis 

This theorem is proved in [4] and depends on Vaserstexn s theorem cited 

above [iZ]. The proof being long and very technical will not be reproduced here. 

However in the particular case qz = i it can be proved rather shortly. 

Let us now put together the results of proposition 5. 3 and 5.4. We obtain 

~ ( F )  ESzk+2 m (% (N 1 M3) ,  ×2) , 

Hence, using theorem g. 2. b) we deduce that for every Y = (a b c d ) 6 I~o(Nl M3) : 

FI(k, k)(~' ~): ×Z(d) ~" . 

K 
Coming back to Ef (z l,z2)= F(Zl/~ , zg/~' ), we see that the equality 

C~Zl+ ~ a'zg+ ~' 

(") E~(~Zl+ ~, y,z2 + 6, ) = ×(65,)(¥Zl+6)k(y,zz+6,) k E~(z l, z z) 

is valid for (Cry ~)= (ac/~l b~l)d where (ac bd) 6%(N1M3) • 
1 0 

In particular (~) is valid for the matrix (NIMZ ~' i ) " 

If we write ~ = gtl-~g(9 , where (I, (9) is a :~-basis of O K , we deduce, ta- 

king successively 1 and ~ that (~) is valid for (l'iMZr~ ~Z 8 01) " 
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Now if D-=0 (rood 4), we choose @ = ~/D~ and we take all ~/ of the form 

a-@ with a>@ , aE IN . We have M= a2-D/4 , and one checks easily that 

((a+l)Z-D/4 , aZ-D/4)= (2a+l , I-D) and so is equal to 1 for a suitable value of 

a . 

1 0 
Thus (~) is valid for (NI@ I ) and hence for ( i 0 N IY 1 ) for any Y EO K • 

We can apply theorem 6. l with N=N l and qz=l and theorem I.Z follows in 

case D=-0 (rood4). Suppose now D-I (rood4). We choose 8= l+~/-D 2 . If 

D~5 (mod 8), we take again all ~ of the form a-@ , and we see that 
1 0 

( (2a+l)2-D ) satisfies (~). 

N1 4 @ 1 

.(2a+l)Z-D (2a+3)Z-D l-D) 1 
Since ( 4 ' 4 ) = (a+l , ~-- = for a suitable value of a , we 

1 ~ ) and theorem 1.2 follows again from conclude again that (~) is valid for (N 1 e 

theorem 6. i. 

Finally if D~ l (mod 8) then if [/=[/I-[/Z @ is of odd norm, one sees easilythat 

Up. must be even. Taking all [I of the form Za+I-Z@ (a>@, a6]~q ) , we see that 

1 0 
(~) is valid for all matrices NI(4aZ_D)Z@ i) and since 

(4a 2-D, 4(a+l)2-D)= (Za+l , I-D)= 1 for a suitable choice of a , we conclude that 

(~) is valid for (IzN 1 0 1 0 e 1 ) and thus also for (ZNI ¥ 1 ) for any YE O K • 

We must now apply theorem 6. i with qz=Z . We have v = i and (qZ' N1 ) = Z 

so we get the extra factor w= 2 in this case. This ends the proof of theorem i. 2. 

§. 7. - Concluding remarks 

7. i. - Let us first consider possible improvements to theorem 1.2. First of 

all one could hope to improve on the group on which Ef is modular. However, 

inherent in our proof is the fact that X can be multiplied by an even character 

~E ~N of order Z without changing the resulting character ~( oNK/~ . This implies 

K is modular for that for any such character ~ and any ~60 K such that Ef 
c~ (¥ g), we must have ~(6~')=I o 

This is of course satisfied for 6E ~ +NIO K , but it shows that a similar proof 

could not allow 6EO K arbitrary, so the group we have found, maybe not the best, 

cannot be too much enlarged by our method. 

Second, note that our original aim of finding a suitable generalization to cusp 
D ,4D) 

forms of proposition I. 1 is satisfied, but with ( ) replaced by (--d-- . This means 

simply that one must exclude even d's . It is well possible that the replacement in 
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(4D.  D) 
c ( ~  b) o f  -~'-} b y  ( ~  w i l l  l o w e r  t h e  l e v e l ,  f o r  e x a m p l e  t r a n s f o r m i n g  N 1 i n t o  N .  

I t h i n k  i t  s h o u l d  b e  p o s s i b l e  to  do  t h i s  b y  f i n d i n g  a s t i l l  w i d e r  g e n e r a l i z a t i o n  o f  

S h i m u r a ' s  t h e o r e m  t h a n  t h e o r e m  5. 6, w h e r e  t h e  a n n o y i n g  ( - 4 )  i s  t a k e n  c a r e  of.  

L a s t l y  o n e  c o u l d  h o p e  to  g e n e r a l i z e  t h e o r e m  1 . Z  to  n o n  c u s p  f o r m s .  I t  w o u l d  

b e  e n o u g h  to p r o v e  i t  f o r  E i s e n s t e i n  s e r i e s .  F o r  t h i s  I s e e  t w o  ( r e l a t e d )  w a y s  : 

e i t h e r  g e n e r a l i z e  S h i m u r a ' s  t h e o r e m  to  n o n  c u s p  f o r m s ,  o r  f i n d  d i r e c t l y  w h a t  s h o u l d  

b e  t h e  i m a g e  o f  t h e  i n i t i a l  E i s e n s t e i n  s e r i e s .  In  b o t h  c a s e s  t h e  c a l c u l a t i o n s  l e a d  to 

c o m p l i c a t e d  G a u s s i a n  s u m s  in  t h e  f i e l d  K , a n d  I h a v e  b e e n  u n a b l e  to  f i n i s h  t h e  

p r o o f s  e x c e p t  i n  s o m e  c a s e s .  H o w e v e r  I c o n j e c t u r e  t h a t  t h e  c o n s t a n t  t e r m e  o n e  

s h o u l d  a d d  to  t h e  d e f i n i t i o n  of E ~  w h e n  f =  E a ( n )  q n i s  n o t  a s s u m e d  to  be  a 
I n~_0 

c u s p  f o r m ,  i s  e q u a l  to  : 
a ( 0 )  L(1-k × (D__)) 

7. Z.- Our theorem l.Z is closely related to the Doi-Naganuma map defined in 

[53. In a sense it is at the same time weaker and stronger. It is weaker mainly be- 

cause of the group FN1 obtained, which is not as large as one could hope for. It is 

stronger because it is of much greater generality, since Doi-Naganuma [5] and 

Naganuma [7] restrict themselves to Sk(Fo(D ), (-~) and to Sk(SL2(~)). Further- 

more one deduces Doi-Naganuma's mapping from theorem i. Z by taking a suitable 

linear combination of ±sE~ where f =flkYs and Ys sends ioo to the cusp s of 
s 

Fo(D ) (see [13]). One could say (in the case of Sk(Fo(D), (D__))) that theorem l.Z 

is an asymmetrieal form of the Doi-Naganuma mapping. It is easy to see on examples 

that it does not map Hecke eigenforms to Hecke eigenforms. 

7. 3. - Recent work of Kudla [63 suggests that, as one can interpret the Shimura 

map by a Petersson product with a certain theta function corresponding to an inde- 

finite quadratic form of type (~, i) (see Niwa [8J), one should be able to interpret 

Doi-Naganuma's or our mapping as a Petersson product with a theta function of an 

indefinite quadratic form of type (2,2). This would have the advantage of giving 

K 
certainly a "good" group on which Ef is modular, in the same way that Niwa's 

proof improved the level given in Shimura's paper. The possibility of using quadra- 

tic forms of type (2, 2) was in fact suggested by Niwa himself at the end of his paper, 

and carried out explicitly in the case of the Doi-Naganuma map by Zagier EI3~ . 
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7.4. - One can think about two further generalizations of theorem I.Z. The 

first one would be to extend it to fields K other than quadratic fields. This has been 

done by Saito [9] for the Doi-Naganuma map in case K/~ is cyclic of prime degree, 

tamely ramified and h(K)=l . Saito's lifting being also very much Hecke-invariant, 

one would need again an asymmetrical form to generalize theorem I.Z. 

The other generalization would be to find a lifting to Siegel modular forms. 

Work of Kudla E6] mentioned above suggests there should be a map from modular 

forms of half integral weight to Siegel modular forms o~ genus 2 given by a Peters- 

son product with a theta series of an indefinite quadratic form of type (3, 2) . 
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INTRODUCTION. 

In the following we present a new variation of a tune which has been 

played in the last 7 years on different instruments [1], [8], [10], [12], 

namely the lifting of modular forms of one variable to Hilbert modular 

forms in two (or more) variables. Our instrument is the application of 

similarities of quadratic forms. We have seen in 1952 [2], that the 

Hecke operators T(n) on theta series of quadratic forms can be realized 

by families of similarities on these forms, whose "similarity norm" is n, 

provided that such similarities exist. This is only the case if n is 

the norm of an element of the field Q(~) where q is the discriminant 

of the form. 

This is no restriction if q is a rational square. Then the idea 

leads to a close correspondence between Hecke operators for modular' 

forms for F0(q) and principal character and the Brandt matrices attached 

to rational quaternion algebras, see [5], [7]. 

Now we treat definite quaternary quadratic forms of prime discrimi- 

nant q. Their similarities can be represented by elements of the se- 

cond Clifford algebra attached to the forms. It is a quaternion algebra 

K over k = Q(~) which is ramified only at the two infinite places. The 

relationship is explained in §2, while in §1 the necessary preparations 

on Brandt matrices and Hecke operators in Q(~F~) are collected. Further 

preparations, namely on the representations of the, similarities by sphe- 

rical polynomials follow in §3. 

In §4 we adapt the results of [2, chap. IV] to our present situation. 

In §5 we translate the findings of §4 into function theoretic language. 

Theorem 2 in 55 exhibits the Naganuma lift of theta series of such qua- 

dratic forms to theta series over k. 
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We had vainly hoped to prove or to refute the following statement : 

all modular forms for F0(q) of Hecke's real "Nebentype 'r are linear com- 

binations of theta series for quadratic forms F of discriminant q and 

for the adjoint forms ~. Of course we mean generalized theta series 

with spherical harmonics. The question seems to be much more difficult 

than that for modular forms of character 1, see [5], [7]. Its solution 

would certainly imply some knowledge on linear relations between such 

theta series. 
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§1. THETA SERIES AND HILBERT MODULAR FORMS. 

Let k = Q(~) be a real quadratic number field, 0 its maximal order, 

and d its different. We assume q ~ 1 mod 4, a prime number. Under this 

condition the fundamental unit of k has norm -1. Elements of k will 

be denoted by small Greek letters. The canonical automorphism of k is 

p ÷ p~. 

We consider the totally definite quaternion algebra K/k which is un- 

ramified at all finite places. Elements of K will be written with big 

Roman letters. There exists an involutorial automorphism M ÷ M ~ which 

extends that of k. 

Let M1,...,M h represent all left ideal classes with the same maximal 

left order 0. The right orders 0i represent all types of maximal orders; 

if k has ideal class number 1, these 0 i are different. For a given in- 

tegral ideal m of k we form all integral ideals 

(1) M.. = M[IM. M.. 
13 m 3 m3 Mij e K 

of reduced norms N(Mi~) : NK/k(Mi~) = m 
J 

lent with M[1M.. 
which are right equiva- 

The multiplicative group of the Hamilton quaternion algebra over R 

has exactly one irreducible representation r/(M) of /+1 rows (l = 0,1,...) 

We form the (/+1)2-rowed representation 

R/(M) = r/(M) × r/(M~). 

Its class is unchanged under M ~ M ~. With a unit s of k we have 

(2) R/(sM) : n(e)lRl(M) : nk/Q(s)ZR/(M). 

Unless the opposite is stated we will always assume that 1 is even. 
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Then 

(3) R/(eH) : R~(H). 

With these prepartions the Brandt matrices of h(/+l) 2 rows are defined 

by 

-1 
Hii(m)~ : ~ R/(H~j)ej_ (i,j = ~ ...... h) 

(4) 

B/(m) = (~ij(m)) 

where ej is the index of the unit group of 0 in that of 0j. The super- 

script K means the canonical antiautomorphism of K/k. It implies that 

M ~ R/(M ~) is an inverse representation. The sum includes all Hij such 

that (1) is an integral ideal of the properties described, but of a set 

cMij with units e e 0 only one element is taken. Which one is taken 

does not matter because of (3). 

The Kloosterman-Schoeneberg theta series are 

(5 )  @ij(z) = 1 [ R/(H~ )eiZtm(zN(M[iMj)N(Mij )) 
e. j ] 

with N : NK/k. Here z = (Zl,Z 2) with z I and z 2 in the upper half plane 

and tr(zl) means Xz I + A°z 2. The sum is extended over all Mij 6 M~IMi . 

It has been shown [6 : Theorem 1] that they are Hilbert modular forms 

of weight k : ~+2 with respect to the group 

(6) r : {(~ : : , ye o, 6e0}. 

If 1 > 0, which will always be assumed, they are cusp forms. These se- 

ries are arranged in a h(/+1)2-rowed matrix 

(7) 
2si(zl~+Z2 H@ ) 

@/(Z) = ~ B/(m)e 
m~o 

with (U) = m and B[(U) = B~(m), z I and z 2 being two complex variables with 

positive imaginary part. (In the exceptional case ~ = 0 we would have to intro- 

duce also the terms Bo(O).) 
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The Brandt matrices satisfy the same equations as the Hecke opera- 

tors [6 : Theorem 2 and 5] 

(8) 

I Bl(ml)Bl(m2) : Bl(mlm 2) 
min(o,~) 

Bl(PO)Bl(P a) : [ n(p) 
T:C 

for (ml,m 2) : 1 

(/+I)TB~(pP+@-2T) 

for prime ideals p. The second formula is slightly modified if p is not 

principal (see [6]). They are connected with the Hecke operators T(m) 

by the equations [6 : Theorem 7] 

(9) C-1Bl(m)C@l(Z) : @/(z) I T(m) 
/+2 

with a certain matrix C independent of m which does not interest us 

here. (9) means that the Brandt matrices represent the Hecke operators 

in the space of the theta functions which are the coefficients of the 

matrix 0 (z). 
1 

PROPOSITION 1. If k > 2 (o_~r I > 0) all modular cusp forms with respect 

to the group (6) are linear combinations of the Kloosterman-Schoeneberg 

theta series (5) provide d that the ideal class number of the field k i_!s 

one. 

We prove that the representation T(m) ~ B/(m) is the same (up to 

equivalence) as that of T(m) in the space of cusp forms. The latter 

respresentation is semisimple which is shown by using the Petersson 

metric [6 : Theorem 6]. It remains to compare the traces of both repre- 

sentations. 

The traces of the Brandt matrices have been determined in 3 former 

papers, viz. tr B/(m) = 0 if m is not principal in the narrow sense. 

Otherwise 

--/+1 1 h((~_4o2)~-2) p/+l_p 
tr(B/(m)) = ~ ~ a2 

w((~-4 )~-2) p_~ 

p,/+1_~,/+1 
+ ... 
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where p is such that p ~ 0 and (p) = m. The sum is extended over all 

a,¢ such that (~-4a2)¢ -2 is the discriminant of an order J in a total- 

ly imaginary quadratic extension of k, and h(...), w(...) mean the num- 

ber of ideal classes and the index of the unit group of 0 in that of J. 

p and p' are the roots of the equations 

p2 _ p~ + p = O, p , 2  _ p , a a  + p~  : 0 

and the bar means the complex conjugate. Finally the dots indicate a 

2 
correction term for the case that m = ml, the square of an indeal in k. 

The expression is independent of the number N taken. Indeed, if 

m = (~1), Pl ~ 0, we have Pl = sp with a totally positive unit s. Sin- 

2 
ee the basic unit has norm -1 in our case, E = s I with another unit ~1' 

2 
and in the sum we can substitute p, a, ¢, p, p' by P~I' °~1' ¢E1' PEI' 

-1 which leaves it unchanged. P'e~ = ± P'~l 

The proof is in principle contained in [3], [5]. It consists of the 

.. = 0.M.. in (1) Instead of mere counting determination of all Mll i ii " 

their number one has to enumerate them with the weights tr(R/(Mii)) 

which are 

/+i --/+i /+1 --/+i /+1 ~,/+1 p -p p -p p' - 
or 

p-~ p-F ~' -F' 

in the case of quaternion algebras K over Q or k. This has been car- 

ried out in [3] and [5], [7]. 

The trace of the representation of the Hecke operators T(m) in the 

space of modular cusp forms of weight k = ~ + 2 has been given by 

Shimizu [11]. It is the same as tr(Bl(m)) , perhaps up to the correction 

2 
term for m = m I which had been left open. Although these correction 

terms can also been shown to be equal, it is easier to prove that they 
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LEMMA 1. Both traces are symmetric with respect to the automorphism 

of k : 

tr(T(m°)) = tr(T(m)), tr(Bz(m~)) : tr(Bz(m)). 

Indeed, these traces are the Fourier coefficients of the following 

symmetric modular forms : 

2~i (z iU+z2 UO) 2~i (ziu+z2uO) 
~(z) : ~ tr(T(u))e , ~(z) = ~ B~(~)e 

? 
Their coefficients are the same for all ~ with (~) # ml. If they would 

differ for the rest, $(z) -~(z) would have Fourier coefficients ~ 0 

2 
only for (~) = ml, which is impossible. 

PROOF of the LEM~. Let D be the matrix expressing the involution 

T $(Zl,Z 2) ÷ $(z~,zl), and understand T(m) as the matrix representing the 

Hecke operator. Then 

T(m ~) = D -1 T(m) D 

which entails the first symmetry. 

What concerns the latter, we consider an extension M ~ M ~ of the 

non-identical automorphism o of k. Under this ~ the ideals (1) are 

transformed into 

13 z 3 z3 

which have left orders 0~, norms m ~ o' an right orders which are isomor- 

phic with 0~. The orders 0? 05 belong to types of 0i,, 0j, where 
3 i' 3 

i ~ i', j ~ j' is an involutorial permutation. Furthermore 
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R/(H) = P/(M) x r/(H a) and R/(H a) = r/(M a) x r/(M) 

are equivalent. Both facts result in the equivalence of the matrices 

and B/(ma), which in turn implies the second B/(m) symmetry. 

§2. THE CLIFFORD ALGEBRA AND SIMILARITIES OF QUADRATIC FORMS. 

We consider definite quaternay quadratic forms F of discriminant 

q ~ 1 mod 4, a prime number. 

bols, and we suppose 

For their matrices we use the same sym- 

1 
F : (fij) with 2 fii ' fij e Z. 

All such F belong to the same genus. As usual~ we attach to them a 

metric space S over k such that F is the norm form of the generic 

vector of a maximal lattice L in S : 

I 

7 = fijxixj 

1 f i s  w i t h  a b a s i s  b.1 o f  L. T he  g .  c .  d .  o f  t h e  c o e f f i c i e n t s  ~ f i i '  i j  

the norm of L. 

To the space S we attach the first Clifford algebra over Q, spanned 

by all formal products of r vectors (al...a r) subject to the relations 

1 the empty product is the unit element, 

2 al...ar)(bl...bs) : (al...arbl...bs) , 

3 ...ai_l(aixi+biYi)ai+l...) = xi(...ai_laiai+l... ) + 

= yi(...ai_lbiai+l...)~ 
1 4 ab) + (ba) = (a,b) = 7(n(a+b) - n(a) - n(b)), 

where xi, Yi mean elements in Q. For the following see [2, §4 and §5]. 

The second Clifford algebra of S over Q is the subalgebra of the 

first spanned by the products (al...a r) with even r. This is 
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isomorphic to the totally definite quaternion algebra K over k = Q(~) 

which is unramified at all finite places [9]. 

The inversion of the order of factors in 

(al...ar)~ = (ar...a 1) 

is the canonical antiautomorphism of K. The space S always contains a 

vector e of norm 1. The transformation of the elements of the second 

Clifford algebra K with e in the sense of the first Clifford algebra in- 

duces an involutorial automorphism : 

(e)(al...ar)(e) = (e)-l(al...ar)(e) = (al...ar)~ 

It is easily seen that ~ transforms the product of 4 naturally orthogo- 

nal vectors bl,...,b 4 into its negative. This product has the property 

( b l . . . b 4 ) 2  = 2 - 4 n ( b l ) . . . n ( b 4  ) 

which is up to a rational square equal to q. Furthermore it generates 

the center of K which is k. Thus a induces in k the canonical auto- 

morphism. 

Evidently o and < commute : 

M C~ : M KO. 

It has to be borne in mind that o is not uniquely determined since 

there exist infinitely many vectors of norm 1. 

PROPOSITION 2. All similarities of the metric spa c e S, of positive d~- 

termination, are given by 

(10) (x) ~ (x') = mM<(x)M 

where x is the generic vector of S and (x) the corresponding element in 

the first Clifford algebra, m ~ 0 is an arbitrary rational number and 

M ~ 0 an arbitrary element in the second Clifford algebra. The norm of 
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the similarity is m2nk/Q(NK/k(M)) = m2n(N(M)). 

Two pairs ml, M 1 and m2, M 2 yield the same similarity if and only if 

-1 
M 2 = ~M 1, m 2 : n(p) m 1, ~ • k. 

PROOF. Let b I be an orthogonal basis of S. The canonical antiautomor- 

phism K transforms an element M = ~0 + ~1(b2b3 ) + "'" with ~ • k into 

MK = ~0 - ~1(b2b3 ) - "'' Their product is the norm : 

MM K : H K H = N(M) = NK/k(M). 

From (10) we find for two vectors 

(r'y') = m2M<(x)N(M)(y)M. 

The transformation of an element K by a one-member element (a) of the 

first Clifford algebra induces an isomorphism which is not trivial in 

k. But since k has only one non-identic automorphism, we have 

(~'y') = m2N(M) ~ MK(xy)M. 

The sum of this formula and that with x, y inverted yields 

(x',y') = m2n(M(M)) (x,y) 

which exhibits a similarity of norm m 2 n(N(M)). 

The last statement on two pairs ml, M 1 and m2, M 2 is easily checked. 

It remains to be shown that all similarities are given in this way. 

Since every totally positive ~ e k is the norm of some M • K, all 

n(~) > 0 occur as norms of similarities. (10). According to [2 : Satz 

11.1] all similarities have such norms. 

At last we show that all proper isometries can be obtained in the 

way (10) with m2n(N(M)) = 1. Indeed, a proper isometry induces an 

automorphism in both Clifford algebras and is therefore representable 
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as 

(x) ~ (x') = M-l(x)M = N(M)-IMK(x)M 

which has the form (10). 

From now on we consider only the special similarities 

(11) (x) ~ (x') = MK(x)M. 

To a maximal lattice L in S we attach the order 0 in K which is gene- 

-r(a 1. . • L [see 2 : ~14]; n(L) rated by all symbols n(L) ..a2r) with a m 

means the norm of i. Since L is a maximal lattice, 0 is a maximal or- 

der [9 : §5]. Conversely, L is uniquely determined by 0 up to a trivial 

similarity L ~ mL with m • Q. 

THEOREM 1. Let L be a maximal lattice and 0 the maximal order attached 

to it. If M is an ideal with left order 0 and ri@ht order 0', there 

exists a maximal lattice L' attached to 0' such that each of the equa- 

tions 

( ~ 2 )  

I MK0 M = N(M)0' 
np,Mp P P P 

np,Mp M~(Lp)Mp = (L') 

~mplies the other, and 

(13) n(N(M))n(L) = nk/Q(NK/k(M))n(L) = n(L'). 

