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PREFACE

This is the second and final volume of proceedings for the Conference
on Modular Forms held in Bonn in July 1976. The first volume appeared as Lecture
Notes n°” 601, under the title "Modular Functions of One Variable V' (cf. Lecture

Notes n° 320, 349, 350 and 476).

Jean- Pierre Serre Don Zagier
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Values of Dirichlet Series at Integers in the Critical Strip

by

Michael J. Razar

81. Introduction

This note is primarily a summary of some recent work on the val-
ues at integer points in the critical strip of Dirichlet series assoc-
iated to newforms on FO(N). The first such results seem to be due
to Shimura [9], who derived them for the Dirichlet series Zl"c(n)m_S

n=
associated to the cusp form A(z) of weight 12 for the full modu-
lar group. Somewhat later, Manin [4] extended these results to cusp
forms of arbitrary integral weight for the full modular group. In
the interim, Birch had introduced the "modular symbol" for cusp forms
of weight +two on FO(N) and these were studied and used by Manin
{2] and [3], Mazur and Swinnerton-Dyer [5] and others. Recently,
V. Miller in his thesis [6] extended the definition of the modular
symbol to FO(N). Just this year (1976), Shimura [11], using totally
different methods, has extended almost everything to T(N) and has
obtained rationality results similar to those describe.l below.

The main result of the present note is Theorem 4, The proof
consists of two main parts. The first is bared on Shimura's isomor-
phism between cusp forms and Eichler cohomology with real coefficients.
In this respect it is similar to the techniques of Manin [4]. The
second part is the interpretation of the coefficients of an Eichler
cocycle as residues at poles of the Mellin transform of a multiple
integral of the corresponding cusp form. This is based on the Hecke
correspondence (Proposition 1) and on an additive character analog of
Weil's theorem (Proposition 2). Weil has also developed such a pro-

cedure recently in a paper delivered at the Takagi conference (1976).

International Summer School on Modular Functions
Bonn 1976
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One advantage of proceeding in this way is that the same methods are
applicable in other settings. Tor example, they work for Eisenstein
series. This is discussed briefly in §4.

Detailed proofs of everything discussed here will appear in [7]
and [8]. It is convenient in the present note to stick to cusp forms
of Hauptypus for FO(N) gsince the Shimura isomorphism only makes
sense for cusp forms with respect to a real character. However, in
[8] a modified version of the Shimura isomorphism is used to prove

analogous results for arbitrary cusp forms of Nebentypus.

§2. The Shimura isomorphism

We begin with a brief discussion of the Eichler cohomology and
its relationship to the space of cusp forms. Fix a Fuchsian group
of the first kind @6 ¢ SLZGR), an integer k, and a real character
v of G. Assume G contains translations. If f 1is a function on

the upper half plane, define

(flk,vc)(Z) = v{(o)(cz + d)“k f(izig)a g = (2 2)- (1)

Let K be a subfield of IR such that G c SLQ(K) and denote by

X(K) = X, ,(K)  the space of polynomials of degree at most k-2
3

with coefficients in X and G-module structure given by (1), but

with k vreplaced by 2-k.

Hl(G,X(K)) and Zl(G,X(K)) are respectively the first cochomol-
ogy and first cocycle groups of & with values in Xk-Q,V(K)' Let
EI(G,X(K)) be the subspace of Hl(G,X(K)) consisting of those co-
homclogy classes whose restriction to every (cyclic) parabolic sub-
group of G is trivial. Let Zl(G,X(K)) consist of those cocycles

P: or—P,(z) such that if o € G 1is parabolic, then for some

Q € X(K), P_=0Q o - Q@ and such that furthermore, if o 1is a
o 2=k, v
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translation, then PG = 0. The only coboundaries in Zl(G,X(K)) are
the constant multiples of the coboundaries o+=1]g - 1. Thus
gim B = dim 7' - 1.
Let Sk v{G) be the space of cusp forms and let * Dbe the pos-
3

itive number such that (% ;) generates the group of translations in

G. Let f ¢ Sk V(G) and suppose that f(z) has the Fourier expan-
>

sion

- 2ninz
f(z)y = L a e M . (2)

Denote by £#%(z) the (k-1)-fold integral of f(z) given by

o o ~k=-1 ——
f3(z) = ) a, <Z£i> e M. (3)
=1

Let P_ = f#* - f#%] ¢. Then P ¢ X(@) for all ¢ ¢ G and so
o 2=k ,v o

P ¢ Zl(e,x(¢)>. Define homomorphisms 6&_:5, (G)— Zl<e,x<¢)) and
>

. =1
a.Sk’v(G)-» H™(G,X(C)) by

éof = P and &f = cohomology class of aof. ()

The maps 50 and & are injective and the image of § has di-
mension (over (@) equal to half that of ﬁl(G,X(E)). To get an iso-
morphism, Shimura ([9] and [10]) defines maps po and p from
8, (@) to Zl(G,XGR)) and Hl(G,XGR)) respectively, by letting
pof be the "real part" of the cocycle Sof. ("Real part" here
applies only to coefficients of polynomials, not to the variable z.)
Then pf 1s the cohomology class of pof and the map p 1s an iso-

morphism. Furthermore, p commutes with the action of Hecke opera-
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tors (double cosets) on Sk(G) and ﬁl(G,X(K)) and thus is an iso-

morphism of Hecke modules.

Let ¢ = (é_}i) and suppose that e normalizes G. Define the

action of € on functions f on the upper half plane by (fle)(z) =
f(-z). (Note that ¢ is only R-linear, not & linear.) If f(2z)
has a Fourier expansion (2), then fle = f if and only if the
Fourier coefficients a_ are real and flg = -f if and only if
(if)|e = f. The action of ¢ on a cocycle P 1is given by (PIe)G

= nge—ll€ and this action induces an automorphism of order two on

ﬁl(G,XGR)). Denote the eigenspaces of ¢ corresponding to eigen-

values +1 by Z;(G,X(R)) and A (G,XMR)) and let § (Q)@R) be
the space of cusp forms with real cocefficients. Since po(ffe) =
(pof)|€, p restricts to isomorphisms from S, (G)(R) to ﬁ%(G,XGR))

and 18, (&)@®) to BL(E,X@®)). If f ¢S, (G)(R), then

P = f% - fx|g = P 4 iP_ (s)
o o

+ =1 - ; 51
where P, = po(f) € 2,(G,X (R)) and Pc = po(~1f) € Z27(G,X @R)).

k—2,\7 k_zav

In the case of FO(N) we can take advantage of the fact that ¢
is a Hecke-module isomorphism. The action of the Hecke operators
Tp, Uq, wq (see [1]) on FO(N) can be used to break Sk(FO(N))
into spaces of newforms and oldforms and the space of newforms breaks
up into one-dimensional eigenspaces with distinct families of eigen-
values for the Tp. This decomposition is carried over by p into
ﬁl(G,XGR)). In fact it is carried over by Po into 21(G,X(R)),
since the coboundaries lie in the same eigenspace for the Hecke alge-
bra as an Eisenstein series for FO(N). Note that Zl(G,XGR)) has
a basis in Zl(G,X(Q)) and this latter space is preserved by the

Hecke operators. Finally, by the theory of Atkin-Lehner the newforms
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are actually cusp forms on G = FO*(N), the group generated by
TO(N) and the involutions wq, g}N. Thus we get the following

theorem.

Theorem 1: Let f(z) be a newform (of Hauptypus) of weight k on

I' (N). Suppose f(z) = I a eZﬂan, = 1 and f*(z) = (QTTi)_k+l
o _. n 1
n=1
® a4 . )
Zan k1 eZﬂlnz. Let K Dbe the (totally real) field generated
n=1
over § Dby the a.- There exist real numbers w+ and w  (depend-

ing only on f) such that for all o ¢ FO*(N), there are polynomials
+ p— .
Ac(z) and Ac(z) of degree at most k-2 with coefficients in K

such that

(F% - £5], o)(z) = WA (2) + iw A (2). (8)
- [e3 [s2

3. Coefficients of the Eichler cocycles
In order to apply Theorem 1, we must relate the coefficients of
the polynomials Aé(z) to f. The principal tool used is the Hecke
correspondence between Fourier series and Dirichlet series via Mellin

transform as described in the following Proposition.

Proposition 1. Let X > 0, f(z) = ; aneQﬂan/x, glz) =
n={
" oni o w _ -
Z b e ﬁan/X, p(s) = 3 a.n ®, y(s) = % b n S, a(s) = (2n/0)7°
n=0 n=1 n=1 "

T(s)p(s), ¥(s) = (2n/\)"°T(s)y(s). Assume that for some real num-
ber ¢, the complex numbers a. s bn satisfy a bn = 0(n®). Let

v, k € C. The following are eguivalent.

A, ®(s) = y¥(k-8) and there is a rational function R{g) such

that &(s) - R(s) is entire and bounded in vertical strips (EBV).

B. f(z) = Y(%)“k g(_%> + 3 Res R(s)<%>—sds, where the sum is
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over the poles of R(s).

Next, observe that differentiation of f(z) essentially corre-
sponds to changing ¢(s) to (s-1). In general this leads to a
more complicated functional equation. However, let k be an integer,
k 2 2 and let ¢%(s) = o(s+k-1) and y*(s) = y(s+k-1). In this

2/ 7%r(8)p*(s)  and  ¥*(s) = (25/0) " °r(sdy*(s),

case, 1if &%(s)

and if & and Y satisfy condition A of Proposition 1, then

k-1

P%(s) = (-1) Tty wr(2-k-s) . 45

In addition, there is a rational function R¥*(s) such that &%(s) -

R*(s) 1s EBV. A residue computation yields the following Theorem.

Theorem 2: Let f{(z) = ; ane2"an/x, g(z) = ; b einnZ/x,
n=0 n=g "
k-1
Fa(z) = 452 ani )" D) 2 4 pokt1 J2rinz/A
(k=101 iy 2 :
n=0
k-1
b z oy~ (k-1) - .
g#(z) = T%?TTT + 2;l> > b n kL S2minz/n g
: n=0 "
o(s) = 2 ann—s. If k 1is a positive integer and +~ a complex num-
n=1
-k 1
ber such that £(2) = vz g(‘}>’ then
k-2 R .y = (k=1-7)
e A IR e e z
z i=0 gt IN

Let G Dbe a subgroup of SLZ(R), v a character of G and k

ab
c d

function on the upper half plane, define fG by

a positive integer. Let o = ( ) ¢ 6 with ¢ # 0., If f dis any

- z _d
fO_(Z) = J"E(‘]'"(;Iw C).
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The following Proposition is immediate.

ab

Proposition 2: Let o € G, o = (c d

). The following are equivalent:

A, f £.

fe B4
k,v

B. f (2) = (sgno) Nw(o)z (- 1.
o2 o7 z

Thus, modulo some regularity conditions, f 1s an automorphic
form on G if and only if the fO satisfy condition B of Proposi-
tion 2 for all o ¢ G — or even for a set of generators of G. By
Proposition 1, this condition can be restated in terms of functional
equations for the related Dirichlet series. We do not do so explicit-

ly but simply combine Proposition 2 and Theorem 2:

Thecrem 3: Let f be an automorphic form of weight k and multi-

plier v on a discrete subgroup G of SL2(R). Suppose G contains
a (minimal) translation (é i), *» > 0, and that f£(z) has the
Fourier expansion f(z) = 32 anezﬂan/K. For each o ¢ G, o = (i g),
n=0
_ 2mind
c # 0, let md(s) = I e €M 2 n"%. Let £%(z) be the (k-1)-
n=1 n
k-1
a z (k=10
fold integral of f(z), f#(z) = 2 + (Zﬂi z n Kt
k-1)1 ) nop

a ezﬁan/X. Then

-(k-1)

k=2 k=1=9 oy
Polioimd) (2-‘;:3:>3<z+ H. ®

J!

3=0

Now let f£(z) Dbe a newform of weight k for FO(N),

2ninz
a_e

n , 1 1. Define mixed Dirichlet-Fourier series

¢+(s,u) =

n an(cos2nnu)nf53¢75,u) =
1 n

1

o8
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an(sin 2mmu) n~°. Let K be the field generated over Q by the

1

g

n

a, and let w+ and w  be the real numbers defined by Theorem 1.

Theorem 4: Let ¢ be a positive integer such that ((N,c), N/(N,c))
= 1. If 4 1is any integer such that (d,c) = 1, then (s, -d/c)
is an entire function and if 9§ is any integer, 0 <7j <k-2, then
ER .
3+ Kw™ 1if ] is even
' oo {k-1-3, ~d/c) ¢ <
Kw if 3§ is odd.

Proof: This is a direct consequence of Theorems 1 and 3 provided
there is a matrix o ¢ I *(N) such that ¢o(s) = p(s, -d/c). If N
divides ¢, there is such a ¢ in FO(N). The others occur in

Fo*(N) because of the presence of the wq for q|N.

Remark: Using the fact that aq = 0 1if g 1is a prime such that
quN, it is possible to remove the condition on ¢ from the hypoth-

i

eses of Theorem 4. However, in this case K may have to be replaced

by the maximum real subfield of K(eznl/c).

§4. Eisenstein Series
Theorem 3 is valld for FEisenstein series as well as cusp forms.
In [8], the period polynomials for the Eisenstein series of arbitrary
level N are evaluated. We describe here one consequence of a spec-
ial case of this computation. Let Gk(z) be the Eisenstein series
for the full modular group T:
o

Gk(z) = Z! (cz + d)~
c,d 7 me

k (k>2, k evyen).

It was mentioned above (just before Theorem 1) that the cobound-

aries in I are eigenvectors for the Hecke operators Tp. Let
?1(G,X(K)) be the space of cocycles P such that Po =0 1f o is
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a translation. Then SO(Gk) € fl(F,X (C)) and the cocycle 6O(Gk)

k-2
is an eigenvector for the Hecke operators Tp with the same eigen-
values as the coboundaries. The eigenspace corresponding to these

eigenvalues 1is just two dimensional. Thus the theory discussed in §2
predicts that the (k-1)-fold integral Gﬁ(z) of Gk(z) should sat-

isfy the condition

(Gg(z) = 6], 0)(2) = Q(2)+a(l - 1], ,0), o €T,

where the Qc(z) are polynomials with rational coefficients and «a

is a constant.

In [8] it is shown that the coefficients of QO(Z) are general-
ized Dedekind sums involving Bernoulli polynomials. But perhaps
more surprisingly, the constant a turns out to be

-(k-1)

(2mi) Z(k-1), where Z{(s) is the Riemann zeta function!
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0. INTRODUCTION.

This is a survey of the results that have been obtained by studying
the analytic properties of the Euler products of automorphic representa-
tions on the group GLQ(A) over the rationals. We shall use as far as
possible the notation of Gelbart's monograph [2]. Also implicit in our
presentation is the frequent use of the well known correspondence be-
tween automorphic representations and automorphic forms that are eigen-
functions of all the Hecke operators. Full details of our proofs will

appear elsewhere.

1. THE RANKIN TRICK.

The significance of Rankin's convolution idea in the study of Euler
products is now well understood. For convenience we examine some of
its implications in the simplest possible situation. Let w and 7' be
auotmorphic representations which are unramified everywhere, that is,
each local component is a class one representation; assume furthermore
that the components at the infinite prime belong to the same holomorphic
discrete series parametrized by the weight k. To these representations
one associates in a natural way an Euler product L{s,% x 7m'); the mero-
morphic continuation of this Euler product is provided by the following
integral formula whose form clearly embodies the essence of Rankin's

trick

LS mxnn) = J £(2)5(2) E(z,s)(In 2)%dQ,
F

where f and g are respectively primitive cusp forms associated to T
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and 7', ¥ is a fundamental domain in the Poincaré upper half plane for
the modular group I', 40 is an SL2~invariant measure and E(z,s) is the
Eisenstein series for T'. The functional equation for L{s,wx7'), and
hence its meromorphic continuation, can be read off immediately from

the well known ([41, p. 46) functional equation

E(z,s) = K%é%%T E(z,-8),
where
1+s l-3
2 A(s)

(Im z) + NETER] (Im 2z)

is the constant term of the Fourier expansion of E(z,s); in fact A(s)
is non other than Riemann's zeta function completed with its local fac-
tor at infinity. The resulting functional equation for L(s,nx1n') is

A(s)
Als+1)

LS, mxqy.

1+
L(TS,TTX']T‘) = 5

When the components of w and ' at the infinite prime are arbitrary and
ramification is allowed at the finite primes the above functional equa-
tion has to be replaced by a vector equation and the scalar K%é%%T has
to be replaced by the constant term matrix of suitably constructed
Eisenstein series. In many cases one actually gets scalar functional
equations. In the general situation the construction of the necessary
Eisenstein series depends on the type of local components at infinity,
the conductors and the central characters of the two representations 7
and m'; when this data coincides and the central character of 7' is the
complex conjugate of that of n the resulting Eisenstein series has a
simple pole at s = 1. The residue of L(s,n x7') is a constant multiple
of the Petersson inner product (f,g). This fact applied to an automor-
phic representation m and its contragredient leads to the interesting

result, already known to Rankin in special cases, that the Fourier
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coefficients of the associated cusp form satisfy on the average the
Petersson-Ramanujan conjecture. When n' is not the contragredient of
T, the Euler product L{(g,m x7n') is free of poles or zeros to the right
of the line Re{s) = 1. The appropriate generalization {([31, p. 127) of
the ideas of Rankin leads to the following interesting result, which we
view as the main consequence of Rankin's trick : let 7 be an automor-
phic representation of GLQ(A) and L(s,n) its associated Euler product;

then L(s,m) does not vanish outside the critical strip which is compri-

sed between 0 < Re(s) < 1.
Langlands [5] has constructed some very general Euler products and
it is a problem of considerable interest, we believe, to isolate the

precise location of the critical strips.

2. ZERO-FREE REGIONS.

Rankin had already realized that the further investigation of the lo-
cation of the zeros of the Euler product L(s,m) of an automorphic re-
presentation within the critical strip depends on the analytic proper-
ties of L(s,mx7'); he was in fact able, at least in the case of the
automorphic representation 7 = m(A) connected with Ramanujan's modular
form of weight twelve, to extend to these EFuler products the method
that Hadamard and de la Vallée Poussin had successfully used in proving
the non-vanishing of A(s) on the line Re(s) = 1. A simple generaliza-
tion of Rankin's method leads to the following result : if # is an auto-
morphic representation of GLQ(A) and L{s,m) is the associated Euler pro-
duct, then L(s,m) # 0 for Re(s) = 1. In fact we can strengthen this
result to show that L(s,n) does not vanish on regions inside the criti-
cal strip which are similar to those that occur in the theory of Dirich-
let L-functions. Here the estimates for these zero-free regions de-

pend in an essential way on three parameters
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a) the type of the local component corresponding to the infinite prime,
b) the conductor of the representation and
c) the size of the representation measured in terms of the Petersson in-

ner product ||w] .

The parameters a) and b) arise in a natural way from the consideration
of T-factors and the presence of the conductor in the functional equa-
tion. The third parameter seems to be unnatural and enters into the
computations when use is made of the fact that the Petersson-Ramanujan
conjecture is true on the average. This seems to be necessary if one
wants to get results of some generality, which apply for example to real
analytic cusp forms. If one assumes that the local component for the
infinite prime of the representation m belongs to the holomorphic dis-
crete series, then one can use the theorem of Deligne on the size of the
eigenvalues of the Hecke operators and obtain zero-free regions which
can be effectively described in terms of the conductor and the local

component at the infinite prime.

The corresponding problems for the Euler products L(s,nm x7') are mo-
re difficult and somewhat incomplete at the present moment. Neverthe-
less it can be proved, again using another idea of Rankin, that except
for the possible simple pole at s = 1 the Euler product L(s,mxw') is
free of zeros or poles in a logarithmic region of exactly the same type

as for the Euler product L(s,m).

The best results that have been obtained thus far for the zero-free

regions for the Euler products L(s,n) is the following density estimate :

{p=B+iy :Llp,m) =0,8>a, |y]|<T} < Tc(l-—a}’

where the implied constants depend on the parameters a), b) and ¢) al-

ready mentioned sbove . The proof of this result for any automorphic
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representation m uses the techniques of the large sieve as developed
by Gallagher [1]. We believe that further improvement of these tech-
niques, say along the lines of the recent work of Montgomery and Sel-

berg, will lead to improved estimates for the constants.

3. EXPLICIT FORMULAS.

The study of the analytic properties of the Euler products L{s,7)
owes its interest to the possibility of relating the behaviour of the
characters of the local factors of the automorphic representation
T o=@ wp to the distribution of the zeros of L(s,m) as Riemann had al-
ready realized in the case of A(s). A problem in analytic number theo-
ry which promises to touch on much fertile ground and whose implica-
tions have not yet been fully noted is the working out of Riemann's
program [7] for the Euler products of automorphic representations of
linear reductive groups. One of our earlier results, which is in fact
relatively easy to prove, is the following von Mangoldt formula which
for simplicity we only state for the Ramanujan automorphic representa-

tion 7 = w(A)

P (2)
n o, =n B X _ 1 L7 (0,m)
nz ()\P+)\p)log D = *"2 T log(X 1) "7.—(1—)——-—— N
p SX 0 L7(o,m)
where 1{(p) = Ap-kxp is Ramanujan's arithmetical function, L(s,m) is

the well known Euler product for t(p) normalized sc that its critical
strip lies in %% < Re(s) < %; and the sum | runs over all zeros of

¢
L(s,m) in the critical strip.

For arbitrary automorphic representations w of GL,(A) we have ob-
tained similar explicit formulas which have a more complex appearance
but which in principle, as is to be expected, relate the characters of

the local factors Wp of m and the zeros of the Euler product L(s,m).
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This last remark suggests the useful role that explicit formulas will
play in the arithmetic study of automorphic representations. In this
connection it should be remarked that the above explicit formula is de-
rived from truncated explicit formulas where only a finite number of

zeros appear explicitely.

4. ZETA DISTRIBUTIONS.

In analytic number theory the explicit formulas that are most fre-
quently used are the truncated ones. There is a generalized explicit
formula, considered by Weil [14], which seems to have received little
attention up to now but that in the long run may prove to be more use-
ful. To avoid introducing much notation we describe this formula in
a simple but already significant situation. Let 7 = & "p be an auto-
morphic representation of GLQ(A). For our convenience we make the res-
trictive assumption that it is unramified, i.e. each 7_ is a class one
representation. Let {gp} be the semisimple conjugacy class in GLZ(C)
associated to the zonal spherical function of w_. Let r = sym3 be the
third symmetric power of the standard 2-dimensional representation of
GLQ(C) and let ¥ be its complex character. For the infinite prime

P = = we consider the characteristic polynomial
det(i-r{g )T) = (1=A, T (1=2, T (1=23T) (-2, T) .
The Euler product

i Spig >>~1
(e,

n
Lis,m,r) = .1 2 r( ). det(1-p
iz p

p

2

was introduced by Langlands [5]; its functional equation
L(s,m,r) = E(H,P)L(l—s,ﬂ,;),

where v is the contragredient of r and |e(w,r)| = 1, has been
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established, using Langlands' theory of general Eisenstein series, by

S. Shahidi [111.

Let L be the class of complex valued functions h on the real line
satisfying the following three conditions
i) there is a real number a > 0 such that the function

h(x)exp(%-+a)!xl is integrable on the real line;

ii) h is continuous and continuously differentiable everywhere ex-
cept at a finite number of points {a} where h and its deriva-
tive h' have only a discontinuity of the first kind such that

n(a) = 2(hat)+h(a-));

iii) there is a real number b > 0 such that h(x)exp(%4vb){xf and
h’(x)exp(%-fb)}x} decay to zero as |x| - .

Define the Mellin transform of a function h in L by

R oo (s~%)t
his) = J h(t)e

—oo

dt.

For each finite prime p and h in L we define a local distribution by

o

2

W(m_,vdh = - J p ? x(gHn(log pHlog ps
p Ly D

for the infinite prime we put

(“ 1_e~(m+l}2x —; y Aix o
W(n_,r)h = lim {- e e J e T On{x)dx +2h(0)log 5} 3
S e i21

adding up the local terms leads to a global distribution

W(m,r) = ) W(n_,r)
P P

where the sum is taken over all primes. The symmetry arising from the
funetional equation of L{s,w,r) is also reflected in the explicit for-

mula; to exhibit its presence we now introduce the concept of a Weyl
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transform which applied to the distribution W(w,r) defined above gives

a new distribution Ww(ﬂ,P) according to the rule

Wn,r)h (L) = W(m, D h(-t),

for any function h in L, where r is the contragredient of r.

We now have the explicit formula : for any function h in (L,
T hp) = W(m,r) + Wm,r)).h,
p

where the sum ) runs over the zeros (and poles) of L(s,m,r). The most
commendable atgibute of this formula is the remarkable resemblance,
which indeed is not accidental, of the right hand side with the constant
term of an Eisenstein series associated with a rank one parabolic sub-
group of a reductive linear group. One can almost visualize the right
hand side as an average of distributions parametrized by the elements

of a Weyl group, which in our case contains only 2 elements. An elemen-
tary argument, already used by Weil [14], shows that the Euler product
L(s,m,r) is an entire function and that its zeros have real part S if

2

and only if the distribution W + W* is positive. Because of this last

remark it is to be expected that the symmetric nature of the distribution
Ww+wWe s closely related to the Hermitian property of positive distribu-
tions ([8], p. 131). The next step in this direction will be to develop
similar explicit formulas for Euler products in more than one complex

variable.

Another significant problem that must be solved here is to determine
the correct structure of the contribution to the distribution W+ W
when 7 admits ramification. At present we are only able to obtain a
term which exhibits no obvious Weyl symmetry. We have now undertaken a
study of the Herbrand distribution attached to automorphic representa-

tions of GLZ(A) similar to those that appear in T1u].
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5. ZEROS ON THE REAL LINE.

The principle of the argument applied to the Euler product L(s,m)
of an automorphic representation 7 GLQ(A) together with simple estima-
tes for the I'-factors shows that the multiplicity of a real zero of
L(s,n), if it has any at all, is bounded from above by an absolute con-
stant times log(100 Azf(ﬁ)), where i is the eigenvalue of the casimir
operator that parametrizes the local factor 7w of 7 and f(w) is the con-
ductor of w. In the particular case when 7v_ belongs to the holomorphic
discrete series Serre obtains, using the finer arguments of Stark and
Odlyzko, that the multiplicity m(p) of a real zero p of L(s,m) is boun-
ded by m(p) < 2.4 + % log(ka(ﬂ)), where k is the "weight" of m. Fur-
ther improvements in this direction would complement the Birch and
Swinnerton-Dyer conjecture about the relation between the rank of the
Mordell-Weil group of an elliptic curve and the multiplicity of the
real zero of the Hasse-Weil zeta function at the real point on the cri-

tical line.

The principle of the argument applied to the Hasgsse-Weil zeta func-
tions of algebraic varieties defined over number fields ([10], p. 3)
also leads to conjectural logarithmic estimates for the ranks of Picard

groups of these varieties ([13]1, p. 104).

When the Hasse-Weil zeta function of an elliptic curve E defined
over the rationals is the Euler product of an automorphic representa-
tion of GLQ(A), then its Hasse-Weil zeta function L(S,E,kn) over the
cyclotomic extension k. containing the n-th roots of 1 can be written
out explicitly . If R is a fixed rectangle in the critical strip one
can apply the methods of Siegel ([12], p. 47) to study the asymptotic
distribution of the zeros of L(S,E,kn) inside R as n - =, It is of

some interest to investigate more closely the nature of these asymptotic
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results as the rectangle R decreases in area.

6. INFINITE PRIME NUMBER THEOREMS.

Let A be the automorphic €?presentation connected with the Ramanujan
modular form. Let t(p) = 2p7rcos Gp, 0 < ep < 7 be Ramanujan's arithme-
tical function. As a natural generalization of the prime number theorem
for arithmetic progressions, lebotarev's density theorem and Hecke's theo-
rem on the uniform distribution of the arguments of grossencharacters
one is led to consider the problem of the distribution of the complex
parameters sp that index the spherical functions associated with almost
all the local components of an automorphic representation m. An example
of this type of question is the problem of the distribution of the an-
gles ep. It is known ([9]1,I-25) in this situation that if all the Euler
products L(s,A,r), as r runs through all the symmetric powers of the
standard two dimensional representation of SU(2), do not vanish on the
line Re(s) =1, then the angles Gp are uniformly distributed in [0,m]

with respect ot the measure %—shﬁ¢d¢ The arguments that lead to this

type of prime number theorem involve the use of an infinite number of
Euler products and it is not clear how to get error terms comparable to
those that are possible in the classical prime number theorems without
making heavy assumptions on the distribution of the zeros of all the
Euler products L(s,A,r). The problem of improving the error terms in
distribution results like the Sato-Tate conjecture leads one to con-
sider the following formal identity. Let S be a subset of the space of
conjugacy classes in SU(2). Let Xg be the characteristic function of S,
or a smooth approximation of it, and consider the Fourier expansion of
Xg according to the characters Xp of the finite dimensional complex re-

presentations of SU(2)

xg(g) = ; a, (8)x,.(g).
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Now using the notation of our 84 we have for w an automorphic represen-
tation of GLQ(A), h a function of the class L and W(m,r) the associa-

ted zeta distribution, formally the identity

[ a.(8) ] np =] as)mrr)+un,r)).n,

T p(r) r
where for a fixed representation r, the second sum z runs over all
olr)
the zeros of L(s,w,r). A rigorous derivation of this formula as well as

truncated forms of it, at least for special types of functions h, will
undoubtedly be of some significance to the problems of finding the dis-
tribution of the eigenvalues of Hecke operators. These problems have
obvious generalizations to automorphic representations of reductive linear

groups whose clear formulation will be done elsewhere.

7. EFFECTIVE COMPUTABILITY.

The known effective versions of the Cebotarev density theorem can be
used to establish the following result. If ¢ and o' are two continuous
representations of Gal(Q/Q) of the same degree and of the same conductor
f(o) with characters yx and x', then there is an effectively computable
constant c¢ depending on the degree of the representation ¢ but not on
f(o) such that if X(gp} = X’(gp) for all the Frobenius conjugacy classes
gp associated to primes p < £(0)® then o and o' are equivalent. Expe-
rimental evidence seems to suggest that the numerical values obtained
for the constant ¢ by making effective the known large sieve techniques
do not give the truth. In fact if o and o' are of degree 2 and if
their corresponding Artin L-functions are actually Euler products of
automorphic representations 7{c) and w(c') of GLZ(A) whose infinity com-
ponents belong to the holomorphic discrete series, then a simple dimen-
sicnality argument shows that the constant ¢ can be taken to be smaller
than 2. A simple geometric implication of the effective Cebotarev den-

sity theorem is that one can effectively decide whether two cubic
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surfaces, defined by equations with integer coefficients, have the same
Hasse-Weil zeta function. Along these lines one can also make the fol-
lowing observation : let E and E' be elliptic curves defined by equa-
tions with integer coefficients and of the same conductor f; if their
Hasse-Weil zeta functions are actually Euler products of automorphic
representations and if the reductions modulo p of E and E' have the same
congruence zeta function for all primes p < f2, then E and E' are iso-

genous.

At the other extreme of the spectrum Casselman and Miyake have proved
a strong version of the multiplicity one theorem; namely if n and 7'
are two automorphic representations of GLQ(A) and if all, except a fi-
nite number, of their local components are equivalent, then the repre-
sentations m and m' are themselves equivalent. Both proofs depend on
the converse theorem of Jacquet-Langlands' version of the Hecke theory
and are clearly ineffective since one must be able to twist by an in-

finite number of grossencharacters.

Over the rationals one can prove an effective version of the Cassel-
man-Miyake theorem by simple dimensionality arguments. This has been
done for automorphic representations that correspond to holomorphic cusp
forms by Winnie Li {(thesis) and in the real analytic case by persuing a
simple idea of Mass. A weakened form of the conelusion is that if =7
and 1' are two automorphic representations of GLz(A) with the same con-
ductor f, then the unitary equivalence of the local components T and

'

n! for all primes p legs than some power of the conductor f, then 7

and ' are equivalent.

At the present time we are unable to prove an effective version of

the Casselman-Miyake theorem for automorphic representations of GLQ(A)
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over arbitrary number fields. Nevertheless a combination of the Rankin
trick, our explicit formulas for the Euler products of automorphic re-
presentations of GLQ(A) and the large sieve technique yields a proof

of the following result. If 7 and 7' are two automorphic representations
of GLZ(A) whose conductors have norms bounded by N, then there is a
constant ¢ depending on m_ and w! such that if the local components TS
and Wﬁ are equivalent for all primes p < NC, then 7 and w' have the same
Euler product L(s,m) = L(s,;'). It can be shown that the constant c¢ is
effectively computable if Satake's analogue of the Petersson-Ramanujan
conjecture holds for automorphic representations of GLQ(A). The reason
why we are unable to show that 7 is equivalent to 7w' is again the neces-
sity, inherent in the converse theorem to the Hecke theory, of having

to twist by an infinite number of grossencharacters. Without taking
into consideration this difficulty, we believe that a problem in the
theory of automorphic representations, whose solution will be of great
significance in diophantine analysis, is the establishment of an effec-
tive strong multiplicity one theorem : one should be able to tell whether
two automorphic representations are equivalent by comparing only a fi-

nite number of their local components.

8. THE MONTGOMERY PHENOMENON.

Some conjectural investigations of H. Montgomery ([6], p. 184) con-
cerning the distribution of the zeros of Riemann's Euler product A(s)
on the critical line have led him to some interesting speculations.

In the framework of the theory of automorphic representations these ob-
servations of Montgomery can be extended, without much technical diffi-
culty, to say that if 7 is an automorphic representation of GLQ(A) with
associated Euler product L{s,n) and if the corresponding zeros are lo-
cated on the line Res = %, then the pair correlation function of the

zeros of L(s,m is identical with the pair correlation function of the
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eigenvalues of a random complex hermitian or unitary matrix of large
order. It would be of some interest to understand Montgomery's pheno-
menon for automorphic representations from the point of view of harmonic

analysis on GLZ(A) and related groups.

9. THE VALUES OF EULER PRODUCTS AT INTEGER POINTS.

To end this circle of ideas we mention an elementary, though quite
pretty, result that falls out immediately from Rankin's trick already
stated in 81. To simplify our notation we assume that 7 and 7' are two
automorphic representations which are both unramified and have the same
local component at infinity, say a member of the holomorphic discrete
series; assume furthermore that their corresponding cusp forms on the
Poincaré upper half plane are f and g. Now, if 7 and 7' are not egui-
valent, then L{(s,m x7') in the notation of §1, is regular at s = 1 and

in fact its value is given by

L(1,mxmt) = 4 J (Im )X £(2) g2 1og (Im 2)° |4(2) | )aa,
F

where A(z) is Ramanujan's modular form. The proof of this result is

an exercise in the use of Kronecker's limit formula to write the con-

stant term in the Laurent expansion about s = 1 of the Lisenstein se-

ries E(s,z). Similar results, which involve more complicated expres-

sions are also possible for arbitrary automorphic representations.
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INTRODUCTION

In his Annals paper on modular forms of half integral weight [81,
Shimura mentions several open questions. One of them is the following :

is every form of weight 1/2 a linear combination of theta series in one

variable ?

We show that the answer is positive. The precise statements are gi-
ven in 82, Theorems A and B; they give an explicit basis of modular
forms (and cusp forms) of weight 1/2 and given level. The proof uses
the fact that, for weight 1/2, the formula defining the Hecke operator
T(pz) introduces unbounded powers of p in the denominators of the coef-
ficients - unless some remarkable cancellations take place (§5). But it
is a familiar fact that coefficients of modular forms (on congruence
subgroups) have bounded denominators. Hence the above cancellations do
hold, and they give us the information we need, when combined with basic
properties of '"newforms” 3 la Atkin-Lehner-Li (8§ 3,4). The details are
carried out in 88 6,7. As an Appendix, we have included a letter from
1

Deligne sketching an alternative method, using the "group-~representation

point of view.

In the above proofs, arithmetic arguments play an essential role. It
would be interesting to have a more analytic proof; a natural line of
attack would be to adapt Shimura's Main Theorem ([8], 83) to weight 1/2,

but we have not investigated this.

We mention a possible application of Theorems A and B : since the

weights 1/2 and 3/2 occur together in dimension formulae and trace
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formulae ([8], §5), the explicit knowledge of forms of weight 1/2 gives

a way of computing these dimensions and tracesg for weight 3/2.

§1. SOME NOTATION

1.1. Upper half-plane and modular groups.

We use standard notations, cf. [3], [7]. The letter H denotes the

upper half-plane {z|Im(z) > 0}. If z € H, we put q = e2“lz. Let
GLQ(R)+ be the subgroup of 6L,(R) consisting of matrices A = [i 3) with

det(A) > 0; we make GLZ(R)+ act on H by
z b Az = (az+b)/(cz+d).

Let N be a positive integer divisible by 4. We denote by I'y(N) and

Fl(N) the subgroups of SL, (Z) defined by

(D er,a0 = c=0  (mod M)
G5 er,an = a=d=1 (mod N) and c= 0 (mod N).
The group Fl(N) is a normal subgroup of I'y(N), and the map [i g) » d in-

duces an isomorphism of FO(N)/Fl(N> onto (Z/NZ)*.

1.2. Characters.

If t € Z, we denote by Xy the primitive character of order < 2 corres-

1/2

ponding to the field extension Q(t 3/Q. If t 1is a square, we have

1/2

Xy ®= 1. Tt t 1is not a square, and the discriminant of Q(t )/Q is D,

then X is a quadratic character of conductor |D|, and we have

xt(m) = (%) (Kronecker symbol),
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In particular, xt(m) = 0 if and only if (m,D) # 1. (Recall that, if

t = u2d, with u € Z, and d is square~free, we have D = d if d = 1

(mod 4), and D = 4d otherwise.)

1.3. Theta multiplier.
oo 42 +o0 2
Let 8(z) = T (1-¢°™ (1+¢?" Toogt =1+ 2g + 2" +
n= -~00
be the standard theta function. If A = (i g} belongs to I'j(4), we

have

8(Az) = J(A,z)8(z),

where j(A,z) is the "§-multiplier" of A. Recall {(cf. for instance [81)

that, if ¢ # 0, we have

. - 1/2
j(A,z) = edi xc(d)(cz+d) / s
1 if d =1 (mod W)
where €4 =
i if d = -1 (mod 4),

/2

and (cz+d)1 is the "principal" determination of the square root of

cz + d, i.e. the one whose real part is > 0 (more generally, all frac-

tional powers in this

paper have to be understood as principal values).

If ¢ = 0, we have A = £1, and j(A,z) is obviously equal to 1.
1.4. Modular forms of half integral weight.
Let ¥ Z/NZ)* - ¢* be a character (mod N), and let « be a positive

odd integer. A function f on # is called a modular form of type

(/2,%x) on TO(N) if

a) f(Az) = x(d) j(A,z)F(z) for every A = [i S) in T (N); this
makes sense since 4|N;
b) f is holomorphic, both on H and at the cusps (see [81).
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One then calls «/2 the weight of f, and y its character. The space
of such functions will be denoted by MG(N,K/2,x); it is clear that
MO(N,K/Q,x) consists only of 0 unless y 1is even, i.e. yx(-1) = 1. We put
Ml(N,K/Z) = @ MO(N,K/Z,x),
X
where the sum is taken over all (even) characters of (Z/NZ)*; this space

is the space of modular forms of weight «/2 on Fl(N).

A modular form which vanishes at all cusps is called a cusp form.
The subspace of My (N,k/2,%) (resp. M,;(N,k/2)) made up by cusp forms

will be denoted by SO(N,K/Q,x) (resp. Sl(N,K/Q)).

EXAMPLE : theta series with characters.

Let ¥ be an even primitive character of conductor r = v(y). We put
2

6,(2) = R

When ¢ = 1, 08 is equal to 6. When ¢ # 1, 6, is equal to

¥ v
2 4
273 P(ndq® = 2(q +w(2dq + ...)
n=1
(n,r)=1

We have Sw S M0(4r2,1/2,w), cf. [8], p.457. This implies that, if

t is an integer > 1, the series ew T defined by
b th
ngt(z} = Gw(tz) = gn vi{ndg

belongs to Mo(uth,1/2,xtw), see for instance Lemma 2 below.

2
Warning. One should not confuse § 6 with the series ) d)(n)gqn obtained

v
by twisting 6 with the character y, cf. §7.

1.5. Petersson scalar product.

If 2 € #, we put x = Re(z), y = Im(z). The measure dxdy/y2 is
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invariant by GL2(R)+. If f,g belong to Ml(N,K/Z), the function

_ —— K /2
Ff,g(z) = f(z)glz)y

is invariant by PI(N)' Hence Ff g(z)y—dedy is invariant by Fl(N) and
k]

defines a measure Mg g on H#/T, (N). One checks immediately that He o is
s 1

a bounded measure in each of the following two cases

i) one of the forms f,g is a cusp form;
ii) k = 1 (this was first noticed by Deligne).

In each case, the Petersson scalar product <f,g> of f and g is de-

fined as the (absolutely convergent) integral

- 1 _ 1 s K /2-2
<f,g> = SNy J Uf,g el f flz)glz) vy dxdy ,
H/T, (N)
where c(N) is the index of Fl(N) in SLQ(Z).
This is a hermitian scalar product. One has <f,f> > 0if <f,f> is

defined and f # O.

§2. STATEMENT OF RESULTS

2.1. Basis of modular forms of weight 1/2.

Our main result (Theorem A below) states that every modular form of
weight 1/2 is a linear combination of theta series with characters.
More precisely, let x be an even character {(mod N); let Q(N,¥x) be the
set of pairs (¢,t), where t is an integer =2 1, and ¢ is an even primi-
tive character with conductor r(¥), such that

(i) wr@)?t  divides N,

(i1) x(n) = Y (nIx, (n) for all n prime to N.

Condition (1i) is equivalent to saying that ¢ is the primitive character

associated with XX, hence ¢ is determined by t and x. Conversely, t
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and y determine Y.

hog 2
THEOREM A. The theta series 6, . = ] w(n)q'" , with (y,t) € Q(N,X),
> —oc

make up a basis of MO(N,1/2,x).

This will be proved in §6.

Call Q(N) the set of pairs (y,t) satisfying condition (i) above; this
set is the union of the §(N,x), for all even characters ¥ (mod N); hence

Theorem A implies

COROLLARY 1. The series Bw o with (y,t) € Q(N), make up a basis of the
, with

space Mi(N,l/Q) of modular forms of weight 1/2 on Fl(N).

In particular

oa

COROLLARY 2. If f = § a(n)q" is a modular form of weight 1/2 on T, (N),
n=0 .
then a(n) = 0 if n is not of the form tmz, where t is a divisor of N/u,
and m € Z.
COROLLARY 3. Let £ = 7§ a(n)q” be a formal power series with complex
n=0

coefficients. The following properties are equivalent

1) f is a modular form of weight 1/2 on some Fl(N)'

2) f is a linear combination of theta series

tn2
8 = q
RgaTst n=ng (mod 1)

n€Z

I
1] ey

3) For each square-free integer t > 1, there is a periodic function

€, on Z such that

3.1) a(tn?) = e (n) for every n > 1;

3.2) each €1 is even (i.e. at(n) = et(-n) for all n € Z);

3.3) €y is 0 for all but finitely many t;
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3.4) a(0) = 2 ] e, (0).
t

PROOF. The equivalence of 2) and 3) is elementary. The fact that a the-
ta series is a modular form is well known (cf. for instance [81, §2);

hence 2) implies 1). Corollary 2 above showsg that 1) implies 3).

COROLLARY 4. Let f = J a(n)q” be a non-zero modular form of weight 1/2
n=0

on_some Fl(N). Then

a) la(md)| = 0(1y;

b) for every p > 0, there is a constant cp > 0 such that

y !a(n)‘o = cpxl/2 + 0(1) for x - o=,

n<x

(If p = 0 and a(n) = 0, we put Ja(n)|? = 0.)

PROOF. This follows from Corollary 3.

REMARK. If f and g are modular forms of weight 1/2 on T (N), their
product F = f.g is a modular form of weight 1. By Theorem A, F is a
linear combination of series

2 2
I oa(nyg(m " U,

n,m
where o and 8 are characters. This shows that F is a linear combination

of Eisenstein series and cusp forms of dihedral type associated with

imaginary quadratic fields (cf. [3], 84). Hence, one cannot use pro-

ducts of forms of weight 1/2 to construct "exotic" modular forms of

weight 1.

2.2. Cusp forms of weight 1/2.

If ¢ is a character with conductor r, one may write ¥ in a unique
way as ¥ = II ¥ , where the conductor of wp is the highest power of p
pir
dividing r; we call wp the pth-comgonent of ¢ (in the Galois interpre-

tation of characters, wp is just the restriction of ¥ to the inertia
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group at p). We say that ¢ is totally even if all the wp's are even,
i.e. if wp(-l) = 1 for all plr; this is equivalent to saying that ¢ is
the square of a character (which can be chosen of conductor r, if r is

odd, and of conductor 2r, if r is even).

Denocte by Qe(N,x) the subset of Q(N,yJ) (see above) made up of the

(¢,t) such that ¢ is totally even, and put

QC(N,x) = Q(N,y¥) - Qe(N,x).

Define similarly

Qe(N) = g Qe(N,x) y QC(N) = g QC(N,X).

THEQREM B. The geries Gw o with (y,t) € Qc(N,X), make up a basis of the
b

space SU(N,l/Q,x) of cusp forms of MO(N,l/Z,X). The series ew o with

(p,t) € QE(N,X),make up abasis of the orthogonal complement of S§,(N,1/2,%)

in MO(N,l/Q,x) for the Petersson scalar product.

This theorem will be proved in §7. It implies

COROLLARY 1. The series ew o with (¢,t) € QC(N}, make up a basis of

the space Sl(N,l/Z) of cusp forms of weight 1/2 on r, ).

COROLLARY 2. We have Sl(N,l/Q) # 0 if and only if N is divisible by ei-

ther 64p2 where p is an odd prime, or upzp'g, where p and p' are dis-

tinct odd primes.

Indeed, Cor. 1 shows that Si(N,i/Q) is non~zero if and only if there
exists an even character ¢ with conductor r(3), which is not totally
even, and which is such that r(w)2 divides N/4. Since ¥ is even, at
least two pth~components of ¢y are odd; this shows that r(¢) is divisi-
ble by either u4p, where p is an odd prime, or by pp', where p and p'
are distinct odd primes; hence N ig divisible by either H.(up)Z = 64p2
or u(pp'}2 = szp‘Q. Conversely, if N is divisible by GQPQ (resp. by

2 ,2)

Yp“p , one takes for ¥ the product of an odd character of conductor
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p by an odd character of conductor 4 (resp. p'); it is clear that ¥

has the regquired properties.

EXAMPLES. The above results allow an easy determination of the spaces
of modular form of weight 1/2 on FO(N) and T';(N) : all one has to do is
to make a list of the divisors t of N/#, and, for each such t, deter-
mine the even characters ¥ with conductor r(y) such that r(w)2 divides
N/4t. The pairs (¢¥,t) thus obtained make up the set Q(N). We give two

examples

i) N = 4p,...pp> where the pi's are distinct primes. In this case t
is a product of some of the pi'g, and r(y) must be equal to 1, hence

Y = 1. Applying Cor. 1 to Th. A, we see that the series

oo 2
9(tz) = zﬁ qtn (where t divides p,...pp)
make up a basis of Ml(N’1/2>' Moreover, we have 6(tz) € MO(N,l/Q,Xt);
since the Xt's are pairwise distinct, each MO(N,l/Q,Xt) is one-dimen-
sional, and we have My(N,1/2,%x) = 0 if x is not equal to one of the

Xt’s {in particular if y is not real).

ii) Let us determine Sl(N,1/2) for N < 800. If this space 1is # 0,

2

Cor. 2 to Th. B shows that N is divisible by either Bup® or Mpzp'z

where p,p' are distinct odd primes; the first case is possible only if
N = 576 = 64-32; the second one is impossible (since it implies

N > 4.3°5% = 8900, which contradicts the assumption made on N). Hence
we have N = 576, and it is easy to see that the only element of Q. D
is the pair (Y,t) with t = 1 and ¢ = X3 (which has conductor 12). The
corresponding theta series is

_ n n
o, = 1 ¢ - ] q
3 n=t1 (mod 12) n=t5 (mod 12)

49 121 + q169 o).

25
= 2(g-q"" -q' T +q
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It foliows from a classical result of Euler (cf. for instance [4],
p. 931 or [8], p. 457) that % SX is equal to
3
hod )
n(28z) = g T (1-a°"™).
n=1

Up to a scalar factor, this series is thus the only cusp form of weight

1/2 and level N < 900.
§3. OPERATORS

3.1. Conventions on characters.

From now on, all characters are assumed to be primitive; this is ne-
cessary when dealing with different levels. We say that such a charac-
ter x is definable (mod m) when its conductor r(yx) divides m. The pro-
duct XX' of two characters y and %' is the primitive character associa~-

ted with n P x(n)x'(n); hence, we have

(xx")(n) = x(m)x'(m)

if n is prime to r(y)r{(x'), but maybe not otherwise.

3.2. The group G.

Following Shimura [8], we introduce the group extension § of GLQ(R)+
whose elements consist of pairs {M,¢(z)}, where M = fg i} belongs to

-1/2

GLQ(R)+ and ¢(z)2 = q det(M) “(tz+u), with Ja| = 1. The multiplica-

tion law in G is given by
M,0(z2) HNLp(z)} = {MN,¢(Nz)w(z)}.

When dealing with forms of weight «/2 it is convenient to define the

"slash operator" f|K£ = flg by
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(£18)(z) = ¢(2) “£Mz) where € = {M,$} € G,

and, for Ei € G and = € C
£} ciE4) = Yeg(fleg.

If A € T (%), we define A¥ € @ by A* = {A,3(A,2)}, where j(A,2) is the
8-multiplier of A, cf. 81. Thus, if f € MG(N,K/Q,X) and
a= (3 ) € 1y, we have £]A¥ = x(@)f.
It follows from the definition of J that
* %

(1) A¥B* = am* if A,B € T (u).

Computations in G are greatly aided by making use of (1) whenever poss-

ible.

3.3. Hecke operators.

For a prime p, with p {N, we define T(pz) on My(N,x/2,x) as in

Shimura [8] by

i

2 : -
o PTTL a3y 12 PC : -1
RE R S ¢ 52) 5P 2y« x(p DERICEIE ey X5 ()}
j=0 ]=

T(pz)

2
s xHE D

where ep = 1 or 1 according as p = 1 or 3 (mod 4), cf. §1. Tor a

prime p with p | N (for instance p = 2), we define T(pz) by

2
g BE iy _1/2
T(pz) = PK/2 2 Z {(1 %]9 }7
L 0p
j=0 L
and, if up | N, we define T(p) by
-1 Pz j 1/4
T(p) = pK/u ! )} {(é %}:P 3.
320
LEMMA 1. Let f = 7§ a(n)qn be an element of MO(N,K/Q,x), and let

n=0

£lT(p?) =

=}
r~1 §
(e

b(n)qn. Then f|T(p2) belongs to MO(N,K/Q,X) also, and
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we have
2 .
Jamp) if p N,
bi{n) =
a(an) . ?(K»3)/QX(p)X-u(p>(K—l)f2(§>a(n) .
+ 2 (pHras/p?) if pt N,

where (%) is the Legendre symbol. If 4p | N, then f£|T(p) belongs to

MO(N,K/Z,XXP) and is equal to |} a(np)qn. Any two such operators
n=0
commute.

PROOF. The statements about T(p2) are proved in Shimura, loc. cit.

Those about T(p), when u4p | N, are proved by a simple computation.

3.4. Other operators.

We need the shift v(m) = m /% {(? i),m_l/u} which acts by

[£fivim)](z) = fimz).

We need also the symmetry W(N) = {(g 1}),N1/u<-iz)1/2}, which acts by
(MO0 1) = N7 (-i) ™/ 28 (-1/mz),
so that [flWODI|WO) = f for all f.
The conjugation operator H is defined by
(£l (z) = £f(-2) = E atmqg" if f = § a(n)g".
n=0 n=0

LEMMA 2. The operators Vim), W(N) and H take MO(N,K/Q,X) to

My(Nm,</2,xx,) > MO(N,K/Q,QXN) and #,(N,k/2,%) respectively. Further,

if f belongs to MO(N,K/Z,x), we have :
[f]V(m)][T(p2) = [f|T(p?)]]V(m) when p {m,
[E1HT|T(p?) = [£]T(p%)1]H,

[ElWAD T T(p%) = TP IEIT(p ) 1|WN)  when p IN.



Se-5t-13
41
PROOF. Again, the proof involves simple computations in G and is left
to the reader. Care should be exercised in the commutativity results
since the definition of T(pz) depends on the character appearing in the

space containing the function to which T(pz) is applied.

The following operators will be used in 84 only. To define the
first one, suppose the prime Pg divides N/4, and write TO(N/pO) as a
disjoint union of cosets modulo TO(N)

. ]
FO(N/pO) = U FO(N)Aj, with Aj = , and u =(FO(N/pO) : FO(N)).

j=1 c. d.
J 1 J

=
[

We define the trace operator 8'(yx) = S'(x,N,pO) on MO(N,K/2,X) by

ST (x) =

Ho~
nes1e

*
LYAL =
x(aj) 3

Y (d. Ak,

3j 1
It is easily seen that this operator does not depend on the choice of
the Aj's. Moreover, if x is definable (mod N/po), S'(y) takes

My(N,k/2,%) to My(N/py,x/2,%x) and commutes with T(pz) for p [Ny if f

belongs to MO(N/pO,K/Q,x), we have

£18t(x) = uf.

For our purposes, it is more important to find an operator which
goes from level N to level N/pO and which undoes the action of the
shift operator V(po). To do this, we define S(y) = S(X,N,po) on

MO(N,K/E,x) by

1 [ — .
S() = ﬁ.pg/ WO ST (X )W/ pg)

LEMMA 3. Let p, be a prime such that L+pD[N, and XX is definable
- 0 )
(mod N/po). Then

a) The operator S(x,N,pO) maps MO(N,K/Q,x) into MO(N/pO,K/Z,XXp ).
0
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b) If m is prime to Pg» and f belongs to MO(N,K/Z,x), then
f|S(X,N,pO) = ffS(x,Nm,pO).

e¢) S({x) commutes with all T(pz), for p fN.

4y 1If g € MD(NIPG,KXQ)XXP ), then g{V(pO) € My(N,x/2,x) and
O

[g[V(pO)]IS(x,N,pG) = g.

e) Let p be a prime such that Lp|N, p # Pg» and XXp ig definable

(mod N/p). 1If g € MO(N/p,K/Q,XXP), we have

[g]V(p)]|S(X,N,DO) = [g|S(xxp,N/p,pO)]|V(p).

PROOF. Assertion a) follows from Lemma 2 and from the fact that

XXy = XX. X
N Py N/py

is definable (mod N/po).

If (i g) belongs to FO(Nm/pO), with (m,py) = 1, then

*
womy (& DY wam/pg) = tma1d wan (7, P W /py)

f.

and b) follows, since f|{m,1}
Assertion c¢) follows from the commutativity of the T(pg), pf N, with
W(N),8" (Xxy) and W(N/pgy).

As for d), we have

(00 D) spg wan = {pg,1wai/p),
hence
|V I wan = po*/" gluai/py).
This is invariant by % S'(QXN), and is sent to paK/” g by WN/p,), whic

proves d).
As for e), we have 4p0p|N, and XX, Xp is definable (mod N/ppo). Tur-
0

ther
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-1/4

e g),p W = {p,1IWW/p),

0 -
W(N/py) :W(N/ppo){[g 1) o1/t
and YXN = XXPXN/P' The formula

[g|V(P)T[S(X,N,py) = [g|S(xxp,N/p,pO)]|V(p)

follows from this, after a simple computation.

Let p be any prime. We shall need the operator
K(p) =1 -T(p,Np)V(p),

where T(p,Np) is the Hecke operator T(p) relative to the level Np (see

above).

LEMMA 4. If f = a(n)qn belongs to MO(N,K/Z,x), then f|K(p) belongs
n=0

to MO(Np2,K/2,X) and is equal to ) a(n)qn. Further, if p' | Np,

(n,p)=1
then T(p'2) and K(p) commute.

PROOF. This is immediate.

REMARK. All the above operators take cusp forms to cusp forms.

§4. NEWFORMS

4.1. Definitions.

Let f € MO(N,K/Q,X) be an eigenform of all but finitely many T(p2).
We say that f is an oldform (compare [1], [5]) if there exists a prime
p dividing N/4 such that

either x is definable (mod N/p) and f belongs to MO(N/p,K/Z,x),

or Xxp is definable (mod N/p) and f = g|V(p), with g € MO(N/p,k/Z,Xxp).
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We denote byMOld(N,K/Z,X) the subspace of M (N,x/2,%x) spanned by old
0 b 0

formg. If f € My(N,k/2,%) is an eigenform of all but finitely many

old

T(pz), and f does not belong to M,

(N,x/2,%x), we say that f is a

newform of level N.

LEMMA 5. The symmetry operator W(N) : MO(N,K/Z,x) - MO(N,K/Z,QXN) and

the conjugation operator H : MO(N,K/Q,x) - MO(N,K/Q,Q) take oldforms

to oldforms and newforms to newforms.

PROOF. By Lemma 2, W(N) and H take eigenforms to eigenforms. If f is

an oldform of the firgt type above, i.e. f € MO(N/p,K/Z,X), then

flwan = ot e WO 1] V()

is an oldform of the second type. Conversely, if f = g|V(p) is an old-

form of the second type, then f{W(N) = p—K/u

g|W(N/p) is an oldform of
the first type. Hence W(N) takes oldforms to oldforms; the same is ob-
viously true for the conjugation operator H. That W(N) and H take new-

forms to newforms follows from this, and from the fact that their square

is the identity.

LEMMA 6. Let h € Mgld(N,K/Z,x) be a non-zero eigenform of all but fini=-

tely many T(pz). Then there is a divisor N, of N, with N. < N, a cha-

1 = 1
racter  definable (mod Ni) and a newform g in MO(Nl’K/Z’w) such that

h and g have the same eigenvalues for all but finitely many T(pz).

PROOF. We use induction on N. By construction, Mgld(N,K/Q,x) has a ba-
sis (fi) consisting of forms of the type g, or g|V(p), where g is an
eigenform of all but finitely many T(pQ), and is of lower level. Hence
h is a linear combination with non-zero coefficients of some of the
fi‘s, and each fioccurringjjx h has the same eigenvalue for T(pz) as

h does. The Lemma then follows from the induction assumption.
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LEMMA 7. Let p be a prime, and let f = | a(n)q" be a non-zero ele-
n=0
ment of My(N,k/2,x) such that a(n) = 0 for all n not divisible by p.

Thenl p divides N/Q,Xxp is definable (mod N/p) and f = g|V{(p) with

g € MO(N/p,K/Z,XXP>.

PROOF. Put

g(z) = flz/p) = | al(pn)q" = pK/uf{{{

n=0

10 174
0 P)’P }‘

Let N' = N/p if up|N and N' = N otherwise. Let [,(N',p) be the sub-

group of TO(N') consisting of matrices [2 g) with b = 0 (mod p); 1if

b . .
A = (i d) is such a matrix, put A, = (;C b/g]. We have A; € T (),
and
i G 1/4 * *¥.,1 0 1/4
{G p),p/} AT = @ Al e
hence

g|a¥® = X, (Dx(dg.

Since d is relatively prime to both p and N, this can be rewritten
as

(%) gIA* = (xxp)(d)g.

By hypothesis, g has a g-expansion in integral powers of q, hence (%)
1 . .
holds for A = [é 1J~ Since FO(N') is generated by FO(N',p) and
1
(é 1): this shows that (%) holds for any A € FO(N'). Since g 1is
non-zero, this implies that XXP is definable {(mod N'); this is easily
seen to be possible only if p divides N/u4, in which case N' = N/p and

(x) shows that g belongs to MO(N/p,K/Q,xxp).

REMARKS. (1) If f is a cusp form, it is clear that g is also a cusp
form.

(2) The above Lemma gives a characterization of oldforms of the second

type.
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THEOREM 1. Let m be an integer > 1, and let f = J a(n)q" be an ele-
n=0
ment of MO(N,K/2,X) such that a(n) = 0 for all n with (n,m) = 1. Then

f can be written as

f = g fp|V(p), with fp e MO(N/p,K/z,XXp),

where p runs through the primes such that p{m, 4p|N, and XX is defin=

able (mod N/p).

If f is a cusp form, the fp can be chosen to be cusp forms. If f is an

eigenform of all but finitely many T(p'Q), then the fp may be further

chosen so that they, too, are eigenforms of all but finitely many T(p'ZL

and have the same eigenvalues as f.

(Compare with the integral weight case, in [1] or [5].)

PROOF. Clearly, we may assume that m is square-free. We proceed by
induction on the number r of prime factors of m. If r = 0, thenm = 1
and all a(n) are zero by hypothesis; there is nothing to prove. Now
suppose r 2 1 and that Theorem 1 has been proved for all m's which are
productsof strictly less than r primes (and all levels). Let py be a
prime divisor of m. Put m = pgmgy, and

h= 7 a(mq™ = £] T K(p), cf. §3.
(n,mo):l plmg,

If h = 0, we may replace m by m and Theorem 1 follows from the in=-

O)

duction hypothesis. Hence, we may assume that h # 0. By Lemma 4, we
have h € MO(ng,K/Q,X). If (n,mo) = 1 and a(n) # 0, by hypothesis we
have (n,po) # 1 and Lemma 7 shows that HpO|NmS, XXp is definable

0

2 . 2 .
(mod Nmy/py) and h = gpo\v(po) with gpo € MO(NmO/pO,K/Z,XXPO). This
implies that MpD]N and that XXp is definable (mod N/pq).
0
Moreover, we have

oo

f-h=7f-g |Vipy = ] blm)g",
Py _

n=
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with b(n) = 0 if (n,mO) = 1. By the induction hypothesis (applied to
my and to the level ng), this shows that f<—gp {V(po) can be written
0

as
f-g |Vipy) = g [vip),
Po 0 1}; P

where p runs through the primes such that pfmo and XXP is definable
(mod Nmé/p), with gp € MO(Nmé/p,K/Q,XXP). We now apply the operator
S{y) = S(x,N,pO) of 83 to f. Using Lemma 3, the above formula gives
£]s(x) - 8, y [gp\S(XXp,ng/p,pon|v<p).
P
Let now fp be f|S(x). We have fp

0
above formula shows that the nth

€ M (N/p,,k/2,%XX. ). Moreover the
0 0 ¢ Py
coefficient of £, = £-f fvip,) is O
Py 0
if (n,mO) = 13 this allows us to apply the induction hypothesis to £
and My, and we get the required decomposition of f. As for the other

assertions of Theorem 1, they follow from the inductive construction of

the fp's and from Lemma 3.

COROLLARY. If the form f of Theorem 1 is an eigenform of all but finite-

old

ly many T(p'z), then f belongs to MmN,/ 2,%) .

§5. THE “"BOUNDED DENOMINATORS" ARGUMENT

5.1. Coefficients of modular forms of half integral weight.

LEMMA 8. (a) There is a basis of My(N,k/2,x) consisting of forms whose

coefficients belong to a number field.