Conversely, if L and L' are given maximal lattices, there exists such 

an ideal M. M is determined by L' resp. 0' up to an ideal factor m of 

k. 

In (12) p runs over all prime numbers and M over all elements of 
P 

the p-adic extensions Mp. (Lp) and (L) mean the elements in the first 

Clifford algebra attached to the generic vectors of these lattices. 
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The equations (12) can briefly be written 

(12a) 
I M<OM = N ( M ) O ' ,  

M<(L)M = ( L ' ) .  

The proof is evident for principal ideals M : 0M, and the p-adic ex- 

tension of ideals are always principal. We have to observe that ideals 

and lattices are the intersections of their p-adic extensions. The 

uniqueness of M in the sense of the theorem stems from the fact that all 

ambigue ideals are Om, m an ideal of k. 

COROLLARY. There is a one-to-one correspondence between the similarity 

classes of maximal lattices in S and the (inner) isomorphy types of 

maximal orders in K. 

PROPOSITION 3. The group U(L) of proper units of a maximal lattice [ 

(i.e. those of determinants +1) , divided by its ~entrg_e {+ E] , and the ~roups 

U(0) and U(D) of its order 0 i__nn /~ and of 0 are connected by 

U(L)I{-+E} e U(O)IU(o). 

PROOF. An isometry or a unit of i induces an isomorphism of 0. The units 

+E, or in other words x--~+_x , yield the identical isomorphism of 0 • We dis- 

tinguish automorphisms of 1st kind which leave the elements of k fixed, 

and those of 2nd kind which do not. Because K is unramified at all fi- 

nite places and 0 is maximal, all automorphisms of 1st kind are given 

by the transformation of 0 by units V of 0. V and ~V with ~ E K yield 

the same automorphism. 

Let a be an orthogonal basis of S. Then e : (al...a 4) is an ele- 

ment of the second Clifford algebra which generates the subfield k. 

An isometry of S, as a linear transformation of the a maps ~ on 
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~.det(A). So it is proper if and only if k is left fixed. This com- 

pletes the proof. 

§3. THE REPRESENTATION OF THE SIMILARITIES. 

Now we make some preparations for the following. 

PROPOSITION 4. Let b be a basis of S. The representations (11), namely 

b ) ~ (b~) : M<(b )M : ([ b q~) 

with q~v e k is equivalent with RI(M) = rl(M ) x rl(Ma ). 

For the proof we compare the traces. We may extend S by R. The 

space SR/R has an orthogonal basis s with n(S ) = 1, and we replace the 

b by the S . The Clifford algebra is likewise extended to KR and then 

has a basis [2 : p.31] 

[1, (S2S3) , (S3Sl) , (SlS2) ] x [1, (SlS2S3S4)]. 

The (S2S 3) etc., satisfy the same relations as the commonly known Hamil- 

ton quaternions. The second factor is isomorphic with R @ R, since the 

square of 6 = (SlS2S3S 4) is 1, and kR = R ® R. The automorphism 

keeps the (S S ) fixed and transforms 6 in -6. The representations and 

the trace tr(Rl(M)) are given in the foliowing table, where we use the 

Pauli matrices 

= = i @ = = 
po pl Co p2 
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M 

rl(M) 

rl(M~) 

tr(Rl(M)) 

PO 

Po 

4 

6 (S2S 3 ) 

6Po Pl 

6Po Pl 

-4 O 

6(s2s  3 ) 

6P 1 

-6p 1 

0 

(S3S 1 ) 

P2 

P2 

0 

B(S3S 1 ) 

6P 2 

-6p 2 

O 

(SlS 2 ) 

P3 

P3 

@ 

6(SlS 2 ) 

6P 3 

-6P3 

0 

It is easily verified that the similarities generated in the way (11) 

by these elements X have the same traces. 

PROPOSITION 5. Let L be a lattice of norm n(L) and F the quadratic form 

attached to a basis b of L. Furthermore, let C be a real matrix satis- 

fying 

ct C = F 

and pv(x) a. basis of the homogeneous spherical harmonic polynomials of 

de$ree ~ in 4 variables x i (understood as a row vector of length 

2 
(I+1) ). Finally let Q(H) be the representation of M • K in the way of 

Proposition 4. 

Then RI(M) = (~(M)), defined bk 

pv(CQ(H)x) = ~ pD(Cx)~(M) 

i__s an invers.e..representation of M which is equivalent to the representa- 

tion Rz(MK) defined in §1. 

PROOF. It is evident that M ~ Rz(M) is inverse. As in the proof of 

Proposition 4 we may use an orthonormal basis S of SR/R. Then H and 
v 

H @ become independent, and according to Proposition 4 the group of the 

Q(M) becomes a direct product isomorphic with rl(M) × rl(M~). 

All homogeneous polynomials of degree I can be written as 
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[1/2] 2 24 ~ 
fl (x) : Z (x I +...+ x ) Pl_21(x) 

i:0 

with homogeneous spherical polynomials Pl_21(x) of degrees 1-21. The 

representation of the orthogonal group 04 in the space of the fl(x) 

splits up into the representations in the spaces of the Pl_21(x), the 

latter being irreducible.(This is known for the representations of O(3,Z{ ) and 

is easily extended to those of O(h,~).)The same is true for the similarities. 

1+3 There exists ( 3 ) linearly independent fl(x), and (1+3.3 ) ,(1+1)3 : (1+1)2 

linearly independent Pl(X)" 

1 
The matrix C translates n(1) 7 F[x] into Z x2i . As was already remark- 

ed , Q(M) is isomorphic with rl(M) × rl(M~) , and we may assume M and M ~ 

as independent. Then all irreducible representations of this group are 

equivalent with rll(M) × rl2(M a), their degrees being (11+1)(12+1). In 

our case the representation of M by the p~(Cx) is equivalent with that 

of M a, because rl(M ) × rl(M ~) ~ rl(M~) × r1(M). Hence 11 and 12 must be 

equal, and equal to 1. This completes the proof. 

64. SIMILARITIES AND THETA FUNCTIONS OF QUADRATIC FORMS. 

Let F1,...,F h represent all classes of quadratic forms of the proper- 

ties f i x e d  i n  6 2 ,  a n d  l l , . . . , [  h t h e  u n d e r l y i n g  l a t t i c e s  i n  S.  By b .  

(~ : 1,...,41 we denote bases of the [. such that 
l 

1 
n([ 6i, x ~) : ~- Fj[x]. 

Without loss of generality we may assume the F i primitive or, in other 

w o r d s ,  t h a t  t h e  n o r m s  o f  t h e  l .  a r e  1 .  
1 

For a given n we let x. be a column vector with coefficients 

xj, w e Z satisfying 

(14) 1 7 Fj[xj] = n. 

Furthermore for a given m let X.. be a matrix with coefficients in Z 
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such that 

(15)  
t 

X.. F. X.. : mF.. det(X..) > 0 
z] z m3 3 m3 

Then 

(16) x. = X..x. 

is a column vector with the property 

1 
(17) 7 Fi[x i]~ : nm. 

We will count all situations (14)-(17), but we will attach to the xi, 

xj, Xij certain weights. 

t 
For this purpose we fix a real matrix C 1 such that CIC 1 : F 1. Then 

we have 

t 
(18) C.C. : F. 

i i 1 

with C-1C. transforming the basis 61, v into 6. or more generally, 
1 z l,k) 

-1 -1 
C i Cj transforming 6i, v into 6j, v. We c2aim that the C i Cj can be 

found in such a way that the denominators of the coefficients are po- 

wers of one particular prime Po # q" Indeed~ considering the Lo as ma- 

ximal lattice over the domain Z(po) of numbers whose denominators are 

powers of Po' they are arithmetically indefinite, and by Meyers' theo- 

rem [13 : 104 : 5] they are isomorphic and their norm forms equivalent. 

This proves the contention. We take a Po with (P~oo) = 1. It is then 

the norm of an element of k. 

Let QI(M) be the representation of a similarity of S by the basis 

61, v as described in Proposition 4. It acts on a basis pv(x) of homo- 

geneous spherical harmonic polynomials in the way of Proposition 5 

-1 
pv(CIQI(M)C1 x) = Z P~(X)~v(M), v = 1 ..... (I+1) 2 

or more briefly with pv(x) understood as a row vector 
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-1 
(19) P(CIQI(M)C 1 x) : p(x)R(M). 

The matrices X.. in (15) can be written 
i] 

-1 -1 
Xij = C i C 1 Y C 1 Cj 

with a proper similarity Y of F 1. According to proposition 2, 

Y = mQl(Mij) with an m e Q and an element Mij e K attached to Xij. If 

T 

m is the norm of an element of k, we have mQl(Mij) = QI(Mij) with some 

other M!.. Now we suppose that X.. be a primitive matrix. Therefore 
13 13 

-1 
also Y must be primitive with respect to all primes for which C i C 1 and 

-1 
C 1 Cj are integral. Due to our construction these are all primes except 

one Po" So m can at most be a power of Po" But since Po is the norm 

of an element of k~ we arrive at Y = QI(Mij) and 

(20) xij = c 1Cl h(Mij)c  cj 

With these preparations we attach to each vector x I with components 

xi, v (in ~ 6i~xi, ~) the vector 

P(Cix i) = (p~(~ ci,~xi,l))~ ~ = 1,...,(Z+1) 2. 

Equation (16) and (20) lead to 

-1 
P(Cix i) = P(CiXijx j) : P(CIQI(Mij)C 1 Cjxj) 

or more briefly 

(21) P(Cix i) : p(Cjxj)R(Mij). 

Now we report on some results from [2 : §18]. We quote them without 

repeating [2]. Only we replace the representations of the vectors and 

matrices by those just introduced. (In [21 representations were used 

which were not irreducible and which contained the present ones as sum- 

mands.) We restrict ourselves to two cases : 
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1) m : Pl' a prime number with (p~) = 1~ 

2 
2) m = P-I' the square of a prime with ( q ) = -1, and the g. c. d. 

P-1 
of the elements of the matrix X.. in (15) is 1. zl 

2 
We introduce h(/+l) rowed vectors 

(22) m/(n) : ( .... [ pv(Cjxj) .... ) 

(j = 1,...,h; v = 1, .... (/+1)2), the sums extended over all integral so- 

lutions of (14). Similarly we form the h(/+l)2-rowed matrices 

(23) P/(m) = ([ R/(Mij)eil)~ 

for each pair i,j summed over all primitive matrices satisfying (16), 

(that X.. be primitive has been assumed in §11.4), where e. means the 

number of proper units of Fj. According to Proposition 3, ej equals 

the group index [U(0j) : U(o)]. Each individual case of (14)-(17) 

yields an entry into the vector m/(n) and the matrix P/(m), and the 

weights of the xi,x j are connected by (21). 

Satz 18.4 is an intermediate result which must be adapted to our pre- 

sent purpose. The solutions of (17) are at first distributed into cer- 

tain residue classes C v mod Pl or P~I' and we have 

(24) m/(n)P/(n) = Z P(Cv)m/(nm,Cv)~ 

where the m/(nm,C v) is the sum (22) restricted to x i e Cv, and the p(C v) 

are certain invariants of the classes. They have been calculated in 

§11, p. 68-71. In the first case m : Pl,there are two classes C 1 and 

C O , consisting of the primitive and the imprimitive vectors x i. The 

number of "ideals" in the sense of p.70 is ~ = 2(P1+1) , and (11.13), 

(11.16) yield p(C 1) = 2, while (11.9) and (11.15) yield p(C 0) = 2(P1+1). 

Adding up the primitive and the imprimitive vectors gives 

m/(nPl) = m/(nPl,C 1) + m/(nPl,C 0) 
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Y 
and writing the imprimitive x i = PlXi 

1 -1 
m/(nPl,C 0) = Plm/(nPl )- 

The considerations end up with 

1 /+1 ,np~l) 
(25) m/(n) 7 P~(Pl ) = m/(nPl) + Pl ml< 

for (24), where the second summand vanishes if n is not divisible by 

Pl" 

2 In the second case m = P-1 we have 4 classes (see p.71, case B). C 1 

Y ! 

contains the primitive xi,C01 and CO0 contain the x i = P_lXi with x i 

1 1 [x~] ~ 0 mod P-l" primitive and ~ Fi[x~] ~ 0 mod P-1 resp. 7 Fi Lastly 

the x i e C000 are divisible by P~I" The number of "ideals" is this time 

2 
= P-1 + 1, and from (11.9)and (11.18) we collect 

p(C I) = i, P(C01) = P-1 + i, P(C00) = 1, P(C000) = P~I + 1. 

Similarly to the first case we have 

and 

ml(np2-1 ) = ml (np2-1'C1) +''" + ml (np2-1'C000) 

m/(np21,C01)_ = { P~l(n)m/(n) 
0 

21 (np-~) m/(np21,C000 ) _  : P_lm/ 

if (n,p_ 1) = 1 

if (n,p_ 1) > 1, 

if (n,P_l) > 1. 

Now (24) becomes 

I /+i 
m/(np21 )- + P-1 m/(n) if (n,p_ 1) = 1, 

(26) m/(n)p/(p21)_ = 
/ + 2  - 2  

m/(nP~l) + P~I m/(nP-1) if (n,p_ 1) > 1. 

1 p/(p21) The matrices ~ P/(pl ), _ express the action of the Hecke opera- 

tors T(Pl) , T(p21) on the theta functions 
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~ iTFi [x]  
6. (T) : ~ p~(Cix)e 
1~9 X L 4 

Arranging them in h(l+l)2-rowed vectors we can write them 

(27) 61(T) : [ ml(n)e 2sinT 
n=l 

With this notation (25) becomes 

1 ~ 2~inT I+1 ~ 2~inPl[ 
el(T) ~ PI(Pl ) = ~ ml(nPl)e + Pl ~ ml(n)e 

n=l n=l 

-1) The right (in the second summand we have written n instead of nPl . 

hand side is 

Pl-i 
2+1 - ~ 6~ T+r~ + 6 (T) I T(Pl). 

Pl 0Z(Pl~) + pll p=0 ( pl ) l 2+2 

So we have proved 

(28) 1 9l(T) ~ P I (P l  ) = e l (T)  I T ( P l ) .  
l+2 

Equation (26) is 

2+1 6Z(T) Pz(P~I ) = ~ ml(nP~l)e2~inT + P-1 ( ~ mz (n)e2~inT ~ ml(nD1)e2~inPlT) 
m:l n:l n:l 

2 
2~inP_lT 

+p!~+2 ~ ml(n)e 
n=l 

2 
p 1-1 p_l -1  

2Z+2 1 - (P-1 T+r . -2 T+r 
: P-I °;(P2S)- - P-I Z 6; --p_~.-) + P-I [ 6;(-~-) 

r=0 r=0 P-i 

2+1 
+ P-1 8~(T), 

and this is 

(29) 0~(T) P l (P~l  ) = el( ,[  T(p21) 2+1 (T) 
2+2 

With (28) and (29) we have proved 

PROPOSITION 6. The space spanned by the theta series Q(T,F,p) with 
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spherical ' harmonic polynomials of degree 1 is closed under the Hecke 

operators T(Pl) and T(P~l). 

1 p(pl ) p 2 One must be careful not to confound the matrices 7 , (p_l) with 

the matrices representing the T(Pl) , T(p22) since the G(<,F,p) are in 

general not linearly independent. 

§5. THE NAGANUMA LIFT. 

In order to avoid a difficulty (however small), we assume in §5 that 

the ideal class number of k is 1. Then the correspondence between the 

Fi, Li, 0i, and the ideals M i is one-to-one. 

If the basis p (x) of the spherical polynomials is suitably chosen, 

the following matrices are equal : 

R/(Mij) = R/(M <. i] ) 

according to Proposition 5, and the matrices (23) can be written 

P/(m) : [ B/ (V) ,  

summed over all ideals (~) of k with ~ > 0 and n(v) m. Here we have 

used the one-to-one correspondence between the ideals M. and the clas- 
i 

ses F i. In our two special cases this is 

(3O) 

[ P/(pl ) = B/(~) + B/(~ a) 
2 

~P/(p_I ) = B/(p_ 1) 

(Pl = (~)(o)). 

The matrices B/(~) can be transformed simultaneously into diagonal 

form. This follows from Proposition 1 and the analogue property of the 

representations of the Hecke operators (but it can also be proved in- 

dependently). Let 

(31) A-1B/(~)A = diag(~i(~) ) 
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and 

(32)  

f A-1 I @l(z)A : diag(%i(z)), 

2~i(zlP+Z2 o ) 
¢i(z) : [ Bi(~)e 

With the same matrix we also transform the theta series (27) : 

(33)  
[ 01(~)A : (,..,¢i(~),...) 

4 
¢i(T) = ~ X.(m)e 2~imT 

m 

(i = 1,...,h(Z+1)2). Some of the ¢i(T) will in general vanish. For 

those which do not we may even assume without loss of generality 

Ii(1) = 1. Then ii(m) for such m which are norms from k, are eigenva- 

lues of T(n). 

(34) 

holds. 

ply 

(35 )  

Now we restrict ourselves to the indices i for which 

Bi(~) : Bi(~ ~) 

For these the equations (28) (together with (30)) and (29) im- 

rBi(~) : li(Pl ) 

IBi( p 1) = li(p2 Z+I -1 ) + P-1 " 

(Pl : (~)(o)) 

The equations (35) can be interpreted as a relation between the zeta 

functions 

Zl(s) = [ Bi(B)n(P) -s 

~i(s) = [ li(m)m-S 

attached to the $i(z), $i(~). 

Euler products 

According to Hecke's theory they are 
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Z.(s)l = ~(1-Si(w)n(~)-s + n(w) ~+1)2s)-1, 

I+1-28)-1 
~i(s) : ~(1-1i(p)p-S + (~) P 

We need yet other functions, namely 

(36) 

They are also modular forms with respect to F0(q) and, by the way, they 

are obtained by the analogue linear combinations as (33) from the 

(37) 0~(~, ~, p) -i 
q q2Z+2 

where ~ means the quadratic form adjoint to F. Let 

(38) ~i(T) = [ ~i(m)e 2~imT. 

From the well known fact for p ¢ q, 

we conclude that the ~i(T) are also eigenfunctions of the T(p), and that 

(40) 
~i(p) : (~) li(P). 

The zeta functions attached to the ~i(T) are also Euler products : 

~i(s ) = E(l_~i(p)p-S + (~)pZ+l-2s)-l. 

Now (35) and (40) imply 

(41) Zi(s ) = [i(s)~i(s), 

perhaps up to the Euler factors for q. 

But we can also show that the Euler factors for q are equal on both 

sides of (41). For this we apply the functional equations. ~i(z) is a 

modular fom with respect to the group (6). Especially it satisfies 
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Z+2 

~i(.-lqzl, qz2-1 )(qz~z2) = ~i(Zl,Z2 ) 

whence the functional equation 

(42) ~i(s ) = qS I ~ i ( i t l ' i t 2 ) ( t l t 2 )S- ld t ld t2  
0 

s -s F 2Zi : q (2~) (s) (s) = ~i(l+2-s). 

From (36) follows in the same way the functional equation 

(43) ~i(s) : qS/2(2~)SF(s){i(s) 

s/2 I = q %i(it)tS-ldt = ~i(k+2-s) 

0 

where ~i(s) is formed in the same way with ~i(s) instead of %i(s). (43) 

implies that ~i(s)~i(s) satisfies the same functional equation (42) as 

Ti(s). The quotient of both sides of (41) (we omit the subscript i) 

satisfies the same functional equation 

(1-~(q)q-s)(1-~(q)q[,s!, : (1-1(q)ql+2-s)(1-~(q)~ ~+2-s) 

l_8(wr~)q-S + qZ+l-2s 1_8(~/~)sqS-Z-2 + q2S-Z-1 

An easy computation concludes from this 

Z+I ~(q) + ~(q) : B(-fq), ~(q)~(q) : q 

which indeed implies (41). 

THEOREM 2. We assume that the ideal class number of k is 1. Let 

¢i(z) : ¢i(Zl,Z2) be the modular forms with respect to the sroup (6) 

which are eigenfunctions of the Hecke operators, and whose eigenvalues 

arre sy~netric : 6i(~) = 8i(~°). They are linear combinations of the 

theta functions Of(z) introduced in §1. Lastly we assume that the ana- 

logue linear combinations (33) of the theta functions 01(T) introduced 

in §4 (see (27)) do not vanish. 

Then the zeta functions attached to ¢i(z), %i(T), and the "adjoint" 

functions ~i(T) defined in (36! are connected by (41). 
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The map %i(T) ~ ~i(z) is the Naganuma lift, restricted to these %i(T). 

It is left open here whether the %i(T) span all modular forms for F0(q) 

and of "Nebentype" Saito has shown [16] that all ~.(z) with symmetric l 

coefficients 8i(~) = 8i(~ ~) are either obtained by the Naganuma lift 

from modular forms for F0(q) and of "Nebentype", or by the Doi-Naganuma 

lift from modular forms for the full modular group SL(2,Z). Both sorts 

of ~i(z) are different. Thus the existence of the latter ~i(z) implies 

the existence of linear dependencies between 0Z(T) (which can be written 

~i(~) : 0). 

The ~i(T) corresponding in the way (32), (33) to those %i(z) whose 

coefficients are not symmetric (~i(~) ~ Bi(~°)) vanish al~o. This is 

an easy consequence of Naganuma's theorem and our Proposition 1. 

Lastly even some of the ~i(z) may vanish, and then the corresponding 

%i(T) must vanish, too. 

REMARK. Proposition 1 has only been proved under the assumption that the 

ideal class number of the field k is one. Without this assumption fur- 

ther operators V(m) in the Hecke ring and matrices A(m), introduced in 

[6], and their products with the T(m) and Brandt matrices B(m) have to 

be considered and their traces compared. 
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SERIES THETA DES FORMES QUADRATIQUES INDEFINIES 

Marie-France VIGNERAS 

Introduction. 

Le but de cet expos~ est de d~crire un crit~re simple pour la cons- 

truction g~n~rale de formes modulaires associ~es ~ une forme quadrati- 

que ind~finie, qui est l'analogue des r~sultats classiques sur la cons- 

truction des s~ries th~ta associ~es ~ des formes quadratiques d~finies 

positives. 

Th~or~me i. Soit q(x) une forme quadratique sur ~n , de signa- 

ture quelconque (s,t) , soit LcRn un r~seau sur lequel q(x) prend 

des valeurs enti~res et soit p(x) : R n ~ C une fonction avec les pro- 

pri~t~s suivantes : 

*) La fonction f(x) = p(x) e -2~q(x) , ainsi que D(x)f(x) 

et R(x)f(x) pour toute d~rivation D(x) d'ordre ~ 2 et tout poly- 

nSme R(x) de degr~ ~ 2 sont d~finies et appartiennent 

L2(R n) n Ll(e n) 

**) p(x) satisfait l'~quation diff~rentielle 

A 
(E-X)p(x) = ~ p(x) , pour un entier ~ , ou E est l'op~rateur d'Euler 

et ~ le laplacien associ~ ~ q(x) . 

Alors la s~rie th~ta 
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@(T) = V -k/2 E p(x~) e 2i~q(x)~ [T E ~ V = Im(T) > O] 
xEL 

est une forme modulaire non holomorphe de poids k = k + n/2 ; son niveau 

et son caract~re sont ceux de q(x). 

Pour faire mieux comprendre ce th6or~me, je voudrais donner quel- 

ques exemples d'applications. Un cas tr~s important est celui o~ p(x) 

est homog~ne, de poids k , et sph6rique pour q(x), c'est-~-dire o~ 

**) est remplac~ par les deux conditions :.Ep(x) = kp(x) , ~p(x) = O . 

Alors la fonction 9(T) ~gale 

E p(x) e 2i~q(x)~ 
x~L 

est holomorphe. Si la forme quadratique q(x) est d~finie positive, on 

peut montrer que les fonctions sph6riques et homog~nes sont des poly- 

nSmes, et on retrouve ainsi les s6ries th~ta classiques (Hecke [4~, 

Ogg [9], Schoeneberg [ii], Shimura [14]). 

Si q(x) est de signature (2,n-2), soit <x,y>= q(x+y) - q(x) - q(9 

la forme bilin~aire associ6e ~ q(x) et soit z E C n , tel que q(z) =O , 

<z,z> > O . Alors la fonction 

x~L q(x)k-i 2i~q(x)~ 
<x,z>k+n_2 e [k> n/2] 

est une forme modulaire (holomorphe) de poids k 

Ce corollaire qui m'a 6t6 sugg6r6 par Eichler, Zagier et Deligne 

red6montre que les fonctions ~(Zl,Z2,T) d6finies par Zagier [18], 

sont modulaires (elles correspondent au cas n= 2). 

Si l'on rajoute la condition 

***) (E + X +n- 2- 4~q(x))(E- ~)p(x) = 4r p(x) , r 6 

la fonction 8(<) est alors une forme de Maass [7]. 

De telles formes permettent de construire les s6ries th~ta des 

corps quadratiques r6els, associ6es aux GrSssencharakter (Hecke [4], 

Maass [6], Gelbart [3]) et ont ~t6 utilis~es dans des situations diver- 

ses (correspondances entre formes modulaires ~ une variable et ~ deux 



229 
rig-3 

variables ([21, [5~, [187) ou entre formes modulaires de poids ½ artier 

at de poids artier ([81 , [iO~, [15~)). 

Mentionnons enfin qua ce th~or~me peut ~tre g~n~ralis~ pour donner 

des formes modulaires de Hilbert et de Siegel. 

Ce th~or~me admet une d~monstration ~l~mentaire reposant sur la 

formula de Poisson et lee propri~t~s des fonctions d'Hermite, qui donne 

en plus toutes lee fonctions p(x) v~rifiant *) et **). Mais, il existe 

une autre d~monstration [16~ consistent & remarquer qua lee s~ries th~ta 

construites dane ce th~or~me sort des s~ries th~ta de Wail [17~ et que 

**) est une condition sur le comportement de f(x) pour le groupe des 

rotations operant sur L2(R n) par la representation de Well, ce qui 

permet d'obtenir le th~or~me en utilisant un r~sultat de Shintani 

([15~, proposition 1-7). 

i. D~finition des s~ries th~ta. 

On suppose dorm,s : 

- un espace vectorial r~el quadratique, non d~g~n~r~, V , de di- 

mension n , muni d'une forme quadratique q(x), ~ laquelle on associe 

la forme bilin~aire <x,y> = q(x+y) - q(x) - q(y); 

w 

L , sur lequel q(x) est anti,re, dont on note L - un r~seau 

le dual 

L = {xEV I <x,y>E ~, VyEL} . 

On rappelle qua le groupe modulaire est engendr~ par lee deux ap- 

plications T ~ T+I , T ~ -I/T . On d~sire d~terminer un ensemble de 

fonctions p : VXR + ~ • , telles qua lee s~ries de Fourier (appel~es 

s~ries th~ta) 

Sh(T) = ~ p(x,v) e 2i~q(x)T * xEL+h , hE L , T = u+ivE ¢ , v>O 

convergent et se transforment simplement sous l'action du groupe modu- 

laire. Le comportement sous l'action de T ~ T+I est d~termin~ par la 
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forme de 8h(~) , on a : 

(I) 8h(~+l) = e 2i~q(h) Sh(~) 

Aussi, on est ramen6 ~ la question suivante : d6terminer un ensemble de 

fonctions p(x,v) telles que ~h(-i/T) ait une valeur convenable. 

2. La formule de Poisson. 

I1 s'av6re tr6s naturellement que la formule de Poisson est l'outil 

adapt~ au calcul de 8h(--i/T). Tr~s bri@vement, la formule de Poisson 

peut se r6sumer ainsi (Bochner [i] th. 67). 

Etant donn6s : 

- une fonction f(x) sur V , pour laquelle l'int6grale suivante 

(appel~e transform~e de Fourier de f(x)) : 

f (x) = f(y) e -2i~<x'y> dy 

V 

a un sens (dy est une mesure de Haar que!conque sur V) ; 

- un r6seau L de V dont le volume d'un domaine fondamental 

dans V , pour la mesure dy , est not6 vol(L). 

La formule de Poisson s'6crit : 

f(x) : vol(L) -I E f (x) E 
xfL xEL* 

Elle est ind6pendante du choix de dy et est valable si f(x) v6rifie 

eertaines hypothgses. Elle est vraie pour la fonction f_i/T(x) d6fi- 

nie par : 

fT(x) = p(x,v) e 2i~Tq(x) 

o~ elle donne : 

8h(-i/T ) = vol(L) -I 

Dans l'hypoth~se o~ 

E 2i~<h,k> E * 
hEL* e x@k+L f-i/~ (x) 

h(mod L) 

(2) f_i/T(x) = (-i) a T X+n/2 f (x) , a~R 

la valeur de 8h(-i/~) est 6gale ~ : 
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(3) 8h(_i/T) = voI(L)-I (_i)a k+n/2 E ) 
kEL*/L 8k (T " 

Une relation telle qua (3) s'introduit assez naturellement si on sup- 

pose d'abord que Re(T) = 0 ~ cause de la r~gle suivante : 

[f(x/~)]*(y) = v n/2 f*(y~) , v>O . La d~finition de (T/i) x+n/2 est 

pr~cis6e de la sorte : Arg w ~tant la valeur de l'argument d'un nombre 

complexe w v6rifiant -~ < Arg w ~ ~ , on pose 

Log w : Log [wl + i Arg w et w½ = e½ Log w . On v~rifie qua 

= 2 w~ o~ s = 1 si -~ < Arg w I + Arg w 2 ( ~ et a =-i (WlW2)½ ~ w l 

sinon. 

3. Formule de transformation de th~ta. 

Qua la forme quadratique q(x) soit d~finie positive ou non, les 

formules (i) et (3) impliquent des formulas de transformations de 

8h(T) pour l'action du groupe modulaire. Je r~f~re ~ Shimura ([14~, 

p. 454) pour la d~monstration dans le cas positif ;elle s'applique 

aussi au cas quelconque. 

On note : 

- A la matrice de q(x) sur une base de L (si x = (x I ..... x n) 

sur cette base, q(x) = ½ x A tx) ; 

- D le d~terminant de A , A son discriminant A = (-l)n/2D si 

n est pair et 2D si n est impair ; 

- N le niveau de A , c'est-A-dire le plus petit entier tel que 

la matrice NA -I soit paire ; 

- X le caract~re de A d~fini par X(p) = (~) , le symbole (~), 

c et d E ~ , 6tant d~fini comma dans [14]. En fait, D , g , N , ne 

d6pendent pas du choix de A , mais de q(x) et de L . 

Th~or~me 2. Sous l'hypoth~se (2), on a : 

a b ~ SL2(~) c ~ 0 (mod N) * pour tout W : (c d ) 

8h(c~j-a~+b~ = (~) v(7) (cT+d) k+n/2 6ah(T) , 

o_~u v(y) = 1 s i n est pair et v(y) = (~)(~)~n/2 s i n est impair. 
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la limite de £h(~(~))(c~+d) -X-n/2 ww 

vers i~ , pour tout ~ = (a b) E SL 2(~) 
c d 

est finie quand T tend 

4. Les fonctions d'Hermite. 

Une solution fT(x) de (3) doit ~tre pour T = i une fonction 

propre pour la transformation de Fourier ; on aura : 

* )a 
(4) f (x) = (-i f(x) (f(x) = fi(x)) 

Mais inversement, la relation (4) entra[ne que les fonctions fT(x) 

d&finies par 

(5) f (x) = v -~/2 f(x\~) e 2i~uq(x) • = u+iv , v>O 

sont des solutions de (3) lorsque u = Re(<) = O (d'apr~s !a r6gle 

donnant f(x~)*). L'id6e est de trouver toutes les fonctions f(x) , 

propres pour Fourier, telles que les f<(x) d6finies par (5) soient 

des solutions de (3) pour T quelconque. 

L'espace L2(V) poss~de une base orthonormale, form~e de fonc- 

tions propres pour la transformation de Fourier, appel~es les fonctions 

d'Hermite (Appel et Kamp~ de F6riet [O1, 3e partie). 

On note 

- (Xl,...,x n) les composantes de xE V sur une base telle que 

2 2 2) , n = s+t 
q(x) = ½ (x I +...x s - Xs+l-...-x n 

2 - q+(x) = ½ (Xl+...+x 2) 
n 

- pour m = (m I ..... m n) 6~n , X 6 R et h = (h I ..... hn) ERn , 

, xm kml+...+m n H m = h~l..h~n , m! = ml!...m n. , = , . 

~(m) = ml+...m s-ms+l-...-m n , et 

c = (_l)m ~F~m ! 2m-i/4 nm/2 
m 

Les fonctions d'Hermite sont d~finies par : 

h m 
e -4~q+(x+h) = e-2~q+ (x) E c #m(X) ~.- 

mean m 

Elles sont propres pour la transformation de Fourier et sont solution 
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d'une ~quation diff~rentielle du 2 ~ ordre : 

(6) ~(x) = (-i) ~(m) ~m(X) 

(7) (A-8~2q(x)) ~ (x) = -4~(~(m) + s~__~t) ~m(X ) 
m 

s ~2 n ~2 
OU A = i{ 1 5x~ i=~+l 5x~ est le laplacien de q(x). 

La r@f@rence donn@e [O~ convient pour une variable. On g~n~ralise (6) 

et (7) ~ un hombre quelconque de variables et ~ une forme quadratique 

de signature (s,t) en utilisant que ~m(X) est le produit 

ml(Xl) - - , ~ ~i (Xl) * ~ ~* (_Xn) "~m (Xn) que ~ (x) = "''~m (Xs)~ +l(-Xs+l )''" m 
n s s n 

m. 

et que ~m. (xi) = (-i) i ~m. (-xi)" 
l 1 

Si l'on consid~re la fonction Pm(X) = Bm(X) e 2~q(x) , l ' ~ q u a t i o n  

diff~rentielle (7) devient : 

(8) (E- ~(m) +q) Pm(X) = ~ Pm(X) 

n 
o~ E est l'op~rateur d'Euler, E = i~l xi ~ " 

1 

5. Calcul d'int~qrales. 

Lemme I. ~ e i~Ty2- 2i~xy dy = (r/i) -½ e -i"x2/~ 

C'est bien connu. On g~n~ralise ~ un plus grand hombre de variables. 

Soit 

• 2 . - 2 s l~Txj s+t - = I~ T xj g~(x) = e 2i~uq(x) 2~vq+(x) j~l e j=~+l e 

Lemme 2. g~(x)* = (~/i) -s/2 (~/i) -t/2 g_l/T(x) 

En consid~rant v t/2 gT(x) , on ~limine le terme en ? ; autrement dit, 

la transform~e de Fourier de la fonction 

(x) = v t/2 ~ (x~v) e 2i~uq(x) 
Ot T 0 

est donn~e par : 

Lemme 3. ~* 
OfT 

(x) = (-i) (t-s)/2 ~(t-s)/2 
o,-I/T (x) 
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On g~n~ralise ~ m quelconque en utilisant les propri~t~s remar- 

quables des fonctions d'Hermite (on applique le fait que ~ et -2~ix 

sont duales par rapport ~ Fourier, et les relations 

Cm+l Zm+l (x) + 4~CmX~m(X) + 4~Cm_imZm_l(X) = O , 

Z'(X)m - 2nx Zm(X) = Cm+i/c m Zm(X) , pour xER). 

Lemme 4. Zm,<(x) = (-i) (t-s)/2 -(k+n/2) Z (x) avee 
m, -i/~ 

I = S(m)-q . 

6. Le lemme 4 nous donne une base dans L2(V) des fonctions f(x) 

cherch6es. Elle est form~e des fonctions Zm(X) , telles que k = s(m)-q. 

Les fonctions f(x) sont (avec l'hypoth6se ~ suppl~mentaire du th6- 

or6me de l'introduction) les solutions de l'6quation diff6rentielle (7), 

6quivalente pour p(x) = f(x) e 2~q(x) ~ l'6quation diff~rentielle de 

**). Le th6or~me 1 est d~montr~. 

Si la forme q(x) est d6finie positive, les fonctions Pm(X) 

.. = k for- sont des polyn6mes. Les polyn~mes Pm(X) tels que ml+. +m n 

ment une base (finie) des fonctions p(x) v~rifiant les deux condi- 

tions du th~or~me. Si q(x) est ind6finie, la base est infinie. 

7. D6riv6es et formes de Maass. 

Parmi les fonctions du demi-plan sup6rieur, se transformant sous 

l'action du groupe modulaire conlme dans le th6or~me 2, se trouvent les 

formes de Maass, qui sont les valeurs propres de !'op~rateur de 

Beltrami (g~n6ralis~) du demi-plan sup~rieur. Cet op6rateur au moyen de 

th~ta se rel~ve sur les fonctions p(x) . On note : 

- Pl l'ensemble des solutions p(x) de l'~quation diff~rentielle 

(E-l)p(x) = A/4~ p(x) tel!es que f(x) = p(x) e -2~q(x) appartienne 

l'espace de Schwarz de V . 

- %(T,p) la s~rie th6ta associ~e ~ p(x) E PX , dans le th~or6me i. 

- @k ' l'image de PI par l'application 8(T,p) , k = k +n/2 . 
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Sur PX ' on d&finit deux op&rateurs K~ et A k qui sont les 

rel&vements des op~rateurs usuels de d~rivation % et A k sur £ k . 

On d~montre la proposition suivante : 

Proposition. S i p(x) E PX satisfait l'6quation diff~rentielle 

(E+ k +n- 2- 4~q(x))(E- k)p(x) = 4r p(x) , r ER 

les s6ries 8(T,p) sont des formes de Maass. 

D6monstration : Kk = k~ + i ~ A k = lV' 2 ~ 

(on pose ~-~ = ~ - i ~ , ~ = ~-~ + i ~) 

E+k n ~ E-X 
D~finition. K k = -~-- + ~ - 2~q(x) A k = 

2 

On v~rifie que ~k 

tivement dans PX+2 et 

sont commutatifs : 

et ~k sont des applications de Pk ' respec- 

Pl-2 ' c'est-&-dire que les diagrammes suivants 

• PX+2 PX ~ ~ PX-2 

A 
Kk £k k ~ ~k-2 8 k ' 8k+ 2 .... 

Les ~galit~s e(T,Kxp ) = ~ @(T,p) et @(~,~xp) = A k 8(T,p) montrent 

que les images de s~ries th~ta par les op6rateurs de d~rivation sont 

des s6ries th~ta. 

Dans @k l'op~rateur ~_2Ak 

&k -v2 ~2 = ~ + ikv ~ (op~rateur de Beltrami g~n~ralis~) 

admet des valeurs propres, qui sont des formes de Maass ([71 

le rel&vement de ~k & Pk ~tant 

~k = -((E+k)/2 + n/2 - 1 - 2~q(x))(E-k)/2 

on en d~duit la proposition. 

Exemples : Les s~ries th~ta des corps quadratiques r~els. 

On note : 
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V = ~2 

L = un id6al d'un corps quadratique r6el K , de discriminant & , 

d'616ment g6n6rique ~ , dont le conjugu6 est b', plong6 dans ~2 par 

~ (b,b') ; n(L) est la norme de L . 

~ ~  , ~ / o . 

xy 
q(x,y) = ~ . 

On peut construire des s6ries th~ta de poids k E ~ , de niveau £ , 

qui sont des formes de Maass avec 4r = k 2 + t 2 , o~ t est de la forme 

t = 2~n/Logl~l , ~>>0 unit6 de K . 

Le th6or6me 2 nous permet de construire des s6ries th~ta de poids 

k , de niveau N : 
mb' 

2i,u 
8h(T) = v-k/2 ~L+hE fm, n (~, ~'~) e 

avec m-n = k+l et 

fm, n(X,y) = Zm((X+y)~ ) Zn((X-y) ~ )  

Remarquons que pour a El+ , l'application (x,y) ~ (ax,a-ly) est une 

unit6 de q(x,y) et par cons6quent f (ax,a-ly) v6rifie (7). 
m,n 

D'autre part, fm, n(am~, a-l~'~) est le produit d'un terme polynSmial 
-~v(a2b 2 + a-2~ '2) 

en abl~ et a-lb'\~ par une exponentielle e 

Pour tout caract6re a ~ a it fixant globalement L+h ,donc 

t = 2~n/Logl~I , £ unit~ de k , n6 ~ , 

- ~ ait @h(~,a ) da 
eh(~) = 0 a 

O~ l'on a not6 8h(~,a) la s6rie th~ta correspondante ~ fm, n(aX,a-ly). 

Les s6ries ~h(~) sont des s6ries th~ta de poids k de niveau N ; 

elles s'~crivent 

o~ 

eh (T) = b6L+hE v-l/2 gm, n(~, b.~) e 2i~u 

mod(~n)n@ Z 

oo 

gm, n(X,y) = ~ a it f (x,y) d a 
0 m,n a 

est bien d6finie pour xy ~ 0 . Si l'on pose : 

(xy ~ o) 
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p(x,y) = gm, n(X,y) e 

on obtient des fonctions p(x,y) v&rifiant (8) ainsi qu'une autre 

6quation diff~rentielle 

x p~(x,y) - y p'(x,y) = -it p(x,y) 

que l'on obtient en d~rivant par rapport & b l'~galit6 

p(bx,b-ly) = b -it p(x,y) 

Ii est ais~ d'en d~duire que p(x,y) v~rifie ~ p(x,y) = 4r p(x,y) 

avec 4r = k 2+t 2 ,donc les s~ries [h(T) 

de Maass. 

sont des formes modu!aires 
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INTRODUCTION 

Various objects in algebraic geometry and number theory have asso- 

ciated to them L-functions with Euler product. Examples include the L- 

functions attached to algebraic varieties, complex Galois representa- 

tions of a number field, and strictly compatible systems of l-adic re- 

presentations. The conjecture is that all these L-functions should pos- 

sess analytic continuations and functional equations. In fact, accor- 

ding to R.P. LANGLANDS and A. WEIL, these functions should coincide 

with the Euler products naturally associated to automorphic forms on 

groups such as GL(n). 

In [13] Langlands described this philosophy in a sequence of dazz- 

ling conjectures. The particular conjecture which is of interest to us 

here relates Artin L-functions of degree n to cusp forms on GL(n). 

When n = 1 this reduces to the fundamental reciprocity law of abelian 

class field theory. Thus we refer to it as "Langlands' reciprocity 

conjecture". It asserts that there is a natural map between n-dimension- 

al irreducible Galois representations and cusp forms on GL(n). Since 

this map preserves L-functions~ its existence implies the truth of Ar- 

tin's conjecture. 

Recently Langlands has been able to prove his reciprocity conjec- 

ture -and hence Artin's conjecture- for a wide class of 2-dimensional 

Galois representations. A brief sketch of the proof appears in [14] 

and [15]. The modular ingredients include : 

(i) the theory of base change for GL(2) as developed by 

Saito [17], Shintani [1.9] and Langlands [14]; 

(ii) the theory of "lifting" from GL(2) to GL(3) developed by my- 

self and Jacquet (Gelbart-Jacquet [7]); 
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(iii) the work in progress of Jacquet, Piateckii-Shapiro and Shalika 

on the "converse theorem for GL(3)" and L-functions on 

GL(3) x GL(3) (cf. [12]). 

The purpose of this paper is to describe the significance of these 

modular results in more detail. Particular emphasis is on the role 

these results play in Langlands' proof of Artin's conjecture for the 

so-called tetrahedral representations of the Galois group of an arbitra- 

ry number field. 

Some of the work described here is still in progress, and still 

more is not yet published. Thus I am grateful to all those concerned 

for allowing me to make this report. I am also grateful to P. CARTIER, 

J-P. SERRE and J. TUNNELL for helpful remarks on the material of Sec- 

tions II and III. 
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I .  ARTIN'S CONJECTURE 

Fix an integer n and a number field F. 

1.1. Artin's Original Conjecture. 

Suppose K is any Galois extension of F and 

a : GaI(K/F) ~ GL(n,~) 

is an n-dimensional representation of GaI(K/F). For each place v of F 

let o v denote the restriction of o to the decomposition group of GaI(K/F) 

at v. The Artin L-function attached to a is then given by an infinite 

Euler product 

L(s,o) = ff L(s,o v) 
V 

extending over all the places of F. If v is unramified in K, and Fr v 

denotes a Frobenius element over v, then 

-1 
N-S L(S'av) = [det(l-°(Frv) v )] 

Artin's Conjecture. Suppose a is irreducible and non-trivial. Then 

L(s,a), originally defined only in some right half-plane, extends to an 

entire function of ~. 

Non-trivial results in the direction of Artin's Conjecture were 

first obtained by E. Artin and R. Brauer. Artin proved his conjecture 

for monomial representations -those induced from one-dimensional repre- 

sentations of a subgroup. In fact, for such a Artin proved that L(s,c) 

is L(s,x) , a Hecke L-series with character X. Thus Artin proved a dual 

form of the fundamental reciprocity law of abelian class-field theory. 
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For arbitrary o, Brauer proved that L(s,u) is at least meromorphic 

in C. Until recently, however, very little was known in general about 

the entirety of L(s,@). 

As already indicated, one purpose of this paper is to report on re- 

cent progress mady by R.P. Langlands on the proof of Artin's conjecture 

for two-dimensional c. For irreducible such o, it is known (cf. [18], 

§2.5.) that the image of ~(GaI(K/F)) in RGL(2,£) is either : 

(i) dihedral, in which case o is monomial~ 

(ii) isomorphic to A 4 the tetrahedral case; 

(iii) isomorphic to S 4 the octahedral case; or 

( i v )  i s o m o r p h i c  t o  A S - t h e  i c o s a h e d r a l  ( o r  n o n - s o l v a b l e )  c a s e .  

Langlands' work concerns cases (ii) and (iii) but not (iv). Before 

describing his results, we need to reformulate Artin's Conjecture in 

terms of the so-called Hecketheory for GL(n). 

1.2. Hecke Theory for GL(n). 

Let G denote the algebraic group GL(n). In this section we shall 

describe the automorphic representations of G. To save space, we 

shall often sacrifice precision for the sake of speed. For a more de- 

tailed development of the theory, see [1], [5] or [6]. 

For each place v of F let F v denote the completion of F at v. 

Let AF denote the adele ring of F, and GA the adele group 

GL(n,A) = ~ GL(n,F v) (a restricted direct product). 
v 

For each algebraic subgroup H of G, H A will denote the group of adelic 

points of H. 
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An automorphic form on GL(n) (over F) is a slowly increasing left 

GL(n,F)-invariant function on GA which is right invariant by an appro- 

priate compact subgroup; for the definition of slowly increasing, see 

[5]. An automorphic form is cuspidal if 

f = 0 ¢(ux)du 

U F \ U  A 

for each unipotent radical U of a proper F-parabolic subgroup of GL(n). 

Examples (n : 1,2). 

(a) Examples of automorphic forms on GL(1) are provided by gr~ssencha- 

rakters of F, i.e., characters of the idele class group FX\ A~. Since 

GL(1) has no proper parabolic subgroups, every automorphic form on 

GL(1) is (automatically) cuspidal. 