(b) If £ = § a(n)qn belongs to MB(N,K/Q,x) and the a(n) are algebraic

numbers, then the a(n) have bounded denominators {(i.e. there exists a

non-zero integer D such that D.a(n) is an algebraic integer for all n).
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PROOF. The analogous statement for modular forms of integral weight is

well known (cf. for instance [7], Th. 3.5.2 or [3], Prop. 2.7J. We
shall reduce to that case by the familiar device of multiplying by a

fixed form fo. We choose for fO the form

0%¢ = (1 +2q +2qﬁ'+...)3K = 1+6kg + ... .

The map ¢ : f & SSKf sends MO(N,K/Q,x) into the space MO(N,ZK,x) of mod-
ular forms of type (2«,¥x) on FO(N). By the results quoted above, it

SKf

follows that, if the coefficients of f are algebraic, those of 8
have bounded denominators; dividing by 8%€ does not increase denomina-
tors, hence b) follows. As for a), one has to check that the image
Im(®) of ¢ can be defined by linear equations with algebraic coeffi-
cients. This is so because 6 does not vanish on the upper half-plane
(as its expansion shows), nor at any cusp except those congruent mod
Fo(u) to 1/2; hence a modular form F in MO(N,QK,X) belongs to Im(¢) if
and only if it vanishes (with prescribed multiplicities) at these cusps,
i.e. if some of the coefficients of its expansions at these cusps are

zero; since it is known that these coefficients are algebraic linear

combinations of the coefficients of F at the cusp *«, the result follows.

REMARKS. (1) A similar argument shows that Ml(N,K/Q) has a basis made up
of forms with coefficients in Z, and that the action of (Z/NZ)* is Z-
linear with respect to that basis. This implies that, if f = ) a(n)qn

belongs to M(N,k/2,X) and ¢ is any automorphism of €, the series

£9 = ¥ ola(n))q"

belongs to MO(N,K/Q,XO), just as in the integral weight case ([3], 2.7.4).
We will not need these facts.

(2) On noncongruence subgroups, part (a) of Lemma 8 remains true, but

part (b) does not, as was first noticed by Atkin and Swinnerton-Dyer [21.

A simple example is
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1/2 1/2 1 2 11 4

f(z) = 8(=z) 6(3z) =l+ta-3q -+% q3-+7? q = e

which is a modular form of weight 1/2 on a subgroup of index 2 of T1(12%
and whose coefficients have unbounded powers of 2 in denominator (if n

th

is a power of 2, the 2-adic valuation of the n coefficient of f 1is

i-n). Similar examples exist 1in higher weights, integral as well as

half integral : take for instance

£ (z) = 0(z)12 a(32)™ 2, with m odd > 1,

which is of weight (m+1)/4.

5.2. Eigenvectors of the Hecke operators for weight 1/2.

From now on, we restrict ourselves to weight 1/2, i.e. we take x = 1.

LEMMA 9. Let f = 2 a(n)qn be a non-zeroc element of MO(N,l/Q,x) and
n=0
let p be a prime, with p [N. Assume that fIT(pz) = cpf, with o €C.

Let m > 1 be such that p2 | m. Then

2n, _ n,mn
(a) we have a(mp®) = a(m)x(p) (5) for every n > 0.

(b) If a(m) # 0, then p{ m and ey = X(p)(g)(1+p_1).

PROOF. Since T(pQ) maps forms with algebraic coefficients into them-
selves (cf. Lemma 1), it follows from Lemma 8 that the eigenvalue cp is
algebraic, and that the corresponding eigenspace is generated by forms
with algebraic coefficients. Hence we may assume that the coefficients

a(n) of f are algebraic numbers. Consider the power series

ACTY = T almp?™TP,
n=0

where T is an indeterminate. By [8], p. 452, we have

1 - oT

A(TY = a(m) —mW——"
(1-8T) (1-vyT)
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with o = x(p)p_l(g) and B + vy = ¢ By = )((pz)p”1 (note the negative

D’
exponent of p, which comes from the fact that « = 1). This already
shows that a(m) = 0 implies A(T) = 0, i.e. a(men) = 0 for all n = 0.
Hence we may assume that a(m) # 0, in which case A(T) is a non-zero ra-
tional function of T. If we view A(T) as a p-adic function of T {(over
a suitable finite extension of the p-adic field Qp), Lemma 8 (b) shows

that A(T) converges in the p-adic unit disk U defined by ITID < 13 hence

A(T) cannot have a pole in U. However, since By = x(pz)pﬁl, either

8_1 or Y—l belongs to U; assume it is B—l.

~1

In order that A(T) be holo-
morphic at B ~, it is necessary that the factors 1 - 8T and 1 - aT cancel

each other. We then have o = B and

A(TY = a(m)/(1-yT), sc that a(mpzn) :Yna(m).
Since By # 0 we have o # 0, hence p | m. Moreover,

1

y = By/a = x(p2)p Y/x(p)p” 3 - x(p) (3.

n
This shows that a(mpzn) = y" a(m) = a(m)x(p)n(g) , which proves (a).

As for the last assertion of (b), it follows from Cp = B+y=a+y.

THEOREM 2. Let f = Z a(n)qn be a non-zero element of MO(N,l/Z,x)
n=0
and let N' be a multiple of N. Assume that, for all p | N', we have

f|T(p2) = Cpf, with cP € C. Then there exists a unique square-free
integer t > 1 such that a(n) = 0 if n/t is not a square. Moreover

(iy  t]N',

1

(1) e = x(p)(%)(1+p_ )y if p/f N'.

(iii) a(nu?) = atmxw ) if (u,NY) = 1, u > 1.

PROOF. Let m and m' be two integers » 1 such that a(m) # 0 and
a(m') # 0. We show first that m'/m is a square. Let P be the set of

primes p with p} N'mm'. If p € P, Lemma 9 shows that
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m -1, _ m' -1
X(P)(§>(1+p ) = cp = x{(p)( P)(1+p Vs
h E o .nl.i. e .
ence (p) (.P) for all p € P

It is well known that this implies that m'/m is a square. We may write
m and m' as m = th, m' = tv'z, with v,v' 2 1 and t square-free > 1.
This proves the first part of the Theorem, i.e. the existence of t.
Write now v as pnu, with p | N' and (p,u) = 1, so that m = tpzan. By

. 2 n tul D 2 2
Lemma 9, applied to tu”, we have a(m) = x(p) (—5—) a(tu™) hence a(tu®) #0
and Lemma 9 (b) shows that p [/ tug, hence p | t, and cp = x(p)(%)(1+p_1l
Hence every prime factor of t divides N'; since t is square-free, this
shows that t{N', and (i) and (ii) are proved. As for (iii), it is

enough to check it when u = p with p f N'; in that case, one writes n

as mOPQa, with p2 ! my, and applies Lemma 9 (a).

COROLLARY. If a(1) # 0, then t = 1 and c = x(p)(14p™ 1) for p f NT.

(Note that, in this case, the cp's determine the character x.J

Let now § af(n)n
n=1 .
¥ be the character xx,, so that ¥(p) :X(p)(é) if pf N'. Assertions

® be the Dirvichlet series associated with f. Let

(i) and (iii) of Theorem 2 can be reformulated as

THECREM 2'. Under the assumptionsof Theorem 2, we have
® - - - - -1
Y oa(mn ®=t75¢ b a(tnHn %Sy 1 (1 -y(plp 28
n=1 n|Nt p{ N’

(The notation A|BW means that A divides some power of B, i.e. that every

prime factor of A is a factor of B.)
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§6. PROOF OF THEOREM A

6.1. Structure of newforms of weight 1/2.

oo

Let £ = a(n)qn be a newform of level N (cf. 84) belonging to
n=0
MO(N,l/Q,x). By Theorem 2, there is a unique square-free integer t=>1
such that a(n) = 0 if n/t is not a square.

LEMMA 10. We have t = 1 and a(1) # 0.

PROOF. The product expansion of J a(n)n”® given in Theorem 2' shows
n=1
= 0 for every n such that (n,N') = 1;

the Corollary to Theorem 1 then shows that f belongs to Mgld

that, if a(1) = 0, we have a(n)

(N,1/2,%),
contrary to the assumption that f is a newform. Hence a(1) # 0, and

this implies t = 1, cf. the Corollary to Theorem 2.

This Lemma allows us to divide f by a(l); hence we may assume that

f is normalized, i.e. that a(1) = 1.

LEMMA 11. Let g € MO(N,i/Q,x) be an eigenform of all but finitely many

T(pz), with the same eigenvalues as f. Then g is a scalar multiple of f.

PROOF. Let ¢ be the coefficient of q in the g-expansion of g, and set
h =g ~ cf,

80 that the coefficient of g in the gq-expansion of h is 0. Suppose

h # 0. By Lemma 10, h is not a newform; since it is an eigenform of

old

all but finitely many T(pz), it belongs to Mo

(N,1/2,x). Hence, by
Lemma 6, thereare NllN, with N, < N, a character y definable (mod N
and a normalized newform g4 in MO(Ni,l/Q,w) with the same eigenvalues

Cp as f and h, for all but finitely many T(pz). Since the cp’s
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determine the character (cf. the Corollary to Theorem 2) we have ¥ = ¥

and so g4 belongs to Mgld

(N,1/2,x). On the other hand, the coefficient
of g in the g-expansion of f-—gl is 03 the same argument as above then
shows that f-—g1 belongs to Mgld(N,1/2,x). Hence f =g, +(f~g1) belongs
to Mgld(N,1/2,X). This contradicts the assumption that f is a newform.

Hence h = 0, i.e. g = cf.

LEMMA 12. The form f ig an eigenform of every T(p2). If we put

f}T(p2) = cpf, we have

T -s -2s -1 -28 -1
(%) 7 al(m)n = I (1-c_p ) T (1-x{pp ™)
n=1 p|N P p{ N

Further, if up|N, then ey = 0.

PROQOF. If we apply Lemma 11 to g = f]T(pQ), we see that g is a multi-
ple of f. Hence f 1is an eigenform of every T(p2), and the Euler pro-
duct (%) follows from this and Theorem 2' (applied with N' = N, t=1,
b=

If 4p|N, then Lemma 1 shows that

2.2 pm2
a(m"p®)q = cpf’V(p)

e~ §

£|T(p) = § alnp)q" =
n=0 o]

m
belongs to MO(N,l/Z,XXP). If ° # 0, Lemma 7 applied to f|T(p) and to
the character xxp shows that x is definable (mod N/p) and that

£lT(p) = g|v{(p) with g € My(N/p,1/2,x). We have cpflv(p> = glvip),
hence cpf = g; this shows that f belongs to MO(N/p,lf?,x) and contra-

dicts the assumption that f is a newform, Hence c_ = 0.

LEMMA 13. The level N of the newform f is a square, and f|W(N) is a

multiple of flH.

(Recall that W(N) and H are respectively the symmetry and conjugation

operators, cf. 83.)
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PROOF. If p /N, we have f{T(pz) = cpf with e, = (1+p_1)x(p), and, by

Lemma 2,

[ElWOD 1| T(p?) = §<p>20p gluan = 5 £lwan,

[f|H]|T(p2) = (cpf)|H = Ep flu since H is anti-linear.
But f|W(N) and f|H are newforms of level N and characters iXN and X res-
pectively, cf. Lemma 5. Since they have the same eigenvalues Ep for all
T(pz), p I N, and these eigenvalues determine the character (cf. the Co-
rollary to Theorem 2), we have QXN = ¥ and N is a square. The fact that

f]W(N) and f|H are proportional follows from this and from Lemma 11.

THEOREM 3. If f is a normalized newform in MO(N,1/2,X), and r is the

conductor of x, then N = HrQ and £ = % &l

X
PROOF. We write £ = J a(n)q" as above, and put
n=0
o -1 - -1
F(s) = J atwn ® = T (1-cp % T (1-x(pp %
n=1 p|N P p /N

F(s) a(n)n"s.

"
1ne~1 8

The Dirichlet series F and T converge for Re(s) large enough. Using

Mellin transforms and Lemma 13, we obtain by a standard argument the

]

analytic continuation of T and T as entire functions of s (except for

a simple pole at s = 1/2 if a(0) # 0), and the functional equation

- ~(1/2-8) _
(2175 T(s)F(s) = c1<3NTl> (3-6)F(3-s),

where C1 (and C27 CS’ Cu below) is a non-zero constant.

On the other hand, we know that the functions

8
!
N

L(2s,y%) = x(n)n-zs =

I )
n=1 D X r

G(s)

i

G(s)

i

L(2s,%)
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satisfy the functional equation
_ ~-{1/2-s) _
(2m)7% T(s)6(s) = ) (LT r(3-$)T(3-5).
Yr
Dividing these equations, we find
1-c_p 28 ¢ (1/2-9) 1—Epp25‘1

(%) I {—2 ) =, (— o |—E1,

pim | 1-x(p)p~7° P up? slm  \1-x(p)p?s7?

where m is the product of the prime divisors p of N such that cp=#x(p%

If, for some p|m, we have x(p) # 0, then the left side of (%) has an
infinity of poles on the line Re(s) = 0, only finitely many of which

can appear on the right side. This shows that p|m implies x(p) = 0,

(i.e. p|r) and cp # 0 since cp # x(p). We may now rewrite (%) as
2 2®
mo(t-e pT%) = o, ARy m (1eelpT?,
plm P L plm P

where cé = p/Ep. The same argument as above (using zeros instead of
poles) shows that, for every p|m, we have cp = cﬁ, i.e. Jc |2
2 2

= p;
b I

But, by Lemma 12,

n
£
3

the above egquation then gives €, = 1 and Nm
we have Cp = 0 when 4p|N. This shows that m = 1 or 2, and that m = 2
can occur only when 8 [ N and ¥(2) = 0; in the last case, r is divisible
by 4 and the equation Nm? = up? shows that N is divisible by 16,
which contradicts 8 }/ N. Hence only the case m = 1 is possible, and we
have N = 4r2, F(s) = G(s). This shows that, for every n > 1, the coef-
ficients of qn in f and in % ex are the same. Hence f-—% SX is a
constant, and, since it is a modular form of weight 1/2, it is 0. This

concludes the proof.

6.2. Alternative arguments.

(1) To show that the constant term of f and % eX agree, we could have

used the well-known fact that they are equal to - F(0) and - -G(0)
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respectively.
(2) Another way to rule out )cpiz = p is to prove a priori that [cp' <1.
This may be done as follows. Choose D > 1 such that p 1is inert in

QV/~D), and consider the modular form of weight 1

2 2 2
Dv y = X a(u2)qu +Dv

u,v

g(z) = £(2)8(Dz) = ( ) a(u)qu)( T oq
u=0 ~o0

. . 2 1
The p2n—th coefficient of g is a(p”') = (cp)p By [3], Cor. 5.2,
this coefficient is O(pzna) for every & > 0. This obviously implies
] < 1
e

Theorem 3 has a converse

THEOREM 4. If x is an even character of conductor r, then % GX is a

normalized newform in MO(4r2,1/2,X).

(Recall that all characters are assumed to be primitive.)

PROOF. Let N = MPQ. We know that SX belongs to MO(N,l/Z,x) and it is

easily checked that it is an eigenform of all T(pz), with eigenvalue

ey = (1+p"1)x(p) if p /N (cf. Lemma 1).

Thus, if GX is not a newform, Lemma 6 shows that there area divisor N1
of N, with N1 < N, a character ¥ definable (mod Nl) and a newform f in
MO(Ni,l/Z,W) guch that f and SX have the same eigenvalues for all but

finitely many T(pz). We thus have

(1+P_1)W(P) = Cp = (1+p_1)x(p) for almost all p,

and this implies ¥ = ¥y, hence Nj = urz by Theorem 3. This contradicts

N1 < N. Hence SX is a newform, and % GX is obviously normalized.

6.3. Proof of Theorem A.

Let x be an even character definable (mod N). With the notations of
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§2, we want to prove that the theta series ew g = 6w|v(t), with
o

(p,t) € Q(N,x), make a basis of MO(N,i/Z,X). The proof splits into

two parts

a) Linear independence of the 8

Y,t”

Since t and y determine ¥, every t occurs as the second entry of at

most one (P,t) in Q(N,yx). Suppose then that we have

A, B ...+ X 8 = 0
| 3
1 Kbl:tl m Vmstm
Y
with tl < t, <. ..< t, and Xi # 0 for all i, The coefficient of ¢ in
8 is equal to 2; in © » J 2 2, it is equal to 0. This shows
Vst Vyots

that 2%1 = 0, hence Al = 0. This contradiction proves the linear inde-

pendence of the ew,t.

b) The 6 with (P,t) € Q(N,¥x), generate MO(N,i/Z,X).

vyt

We need

LEMMA 14. There is a basis of MO(N,l/Z,X) consisting of eigenforms for

all the T(pz), p | N.

PROOF. Put on MO(N,1/2,x) the Petersson scalar product <f,g>, cf. §1.

A standard computation shows that, if p * N, we have

< £|T(k?),g > = x(pD)< £,8[T(7) >,

hence i(p)T(pz) is hermitian. The Lemma follows from this, and from

the fact that the T(pz) commute.

We can now prove assertion b), using induction on N. By Lemma 14, it
ie enough to show that any eigenform f of all T(pz), p { N, is a line-
ar combination of the 6¢’t with (¢,t) € QN,x). If f is a newform,

this follows from Theorem 3. If not, we may assume f is an oldform of

one of the two types of 8i
either x is definable (mod N/p) and f belongs to MO(N/p,l/Q,X),
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or XXP is definable (mod N/p) and f = g|V(p) with g € MO(N,N/p,l/Z,XXP).

In the first case, the induction assumption shows that f is a linear

combination of the ew + with (y,t) € Q(N/p,x) and a fortiori with
3
(p,t) € Q(N,x). In the second case, g is a linear combination of the
Sw £ with (¢,t) € Q(N/p,xxp),and hence f is a linear combination of
>
the ewatp’ with (Y,tp) € QN,x).

REMARK. It is possible to prove Lemma 14 without using Petersson pro-
ducts. Indeed, assume that some T(pz), p [ N, is not diagonalizable.
Then there exists an eigenvalue c¢_ of T(p2) and a non-zero element g of

MO(N,1/2,x) such that
2 _ 2
glu# 0 and gl|U® = 0, where U = T(p") ~ e

Using Lemma 8, one may further assume that the coefficients of g are
algebraic numbers. A computation similar to that of Lemma 9 then shows

that these coefficients have unbounded powers of p in denominators, and

this contradicts Lemma 8. Hence, each T(pz) is diagonalizable. Since

these operators commute, Lemma 14 follows.

§7. PROOF OF THEOREM B

7.1. Twists.

oo

Let £ = J a(n)q" be a modular form of weight k = «/2 on some 0.
n=0
Let M be an integer > 1, and ¢ a function on Z with period M (i.e. a

function on Z/MZ). We put

oo

fxeg= a(nme(n)q”.
n=0

Let € be the Fourier transform of ¢ on Z/MZ, defined by



59
£(m) = % ) e(n) exp(-27inm/M).
n € Z/MZ
We then have
e(n) = 7§ £(m) exp(2minm/M),
mEZ/MNEA
hence
(fxe)X(z) = 7§ E(m)f (z43) .
mEAX/MZ ’

Se-5t-31

From this, one deduces easily that f *x¢ is a modular form of weight k

on Fl(NMQ)‘

7.2. Characterization of cusp formg.

We keep the above notation, and we put

9¢(s) = ] almn”®.

n=1

THEOREM 5. The following properties are equivalent

i} f vanishes at all cusps m/M, with m € Z;

ii) for every function e on Z, with period M, the function

oo

Op () = ] a(m)e(n)n”® is holomorphic at s = k.
) n=1

(This is also true when k 1is an integer, instead of a half integer;

the proof is the same.)

PROOF. Consider first the case where M = 1. Assertion 1) then means

that f vanishes at the cusp 0, and assertion ii) that ¢f(s) is holo-

morphic at s = k. If we put

g=flWND) = 7 blndq",
n=0
then i) is equivalent to

ity g vanishes at the cusp =, i.e. b(0) ig 0,

while the functional equation relating ¢f(s) and ¢g(k—s)

is equivalent to

shows that ii)
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ii') (QF)‘ST(S)¢E(S)iS holomorphic at s = 0, i.e. ¢g(o) = 0.

The equivalence of i') and ii') then follows from the known relation

b(0) =-¢ (0).
g
Consider now the general case. By applying the above to f % ¢ (with N
replaced by NMZ), we see that 1i) is equivalent to

iii) for every function € on Z, with period M, the modular form f * ¢

vanishes at the cusp 0.

Using the above formulae, this is in turn equivalent to

iv) for every m € Z/MZ, the modular form f(z+§0 vanishes at the cusp 0O,

and it is clear that iv) is eguivalent to 1).

CORCLLARY. The following properties are eguivalent

a) £ is a cusp form;

b) for every periodic function € on Z, the function ¢f.*5(s) is holo-

morphic at s = k.

Indeed, Theorem 5 shows that b) is equivalent to the fact that f van-
ishesat all cusps # «; gince = is Tl(N)—equivalent to 1/N, this means

that f is a cusp form.

REMARK. When f belongs to some MO(N,K/Q,x), it is enough to check pro-
perty b) for functions e with period N. Indeed, by Theorem §, this
implies the vanishing of f at all cusps m/N, with m € Z, and it is

known that every cusp is FO(N)—equivalent to one of these.

We now go back to the case ¥ = 1, k = 1/2

LEMMA 15. Let ¢ be an even character which is not totally even (cof. §2).

Then 6, is a cusp form.

1

PROOT. Let € be a periodic function on Z. By the Corollary to Theorem
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5, it is enough to prove that the Dirichlet series

F(s) =2 T emypin
€
n=1

2s

is holomorphic at s = 1/2. Let M > 1 be a period of e, which we may

assume to be a multiple of the conductor r(y) of Y. We have

2
F (s) =2 e(m™)y(m)F (2s),
€ n€Z/MZ m, M
where ) -5
F (s) = n ~.
m, M n=m (mod M)
m=>1

It is an elementary fact that Fo m(s) has a simple pole at s =1 with
3
residue 1/M. Hence Fs(s) has at most a simple pole at s = 1/2, with

residue R(e,¥)/M, where

R(e,p) = ) em®)ypm),
meEzZ/MZ
and we have to prove that R(e,y) = 0. By assumption, there is a prime
£ dividing r(y) such that the Kth component wﬂ of ¥ is odd. Let us

write M as £7M', with (£,M') = 1, so that the ring Z/MZ splits as

Z/L%Z x Z/M'Z. Let Xp be the element of %/MZ whose first component (in

the above decomposition) is -1, and the second component is 1. The
fact that wﬂ is odd means that w(xﬂ) = -1. Since Xy is invertible in
Z/MZ, we have

- 2 ~ 2

R(e,v) = e ((x,m)D(x,m) = ) e(m“ )Y (x,m)
mEZ/MZ mEZ/MZ
_ 2
= - e(m )y(m) = -R(e,y)
mEZ/MZA

which shows that R(e,y) = 0, as wanted.

LEMMA 16. Let ¥ be a totally even character, and T a finite set of inte-

gers = 1. If the modular form £ = ) c,H (c, € C)
s o ‘tGTtw’t t
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is a cusp form, then &ll ¢_ are Q0.

t

PROQOF. Assume the c_ are not all 0, and let to be the smallest t € T

t

such that ¢, # 0. Choose an integer M > 1 which is divisible by 2r(y)
and by all t € T. The first divisibility condition, together with the

assumption that ¥ is totally even, implies that there is a character a

definable (mod M) such that a2 = ¢. Define now a periodic function €
on % by
aln/ty) if tyln and n/t, is prime to M
e(n) =
0 otherwise.

We have

, J'$<n) if (n,M) = 1

e(tyn”) =
Lo if (n,M) # 1

and

etn’) = 0 if t €T, t > t, (since (tn’,) > t > ty).

0

Using the minimality of tO’ this shows that the Dirichlet series

¢f»*€(s) is equal to

. i i
2e, ] Tow egn?) = 2e, 5% ] n"%s,
0 (n,M):l 0 (n,M)=1
n=1 n=1

The same argument as in the proof of Lemma 15 shows that the residue of

this funection at s = 1/2 is equal to

c t_l/z

- - -z
¢, %o S(MI/M = o t no1-2),

which is # 0. By Theorem 5, we thus see that f is not a cusp form.
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Proof of Theorem B.

Let N,X,QC(N,x),Qe(N,x) be as defined in §2. We have three asser-

tions

al

b)

c)

7.4,

to prove

The Gw’t,

Indeed, Lemma 15 shows that ew is a cusp form, and this obviously

with (y,t) € QC(N,x),are cusp forms.

implies the same property for 8

y,t-
No linear combination (except 0) of the ew’t, with (w,t)fEQe(N,X)a
is a cusp form.
Let V be the space of the linear combinations of the 6 with

Y,t?
(Yp,t) € Qe(N,x), which are cusp forms. It is clear that V is

stable under the T(pz), p | N. Hence, if V is non-zero, it con-
tains a common eigenform f of the T(pz), p { N. Since the eigen-

value of © is (1+p_1)w(p), the form f has to be a linear com-

v,t

bination of the 8 for a fixed character ¥, and this contradicts

vt

Lemma 16.

If (y,t) € QC(N,x) and (¥',t") € Qe(N,X), then ew,t and Gw,,t,

are orthogonal for the Petersson scalar product.

Indeed, since y # ¢', there is a p | N such that ¥(p) # ¥'(p).

Hence, and 6 are eigenforms of T(pz) corresponding to

%, bt
different eigenvalues. Since Y(p)T(pZ) is hermitian (cf. the
proof of Lemma 14, §6) this implies that these two functions are

orthogonal.

The space El(N,i/Q).

Let Ey(N,1/2,%) be the space of linear combinations of the ew + with
k

(p,t) € Qe(N,x). By Theorem B, we have the orthogonal decomposition

MO(N,l/Q,x) = EO(N,1/2,x) ® SO(N,l/Z,X),

where SO(N,1/2,X)is the space of cusp forms. Similarly, if we put
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Ei(N,1!2) =@ ED(N,1/2,x), we have

M1(N,1/2) = El(N,i/2) @ SI(N,l!Z).

The elements of El(N,ifz) can be characterized as follows

THEOREM 6. Let f be an element of Ml(N,l/Z). The following properties

are equivalent

i) f belongs to El(N,l/Z).

ii) f is a linear combination of 6(az+b), with a € Z, a = 1, and b€qQ.

iii) £ is orthogonal to all cusp forms of all levels.

PROOF. Clearly ii) implies iii) since 8 is in EI(M,i/Z) for every M,
and so is orthogonal to all cusp forms; the same is then true of

B (az+b) for any a and b. We have already shown that iii) implies 1).
Finally, if ¢ is a totally even character, we may write § as a2 where
the character o is ramified at the same primes as y; we have ew =06 % o,
hence Sw is a linear combination of the 0(z+b), with b € Q; this shows

that Gw has property 1i), hence that i) implies ii).

REMARK. Maass [6] has shown that 6(z) can be defined as an "Eisenstein
series’, by analytic continuation ad la Hecke. The same is true for

all the 6(az+b), hence for all the elements of El(N,l/Z).
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APPENDIX

Free translation of a letter from Pierre DELIGNE,

dated March 1, 1976

.. Using the same triek as in my Antwerp's paper (vol. II, p.90, proof
of 2.5.86), one can deduce directly from your Theorem 2 the structure
of the modular forms of weight 1/2 (on congruence subgroups of SLQ(Z)).

The final result is

THEOREM. The g-expansions of the modular forms of weight 1/2 are

I¢ <u>q“2
(S t ’

(1) )
T Z

u

where Tt runs through a finite subset of Q*+, and, for each t, by is a

periodic function on Z (i.e. the restriction of a locally constant func-

tion on i).

PROOF. Let H be the space of modular forms of weight 1/2, and 6 the sub-
space of H consisting of the theta series (1). We put on H the Peters-
son scalar product (which always converges). The metaplectic 2-covering
§L2(Af) of SLZ(Af) acts on H, preserves the scalar product, and leaves

© stable. Under this action, H decomposes into a direct sum of irredu-
cible representations. Let H. be one of them. We want to prove that

H; is contained in ©.

One checks immediately that, if N and x are suitably chosen, Hi has a
non-zero intersection with My(N,1/2,%x). The Hecke operators T(p2) asso-
ciated with all primes p (including those dividing N) come from the ac-
tion of (the group ring of) siz(Af), and commute with each other. Hence

they have a non-zero common eigenvector f in Hi n MO(N,1/2,X)- By
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your Theorem 2, one has

£= 7 a(tu2)qtu {(t square-free, t|N),
u €l
and
a(mu2) = a(m)yyp(w if (u,N) =1, ¢ being some character (mod 2N),
a(mp?) = Apa(m) if plN (cf. Shimura [81, 1.7).

Congider now
2
g = 3 a(tu2)qtu
(u,N)=1
It is clear that g 1is & non-zero element of 0. On the other hand, g

is (up to a scalar factor) the transform of f by ? Lp’ where LP is
pIN
the operator which transforms h{(z) into h{z) -Aph(pzz). Since Lp can

be defined by the element 1 —Ap (p fﬁ) of the group ring of éLQ(Qp),
0 p
this shows that g belongs to Hi’ hence Hi N 6 # 0. Since Hi is irre-

ducible, this implies Hi < 0, q.e.d.

Yours,

P. Deligne

PS. These arguments should extend to any totally real number field.
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DIMENSIONS DES ESPACES

DE FORMES MODULAIRES

par H. COHEN et J. OESTERLE

I) Introduction.

La connaissance explicite des dimensions des espaces de formes
modulaires est nécessaire dans de nombreux problémes. Les formules qui
les donnent sont connues de beaucoup de gens et il existe plusieurs
méthodes permettant de les obtenir {(théoréme de Riemann-Roch, applica-
tion des formules de trace données par Shimura dans [3]). Néanmoins on
ne les trouve pas dans la littérature courante ; cet exposé, tout en
s'abstenant de fournir les démonstrations, se propose donc de conbler
cette lacune. En outre, une table donnant dim Sk(TO(N),x) et
dim(Mk(l"o(N),x) pour k€%+27Z , N€200 , et tout caractére x, figure

4 la fin de 1l'article.

II) Notations.

Soit ﬁ=={z€ €/Im z> 0} le demi-plan de Poincaré sur leguel agit

. ab _ aztb
SL2(R) par : (C d).z = 9

Soit N un entier naturel non nul et notons TO(N) le sous~-

ab
Sl

Soit X un caractére multiplicatif modulo N , i.e. un homomor-

groupe de SLZ(Z) formé des matrices telles que c=0(N).

. * * R .
phisme de (2Z/NZ) dans € . Soit £ 1le conducteur de X , c'est-a-

dire le plus petit diviseur de N tel que X se factorise & travers
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(z/e2)" .

Scit k£ %Z un entier ou demi-entier.

Nous ferons les hypothéses suivantes :

- 8i k est entier, x(-1) = (-D)¥ .
- Si k€%+7Z , N est multiple de 4 et x(-1)=1 .
*
Nous définirons le symbole (g) pour c€2Z , et d€2Z par les

conditions suivantes :

a- (g) est complétement multiplicative

(%)’-—1 si ¢<0 et (:?T)=1 si ¢c>»0

2
(S) = (-1 (=108

(

si ¢ est impair

T NIa

) est le symbole de Legendre si p est premier impair
et ¢ premier & p
(§)=O si pged(c,d)#1 .
La notation ab , pour af€ c” et b€C désignera

exp(b(log‘al +i Arg a)), avec -m<Arg as<"mT .

r R r , -
Nous noterons Mk( O(N),x) (resp Sk( O(N) X)) et nous appelle
rons espace des formes modulaires entiéres (resp. paraboliques) de
poids k , de niveau N et de caractére X 1'espace des fonctions £

définies sur -6 ayant les propriétés suivantes :

a) £ est holomorphe sur ﬁ .

az+b
cz+d

ab
(& d)ETO(N) et tout zéﬁ, .

b) Si k€zZ , £(

) =x(d)(cz+d)kf(z) pour toute matrice

N o az+b, _ cy-1y-k k
b) Si k€%+Z , £(Z3) =x(d)(3)("5) " (cz+a)"f(z) pour
toute matrice (2 g)éGTO(N) et tout zf?ﬁ .

c) £ est holomorphe (resp. s'annule) aux pointes (cf. [2]

pour la signification de cet énoncé).