(b) Suppose F : 9- Then an automorphic form % on GL(2 

notion of a modular form 

f(z) = 
2~inz 

an e 
n=@ 

extends the 

defined classically in H : {z : Im(z) > 0}. The left lnvariance of 

with respect to GL(2,F) corresponds to the fact that f is "automor- 

phic" in the classical sense for some congruence subgroup of SL(2,Z). 

The euspidal condition on ~ corresponds to the fact that f is a cusp 

form in the usual sense, i.e. f vanishes at each cusp; in particular 

a 0 = O. 

(c) Suppose F is a real quadratic field. Then automorphic forms on 

GL(2) over F generalize the classical notions of Hilbert modular form. 

Now suppose ~ is ~ny irreducible unitary representation of GL(n,~). 

If ~ can be realized by right translation operators in the space of 
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automorphic (resp. cuspidal automorphic) forms on GL(n) we call ~ an 

automorphic (respectively cuspidal) representation of GL(n). To at- 

tach to ~ an L-function with Euler product we need to factor ~ as a 

product of local representations. 

According to [8] and [11] there is associated to ~ a family of local 

representations ~v -uniquely determined by ~- such that 

(i) for every v, ~v is irreducible; 

(ii) for almost every v, ~v is "unramified"; and 

(iii) in a sense to be made precise below, 

(I.i) ~ = ® ~ . 
v v 

This result is really only true for "admissible" ~. However, it is 

easy to show that every cuspidal ~ is admissible. 

When n = 1 the decomposition (1.1) corresponds to the fact that eve- 

ry gr~sseneharakter X can be written as a product of local characters 

Xv. Condition (ii) corresponds to the fact that the restriction of X 

x 
to the group of units in F v is trivial for almost every v, i.e., for 

almost every v, Xv is "unramified" in the usual sense. 

In general, ~v unramified means that the restriction of ~v to the 

standard maximal compact subgroup K v of GL(n,F v) contains at least 

one fixed vector. In lhis case, the theory of spherical functions for 

GL(n) shows that : 

(a) K 
v 

(b) 
v 

A 
v 

has exactly one fixed vector in the space of ~v; and 

corresponds canonically to a semi-simple conjugacy class 

in GL(n,~). 
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The significance of (a) is that (1.1) is meaningful when interpreted as 

a restricted direct product with respect to these Kv-fixed vectors. 

The significance of (b) is that one can canonically attach to most 
V 

an "Euler factor" of degree n. 

Examples (n = 1,2). 

X 

(a) Suppose n = 1 and ~v is an unramified character of Fv. Then A v is 

~ v ( ~ ) ,  t h e  v a l u e  o f  ~v a t  any  l o c a l  u n i f o r m i z i n g  v a r i a b l e  o f  F v.  

(b) Suppose n = 2, F : ~, and ~f = @ 
P 

modular form 

is generated by the classical 

f(z) : 
2~inz 

~ an  e 
n = l  

on SL(2,Z). The decomposition ~f : ® ~p corresponds to the fact that 

f is an eigenfunction for all the Hecke operators Tp, i.e., Tpf = apf 

for all p. The unramified representation ~ then corresponds to the 
P 

conjucagy class 

Ap 

-{~) 
if and only if det(Ap) : 1 and tr(Ap) : p ap. 

As already indicated, Hecke theory for GL(n) starts with the notion of 

an L-function attached to each irreducible unitary reperesentation 

v 

of GL(n,A). Given ~, let S denote the finite set of places v of 

F outside of which ~v is unramified. For each v ~ S let A v denote the 

seml-simple eonjugaey class in GL(n,~) corresponding to ~v" Then 
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consider the infinite Euler product 

(1.2.) ~ L(s,~ v) : IT [det(l-{Av}(Nv)-S)] -1 
v~S v~S 

extending over (most of) the non-archimedean places of F. This is an 

Euler product of degree n in the sense that each Euler factor L(s,~ v) 

the form P-l((Nv)-S ) with P a polynomial of degree n is of such that 

P(0) : 1. The infinite product can be shown to converge for Re(s) 

sufficiently large. 

In many known cases the function defined by (1.2) actually extends 

to a meromorphic function in ¢ with simple functional equation. In 

the context of Example (a) this amounts to Hecke's fundamental result 

for the Euler product 

-s -1 
L(s,x) = ~ (1-X(~v)N v ) 

veS 

a Hecke L-series with gr~ssencharakter X. In the context of Example 

(b) it amounts to Hecke's classical theory of Dirichlet series associated 

to modular forms. In this case 

L(s,~ ) : X 
v~S v p<~ 

-1 -1 
( 1-~pp s) (l_Spp-S) 

-1 = 9 (1-app -s' + pk-l-2s') 

P 

-S I 
= ~ ann = D(s',f), 

with s' = s + ( ). Thus the analytic continuation of H L(s,~ v) 
v~S 

results from the known holomorphy of D(s',f), and the functional equa- 

tion results from the invariance (up to sign) of 

(2~)-S'F(s')D(s',f) 

with respect to the change of variable s' ~ k-s'. 
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In general, one has the following result : 

THEOREM i. (Jacquet-Langlands [11], Godement-Jacquet [9]). 

Suppose ~ = ® ~ is an irreducible unitary representation of GL(n,~) 
v v 

with S and A v as above. Then one can define an infinite Euler product 

L(s,~) : ~ L(S,~v), 
v 

and local factors S(s,~ ), so that for v ~ S, 

N -s - 1  
L(s,~ v) = [det(I-{Av}( v ) )] , and s(S,~v) = 1. 

automorphic representation of GL(n), then : 

(i) 

Moreover, if ~ is an 

(ii) 

L(s,~), initially defined only in some right half-plane, extends 

to a meromorphic function of s with only finitely many poles in 

L(s,~) = (~ ~(S,~v))L(1-s,~) with ~ the representation contra- 
v 

gredient to ~; and 

(iii) if ~ is cuspidal (and non-trivial when n = 1), then L(s~) is 

entire and of finite order. 

Remarks. 

(a) Properties (i)-(iii) above essentially characterize the irreducible 

unitary representations of GL(2,A) wich are cuspidal. This is Theorem 

11.3 of [11]; it generalizes earlier special results of Hecke and Weil. 

Similar results for GL(3) have been obtained in [12]; together these 

results constitute a converse theorem to Hecke theory for GL(2) and 

GL(3). 

(b) Langlands has conjectured in [13] that Theorem 1 should hold in a 

much more general context. More precisely, fix a finite-dimensional 

semi-simple analytic representation 
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r : GL(n,{) ~ GL(m,@) 

with n < m, and define, for v ~ S, an Euler factor of the form 

-1 
L(S,~v,r) = [det(l-r(Av)(Nv)-S)] 

Conjectured generalization of Theorem 1. Suppose z = ® ~v is an auto- 

morphic representation of GL(n). Then one can define L(S,~v,r) for 

v E S so that the function 

L(s,~,r) = H L(s,~ ,r) 
v v 

satisfies conditions (i) and (ii) of Theorem 1 with some 

place of s(S,Wv). 

s(S,~v,r) in 

Note that the assertions of this conjecture reduce to those of Theo- 

rem 1 when r is the standard representation of GL(n,¢) by itself. In- 

deed if we denote this representation by 

then 

Pn : GL(n,{) ~ GL(n,@), 

L(s,~,p n) : L(s,~). 

In general, L(s,~,r) is defined so that 

L(s,~,r 1@ r 2) = L(s,~,rl)L(s,~,r2). 

(c) Functoriality of Automorphic Forms with respect to the Associate 

Group. 

Suppose G' = GL(m) and p : GL(n,~) ~ GL(m,~) is a homomorphism. Then 

there should be a map p~ taking automorphic representations of G to 

automorphic representations of G' so that for each semi-simple repre- 

sentation r of GL(m,~), 
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L(s,~,r 0p) = L(s,p~(~),r). 

But GL(n,{) (resp. GL(m,~)) is (essentially) the associate group of 

GL(n) (resp. GL(m)) (cf. [13] and [14]). Thus this assertion amounts 

to Langlands' principle of "functoriality of automorphic forms with 

respect to the associate group". 

1.3. L angland's Reciprocity Conjecture. 

Theorem 1 suggests we ask if every Artin L-function of degree n is 

the Hecke L-function of an automorphic representation of GL(n) ? In 

other words, fix a Galois representation 

a : GaI(K/F) ~ GL(n,C) 

and consider the corresponding collection of conjugacy classes {a(Frv)} 

in GL(n,~). Does there exists an automorphic representation ® ~ of 
v v 

GL(n,A) such that A v almost always coincides with the class of a(Fr v) ? 

The first precise response to this question was conjectured by Lang- 

lands in [13]. 

Langlands' Reciprocity Conjecture. For each Galois representation 

a : GaI(K/F) ~ GL(n,{) 

there exists an automorphic representation z(a) of GL(n,~ F) such that 

L(s,o) = L(s,~(~)). 

Moreover, if o is irreducible and non-trivial, then ~(a) is cuspidal. 

Remarks. 

(a) This conjecture implies Artin's conjecture. In fact, as already 

mentioned, this is how Artin proved his conjecture for one-dimensional 

a. 
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(b) In [16] (see also [2])Langlands showed that the factor e(s,~) aris- 

ing in the functional equation of L(s,~) can be factored as a product 

of appropriate local factors c(S~v). Thus, by the converse theorems 

to Hecke theory already discussed, Artin's conjecture can be shown to 

be equivalent to Langlands ' reciprocity conjecture when n ~ 2 or 3. 

(c) These same converse theorems also imply the truth of the reciprocity 

conjecture for two and three dimensional irreducible monomial represen- 

tations ~, i.e., irreducible representations of Gal(K/F) induced from 

gr~ssencharakters of quadratic (resp. cubic) extensions of F. In either 

case the resulting automorphic representations ~(~) will be called mono- 

mial. The case n = 2 is due to Jacquet-Langlands [11] (generalizing 

earlier classical constructions of Hecke and Maass)~ the case n = 3 is 

due to Jacquet, Piateckii-Shapiro, and Shalika [12]. 

The classical content of Langlands T reciprocity law is this. Suppose 

F = ~, and ~ is an irreducible two-dimensional representation of 

1 0] Then the (hypothetical) Gal(~/~) taking complex conjugation to [0 -1 " 

representation ~(~) corresponds to a classical cusp form of weight 1. 

In [3] Deligne and Serre prove that all forms of weight 1 are so ob- 

tained. More precisely, suppose f is a cusp form of weight 1 and a 

"primitive form" of odd character in the sense of [3]. Then there 

exists an irreducible two-dimensional representation ~ of Gal(~/~) 

with odd determinant such that L(s,~) = D(s,f). In other words, modulo 

Artin's conjecture, there is a 1-to-1 correspondence between such repre- 

sentations of Gal(~/~) and appropriate cusp forms of weight 1. 

We close this Section by describing Langlands' reciprocity law in 

a local setting. This law will be particularly useful in Section II. 
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For the moment, let F denote a local field and ~ an n-dimensional 

representation of GaI(K/F). From the global theory we expect to be 

able to attach to ~ an irreducible (admissible) representation ~(~) 

of GL(n,F) whose L and s factors coincide with those of ~. We want to 

assert more, however. Thus we consider representations not just of 

GaI(K/F) but also of W F -the absolute Weil grou[ of F. Our assertion then 

is that there is a natural correspondence 

~ ~(~) 

which is bijective. For precise definitions, and a discussion of the 

present state of this conjecture, see [1] and [6]. The case n = 1 is 

equivalent to the local reciprocity law of abelian class field theory. 

In general, every representation of GaI(K/F) may be regarded as a re- 

presentation of W F but not conversely. 

Concluding remark. Although the correspondence ~ ~+ ~(~) should preserve 

L and ~ factors, it is not expected that these factors should always de- 

termine the representation. In particular, in the statement of Lang- 

lands' reciprocity conjecture, it is not asserted that ~(~) is unique- 

ly determined by the condition L(s,~(o)) = L(s,~). For n = 2 or 3, 

however, the L and e factors do locally determine 7. 
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I I .  AUTOMORPHIC FORMS ON GL(2) AND GL(3) 

Although the results of this Section are included primarily because 

of the role they play in the proof of Artin's conjecture, all are im- 

protant in their own right. 

2.1. Base Change for GL(2). 

Suppose F is a global field, and E is intermediate between K and ga- 

lois over F. If a is a two-dimensional representation of GaI(K/F), res- 

triction to GaI(K/E) gives rise to a representation ~. Thus Langlands' 

reciprocity law suggests that the map 

should index a "base change" map 

between automorphic representations of GL(2,~ F) and GL(2,~E). 

To be more precise, suppose ~ = ® ~v is a cuspidal representation of 

GL(2,~F). Let w denote an arbitrary place of E and suppose ~' = ® 7' 
W 

is a ouspidal representation of GL(2~AE). If v is such that ~v is 

unramified, then ~v = ~v(av ) for some two-dimensional representation 

• ° a v of the Weil group WFv In particular, L(s,a v) = L(s,~ v) If w is 

a place of E dividing v, we write E w for restriction of a v to the Weil 

group of E w. We say ~v is a base change lift of ~ if 

, = ~'(~ ) 
~W W 

for almost every w. 
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Since the elements of GaI(E/F) act on GL(2,E)\ GL(2,A E) they also 

act on automorphic representations of GL(2,AE). If ~' is such that 

(~,)T = ~' for all T • GaI(E/F), we say that 7' is Galois invariant. 

THEOREM 2. (Langlands [14]). Suppose E/F is cyclic of prime degree. 

Then : 

(a) every cuspidal representation of GL(2,~ F) has a base change 

lift to GL(2,~E) ; 

(b) a cuspidal representation of GL(2,/~)is the base change lift of 

some ~ on GL(2,1A F) if and only if it is Galois invariant; 

(c) if ~ and ~' have the same base change lift to GL(2,/~)then there 

exists a character ~ of FXNE/F(~ ~) \ ~ such that ~' = ~ Q w. 

(Here NE/F denotes the norm map from E to F and ~ @ ~ denotes 

the representation ~(g) ® ~(det g).) 

Langlands proves this theorem in [14] using the Selberg trace for- 

mula. Special cases of it had been proved earlier by Doi and Naganuma 

([4]), Jacquet ([9]), Shintani ([19]), and Saito ([17]). 

Remark. Because E/F is assumed to be cyclic of prime degree, say q, 

the relation bewteen the functionsL(s,~) and L(s,~') is particularly 

simple to describe. In general, almost every component ~v of ~ is 

unramified. Thus ~v corresponds to some semi-simple cojueagy class 

L(s,~ v) : (1-~v(Nv)-S)-I(1-6v(Nv)-S) -1. But since q is prime, and 

almost every v either splits completely in E or else remains prime. 

If v splits, and w denotes a prime of E lying over v, then 

t 
L(S,Z w) = L(S,~v). On the other hand, if v is inert, and w lies 
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over v, then 

' ~ Nv)-qs)-i L(s~ w) = (1-~ ((l_8q(N)-qs) 
v V 

-1 

Example. Suppose E : Q(x/d) is a real quadratic field with discriminant 

D and class number 1. Let f(z) = [ a e 2~inz be a cusp form of weight k 
n 

on SL(2,Z) and assume 

a n -s : E (1-aDp-S+pk-l-2s)-i = ~(i-~ p-S)-l(1-Spp-S) -1. 

n:l n P ~ p 

Then by Theorem 2, and the above remark~ f lifts to a Hilbert modular 

form F over E whose L-series is described as follows. If p splits in 

E, and v divides p, put a v equal to ap. On the other hand, if p is 

inert, and v divides p: put a equal to a2-2p k-1 Then 
v P 

L(s,F) = ~(1-av(Nv )-s + (N 
)k-1-2s)-1 

V V 

(l_app_S 2 2 -2s)-1 ~ -1 = ~ + pk-l-2s) ~ (1-~ p (l-g p-S) 

p splits p inert P 

This generalizes the set-up of [4]. 

2.2. Lifting Forms from GL(2) to GL(3). 

Let A denote the three-dimensional representation of PGL(2,{) deter- 

mined by the adjoint action of PGL(2,{) on the L~e algebra of SL(2,~). 

Denote the resultin Z three-dimensional representation 

PGL(2,{) 

GL(2,~) ~ GL(3,~) 

of GL(2,{) by A2(p2 ). We call this representation the adjoint square 

of the standard two-dimensional representation P2" It differs from 



Gel-17 
259 

the usual symmetric square Sym2(p2 ) by a power of the determinant. In 

particular, A2(p2 ) is trivial on scalar matrices, whereas Sym2(p2 ) is 

n 6 t .  

Suppose ~ is any two-dimensional representation of the Galois (or 

Weil) group of a local (or global) field. Then we let A2(a) denote 

the composition of a with A2(p2 ). This is the adjoint square of a. 

Now suppose ~ : @ ~v is an automorphic representation of GL(2,A F) 

and ff = ® ffv is an automorphic representation of GL(3,~F). Using the 

notation of the local reciprocity correspondence, we say ff is a 

GL(3)-lift of ~ if, for almost every v, 

~v : ffv(A2(av )) 

: : (av). whenever :v v 

THEOREM 3. (Gelbart-Jacquet [7]). 

(i) Every automorphic cuspidal representation ~ of GL(2,~ F) 

has a lift to GL(3,~F) ; 

(ii) the lift of ~ is cuspidal if and only if ~ is cuspidal but 

not monomial, i.e., not of the form ~(a) for some monomial 

representation ~ of GaI(K/F). 

THEOREM 4. ([7]). The conjectured Generalization of Theorem 1 is true 

r equal to A2(p2). Moreover, with 

L(s,~,A2(p2 )) : L(s,H,p 3) 

is entire. 

Example. Suppose F = Q. If ~ is generated by the (normalized) "new" 
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form 

oo 

2winz 
f(z) : ~ ane 

i]:l 

- (l_~.pp-S)-1(1_ ~pp-S ) -1 on SL(2,Z) then Tpf = apf for each p. If [ ann s = 
P 

define an Euler product L 2 ( s , f )  of" degree  3 by the  fo rmula  

-1 16pp_ s -1 L 2 ( s , f )  : ~ - 3 s / 2 r ( ~ )  s + l . ~ . s - k + 2 . ~  1p-S) p ) . r (-~--) r ~---7---) JL (1-ap~p (1-a (1-p-S) -1 

P 

Then 

L(s,~,A2(p2 )) = L2(s+k-l,f). 

Thus the Corollary above implies L2(s,f) is entire (cf. Shimura [20]). 

What Theorem 3 implies is that 

L(s,[) = L(s,~,A2(p2 )) 

for some cuspidal representation ~ of GL(3,~Q). 

Remark. The lifting 

from GL(2) to GL(3) is a special case of the type of correspondence predic- 

ted by Langlands' "principle of functoriality of automorphic forms 

with respect to the associate group ~'. Indeed the "associate group" of 

GL(n) is just GL(n,{) x GaI(K/F). Thus the correspondence 

taking automorphie representation of GL(2) to GL(3), corresponds natur- 

ally to the homomorphism of associate groups determined by the map 

A2(p2 ) : GL(2,C) ~ GL(3,{). 
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Cf. Remark (c) at the end of Section 1.2.~ the correspondence ]i ÷ H is 

"natural" in that it preserves L-functions, i.e., 

L(s,~,p 3) : L(s,~,A2(p2)). 

Similarly, the base change lifting 

7[ -~ IT t 

described in 2.1. corresponds to an appropriate homomorphism of associate 

groups. More precisely, let E denote a Galois extension of F contained 

in K. Let G T denote the algebraic group over F obtained from GL(2) by 

restriction of scalars from E to F. Then the associate group of G' is 

( ~ GL(2,~)) x GaI(K/F) 
Gai(K/~) \ CaI(K/F) 

with GaI(K/F) acting on H GL(2,~) via its action on coordinates. The 

base change lifting 

taking automorphic representation of GL(2,/A F) to GL(2,/A E) corresponds 

to the homomorphism of associate groups which maps GL(2,C) onto the 

diagonal and operates as the identity on GaI(K/F). 

For a more detailed discussion of Langlands T functoriality principle 

see [1], [6], and [141. In [11 the "associate group" is renamed the 

~L-group'. 

2.3. Automorphic Forms on GL(n) x GL(m). 

v 
Suppose 2 ~ n ~ m ~ 3. If ]iv and ~v are unramified representations 

T 

o f  G L ( n , F  v )  and  GL(m,F  v)  r e s p e c t i v e l y ,  l e t  A v and  A v d e n o t e  t h e  c o r -  

r e s p o n d i n g  conjugacy classes in GL(n,~) and GL(m,~). A natural Euler 
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factor attached to the pair (~v '~')v is given by the formula 

' N -s -1 
× : [det(l-(A ® A')( v ) ] L(S'~v ~v ) v v 

This is an Euler factor of degree nm. 

Now suppose ~ = ® ~ is an automorphic cuspidal representation of 
V 

G L ( n , A  F) a n d  ~ = ® ~ '  i s  o n e  o f  G L ( m , A F ) .  A c c o r d i n g  t o  w o r k  s t i l l  
v 

i n  p r o g r e s s  o f  J a c q u e t ,  P i a t e e k i i - S h a p i r o ,  a n d  S h a l i k a  o n e  c a n  d e f i n e  

an infinite Euler product 

I 

L(S,~ × IT') = ~ L(s,~ v × ~v ) 
V 

which extends over all the places of F. 

THEOREM 5. The function L(s,~ × 7') , originally only in some right 

half-plane, extends to a meromorphic function of ~ with functional equa- 

tion 

') L(s,% x ~') : (~ s(s,~ v x ~ )L(1-s,~ x z'). 
V V 

THEOREM 6. Suppose n : m = 3, and ~ and 7' are self-contragredient. 

Then : 

(i) L(s,~' x ~) has a pole at s = 1 if and only if ~ is equivalent 

to ~'; 

× ~ is non-zero at s : 1; (ii) for each place v, L(s~ v v ) 

(iii) for each place v, L(s,~ v × nv ) is pole-free in the closed half- 

space Re(s) ~ 1. 

Remarks. 

(i) Theorem 6, as stated above, has not yet actually been proved; how- 

ever, a weaker form of it, already sufficient for application to Artin's 
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conjecture, will appear in a forthcoming note of Jacquet and Shalika. 

(ii) The proof of Theorem 5 for n = m = 2 already appears in [10]; for 

function fields, the general global theory is discussed in [12]. 

(iii) By combining Theorems3, 4 and 5 one can obtain parts of the Con- 

jectured Generalization of Theorem 1 for the third and fourth symmetric 

squares of P2" More precisely, if r = Sym3(p2 ) or Sym4(p2 ), then 

L(s,~,r) should have a meromorphic continuation and functional equation. 

The argument below, due to Deligne, was shown to me by Serre. It does 

not prove that L(s,~,r) has only finitely many poles. 

Assume ~ is not monomial. By Theorem 3 we can lift ~ to a cuspidal 

representation N of GL(3) with the property that L(s,~,A2(p2 )) = L(s,H). 

Thus it follows from Theorem 5 that the functions L(s,~ x 9) and 

L(s,9 x ~) have analytic continuations and functional equations. But 

L(s,~ x ~) = L(s,~,p 2 ® Sym2(p2)), and 

Moreover, 

L(s,9 x 9) = L(s,~,Sym 2 

Sym2(p2 ) ® P2 = Sym3(p2 

Sym2(p2 ) ®Sym2(p2 ) = Sym4(p2 

p2 ) x Sym2(p2)).  

@ (P2 ® A2p2 ) '  

® (Sym~(P2) ®A2(p2 )) e (A2p2)@2. 

Now apply L(s,~,.) to both sides of the equations above and solve for 

L(s,~,Sym3(p2 )) and L(s,~,Sym4(p2 ). From this we obtain the desired 

analytic continuations and functional equations of these functions. 

Concluding Remark. As already indicated, Theorem 6 will be used in the 

proof of Artin's conjectue given in Section ZII. 
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I I I .  LANGLANDS' PROOF OF ARTIN 'S  CONJECTURE 

FOR TETRAHEDRAL 

As always, F is an arbitrary number field and K is a finite Galois 

extension of F. If o is a two-dimensional representation of GaI(K/F), 

~(~) denotes an automorphic representation of GL(2,A F) with the proper- 

ty that 

L(s,~(o)) = L(s,o) 

(at least in the sense that the local factors of these L-functions agree 

almost everywhere). 

The assertion that ~(~) actually exists comprises the content of 

Langlands' reciprocity conjecture. In particular, if ~ is irreducible, 

~(a) should be cuspidal. Thus Artin's conjecture is a consequence of 

Langlands' conjecture. Since both are theorems when F is a function 

field, we consider only number fields in this paper. 

The purpose of this Section is to describe Langlands' proof of his 

reciprocity conjecture -and hence Artin's conjecture- for tetrahedral o. 

The proof breaks up naturally into two parts. The first part produces 

a natural candidate for ~(~). This is the cuspidal representation 

Langlands calls ~seudo(~). The second part establishes that ~seudo(~) 

actually equals [(~). 

The construction of ~ (~) was first outlined in [14]. The 
pseudo 

primary tool used is Langlands' theory of base change (Theorem 2). The 

proof that ~ pseudo (~) = ~(~) can be carried out in two different ways. 

The first uses the result of Deligne-Serre quoted earlier; thus it works 
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only over ~. The second works for arbitrary F but uses all the modular 

results described in Section 2. 

3.1. Construction of 

We assume that 

(o). 
pseudo 

: GaI(K/F) ~ GL(2,~) P~ PGL(2,~) 

is such that p o o(GaI(K/F)) is isomorphic to A 4 embedded in 

PGL(2,~) ~ S0(3,~) in the geometric way. If we let E denote the inter- 

mediate field 

F c E c K 

corresponding to the pull-back of (%/2Z) x (~/2~)in A 4 then E is cubic 

over F. 

Let ~ denote the restriction of o to GaI(K/E). Since Z must be mo- 

nomial, we can apply to it the reciprocity law for Galois representa- 

tions of E. The result is that ~(E) exists as an automorphic cuspidal 

representation of GL(2,~E). 

On the other hand, ~ is invariant under conjugation by GaI(K/F). 

Thus it follows that ~(E) is Galois invariant (in the sense of Section 

2.1) and we can apply to it the theory of base change for GL(2). 

According to Theorem 2, ~(E) is also the lift of ~ ® ~ whenever w 

is a character of FXNE/F(~) \~. Since only one of these "twists" is 

what we want to call ~ pseudo (o), we proceed as follows. Recall that 
x x 

class field theory implies that FXNE/F(~ E) \ ~F is isomorphic to GaI(E/F) 

and hence cyclic of order 3. 
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The central character of ~ is defined by the formula 

I: x = w (a)l (a • /AF). 

2 
Thus the central character of ~ ® w'is ~ ~ • In particular, if ~ ® 

is to equal ~(a) (or z pseudo (a)), we must have 

2 
w ~ = det a. 

2 
Thus we choose w so that w w : det ~. Having done so, we write 

~pseudo(a) for ~ ® ~. (Since w is defined up to a character of order 3, 

and its square is known, it is uniquely determined.) 

Our task now is to prove that 

~pseudo(~) = z(o). 

What we know a priori is that ~pseudo(a) is at least the best possible 

candidate for ~(~). In other words, if ~(a) exists at all, it must be 

~ eudo(a). Indeed, suppose ~pseudo (a) = ® ~v' and ~v = ~v(av ) for al- 

most every v. If we regard a~ and a v as two-dimensional representa- 

tions of WFv , it follows from the definition of base change lift that 

a v and g~ agree on WEw. What remains to be shown is that ~v and d~ 

agree on WFv. This is what is done in Sections 3.2. and 3.3. 

Remark. We can also use the theory of base change to construct 

~pseudo(~) when d is octahedral. In this case p 0 a(GaI(K/F)) is isomor- 

phic to S 4. Thus the pull-back of the normal subgroup A 4 determines a 

quadratic extension L of F and the restriction of a to GaI(K/L) is te- 

trahedral. This means we can construct ~pseudo(a) as follows. 

Let ~ denote the restriction of a to GaI(K/L). In Sections 3.2. and 
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3.3. we shall prove that Langlands' reciprocity law is true for tetra- 

hedral Galois representations. Thus we know that ~(Z) exists as an 

automorphic cuspidal representation of GL(2,AL). But ~(E) is again 

seen to Galois invariant. Thus by base change we know that ~([) is 

the lift of some cuspidal representation ~ of GL(2,~F). 

The next step is to define ~pseudo(~) as an appropriate "twist" of ~. 

In this context, however,~ @ w lifts to ~(Z) whenever w is a character 

x 
of FXNL/F(~) \ ~F" But L is quadratic. Thus, there is n__oo natural way 

to distinguish between these twists. Indeed the square of any charac- 

FXNT/F(~ x ter w of ~ ) \ AF is trivial, l.e., the twist of ~ by a nontriv- 

ial w has the same central character as z. Thus we can no longer uni- 

quely specify ~pseudo(~) by requiring that ~pseudo (0) = det o. 

Concludin@ remark. When o is icosahedral, the image of o(GaI(K/F)) in 

PGL(2,~) is not solvable. Thus the theory of base change can not be 

used to construct ~pseudo (~) or ~(0). 

3.2. Proof that ~ pseudo (0) = 7(0) (F = 9). 

Fix ~ : GaI(K/F) ~ GL(2,~) and assume that : 

(i) o is irreducible; 

(ii) F = 9; 

1 0 
(iii) o takes complex conjugation to [0 -1 ]. Let f denote the clas- 

sical cusp form which corresponds (canonically) to the hypothetical re- 

presentation ~(o). Then f is a normalized primitive cusp form of 

weight 1 and odd character. Thus we call o classical. 

In [3] Deligne and Serre prove that every such cusp form has associa- 

ted to it some ~ of this type. More precisely, the Mellin transform of 

any such cusp form is the Artin L-seriesof some o satisfying (i)-(iii) 
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above. Thus we have a map 

f ~ of 

which inverts the hypothetical reciprocity map 

o ÷ f 
0" 

The purpose of this paragraph is to prove that this last map exists 

whenever o is tetrahedral. In terms of the theory of base change, this 

amounts to proving that 

pseudo(~) = ~(o) 

for classical tetrahedral o. Using the result of Deligne-Serre, how- 

ever, this result is simple to establish. 

Note that our assump~ons on ~ imply that the field E used to define 

0 
~(Z) is totally real. Now let p~ denote the two-dimensional represen- 

tation of Gal({/~) which takes complex conjugation to [1 0] In 
0 -1 " 

the sense of the local Galois classification of representations of 

GL(2,R), 0 

~(~w ) : ~(p~) 

for each infinite place w of E~ for details, see [61 and [14]. But 

~pseudo(O) = @ ~p lifts to ~(~). Thus the definition of base change 

0 
lifting implies that ~ must also be of the form z(p~). Hence 

~pseudo(O) corresponds to a classical cusp form of weight 1 to which 

the theorem of Deligne-Serre applies. 

Applying Deligne-Serre, we conclude that ~pseudo(~) = ~(o') for 

~ome "classical" Galois representation ~'. To conclude that o = O' 

we note that o and o' have the same restriction to W E . Moreover, 

x x 
o' = o @ ~ with ~ some character of FXNE/F(~E) \ ~F" So since 
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det ~ = det a' , we must have m ~ 1. This proves w(a) = z(a'):Zpseud a)" 

Remark. A similar argument proves Artin's conjecture for octahedral clas- 

sical a provided the quadratic field used to define ~pseudo (a) is real~ 

of. the remark towards the end of 3.1. For more details, see [14]. 

3.3. Proof that ~seudo(a) : ~(a) : o arbitrarY tetrahedral. 

In this paragraph we describe a more natural proof of the fact that 

Zpseudo(a) : z(a) 

for tetrahedral a. This proof is also due to Langlands and was sketched 

by him in [15]. It is "natural" in the sense that it makes no appeal 

to the result of Deligne and Serre~ hence no appeal to the algebraic 

geometry underlying their result. Instead it draws only on basic (al- 

beit non-trivial) results in the theory of modular forms. It also works 

for arbitrary F and arbitrary tetrahedral a. 

Recall that ~pseudo(a) = ® ~v with ~v 

~v" What we want to prove is that 

= ~v(a$) for every unramified 

(3.1.) a' : O 
V V 

t 

for almost every v. Here a v is a two-dimensional representation of W r 
~V 

whose restriction to WEw agrees with the restriction of av to WEw. We 

' respectively. denote these restrictions by Zw and Zw 

If v splits in E, then (3.1) is :~mediate. Thus we assume henceforth that 

E w is unramified and cubic over F v. If Frv denotes a Frobenius element 

of GaI(Ew/F v) we suppose 

av(Frv) : [~ v 0 I 
bv 



Gel-28 
270 

and 

~r [O v 0] 
°v dv 

To prove (3.1) we have to prove that 

la: ~I 

~ on~u~at~ to [<v ° I 
d v 

3 , 3 3 
: Z' implies that av(Fr v) : av(Fr v) (since (Fr v) But the fact that Zw w 

belongs to WEw). Thus 

is conjugate to 

d; 
In particular, for some pair of cube roots of 1, say ( and (', 

and 

c : ~a 
V V 

= T , 

d v ~ b v 

We claim now that (' : <2. Indeed ~pseudo (a) is chosen so that 

ton pseudo (~) = det a. Since this implies det a'v = det av, we must have 

~' = 1, i.e., (' = (2 To prove (3.1) it suffices to prove 

(3.2) ~ = 1. 

To continue, consider the three-dimensional adjoint-square represent 

ation 



271 Gel- 2 9 

A2(p2 ) : GL(2,{) ~ GL(3,{), 

described in Section 2.2. If we assume that 

(3.3) A2(p2 ) o o' : A2(p2 ) 0 ~v' 
V 

then ~v(Frv) and ~'(Fr v) must differ by some scalar. Indeed the kernel 
V 

of the homomorphism A2(p2 ) is precisely the group of scalar matrices 

0 
{[0 i]}. Thus for some I ~ 0, 

is conjugate to 

~2b v Xb v 

To prove (3.1) it suffices to prove i = 1. 

Since the last two matrices above are conjugate, either 

l la v = ~a v 
(i) or 

<Ib v ~2b v 

lav : ~ bvi 

(ii) L ~bv ~av 

But case (i) implies X = 6 = ~2, i.e. ~ = 1 (since ~ is a cube root of 1). 

Thus av(Fr v) is conjugate to a$(Fr v) and there is nothing left to prove. 

In case (ii), all we can deduce immediately is that 

°v  rv [< v 0]I 0 0 I 
a v ~ 

with 12 = 1. But if X = -1, this means A2(p2 ) o a v takes Frv to 
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i-I~-i 

0 

with El of order 6. This is a contradiction since A 4 has no element of 

order 6. Therefore ~ = 1 and we are done. 

We have now shown that Artin's conjecture for tetrahedral a is true 

once we prove (3.3) for almost all v. To prove (3.3) we introduce the 

following cuspidal representations of GL(3,~ F) (not GL(2,AF)). 

Let ~1 denote the cuspidal representation of GL(3,A F) associated to 

the three-dimensional Galois representation A2(p2 ) 0 a. As observed by 

Serre, A2(p2 ) 0 ais actually monomial. Thus by the known case of Lang- 

lands' reciprocity conjecture, 71 exists as a cuspidal representation. 

Now consider ~ pseudo (a) as a cupsidal representation of GL(2,~F). 

Recall that if ~pseudo(a) = ~(a'), then a r must be a. In particular, 

(a) cannot be monomial in the sense of Section 1.3. Therefore pseudo 

pseudo(a) has a cuspidal lift to GL(3,A F) by Theorem 3. Call this 

lift w~. To prove (3.3) for almost every v it suffices to prove 

(3.4) ~1 : ~ " 

Indeed, the left hand side of (3.4) corresponds almost everywhere to 

A2(p2 ) o a v and the right hand side corresponds almost everywhere to 

A2(p 2) o a'.v 

v 
To prove (3.4), we argue analytically. Let L(s,~ 1 x 71) and 

v 
L ( s , ~  1 x ~ 1 )  d e n o t e  t h e  L - f u n c t i o n s  o n  G L ( 3 )  x G L ( 3 )  d e s c r i b e d  i n  S e c t i o :  

2.3. By definition, 
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a n d  

L(s,~ 1 x ~1 

L(S,~ x ~i 

Moreover, for almost every v, 

: H L(S,(~I) v x (~l)v) v 

(~l)v) : ~ L(s,(~l) v x 

and 

x (~i) : L(s,A2(Ov ) ® A2(~v )) L(s'(~l)v v 

L(s,(~) v x (~1)v) = L(s,A2(a$) ® A2(~v)). 

Keeping in mind that A2(o) is monomial it is easy to check that 

x (~l)v) • x (~l)v) : L(s,(~ )v (3 5) L(S,(~I) v 

for almost every v. Indeed if A2(a) is induced from the gr6ssencharakter 

8 of the extension E, then 

v = ind(WF ,W E ,ew)- 
A2(av) wtv v w 

From this it follows that 

A2(av ) ® A2(~v ) -Lt v Ind(WFv,WEw,~ w ® e~l). 

On the other hand, 

~ A2(°v ) ® A2(~v ) = @ Ind(WFv'WE ' w ® ewl)" 
WIV W 

: Z' almost everywhere, So s i n c e  E w w 

L(s,(~I) v ® (~l)v) = L(s,A2(Ov ) ® A2(~v )) 

= L(s,A2(o~) ® A2(~v )) 

v 
= L(s,(~I) v x (~l)v) 

for almost all v. 
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Using (3.5), it remains now to show that 71 = 71 . 

holds for all v outside the finite set S. Then 

So suppose (3.5) 

v 

L(s,(71)v x (~l)v) 
~1) = ( ~ )L(s,~ 1 x 71) L(S,71 x ~ v . 

v e S L(s,(71) v x (~l)v) 

But by Theorem 6 of Section 2.3, L(s,71 × ~1 ) has a pole at s = 1. More- 

over, the expression in parentheses is non-zero at s = 1. Therefore, 

V 
L(s,~ 1 x ~1) has a pole at s = 1, and this implies (by the same Theorem) 

that ~1 = ~1" (Actually, since the complete story on Theorem 6 has not 

yet been wor~ed out, a slight modification of the above argument is 

needed~ we suppress this subtlety for the sake of exposition.) 

This completes our discussion of Artin's conjecture for tetrahedral a. 
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RELATIONS BETWEEN AUTOMORPHIC FORMS 

PRODUCED BY THETA-FUNCTIONS 

by 

Stephen S. Kudla 

i. GENERAL PHILOSOPHY 

I want to begin with a few philosophical remarks on how theta- 

functions attached to indefinite quadratic forms can be expected to 

produce relations between modular forms and automorphic forms of one 

and several variables. 

First it should be pointed out that this 'philosophy' is, in a 

certain sense, not new. It is certainly contained in Siegel's papers 

[7] on indefinite quadratic forms and function theory (1951/52). More 

recently, Shintani [I0] and Niwa [5] have revived these ideas and have 

I 
made a beautiful application to the theory of automorphic forms of 7- 

integral weight. 

Now suppose 

@n = an n-dimensional vector space over 

and 

Q: @n__+~ x~-~Q[X] = txQx 

is an indefinite quadratic form of signature (p,q). Take 

Lc @n a Z-lattice such that Q[L] c 2~. 

If we want to construct a theta-function attached to Q and L, we 

will also need a majorant R of Q; that is: R E Mn(IR), n = p + q 

such that (i) tR = R, R > 0, and (2) RQ-IR = Q. For example, if 

Q is in diagonal form for some basis of IR n 

International Summer School on Modular Functions 

BONN 1976 
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Q = then R = 
-I 

\l/ 1 

If we let 

is a majorant, 

SO(Q) : {g ( SL (IR) such that tgQg : Q[g] = Q}, 
n 

and if R is one majorant, then every majorant has the form R[g] = 

tgRg for some g { SO(Q). Let X = the space of all majorants of Q. 

Then, by the preceding comment, X is the symmetric space attached to 

SO(Q), since SO(Q) n SO(R) is a maximal compact subgroup of SO(Q). 

We can now make a theta-function: 

6(z,R) = v q/2 X ei~(uQ+ivR)[~] 

g~L 

which we view as a function of two variables, (z,R) ( ~× X where 

z = u + iv (~ : upper half-plane. 

For our purposes, the important fact about 8 is that it has a 

transformation law, like that of an automorphic form, in each variable. 

More precisely: 

p-q 

(i) 8(yz,R) = (cz+d) 2 8(z,R) 

V y = d E for suitable N, e.g., N : 2 det Q 

If we let r L : {U E SO(Q) such that UL = L} = unit group of 

then 

(2) e(z,R[U]) = e(z,R). 

Remarks: 

a) (2) is obvious from the definition of 

the usual Poisson-summation argument. 

will do. 

L, 

8, while (i) follows from 

b) Notice that n = p + q ~ p-q mod 2 so that, if n is even, 8 
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has integral "w@ight"; and if n is odd, @ has half-integral 

"weight. " 

c) @ is not holomorphic in z, and up to the v q/2 factor it is 

Siegel's 1951 8: 

Now that we have @, we can state the basic idea: If you have 

~(z) on ~ or ?(R) on X which transform in the same way as 9 

in z or R, then you can make the integrals: 

p-q 

@ (R) : I ~(z)e(z,R)v 2 du dv 

FI(N v 

and 

@?(z) 
f 

= | ?(R)e(z,R) dR. 
J rLX × 

And the functions 9 (R) and @?(Z) will again have a nice transfor- 

mation law with respect to F L or FI(N) respectively. If everything 

goes well, this proeedure will actually carry automorphic forms to 

automorphie forms: 

automorphic forms on 

for F c SL2(Z ) 

1 
( 

automorphie forms on 

X for F L . 

§2. SOME PARTICULAR CASES 

In order to get something more in keeping with the general themes 

of this conference, however, we want to interpret "automorphic forms 

on X" as something more modular. To do this, we make use of some 

"aeeidental" isomorphisms which occur for orthogonal groups of low 

dimension. In particular we have: 

(i) S0(2,1) ~ SL2(IR) so X : ~ and F L c SL2(2Z) 
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for a certain choice of Q. 

(2) S0(2,2) ~ SL2(IR) x SL2(IR) 

where k = real quadratic field, 

280 

so X = ~ x~ and F L c SL2(0k) 

O k = integers of k, again for a 

certain choice of Q. Using these, and recalling the earlier remark 

about the "weight" of 8, we see that there ought to be correspon- 

dences: 

(i) 

i 
modular forms of [-integral 

weight on 

modular forms (of integral 

weight) on 

(2) 
modular forms of integral 

weight on 

Hilbert modular forms 

on ~ x~. 

The first of these relations has been worked out by Shintani 

(S0(2,1)--~SL 2) and Niwa (SL2---~S0(2,1)) in their Nagoya Journal 

papers [i0], [5]. The SL2--~S0(2,1) relation gives an alternative 

i proof of Shimura's result [9], on forms of ~- integral weight. As a 

corollary, Niwa is able to settle Simura's conjecture about the pre- 

cise level of the form of even integral weight. The relation 

SL2--+S0(2,2) has been investigated by Niwa and Asai and by myself 

[3] independently. In this case, the construction with the theta- 

function gives an alternate proof of the results of Doi-Naganuma [2], 

[ 4 ] .  

§3. THE S0(2,2) CASE 

Let k = ~(g-~-), A > 0, 

Galois automorphism of k/~. 

the discriminant, and let 

Let 

a : the 

V : I xl x41 X : ~ 

x 3 -x I 
x I ( k, x 3,x 4 ( Q1 ~- 

Q4 
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and define Q: V--~Q by 

Q[X] : -2 det X : 

Then Q has signature (2,2). Let 

-2(XlX ~ + x3x4). 

Ku-5 

p: SL2(k) ............ ~ SO(Q) 

be the representation given by p(g)X : gaXg -I. 

get a representation: 

Now~ over IR~ we 

p: SL2(IR)× SL20R) ....... SO(Q)IR ~ SO(2,2) 

and a corresponding isomorphism: 

× ~ ~ X = space of majorants of Q 

say (Zl,Z 2) +-~ R 
Zl,Z 2 

Now for the lattice, take: 

I ( x:l : I X : 

x 3 -Xl/ 
x I ( O k , x3,x 4 ( Z I" 

Choose N E 2[>0, X = character of (2[/N-£) ×, and v (~>0 such that 

×(-i) = (-i) v. Finally take z : u + iv (~ and (Zl,Z 2) ( ~ ×~ with 

z I = u I + iv I and z 2 = u 2 + iv2; and define the theta-function: 

8(Z,Zl,Z 2 ) 

: V(VlV2 )-v/2 
XEL 

i~ (uQ+ivR ) IX] 
zi,z 2 

+ ~ 
X(x3)(-X3ZlZ2+XlZl XlZ2+X4 ) e 

Obviously this is like Siegel's theta function except that there is 

now a character and a 'spherical function T thrown in. The relevant 

transformation law is: 

A 
e(yZ,Zl,Z 2) = X(d)( ~)(cz+d)Ve(Z,Zl,Z2 ) 
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(: b) 
Vy : d (Fo(N') with N' : l,c,m, of N and A. 

A Now take ~ (S,o(Fo(N') ,  X . ( ~ ) )  and le t  

9(Zl'Z2) = f ~(z)eiZ,Zl,Z2)V ~-2 du dv. 

FFo(N') 

where S (''') is the space of cusp forms of Neben type and weight v, 
V 

and FF0(N,) is a fundamental domain for F0(N') in ~. Let 

6 ( SL2(0 k) such that y E N0 k and put ~(5) = 

X(66 a) for 6 ~ O k . 

THEOREM i. If v ~ 7, ~(Zl,Z 2) is holomorphic on ~ x~; and 

: +6a)Vg(Zl~Z 2 ) 9(gzl,gaz 2) ~(6)(yzl+6)v(Taz2 

for all g (T0(N). In fact 9 ( S (~0(N),~)- 

Suppose now that N : i, × : i, and A = prime e 1(4) with 

h(A) = class number of k = i. Then N' = A. Let 

2~inz 
e ~(z) = =I an 

L(s,~) = ~:=1 ann-S 

~l(Z) = ~(-i/Az)Av/2~ 

be the Fourier expansion of ~, and let 

be the corresponding Dirichlet series. Set 

Az) -~ and let 

91(Zl,Z 2 = [ ~l(Z)e(Z~Zl,Z2)V v-2 du dv 

FI~0(A) 

be the corresponding Hilbert modular form. Finally put ~(Zl,Z 2) = 

(ZlZ2)-V~l(-i/zl,-i/z2). Then ~ (Sv(SL2(0k)), and it has a Fourier 

expansion: 
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2n + a -2n ) 
2~i(~s0 Zl ~ ~0 z2 

~(zl,z 2) : X e(~) Z e 
<(~-i n:-- 

2 
<>>0 mod U k 

where D -I is the inverse different of k, and SO is a generator 

for the group U k of units of k. Let 

D(s,9) : Z c(~) (<< ~)-s 
~ED -I 

~>>0 mod Uk 2 

be the corresponding Dirichlet series. 