On démontre que les espaces Mk(TO(N),x) et Sk(FO(N),x) sont

de dimension finie. On a méme les résultats suivants :



71
C~0-3

(i) dim Sk(l"o(N),x)=O si k<0,
(ii) dim (T (N),x)=0 si k<0, ou bien si k=0 et
o
que X n'est pas le caractére trivial X _ ,

(iii) dim MO(FO(N),XO)=1 .

III) Les résultats.

Dans les théoreémes 1 et 2, nous allons donner la valeur de
dim Sk(TO(N),X)-dim Mz_k(TO(N),x), valable pour toute valeur de k
dans »Z , le théoréme 1 traitant le cas o k est dans Z , et le
théoréme 2 le cas ou k€ %+27 .

Compte tenu de (i), (ii), (iii), les formules ainsi obtenues per-
mettent de calculer la valeur de dim Sk(TO(N),X) pour k=22 , et
aussi celle de dim Mk(TO(N),X) pour k®»2 (faire k=2-k dans 1la
formule).

Pour k=1/2 et %x=3/2 , les formules donnent la valeur de
dim 51/2(FO(N),X) - dim M3/2(FO(N),><) et de
dim s3/2(ro(N),x) - dim M,l/z(l"o(N),X).

Pour un N et un X fixé, Serre et StarkK exhibent dans [1] une
base explicite de 81/2(FO(N),X) et M1/2(FO(N),x). Les formules pré-
cédentes permettent alors d'obtenir la dimension de M3/2(FO(N),X) et

S3/2(1“0(N),x).

Théoréme 1. Soit k€Z (et donc x(-1) =(—1)k) . 0On a :

dim § (T _(N),x) - dim M, (T _(N),x) =

SN TT a+ly = 1 TToae s p) +6, = X (%)
p|N P p|N PP x mod N
x2+1 = O(N)
+ oy z X (%)
x mod N

x24+x+1 = O(N)

avec les notations suivantes :

si pln , rp (resp. sp) désigne 1'exposant de p dans la décompo-

sition en facteurs premiers de N (resp. de f)
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) 1
. A +S_, vaut : Tt i 2s <r_=2r'
(rprsprP) TR s p7p
Zpr si 2s €r_ =2r'H
r -5 P P
2p P P si 2s_>r
b b
. Sk vaut : O si k impair
—2—1 si k=2 {(mod 4)
2—1 si k=0 (mod 4)
< By vaut = O si k=1 (mod 3)
—-% si k=2 {(mod 3)
1§ si kE0 (mod 3)
Remargues_concernant_l'énoncé du_théoréme :
1°) L’expression 7 Ar_,s_,p) est en fait égale 3 la
p‘N P P
somme I ¢((C,g)) ol % est la fonction d'Euler. Mais c'est le
clN
N, IN
(cl6>i%

produit qui est le plus maniable en pratique.

2°) 81 x=%x_ , caractére trivial, la somme z X (%)
° X mod N
%241 = 0(N)
(resp. z x{x}) est égale au nombre de racines de 1l'éqguation
x mod N

x24x+] = 0O(N)

x2+1 =0 (resp. x2+x+1 =0) dans 2/NZ . Ce nombre vaut
{o si 4lw { o) si 9IN
_ resp. _
TT 1+ si alx ( TT @ +(33>) si ofw
p{N b pIN

Théoréme 2. Soit k€é%+Z (et donc 4/N et x(-1)=1). On a :

) r o
dim Sk( O(N).X) dim M

— k-1 1 ¢
2 ToM ) = Fn TT(1+2) -3 ;E} M(r,s,:p)

2

127 oy p
p#2

X, rp et sp ont méme signification gu'au théoréme 1, et ou ¢

est défini par le diagramme suivant :

2
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r2>4 Q=K(r2,52,2)
r,=3 (=3
Condition (C) t=2
$,=0 t=3/2
ro=2 k—%EZ 2
2 52=2 =5/2
non (C) v
5,=0 £=5/2
k—%éz 2
52=2 £ =3/2

La condition {(C) étant la condition suivante :

(C) &> 3p premier, p=3(4), pln , rp impair ou ©0< rp<25p .
Par suite :

non (C) &= (¥p premier), (p=3(4) et p/N = rp pair et rp)Esp).



c-0-6
74

TABLES : DIMENSIONS EN POIDS DEMI-ENTIER

I) Rappel des notations.

k€%+7Z , N est un entier naturel multiple de 4 et X un carac-
tére multiplicatif modulo N de conducteur f tel gque Xx({(-1)=1 ; on

r ' -
note Mk( O(N),x), S (FO(N),X), Ek(TO(N),x) 1'espace des formes modu

k
laires entiéres, paraboliques, d'Eisenstein respectivement, relative-

ment au groupe FO(N) et au caractére X , et de poids k .

X étant astreint & 8&tre pair, £ ne peut prendre que des valeurs

distinctes de 3 et 4 et non congrues a 2 modulo 4.

II) Présentation des tables .

Les tables qui suivent permettent de calculer facilement les valeurs

. . ~ T il T ur
des dimensions des espaces M ( O(N).X}, 8, ( o(N)'X)' E { O(N),X) Po
tout k€%+2Z , et tout caractére X modulo N , pourvu gue le niveau

N soit inférieur ou égal & 200.

Une premiére table donne les valeurs d'une certaine quantité

a{N} en fonction de N .

Une deuxiéme table, ordonnée en guatre colonnes, donne les valeurs
de certaines quantités Db(N,f) et c¢(N,f) qui ne dépendent que du
niveau N, et du conducteur £ de X . Dans la premiére colonne figu-
rent les valeurs de N . Dans la seconde colonne figurent les valeurs
de f . Parfois, cette colonne est vide ; cela signifie que pour le
niveau N correspondant, b(N,f) et c(N,f) sont en fait indépendants

de £ . Parfois, on trouvera sur une méme ligne de cette seconde
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colonne, plusieurs valeurs de £ distinctes, séparées par une virgule ;
cela signifie que Db(N,f) et c(N,£f) sont les m&mes pour toutes ces

valeurs de f

Une troisiéme table donne la dimension, que nous noterons d&{(N,x),
de 1'espace M1/2(FO(N),x). Des régles générales permettant de trouver

d(N,%x) vy figurent, et elles sont suivies de la liste des exceptions.

III) Résultats.

Avec les notations précédentes on a :

i < i = A1 =
si k<o dim Sk(To(N),X) dim Mk(TO(N),x) 0

3 = 1 3 T = i H i
si k 5 dim S1/2( O(N),x) O {attention : ceci

n'est plus vrai si N> 200)

si k=% dim Sy, (T (N), ) = d(N, %) +B(N, £) = (N, £)
dim M3/2(T“O(N),x) =Db(N, )

si k=2k‘+1§ avec k'>1 dim 8, (T _(N),%) =a{N)k' - b(N, £)
dim MK(I"O(N),X) =a(N)k' -b(N, f) +c(N, f)
dim E (T (N),x) = c(N, f)

si k=2k'+§ avec k'3 1 dim 8 (T _(N),x) =a(N)k' +b(N, £) - (N, £)

dim Mk(I“o(N),x) =ga(N)k' +Db(N, f)
dim Ek(FO(N),x)==c(N,f)

.

1ére table

a(N) 1 2 4 4 6 8 8 81 12y 12} 12| 16} 14| 161 24} 16| 18

N 72| 76| BO| 84| 88] 92| 96,100/104/108/ 1121116/ 120|124,128]132|136

a{N)} 24; 20| 24| 32| 24| 24| 32| 30| 28| 36| 32| 30| 48| 32| 32| 48| 3%

N | 1401144/148]152]156/160|164|168|172|176/180|184]188|192]|196}200

a(N)] 48| 48| 38| 40| 56| 48| 42| 64| 44| 48] 72! 48] 48 64| 56| 60
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2éme table :

76

N £ c(N, £f) | b(N, £) N £ c(N, f)| b(N, £)
4 2 1 112 1,7,28 12 14
8 3 2 8,56 8 12

12 4 3 16,112 4 10

16 1 6 4 116 1,29 4 9

8 4 3 116 4 10
16 2 2 120! 12 18
20 1,5 4 3 124 4 10
20 4 4 128/ 1,8,16 16 16

24 6 5 32 8 12

28 4 4 64 4 10

32 1,8 8 6 128 2 9

16 4 4 132 8 16
32 2 3 136 6 12
36 1 8 6 140 8 16
12 8 8 144 1,12 24 24
9,36 4 5 8,24 16 20

40 6 6 9,36 12 18

44 4 5 16,48,72 8 16

48 1,12 12 10 144 4 14

8,24 8 8 148 1,37 4 11

16,48 4 6 148 4 12

52 1,13 4 5 152 6 13
52 4 6 156 8 18

56 6 7 160/ 1,5,8,20,40, 16 20

60 8 10 16,80 8 16

64 1,8 12 10 32,160 4 14

16 8 8 164 1,41 4 12

32 4 6 164 4 13

64 2 5 168 12 22

68 1,17 4 6 172 4 13
68 4 7 176 1,11,44 12 18

72 1,8,12,24 | 12 12 8,88 8 16
9,36,72 6 9 16,176 4 14

76 4 7 180, 1,5,15 16 24
8of 1,5,20 12 12 12,20,60 16 28
8,40 8 10 9,36,45,180 8 22

16,80 4 8 184 6 15

84 8 12 188 4 14

88 6 9 192| 1,12,8,24 24 28

92 4 8 16,48 16 24

926} 1,8,12,24 | 16 16 32,96 8 20

16,48 8 12 64,192 4 18

32,96 4 10 196 1,7 16 20

100 1,5 12 12 28 16 24

20 12 15 49,196 4 16

25 4 9 200(1.,5,8,20,40, 18 24

100 4 10 25,100, 200 6 18
104 6 10
108[1,9,12,36 | 12 15
27,108 4 11




77 c-0-9
3éme table : Valeurs de d4(N,x)=4dinm MP(FO(N),X) pour N<200.
2

- Premier _cas : X n'est pas le caractére unité et n'est pas d’ordre 2.

Dans ce cas on a d(N,x)=0 sauf dans le cas suivant

81 N=196 et que X est 1'un des deux caractéres d'ordre 3 et

de conducteur 7 , alors 4d{N,x)=1 .

- Deuxiéme cas : X est le caractére unité, i.e : X=X -

Dans ce cas, on a la table suivante

N 4! 8112116]20 24 |28 32} 36y 40| 44 48| 52| 56; 60| 641 68

d(N.XO) ot 1 2 1)1 1 2 2 1 1 2 1 1 1 3 1

N 72|76(80[84(88(92 {96 |100|104|108|112}1116[120[124|128]|132]136

d(N,XO) 20 1] 2 1] 1] 1 2 2 1 2 2 1 1 1 3 1 1

N 14011441148 152|156/160]164]168]172|176{180) 184|188 192|196| 200

d(N,XO) 1 4 1 1 1 2 1 1 1 2 2 1 1 3 2 2

- Troisiéme cas : X est d'ordre 2.

Dans ce cas d(N,x) =1 , sauf pour la table d'exceptions que
nous présentons ci-dessous avec en premiére colonne la valeur de N ,
en seconde colonne l'entier £ (il est & remarquer que si x quadra-

tique pair, alors x==(£) ou f est son conducteur) ; dans la troi-

siéme colonne on trouve d(N,x).

N | £id(N,x) N | £ ]da(N,x) N | £]a(N,x)
32| 8 2 108[12 2 180] 5 2
48(12 2 11228 2 192] 8 2
64| 8 2 128] 8 3 12 3
72| 8 2 144| 8 2 24 2
80| 5 2 12 2 200| 8 2
96| 8 2 160| 8 2 5 2
12 2 5 2 40 2
24 2 40 2
100| 5 2 176| 44 2
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1V) Exemples.

1°) Calcul de dim[s:s/z(ro(ms),(i?))?.

Remargque : (1%) est le
caractére d'ordre 2 associé a 1l'extension @(V3)/@ ; son conducteur f

est égal & 12.
1

On a : 4(108,(=))=2 (cf 3éme table, 3e cas, exceptions)
b(108,12) =15 (2éme table)
c(108,12) =12 (2éme table)

Donc : dim S (FO(108),(1—2-))=2+15—12=5 )

3/2

2°) Calcul de dim[Mg/z(To(156),x)1 ou X est un caractére

d'ordre 19 et de conducteur 39.

On a : g=2k'+% avec k'=2
a(156) = 56 (1ére table)
b{(156,39) =18 {2éme table)
¢(156,39) =8 (2éme table)

Donc la dimension cherchée est 56X2-18+8 = 102

— it R f o t
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FACTEURS GAMMA ET éQUATIONS FONCTIONNELLES

par M.-F. VIGNERAS

Introduction.

On considére des séries de Dirichlet o(s) de la forme
(1) ZTa n® , s€¢,a €cC
n 31 n n
vérifiant une équation fonctionnelle :
(2) @®(s)=a"° ¥(-s) , A>O

avec les conditions suivantes :

1) w{(s) converge pour Re(s) assez grand vers une fonction non

identiquement nulle.

2) ¥(s) est une autre série de Dirichlet vérifiant 1)}, de la

s

=2 -
forme (1), V(s) rlmbn n , 8€C , bn€ ¢ .
3) A1(s), Az(s) sont des facteurs gamma
G
A1(s) = E F(pfs-+cf)
(3) =1
B
A (s) = il '(p s+c_)
2 g+t 9 7
ot G=»1%1 , H-G=21 , les constantes Ce o cg sont des nombres complexes

et les constantes Pe s pg des nombres rationnels strictement positifs.

On pose
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p = p1 +...+ pH

P P
H
P=p11x...><pH .

4) Les fonctions

I

(4) 8(s) = (26m) 72 b, (s) 0(s)

¥(s)

(26m)75/2 5 (s) ¥(s)

admettent des prolongements holomorphes a 1l'extérieur d'un ensemble

borné, tels que pour tout oy 9, finis
lim P(o+it) = lim Y¥(o+it) = O uniformément pour 61S6S62 .
| =00 [0
On dira que (A, ¥(s), A1(s), A2(s)) sont les données de 1'équa-

tion fonctionnelle vérifiée par ®(s). On a utilisé les notations de
Bochner [1]. on remarquera que l'équation fonctionnelle avec k-s , au

lieu de ~s , kE€C
&(s) = A"° ¥(k-s)

se raméne & une équation fonctionnelle du type précédent avec les

~k/2

données (A, {2pPm) b {k+s) , ﬁ1(s)f Az(k+s)}.

Bochner étudie dans [1] les équations fonctionnelles des séries de
Dirichlet générales, c'est-da-dire les équations fonctionnelles (2),
vérifiant 1) & 4) mais ol ®(s), ¥(s) ne sont plus astreintes a la
condition d'&tre de la forme (1) et sont des séries de Dirichlet géné-

rales, de la forme :

i
™
w

P(s) A8, a €c, 0<H, <x €1 -
n n

1 27"
1)

ChyeesS< U ?

= L <
¥ (s) b . bnéc, 0<u, 5 n

npl O

Nous dém@ntrerons dans le paragraphe 1 que les résultats de Bochner

(1] ont pour conséquence les théorémes 1 et 2 suivants :

Théoréme 1. Il n'existe pas d'éguation fonctionnelle vérifiant 1) 3 4

. . 1
z z 1
i ¥ pe#Zp, ousi Zpg<y.
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Si 1l'on suppose :

= =1
S)pr"ng_z

les solutions des équations fonctionnelles s'obtiennent & partir des

fonctions z&ta partielles

¢ (s) = z In|~® ¥ (s) = £ nlnl™® , a,acm.
a,A nEZ a,A HEZ
nz=a (mod A) nza (mod A)
n#o n#O

Plus précisément :

Théoréme 2. Soit ®(s) une série de Dirichlet de la forme (1) vérifiant

une éguation fonctionnelle (2) satisfaisant 1) & 5). Alors,

- les facteurs gamma de 1'éqguation fonctionnelle sont de la forme :

s+
©2

2

s+c1
A1(s) = F{—?r~)f1(s) Az(s) = T{ )fz(s)

f1(S) et fz(s) sont deux fonctions entiéres d'ordre 1 et ou ¢

1

(2

c2 sont deux nombres complexes vérifiant :
+Cc,., =
¢y te, 1 ou 3

- AEN

- 8i c1+c2 1 , ©(s) est une combinaison linéaire guelconque des

fonctions :

Qa,A(s+c1) ;, a=0,...,A-1 .

- Si c1+c2 = 3, 9(s) est une combinaigon linéaire quelcongue des

fonctions :
¢* (s+e,) =0 1
a,h S c1 . a=90,...,A- .
Ce théoréme admet le corollaire suivant qui peut s'interpréter

comme une généralisation de la caractérisation de la fonction z&ta de

Riemann par son équation fonctionnelle, donnée par Hamburger fal
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Corollaire 1. Les séries de Dirichlet de la forme (1) vérifiant une

équation fonctionnelle (2) satisfaisant 1) 2 5) sont les combinaigons

linéaires des fonctions L(s,x) de Dirichlet, ou les caractéres X

sont soit tous pairs, soit tous impairs.

On rappelle que la fonction L(s,x) de Dirichlet est définie par

(5) L{s,x) = T x(n) n ° , Re(s)>1 .

n=21

Pour son équation fonctionnelle voir [10].

La transformation de Mellin permet d'appliquer les résultats de

Bochner [1] aux formes modulaires. Il vy a lieu de considérer les séries

théta :
5 (z) = £ 2imn? o* - 5 — ¢
a,alz) = exp(2im™n~z) a A(z) = n exp(2imn®z) a,A€W.
! n€z 4 n€Z
nza(mod A) n=a{mod A)
Théoréme 3. Soit f(z) = £ a_ exp(2i7nz) une forme modulaire de poids

n=z0
k/2 (k entiex) pour un groupe de congruence. Supposons gu‘il existe

un _ensemble D fini d'entiers positifs, sans facteurs carrés, deux &

deux distincts tel que an==O si n n'est pas de la forme dm2 ., avec
d€D, mé€N . Alors,

- k/2 = 1/2 ou 3/2 .

- 8i k/2 =1/2, f{z) est une combinaison linéaire quelconque des
séries théta

g = -
a'A(dz) , d4€D , a=0,...,A-1, A€N.

- 81 k/2 =3/2 , f(z) est une combinaison linéaire quelconque des

séries théta

*
Ga,A(dz) , d€D , a=0,...,A-1, A€W .

Les séries de Dirichlet peuvent vérifier plusieurs équations fonc-
tionnelles provenant des relations entre facteurs gamma, exclusivement

(théoréme 4 du n°® 4), paragraphe 1). Ces relations sont données dans
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1'appendice écrit par J.-P. Serre.

L'auteur remercie Jean-Pierre Serre qui énong¢a comme probables ces
théorémes dans son cours de 1976-1977 au Collége de France, et qui

1'aida considérablement par ses suggestions.

§1. Démonstration des théorémes 1 et 2.

1) Un_théoréme de Bochner [1].

En étendant une idée de Siegel [ 8] pour démontrer la caractérisation
de la fonction zéta de Riemann par son équation fonctionnelle, Bochner
démontre le théoréme suivant ([1], th. 2.6, th. 3.2, th. 3.4), concer-
nant les équations fonctionnelles des séries de Dirichlet générales

avec p=A=1 .

Théoréme (Bochner E1]). 1) Soit p=A=1, il n'existe pas d'équations

fonctionnelles de séries de Dirichlet générales si = Pe #Z Pq ou si

la densité de Polya de 1l'une des suites (Xn) ou (un) est nulle.

2) Si A=1 et T pPe = z pg = % , pour tout r €N assez grand,
1'équation fonctionnelle (2) des séries de Dirichlet générales
o(s) = % a, X;s , Y(s) =2 brl u;s implique une relation de la forme
(6) I ST e—2ﬁunz =K (z)+ T a_ A ' & (z/1 )
s n n r 1 n n r n
vérifiée pour z€ @€ , Re(z)>0 , ol Kr(z) est une fonction résiduelle

holomorphe de 1log z et Qr(z), holomorphe pour Re(z)>0 , admet pour

seules singqularités sur 1'axe imaginaire les points +i et 1'on a :

au voisinage de i @r(z)~nc(iz+1)_0_r
au voisinage de -i @r(z)AJCe_zﬂld (—1)H."G-'-r(—izﬂ)_U_r
ol l'on a posé
B
h h 2 ' rency
G H H
c = I O'f— = G+1§; q = = fe)
£=1 g=6+1 9 g=G+1 9
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C est une constante dépendant des données A , o{s}, V{(s), 31(S),

Az(s) et de r .

La démonstration de Bochner est suffisamment claire et élégante
pour qu'il ne soit pas utile de donner plus d'indications sur ce thé-
oréme, quoiqu'il ne soit pas énoncé exactement ainsi dans [1]. Les
idées principales sont les suivantes : par transformation de Mellin, on
obtient la relation (6), puis on applique un théoréme de Polya [35, p.89]
et la théorie classique de Frobenius-Fuchs & une certaine équation diffé-

rentielle linéaire vérifiée par Qr(z).

La remarque suivante sera essentielle : le membre de droite de la

relation (6) admet sur 1'axe imaginaire pour seules sinqularités non

nulles les points +i kn tels que an;fo . Au voisinage d'un des deux

points i A, tels que a #0 , il est équivalent &
o o
-r
o] X .
ay My Rz )

n
C o/ C

En effet, soit »€ R et considérons la somme restreinte aux n
tels que )\n#-TJ\ :
v a 2T @ (irv/r ).
> BB r n

Il existe N(X)>0 , tel que pour n=zN()), on ait \x/xn\< 1 et une

NI

constante M(r)>0 , telle que pour |yl < % . \Qr(iy)|<:M(r). On suppose
que r est choisi assez grand pour appartenir au domaine de convergence
absolue de la série X a, K;s . On en déduit gue la somme précédente
est convergente, d'oﬁn?; remarque précédente.

On rappelle gu'une suite (un) de nombres réels strictement crois-

sante a pour densité de Polya & si

. n > D8 = 14
lim (un+1 un} O et si lim

a
noo neo un



85 vi-7

2) Conséqguences du théoréme de Bochner.

a) Soit une équation fonctionnelle satisfaisant 1) 3 4) avec
les données (A,@(s),w(s),61(s),ﬁz(s)) ot @(s) et ¥(s) sont deux

séries de Dirichlet de la forme (1) :

p(s) = Z a_n ° ¥(s) = Z b_n .
nxf O n>1

On voit facilement que 1'éqguation fonctionnelle écrite en g est
une équation fonctionnelle avec les hypothéses de Bochner pour les

. n~ ~ s s .
données (1,@(5),W(s),A1(E),Az(é)), ou :

P(s) = £ a 2%, V()= % b oS
=1 0 > * 0
= nl/P - b (2mn1/p
Kn n ' “n T 2m ( A ) -

Les densités de Polya des suites (Kn} et (un) sont bien
définies et égales, selon les valeurs de p , a :
0 si p<A1
1 et A respectivement, si p=1
© gi p>1 .

Le théoréme 1 résulte immédiatement du théoréme de Bochner.

Examinons maintenant le cas d'une équation fonctionnelle (2) satis-
faisant 1) & 5). On se raméne aux hypothéses de la deuxiéme partie du

théoréme de Bochner en posant :

n
) — ==
n n un A

Le premier membre de la relation (6) est alors une fonction péri-
odigue de périocde iA . Cette information jointe & la connaissance des
singularités du deuxiéme membre sur 1l'axe imaginaire permettra d&'obtenir

le théoréme 2.

On se raméne & ©+r €27 , en remplagant ©(s) par o(s+c) ou c
est une constante convenable. En effet 1'équation fonctionnelle (2) au

point s+c , est équivalente a
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(26m) 7% 1 (s4c) ols+e) = a7%(2pr) %% 4 (~s-c) (2pn/a) (=s=c)
qui est une équation fonctionnelle du m@me type, associée a A=A, et a:
'X?(S)

P(s)

H

b,(s+e) , To(s) = b,(s-c) .

[

ols+c) , ¥(s) = (2p7/a)U(s-c) ;:

dont la constante & correspondante est égale a d+c .

La périodicité, de période iA , et le fait gue les pdles sur l'axe
imaginaire sont tous de la forme +in , n€IN , montrent que A est un
entier.

Au voisinage d'un point in , tel que an7fO , le second membre de

(6) est équivalent &

Ca n (iz+1f1)“c-r
n

et au voisinage de =-in , a

Ca, 0 (- 2T (g, )T
La périodicité montre que si n=b (mod A), OSb<SA-1 , on a :

o _ o T, H¥GH _-2imd
(7) an = abb = aA-b(A ) (-1) e .
En appliquant & (6) l'opérateur =z - f(z) , on obtient une relation (6')

ayant les m@mes propriétés essentielles que (6)

= ,n,r —2w§z - - -r Z =,
(6") z b (i} e =K (z})+ Z a_n @ (z/n).
nz1 n»t O r
Le second membre de (6') est équivalent au voisinage d'un point in ,

A

tel que an#o a

O (g HFGHr 217

- . —_
Ca n (iz4n) v
n
et au voisinage de -in , &
- - o o 3 . -0 =X
C a, n (=17 (iz-n) .

La périodicité, de période iA , du premier membre, montre que

(8) 3, B (- AT L 2 @) (1T

Les relations (7) et (8) montrent que 2d€Z et que l'on a, pour tout
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n=b (mod A)

H+GHo +24

o
aA_b(A-b) .

o o
a, n =a b = (-1)
Nous démontrons ainsi qu'il existe une constante cy telle que

¢{s) soit une combinaison linéaire, soit des fonctions z8ta partielles

¢ (s+c.) it des £ i ¢* (s+e,)
a,A s C1 , SOit es onctions a, A s C1 -

’

3) Rappels sur les fonctions z&ta d'Hurwitz.

*
Le fait que les fonctions zéta partielles ¢ (s) et ¢C (s)
a,A a,A
vérifient une équation fonctionnelle avec les facteurs
=T ¢(S A = (&t r(st3 i
A1(S) (3) 5(8) =T(=7) et (=) respectivement

est afi & Hurwitz ([10]). On démontre que les fonctions z8ta, indexées

par o€ 10,1} , définies sur le demi-plan Re(s)>1 par les séries

Zls, o) = = (n+a)”%
nz0

admettent un prolongement analytique sur tout le plan, avec un pble

simple en s=1 et vérifient une équation fonctionnelle

. s
ar(1-s) o Sin 7(F*2me)

. Re(s)<o0
(2ﬂ)1-s

Z(s,a) = =
m==1 m1 s

qui peut s'écerire sous la forme

s/2p (18 s/2_ 1-s+1
Z(s,a) = : F(—i_) ; cos 2mmo T T > ) ; cin 27me
1 l,:__gi m=1 m1 -S 1;5 =1 m""“—1 = .
r(g)ﬂ 2 T(Egi)ﬁ 2

On en déduit 1'équation fonctionnelle des séries de Dirichlet

.S a a
Qa,Aﬁs) = A (Z(s,g) + Z(s,?—a))

ga,A<S)

|

A%(z(s-1,2)-2(s-1,1-3)) .

Il reste & déterminer les facteurs gamma pour achever la démonstration

du théoréme 2.

4) Facteurs gamma des équations fonctionnelles.

Une série de Dirichlet o(s) peut vérifier plusieurs équations

fonctionnelles provenant des relations entre facteurs gamma. On note F
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1l'ensemble des données des éqguations fonctionnelles satisfaisant 1) 3 4)
vérifiédes par ©(s). On suppose F#{g , et on se donne
(A, ¥(s),8,(s),8,(s)) € F .

Afin d'éviter les changements triviaux d'égquation fonctionnelle,

provenant de :

(A1(s) = £ b n %)

> (AB,Z b (nB)"®°) , B entier, B>2
n n
2l

nygl

on supposera que :

6) Le p.g.c.d. des n tels que bn;fo est égal & 1.
On notera A un nombre réel positif, W(s) une série de Dirichlet
~ ~ *
satisfaisant 2) et 6). A1(S), Az(s) des facteurs gamma satisfaisant 3) .

On note E le groupe des fonctions de la forme 3570 , a,bca@ (voir

l'appendice (Serre)).

Théoréme 4. Pour gue (A,I(s),x1(s),X2(s)) € P, il faut et il suffit

que A=A et qu'il existe f(s) € E , telle que w(s)==f(o) V(s) et =

o) T, (s) T, (-s)
nTey T ) ey

On a alors :

£(s) = £(0) (g)S

Démonstration : On suppose que (X,W(s),x (s),K (s)) € F . On doit avoir

K T (-8)
(10} w( s) 2
A“(T 2_5 .
On peut déterminer M , tel que pour Re(s)<-M , le second membre

de (10) n'ait ni pdle, ni zéro . Le nombre de pbles de A1(s) dans
Re(s)<~R est équivalent & R I Pf guand R tend vers 1'infini, et
A1(s) ne s'annule pas. On en déduit que £ pg = z g% et d'aprés le

théoréme 1, p==§ . On pose alors

Pt ra s N
¥ X se définit comme x .



89 vi-1n

~ ™
An=n1/p ) “n=§% 2~n 1/p=un§1/p
A A
de fagon & se ramener aux hypothéses de Bochner. On a alors pour r

assez grand :

=21\ =z
n

5 Y ~ ~er ~
(11) a, Xn e Lr(z)+n§1 bn by r(z/un) .

Cela résulte de la relation (6) appliquée au couple (¥ (s),9(s))
au lieu du couple (9(s),"(s)). Les fonctions ir(z), Wr(z) ont respec-
tivement les mémes propriétés que Kr(z), Qr(z). Le premier membre de
(11) est déterminé par ¢(s). En particulier son comportement sur 1'axe
imaginaire est connu :

—_ ~ ~
a) ses singularités : +i . lorsque bn750

b) leur ordre : O+r
c) le coefficient : B %n E; , ou B est une constante
indépendante de n .
On déduit de a) que lorsque %nalo ;, 11 existe m=21 , entier, tel
Lo~ I s s __A\1/p
que b #0 et u_=u_ ; c'est équivalent & dire que n=m(2) . La
m n m A
condition 6) implique A=A .
On déduit de b) que I ¢ _-X ¢, =2 cf-Z cg (se reporter a 1la

£ g
définition de ¢ , théoréme de Bochner, paragraphe 1).

On déduit de a), b) et ¢) que %n =Chb, ol C est une constante
indépendante de n . Comme En=un, ona V(s)=cC ¥(s). La relation

(10) s'écrit alors :

T, (s) ~ s T (-s)
L =c®) 2
N P’ A, (-s) °
La réciproque est immédiate.
Corollaire. A chague couple (X1(s),X2(s)) de facteurs gamma satisfai-

sant 2) et (9), correspond une et une seule équation fonctionnelle de

©(s) satisfaisant 1) & 4) et 6).
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On introduit de nouvelles notations : soit afz), z£ € des entiers
presque tous nuls, on pose pour s€C :

>a(z)

G (s) = 1T T{(s+z
a z&C

Un nombre rationnel gq#O est dit admissible pour (A1(s),A

, H {(s) =G (-s) .
a a

2(s))

§'il existe f,(s), f.(s)€E et deux familles d'entiers a(z)=z0 ,

1 2

b(z)> 0 , presque tous nuls, tels que :
A1(S) = Ga(qs) f1(s) , AZ(S) = Gb(qs) fz(s) .

Les familles afz), b(z) ainsi gue les fonctions f1(s), fz(s)

* .

sont uniques (cf. Appendice, lemme 2 ). Les formules de multiplication
n-1

de Gauss T (ns) = I T(s+§) f(s) , f(s) € E , montrent gue 1l'ensemble
k=0

des nombres admissibles est infini.

Soit g€ @ , un nombre admissible pour (Aj{S)'Az(S)) et

(K1(S),Kzis)), la relation {(9) est équivalente & :

G, {s) = £(s) H, (s) .