THEOREM 2. With the above assumptions on N, X etc., and if ~ is 

an eigenfunction of all the Hecke operators T(n) with a I = i, then: 

2s-~+l 

D(s,9) : CA 2 L(s,~)L(S,~l). 

This shows that the mapping ~--+9 produced by the ~heta-funetion is 

essentially the same as the Doi-Naganuma mapping on forms of Neben-type 

described in [4]. 

Remarks: 

a) The restriction v { 7 is the result of some bad estimates. Pre- 

sumably you can do better. 

b) The restrictions on N, X and h(k) in Theorem 2 can certainly be 

dropped. 

e) It is possible, by taking a different Q, to produce a mapping 

from Sv(F0(*),*)---~Sv(F,*) where F c SL2([R) x SL2(IR ) is the unit 

group of a division quaternion algebra B over k. More precisely, 

let B 0 be an indefinite quaternion algebra over ~ and put B : 

B 0 ®Q k. Let ~ be the main involution on B, and let a act on 

B via i ® a. Then take V = {X E B such that X ~ = -X a} and 
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d) 

Q: v-*Q, Q[x] = -2v(x) where ,~ is the reduced norm from B 

to k. 

Let ~n (Sv(F0(N') , X(~ )) be the n-th Poincar6 series. Then 

it is not difficult to show that the corresponding Hilbert modular 

form is the function ~n(Zl,Z2) which was introduced by Zagier 

[ii]. Therefore, Zagier's function ~(m,Zl,Z 2) is essentially 

the 'holomorphic part' of e(~,Zl,Z2). 

§4. SOME OTHER POSSIBILITIES 

There are several other "accidental" isomorphisms which allow the 

correspondence described in Section i to be interpreted in a more 

classical way. 

First, S0(3,1), the Loren~zgroup, is essentially the same as 

SL2(¢). Therefore there is a correspondence between modular forms of 

integral weight on @ and (non-holomorphic!) automorphic forms on 

H = hyperbolic 3-space with respect to subgroups of SL2(0 K) where 

K = Q(g~). In fact V and Q may be taken precisely as in Section 

3 with K replacing k. This case has been considered by Asai [i]. 

Another possibility is the relation between S0(3,2) and 

Sp(2,1R) which is described, for example, in part X of Siegel's 

Symplectic Geometrv [8]. In this case we may identify X and 

~2 = {Z E M2(~) such that tz = Z and Im(Z) > 0}, the Siegel space 

of genus 2. Applying the procedure of Section i we obtain the map- 

ping: 

automorphic forms of Siegel modular forms 

i 
7- integral weight , of genus-2 

on ~ on ~2 

It should be very interesting to give a description of this mapping 

in terms of Dirichlet series. 
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If Q has signature (p,2) for any p, X is of Hermitian type, 

so that it is possible to consider holomorphic automorphic forms on X. 

The relation between ordinary modular forms and such forms on X has 

been investigated by 0da and by Rallis & Schlffmann [6] from a slightly 

different point of view. 

Finally it should be noted that the above type of relation be- 

tween automorphie forms can be formulated in the language of group 

representations via the Weil representation. The problem in this more 

general context has been considered by R. Howe, and I am indebted to 

him for describing his program to me several years ago. 
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THE RING OF HILBERT MODULAR FORMS FOR REAL QUADRATIC FIELDS 

OF SMALL DISCRIMINANT 

F. Hirzebruch 

In this lecture we shall show how the resolution of the singulari- 

ties at the cusps of the Hilbert modular surfaces [7] can be used for 

a detailed study of these surfaces which makes it possible in some 

cases to determine the structure of the ring of Hilbert modular forms. 

§1. CUSP SINGULARITIES AND INVOLUTIONS. 

Let K be a real quadratic field, M c K a module (free Z-module of 

+ 
rank 2) and U M the group of the totally positive units c of K with 

+ + 
aM = M. The group U M is infinite cyclic. Let V c U M be a subgroup of 

finite index. The semi-direct product 

acts freely on H 2 by 

(Zl,Z 2) ~ (sz I + ~,s'z 2 + ~' , 

where x ~ x' is the non-trivial automorphism of K. We add a point to 

H2/G(M,V) and topologize H2/G(M,V) u {~] by taking 

{(Zl,Z2) e H21ylY2 > C}/G(M,V) u {~} 

(for C > 0) as neighborhoods of ~. (Notation : zj = xj + i yj with 
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xj,yj • 1R and yj > 0). Then H2/G(M,V) u {~} is a normal complex space 

singularlty de- with as the only singular point. This is the "cusp " " 

fine~d by M,V. The local ring at ~ is denoted by 0(M,V). It is the ring 

of all Fourier series f convergent in some neighborhood of ~ of the 

form 

(1) f -- a 0 + 
2~i(lzl+l'z 2 ) 

el M ~ a I . e 

I>> 0 
a~, : ag~, for a • V 

where M ~ is the dual module of M, i.e. 

M ~ = {~ • K I Tr(l~) • Z for all ~ •M}. 

The singular point ~ can be resolved [7]. Under the process of minimal 

desingularisation it is blown up into a cycle of r non-singular rational 

curves (r ~ 2) or into one rational curve with a double point (r = 1). 

Such a cycle is indicated by a diagram 

-b 

/ 

// 

\ 

where -b0, -bl,... are the selfintersection-numbers (for r ~ 2). We 

have b i ~ 2. This cycle of numbers is denoted by ((b0,bl,...,br_l)). 

It is determined by the denominators of a periodic continued fraction 

associated to M, see [7]. 

The non-singular surface obtained from H2/G(M,V) u {~} by resolving the 

singular point will be called X(M,V). Of course, it is not compact. 

For the intersection point of two consecutive curves of the cycle we 
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have a natural coordinate system (u,v) centered at that point [7]. Any 

f e 0(M,V) can be written as a power series in u~v (this is analogous 

to the q-expansion in one variable.) 

If M = M' , then the cusp is called symmetric. The involution 

T : (Zl,Z 2) ~ (z2,z 1) operates on H2/G(M,V) u {~} with T(~) : ~. The 

fixed point set of T in H2/G(M,V) is a non-singular curve C consisting 

of 2,3 or 4 components. Therefore, the quotient of H2/G(M,V) u {~} by 

T has no singular point except possibly ~ , the image of ~. The involu- 

tion • acts on 0(M,V), and 0(M~V) T (consisting of all f in (1) with 

al = al, for ~ e M) is the local ring at a T. The involution T can be 

lifted to X(M,V). The curve C extends to a non-singular curve in 

X(M,V), also denoted by C. If the number of curves in the cycle is 

even, then T maps none or two of the curves in the cycle, say S and T, 

to themselves and interchang~ the others, if the number of curves in 

the cycle is odd, then T maps one curve S ~ the cycle to itself and 

interchanges the others. The curve C intersects each curve S and T 

transversally in two points or in one point depending on whether the 

selfintersection number of S or T respectively is even or odd. The 

fixed point set of T in X(M,V) consists of C and an isolated fixed 

point on each of the curves S and T which have odd selfintersection- 

number. Blowing up the isolated fixed points of T gives a surface 

X(M,V) on which T operates having no isolated fixed points. The excep- 

tional curves on X(M,V) obtained by this blowing up belong to the fixed 

point set of T. The surface X(M,V)/T is non-singular. On it we have 

a chain of rational curves mapping to • This is a resolution of . 

It need not be minimal. In fact, ~ could be a regular point. In any 

case, the existence of this resolution by a chain of rational curves 

proves that ~T is a quotient singularity [6]~ [1]. The above investi- 

gation of X(M,V) for M = M' is due to Karras [12] (Lemma 3.3). The 

fact that ~T is a quotient singularity was proved earlier by H. Cohn 
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and E. Freitag (see the literature quoted in [12]). Gundlach [5] has 

given necessary and sufficient conditions that a T is regular. Such 

symmetric cusps are called quasi regular. 

THEOREM (Karras). A cusp given b~ (M,V) with M = M' is quasi regular if 

and only if its cycle ((b0,bl,...,br_l)) is equal to one of the follo- 

wing cycles 

i) ((3,2,..~)) with m ~ 0 

m 

ii) ((4,~£)) with m ~ 0 

m 

i i i )  ( ( 2 ~ . . . , 2 ,  3 , 2 , . . . , 2 , 3 ) )  w i t h  m > n 

n m 

and if in iii) the two curves of selfintersection number -3 are inter- 

changed under T (which is automatic for m > n). 

Consider the following curves in C 2 (coordinates X,Y) 

i) (X +Y2)(X2 +ym+5) = 0 with m > 0 

ii) (X 2 +y2)(X2 + ym+3) = 0 with m > 0 

iii) (xn+3 +y2)(X2 +ym+3) = 0 with m > n > 0 

Let F(X,Y) : 0 be one of these curves. The double cover of ~2 branced 

along F(X,Y) : @ has the point above (0,0) e C 2 as isolated singular 

point whose minimal resolution is a cycle of rational curves with self- 

intersection numbers as given in the preceding theorem of Karras. This 

can be checked directly. By a theorem of Laufer [15] (see also [13]) a 

singularity whose resolution is a cycle of rational curves is determined 

up to biholomorphic equivalence by its cycle of selfintersection numbers. 

Therefore, the structure of the local rings 0(M,V) of quasi regular 

cusps is now known ([12], Satz 3), namely 
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(2 )  0(M,V) ~ ~[C,Y,Z]/(Z 2 = F(X,Y)) 

where F(X,Y) is the polynomial given in i), ii), iii) above and where T 

corresponds to the natural involution of the double cover. See also 

H. Cohn as quoted in [12]. 

In the following examples a), b), c) of quasi regular cusps we indicate 

the fixed point set C of T on X(H~V) by heavily drawn lines. Isolated 

fixed points of m on X(M,V) do not occur in examples a), b), c). 

a) ~ b) 
-3 

e) 

2 -2 ~-2 
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In example a) we have K : @(~/5) with M = ~o.0 and [U~ : V] = 2. (For 

a field K we denote its ring of integers by 0.) After dividing by 

(which interchanges the two (-3)-curves) we have in X(M,V)/T the follo- 

wing situation 

-I 

c C 

The non-singular rational (-1)-curve is the image of the two (-3)-curves. 

The image curve of C will also be denoted by C. It simply touches 

the (-1)-curve in two points. If we blow down the (-1)-eurve we get 

(H2/G(M,V))/T u {~T} which shows that ~T is regular. After blowing 

down the (-1)-curve, the two components of C become singular. Each 

has a cusp (in the sense of curve singularities). The two cusps have 

separate tangents which checks with iii) (m = n = 0). The structure of 

0(M,V) is given by (2). Therefore, there must exist three Fourier se- 

ries f, g, h as in (1) generating 0(M,V) and satisfying 

h 2 = (f3+g2)(f2+g3). 

+ 
In example b) we have K = @(~/~) with M : 0 and V = U M 

Cl j .~  c2 

b) ;:: '  

C 3 

in X(M,V) "in X(M,V)/T 
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We have numbered the four branches of C. 

In X(M,V)/T we blow down the (-1)-curve, the (-2)-curve beeomes a (-1)- 

curve and can be blown down also. The image of the two curves is T~ 

which is therefore a regular point. In (H2/G(M,V))/~ u {~} the four 

branches of C in a neighborhood of ~ behave as follows : 
T 

b) 

c3 ~ Ch 

e) -2 

C3, C 4 touch simply, all other intersections are transversal. 

checks with ii) (m = 1). 

+ 
In example c) we have K : ~(~/7) with M = ~/~.0 and V = U M. 

C I C 2 

i -2 -1 

\ 

-2 

> 
/ 

C 3 

This 

C 3 

in X(M,V) in X(M,V)/T 
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In X(M,V)/T the (-2)-curve ~ouehes the component C 3 of C simply. 

Blowing down - - - ives the regular point T where 

C1, C2, C 3 behave locally like 

(X 3 + y2)(X2 +y6) : 0 

with X 3 + y2 = 0 corresponding to C3, and X ± i.Y 3 = 0 to C 1 and C 2 

respectively (compare iii), n = 0, m = 3). 

The following symmetric cusp is not quasi regular. 

d) • : 

/ . \  

- 2  - 2  

- 5  - 5  

isolated fixed point of T 

We have K : ~(x/~) with M : 0 and [U~ : V] : 3. Before dividin Z by T 

we blow up the isolated fixed point. Then we divide by T and obtain a 

configuration 



Hi -9  
296 

-3 

5 

C 

which after blowing down the (-1)-curve shows that 
Y 

singularity admitting the minimal resolution 

is a quotien 

-2  -3  -2  -2  - 4  

Thus it is the quotient singularity of type (36; 11,1), see [6]. 
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§2. THE DIMENSION FORMULA FOR HILBERT CUSP FORMS. 

Let K be a real quadratic field and 0 the ring of integers of K. 

H 2 The Hilbert modular group SL2(0)/{ ± 1} operates effectively on . Ac- 

cording to Siegel the volume of H2/SL2(0) equals 2~K(-1). The volume 

is normalized such that if F is a subgroup of SL2(0)/{ ± 1) of finite 

index a which acts freely on H 2, then 

(3) vol(H2/F) = 2~K(-1).a : e(H2/G) 

where e(A) denotes the Euler number of the space A. (Though H2/F 

is non-compact, the Euler number can be calculated by the volume, this 

is a special case of a result of Harder, see [7] and the literature 

quoted there.) 

Let Sk(F) be the complex vector space of cusp forms of weight k for F 

where F is a subgroup of SL2(0)/{ ± 1} of finite index. 

The weight k of a form f is defined by the transformation law 

azl+___~b a'z2+b' 
f(czl+ d , c,z2+d,) = (CZl+d)k(c'z2+d')kf(zl,z2) 

This is well-defined also for k odd, because the expression 

(eZl+d)k(c'z2+d')k does not change if (a b) is replaced by (_-a -b 
_d ] • 

THEOREM. If F has index a i__nn SL2(0) 

for k > 3 

(4) dim Sk(r) - k(k-2 
2 

k(k-2 
4 

H 2 { ± 1} and acts freely on , then 

~K (-1)-a + X 

- -  e(H2/F) + X , 

where X = 1 + dim S2(F). 
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The formula (4) is found in the literature only for k even. But it 

seems to be known also for odd k (see Shimizu [17], p. 63, footnote 11). 

On my request, H. Saito has checked that (4) can be proved for odd k 

in the same way as Shimizu does it. 

If F acts freely, then H2/F is a non-singular complex surface which can 

be compactified by finitely many points, the cusps, to give a compact 

surface H2/F. The isotropy groups of the cusps are of the form G(M,V). 

The cusps are singular points of H--~/F and can be resolved in the mini- 

mal canonical way as recalled in 51. The resulting surface is a non- 

singular algebraic surface Y(F). It is a regular surface, i.e. its 

first Betti number vanishes, but it is not necessarily simply-connected. 

The cusp forms of weight 2 can be extended to holomorphic differential 

forms on Y(F) (sections of the canonical bundle of Y(F)). Therefore, 

dim S2(F) is the geometric genus pg of Y(F) and X the arithmetic genus. 

The fact that the constant term in the Shimizu polynomial (4) is the 

arithmetic genus of Y(F) was discovered by Freitag (compare [7], 3.6.). 

~3. THE FIELn K : ~(g[). 

In the field K = ~(~/~) the ring 0 of integers consists of all linear 

combinations a + b(1+\/5)/2 with a,b • Z. To the prime ideal generated 

in 0 by ~/~ there belongs a principal congruence subgroup of SL2(O) , which 

we denote by r. 

~) • SL2(O)Ia-: 6---1(mod V~),fl-=y---O(mod ~/5)). r ={[~ 

-1 0 
Because (0 _11 ~ F, the group F can be regarded as a subgroup of the 

Hilbert modular group G = SL2(0)/{ +-1} = PSL2(0). The group F acts 

freely on H 2. The volume of H2/G is equal to 2~K(-1) = 1/15. The 

factor group G/F is isomorphic to PSL2(]F 5) because @/x/5.0 ~ I~ 5. In 
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its turn, PSL2(I 5) is isomorphic to the alternating group A 5. Namely, 

A 5 is the group of automorphisms of the icosahedron and acts on the 

six axes of the icosahedron through its vertices in the same way as 

PSL2(~ 5) acts on the six points of the projective line PI(F5). We have 

(5) e(H2/F) = IA51.2gK(-1) = 60.~5 : 4 

The space H2/F is compactif~ed by adding six cusps. Since the class 

number of ~(~/~) is 1, the action of G on PI(K) = K u {~] has only one 

orbit, while the action of F on PI(K) has six. This follows, because 

the isotropy group of G and F at ~ satisfy IG~/F I = 10. In fact, 

G /F is the dihedral group of order 10, this will be used later. Two 

points ~/6 and y/~ in PI(K) with ~,~,7,~ • 0 and (~,8) : (y,6) = 1 

belong to the same orbit precisely when ~ ~ y (mod ~/~) and 8 ~ 

(mod ~), that is when e/~ and y/~ represent the same point of PI(FS). 

The surface H2/F, compactified by six points, is denoted by H2/F. This 
SIX 

is an algebraic surface with~singular points corresponding to the six 

cusps. Since the action of G on H 2 induces an action of A S ~ G/F on 

H2/F which acts transitively on the cusps, these six singular points 

have the same structure, and it is sufficient to investigate the struc- 

ture of the singularity at ~ = 1/O . The isotropy group of F at this 

point has the form 

(6) F = {[~ s ~] Is unit in 0,E-= l(mod ~/~),~ 0(mod ~)) 

The fundamental unit of 0 is s 0 = (1+w~)/2. The condition [ ~ 1 

(mod ~/5) means that e must be a power of _ 2 0" The group F~ can also 

be written as G(M,V) where M = ~/[.0 and V is generated by c 4 0" Thus 

[U s : V] = 2 and G(M,V) is as in example a) of §1. 

On the surface Y : Y(F) that arises from H2/F by resolution of the six 

singular points there are six pairwise disjoint configurations 
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-3 

As a 4-dimensional manifold, Y can be obtained as follows : 

H2/F has asdeformation retract a compact manifold X whose boundary has 

six components. Each boundary component is a torus bundle over a circle. 

All boundary components are isomorphic. Every configuration (7) in Y 

has a tubular neighborhood having as boundary such a torus bundle. The 

manifold Y arises by glueing to X the tubular neighborhoods of these 

six configurations (7). Since the Euler number of each tubular neigh- 

borhood is 2, it follows from (5) and the additivity of e that 

(8) e(Y) = e(X) + 6.2 = e(H2/F) + 12 = 16 

The action of A 5 on H2/F described above induces an action on Y. The 

diagonal z I z 2 of H 2 yields a curve in H 2 = /F, which can be compacti- 

fied to a curve C in Y. The subgroup of F carrying the diagonal into 

itself is the ordinary principal congruence subgroup F(5) of SL2(~) , 

which can also be regarded as subgroup of SL2(~)/{ ± 1}, the quotient 

group being A 5 again. 

Therefore, each element of A 5 when acting on Y carries C to itself. 

1 The curve H/F(5) has normalized Euler volume -[.60 = -10 and twelve 

cusps. The compactified curve ~ has Euler number -10 + 12 = 2, 

thus is a rational curve which maps onto C. For reasons of symmetry, 

the curve C must pass through each of the six configurations (7) 

exactly twice. We now describe how the curve cuts a resolution (7) by 

reducing the question to the corresponding question for the diagonal 

H2/G = (H2/F)/A5 . There is an exact sequence in 
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+ 
(9) @ ~ 0/x/~.0 ~ G /F ~ UM/V ~ i 

The groups 0/~5.0 and U~/V are cyclic of order 5 and 2 respectively, 

and G /F is a semi-direct product~ namely the dihedral group of order 

10. 

To understand the formation of the quotient of the configuration (7) 

by this dihedral group, we check first that any non-trivial element g 

of 0/~5.0 carries each of the two (-3)-curves to itself and has their 

intersection points as isolated fixed points. By blowing up these two 

points we come to the following configuration : 

-1 

-5 

-5 

-I (the verticals are fixed lines for g) 

After factorizing by 0/~'5".0 we obtain 

- 1  

-5  -5  

-1  

+ 
The group UM/V ~ ~/2% acts on this quotient by "rotation", carrying 

each (-1)-curve to the other one~ each (-5)-curve to the other one. 

Factorization leads to -5 

-1  
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and blowing down the (-1)-curve gives a configuration consisting of a 

rational curve with a double point. This is the resolution of the 

cusp of H2/G. The curve in the desingularized compactification of 

H2/G represented by z I = z 2 is usually called F 1 (see [10]). It passes 

transversally through the resolved cusp as follows 

(10) ( | "x~ (see [7], §4.) 

As explained the configuration (7) is a ten-fold covering of (10). We 

conclude that C passes through each configuration (7) in the two 

"corners" and meets in these two points each (-3)-curve of the confi- 

guration (7) transversally. 

gram 

(11) C ~ 1 ~  

This is illustrated in the following dia- 

The curve C is non-singular, because of the described behaviour at the 

cusps of H2/F and because two curves on H 2 equivalent to the diagonal 

z I : z 2 under SL2(0) cannot intersect in H 2 (see [11], 3.4. or [10]). 

Therefore H/F(5) ~ C is bijective. The value of the first Chern class 

c I of Y on C equals twice the Euler volume of H/F(5) (which is -10) 

plus 24 (see [7], 4.3. (19)). Thus we have in Y 

(12) Cl[C] = 4 and C.C : 2 (by the adjunction formula). 

Because Y is regular, this implies that Y is a rational surface 

(compare [9], [7]). 

The curve ~z 2 - ~'z I = 0 in H 2 with ~ = x/[.E 0 is a skew-hermitian curve 

which determines the curve F 5 in H2/G (see [10]). The inverse image D 

of F 5 in H2/F consists of 15 connectedness components. Namely, as can 
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be checked, the subgroup of A 5 = G/F which carries the curve in H2/F 

given by Iz 2 l'z I : 0 to itself is of order 4. The curve F 5 passes 

through the resolved cusp of H2/G as follows 

Therefore D intersects each configuration (7) in the following way 

D 

A component of D intersects exactly two of the configurations (7) and 

each in two points, one intersection point on each (-3)-curve. It is 

easy to see that each component of D is a non-singular rational curve. 

The involution (Zl,Z 2) ~ (z2,z 1) on H 2 induces an involution T on H2/F, 

because A' • F if A • F. The involution T keeps every cusp of H2/F 

fixed, because it operates on PI(K) by conjugation (x ~ x') and the 

cusps can be represented by rational points. Each cusp is symmetric, 

F operates on each of the configurations (7) by interchanging the two 

(-3)-curves. The curve C is pointwise fixed under T. In fact, C is 

the complete fixed point set. This can be seen as follows. The invo- 

lution (z1,z2)~-9(z2,zl) induces an involution on H2/G which has F 1 u F 5 as 

fixed point set ([7], §4.). 