~

a-a b-b

Serre a démontré (appendice) :

Théoréme (Serre). Pour gu'un couple (X1(s),x2(s)) de facteurs gamma

satisfaisant 2), vérifie la relation (9), il faut et il suffit gu'il

existe un nombre g€ @ admissible pour (AT(S),éz(s)) et (K?(s),xz(s»

tel que 1'on ait les deux conditions suivantes :

(*) pour tout =z €C , z a(z) -~alz) =0
o zzzo(mod Z)

(**) pour tout z€cC , a(z) -a(z) +D(1-z) =b(1-z) = O .

(s)) et (A, (s),

On dit gue 2 couples de facteurs gamma (X1(S),Z2 y

Az(s)) sont équivglents mod E , s'il existe fW{S}’ f2(s)é E tels que
&1(5) = A1(s)f1(s) Az(s) = AZ(S)fZ{S} .

I1 est clair qu'il faut et qu'il suffit gu'il existe un nombre g€ @

admissible commun tel gue pour tout =z € € , on ait

* Elles dépendent de g , bien entendu.
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a(z) = alz) et Dlz) =Dblz) .

Soit A 1les classes d'équivalence des couples (11(5),E2(s))

satisfaisant 2) et (9).

Corollaire. L'ordre de A est égal & 1 dans les cas guivants :

a) Il existe €@ admissible pour (&1(3),62(5)) tel gque

pour tout zOE € , tous les a(z) ou tous les Db(-z), tels gque z=2z

(mod Z) goient nuls.

s r1 s+1,72
b) 1l existe r1,r2€ N tel gue Aq(s) = T(ﬁ) r(—i_ et

Az(s) = Aj(s+1).

5 k=1

L'ordre de A est égal & s'il existe k€ Z tel gue

A1(S) =TI (s) , Az(s) = I'(s+k).

Le cas a) implique & équivalence prés mod E , l'unicité des fac-

*
teurs gamma des fonctions z&ta partielles ¢ (s} et Qa (s) ainsi
I

a,a A
que des séries de Dirichlet associées aux formes modulaires de poids
demi-entier. Le cas b) montre l'unicité des facteurs gamma des fonctions
L  d'Artin généralisant les fonctions L de Dirichlet. Le cas c¢) mon=-
tre que les séries de Dirichlet associées aux formes modulaires de poids

Sk-1

entier %k possédent, & équivalence prés mod E , équations fonc-

tionnelles.

Démonstration du corollaire :

a) Si tous les af{z)} (resp. tous les Db{(z)) tels que z=2z
(mod Z) sont nuls, la condition (%) implique qu'il en est de méme pour
tous les z(z) (resp. tous les B(z)) et la condition (**) implique
que %(1*20) = b(1—zo) {resp. ;(1—20) = a(1—zo)). On détermine ainsi
tous les bl(-z) et alz) {resp. tous les a(-z) et Dblz)) tels que

z=z_ (mod Z).
[o]

(s)) wun autre couple de facteurs gamma. On

2
2n
a

b) Soit (A1(S)1A2

peut déterminer un entier n>=1 tel que

couple. Pour gﬁ , les familles d'entiers

soit admissible pour ce

(z) et blz) sont définies
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par

k=0,1,..on1  ad) = -, aEEH) = v &) =1,
a(z) = 0 et Db(z) = 0 pour les autres z .

On démontre que (X1(s),X2(s)) est équivalent modulo E &
(F(g)r1f(§%l "2 ,F(§§i)r1r(§§g)r2) en vérifiant que les relations (¥*)
et (*¥) admettent pour seule solution alz) =alz) , Blz) =blz) , pour
tout z€ @ . En effet, on voit facilement gque pour z;‘%? , %%$l , on a
a(z) =b(1-z) =0 ; on en conclut que a(z)=b(1-z)=0 grice & (*¥). Si
z==%? ou g%;i , la relation (¥*) permet de voir que a(z)=alz) et
B(1-z) =b(1-2). ..

Jn nombre admissible 1
c) Le raisonnement est analogue : on montre que pour - <|§H2
(n€WN), les relations (*) et (**) admettent 22k—1% solutions. On note

X {resp. Y} 1l'ensemble des entiers compris entre O et n-1 (resp.
1=k et n-k). Pour le nombre admissible % , les familles a(z) et

b(z) sont définies par

0 z#ij/n, j€X
a(z) = { b(1-z) =

{O z#3/n ., €Y
1 z=13i/n, FE€X 1 z=3/n, j€Y
On en conclut grice 3 (**) que pour z#% , JEXUY , on a
a(z) = B(1-z) = 0 . Pour zo==g , 3€XNY , on vérifie facilement que
si z=2z (mod Z) alors z%% , JEXUY , on en conclut grice a (%)
que a(zo) = b(1—zo) =1
On & un bijection de Y-{Xa¥Y} sur X-{YaX) en posant ' = j+ {(sign k)n

JeY, j¢X, pour z==g et z'==%% , on écrit avec (*) les égalités
a(z) +a(z') = 1 B(1-z) +B(1-2") = 1

et avec (*¥) les égalités
3(z) +B(1-z) =1 alz') +bli-z') =1 .

Ce sont les seules relations que doivent vérifier ces quatre

entiers naturels. Elles sont équivalentes 3 :
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3(z) = b(1-z") a(z') = B(1-2) a(z) +alz') =1 .
Elles admettent deux solutions. Le nombre d'éléments de Y-(XaY) est

k-1 . Le corollaire est démontré.

Toutefois, si l'on cherche & déterminer les couples de facteurs
gamma admettant comme nombre admissible, on s'aperc¢oit qu'il n'y a
gue deux couples modulo E , représentés par (I'(s),['(k+s)) et
(T {s+1-k),T" (s+1)). Ils proviennent de 1'égalité T (s) I'(1-s) = m/sin 7s

d'ol on tire la relation
P(s) T(1-s) = (-1 I'(s4k) T(1-k-s) .
Weil a utilisé ces deux équations fonctionnelles pour retrouver des

relations verifiés par les intégrales d'Eichler [9].

Probléme : Existe-t-il des équations fonctionnelles avec % < Z Pe <1,

ou plus généralement avec £ P #n/2 , n€EN* ?

§2. Le th. 3 sur les formes modulaires.

La démonstration a lieu en deux temps. On suppose d'abord que D
a un seul élément. En utilisant la méthode de Siegel [8] pour la démons-
tration du théoréme de Hamburger (caractérisation de la fonction zéta
de Riemann par son équation fonctionnelle), ou plutdt la généralisation
de cette méthode de Bochner et Chandrasekharan[2], on obtient une rela-
tion du type (6), d'ol on déduit le théoréme. Puis on raisonne par ré~
currence sur le nombre d'éléments de D ; on utilise alors, de fagon
essentielle que la "tordue" d'une forme modulaire est une forme modu-

laire.

Premiére partie : D = {a} .
On suppose que f£f(z) = Z a, exp(2iﬂn2dz) est une forme modulaire
=20
de poids k/2 (k entier) pour un groupe de congruence, de niveau N

{pour une définition détaillée, se reporter a Shimura 7] ou a



94
vi-16

Serre-Stark [6]).
I1 existe une forme modulaire g(z) = £ b1 exp(2inmnz) de méme

n20
poids et de méme niveau, telle que

glz) = . k/2 F(=-1/Nz) .
: _ = w15 o k/2
Cette relation écrite au point =z = ix/2 , en posant b = bn(1/2}
donne :
(12) z b exp(-Tnx) = x-k/2 & a exp(—4ﬂn2d/Nx) .

nz20 nz0
1) La transformation de Siegel-Bochner-Chandrasekharan.
Elle permet de transformer la relation précédente en une relation
du type (6), c'est-a-dire avec un membre périodique et 1l'autre avec des

pbles connus. L'idée est d'utiliser les deux formules élémentaires

suivantes :

(13) + gw exp(-Wtzx-ﬂa /%) x2 %? = exp(-2mat} , a>o0

(14) Y exp(-max) * L =r(e) (ra)™ , a>o0, acc.
On considére la forniction H(t,x) = t exp(—ﬂt2x) et on multiplie

chaque terme de la somme du deuxiéme membre de la relation modulaire

(12) par xg-jﬁo(t.x) ., en posant o = E%l . En intégrant de 0 &
en x , on obtient :

L
(15) t S exp ( ﬂtzx-4ﬂn2d/Nx) x? %? = a, exp(-2mnt J%?).

La série de terme général le second membre de (15) est absolument con-
vergente pour t>0 et définit par prolongement analytique une fonction
holomorphe pour t€C , Re t>0 .

En effectuant la méme opération sur chaque terme de la somme du

premier membre de (12), on obtient :
e 2 o 2 -
(16) tb exp{-m{(t%4nix) x = = tb_ T{o) (7 {(t%4n)) .
n Jg X n

Si la série de Dirichlet L b_n ° converge absolument pour
nz1
s=¢ , la série de terme général le second membre de (16) définit une



95 vi-17

fonction holomorphe pour t€¢€ , Re t>0 . Sinon, on utilise 1'idée de
Bochner et de Chandrasekharan [2] , qui consiste & remplacer la fonction

auxiliaire Ho(t,x) par sa dérivée en t d'ordre assez élevé : on pose

d2r
t,X) = Ho(tlx)

dt2r

et on effectue les opérations juste décrites avec Hr(t,x) au lieu de

HX(

Ho(t,x). Le premier membre de (12) donne des termes de la forme
d2r
dt2r

Si r est assez grand, la série de terme général (16r) converge

(16,) A CIL R (£(t24n)"™Y) .

absolument, et définit sur tout compact ne contenant pas les pdles
Fi¥n , si bnjfo , une fonction holomorphe. Le second membre de (12)

donne des termes de la forme

(15r) (=2m J%?)Zr a, n2r exp(-2mnt %?)

qui déterminent une série absolument convergente pour t€C , Re t>0 .

Nous avons obtenu la proposition suivante :

Proposition 1. La relation (12) impligque la relation suivante, pour tout

r€N assez grand :
2r
2r

S b d 2

o U dt

d
43, 2r 2r ‘2”“tJ€;
=) Z a_n e .
N n

(¢4
(17) +n) 7Y = F%ET (-2m

(t(t
nz0

Une connaissance plus précise du comportement du premier membre aux

pbdles nous sera utile. On a par un calcul élémentaire le résultat suivant:

Lemme 1. Si u = t-iYn tend vers O , on a 1'éguivalence suivante :

2r
(18) S (£(2m) ™) Ny 2aVm) 17 [0 (ca) (com1) L (mom2rtt)
dat

+ u

1-a-2r (2-&)(1—0)(—&)...(—a—2r~2)]
2iyn )
2) La démonstration du théoréme 3.
On applique le méme raisonnement que dans le paragraphe 1, 2). Le
second membre de (17) étant périodique, de période iJgg , on en conclut
que si iln est un pdle c'est-d-dire bn750 , alors i(Vn+ é%) est
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aussi un pdle, donc est égal & ifm , méw .

On doit avoir simultanément, d'aprés (18) :

b b
[f(zivz)““-Tm(zivm“ﬂ(-a)(-aq)...(—a-zm) =0
b, - b -
(T(ziﬁ) --21“{21%3) }(2-@(1-@(-@)...(-o./-zr-z) =0 .
- 1= 1o
La premiére égalité donne, car o>0 , b n z2 - b m 2 , et la
seconde (2-)(1-z) = 0 , c'est-d-dire ao=1o0ou 2, ou encore k=1 ou

3 .0na :

- si le poids k/2 = 1/2 , bn = bm

3/2 , bn/\/_r{ = bm/\/ﬁ .

L'égalité Vm = VEZ+JEEM implique que N/4d est un entier et que

nN/4d est un entier. Aprés avoir écrit N = 4dd‘A2 , écriture unique si

#

- si le poids k/2

l'on suppose d et d' sans facteurs carrés, on en déduit que

2
1

que l'on avait noté bn , si n==d'j2 . On conclut gque :

n=d'n ol n1€|N . On modifie alors les notations en écrivant bj ce

- g{z) est de poids k/2 = 1/2 ou 3/2

-g(z) = T bn exp(ziWn2d'z)
n=z0
-si kx/2=1/2, on a bn = bn+A et si k/2 = 3/2 , on a bn = nbg

3 = )
avec bn bn+A .
Autrement dit, g{z) est une combinaison linéaire soit des ea A(d‘z),
F
* » s
soit des Ba A(d'z). Le théoréme s'obtient en utilisant la symétrie en

f(z) et en g(z) de (12).

Deuxiéme partie : récurrence sur le nombre d'éléments de D .

1) Trois lemmes.

Lemme 2. Etant donnés deux nombres entiers d=1 d'=21 , distincts et

+

sans facteurs carrés et deux signes e€=-1 , £'=-1 , il existe une

infinité de nombres premiers p tels que (g)==€ et (%;)= e' .,

Référence : Borevitch-Chafarevitch [3] p. 383 exercice 4.
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Pour tout entier N2 1 , on note :
rn = {@Desn, @, 3= 9 moa nf
rom = {@Desn, @, @AY= % noa v}
Lemme 3. Si f{(z) = £ a, exp(2imnAz) est une forme modulgire de poids

n20
kX/2 pour T(N), alors g{z) = f(z/A) est modulaire pour TT(N/(N,A))

si le poids est entier, et pour F1(N/(§,A)), si_le poids est demi-entier.

Démonstration : On a

- g(z) = g(z+1)

A O
01

b=0 mod NA , ¢=0 mod N/(N,A)} .

- s8i o= ( ) . alors SLz(W)ﬁ a-1F(N)a = {(2 2)6 SL2(Z) ,

11
o1

F1(N/(N,A)). On en déduit le lemme si le poids de f(z) est entier. Si

Le groupe engendré par a—1T(N)a et ( ) est le groupe

le poids est demi-entier, soit 8(z) = I exp(2iﬁnzz) la série théta
n=0
2 . Le lemme est vrai pour la forme modulaire
k+1
2 ’
8(z)£f(z/A) est modulaire pour F1(N/(§,A)). On en déduit le lemme.

usuelle de poids

8(Az)f(z) de poids entier de niveau 4AN/(4A,N) , donc

Lemme 4. Si f(z) = & a, exp(2imnz) une forme modulaire de poids
n20

k/2 , de niveau N , et si X est un caractére de conducteur M pre-

mier & N , alors fxx(z) = Z a, x{n) exp(2i™nz) est une forme modu-
020 2
laire de poids k/2 , de niveau NM“ .

Références : L6, §73 et [7, §57.

2) La démonstration du théoréme 3.

On suppose que les nombres nzd tels que a 2 #0 sont premiers
entre eux. Si ce n'est pas le cas, on remplace f?z? par £(z/A) ol
A est le p.g.c.d. de ces nombres (lemme 3). L'ensemble D est remplacé
par {d/8,d€D, $ = p.g.c.d.{d,d€D}} , mais son nombre d'éléments

reste le méme.
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Soient d et d' deux éléments distincts de D .

I1 existe (lemme 2) une infinité de nombres premiers p tels que
(};) =1, (%;) =-1 . On choisit un tel nombre p , assujetti en outre
4 &tre premier au niveau N , et & tous les éléments de 1'ensemble fini

D . L'application d - (g) définit une partition de D en deux sous-

ensembles D et D non vides. Les deux fonctions :

1 2
f1(z) =2 I z a , exp(2inn2dz)
dED1 (n,p)=1 n"d
f2(z) = 2 Z Z a exp(2iﬂn2dz)

d€D, (n,p)=1 n"a
respectivement la somme et la différence des formes modulaires (lemme 4)
F*xo(z} et F*(g)(z) , ou X, est le caractére trivial modulo p , sont
des formes modulaires de poids k/2 , de niveau sz . Elles ne peuvent
pas 8tre toutes les deux nulles, sinon tous les nombres n tels que
an;fO seraient divisibles par p , ce qui est contraire & 1'hypothése
gue nous avons faite. Par récurrence, on en déduit que le ppids est

k/2 = 1/2 ou 3/2 .

Pour chagque d , tel que 1l'un des a 5 1 avec (n,p) = 1 , est non
nul, on a 4d|Np2 , d'od 4dlN puisque ;*id . La grande liberté de
choix des nombres p nous permet de choisir pour tout n2d tel que
an2d # 0 , un nombre p tel que (n,p) = 1 . Ceci montre que les élé-
ments 4d , d€D divisent N .

Soit d4€D , on pose N = 4ad’n? , ou d'€WN est sans facteurs
carrés, et on note aj ce que 1'on avait noté a +si n= j2d . Soit
n , tel que ansfo ; on choisit deux nombres premiers p et g dis-
tincts, premiers & n et n+A , avec les propriétés précédentes. Enfin

soit *,k €Z tels que Ap+ug = 1

- si /2 =1/2 , on a par récurrence, 3,43 ap =a, {car {(n,p)=1) ,
mais on a aussi par récurrence, 34rap = Znta (car (n+A,q) =1 et
s 3o = = .

Ap +uAg=3a) donc a, a gn ?

- si k/2 = 3/2 , on raisonne de méme avec a; = an/n .

On en conclut le théoréme 3.
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Appendice (J.-P. Serre)

Relations entre facteurs gamma

1. Relations entre sinus.

La variable est notée s . Je désigne par E le groupe des fonc-

tions de la forme eas+b , a,b€C , autrement dit le groupe des fonc~

tions entieres d'ordre 1 sans zéro.
Considérons un produit

I sin ﬂ(s+z)a(Z)

z€C

ol les af{z) sont des entiers, nuls sauf un nombre fini d'entre eux.

= Fa(S) '

Lemme 1. Pour gue Fa(s) appartienne &3 E , il faut et il suffit gue

la condition suivante soit gatisfaite :

(%) pour tout zOE €, on a z a(z) =0 .
+ z=z {(mod Z)
On _a alors Fa(s) = -1 . ©

I1 est clair que Fa(s) appartient & E si et seulement si Fa(s)
n‘a ni zéro ni pdle. Or 1l'ordre de Fa(s) au point -z, est égal a la
somme des a(z) pour z=z (mod %) : on trouve bien la condition (x).
Si cette condition est satisfaite, Fa est de la forme eas+b , et,
comme Fa(s) est périodique de période 2 , le nombre a est de la
forme ™iN , avec N€Z . Si l'on prend s de la forme it , avec t

_ _b-mTtN
= e

réel » 4o , il s'ensuit que Fa(it) . Mais d'autre part, on a

R ™t =i , . . ;
sin Ti{s+z}l~ e te lwz/(—21) pour s=1it , comme on le voit facilement.
. s N . ~im \
On en conclut que Fa(lt) est équivalent a (eﬂt/(-21))se iTA , ou
S= 2 aflz)y , a= ¥ zalz) .Vu (%), ona S5=0 (c'est clair), et

z€Q z€C@
A€ Z (regrouper les termes za(z) correspondant & une classe donnée

Z, mod.Z , et remarquer que la somme partielle en gquestion est égale a
2(z—zo)a(z) , qui est un entier). On obtient finalement Fa(s) = (-1)B,

d'ol le résultat cherché {avec en prime la détermination du signe).
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Variante. On aurait pu aussi tout exprimer en terme de T = e % ge

fagon a avoir une fonction rationnelle de T .

Reformulation du lemme 1. Considérons le groupe abélien formé par les

a = (a(z))ze(D tels que Fa(s)E E . Le lemme 1 est équivalent a dire
que ce groupe est engendré par les a du type suivant : a(z)=0 pour
zifzo ’ zo+1 ’ a(zo)= 1 a(zo+1)= -1 . En d’autres termes {plus par-
lants et moins précis) toute "relation Fa(s)E E" est conséquence des

"relations élémentaires"

sin w(s+zo)/sin Tr(s+zo+1) = -1 .

2. Relations entre les T (s+z).

Il n'y en a pas :

Lemme 2. Soit a(z) une famille d'entiers presgue tous nuls. Pour gue

le produit

G (s) = 0 T(s+z)2(2)
a z£¢

appartienne & E , il faut et il suffit gue tous les afz) soient nuls

N

{auguel cas le produit en question n'a aucun mérite 3 8tre égal a 1 ..J.

Supposons que les al{z) ne soient pas tous nuls, et soit X 1l'en-
semble (fini) des =z tels que a(z)#0 . Soit zoé X un élément tel

que Re(zo) £ Re(z) pour tout z€X . On ne peut avoir
-z = -z-n , avec z€X , n entier > 0 ,

que si Z=2Z, n=0 . On en conclut gue le point -z, ne peut &tre un
pdle d'aucune des fonctions T {s+z), z€X - {zo} . I1 en résulte que
1l'ordre de Ga(s) en -z_ est égal a -a(zo)ifO , ce gui montre bien

que Ga(s) n'appartient pas & E .

3. Relations entre les T (s+z) et les [ (-g+z).

On va considérer deux familles af{z) , b(z) comme ci-dessus, et

s'intéresser aux fonctions
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6 (s) = 1 T(s+2)2'%) | g () = 1 r(-sn)?(®) |
a z€C PAT
Théoréme. Pour gqu'il existe f£(s)€E tel gue
Ga(S) = f(s).Hb(s) '
il faut et il suffit gue les deux conditions suivantes soient satis-
faites :
(%) pour tout z €€ , on a bX alz) =0 ;
o _
zszo(mod Z)
{#%) alz) +Db{1-z) = O pour tout z€C .
On a alors fi{s) = i1 .
On va, bien silir, se servir de la relation T (s)I(1-s) = m/sin ms .
En remplagcant s par s+z , elle donne
M (s+2)T (=s+1-2) = m/sin m(s+z) .
Convenons de noter a' 1la fonction définie par
a'{z) = al1-z)
et définissons de méme b'. L'identité ci-dessus donne :
G (s).H ,(s) =rP/F (s) od A= £ alz) .
a a a 2EC
Ceci étant, supposons que l'on ait Ga(s) = f(s).Hb(s) , avec £(s8)€E .

En multipliant par Ha' , On en tire :
nA/F {s) = £(s).H_,{(s).H (s) .
a a' Hb

Mais le membre de droite n'a pas de zéros et pas de pdles pour
Re(s) € M , avec M convenable, alors que le membre de gauche est
périodique de période 2. Il en résulte que les deux membres n'ont ni
zéro ni pd8le. On en conclut gu'ils appartiennent & E . En particulier,

Yo B,

d'aprés le lemme 1, on a la condition (%), A=0 , et Fa=
d'aprés le lemme 2, on a a‘'+b=0 , ce gqui est justement la condition
(#%). On en conclut que f(s) = Fa(s) = i"I (et on sait déterminer le

signe).
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Inversement, supposons (%) et (#%) vérifiées. On a
+ , N _ . .
G, -H,, = 1/Fa = -1 d'aprés le lemme |.Comme 1/Ha. = H_, on voit bien
+
que Ga = —Hb .
Reformulation. Ici encore, on peut reformuler le théoréme en disant que

les relations Ga/HbE E sont conséquences des relations élémentaires

T(s+zo)/T(s+zO+1} = —T(-s—zo)/r(-8+1-zo} .
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Introduction

For over a hundred years it has been known that there exist identities
expressing the coefficients of certain modular forms as finite sums involving
class numbers of imaginary quadratic fields; these identities, the so-called
"class number relations,” arose classically in the theory of complex multipli-
cation but have reappeared since in several other contexts, e.g. in the Eichler-
Selberg formula for the traces of Hecke operators and in the calculation of
intersection numbers of curves on Hilbert modular surfaces {8]. Recently
Cohen [3], using Shimura's theory of modular forms of half-integral weight,
coustructed modular forms whose Fourier coefficients are given by finite sums
similar to those occurring in the class number relations, but with the class num-
bers replaced by values of Dirichlet L-series (or equivalently, of zeta functionms
of quadratic number fields) at integral arguments. In this paper we construct
modular forms whose Fourier coefficients are given by infinite sums of zeta
functions of quadratic fields, now at an arbitrary complex argument., The
result includes both the classical class number relations and the modular forms
constructed by Cohen, and further provides an expression for the latter as
linear combinations of Hecke eigenfunctions f£(z), the coefficients being certain

o0
2
values of the associated Rankin zeta functions g, Eﬁ%l_. (where f£[T(n) =
n=} n

a(n)f ). From this we obtain formulas for the values of the Rankin zeta function

at integral values within the critical strip, a typical identity being

N 2 20
w2 4 29 Z(9)
B 20 345 20T T Ty LB

n=1 n
o0
. . . 2Minz
where Z(s) 1is the Riemann zeta functiom, A(z) = (n) e the
n=}
discriminant function, and (4,A) the Petersson product of A with itself. As
another corollary of the main identity we obtain a new proof of a recent result

of Shimura [21] on the holomorphy of the Rankin zeta function. Finally,by combin-
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ing the method developed in this paper with the results of {24} we obtain
applications to the Doi~Naganuma lifting from modular forms of Nebentypus to
Hilbert modular forms in two variables and also to the mapping in the other di-
rection which was constructed in [8] in terms of the intersection numbers of
modular curves on Hilbert modular surfaces. In particular, we give partial re-
sults in the direction of the conjecture made in [8] that these

two maps are adjoint to one another with respect to the Petersson scalar product.,

In § 1 we describe the main result of the paper, namely the comstruction of
a modular form whose Fourier coefficients are infinite linear combinations of
zeta functions of quadratic fields (with Legendre functions as coefficients)
and whose Petersson product with an arbitrary Hecke eigenform is the correspond-
ing Rankin zeta function. We also show how this can be used to obtain identities
for special values of the Rankin zeta function like the one cited above and discuss
the relationship between these identities and other known or conjectured
results on the values at integral arguments of Dirichlet series associated to
cusp forms., In § 2 we reduce the proof of the main result to the evaluation
of an integral involving kernel functions for Hecke operators. This integral
is calculated in § 3, while § 4 contains the properties of zeta-functions and
Legendre functions which are needed to deduce identities like (1) above. 1In
§ 5 we describe an alternate method for proving such identities by expressing
the product of a theta series and an Eisenstein series of half-integral weight
as an infinite linear combination of Poincaré series. The applications to
Hilbert modular forms are contained in § 6.
Note: The identities expressing Xa(n)2n_5 for special integral values

of s in terms of (f,f) and values of the Riemann zeta function have been

discovered independently by Jacob Sturw (Thesis, Princeton 1977).



Za~h
108

§1 Identities for the Rankin zeta function

We use the following notation:

H={z =x+ iy!y > 0} the upper half-plane, dav = éﬁiél the invariant metric
y

on H,

i Grs2) = (cz + 01)“k (y= (z 2) €5L,R), k€27 z€H),

(fikY)(Z) = jk(y,z) f{yz) (f any function on H).

Throughout §§ 1 -~ 4 we restrict ourselves to modular forms for the full
modular group [ = SLZ(Z)/{il}; the results could be generalized to arbitrary
congruence subgroups, but this would involve considerable technical complication
and no essentially new ideas. We denote by k an even integer >2, by Sk
the space of cusp forms of weight k on I, equipped with the Petersson

scalar product

(f.8) = f £(2) 3@ 5 av (£, g €5,
I'\H
and by {fi} the basis of Sk consisting of normalized Hecke

<igdi
I€igdim Sk

eigenforms, with

o
n
£, (2) ; a,(m) q°, a (1) =1, £|T@) =a, @) £,
2riz s . n
(where as usual q = ¢ ). TFor each normalized Hecke eigenform f£(z) =:Z:a(n) q
we set
2 -s,~1 - 8.1 - Nt |
@ o = [[O-a e e ap D0 -ag e Rels) > 1,

P
where the product is over all primes and ap’ &§ are defined by

—- - k-1
+ = 3 =
a, * a, (», a, &, =P

(by Deligne's theorem, previously the Ramanujan—Petersson conjecture, the numbers

ap and Ep are complex conjugates). The function Df(s) is related to the

Rankin zeta function by
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e 2
- L(28-2k+2) a(n)
@ De(e) = S n};; 5

and hence, by the results of Rankin [17], has & meromorphic continuation to

the entire complex plane, satisfies the functional equation

-s_",-3s/2 I'(s) T s-l;+2

) Df(s) = 2 ) () = DJ(2k-1-5),

and is related to the norm of f 1in the Petersson metric by

) &5H - ZT-Q;—%T D (k).
T

For the statement of the main identity we will also need a certain zeta
function, defined as follows. Let A be any discriminant, i,e. A €2 and

AZ0 or 1 (mod 4). We consider binary quadratic forms
_ 2 2
¢(u,v) = au” + buv + cv {(a, b, ¢ € 2)

with discriminant [¢] = b2 - 4ac = A, The group I operates on the set of
such forms by Yo (u,v) = ¢(au + cv, bu + dv) (Y= (: 3) € '), the number of
equivalence classes being finite if A # 0. We define

6)  z(s,p) = Z Z ! (Re(s) > 1),

?modl" (@,n)€ 22/Aut ($) ¢(m,n)°
¢2- A ¢{m,n)> 0

where the first sum is over all TI-equivalence classes of forms ¢ of discriminant
A and the second over inequivalent pairs of integers with respect to the group

of units Aut(9) = {y€T|y¢ = ¢} of the form. If A is the discriminant of

a (real or imaginary) quadratic field K, then 4(s,A) coincides with the
Dedekind zeta function CK(s) (the first sum corresponds to the ideal classes of
K, the second to the ideals in a given class, with ¢(m,n) = N(ovr)), while

L(s,4) for A=1 and A =0 is equal to ;(s)2 and to (s) 5{(2s-1},
respectively., If A = sz, with D equal either to 1 or to the discriminant

of a quadratic field and £ a natural number, then (s, &) differs from

%(s,D) only by a finite Dirichlet series. Thus in all cases 4(s,d) is
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divisible by the Riemann zeta function, i.e.
€)) g(s,48) = z(s) L(s,d)

where L(s,A) is an entire function of s (unless A is a perfect square, in
which case L(s,A) has a simple pole at s = 1 with residue % if A=0
and residue 1 otherwise).

2

Finally, for real numbers A and t satisfying A <t and s € € with

LD Re(s) < k we define

2
<« o©
k+3-2
Ik(A,t;s) = b dx dy
0 == (x2 + y2 + ity - %A)k
(8) ®
Lind k+s=2
r(k 2()1;(2) J y — 4,
Ik . 1, k=5
o? + ity - 78) 2
where the second integral converges absolutely for 1 - k < Re(s) < k (unless
A =0, in which case we need % < Re(s) < k) and can be expressed in terms of
the associated Legendre function PE:; €2§) (see § 4). We can now formulate the

main result.

Theorem I: Let k > 2 be an even integer. For m = 1,2,.,, and s € £ set

]

e (s) = m! 2 [1 @? - 4m,e38) + 1 (c% - 4m, -t;s):I L(s,t? - 4m)
™ L
" k/2  T(k+s-1 ~s=1 2
(9) S e I LI TR
+ 2 m I'(k)
(o] if m is not a perfect square,

where L(s,A) and Ik(A,t;s) are defined by equations (6), (7) and (8). Then

i) The series (9) converges absolutely and uniformly for 2-k< Re{s)< k-1;

ii) The function

(10) 9 (2) = 2 e (s) e2™MBZ (e W, 2-k<Re(s)< k - 1)
w=1

is a cusp form of weight k for the full modular group;

ifi) Let f € 5, be a normalized Hecke eigenform. Then the Petersson product
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of 4; and f 1is given by

an @,.6) =c, ) p (ouen),
@m®
where Df(s) is defined by (2) and
M2y
“® % T 3 ey
2 (k-1)
We must say a few words concerning assertion 1i). If t? - 4m is a perfect

square, then L(s, t2 - 4m) has a pole at s = 1, as mentioned above. However,
for t2 - 4m > O the coefficient [Ik (t:2 - 4m, t; 8) + Ik(t2 - 4m, -t; si

has a simple zero at s = 1 (or any other odd integral value between O and kJ},
as we will show in § 4, so the expression [Ik(t2 - 4m, t; s) + Ik(t2 - 4m, ~t; si
L(s, tz - 4m) makes sense even at s = |, and the sum of these numbers as t
runs from -° to * is absolutely convergent. Similarly, if m is a square
then the second member of (9) has a simple pole at s = %, but in this case the
terms t = *2/m in the first sum involve the function

F(s-3) T(k-s)

s—k
i t
r&) re)

(13) Ik(O;t;s) + Ik(O,-t;s) = 2'rr(~-l)k/2 cos %;
which also has a simple pole at s = %, and the two poles cancel; then 1)

states that the sum of the other terms of the series (9) is finite. Thus the
expression defining cm(s) is holomorphic in the region 2~k < Re(s) < k-1.

From equation (11) we deduce that Df(s+k~1) is also holomorphic in this region.

On the other hand, the Euler product defining Df(s) is absolutely convergent

for Re(s) > k, so Df(s) is certainly holomorphic in this half-plane and, by

the functional equatiom, also in the half-plane Re{s) < k~i. Theorem | therefore
implies the following result, which was proved by Shimura [21] in 1975 by a different

method.

Corollary | (Shimura): The function Df(s) defined by (2) has a holomorphic

continuation to the whole complex plane.
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Secondly, we observe that statement 1ii) of Theorem | characterizes the

cusp form és' since the space S is complete with respect to the Petersson

k

metric. Indeed, since the eigenfunctions fi form an orthogonal basis of Sk’

equation (11) is equivalent to

dim Sk
[ (s+k-1) 1
(14) 9 _(z) =C, ———nrt e D_{s+k-1) £.{2)
s ko (amys*! ; Gt :
or to
dim Sk
I (s+k-1) a;(m)
(15) ¢ (s) = ¢ Llerkol) D_(s+k-1) .
" koumstl 4 (£5.£) 5

In particular, if we take s = | and use formula (5), we find
. dim Sk
Q(16) () =35 ¢ E a; (m).

i=1

On the other hand, the Fourier coefficients ai(m) of the functions fi are

at the same time their eigenvalues for the o Hecke operator T{(m), so

dim S

k
‘zgj ai(m) = Tr(T(m), Sk)'

i=1

Thus Theorem | includes as a special case a formula for the trace of T(m). To see
that this agrees with the well-known formula of Selberg and Eichler, we must inves-
tigate the various terms of (9) for s = 1. If t2 - 4m is negative, then (as

we will show in § 4)

¢! a7 [ (Pt t51) + 1 (e Pam 1))

k
(17)
= 2 Veme? p (t,m),
4 k,l

where

128 1(t;,m) = coefficient of :v:k—2 in ! 2

’ 1 - tx + mx
(18) pk-! _ =k~
=—_iL—-- (p-l»—p': t,ppzm)

P~ P
and

(19) LQ1,t2m4m) = mhmt?) T Hamet2y,
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where (with the same notation as in (6))

Y
(20) H(n) = shir B (n > 0).
|$]=—n

—n J£2
(This equals ZEEZh( n/fz » Wwhere the sum ranges over f > O such that len
w{(-n/f¢)

and -n/f2 is congruent to O or 1 modulo 4 and h(4), w(A) denote the

class number and number of units, respectively, of the order in Q(ﬁ&) of dis—~
criminant A.) If t2 - 4m > 0, then the coefficient Ik(tz-dm,t;s) +
Ik(tz-ém,~t;s) vanishgs at s = 1, as mentioned above, so the contribution of (9)
is 0 unless L(s,tz—am) has a pole at s = |, i.e., unless t2—4m is a perfect

square., In this case, we will show that

S 28 2 . 2 . 2_
;i? Ck m [Ik(t -4m,t;s) + Ik(t ~4mrt,s)] L(s,t"~4m)
21)

~1
- -1 (.LEL:_U) (t%-4m = w2, u > 0).

4 2
Notice that there are only finitely many t with tz-ém a perfect square, and

that they are in 1:1 correspondence with the positive divisors of m:

t2 - 4n=u? e m=dd', d, d' =

Therefore the series (9) for s = 1| becomes a finite sum and we obtain

Corollary 2 (Eichler, Selberg): For k > 2 an even integer, m> 1,

Te(T(m), S.) = —% ; Py, 1 (65 H(4n-t2) - % ;_ ., min(d,d")¥!

2 dd'=m
t <4m d,d'>0
kol uk—2 if m= u2, u> 0,
12 —
+
0 if m is not a perfect square,

where Py l(t,m) and H(am—tz) are defined by equations (18) and (20).
ZRERE , 2ac and

It is perhaps worth remarking that we could have obtained the trace formula
by specializing Theorem | to s = O instead of s =1, At s = 0, the co—

efficient [Ik(tz-ém,t;s) + Ik(t2~4m;t;s)] does not vanish for any t, but
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2 . . i .
L{t"-4m,0) 1is zero whenever cz-ém is positive and not a square, so again we

get a finite sum,

If we specialize Theorem ! to s =r f{or s =1 -r), where r is an odd
integer between | and k - I, then again the terms with t2-4m2>0 vanish
(including those for which t2~4m is a perfect square, if r > 1), and the series

defining cm(s) reduces to a finite sum. In this case we recover the modular

forms constructed by Cohen [3]. We recall his result.

For r > 1, r odd, Cohen defines an arithmetical function H(r, N) which
generalizes the class number function H(N) = H(l, N) introduced above. The

function H(r, N) is defined as ¢(1 - 2r) if N =0 and as a simple rational
00

multiple of # © Z ('n—N) nt if N>0,NZO0 or 3 (med 4). It is related
n=i
to the function L(s,A) defined above by

)2y, Nr-%

(22) H(r, N) = L(r,-N) (rz | odd, N3 0)
r-1 _r
2 m

or, even more simply, by

(23) H(r, N) = L(l - r, -N) (r>1o0dd, NE€ 2).

Then:

Theorem {Cohen fi}, Theorem 6.2): Let 3 g rg k-1, rodd, k even, and set

@) o () = 2.2 p (6w H(rbmt?) | 2T @ em,
’ m=0 teZ ’

t2\< 4m

where Py L{6m) is the polynomial defined by
s

(25) Py r(t,m) = coefficient of = ™! in L
14

(1 - tx + mxz)r

(Gegenbauer polynomial). Then Ck r is a modular form of weight k for the full
i

modular group. If r <k - 1, it is a cusp form.

We shall show in § 4 that, for r = 1,3,5,...,k-1,
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¢! ot [ (Pt tsr) + 1 (Pt -sn))

(26)

_ oz (x+1)/2 2.t~} T(k-r) T(r) 5 +2 <
-9 (4m-t”) “Ta=D pk,r(t’m) if t 4m,
0 if t2 > 4m.
Together with (22), this shows that the series ¢r(z) defined by (10) is a
multiple of the function (24) if 3¢ r< k-3, For r =k -1 we are on the
edge of the strip im which the series (9) is absolutely convergent, We will
show in § 4 that
k
F+1
. (‘l)2 wk § 2
lim cm(s) = o 2 Hk~1,4mt%)
s>k-1 27 k-1t £ € 4m
(21)
1 1
_ 2n_ I'(k-7) T(z) z(2k-2) (m)
=1 T O
(where ok_](m) = zz: dk-l as usual), so that in this case the cusp form
d}m
r _,(2z) = 1im ¢_(z) is a linear combination of Cohen's function C and
k=1 s*k-1 S %, k-1

the Eisenstein series of weight k. Thus Cohen's theorem is a consequence of

statement ii) of Theorem 1, while statement 1ii) implies the following result:

Theorem 2: Let r, k be integers with 3 g rg k-1, r odd, k even. The

Petersson product of the modular form C defined by (24) with an arbitrary

k,T
Hecke eigenform f € Sk is given by
_ (e+k-2) 1 (k=2)1 1 _
(28) & G, = (or-1)1 o7 Zeeet DTk D,
where Df(s) is the function defined by (2).
Since the Fourier coefficients of Ck . Bare rational numbers, Ck r is a
’ »

linear combination of eigenforms with algebraic coefficients, and we deduce:

. : 2s~k+1
Corollary: Let f be a Hecke eigenform in § The values of Df(s)ﬁn

ko«

for s =k, k +2, k +4,..., 2k - 2 are algebraic multiples of (f, £).

(The case s = k is a consequence of equation (5) rather than (28).) By virtue

of the functional equation (4), the numbers Df(s)/ns(f,f) (s = 1,3,5,0..,k = 1)
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are also algebraic.

Example: For k = 12, the only normalized eigenform in S5 is the discriminant

function © o«
T oo . 2

Az = q a-qH* - @) o
n=1 n=|

The number r in Theorem 2 must be 3, 5, 7, 9 or 11. By computing the first few

Fourier coefficients of Cohen's functions Ck Ve find
3
- - 18 = - - -
Cip3= " F & €12,5 2104 , €12,7 11204 ,
_ 77683 _ 7 x 10!
Ci2,9 207365, Cyy 4 12x23 P12 T 73 x 691 2
w
where Exz =1 + 6ggf0 ZE: Ul!(n) qn is the normalized Eisenstein series. Thus

n=!

from (28) we get five identities like (1), namely

o0
. 2 8 - _
(29) :E: ji%l_ = a éT L2571 %%%E“:l%%T {(a,A) (s = 14, 16, 18, 20, 22)
n=l n
with
a = ] a =l a =-L. a s__g.. a = 77 = 7 x 11
14 Y16 6 Y18 0 30 20 2457 Y22 31786 2 x 23 x 691 °

The numerical values of the series om the left-hand side of (29), calculated

by taking 250 terms of the series, are
1,06544, 1.0109865184, 1,00239992152, 1.00056976587, 1.00013948615,

Substituting any of these values (except the first, where the series converges

toc slowly to give 12-digit accuracy) into (29) we obtain the numerical value

(A,A) = 1.035 362 056 79 x 1076

for (the square of) the norm of A in the Petersson metric. The previously

6

published valued 1.035 290 481 79 X 10 ° (Lehmer [12]), obtained by integrating

th

{A(z)iz yIO numerically, is false in the 5 decimal place.

Finally, we make a few general remarks about values of Dirichlet series
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attached to modular forms. The series Df(s) can be thought of as the

"symmetric square" of the Mellin transform

o

-s - -s,~l,. _ - -s.~1
GO L) ; a(a) n =U (-ap ' -ar®! e 0

of f, which is an entire function of s with the functional equation

k/2

a1 LEs) = @M% T(s) Le(s) = (1) L:(k*'s).

By the theorem of Eichler-Shimura-Manin on periods of cusp forms (cf. Chapter V
of [11]), the ratios L:(l) : L(3) se.e: LE(km1) and LY(2) : L;‘(A) teat L’f*ae-z)
are algebraic (and in fact belong to the number field generated by the Fourier

coefficients of £). For f = &, for example, there are real numbers w, and

w_ with
Yy = LX) =202 0 16y = 159) = 48w, 1¥(5) = L) = B
LD = LD = ga7 by 1y @) = LyO) = 35 0,0 1,6) = 1) = 355 04
(32)

¥(2) = L*(10) = 234
LX@) = LX(10) = =

w_, Lz(é) = LZ(B) =40 w_, L:(s) = 32 w_;
where by calculating the values of LA(IO) and LA(II) (which are the most
rapidly convergent of the series) numerically we find

w, = 2.144 606 670 68 x 10 %, y_= 14.827 748 001 x 107>,

On the other hand, Rankin ([18], Theorem 4) showed that for any normalized eigenform

f €8 and any even integer gq with k, 2<q<k-4 one has

k 2
* * q/2 k-3 Bq Bi-
(33)  Li@LiGk-1) = D72 —q‘lﬁ (£,8, Beg)

where Ei is the normalized Eisenstein series and the Bi are Bernoulli numbers,
so the product of the two independent periods of L?A is an algebraic multiple
of (f, £). For f = A, for example, (33) says

7680

L¥(11) L*(8) Zor (48

or, using (32), that

w, W, = (A,A) .
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We can therefore restate the Corollary to Theorem 2 as saying that the values

of Df(s) for s = 1,3,5,...,k-1, k, k+2,...,2k~2 are of the form
n
(algebraic number)-u%uLn ,

while the result of Eichler-Shimura-Manin says that the values of Lf(s) for

s = 1,2,...,k~1 are of the form (alg-)~u%ﬂn or (alg.).utnn, Both statements
fit into a general philosophy of Deligne that, if L(s) = zg:cn % is any
"motivated" Dirichlet series (i.e., ome arising from a natural mathematical object
such as a number field, a Galois representation, an algebraic variety, or a

modular form) and satisfies a functional equation of the form
L¥(s) = y(s) L(s) = wL¥(Cs)

with some [-factor +Y(s), then the value of L(s) at any integral value of s
for which neither s nor C-s 1is a pole of 7vY(s) should be given by a "closed
formula" L(s) = A'w, where A 1is algebraic and ® 1is a "period" about which
something nice can be said (for instance, the twisted functions LX(s) =

EZ:ch(n) n ® should have values AX-w with the same period w, and the
algebraic numbers AX should have nice p-adic properties as X varies). Now the

series Lf(s) and Df(s) are just the first two cases of the Dirichlet series

m . s
D S S N
Lm,f(s) 'p] ]_JO (1 ap (lp p ) (Re (s)>> 0)

attached to the symmetric powers of the representation associated to £, and
these functions are conjectured [19] to be holomorphic and to satisfy the functional
equations

Be() = V() Ly () =Ll (GmDari=s),

"

-rs

(27 T(s~j(k~1)) if m = 2r-1,

~1
j=0
el r(z FS) vy it

In a letter to the author (February 1976), Serre suggested that, in accordance

i

Yu(8)

1]

2r.

with the above philosophy, the values of Lm f(s) may be given by a formula
»
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a n

of the type L (s) = {(alg.).0, w_ © , probably with a+b=m, possibly with

f
L]
|a-blg 1, for those integral values of s for which ym(s) and ym((k—1)m+1—s)
are finite. For f=A and m=3 or 4 this would mean that there are identities

) 22
L3’A(s)= Awthnn (s=18,19,20,21,22), Lh’A(s)= Awlwn” (s=2h,26,28,30,32)

with A€Q, nelN. (We have given only those values of s for which the
Dirichlet series converge sbsolutely.) However, the numerical computation of
the values in question {done by G.KSckritz and R.Schillo on the IBM 370/168
at Bonn University, using 32-digit accuracy and over 1000 terms of the Euler
products) did not lead to any simple values of A and n satisfying these
formulas., At the Corvallis conference (July 1977), Deligne gave a revised and

sharper conjecture for the values of Lm (s) : if £ is an eigenform with ratio-

£
b
nal Fourier coefficients (i.e. k=12,16,18,20,22 or 26), then one should have
_r{r-1),. .y rlr+1) r(r-1)
L (s) = (rat.)om)™S™ — 2 (&) o 2 (r=1<e g1, (-1)%=21),
2r-1,1 + = k=1
rs-r(r—1)(k~1) r(;+1) .
(rat.).(2m) (C+C_) (r-1<E:T<zg s odd),
L (s) =
2r,f (r+1)s-r(g+1)(k—1) r(;+1) ]
(rat.).(2w) (C+C_) (r-<k‘_‘1 Sr+l, s even),

where C+ and C_ are real numbers depending on f but not on r or s. For

k=12, f= A, and m=1 or 2, for instance, we have

s @™ r(s)n, ,(s) s | (e e, (s
6 1/2x3x5 C 12 1/2 c.C
2 * + -
T 1/2%71 c_ 1k 1/2x%T c,c.
8 12%3 ¢ 16 1/2%3 c,c
2 * 2 .3 A
9 1/2x3 c_ 18 1/2%3%5  C.C_
10 2/5° c, 20 1/2x5% 77 cC_
11 2x3%5/691 c_ 22 7/25% 23x691 c,c_

where C+= 2q<3x5 w_, €= 25/3x5 @, . The computer calculation gives
C+ﬁ50.0h6 346 380 811 850 816 182 4, C_m 0.045 751 608 975 539 581 T4,
c,c_= 2”(A,A)N 0.002 120 k21 k92 335 249 248 968 328 831 L38
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and suggests overwhelmingly the following identities (in accordance with

Deligne's general conjecture) for m=3 and b :

s (21:)'25”%(5)1,3’6(5) s (2n)"3s+33r<11)"1r(s)r(s—n)Lh’A(s)
18 s e 2l 273 o33
19 3/7 c,c2 26 2% 3x5 c3c3
20 1/5 o 28 2% 23x601/7° c2¢3
21 5/7° c,c? 30 23653 c3c?
22 2x3/5%23 cf 32 2a3x34891/7 ci z’

§ 2. An integral representation for the coefficients cm(s)

In proving Theorem 1, we will reverse the order of the statements i) - iii).
For s € € with Re(s) > | the numbers Df(s+k*l) are finite (since the series

in (3) is absolutely convergent in the half-plane Re(s) > k) and so there

exists a unique cusp form @; € Sk satisfying
(34) 3,6 = ¢ LD 5 )
s’ k Cn )s+k- f

for all eigenforms £ € Sk’ namely the function given by the right-hand side of
equation (14). We define 3&(5) (m=1,2,....) as the mth Fourier coefficient
of 6; (= the expression on the right-hand side of (15)) and must show that
E;(s) = cm(s). To do this, we will write E;(s) as an integral involving a

certain kernel function @ which was first introduced by Petersson.

We recall the definition of the kernel function. As in § 1, we fix an even

integer k > 2 which will be omitted from the notations. For m = 1,2,¢.. set

35)  wlz,z') = ‘ (z, 2' € H).
a,b,c,d€Z (czz'+dz'+az+b)k
ad~bc=m

The series converges absolutely and therefore defines a function holomorphic in

both variables, and one can see easily that it transforms like a modular form of
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weight k with respect to the action of [ on each variable separately. One

also checks easily that Wy is a cusp form.
Proposition | (Petersson [16]): The function C;l mk—l wm(z, ~z") (C as in

k
equation (3)) is the kernel function for the mth Hecke operator with respect to

the Petersson metric, i.e.

CONN S j £(2) u(z, =) y° 4V = (E|T@) () VEeEs, z' < H.
H

Equivalently, wm(z,z') has the following representation as a linear combination

of Hecke eigenforms:

k-1 SF % a; ()
1 ¥
(37) m wm(z,z ) = Ck & m fi(z) fi(z ).
Proof: The equivalence of (36) and (37) is immediate from the fact that the

eigenforms fi form an orthogonal basis of Sk' Also, it is easily seen that
mk-! mm(z,z‘) is obtained from ai(z,z’) by applying the Hecke operator T(m)

with respect to (say) the first variable, so it suffices to prove (36) for m = i.
We can write (35) for m =1 in the form
i

ad-be=1 (, az+b>k
z +
cz+d

w (z,2") = (cz+d) ¥,

For fixed ¢, d € Z with {(ec,d) = 1, the pairs of integers a, b with ad-bc =1
are all of the form a + nc, bo + nd (n € Z), where as bo is any fixed
solution. Thus o

1 aoz +bo -k
wl(z,z‘) = : _— z (?' —_— o+ n) .

c,d€Z  (cz+d)¥ new cz+d

(c,d)=1

Using the identity

=, . ik i .
(38) 2 LI S N % E o1 amiet cem,

n=-— © H =i
we find -

¥ - 2mira’
- o f27i) z k-1 ,

(39) wy (z,2") =2 ot r G (2) e

r=1
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where G _(z) 1is the Poincaré series
a_z+b
§ 2Tir ———
1
(40) Gr(z) == ‘“‘—L—_Q e cz+d (r=1,2,..., z€H
2 dEZ (cz+d)
(c,d)=1

(with a , b
[o] [¢]

invariant notation G _(z) =
£ Yel NT

repregsentatives for the right cosets of T, =

is well known (see, for example [b], p. 37),

and satisfies

(e-2)t a(r)

41
4kl

(£,6,)

(this is proved in the same way as Rankin's identity below).

m =

again representing any integers with aod - boc =

3k(Y;z) e2n1r¥z

{ follows immediately from equation (39) and (41).

l1; in a more

, where the summation is over

{z (l "y|nez in T). But, as

G_ is a cusp form of weight k

r
for f£(z) = Z am) ¢" € Sy

n=]
Equation {(36) for

(For a different proof

of Proposition 1, not using Poincare series, see [25]

The other main ingredient for the proof of Theorem ! is Rankin's integral

representation of the function (3), namely

£(25) F(s+§k1) E

(4m)

a(n)

(42) skl

\f lf(Z)}z E(z,s) yk av
T\H

(valid for any cusp form f£f(z) = E:: a(n) qn €.Sk and s € € with Re(s) > 1),

E(z,s) is the Epstein zeta-function

1

where

3) E(z,8) = 35° ‘

n,n€2 ]mz+n|

(z = x+iy € H, 5 €€, Re(s) > 1)

(here E denotes a sum over non-zero pairs of integers). This is a special

case of a more general identity, namely that
j’ «©

h(z) E(z,s) dV = ;(2s) f
T\H o]

(44)

S h(xriy) yo 2
0

dx dy

for any T[—invariant function h on the upper half-plane for which the integrals

in question converge absolutely. To see this,

we write each pair of integers
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my, n in (43) as rc, rd with r >t and {c,d) = 1 and note that there is a
2 : 1 correspondence between the pairs ¢, d and the right cosets of Fm

in T, so

s
E{z,s) = Z Z D A— z(2s) Z m(yz)5.

rel ¢,d€Z  r>%|cz+d|?® YELAT
(c d)=]
Also, if F 1is a fundamental domain for the action of ' on H, then vF
YELNT
is a fundamental domain for the action of . Hence

z(2s) f >, In(yz)® hyz) v

J h(z) E(z,s) dV

T'\u F YET\T
= r{2s) z i Jﬁ Im(z) h{z) dv
YELNT
= r{2s) h{z) Im(z)s dav,
T NH

and (44) follows by choosing the fundamental domain {z € H jO & x < 1} for the

action of T_ . Equation (44) says that h(z) E(z,s) dV is ©(2s) times
o -2 I\u

the Mellin transform j‘ha(y) ys dy of the'constant term' ho(y) in the

0

Fourier expansion
o

h(z) = Zg: hn(y) e21Tinx

ns:mm
of the function h (which is I' - invariant and hence periodic). Equation (42)
now follows by taking for h the T-invariant function

hiz) = if(z) k Z 2 a(n) a(m) e?'ﬁ(n“m)xe-zMmm)y

=1 n=]

g

vith h (y) = D lamy| 2 4™,

If f is a Hecke eigenform, then the series in (42) is related to Df(s)
by equation (3) (note that a(n) is real in this case, so a(n)2 = Ia(n)]2
Therefore (42) permits us to deduce the meromorphy of Df(s) and the two formulas
(4) and (5) from the corresponding properties of E(z,s), namely that E(z,s)

extends meromorphically to the whole s-plane with a simple pole of residue g
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(independent of z!) at s =1 as its only singularity and satisfies the
functional equation
45) EXz,8) = 1 °I(s) E(z,8) = E"(z,1-s).

Putting together equations (37), (3) and (42), we obtain the integral

representation

(46) z(s) EQ(S) = o} gzﬂ wm(z,~§) E(z,s) yk dav (m=1,2,..., S€EFE)

for the function E;(s) defined by the right-hand side of (15), In the next para-
graph we will compute the integral on the right-hand side of (46), thereby com-

pleting the proof of Theorem 1.

§ 3. Calculation of Jq w_(z,-z) E(z,s) yk dv
—_— \g ™

The computation of the integral in equation (46) will be carried out by a
method similar to that used in [25] for the simpler integral

[ g ¥ av
I\H

(which, by virtue of Proposition 1 above, equals Ckm.

k+1 times the trace of the

Hecke operator T(m) on Sk)’ The extra factor E(z,s) in the integrand will
actually simplify both the formal calculation and the treatment of convergence,

which was handled incorrectly in [25] (see Correction following this paper).

The definition of mm(z,z'), equation (35), involves a sum over all matrices
of determinant m. We split up this sum according to the value of the trace of
the matrix and observe that there is a 1 : | correspondence between matrices of
trace t and determinant m and binary quadratic forms of discriminant tz = 4m,
given by

(2 2) = ¢(u,v) = cu? + (d-a) uv - bvz,

1
_ 2 2 s(t-b) - ¢
$(u,v) = au” + buv + cv® ( s Leesn) ) .
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Therefore ©
k
k -
v ow (z,72) = Z Z 7 z K
t==® a,b,c,d€Z (c|z]|® + dZ - az - b)
ad-bc=m
a+d=t
(47) id
= :E:j ) :E:: Ri(z,t),
r=—o I¢Ic:2~4m ¢

. . : . : - 2
where the inner sum is over all quadratic forms ¢ of discriminant t"-4m
and where we have written

k

48) Ry (z,t) = 5 > (z=x+iy€H, tER)
(afz]| + bx + ¢ - ity)

for a form ¢, ¢(u,v) = au2 + buv + cv2. The sum (47) converges absolutely for

all z €H, and we have

Proposition 2: For s€ 6 with s #1 and 2 - k < Re(s) < k - 1, we have

2 j{E(z,s)I ’ Z Ry (2,8)

> dv < » .
t=—o T\H |9]=t"~4m

By virtue of this proposition, which we will prove at the end of the section,
we may substitute (47) into (46) and interchange the order of summation and

integration to obtain

©

z(s) 'E'm(s) = o Rg(z,t) E(z,8) dV (2-k < Re(s) < k-1).

t== N\H | 9]ac?~4m

Theorem 1 is then a consequence of the following result, which is of interest in

its own right.

Theorem 3: Let k be an even integer > 2, A a discriminant (i.e. A €2,
2

A=z0 or 1 (mod 4)), t a real number with t° > A, For each binary quadratic

form ¢ of discriminant A let R¢(t,z) (z € H) be the function defined by (48).

Then for s €C with s #1, 1 - k < Re(s) <k,
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S R¢(z,t) E{z,s) dV
T\H \ |¢}=4
(49)
= 1(s,8) {T, (B,t58) + L (8,-t;8)} o+

(_l)k/Z T(s+k~1)L(s}5(2s) lt‘_s—k+l

o if A=
@m” "Tk)

0 if A40,

where r{s,A) and Ik(A,t;s) are Eiven by (6) and (8), respectively.

Proof: We observe first that

RY¢(Z,C) = R¢(tY2,t) (yeTl, ty = transpose of Y ),
so that the (absolutely convergent) series %;:; R¢(z ,t) defines a function
in the upper half-plane which is invariant under [ . Moreover, this function is

O(y ) as y = Im(z) >, as we will show in the proof of Proposition 2 below,

while E(z,s) = 0(y"2x(®1-9

} for y *® (0 = Re(s)). Hence the integral on
the left hand side of (49) makes sense and is holomorphic (for s # 1) in the
range specified. On the other hand, (s, also has a holomorphic continuation
for all s # 1 and the integral defining Ik(A,t;s} converges for I~k <0 < k
(unless A = O, in which case the integral has a pole at s = % compensating
the pole coming from Z(2s) in the expression on the right-hand side of (49)).

It therefore suffices to prove (49) under the assumption 1 < ¢ <k and then

extend the result to | - k < g <k by analytic continuation.

Suppose, then, that Re(s) > 1. Written out in full, the expression on the

left~hand side of (49) is

(50) % S Z z R(z:)—-—?——dv

T\H  |¢j=A mn€Z mz+n | 28

The action of [ on 2z €H permutes the terms of this sum, transforming the
form ¢ and the pair :(m,n) e(z? - {(,0})/ {+1} in such a way that ¢{(n,-m)

remains invariant. 1In particular, the sum of the terms with ¢(n,—m) > O in the
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integrand of (50) is T-invariant. Also, the group I acts freely on the set of
pairs (¢, (m,n)) with &é(n,-m) > O. Therefore, ignoring convergence for the
moment, we have

DD

(z,t) —m-L— av

T\H |¢|=4 m,n ¢ lmz+ni
$(n,m)>0
(51)
E E S Ry (z,t) ——-—L— av.
+{m,n) 'mz+ni

é(n “m)>0

mod T
1

nz - 3bn + cm

Making the substitution 3z~ —ee———— ——u ( which maps H to H if

1
-mz + an - zbm

an2 - bnm + cm2 > 0), we find

§ * P a1 e
H (aiz}2+bx+c—ity)k imz+n128 (anz-bnm+cm2)s 31 ([z]z-éA—ity)k

so that the right-hand side of (51) is equal to Z(s,A) Ik(A,t;s). Since the

sum defining g(s,A) and the integral defining Ik(A,t;s) converge absolutely for
1 < Re(s) < k, it follows g_gosteriori that the expression on the left-hand side
of (51) was absolutely convergent in this range. The terms with ¢(n,-m) < O

can be treated in a similar manner (or simply by observing that R 4(z,t) =

R¢(z,-t)) and contribute 7(s,d) Ik(A,-t;s).

Finally, we must treat the terms in (50) with ¢(n,-m) = O, They occur only
if A is a perfect square. These terms are not absolutely convergent in (50) (if
we replace each R¢(z,t) by its absolute value, then the sum in the integrand
converges for each 2z but the integral diverges). We argue as in the proof of
equation (44). First, by removing the greatest common divisor of m and n, we
can write (50) as ([(2s) times the corresponding sum with the extra condition
(myn) = 1. Since any relatively prime pair of integers (m,n) is T-~equivalent

to the pair (0,1) by an element of T which is well~defined up to left multi-

plication by an element of T[,, the terms of (50) with ¢(n,—-m) = 0 give
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r(2s) g Z R (z,t) y° av
TNE  ¢j=0 9
T $(1,00=0
S ‘ :
I'\H a,b,e €2 (a|z|“+bx+c-ity)
® b2-4ac=A
a=0
(52} = z(2s) jP § —————l————g ys“‘bk_2 dx dy.

bl=p e=—w {bx-ity+c)

The sum over ¢ can be evaluated using (38) and equals

oo
ri)k g k-1 2mir(sbx + iltiy)
(C P €
if #t > 0 (note that t2 >A and A is a square, so t # 0). If A # 0,
then this expression involves only terms e2Tinx with n # 0, so the integral

(52) is identically zero. For A = 0, the expression (52) becomes

sy k
(27i) Jﬂ E k-1 ~2nritly s+k-2 (an) T(s+k~1)
T(28) wmtie e Hidy dx dy = —— 2s)g(s) ————mi
DT Y =1 e @nle ST

This completes the proof of Theorem 3.

Proof of Proposition 2: We choose for ['\H the standard fundamental domain

jz} 2 1, Ix|g %} . Since E(z,s) = 0(y% #+ yl—c) as y = Im(z) » = , where

0 = Re(s) it will suffice to show that

L ¢

(53) Z j j Z R (z,6) | y7 2 dax dy <=,
- -2 | |¢l=t"-4m

for 0 <k - |. Also,the gbhove proof shows that the integral occurring in (53)
is finite for each fixed value of t (even in the larger range ¢ < k), so we
can ignore the finitely many values of t for which tz—ém is a perfect square.

1f tz—Am is not a square, then
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> > >

R (z,t) = 2 Re
|¢i=t2-4m ¢ b2-4ac=t’~4m (a|z|2+bx+c—ity)k
a>0
(54) -
K 1 b .2 2 c2-4m] *
(S T St
a=] @ b(mod 2a) n=— o 4a

b2zt%-4m (mod 4a)

But it is easily shown that

Z [am? + 1277 = o™y

n= -

uniformly for x €R and L € € with Re(L) bounded away from O. We apply this

2- ;
with Lz-yz-il:y~t bm ( -}-524-2—. Since m is fixed and a2 |,
&32 2a a2

t+ oo, y-> o in the sum (54), we can write

o0

. 2 ~k . —2k+] 1
- k4
E [(x+.l>.,+n)2+y2_1_§z_t___42] = ol - i =0((y2+t2/az)kr).
2a a 2 2a
n=— o b4a
Also, the number of solutions b(mod 2a) of the congruence bz ES t2 - 4m (mod 4a)

is 0(a®) as a+ o for any ¢ > O. Therefore (54) gives the estimate

1
Xz: Ry (z,t) =0 ¥ Z £ P v FrahRz
1¢[= tT=4m a=]

where the constant implied by O{ ) depends on m and k but not on y or ¢,

This expression is O(yl_k) in the range y 2> t and O(y_et—k+l+€) for t> vy,

as one checks by splitting up the sum according as a < t/y or a > t/y. Hence

Rl 1 L]
H
j f, Z’ R (z,6) | y7 %ax ay = O(tkk*e _r v ey J y km_]dy)
I -3 =t“-4m ¢
3| (¢ 1 t
= 0%,

so the sum {(53) converges for k ~ g > 1.,
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§ 4. Properties of the functions [(s,A) and Ik(A,t;s)

. In order to deduce from Theorem | the various corollaries discussed in § 1,
in particular the trace formula and the formula for the Petersson product of an
eigenform with the modular forms constructed by Cohen, we will need various
properties of the functions z(s,A) and Ik(A,t;s) defined by Equations (6)

and (8). We begin with the zeta—-function.