Therefore, the fixed point set of T on H2/F is at most C u D. The inter 

section behaviour of such a component Dj with a configuration (7) shows 

that Dj is carried to itself under T, but is not pointwise fixed. 
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The quotient Y/T is a non-singular algebraic surface. We have 

: ~(e(Y) + e(C)) : ½(is+2) : 9 (13) e(Y/T) 

By example a) in §1, the surface Y/~ has six exceptional curves. If 

we blow them down, we get an algebraic surface Y0 with e(Y 0) : 3 and 

six distinguished points PI'''''P6 resulting from the exceptional 

curves. Since Y is rational, Y/T and Y0 are rational. Thus Y0 is the 

complex projective plane, and the image of C on Y0 is a rational curve 

with a double cusp in each point P. (j = 1,... ,6) and is otherwise non- 
2 

singular. "Double cusp in Pj" means that the curve has two branches 

in Pj, each with a cusp, the two cusps having separate tangents. We 

denote the image of C in Y0 also by C. Each double cusp reduces the 

genus in the Pl~cker formula by 6. Thus the degree n of C in 

YO = P2 (~) satisfies 

(n-l) (n-2) 
6.6 : 0. 

2 

Therefore C is a curve of degree 10 in P2(~), as can also be infered 

from (12). The image of D in Y0 = P2 ({) (also denoted by D) is the 

union of the 15 lines joining P1,...,P6, as can be proved in a similar 

way. 

The involution T operating on Y commutes with each element of G/F ~A 5. 

This follows from the fact that matrices A,A' • SL2(0) are equivalent 

mod ~/~. Therefore, A 5 acts effectively on Y/T and on Y0 = P2 (~)" 

Every action of A 5 on P2(~) can be lifted to a 3-dimensional linear 

representation, because H2(As,%3 ) = 0. 

me a proof that H2(G,Z3 ) = 0 for a non abelian, [I. Naruki has shown 

finite simple group G whose order is not divisible by 9. Such results 

essentially can be found in Schur's papers.] 
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The lifting is unique, because A 5 is simple. The character table shows 

that there are exactly two equivalence classes of non-trivial 3-dimens- 

ional representations of A 5. They are related by an outer automorphism 

of A 5. Hence the action of Ason P2(C) which we have found is essen- 

tially the one whose invariant theory was studied by F. Klein [14]. 

We recall some of Klein's results. 

The group A 5 is isomorphic to the finite group I of those elements of 

S0(3) which carry a given icosahedron centered at the origin of the 

standard Euclidean space ~3 to itself. The group I operates linearly 

on 2 3 (standard coordinates x0,xl,x 2) and thus also on P2(~) and P2(~). 

We are concerned with the action on P2(~). A curve in P2(~) which is 

mapped to itself by all elements of I is given by a homogeneous poly- 

nomial in x0,xl,x 2 which is l-invariant up to constant factors and 

hence l-invariant, because I is a simple group. The graded ring of 

all l-invariant polynomials in x0,xl,x 2 is generated by homogeneous 

polynomials A,B,C,D of degrees 2,6,10,15 with A = x~ + x~ +- x~. The ac- 

tion of I On P2(¢) has exactly one minimal orbit where "minima]" 

means that the number of points in the orbit is minimal. This orbit 

has six points, they are called poles. These are the points of 

P2(~) C p2({) which are represented by the six axes through the ver- 

tices of the icosahedron. Klein uses coordinates 

A 0 = x0, A 1 : x I + ix 2, A 2 : x I - ix 2 

and puts the icosahedron in such a position that the six poles are 

given by 

(A0,A1,A 2) = (~/~/2,0,0) 

1 v,-~) 
(A0'AI'A2) = (7' 

with s : exp(2~i/5) and 0 ~ ~ ~ 4. 
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The invariant curve A = 0 does not pass through the poles. There is 

exactly one invar~ant curve B = 0 of degree 6 which passes through the 

poles, exactly one invariant curve C = 0 of degree 10 which has higher 

multiplicity than the curve B : 0 in the poles and exactly one invariant 

curve D = 0 of degree 15. In fact~ B : 0 has an ordinary double point 

(multiplicity 2) in each pole, C : 0 has a double cusp (multiplicity 4) 

in each pole and D = 0 is the union of the 15 lines connecting the six 

poles. Klein gives formulas for the homogeneous polynomials A,B,C,D 

(determined up to constant factors). They generate the ring of all I- 

invariant polynomials. We list Klein's formulas " 

2 
A = A 0 + AIA 2 

22 2 33 5 5 
B 8A AIA 2 2AoAIA 2 + AIA 2 = _ A0 (AI+A2) 

20 6 2.2 4 3 3 2 4 4 5 5 
C = 3 AoA1}~ 2 - 160AoAIA 2 + 20AoAIA 2 + 6AIA 2 

5 5 2Ao_ 2 2 2 2 10 10 
4A 0 (AI+A 2) (3 - 0AoAiA2+SAIA2 ) + A 1 + A 2 

5 5 @24A10+384OA~AIA1 12D = (A1-A2)(-1 

5 2 2 43 3 
-384@AoAIA2 + 1200AoAIA 2 

244 5 5 
-100AoAIA 2 + AIA 2) 

10 10 2A~=160AoAIA2+ 10AIA2 ) + A0(A 1 -A 2 )(35 2 2 2 

-A15 15 
÷ ( 1-A2 ) 

According to Klein the ring of l-invariant polynomials is given as fol- 

lows 

{[A0,A1,A1 ]I = C[A,B~C,D]/(R(A,B,C,D) : 0) (14) 

The relation R(A,B,C,D) = C is of degree 30. 

We have 

(15) R(A,B,C,D) : 

-144D 2 - 1728B 5 + 720ACB 3 - 80A2C2B 

+64A3(5B2-AC)2 + C 3 
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The equations for B and C show that the two tangents of B = 0 in the 

pole (~/5/2,0,0) are given by A 1 = 0, A 2 = 0. They coincide with the 

tangents of C = @ in that pole. Therefore the curves B = 0 and C = 0 

have in each pole the intersection multiplicity 10. Thus they inter- 

sect only in the poles. 

When we restrict the action of I to the conic A = 0, we get the well- 

known action of I on PI(@) (which can also be obtained via the isomor- 

phism S0(3) ~ PSU(2)). The curves B = 0, C = 0, D = 0 intersect A = 0 

tranversally in 12, 20, 30 points respectively. If one uses a suitable 

conformal map S 2 ~ PI(@) ~ (A = 0) these points correspond to the 12 

vertices, 20 center points of the faces, 30 center points of the edges 

of the icosahedron (always projected from the origin of ~3 to $2). 

Putting A = 0, the relation R(A,B,C,D) = 0 gives a famous icosahedral 

identity. 

We consider the uniquely determined double cover W of P2(¢) branched 

along C = 0. The action of I can be lifted to the double cover. 

The study of the Hilbert modular surface H2/F led to an action of 

G/F (~ A 5) on the complex projective plane. We also found the invari- 

ant curve C = 0. We use an isomorphism G/F ~ I to identify G/F and 

the icosahedral group. Since the action of I on the projective plane 

is essentially unique and the invariant curve C = 0 well determined as 

curve of degree 10 with double cusps in the poleswe have proved the 

following result. 

THEOREM. Let F be the principal congruence subgroup of SL2(0) for the 

ideal (~/~) in the........rin $ 0 of intesers of the field ~(~/5). Then the 

Hilbert modular surface H2/F can be compactified by six points (cusps 

in the sense of modular surfaces) to give a surface H2/F with these 

cusps as the onlx......sinsular points. The surface H2/F admits an action 
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of the icosahedral group I. It is l-equivariantly isomorphic to the 

double cover W of P2({) branched along the Klein curve C = 0. This 

curve has singularities ("double cusps") in t~he six poles of the action 

I and otherwise no singularities. The double cover W has a singular 

point above each double cusp of C and no further singular Btints. 

Under the isomorphism these singular points correspond to the six 

singular points o~ H2/F. The involution of the double cover W corres- 

, _ _  H 2 ponds to the involution of H2/F i_/nduced by (z I z 2) ~ (z2,z 1) on . 

The surface W is rational. 

We use this theorem to gain information on the modular forms relative 

to F. A modular form of weight k is a holomorphic function f(zl,z 2) 

on H 2 transforming under elements of F as recalled in §2. The form f 

is a cusp form if it vanishes in the cusps. The forms of weight 2r 

correspond bijectively to the holomorphic sections of K r where K is 

the canonical bundle of H2/F. A form is symmetric if 

f(zl,z 2) = f(z2,zl), skew-symmetric if f(zl,z 2) = -f(z2,zl). Let W' 

be the double cover W of P2(~) with the six singular points removed 

and P~({) the projective plane with the six poles removed. Let 

: W' ~ P~(~) be the covering map, ~ the divisor in W' represented by 

the branching locus C = 0 and y the divisor in P~(~) given by C = 0. 

~( If L is a line in P~(~), then ~ + ~ -3L) is a canonical divisor of W'. 

Because ~y = 2~, we conclude that ~(y-6L) is twice a canonical divi- 

sor and also ~(4L) is twice a canonical divisor on W'. Therefore, 

under the isomorphism H2/F ~ W', a homogeneous polynomial of degree 4r 

in A0,A1,A 2 defines a section of K 2r and thus a modular form relative 

to F of weight 4r. It can be proved, that the abelian group F/[F,F] 

has a trivial 2-primary component. This implies that a homogeneous 

polynomial of degree k in A0,A1,A 2 defines a modular form relative to 

F of weight k. In fact, these modular forms are symmetric. There is 

a skew-symmetric form of weight 5, whose divisor is ~ (under the 
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isomorphism H2/F ~ W'). We denote it by e. Thus we have obtained a 

graded subring 

M'(F) : 
k > 0 

M{(F) = {[Ao,A1,A2,e]/(c2=C) 

of the full graded ring M(F) : ~ Mk(F) of modular forms for F. (Here 

C is the Klein polynomial of degree 10.) We have 

= ( 2 ) + ( 2 ) = - 2k + 7 for k ~ 3 dim M~(F) k+2 k 3 k 2 

'(F) = 6 dim M 2 

'(F) : 3 dim M 1 

The arithmetic genus X of the non-singular model Y of H2/F equals 1, 

because Y is rational. The dimension formula (§2 (4)) and §3 (5) im- 

ply that M~(F) = Mk(F) for k ~ 2. We have to use that there exist six 

Eisenstein series of weight k (for k ~ 2) belonging to the six cusps 

which shows dim Mk(F) -dim Sk(F) = 6 for k ~ 2. Because the square of 

a modular form f of weight one belongs to M2(F) = M~(F), the zero 

divisor of f gives a line in P2(~). Thus MI(F) = M~(F). Of course, 

there are no modular forms of negative weight. 

THEOREM. The ring of modular forms for the group F i~s isomorphi c to 

~[A0,A1,A2,c]/(c2=C). 

The ring of symmetric modular forms for F is 

~[A0,A1,A2] 

The vector space of skew-symmetric forms is 

c-~[A0,A1,A 2 ] 

The group G/F = I = icosahedral group operates on these spaces by the 
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Klein representatio n of I of degree 3 in terms of the coordinates 

A0,A1,A 2 of {3. 

We now consider the full Hilbert modular group G = SL2(0)/{ ± 1} for 

~(~/[) and obtain in view of (14) and (15). 

THEOREM. The ring of modular forms for the group G is isomorphic to 

{[A,B,c,D]/(144D2=-1728B5+720Ac2B3-80A2c4B 

+ 64A3(SB2-Ac2)2+c 6) 

The ring of symmetric modular forms f°F G is isomorphic to 

(16) ~[A,B,C,D]/(R(A,B,C,D) = 0) 

For the preceding theorems compare the papers of Gund!ach [3~ and 

Resnikoff [16] and also [8] where results on ~(~) where derived 

using the principal congruence subgroup of SL2(0) for the prime ideal 

(2). In [8] the relation R(A,B,C,D) = 0 was obtained in a different 

form connected to the discriminant of a polynomial of degree 5. The 

modular form D occurs in Grundlach's paper [3] as a product of 15 

modular forms for F of weight 1 each cuspidal at 2 cusps and vanishing 

along the "line" between these 2 cusps. The zero divisors of the six 

Eisenstein series for F of weight 2 correspond to the six conics 

passing through 5 of the six poles. (Each Eisenstein series is cuspid- 

al in five cusps.) In H2/G the curve C = 0 becomses F 1 (given by 

z I = z2). The restriction of B to F 1 gives a cusp form of weight 12 

on H/SL2(Z) , therefore must be ~ (up to a factor). The curves B = 0, 

C = 0 intersect only in the six poles of the action of I, in agreement 

with the fact that A does not vanish on H. 

Remark. I. Naruki has given a geometric interpretation of the curve 
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B = 0. Let S(5) be the elliptic modular surface in the sense of 

T. Shioda associated to the principal congruence subgroup F(5) of 

SL2(Z). Choose a "zero section" o of S(5), then each regular fibre 

of S(5) becomes a group (1-dimo complex torus). The binary icosahe- 

dral group I' = SL2(~ 5) is the group of automorphisms of S(5) which 

carry o to itself. The element -1 e I' acts as the involution which 

is x ~ -x on each regular fibre. Dividing S(5) by this involution and 

blowing down 24 exceptional curves which come from the 12 singular 

fibres of S(5) gives PI({) x pl({ ) on which I : I'/{ ± 1} operates. 

Dividing PI(~) x pl({) by the natural involution interchanging compo- 

nents yields P2({) on which I acts by the Klein representation. Under 

th,is procedure B = 0 is the image of the curve in S(5) containing all 

the points of the regular fibres of S(5) which have precisely the order 

4. A paper of Naruki (Qber die Kleinsche Ikosaeder-Kurve sechsten 

grades) will appear in Mathematische Annalen° 

§4. THE FIELD K = ~(V~). 

In this field the ring 0 of integers consists of all linear combi- 

nations a + b~ with a~b e %. The fundamental unit is s0 = 1 + ~/~. 

We consider the principal subgroup ~(2) of SL2(0) for the ideal (2). 

The group ~(2)/{ ± 1} is a subgroup F(2) of the Hilbert modular group 

G = SL2(0)/{ ± 1}. The group G/F(2) is an extension of the symmetric 

group S 4 by a group of order 2 (which is the center of G/F(2)). The 

non-trivial element in the center is represented by the matrix 

0; 1 0 : DSO 
c O 

of SL2(0). Let F be the subgroup of G obtained by extending F(2) by 
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De0. Then G/F - ~ S 4. The group F acts freely on H 2. We shall inves- 

tigate F similarly as we treated the congruence subgroup with respect 

to (~/~) in §3. Often details will be omitted an proofs only skecthed. 

The Hilbert modular surface H2/F(2) has six cusps, each resolved by a 

cycle of type ((4,2,4,2)). The non-singular surface thus obtained will 

be called Y2" The curve F 1 in H2/G is given by z I : z2, the curve F 2 

by Iz 2 l'z I = 0 with I = ~/~'~0" The inverse images of F 1 and F 2 in 

Y2 are also denoted by F 1 and F 2 respectively. F 1 has 8 and F 2 has 6 

components in Y2' The curves F 1 and F 2 in Y2 pass through each of the 

six resolved cusps as follows 

(17) F2 

F2 

-2 

F I 

-4 

-4 

F 
I 

-2 

F 2 

F 2 

The 14 components of F 1 u F 2 are disjoint, non-singular rational curves. 

Each component of F 1 has selfintersection number -1, hence is an 
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exceptional curve. Each component of F 2 has selfintersection number -2. 

Because 2~K(-1) = ~, the Euler number of H2/F(2) is 48/6 = 8, and we 

have (as in §3 (8)) 

e(y 2) : 8 + 6.4 = 32 

In fact, Y2 is a K3-surface with 8 points bl0w ~ uR" This can be shown 

by the methods of [9], see [2]. The involution on Y2 given by D e 
0 

will be denoted by 6. It operates freely on Y2" The non-singular 

model Y for H2/N (obtained by resolving the six cusps) equals Y2/6. 

Therefore, Y has Euler number 16, it is an E nriques surface with 4 

points blown up. (An Enrique surface can be defined as a surface with 

fundamental group of order 2 whose universal covering is a K3-surface.) 

Each cusp of H2/F is resolved by a cycle of type ((4,2)) (type ((4,2,4,2)) 

divided by 6). The inverse image of F 1 and F 2 in Y are also called 

F1,F 2. They have 4 or 3 components respectively, the four components 

of F 1 being exceptional curves. The curves F 1 and F 2 in Y pass through 

each of the six resolved cusps as follows 

(18) 

F I F I 

F2 

The involution T : (Zl,Z 2) ~ (z2,z 1) on H 2 induces an involution T on 

Y, because A e F ~ A' • F. It commutes with the action of every ele- 

ment of G/F ~ S 4 on Y, because A,A' are equivalent mod 2. The fixed 

point set of T on Y is F 1 u F 2. We have e(F 1) = 8 and e(F 2) = 6. 
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Therefore 

e(Y/T) = (e(Y) + e(F~) + e(F2)) = 7(16+8+6) = 15 

We now look at example b) of §1 and see that, from each cusp, Y/T has 

2 curves to blow down successively. We blow down these 12 curves and 

obtain a surface Y0 with e(Y 0) = 3. If A is a component of F 1 on Y0 

and B a component of F 2 on Y0~ then a simple calculation shows 

Cl(A) = 3 and Cl(B) = 6 where c I is the first Chern class of Y0" There- 

fore Y0 is rational and is in fact the projective plane P2({), on which 

F 1 becomes a union of 4 lines intersecting in 6 points arld F 2 a union of 

3 conics with a contact point in each of the six points (compare 

example b) in ~1). The group G/F ~ S 4 operates on Y0 : P2(C) with 

F 1 u F 2 as an invariant curve of degree 10. The isomorphism G/F ~ S 4 

is established by the permutation of the four components of F 1. There 

is up to projective equivalence only one projective representation of 

S 4 permuting four lines in general position. It can be lifted in 2 

ways to a linear representation : 

Embed {3 in £4 by 

(19) x I + x 2 + x 3 + x 4 = 0 

Take the permutations of xl,x2,x3,x 4 (representation Pl of S 4) or 

the permutations followed by multiplication with their signs (represen- 

tation Pl of $4). 

Consider the projective plane with homogeneous coordinates Xl,X2,X3,X 4 

subject to (19). Then 

F 1 is given by Xl.X2.X3.X 4 = 0, 

because this is the only invariant curve of degree 4 which has 4 lines 

as components. The six cusps of H/F correspond to the six intersection 

points (0,0,1,-1) (and permutations) of the 4 lines. Furthermore, 



Hi-28 
315 

F 2 is given by (XlX2+X3X4)(XlX3+X2X4)(XlX4+X2X3) = 0 

because this is the only invariant curve of degree 6 passing through 

(0,0,1,-1) with 3 irreducible conics as components. Let o k be the k th 

elementary symmetric function of Xl,X2,X3,X 4 (~1=0). The polynomial 

(20) C = XlX2X3X4(XlX2+X3X4)(XlX3+X2X4)(XlX4+X2X3 ) 

2 
= a4(a3-4a2a 4) 

of degree 10 describes the branch locus F 1 u F 2. 

THEOREM. Let F b_e the extended principal congruence sub~oup of 

G : SL2(0)/{ ± 1} for the ideal (2) in the ring 0 of intesers of the 

field ~(~/~). Then H2/F is isomorphic to the double cove F W of P2({) 

along the curve C = 0 of degree 10. This curve has exactly 6 singular 

points which give si:ngular points of W corresponding to the s~x cusps 

of H2/F. Desinsularizing W in the canonical way gives a surface Y 

which is an Enriques surface with 4 points blown up. (~he exceptiona~ 

points in Y come from the 4 linear components of C = 0.) 

To gain information for the modular forms relative to F, one has to 

deal with difficulties arising from the fact that F has a non-trivial 

character £ ~ {1,-1}. If one compares with the result of Gundlach [4] 

where these "sign questions" were treated, one can prove as in §3 that 

the ring of modular forms for the group F is isormorphic to 

(21) ~[Xl,X2,X3,Xq,C]/(al=O,c2=C) 

This checks with the dimension formula (§2 (4)), because as in §3 we 

have e(H2/F) = 4 and X = 1 (since Y is an Enriques surface). Compar- 

ing with Gundlach [4] shows in addition that G/F ~ S 4 operates on the 

ring (21) by the representation p2 o The ring of invariant polynomials 
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2 
for this representation is generated by ~2,~4,o3,~3A where A = H (xi-x j) 

i<j 
2,o3A) = 0 for these is the discriminant. We have a relation R(o2,~4,o 3 

generators, namely 

(22) R(o2,o4,o~,o3A) : 2 7 ( ~ 3 A ) 2  + 

[-4(~+12o4)3 + (270~+2~$-72o2o4)21023 

which can be taken from the formula for the discriminant of a polynomial 

of degree 4. It follows 

THEOREM. The ring of symmetric modular forms for the Hilbert modular 

group G = SL2(0)/{ ± 1} of the field ~(~/7) is isomorphic to 

2 2 
~[02,04,03,o3&]/(R(o2,o4,o3,o3A) : 0). 

This agrees with Gundlach [4], Satz 1. But there the relation was not 

determined. The ring of modular forms for G is obtained attaching 

the skew-symmetric form c of weight 5 satisfying 

2 2 
c : C = ~4(o3-4~2o4) 

The modular forms G,H,H,0 (belonging to various characters of SL2(0)/{± 1}) 

which Gundlach [4] mentions in his Theorem 1 find the following de- 

scription in our set up (up to a factor). We also give the zero divi- 

sors. 

G : fX 

= 03 

H = x/723- 4~2~ 4 

e : ~foo 4 

(six lines) 

(three lines) 

(part of the branching locus; three 
conics) 
(part of the branching locus; four 
lines) 



317 Hi-30 

The theory we have developed for ~(~/~) involves the symmetry group S 4 

of a cube. Similar considerations for Q(~/3) are possible, but more 

complicated. Here the group A 4 (symmetry group of a tetrahedron) enters. 

Gundlach [4] has also investigated ~(~), but the translation into our 

geometric method must be done at some other occasion. 

§5. ON THE FIELDS ~(VT) AND ~(~/i-3). 

In Q(w~) there is no unit of negative norm. Therefore, we consider 

the extended group GL~(O) of all matrices (~ ~] with ~,B,y,6 @ 0 and 

determinant a totally positive unit. For the prime ideal (~/7) let 

F+(v~) consist of all matrices of GL~(0) which are congruent to 

01 with ± (~ ~] rood (~/~). Let D be the group of diagonal matrices (~ c 

s a unit. Since the fundamental unit ~0 equals 8 + 3~/7, this diagonal 

group is contained in F+(~). The groups GL~(0)/D and F+(~]7)/D operate 

effectively on H 2. We denote them by G + and F respectively. G + is the 

extended Hilbert modular group with [G + : G] = 2 where G = SL2(0)/{ ± 1}. 

We have 

G+/F ~ PSL2(~ 7) -- G168 

This is the famous simple group of order 168. The group F operates 

freely on H 2. The surface H2/F is compactified by 24 points (cusps). 

Each cusp is resolved as in 51 (example c)). This gives a non-singular 

2 
surface Y. Because ~Q(~)(-1) = 7' we have 

2 
e(Y) = T.168 + 5.24 = 232 

We consider the curves F1,F2,F 4 in H2/G +. They are given by z I = z 2, 

(3+~)z 2 - (3-~/T)z I = 0 and z I - z 2 = ~/7 respectively. Their inverse 

images in Y will also be denoted by F1,F2,F4. These are non-s~ngular 

disjoint curves in Y. They pass through each of the 24 cusps as 
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follows 

(23) 

-2 

-2 

-2 

J 

The Euler numbers of F1,F4,F2in Y are given by 

1 
e(F 1) : -~.168 + 24 : -,4 

1 
e(F 4) : -~.168 + 24 : -18 

1 
e ( F  2)  = - ~ , 1 6 8  + 24 = - 1 . 8 ,  

because 1 1 1 are the normalized Euler volumes of the curves 
6' 4' 4 

F1,F4,F 2 in H2/G +. 