Proposition 3: Let (s, be the zeta-function defined by (6), where A E Z,

s £¢C, Re(s) > 1. Then

i) z(s,A) = z(2s) :E: n(a) , where n(a) is the number of solutions b (mod 2a)

A (mod 4a).

it

of the congrueunce b2

ii) ¢(s,A) has a meromorphic continuation to the whole complex plane and,if

A # 0, satisfies the functional equation

Y(s,4) z(s,d) y(1-s,8) z(i-s,p), where

en™® 18%/% r(s) if A< o0

Y(s,4)

-s s/2

5,2
r’_
L A (2)

iii) 1z(s,A) can be expressed in terms of standard Dirichlet series as follows:

0 if A= 2 or 3 (mod 4)
g(s,p) = T(s) t(2s-1) if A=0
D, ~s £ . _
£(s)Lp(s) %‘,fu(d) SREIC PG if Az 0 or 1 (mod4),A#0,

where if A= O or 1 (mod 4), A # 0 we have written 4 = sz with £ EN,

X
D the discriminant of Q(/A), (?) the Kronecker symbol, LD(s) = :S;(g) n S
na

the associated L-series, and oy(m) = :%;; 4y (m € W), v €C). In parti-

d>0

cular, the function L(s,A) defined by (7) is entire except for a simple pole

(of residue if A =0 and 1 if A #0) if A 1is a square.

N b=
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iv) For A <0, the values of L(s,A) at s =1 and s =0 are given by

m m

L(1,A) = f_A—I—’ L(O,A)a/“Ti H(A]),
|

where H(n) 1is the clags number defined by equation (20). More generally, if

r is a positive odd integer then L(r,A) and L(i-r,A) are given by

equations (22) and (23), where H(r,N) is the function defined in [3]

Proof: i) This identity is equivalent to the main theorem of the theory of
binary quadratic forms (cf. [10] , Satz 203), according to which n(a) is the
number of SI..2 {Z) - inequivalent primitive representations of a by binary
quadratic forms of discriminant A. We can prove it directly by arguing as for the
proof of (44) or (52): Let ¢ denote the set of binary quadratic forms of dis-
criminant A and X = (Z2 - {0,000}/ {#1}, For ¢ € ¢ and +(m,n) € X

set ¢ + x = ¢(n,~m). Then I acts on ¢ x X preserving the pairing ¢ * x

and we can write (6) as

T(s,A) = Z Z (¢.x) ° = Z ¢« % °

QED/T x€X/Ty (6»%)E(xX) /T

= Z Z (6 x°

x € X/I' $€d/ 1,

where I‘¢, Fx denote the isotropy groups of ¢ and x in T. The orbits of X
under T are in 1:] correspondence with the natural numbers, since *(m,n) is
I'-equivalent to *(0,r) (r = g.c.d of m and n), and the isotropy group of

+(0,r) is T_. Hence

©

gls,p) = Z Z -

r=1 ¢ea/T  ¢(r 0°

= 7(2s) z Z a®,

a=1 bf(mod 2a)
b2 = 4 (mod 4a)

ii) This follows from iii) and the functional equations of Z(s) and LD(s).

However, we can also deduce it from Theorem 3 together with the easily-proved funct-
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ional equations of E(z,s) (equation (45)) and H{Q,t;s) (Proposition 4, iii))
so that Theorem 3 gives as a corollary new proofs for the functional equations of

the zeta functions of both real and imaginary quadratic fields.

iii) This can be deduced without difficulty from i).The details are given in [8],

Prop. 2, pp. 69 - 71 (our n(a) 1is denoted there by r;(f,a), where A = sz).

iv) From iii) and the Dirichlet class~number formula we get

L) = Ly() % w@ & a7 @
d

2r  h(D) Z D, €
- s @e 2
4D| w(D) cdlf H (d £
21 h(D) z e D, !
= —— (l - (_) P ) =
fa] wo et }EE P (e=cd)

2 Z h(e?) _

L H(ja)).
Aol et we?) Aal 4}

The general case follows similarly from ii) and iii) and the formula given by

Cohen in [3], ¢), p. 273.

Proposition 4: Let A,t be real numbers with A < t2. Then

i) The first integral in (8) converges absolutely for s € ¢ with

i -k if A<oO

k > Re(s) > 0 if A>0
172 if A =0

and is then equal to the second integral.

(o
s
St

For A # O, the second integral in (8) converges for s € € with

1 - k < Re(s) < k. The function Ik(A,t;s) which it defines has a mero-

morphic continuation to all s whose only singularities are simple poles at

s =k, k+1,k+2,.., and s = ~k + I, -k, ~k = I,.0..,

and which satisfies the functional equation

1
G

2
L (b,t58) = (%IA} ) L (8,e51-s) if A <o,

__ s*i .
[Ik(A,t;s)+Ik(A,~t;s) ] = cot 5 G [Ik(A,t;s-s) +Ik(A,—t;|-s)] if A > 0.
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iii) For A= 0, %t > 0 one has

I'(3) T'(s~7) T(k-s)

L©,t;s) = eié?A(s'k) TS ltl“k+s
iv) For A <0 and O <r < k, one has
t_z_}é)w [Ik(A,c;x-r) + L ,t;1n)] = (_%E:?lﬂ I'(k;lél)(g(t) pk’r(t’ﬁ;_A)
where Pe,r is the polynomial defined by (25).
v) For A >0
£§; Ik(A,t;O) = i sign (t) Ik(A’t;‘) - (’l)klzﬂ N

k-1 (ffl */E)k-l

Proof: i) The integrand ylﬂs_2 2

dzl

poles in the upper half-plane H but grows on the boundary of H like

+ ity - %‘A)"k {(z =x + iy € H) has no

lzl_k+°-2 as z »iw
KT L,
]z - a]c_z as z—+a if A = 4a2 >0
972 2)E a5 20 if A =0

where 0= Re(s). The assertions about the convergence follow. The equality of

the two integrals in (8),granted the convergence, is a consequence of the identity

i - rH 13 v
(55) 5 &)™ ax —“fz?v’i"‘z" a (a €€ ~(~=,0], Re(y) > ).
ii) Set
( " xk+s“2 dx e ( .‘)
(56) I (&) = —_— X (1~k < Re(s) < k, z £C - (==, =1]) ;
k,$ 0 (x2+2xz+l)k-!i2 !

this is related to the standard Legendre functiom Eis (z) ("associated Legendre

function of the first kind") by
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1 k-1

-k 1 -
L@ = 2L g a9 G 2 plRe) (2 € e(=,41])

I (k-3)

(cf. [5], 3.7 (33), p. 160). For A < O the substitution y = % /TKT x in (8)

gives
sk N N .
(57 T(At;s) = (2 jap 2 L&) 1@ it .
K 2 14| (<) s Tal

For A >0 we can also express Ik(A,t;s) in terms of Ik s(z). Indeed, since
’

tz >A >0 we have t # 0, If t is positive, then the poles of the integrand

in the second integral of (8) lie on the negative real axis, and by shifting the

: . P . . : . : 1
path of integration to the positive imaginary axis and substituting y = ;v@rx

we obtain

sk i

—— = (s-k) 1 1

. e (day 2 2 Tk=3)1(3) t
( 58a) Ik(A,t,s) (“A) e ————W— Lk’s<—/—g_> (A >0, t »0).
Similarly, if t < O
1 _S;k —i;‘s"‘) I(k-3)_T(3) ¢ | (A>0, t <0)

(58b) Ik(A,t;s) = (30) e ——If,—(kT-Z-— Ik,s(y@- \)

The assertions about Ik(A,t;s) (A #0) now follow at once from the corresponding

properties of Ik s(z) ¢ the function Ik s(z) satisfies the functional equation
’ ’

Ik S(z) = Ik l-s(z) (as one sees by making the substitution x*™ x—1 in (56)) and
’ ’

has a meromorphic continuation to the whole s—plane whose only singularities are
simple poles of residue -dn(z) and +dn(z) at s =k +n and s =1-%k - n,
n 2 0, where dh(z) is the polynomial of degree n defined by the asymptotic

expansion

1 o]
(1 + 2xz + x2) 2 ~ :g: dh(z) « (x> 0).

n=0

iii) For 4 = 0, the same argument as for A > 0O gives

o

L Oe5s) = (i1 ©) tin(si)/2 IGch) rd) j x5 7324y

—_—— 1
(k) 0 (x+|t‘.l)k_I

which is equivalent to the formula given.



Za-31
135

iv) We have to prove that

o

( - )k lf YT kel 1 Gen) o £
A Py PR A ey P, r \Es

= (yPeive-ba) N 4
This follows by comparing the coefficients of uk-r-‘ in the two sides of the
identity
= 1 -r
2., Tty 3 2_ 2 -r
[yt St oy - LO2D (2] (e 222) 7
4 4 1 4
—_ f(r+'2')

which in turn can be proved by taking

2 2
- A tT-p 2 - 1
a - (1 + tu + z ¢ ), v r + 3
) . e | t2o
in (55) and making the substitution x = y + i(i + ——Z——u).

v) These formulas (which are equivalent to one another by virtue of (58) and

the functional equation Ik S(z) = Ik !_S(z)) follow from the identities
£ 4 3

o0 oo

{ dy I y-hit l I S N
2, 1..3/2 2 —

0 (y +ity-tp) €0 f2uiey-ta 0 VA B+t

2 . 1 ® “ “

5 y dy - 4 -§1ty+;A { _ T2 sign {(t)

4]

2 - /— Tt
. -A f2.. 0 s
(y2+1ty-%&)3f2 t -A y2+xcy~§a + it

by differentiating k - 2 times with respect to t. This completes the proof

of Proposition 4.

We can now prove the various assertions made in § I about special values of
the series cm(s) defined in (9). Consider first s = 1. The contribution of
the (finitely many) terms in (9) with t2 < 4m can be calculated from equations
(17) and (19), which are special cases of Prop. 4, iv), and Prop. 3, iii),
respectively. The contribution of the (finitely many) terms with c2 - 4m a

non-zero square is given by (21), which is a consequence of Prop. 3, iii) and Prop.

4, ii) and v). The contribution of the two terms with t2 - 4m = Q0 when m 1is
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a square can be calculated from equation (13) (which follows from Prop. 4, iii))
and the equation L(s, 0) = [(2s~1} (Prop. 3, iii)). Finally, the (infinitely
many) terms with t2 - 4m a positive non-square in (9) give O for s = 1
because L(1, t2 - 4m) 1is finite and Ik(c2-4m,t;l) + Ik(t2~4m,—t;l) vanishes

(by virtue of the functional equation, Prop.4,ii)). Putting all of this into the

formula for cm(l) we obtain from (16) the Eichler-Selberg trace formula.

For s =r ¢ {3,5,7,..., k = 3} the calculation is even easier, since the

terms in (9) with tz -~ 4m = u2

> 0 now give no contribution (the factor
Ik(c2~4m,t;s) + Ik(t2~4m,-t;s) is again O because of the functional equation, but
L(s, tz—hm) is now finite). From equations (9), (22) (= Prop. 3, iv)) and (26)

(which is a consequence of 1ii) and 1iv) of Prop. 4) we obtain

T+l r-1
— —— r-1 r
Rt g (15115 W R e A R T
t < 4m
K4y
2 r+l k-r-1
(-1) (k;fgz)!" L z(1-2x) if omosul
(59} 25 “k-1)t Qr-1)
+
0 if m # square
1 I(k-r) r 2
= - = T P (t,m) H(r,4m-t")
Fo% TeD T 7o Per
or (with the notatioms of (10) and (24))
- - JTler) - -
¢ (2) e ] n’ck,r(z) (r = 3,5,.,,,,k-3)

This together with Theorem | shows that C is a cusp form of weight k whose

k,r

Petersson product with an arbitrary Hecke eigenform £ 1is given by (28).

For s = r =k -~ | the same calculation shows that the value of the series
(9) is given by equation (59), but the function (10) is no longer a modular form
since we have left the region of convergence. On the other hand, it follows from

ii) and iii) of Theorem | that the function
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¢k_l(z) = lim @s(z)
s+k~1
is a cusp form of weight k satisfying
(60) G D = C 33—%2(%2 D (2k-2)
(4m)

for each Hecke eigenform f € Sk' We want to show that the mth Fourier coeffi-
cient 3;(k°l) of g;—l is given by equation (27). Each term of the series (9)
is continuous at s = k-1, and each term with |t] > 2/m has the limit 0

as s *k - 1, Therefore

~ . k-1 2 b4
(61) € (k-1 = ¢ (k~D)+lim{m :E;: L (t%~4m,t;k-1-e)+L (t —4m,-t;k—l-€)}
n n vo( lel>2/@ [ k

,,L(k-he,cz»m)) .

By (59) the first term on the right is equal to the first term on the right-hand

side of (27). From (58) we find

2 2
Ik(t =4m,t;k-1-€) + Ik(t -4m,~t;k~1-£) =

1+¢

2 2 1 1 1
. aQ+e)  (to-4m I (k-9T (z) [e]
2 cos =5 ) L k-1-¢ (

4 k) /t2-4m

1
- oy LT

T (x) k,k-l(l) et-l-e(l+0(€) + o(t"))’

with

8
—

2k~3 5
X dx 2k~-3 1 X
= u du = = ==,

] (x2+2x+!)k 0 k=2 x4

L1t =

Also L(t?-4m,k-1-€) = L(t?-4m, k-1) + 0(e), with both terms uniformly bounded

in t. Therefore the second term in (61) equals
GHr@) k-1 z,

__m_ IiET3ITiZ) n liml € i

— L1, t2-4m)).

(62) Py R ) &0\ |el>2/@ !

On the other hand, Prop. 3)i) gives
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o

1 L2 . L(2k-2) Z 1 2. .2
L(k-1,t“~4m) (D L ak_l#‘-'{b (mod 2a)|b° = t“~4m (mod 4a)}

2k-2 i -
C§,<k-1§ ;’ R #{d (wod a)| d(t~d) = m (mod a)},

where in the last line we have set d = E%E . The condition d(t-d) = m {(mod a)

depends only on the residue class of t (mod a), and for a fixed residue class

to (mod a) one has

lim (¢ ZE: —%:E = 5 lim gg(l+e) = § ’
€0\ jep>ovam ¢ &0
tEto (mod a)
so (62) equals had
2 DIy g(2k-2) k-l z p(a)
(63) 1 @ zan 4Ly Tk

where p (a) = #¥{d,d' {mod a) Edd' = m (mod a)}. The function a= p{a) is
multiplicative and for a prime power a = p’ is given by p(pv) = (p-'l)p\)—1
if p+ m and by

0’y = LU if 0g vgu

w+) @ - p°7h ify>yp

in general, where p¥ is the largest power of p dividing m. Hence

2 -1
@ (] ezl veme [T oz, vl g’

s

k , Tk : k
a=l a prm P pok pHim P P o
u
o e ogengt |
(ntDk v
p
-k - - -
=‘I_I l_ET:k . ! 1+ pl ko, pz(l k) Fooat pu(, k))
p I-p P Um
uz
k-1
k1) o, (@),

(k)
and substituting this into (63) we obtain the second term in equation (27). There~

fore
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0

. k/2+1
~ ~ 2Timz ("‘]) N
%, (@) =§ 2 (k-1)e LD 1 (@
k=1 £ Cn ey kel
_ak/2,. 1k
(64) - LD B0 raehrd) gk B )
k/2+1_k
S Gl D M - (-
= [ck,k_‘(z) LG-20 £ ()]

where C {z) is defined by (24) and
ky k-1

-]

k/2 k .
- =D """(2m) E 2Mimz
E (z) =1+ T £ Op— (M e

is the normalized Eisenstein series of weight k (the formula H(k-1,0) =
£ (3-2k) implies that the constant term on the right-hand side of (64) is zero).
Equations (60) and (64) and the fact that Ek is orthogonal to all cusp forms

imply that equation (28) holds even in the case r =k - |, when Ck . is
’

not a cusp form.

Finally, we should say something about the case k = 2, Up to now we have
excluded this case because it presents the most awkward convergence questions
and because there are no cusp forms of weight 2 on SLZ(Z) anyway. However, the
case k = 2 1is also important, both for the generalization of Theorems | and 2
to congruence subgroups and for the applications to Hilbert modular forms given in
§ 6. For k > 2 the interesting range of values for s was 1 < Re(s) <k -1,
and the two extreme values s = 1 and s = k — 1 created extra terms (and
extra difficulties) as given by formulas (21) and (27). For k = 2, the only
interesting value is s = 1, and one has all of the convergence difficulties
which occured previously for s =1 and for s = k - 1, and some new diffi-
culties due to the fact that the series expression (35) for the kernmel function
wm(z,z’) is no longer absolutely convergent, so that at first sight the whole
method of proof appears to break down. To get around this, one must define

w as lim w_ , where
) m,E
0 :
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mm’e(z,z') = Z (czz‘+dz'+z=1z+b)“k |czz'+dz"' +az+b €
ad~bec=m

("Hecke's trick"). As in Appendix 2 of [24] , one can show that w is a cusp
form of weight 2 with the properties given by Proposition | (of course for SLz(Z.)
this simply means w, = 0). Then one carries out the whole calculation of
§§ 2 - 4 with W instead of Wy taking in Theorem 1| a value of s with
I <Re(s) <1+ €, and at the end lets & tend to O. I omit the calculation,
which is awful. The result is as simple as one could hope: for k = 2 and
s =1 the mth Fourier coefficient E’m(l) of the cusp form gl defined by (34)
is given by the sum of the expression previously obtained for %k > 2, s = 1

(i.e. for the trace formula) and of the extra contribution previously obtained

for k> 2, s =5k-1 (second term of (27)), i.e.
20T . 3
Em(l) = 5 ) H{4m~t") + min(d,d') - 20, (m) .
t S4m dd "=m
d,d'>0

Since 5’](2) is a cusp form of weight 2 on SLZ(Z) all coefficients must be

zero and we obtain the class number relation

ZZ H(lbm—tz) = Z max (d,d")

t <4m dd'=m
d»0

due to Hurwitz [9] If, nowever [’ C T is a congruence subgroup for which
there are cusp forms of weight 2, then we obtain an expression

for the trace of the Hecke operator T(m) on S2 o).
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§ 5. The series ;{;nk—l-s G 2(z) and the convolution of L-series
n

associated to modular forms

Let s be a complex number with Re(s) > ! and 58 the unique cusp form

in Sk satisfying (34) for all normalized Hecke eigenforms f € S Our

Y
~
starting point for the calculation of the Fourier coefficients of QS in §§ 2 -3

was the identity (3) expressing Df(s) in terms of the Rankin zeta-function
w

:E: a(n)zn_s (where £ = 2. a(n) qn). But Df(s) also satisfies the identity
n=|

De(s) = £(28-2k+2) Z a(a®yn’s,
n=l

as is well-known and easily verified using the multiplicative properties of the

~

a(n). Thus the equation defining @s is equivalent to

R S T S SRR e
(4m n=1

and since this equation is linear in the coefficients a(n), it must hold for

all cusp forms f = ji:a(n) qn €-Sk’ not just for eigenforms. Equation (65)

~

determines ¢ _ uniquely, and by comparing it with equation {(41) we obtain the

identity
©6) T () = ¢ LD £ (2s) Z K176 ()
(47)7 1{k-1) n=] n

~ - .
expressing Qs as an infinite linear combination of Poincare series.

It is now natural to ask whether one can obtain a proof of Theorem | (which
states that E; = ¢s for Re(s) < k - 1, where ¢s is defined by (9) and
(10)) by combining (66) with known facts about Poincaré series. Two methods
suggest themselves:

th

I. One can substitute into (66) the formula for the m Fourier coefficient

Bem of Gr(z), namely
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k-1
g = 6+ 200 @iy T Z i (r,m) L /7

rm k~1
c=]

(where 6rm is the Kronecker delta, Jk-l a Bessel function, and

§ e2ni(ra+md)/c

a,d (mod <)
adz! {(mod c)

€1 Lo

Hc(r,m) =

a Kloosterman sum), and try to show directly that the sum equals cm(s). 1
do not know whether this can be done, but it is amusing to note that the term

arm in the formula for g produces in (66) exactly the extra contribution to

™

cm(s) occurring in (9) when m 1s a square.

2. One can substitute into (66) the defining equation (40) of the Poincare
series and interchange the order of summation to obtain

- ) o .2
(67) T () =c_ _F(z"k—U £ (2s) z 5, () Z Jk-1-s 2minyz
(4m)” T(k-1) YET \T n=1

(this is certainly legitimate for Re(s) > 2, since the double series is ab-
solutely convergent in that regiom). Again, I have not been able to deduce from
. ~ '3 . '3 . -
this that @s = ¢s in general., But if k - 1 - s 1s a non-negative even in-—

. 2 . . .
teger, then the series Z:nk i Se2ﬂ1n z occurring in (67) is {(up to a factor)

a derivative of the theta-series

o0

A
2 .
o@z) = :E: L2Tin"z

n=l
and therefore transforms nicely under the action of the modular group, and in this
case it is possible to deduce from (67) the expression for cm(s) as a finite
sum of values of zeta-functions, thus obtaining a different (and conceptually
simpler) proof of Theorem 2 and of the identities for special values of Df(s)
discussed in § 1. To present the idea as clearly as possible, we begin with

the special case s =k - 1.

For r =k - 1, the modular form (24) figuring in Theorem 2 is given by
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6) ¢ @ = Do | D uaet . cPeam )eBTE o oy )T,
k,k—1 k-1 4

m=0 2!:61

tT L4m

where ?(r (r > 1) 1is defined by
H () = D acen & (@ = "M%

N=0

and U& is the operator which sends zg;a(n) qn to :E:a(kn) qn. In {3], Cohen

proved that 9{r is a modular form of weight «r + , namely

Ll % T

r+d
2

gt _
(69) H (z) = z(i-21) {Eii)i_ @ + -z W é” >

where
c, ,~4.~1/2
Er+— (z = T+i/2
2 ab (cz+d)
(¢ JELNT &)
1
2

modular forms of half-integral weight, see [20]). It follows that 7{k_l(z) 0(z)
th

is the Eisenstein series of weight r + on FO(A) (for conventions concerning
is a modular form of weight k on FO(A) having the property that its m
Fourier coefficient is O for all m = 2 (mod 4), and since one easily shows
(directly or using results in [13]), that U4 maps all forms on F°(4) with

this property to forms on the full modular group, one obtains Ch k=1 € Mk(SLZ(zD)-

b
We want to show how (67) implies that the cusp form Ck k=1~ z(3-2k) Ey is a
»
multiple of Qk-l'

Equation (67) for s = k - 1 can be written

B @ = g = AP — g ). i 0o doty) - )

£ wm™ reen Yer~r
_\k/2.k
- L0 e[k @ - Z 5 (2 Gw,z)]
27 TR YETNT
_sk/2 _k
LD T e | B @ ~Tr‘;( E 5, 020 )| -
2 k)

Yel‘m/r‘o(h)

4 . .
where TrI : Mk(Fo(é)) hd Mk(SLZ(Z)) is the map defined by
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rde) = Z £y - > g0+ > £ on
YE I‘o(lo)\I‘ n(mod 4) n(mod 2)
t. [13]). Also, for v = :)ero(z.),
otv2) = O ('t 0,
80
Z- i Lot = @ EY @),
YETNT, (4) k-3
Therefore
kv k-
4, (&) 2 X rao
Tr. (BE ) = E + (-1) — b .
R K o -21) k-1

Equation (64) can now be obtained from this by using equations (68) and (69)

and the explicit description of the way the series 0O and EIEZ?/Z transform under
the operation of (2 -(IJ) and of the matrices involved in the definitions of Tr[;

and Ua. We omit the details.

We observe that the argument used here for ZG 2(z) would apply to any
series Zb(n) G (z), where the b{n) are the Founer coefficients of a modular
form (here ©(z)). Since this principle is not very well known (although it
was already used by Rankin in 1952), we give a general formulation of it,

applicable also to forms of non-integral weight.

Let T'CT be a congruence subgroup and k > O a real number. We consider

multiplier systems v : ['— {c €¢ ||tl = 1} such that the automorphy factor
J(Y,z) = v(Y)—I(c:z'.+d)-k (y = (: 3)6 r'‘', z€ H)

satisfies the cocycle condition
JOYps2) = Iy 5v,2) Ty, 2) (;,v, €T', z € H)

and such that v(Y) = 1 for YE&€TI4{ = T'NT, (then J(Y,z) depends only

on the coset of Y in TA\T! i.e. on the second row of Y). We write Mg(T',v)
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(Sk(r’,v)) for the spaces of modular forms (cusp forms) on ' which
transform by
£(z) = J(v,z) £(Y2) (v €T', z € H).

(If k €%, then v is a character on ['' and this agrees with the usual

notation; if k € Z + %, then our notation conflicts with that of [21] but has

the advantage that the product of forms in Mk T',v.) and Mk (I'',v,) lies in
1 ! 2 2
Mk (''y,v.v,).) If k > 2, we have the Eisenstein series
1<l-k2 1°2
E'(z) = Z J{Y,z) € (r',v)
k YET I ’ %
and for each natural number n the Poincaré series
Gl = 10,2 e g 0ty
o YE T NI
o
where w = [I : I'] is the width of I'; the same proof as for (41) shows that
ok (=)
0 (£,6]) = £(2)6!(z) ¥ av = z""E?T a(n)
I‘Y\H (lwm)

=, .
for any form f = 2 a(n)eZTTmz/w

i ' . i ati we have:
3 in Mk(F ,v). With these notations we e

Proposition 5: Let Ji(Y,z) = vi(Y)“l(czni)-ki (i =1,2) be two automorphy

fuaoctors on I', where kl’kz are real numbers with k2 >’kl + 2> 2. Let f(z) =

4 X, .
Z a(n) e21r1nz/w and g(z) = Z b{(n) e21unz/w be modular forms in
n=} — n=0
S

k]+k2 (I",vlvz) and Mkl([",vl), respectively, and El'( (z) the Eisenstein series

in M (T',vz) as defined above. Then the Petersson product of g(2z) El'( (z) and
- 2 2

f(z) 1is given by

Tlk,+k,~1) k, +k E
' _ 172 | I a(n)b(n)
7y (f’gEkz) ) (znr)ﬁl’““z-l N anl o 1tR27!

Proof : B
Set k = k+k, , v =v,v,, J(¥,z) = v(Y)(cz+d) k- J,(v,2) J,(v,2).

1f k2> k1 + 2 , then
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]

g(z) Eéz(z) J,(Y,2) g(2)

)
m
-y
-
=

[Ts

J2(Y,z) 3, (Y,2z) g(¥z)

o

ZE: b(n) J0y,z) eZNLnYz/w
YETIN' n=0

<
m
—
b
Z

[

O

= b0 E (@) + ) b 6,

=1

because the double series is absolutely convergent; if kz = kl + 2, we obtain

. . . ~2E :
the same equation by multiplying JZ(Y,z) by yE |cz+d[ 2 and letting € * 0
(Hecke's trick). Equation (70) now implies the statement of the proposition.

k, /2

{The series in (71) converges for k, > 2 because a(n) = O(n Y and bn) =

k-1 2
a l

0( ).)

The method we have just described was used by Rankin (for forms on the full
modular group) in [181; his identity (33) is obtained by taking k1 =q,
<o

ky =k-q, gz) = E () = ) -2 o () efMPZ L4 £ =
q Bq = q-1

E:;a(n) eZWlnz € Sk an eigenform and using the identity

o

or(n) a(n) ) Lf(S) Lg (s71)

=f ns (25~r—k+1)

(Re(s) > r + 5%1 ).

(72)
n

We remark that equation (71) is in fact true under weaker restrictions than those
given. For example, Rankin's identity (33) is still valid for ‘=% {the reader cen
check this for k=12, f=A, using (32)})}. It is also worth remarking that the
identity (33), together with the non-vanishing of Lf(s) in the region of absolute
convergence and the fact that the Hecke algebra acts on Mk with muleiplicity 1,
imply that for gq 2 % + 1 the modular form Eq(z) E

module over the Hecke algebra. 1 do not know any elementary proof of this fact;

k-q(z) generates Mk as a

a direct proof in the case gq = % would imply the non-vanishing of Lf(kIZ).

We now prove a generalization of Prop. 5 which can be used to give another

proof of Theorem 2 (i.e. of the proportionality of ¢r and C and hence

k,r)

of the identities for Df(r+k-l), where r is an odd number satisfying
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1< r< k-1, To prove that Ck r is a modular form when r < k ~ 1, Cohen
Tk, Lk
defined bilinear operators F, = F\}l 2 v EH, k,,kz € R) on smooth functions

by the formula

Vv b V-l
Z vei e DO TGow)  97f, 5T
(73) F (£,6,){(z) = -n 4
vt/ tE = p TOoq) Thvan - o

and showed ([3], Theorem 7.1) that

74 BE Y Bl ) = FELD L sy T

1 2 1 72
for all v ¢ GL; (R). From this it follows that if fl and f2 are modular
forms on some group ['', with weights kl and k2 and multiplier systems v,

and Vs respectively, then Fv(fl,fz) is a modular form on I'' of weight

k1 + kz + 2V and with multiplier system v, and is a cusp form if v > O.

(Of course Fo(fl’fz) = fle') The fact that C (r <k - 1) 1is a cusp form of

k,r
weight k on SLZ(ZD then follows by the same argument as in the case r =k - 1

from the identity

I I Ve o _ kerel
(75) Ce,x = @) HOBI=3) F, (0, )(r)[UA (v 5 )

We now give a formula for FV(fl’fZ) when either Fl or F2 is an Eisenstein

series; this proposgition in conjunction with (69) and (75) can be used to

give another proof of the identity

1 I(k-r) r = -
h Ck T=T) T Ck,r(z) (r =3,5,..., k-3),

¢ () = -

which is equivaleant to Theorem 2.

Proposition 6: Let kl, kz P JZ’ g and Ek be as in Proposition 5, VvV a

non-negative integer, and f(z) = :;: a(n) eZﬂan/w a cusp form in Sk(F',v),
n=1
_ ‘ - . . . .
where k k1 + k2 + 2V and v ViV, Define Fv(g’ Ekz) as_in (73) Then
o0 JUS—
¢ FGeE ) = rpY TESATERM JV 5 e
2 {am) T(kz) n=} a 1772
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Proof: Let g}ukz) = iﬁi%ii). Then for Y = (: 3) cr
3z
)
. Tk +y) _ k. +yty
a0 Vo = v Y O iy o o s M.
H=0 1

This can be proved by induction on Vv (the case VvV =0 is just the transformation

law of g), wusing the identities

sV = er? £ eW o

4
dz
and

Y My PR f————r(k‘ﬂ)) ey

n F(kl+u) 1 -1 (k1+u-1) o F(klm) ’
we leave the verification to the reader. Let G&{z) be the Poincare series in

Sk(F', v)., Using the Fourier expansion

e

) )
eM@ = (-2%1) Z aVb(n) e2Tine/V

n=0
and (76) we obtain
- \) w(
(53?) Z Vb (a) G/ (2) = Z vV ezr) € g M vz
n=0- YETT
Y
(k. +v)
= wo__ LT (W § -1 V-u ~kg=V
S e ¢ @ SR vy e (eard)
Y
Tk, +v) rk,)
,;Z vy L G,y v 2 v ()
< (u) TG, 7 g Wz) « (-1 T, ro Ekz (2)
I (k,)

= F (g, E ),
I’(k2+ V) v kz
and this together with (70) implies the statement of the Proposition.