The involution (Zl,Z 2) ~ (z2,z 1) of H 2 induces an involution T of Y 

commuting with each element of G+/F m G168. The fixed point set of 

in Y is F~ u F 4 u F 2. Therefore, 

( 2 4 )  e(Y/z) = ~(232-4-18-18) = 96. 

The example c) in §1 shows that each cusp gives rise to three curves 

which can be blown down successively. We obtain a surface Y0 with 

e(Y 0) = 96 - 3.24 : 24 

The group G168 actson Y0" One can proof that Y0 is rational. There is 

a famous action of G188 on P2(C), see [18], §88~ §133-140. This action 

has an orbit consisting of 21 points. Up to an equivariant isomorphism 
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Y0 is obtained from P2(~) by blowing up these 21 points. The curves 

F1,F4,F 2 become invariant curves of degrees 4,18,12. 

This result has to be proved in some other paper. It should be used 

to investigate the structure of the ring of Hilbert modular forms rela- 

tive to F and G +. 

Our last example concerns the field ~(~1-3). It is due to van der Geer 

[2] who has proved many interesting results on the Hilbert modular sur- 

faces of principal congruence subgroups. Let 0 be the ring of integers 

in ~(v~). Let ~ be the congruence subgroup of SL2(0) for the prime 

ideal 2 of 0. Then F : ~ /{ ± 1} is a normal subgroup of G = SL2(0)/{ ± 1}. 

The quotient group is SL2(F 4) ~ A 5. We consider the Hilbert modular 

surface H2/F. It has 5 cusps. Each is resolved as in 31, example d). 

Let Y be the non-singular surface obtained in this way. Since 

i 2~ (-i) :- 
( V - f T )  3 , 

we have 

1 
e(Y) : 5.60 + 5.9 : 65. 

image in Y of the curve F 1 on H2/G has 10 disjoint com- The inverse 

ponents which are non-singular rational curves of selfintersection 

number -1. (Proof as in [8]). The inverse image will also be denoted 

by F 1. It passes through each of the five cusps as follows 

- 2  - 2  

(25) -5 -5 

F I F  I 
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Each component of F 1 goes through 3 of the 5 cusps and is determined 

by these three cusps. We blow down the ten components of F 1 and obtain 

1 
a surface Y1 of Euler number 55. It has arithmetic genus 5 =~ e(H2/F), 

see [7]. Therefore pg = 4. The surface Y1 is a minimal surface of 

general type. The space of sections of the canonical bundle K of Y1 

is isomorphic to the space of cusp forms S2(F). The cusp forms define 

a "map" 

~K : Y1 ~ P3 (~)" 

The action of G/r ~ A 5 on S2(F) is the standard action on ~4 represent- 

ed in ~5 by 

x I + x 2 + x 3 + x 4 + x 5 = 0 

It turns out that ~K is holomorphic of degree 1 and %K(Y1) is given in 

P4(~) by 

( 2 6 )  a I : O~ a 2 a  3 2 a  5 : O, 

where a k is the k th elementary symmetric function of Xl,...,x 5. The 

surface (26) has 15 double points which are images under %K of the 15 

configurations ~ ~ ~ _ I ~  on Y~ (see (25)). Otherwise ~K is 

bijective. Because (26) gives a relation between the cusp forms of 

weight 2, it can be used to gain more information on the ring of modu- 

lar forms for F (see [2]). 

The ideal (2) does not divide the discriminant of ~(~3). Therefore, 

we do not have an involution T on Y commuting with G/F. 

Remarks. 

1) The surface Y1 is diffeomorphic to the general quintic hypersurface 

in P3({). 

2) Consider a subgroup of A 5 of order 5. It operates freely on YI" 

The quotient is a minimal surface of general type with arithmetic 

2 
genus 1, Euler number 11 and Chern number c I : 1. We recall that 
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Godeaux has studied free actions of groups of order 5 on quintic 

surfaces and considered the corresponding quotients (L. Godeaux, 

Les surfaces alg6briques non rationelles de genres arithm6tique et 

g6ometrique nuls, Paris 1934). 
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ON ZETA-FUNCTIONS OF RANKIN TYPE ASSOCIATED WITH 

SIEGEL MODULAR FORMS 

by AoN. ANDRIANOV 

Nowadays, when the theory of Hecke operators on the spaces of modular 

forms of one complex variable has been so heavily exploited by so many prominent 

mathematicians, there is a quite natural and similar field where one can see at the 

moment more blank spots than cultivated areas: the theory of Hecke operators on the 

spaces of Siegel's modular forms. In this report we want to present some recent 

results in this field and especially some open questions. I'd like to thank Prof. 

Stefan, who helped me to improve the language of the manuscript. 

i. Siegel's modular forms. 

Here we collect some definitions and facts. For details, see ~I]. 

Let 

t 
H = [Z = x+iY E M (¢); Z = Z, Y > O} 
n n 

be the Siegel upper halfplane of genus n and 

l'n = SPn(2Z) = [M # ~n (2Z); tMJnM = Jn} , 

OE 
= (-E O n) be the Siegel modular group of genus n . A function where Jn 

n 

h o l o m o r p h i c  on  H , i s  c a l l e d  a m o d u l a r  f o r m  o f  g e n u s  n and  w e i g h t  k 
n 

integer, k > O) if the following two conditions are fulfilled: 

A B  
1) f o r  e v e r y  M = (C D ) E ~n a n d  Z E H n 

f(z) , 

(k is an 

f((AZ+B)(CZ+D) -I) = det(CZ+D) K f(Z) ; 
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2) f(Z) is bounded in regions of the form 

[Z = X + i Y E Hn, Y e c En(C > 0)] . 

We denote by _~ the C-linear space of all modular forms of genus n 

and weight k . The space _~ has finite dimension over ~ . Each form f E _~ 

can be expanded into a Fourier series 

f(Z) = ~-- a(N) exp (2 TT i rr(NZ)) (I.i) 

N EN , 
--n 

where 

t 
N = [N = (aij) E Mn(~) ; N=N • 0 2aij E~} --n ' aii' 

is the set of all symmetric semi-definite semi-integral matrices of order n . It is 

easy to see that 

a(U N tu) = a(N) (N 6 ~n' U E SLn(~)) (1.2) 

The example of the theta-series of genus n (see [2] ) shows that the 

Fourier coefficients a(N) of a modular form f can have important arithmetical 

interpretation in the terms of integral solutions of some systems of quadratic 

equations. That was the original reason to introduce these modular forms and that 

is why the theory of Hecke operators we are going to discuss is so concerned with 

the properties of the Fourier coefficients of modular forms. 

2. The Hecke operators. 

For details, see [3] and [4] . 

Let H c G be two multiplicative groups such that for each g 6 G 

sets H\HgH and HgH/H are finite. Denote by L(H, G) the free ~-module ( 

the field of rationals)generated by the left cosets (Hg) (g E G) . The group 

acts on L(H, G) by multiplication from the right: 

h : 52 i ai(Hg i) ~ ~i ai (Hgih) (h 6 H) 

the 

is 

H 
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Denote by D(H, G) the submodule of all H-invariant elements in 

is an associative ring with respect to the multiplication: 

An-3 

L(H, G) . D(H, G) 

(Z i ai(Hgi)).(Z j bj(Hgj)) = Zi, j aibj(Hgig j) 

The ring D(H,G) is called the Hecke ring of the pair (H, G) (over ~ )° 

Let 

S = S n = {M ~ M2n(~) ; tM Jn M = r(M)J n , r(M) E ~ , r(M) > O} 

and for a prime number p let 

Sp = S np= {M E S n n M2n(2Z[p-l])', r(M)_+ 1 EZg[p-l]] 

where ~[p-l] is the ring of all rational numbers of the form a/p r with 

= ~ S and for each a E~ ~ r ~ . S and Sp are groups, r SPn(~) ~ Sp 

the sets F~ M[" and F MI~/~ are finite° So we can define the Hecke rings 

MES 

L = L n = D(I ~, S) , L = L n = D(I ~, S ) . 
P P P 

The rings L, L 
P 

of L where p 
P 

are commutative integral domains and L is the tensor product 

runs over the set of all prime numbers. 

If 

f E ~ and X = ~i ai(~ Mi) E L , 

then the function 

fiX = flk X = ~i ai flk Mi ' 

A B E S we set where for M = (C D ) 

flk M = r(M) nk-n(n+l)/2 det(CZ + D) -k f((AZ + B)(CZ + D) -I) , 

does not depend on the choice of the respresentatives M i in the left cosets ~ M i 

and again belongs to the space _~ . In this way we get a linear representation of the 
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ring L on the space 

He'eke operators. 
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_~ . The corresponding operators on _~ are called the 

As it was proved by Maass and Jarkovskaya (see [4], § 1.3) each space 

_~ has a basis ~fi} such that each is of all Hecke fi eigenfunctlon an operators 

from L : 

filX = gi(X)fi (X E L) 

We shall therefore consider below only the eigenfunctions of all Hecke operators 

from L (or L ). 
P 

If f E _~ 

a prime number): 

is an eigenfunction of all Heeke operators from L (p 
P 

is 

fiX = A(X)f (X E L ) , 
P 

then the map X ~ ~(X) is a non-zero homomorphism of L into ¢ . The set of 
P 

all non-zero homomorphisms of L into ¢ can be described as follows: 
P 

Let A = (~o' ~I' ,~n ) E (¢~)n+l (¢~ ... = ~ - SOl) and let 

X = E i a i ( F  M i )  E Lp . Each  r e p r e s e n t a t i v e  M i i n  t h e  l e f t  c o s e t  r M i can  be 

chosen in the "triangular" form 

pdi°~il B i 

Mi = , where Di = ? ..... Plii.i~ "~ 

0 D i ~ 0  0 . . . .  p d i n  

We set 
n 

~A (X) = ~i ai j~O (~j p-j)dij 

~A(X) into ¢ and each such homo- The map X ~ is a non-zero homomorphism of Lp 

morphism has the form ~A for some A E (¢¢~)n+i , and ~A = ~A' if and only if 

A' = wA , w E W , where W is the finite group of transformations of (~)n+l 
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generated by all permutations in ~l,...,~n and by transformations 

-i 
CLo'~Do ~i =i "~=i C~ -~. (j # O, i) (i = I ..... n) 

, , j J • 

Each W-invariant polynomial in 

for some finite set .-~Xj~ Lp 

+i ~A(X j ) ~i-- can be expressed as a polynomial in 

(see [3]). 

If f E _~ is an eigenfunction of all operators X E L with the eigen- 
P 

values ~f(X) and ~f(X) = ~A(X) , where A = Af(p) = (~o(p), ~l(p), .... ~n(p)) 

E (¢~)n+l we shall call the numbers (~o(p) ,~n(p)) the p-parameters of f 

Considering the action on _~ of the element (F p E2n) E L it is easy to see 
P 

that the p-parameters (~i(p)) of an eigenfunction f E_~ satisfy the equation 

nk - n(n+l)/2 
~(p) ~l(p)...~n(p) = p (2.1) 

3. Eisenvalues of Hecke operators and Fourier coefficients of eigenfunctions. 

The problem of finding and studying the relations between the Fourier 

coefficients of an eigenfunction of the Hecke operators and the corresponding eigen- 

values is of significant importance for the arithmetical theory of modular forms. 

On one hand~ the relations would help us to understand the multiplicative properties 

of the Fourier coefficients, which would have significance in arithmetics~ on the 

other hand, without such relations we can not find an~ytical relations between the 

eigenfunetion and associated Euler products constructed by the eigenvalues and there- 

fore investigate analytical properties of the Euler products. 

If n=l the solution of the problem (given by Hecke) is very simple: 

let f E _~ be an eigenfunction of all Hecke operators from L 1 in particular 

fiT(m) = gf(m) f, (m = 1,2 .... ) 

where 



An-6 330 

T(m) = Z (I ~I M) E L I (m = I, 2 .... ) 

M E I~I~M2 (7z), det M=m 

then 

a(m) = a(1) ~f(m) , (m = i, 2 .... ) 

where a(O), a(1),.o° are the Fourier coefficients of f . 

(3,1) 

The relations (3.1) allow to investigate the analytical properties of 

two types of the Euler products (zeta-functions) associated with the eigenfunction 

f : 

Let for each prime p (~o(p), ~l(p)) be the p-parameters of f . The 

coefficients of the polynomials 

Qp,f(t) = (l-~o(P)t)(l-~o(p)c~l(P)t) , 

(2) ~ll(p)t) Qp,f(t) = (l-~l(P)t)(l- 

are invariant with respect to the group W (see § 2), and therefore they can be 

expressed in the terms of the eigenvalues. Define the Euler products 

Zf(s) = II [Qp,f(p-S)]-i 
p 

. (2) (p-S)]_-i 
Z~2)(s) = 1"I ~Qp,f 

p 

The Euler products converge absolutely and uniformly if Re s is sufficiently large. 

From (3.1) and properties of the Hecke operators follow the relations 

a(m) 
s - a(1) Zf(s) 

m=l m 
(3°2) 

Z a(m2) a(1) • ~ (I + i )  . Z~2)(s - k+l) 
s s - k + l  

m=l m p p 
(3.3) 
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The series on the left hand of (3°2) can be written by the Mellin integral transform 

of f ; this fact permitted Hecke to prove that Zf(s) has an analytical continuation 

-(2)(s ) over all s-plane and satisfies to a functional equation. The zeta-function zf 

was investigated originally by Rankin [~ by means of another relation° Rankin's 

results were improved by Shimura [~, who has used the relation (3.3) and the fact 

that the series on the left hand of (3.3) can be expressed by means of an integral 

convolution of the product of f by a theta-series with an Eisenstein series for a 

congruence subgroup of r I 

For n > i one can hardly expect that such simple relations as (3.1) 

ever exist. However, relations similar to (3.2) and (333) can be obtained for 

all n : 

Let f E _~ be an eigenfunction of all Hecke operators from 

let, for each prime p, (~o(p), ~l(p) ..... ~n(p)) be the p-parameters of 

the polynomials 

n 

Qp,f(t) = (l-~o(P)t) 
r=l 

(2) n 
Qp,f(t) = II 

i=l 

(i - ~o(P)~il(P)°.o~ i (p)t) , 

1~i1<. . .< i~  r 

(I - ~i(P)t)(l - ~il(p)t) ° 

L n and 

f . Define 

The coefficients of these polynomials are invariant with respect to the group W , 

and therefore they can be expressed in the terms of the f-eigenvalues of the Hecke 

operators from L n . The Euler products 
P 

-I 
Zf(s) = ~ [Qp,f(p-S)] 

P 

- (2)( -s)] -I 
Z~2)(s) = ~ [Qp,f P 

P 

converge absolutely and uniformly if Re s is sufficiently large. We shall call 

these Euler products the zeta-function of the Hecke type and of the Rankin type, 
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respectively. 
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The following result of Jarkovskaya (Math. Sbornik, 1975) gives a generali- 

zation of (3.2) for arbitrary n ~ 1 : 

Suppose that f E _~ is an eigenfunction of all Hecke operators from L n with the 

Fourier expansion (I.I), and ~ let Zf(s) be the associated zeta-function of the 

Hecke type. For each given N E N we have the identity -nq 

a(m N) 
s Rf,N(S) " Zf(s) , 

m=l m 
(3.4) 

where Rf,N(S) 

series 

is a Dirichlet series which is 2n-restricted (we call the Dirichlet 

c(m) E - -  

s 
m=l m 

d-restricted if c(m) = 0 as soon as m m 0 (mod pd) for some prime p). 

As to the zeta-function of the Rankin type, we have proved the following 

result 

Theorem I. If f 6 _~ is an eigenfunction of all Hecke operators from 

L n , w i t h  t h e  F o u r i e r  e x p a n s i o n  ( 1 . 1 ) ,  t h e n  f o r  e a c h  g i v e n  N 6 N we have  
--n 

a(MNtM) _(2) (s) Z~2)(s - k+l) (3.5) 
( d e t  M) s Kf 'N  ' 

ME SL (m)\ M+(~) 
n n 

where M runs over a representative system for the left cosets, by SLn(~) 

of the set Of integral matrices of order n with positive determinant, and 

R(2)t , is a Dirichlet series which is (n+l)-restricted. f,N ~sJ 

To prove the relations like (3.4) and (3.5) it is sufficient to prove 

the corresponding "local" relations for each prime p . For example (3.5) is a 

consequence of the following result. 
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Theorem I'. Let f E _~ be an eigenfunction of all Hecke operators from 

L n , where  p i s  a p r i m e  number ,  and l e t  ( 1 . 1 )  be t h e  F o u r i e r  e x p a n s i o n  o f  f . 
P 

Then, for each given N E N , the formal power series 
--n 

Q(2)(pk-lt)" { d~=O(MESL (~)\~+(ZZ) P,f = a(M N tM) ) td } 

n n 
d 

det M = p 

is a polynomial of degree not more than n . 

This result as well as all other known results of this kind are speciali- 

sations of the following general theorem. 

Denote for a prime p by H = H n the Hecke ring over 
P P 

(SLn(~), T~) , where 

T n = [M E M (m) ; det M = pd , d = O, I,...] 
p n 

of the pair 

(the same definition as above, although T n is not a group but a semigroup) and 
P 

let H = H Iv] be the polynomial ring in one variable over H . Define a repre- 
P P P 

sentation of the ring H on the space of all function a : N -~ ~ which satisfy 
P -n 

vdi (SLn ( M i ) ~ to (1.2): if y = ~i ei 2Z)" E H and a(N) is a function we set 
P 

d i k(n-1 )-n (n+1) 
(aly)(N) = ~i ci a(p M i N tM i) , (N ~ --nN ) , bi = p-din(n+1)/2(detMi ) 

In these notations, we have 

~heoreN.  2.  L e t  f E ~ w i t h  t h e  F o u r i e r  e x p a n s i o n  ( 1 . 1 )  be an e i g e n -  

function of all Hecke operators from L n for a prime p . Suppose that Yo' YI'''" 
P 

i s  a s e q u e n c e  o f  e l e m e n t s  f rom H s u c h  t h a t  t h e  f o r m a l  power  s e r i e s  
P 

d 
Y(t) = Z Yd t 

d=0 

such that is rational in the sense that there is a polynomial q(t) over Hp, qku) =i, 
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q(t) Y(t) is a polynomial. Then there is a polynomial Q(t) # O over ¢, which de- 

pends only on q(t) and the f-eigenvalues of the Hecke operators from L n p ' 

and whose coefficients can be effectively expressed in the terms of the eigenvalues, 

such that for each given N ~ N , the formal power series over ¢ in 

q(t)[ S (aly d) (N) t d} 

d=O 

is a polynomial. 

(3.6) 

This theorem (together with its proof) contains in particular all known 

relations between Fourier coefficients of eigenfunctions and eigenvalues of Hecke 

operators. The proof is based on a study of the relations between the Hecke rings 

L and H , realised as subrings of a Hecke ring of the group 
P P 

B ~ Fn 

The proofs will be published in Matem. Sbornik. 

As to the computations of the series Rf,N(S) and R~2~(s) in 

(3.4) - (3.5), or more generally, of the polynomials (3°6) for arbitrary n , 

some new ideas will have to be found. For n = 2 the series Rf,N(S) can be 

_(2), , 
computed without difficulty from the results of [4], Ch. 2; the series Kf,N~S) 

are computed in [7]. 

4. On integral representations of Euler's products. 

The theorem 2 allows us to get a lot of relations like (3°4), (3.5) 

with different kinds of Euler products. We restrict ourselves to the zeta- 

functions of the Hecke type and of the Rankin type, because even for n=l they 
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are the only types of the Euler products whose analytical properties can be in- 

vestigated at the moment. 

Because of the relations (3.4) and (3°5) to get some "good" integral 

representations of the zeta-functions in the terms of the modular form f it is 

Rf,N(S) R(2)(s) enough, provided of course that we can compute the series ' f,N ' 

to do it for the series on the left hand of the relations. As to (3~4), for n=l 

it is the Mellin transform of f , for n=2 the situation is far more complicated: 

it was shown in [4] that the series can be obtained as the result of an integral 

convolution of the restriction of f on the symmetric space of the group 

SL2(¢) imbeded in H 2 , with an Eisenstein series for a discrete subgroup of 

SL2(¢) of the Picard type, This allows to prove that in this case the zeta-function 

Zf(s) has an analytical continuation and satisfies a functional equation; for 

n > 2 nothing is known in the most interesting case when f is a cusp form (if 

f is not a cusp form, Zf(s) can be expressed through the similar function for 

a modular form of genus n-l). The situation is much better for the relations (3.5): 

the series on the left hand side has a "good" integral representation for all n . 

For example, if n is even, f E M~ is a cusp form and N E N , N > O , the --x 

following integral representation can be proved: if Re s is sufficiently large, 

we have 

2 

n 

s-i+l a(MNtM) 
n(n_l)14(detl 4~ N)-s121 {i=l~ F ( "--7-- )} • ~ (det M) s-h 

MESOn( m)\Mn+(m) 

f ~h)(z) (det y)S+n+I/2 
= f(Z) ~2N X 

D(ro(q)) 

)<N(de---~t DZ dft(CZ+D>k----n/2-h 1 

Idet(cz + D)l s-2h+l J 

(A B)E Fo X ro(q ) 

(4ol) 

d Z , 
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where h=O if k is even and 

such that the matrix q(2N) -I 

cients on the main diagonal, 
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h=l otherwise, q is the smallest natural number 

has rational-integral coefficients and even coeffi- 

~B 6 F n , Fo(q) = F~(q) = {( D ) C O (mod q)} , 

T ° is the group (3.7), D(~o(q)) is a fundamental domain of To(q) on Hn ' 

£Z = (det y)-(n+l) ~ dxij dYij (Z = X + iY 6 H n) 

l~i~j~n 

is the invariant measure on H n , r(s) is the gamma-function, 

(h) 
®2N (Z) = ~ (det M) h exp(2~i Tr(MNtMZ)) 

M~ M(~) 

(4.2) 

is a theta-series of the matrix 2N , and XN 

which can be defined by 

n n 2j 
XN(d) = (sign d) 2 \- i71 

where (--) is the generalized Legendre symbol. 

is a Dirichlet character mod q 

same. 

For the proof for n=2 , see [7] . The proof in the general case is the 

Accordingly to [7], § 5, the theta-series (4.2) is a modular form of 

n 
the weight (~ + h) with the character XN with respect to the group (q) . 

Therefore in order to study the an~ytical properties of the integral in (4.1) it 

is actually sufficient to study the Eisenstein series under the integral. For 

n = 2 this can be done following the ideas of the Maass' work [8] , which allow 

us to prove that the integral has an analytical continuation over the entire s-plane. 

Unfortunately, we could not obtain a functional equation in this way. As to the ¢&se of 
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general n , now everybody refers for everything connected with Eisenstein series 

to the famous Langland's preprint. I wonder, however, whether it is easy (or possible) 

to extract the properties of the Eisenstein series in (4.1) from this preprint° Here 

I mean just this question: what are the explicit gamma and zeta-factors to get a 

holomorphic function with a functional equation? 

fC_~ 
z~2)(s) 

Finally we should like to mention that some examples suggest that if 

is a cusp form, then to get a holomorphic function we have to replace 

by the product 

~(s) z~2l(s) 

where ~(s) is the Riemann zeta-function. 

The Leningrad Branch of the 

SteklovMathematical Institute. 
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