Applying Proposition 6 to the case I'' =T, g an Eisenstein series, and f
a Hecke eigenform, we obtain (using (72)) the following generalization of Rankin's

identity (33):

Corollary: Let kl’ kZ > 4 be even integers with kl # k2 and Ek;’ k2
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the normalized Eisenstein series of weight k Let v be a non-megative

l’kZ'
. i . . .
integer and £f(z) = :E:a(n) e2 inz a normalized eigenform in S

k =

k’

kl + kz + 2v. Then

-v ky/2 2k, 2k, T (k=1)
an  (mdY ¢ FE LB N = (12 L 2 TG
v R, B B X ra cony

* *,
x LECkv-1) Lk, ),

where Bk , Bk are Bernoulli numbers and L;(s) is defined by equations
1 2

(30) and (31).

Remarks: 1. If k2 >k, » 4, we prove (77) by applying Proposition 6 directly;

1

if kI > kz, we interchange the roles of k) and k2’

equation (31). As in the case V = 0, we observe that (77) remains

using the functional

valid also when kl = k2.

K Ek )} has rational coefficients, the left—hand side
1 "2

of (77) is equal to the product of (f,f) with an algebraic number lying in the

2. Since (2mi) ¥ F

field generated by the Fourier coefficients of f. For any k > 16 there are
sufficiently many triples (k;, kz, v) satisfying the conditions of the Corollary
to deduce that L?(a) L;(b) is an algebraic multiple of (f,f) whenever a and

b are integers of opposite parity satisfying % < a,b <k for simply 0 < a,b <k

if we use (77) for kl = kz). For example, if k = 16 and £ = A)6 is the unique

normalized eigenform in Sl6’ we find
* * »* #* *
L1713  LFa3) L¥00) 266 L;(15) LEG2)
* * b
XD ALy LX(10) LX(T5) 256
* %
e LEO) LEAO 1
X * x
LF(12) 1;(9) 21%¢£,6) LEQ&) Lz
ot 3617 357 2%3%03 1 s
7.3.5.13 © 2.3.7 “ 3617 T -2 T3

22
7
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Thus we obtain a different proof of the result of Eichler-Shimura-Manin on

periods of cusp forms mentioned in § 1.

3. For the six values of k with dim Sk = 1, equation (77) takes the form
k B B k B
ey k- = (-1)7%-_12k“2 _El.+ _EQ S EEL “EE (£,£)
£172 £ kl kz Bk kl k2 ’

if v = 0 (Rankin EXB}, Theorem 5) and

kz
2-1
. X, o nx k-2 T[(k-v-1)
Le(ky+v) Lo(k-v-1) = (-1) 2 TE-D
N I"(k|+\)) F(k2+V)
S D -————-r(klﬂ) Bkl +_T(k2+l) Bk2 (£,£)

if v > oO.

4. Proposition 6 is similar to a recent result of Shimura ([22], Theorem 2).
Also, the method sketched in this section for proving Theorem 2 is related to the

method used by J.Sturm (cf. note at the end of the introduction).
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§ 6 The Doi-Naganuma lifting and curves on Hilbert modular surfaces

In 1969 Doi and Naganuma [4} constructed a "lifting" from modular forms on
SLZ(ZD to Hilbert modular forms on SLZ(GO, where O 1is the ring of integers
of a real quadratic field K = (/D). Four years later, Naganuma [14] defined a
similar lifting from Sk(PO(D), (2)) to Sk(SLZ(U)); together, these maps give
the subspace of Sk(SLZ(O)) generated by eigenforms which are invariant under the
action of Gsl(K/¢). In {24} the author constructed a “kernel function' for the
Naganuma mapping, i.e. a function Q(z, z'; T) of three variables which is a
modular form of Nebentypus (g) with respect to T and a Hilbert modular form
with respect to (z, z') and whose Petersson product with any modular form
f(t) of Nebentypus is the Naganuma lift ?(z, z2') of £. The mth Fourier
coefficient of (z, z'; T) (with respect to T) 1is a Hilbert modular form
wm’D(z,z‘) defined by a series similar to that defining the function w, o=

mm,l of § 2. By replacing wo by wm’D in the calculations of §§ 2 - 3 of
this paper, we will obtain a theorem generalizing Theorem 1 and, as corollaries,
i) nev proofs that certain functions constructed in [3] and in [8], given by
Fourier expansions whose coefficients involve finite sums of values of
L-series at integer arguments, are modular forms;
ii) characterization of these forms in terms of their Petersson product with
Hecke eigenforms;
iii) proof that (?,g)/(f,f)2 is an algebraic number for any eigenform
£es @, A);
partial
iv) /fproof of a conjecture made in [8] expressing the adjoint map of the

Naganuma lifting (w.r.t. the Petersson product) in terms of intersection

numbers of curves on the Hilbert modular surface HZ/SLZ(G).

Some of the results have been obtained independently by T. Asai and T. Oda in the
period since the Bonn conference. In particular, both iii) and iv) overlap with

work of 0Oda.

We recall the result of [24]. We suppose throughout that the discriminant
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D of K is = 1 (mod 4) and denote by k some positive even integer. The
forms w are defined (if k > 2) by
m,D
¥
(78) W D(z,z') = Z (azz' + Az + A'z' + b)_‘lc (z,z' eH, m=1,2,...),
b

a,bezj
red
AA'—ab=m/D
where A' denotes the conjugate of A and - (VD) is the different of K;

one checks without difficulty that w is a cusp form of weight k for the

b
’
Hilbert modular group SLZ(G). The main result of ZZA} is that the function

el

(79) Q(z,2' 5 1) = mZ' o< W, p(zz") e

2 imt (z.2', T € H)

is a cusp form on FO(D) of weight k and Nebentypus (2) with respect to the
variable T whose Petersson product with any other cusp form f € Sk(FO(D); (2))

is given by

(80) 5 £(0) Qz,2' 3%y (Im T)FdV = <, \)E(;;-x () efmitve +v'zh)

NH v >>0

where Ck is given by (12) and c(oL) (0L an integral ideal) is an explicitly

given finite linear combination of the Fourier coefficients of f at the various

cusps of FO(D). It is also shown that, if D 1is prime and f a normalized

2wi(yz+ v'2)

Hecke eigenform, then z:c((u)19) e equals the Naganuma lift f of f

i.e. the coefficients c¢(?1) are multiplicative and satisfy

alp) it pp'- . & = 1,
2 k-1 . D
(81) () = a(p)® + 2p if P = (), (;) = -1,
a(p) + a(p) it pP= ), O = o,
(82) Z e(O) N(B)™S = Z a(n ® Z a(mn ® /.
[ 8 n=} n=1

Asai [ﬂ has shown that equations (81) and (82) still hold (for f an eigenform)

when D 1is not prime.

Finally, for our generalization of Theorem | we must define the analogue of (2)
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for forms of Nebentypus, Let f = Za(n)qn [ Sk(I‘Q(D), (-l.?)) and set

- 2 _ms.-1.. D = -s,~1 2 .8~
83  Dy(s) ]_p{ a-a p 7o - e @ p T (-2 )7
where ap, ap are defined by
D, - - k=1
84 + - = =
(84) ap %) a, a(p), a 8y P
or equivalently by
oo .
5 D a@a - l { L — -
n=l - o 1-(*) a
p p P ) (?) p P )
Then, with the same notations as in Theorem |, we have:
Theorem 4: Let D=1 (mod 4), D> 1, be a square—free integer and k > 2 an
even integer. For m = 1,2,... and s €¢€, 2 - k< Re(s) < k-1 sget
ko137 E 2 2 t2-4m
(86) cm’D(s) = m D [Ik(t -4m,t;s)+1k(t -Am,-t;s)} L(S,T)

2 t€Z
t“z4m (mod D)

k/2 [(stk=1) £Q@s)  k-s-I

2
1) — 2 if m=u", u>0,
22s+k 31;3 1 T (k)
+
4] if m # square.
Then the function
o
2mimz
QS,D(Z) ;é; cm'D(s) e

is a cusp form on I‘O(D) of weight k and Nebentypus (-.Q) and satisfies

I'(s+k~1)

@ s+k-1

£) = C

D.(s+k-1)
k 4m) f

s,D?

for any normalized Hecke eigenform f € Sk(I‘o(D), (9)).
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Proof: We would like to imitate the proof of Theorem | in § 2 - 3 with @ op
s

instead of w . We cannot use & D(z, -z) for this purpose, because (z,z') -

3

(z, —z') 1is not compatible with the action of the Hilbert modular group. We
can get around this by using w D(Ez, €'z) if K has a unit € with € >0 > €'
b}

and in general by using the function w_ D(z, zZ), where is obtained by

~m,D
replacing m by -m in (78) and is defined for ({z,z') € H X H_ (H_ = lower

half-plane). Writing c instead of b in (78) and setting A = %(b + 55,

we obtain
W (2,3 = > @lzl? + 2z + 22+ )78
’ a,c€Z
rew -t
AX'-ac=-m/D

= (a}zlz +bx + ¢+ iﬁr )

a,b,c,t€Z

%(bz—tZ/D)°ac=—m/D

or,with the notation (48},

Yo (2,8 = Z z Ry (z,0) .

teZ 2.)
t% 4m (mod D) i¢l:§1§J£

Theorem 3 (§ 3) now implies

_ s+k-l
@87) c () = ¢ b 2 k! w__ (2,2) E(z,8) y* av.
m,D ~m,D
™H
Hence
_s+k-1
-1 2 - k
88) ¢ (1) = z(s) ' D Q_(z,%; 1) E(z,s) y dV,
s,D n
H
where
0
Q_(z,z'; 1) = 2{: <! w_ D(z,z') ATimT (z, T €H, z'€H.).

The function §_ has properties like those of £, namely it is a cusp form of
Nebentypus with respect to T and satisfies an equation like (80) but with the

summation running over all v € Dk such that v > 0 > v'. (This follows
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directly from the results of [24] if K has a unit £ with € > 0> ¢g’,
since then Q_(z,z'; t) equals f(ez, €'2z';t ), and can be proved without this
assumption by making the obvious modifications in the proofs given in [24].) There-

fore (88) implies that b €S, T M, (?)) and that
Ss kYo
_ s+k~l

(0,00 £) = € TONE S he(2) E(z,8) 4V

I'\H

for any f € Sk(TO{D), (2)), where

hf(z) = yk :§:; E((v)l?) eZ“i(Vz *v'z) (z € H).

veg !
v >0>v’!
The function hf(z) is SLZ(Z)-invariant because _{z,2'; 1) is a cusp form of

weight k with respect to the action of SLZ(O) on (z,2z') € Hx H_.

Therefore we can apply the general principle (44) to obtain

' oo i
——————— . ] — - 1 -
& hf(z) E(z,s) dV = [(2s) Sji e( (V) eznl(v + VxR =Y )yyk+s 2dxdy.
T\H 0oy
The only terms that contribute to this integral are those with Vv + v' =0,
i.e. V= 5; with n € N, and we obtain the identity
D o0
I (s+k-1) r(2s) c((n))
(89) @ ,,f) = ¢ = ———
s,D k (4ﬁ)s+k 1 z(s) vyt ns+k i ,

valid for all f G,Sk(ro(D), (2)). If £ is an eigenform, then c((n)) = c((n))
and the series :E:c((n)) 2 ° has an Euler product whose terms can be computed
using (81); a short computation then shows that the expression in brackets

in (89) equals Df(s+k-l).

We can now deduce several corollaries exactly as in the case D = 1, First
of all, the functions Df(s) is entire {proved by Shimura, [21}, Theorem 1) and
satisfies a funectional equation(proved by Asai [1], Theorem 3). Next, by taking

s =r €{3,5,..., k - 3} and using (22) and (26), we find that

T
= - E_ I'(k-t)
o p(® 7 % Tae  Sk,r,0®>
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where }
< 4m-t? 2mi
~ Tim
CkrD(Z) = Z Z P L (Em) H(x, mD ) e “
i o=C t€ 2 ’
£2 < 4m
t? Z4m {mod D)
For r =k - 1| we get an extra contribution which can be computed as in § 4, the

only difference being that the multiplicative function p(a) occurring in

equation (63) must be replaced by the multiplicative function

cz-ém
D

2

i

DD(a) = #{b,t (mod 2a) | b (mod 4a)}

= # (eo/as | AN Em (mod a) },

which is calculated in f24} (Lemma 3, p. 27). We obtain an equation similar to
(27) but with Ok_l(m) replaced by the mth Fourier coefficient of the Eisenstein
series E;(z) in the space M;(FO(D),(?)) consisting of those modular forms in
Mk(Fo(D),CE) whose mth Fourier coefficient vanishes whenever m is not a
quadratic residue of D (M;(TO(D), (E)) is the subspace of Mk(TO(D),(g))

fixed under all Atkin—Lehner involutions). Therefore Theorem 4 implies the result
of Cohen ([3}, Theorem 6.2) that the functions Ck,r,D are modular forms

(cusp forms if r < k - 1) and at the same time gives a formula for the

Petersson product of these functions with Hecke eigenforms. In particular, since
Df(r+k-l) #0 for r> 1, we deduce from the "multiplicity 1" theorem that each

D D .
Ck,r,D generates the whole of Mk(FO(D), (%)) (resp. of SR(FO(D), (<)) 1if

r <k - |) under the action of the Hecke algebra.

For r = 1, we again find an extra contribution (given by (21)) coming from

tz—ém

the terms in (86) for which 5

is a perfect square. In contrast to the case
D =1, there are in general infinitely many such terms, in 1 : 1 correspondence

with the integers of norm m in K, and we find

= -1 . )
(90) <I>1’D(z) = : ck Ck,I,D(z) k > 2)

with
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o0
DD [ PR [P
O Gp® = bl ez P, (T " Lgminaan e
t2: <4m A0
t % 4m {mod D) Adten
Finally, if k = 2 then we find (as in the case D = 1), that ¢l D equals
b4
K . +
. . . . €
3 C2,I,D plus a multiple of the Eisenstein series EZ(Z)' Thus CZ,I,D

+ D
MZ(PO(D), (3)) and Ck,l,D

siderably harder to prove directly than the modularity of C

€ SQ(TO(D), (?)) for k > 2. This result is con-—

K,r,D for > 1,

because the function ‘){r(z) = Z H(r:,N)qN used by Cohen is no longer a

modular form of half-integral weight when r=1. The fact that C2 1D &
LI

+ D .

ME(I‘O(D),(r)) was proved in [8], Chapter 2.

Equation (90) together with Theorem 4 characterize the function Sop
b 4

by the formula

4 T (k) D .
(92) (Ck,l,D’f) = -z ‘(T)k D (k) (f€ 5,0 (D), (*)) an eigenform).

To interpret this, we need some other product representations of I')f (s}, Let

a(n) and c(ot) be the Fourier coefficients of £ and of the Naganuma lift f,

P P
ideal) the numbers defined by

respectively, & , & the numbers defined by(85), and AP (? ¢ 0 a prime

(93) AP = if N(SD) = p.
Then (81), (82) are equivalent to the Euler product expansion

1

Z s _ -1 e -8, =
(94) o c (o) N(TU) g(l AZ?N(XD) ) q] Ag; N(XD) )

A
for the Mellin transform of £, and by applying the identity (3) (or rather its

~
analogues for forms of Nebentypus and for Hilbert modular forms) to f and £ we

obtain
Ly {s—k+l)
2 ~8 K
(95) ;c(M) N{7t1) = W D%\(S),

and
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(96) ZE: .':1(:1)‘211_s - Llstk+l) TT (a + k"l*s)‘l D! (s)
T2s-2k+D) P £
n=} p!D
where
2 -s,~} - -s,~1 -2 ~5.—1
£ = b- - ApApN |- A ,
Df(s) T;) ( A?N(&)) ) (1 Ag) x) (X)) ) ( XDN(&')) y
and

-1

' D, .2 ~s.~I k~l-s, 1 _ /D, 2 -s
Dg(s) G a,p ) G-p y @ (p) a P )

[T o
P

(= the "twist" of Df by (2)). On the other hand, using (93) we deduce

after some trivial manipulations

97) Dg(s) = Df(s) Dé(s)'

Thus Df(s) is, up to a simple factor, the ratio of the Rankin zeta functions
Va3

associated to f and to f. The above formulas (and more general ones corres—

ponding to Hilbert eigenforms which are not liftings) have also been observed by

Asai [2].

”N
Using the analogue of formula (5) for f and f (i.e. comparing the resi-

dues on the two sides of equations (95) and (96) at s = k by Rankin's method)

we obtain
22k—1 1Tk+1 -1
1 B e —"
D} (k) o D (6D,
4k-1  2k+2
Dp) = AT pETL A,
f 2
k)
and hence, by (97),
D_(k) 2—21(___’2(:1 D’k (g’g) .
£ r(k) (£,1)
Substituting this into (92), we obtain
Theorem 5: Let D = | {mod 4) be a square-free integer > } and k an integer

> 2, Then the function Ck i D(z) defined by (91) is a modular form in
£ i 4

Mk(FO(D), (2)) (a_cusp form if k > 2). If £ € Sk(FO(D), (2)) is a Hecke
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"~
eigenform and f € Sk(SLZ(G)) its 1lift under the Naganuma mapping, then

&5
R

(98) (€ f) = -

4
k,1,D’ Dk

Since C has rational Fourier coefficients we deduce
14

k,1,D

Corollary 1: Let D, £, be as in the Theorem. Then (£,£)/(f,£)> is an

algebraic number belonging to the field generated by the Fourier coefficients

of f.

Doi informs me that this result has also been obtained recently by T. Oda.
Secondly, since (?,?) and (f,f) are non-zero, we deduce from the

"multiplicity 1" principle:

Corollary 2: The modular form C together with its images under all Hecke

K, 1,D

D .
operators span the space SK(TO(D),(T)) (respectively the space

D . _
M, (T (D),(3)) if k=2).

This corollary was conjectured in the case D prime, k = 2 by Hirzebruch
and the author ([8], Conjecture 1', p. 108) in connection with the intersection
behaviour of modular curves on Hilbert modular surfaces. We devote the rest of
this section to a discussion of the relation between the above results and the

results of [d.

We suppose from now on that D is a prime. For each m 2 | define a curve

TmCHXH by

T = ((zz) | Jab, ez red wien ab-am' =03,

i.e. Tm is the union of the divisors of all of the expressions figuring in the

definition of w The curve Tm is invariant under SLZ(O)3 its image on

-m,D°
X = SLZ(GO\H x H being an affine algebraic curve (also denoted by T ) each of
whose components is isomorphic to the quotient of H by some arithmetic group.

It was shown in [8] that
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2
T, Z H(f‘-“%t—>

te
t2< émm
:2_ 4m (mod D)

Za-56

if m is not 2 norm in K. In general, we must compactify X to a smooth
surface X% (by adding finitely many "cusps” and resolving all singularities on the
resulting surface). Then the closure of Tm represents a homology class in

Hz(i) which we decompose as the sum of a class T; in Im(Hz(X) hd H2(§3) and of
a linear combination of the classes represented by the curves of the singularity

resolutions, and one has

T:GT: =§; (hm‘ —L—E win (A, A").
t€ 7D reo”
t? € 4m A>0
t2 = 4m (mod D) A=
Therefore we can write
X

- - Eg: [ 2nimz
C1,09 = ~37 ¢ e Ty 2T e .

The formula for T° o T® (n,m € N arbitrary) was also given in [8] and can be
n m
compactly summarized by

i
(99 > @ o1 e =, | ] TN (),

m=0

where Tg is defined as a certain multiple of the volume form on X and T+(n)

h Hecke operator on Mz(f;(n), (?)) with the

is the composition of the at
. . . D + D

canonical projection M,(T (D), (7)) » M, (T (D), 7))+ By using these intersection

number formulas in combination with a direct analytical proof (by means of non-—

holomorphic modular forms of weight 3/2) of the fact that C2 1.0 € MZ{PO(D), (2)),
4 *

the following theorem was proved in [8]:

Theorem ([8}, Chapter 3): For each homology class K € Hz(iﬁ €) the series

2]

b (2) = Z & - 15 2T (z € H)

m=0

. . + D PP .
is a modular form in MZ(FO(D), (¥)). The map ¢ : K~ QK is injective on the
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subspace of Hz(f; €) generated by the classes Tﬁ.

On the other hand, the map ¢ 1is zero on the orthogonal complement of a
certain subspace U of Hz(i; €) (defined in [7], p. 91) containing all the

c .
classes Tn’ with

D+19
24

dim U = [ 1= aimma @, O.

On the basis of this and of numerical calculations for D < 200 it was con-
jectured ([8], Conjecture |, p. 108) that the subspace of Hz(g; €) spanned by
the classes T; coincides with U and that the map ¢ : U > M;(FO(D), (2))

is an isomorphism. But ®(T§) = T+(n) by equation (99), so Corollary 2

CZ,I,D]

implies that the restriction of & to the space generated by the Ti is sur-

jective, thus proving the conjecture. We state this result as

Corollary 3: The subspace of Hz(i; C) generated by the homology classes

. . r . . .
T; has dimension anzg] and is mapped isomorphically onto M;(FO(D), (2))
by ¢.

By associating to a Hilbert cusp form F € SZ(SLZ(OO) the differential form

F(ez, €'z') dz Adz' + F(ez', e'z) dz'A d;]

N

.
L

( € = fundamental unit) and then applying the Poincaré duality map to the

cohomology class represented by this form, one obtains an injective map
j o SZ(SLZ(GD) -+ HZ(X; C)

(see[7] or [8] for details). Under this map, the codimension ! subspace
t°cu consisting of classes x with xTz = 0 corresponds to the subspace

S;ym c SZ(SLZ(G)) generated by Hecke eigenforms F with F(z,z') = F(z',z).

Thus ¢ can be identified with a map from S;ym to S;(FO(D), (?)). On the other

ol
hand, one has the Naganuma lifting v: £ + f going the other way. It was

conjectured in [81 (Conjecture 2, p. 109) that the two maps & o j : s;ym -+
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+ + .
Sz(yo(D), (?)) and 1 SZ(FO(D), (?)) - S;ym are, up to a constant, adjoint
maps with respect to the Petersson scalar product. From the definition of ¢ wvia

. : . c .
intersection numbers with the classes Tm and of 1 wvia the Petersson product

. TimT P .
with Q = EE:muﬁ D ez i one sees that this is equivalent to the statement
¥
. co
{(100) j(muh D) = {const) - Tm (m=1,2,... ),
where
[
(T- 1)
N
(To TO)
is the component of T; in ° (equation (100) 1is conjecture 2' of @], p. 110,

c . . :
except that there Tm was inadvertently written instead of T;o).

There are two partial results in the direction of (100) which can be deduced

from Theorem 5. First of all, a formal calculation using (80) shows that for

k-1 k-1 €k x
k > 2 the Petersson product of m w and n w equals = —— D times the
m,D n,D 2

mth Fourier coefficient of ¢( }T+(n) where T+(n) = S+(T (D), (?)) —
k,1,D 9 k' o
S;(FO(D), (2)) is the modified Hecke operator introduced above, while for

k = 2 the same is true if we remove from C2 1p 2 multiple of the Eisenstein
» »

. + N . . .
series E,{z) to get a cusp form. Using (99) and the equation j{(w Yy oo ilw )=
2 m, D n,D

—Z(u% D’OHLD) ([8}, p. 109, equation (17)), we can state this result for k = 2
4
as

. : . 2nZ o co

J(m&ﬁ,n) ° J(n“ﬁ,D) = 7D Tm o Tn ,

which is compatible with (100) and gives the value of the constant occurring there

as *wD. Secondly, by letting s -+ 1 in (87) and using

lim E(z,8)/ z(s) = 2
s+l 2

we obtain the formula

- T yk/2 k-l Sﬂ = k
cm’D(l) 2 D m Ny qn’D(ez, e'z) yo dv,

and for k = 2 this can be interpreted (using (90) and (99) and the fact that TI
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is the curve T\H CLSLZ(OO\HZ, embedded by the diagonal map) as the statement

co .
b Ti'rm = Tl o j(mua’n),

which is again compatible with (100) and now gives the value of the constant
exactly as 7D, It should be possible to prove this statement with T] replaced
by Tn using similar methods; by virtue of Corollary 3, this would suffice to

establish (100) in full generality.

We end this section by proving the analogue of (100) for forms of higher
weight, The principle is very general and should be applicable to any cycles on
automorphic varieties (i.e. quotients of bounded symmetric domains by arithmetic
groups) and automorphic forms which have the same formal relation to one another

The proof we give would probably be carried over to the

as Tm has to Wp o p*

case of weight 2 (proving (100)), by using the definition of W as

,D

lim E (azz' + Az + A'z' + b)-2 lazz' + Xz +A'z' + b S
5+0
a,b,A

(€24}, Appendix 1) and carrying out the limit in the integrals.,

Equation (100) (with the constant equal to 7D) is equivalent to the formula

= - ﬂ__,l_)_ 5 [y o

(101) CT ) 5 - 15 F(ez, €'2') dz A dz Gr € S,(SL,(©))) »
T
m

because the right-hand side is just - %"D times the intersections number of

F(F) with Tm (we can write Tm instead of T; or T;o because j(F) is

orthogonal to the curves of the singularity resolutions and to the volume form

). Let
[s]

rf%’ = {a en,®] A* A"},

d -b Y
—¢c a) and (z- 47

* . ab

where A and A' are defined for A (c dEMO® as (
respectively. The group G = SLZ(S)/{ti} acts on 04 by Mo A= MXAM'. Each
A €4 with det A >0 defines a curve in H x H, namely its graph {(z, Az)|

2z € H}, and T, consists of the images in SLZ(G)\HZ2 of these graphs for all A
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with det A = m. The components of ® correspond to the SL2 (9)-equivalence

a, b,
i

classes of A with det A = m. Let Ai 3(31" d-) (i =1,...,r) denote
i ®i

representatives of these classes and Gi {(i=1,...,r) the isotropy groups

G, = {Mec| MAaM = za }.
1 i i
Then r
v - U e,
m . 1
i=1
where the it component is embedded by z e+ (z, Aiz)’ and w_ p is defined by
’
= k/2
wy p(z,2") = pk/2 Z 2 . ¢M"A M'(Ez,e'z') (k>2)
’ i=l MEGAG i
r
= Z w2
i=] m,D
where
' [ v -2
b, . (2o2") = (czz’ - az + dz' - b)
(c d) i
- -2 v _ az+bh "
(cz+d) (z' = =3

(c£. [24], 11.4 - 5), and each function o'l

y .. -
', D is in Sk(SLz(Cf)). For k 2,

L. P i) .
one has a similar splitting of wm,D as Zwm,D . Then equation {100) states that

T X
2. @ wl) - ™) S (e;7+4)" Flez, e'Aiz) ax dy
i=1 ’ i=1 Gi\H

for all F & SZ(SLZ(G)). The analogue we prove for forms of higher weight is the

following.
Theorem 6: Let k> 2, m % | and Wy the Hilbert modular form {(78) Then
B4 = anag , 2nen
r
1 — -k —_— K
(Fy wp p) = ECka/z Z S (e;z+d) 7 Flez, ¢'Ay2) v dV
i=1 Gi\ﬂ

. k~1 .
for all F € S, (SL,(0)), i.e. the Petersson product of F with m @D 1S

proportional to the integral of F over the curve Tm in a suitable sense.
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Proof: We have
(F,m(l?) = S 3 F(cz, €'z') m(l)(ei, g'z") yk y'k 4v' 4v
m, D G\H2 m,D
(102)

-2 5 Y ren, @) e, @0t Ky e
G.\H2 i
i
Since Gi acts properly discontinuously on H, we can take for Gi\H2 a
fundamental domain of the form “F X H, where ¥ is a fundamental domain for the

action of Gi on H. Then the integral on the right-hand side of (102) equals

(103) g (c;z+d,) % S F(ez,e'27) (z'-hz) K y'& av' ]y av.
GAH : H N
1

But one has the identity
S fEa Y v =1 @ (a € H)
H

for any holomorphic function £ on H with Slf(z) 2 yk dav < ®  (cf. @5},
H

p. 46), so the inner integral in (103) equals

1 A
3 Ck F(ez, € Aiz).

This proves the theorem.

Remarks., 1. Theorem 6 is contained in recent work of T, Oda DS]. However,
the explicit working out of his very general results for the case of the curve

Tm has, so far as I know, not yet been given in the literature.

2. In the theorem we describe a way of integrating cusp forms of weight k over
certain curves of X, whereas one would expect such an integral to make sense
only for k = 2, Presumably there is some appropriate homology theory g{k(§3
which has a natural pairing with Sk(SLz(G?) and such that the curves in question
yield classes in ﬂﬂk' The bilinear form on ?tk corresponding to the Petersson
product in Sk(SLZ(Gé) should then have a geometrical interpretation, i.e. for two

compact curves Cl and C2 which meet transversally the intersection number of
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Cl and C2 in ?(k should be a sum of local contributions from the intersection

points of C. and C,. The intersection number of Tn and Tm in ﬁfk

1 2
(assuming that n or m 1is not a norm and (n,m) = 1) must be given by

k-1
E pk ! o ham-t?
)

t? < 4om p -0

t” Z4nm (mod D)

»

Anm-t2
(cf. (91)), where p+p = ~— pp = 1. Here EZH(——S———) is the number

of intersection points of Tn and Tm’ and from the description of the local
geometry near such an intersection point given in Chapter I of [8} we find that
the number p at a point x € Tn{\ Tm has a local description as the cross-
ratio of the four tangent directions in the tangent space TXX given by az ,az

1 2
and the directions of Tn and T 8t x. (This was suggested to me by Atiysah.)

3. For k > 12 the space Simej sk(SLz(a)) is no longer the image of the
Naganuma lifting 1 but the direct sum of this image with the image of the

Doi -Naganume lifting

5 ¢ Sk(SLZ(Z)) > Sk(SLZ(O)).

We can give a description of the adjoint map (w.r.t. the Petersson product) of

1 in terms of intersection numbers as follows: The curve T is gvl F 2 s
o m alm m/d

where F_ is defined in the same way as T, but with the condition that the triple
(a, b, X\) not be divisible by any natural number > 1. In a recent thesis
{("Kurven in Hilbertschen Modulflichen und Humbertsche Flichen im Siegel-Raum",

Bonn 1977), H.—G. Franke proved that, for prime discriminants D, the curve Fm

is irreducible if szm and has exactly two components if Dz}m. Call these

two components F; and F;; they are given by taking those triples ({a, b, )

in the definition of F_  for which (%) + (g) is positive or negative, res-—

pectively (note that ab = AA' (mod D) = (g) + (%) # 0). Set
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+ +

T = U F= 2,2
mb /T

R fzim /

+ = . .
(so that Tm and Tm are unions of components of Tsz, with TmDZ = Tm

+ - + .
+ . w

Tm Tm) We can break up meZ ’ as uﬁ,D + n,D + uﬁ,D in a parallel way,

’

and the proof of Theorem 6 again gives an interpretation of (F, uﬁ D) as an
s

+
integral of F over Tm . The relation to the Doi-~Naganuma mapping is given by

Theorem 7: Let k > 2. The function
o
P(z,2";0 = Z <! [w+ p (&:2") - w_ (z,Z')J 2T (52t € |)
=1 m, m,D

is a cusp form of weight k on SLZ(Z) with respect to ¥ and is, up to a

factor, the kernel function of the Doi-Naganuma lifting 1y ot Sk(SLz(Z)) -

Sk(SLZ(Sj).

I omit the proof, which is analogous to that in [24].
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CORRECTION TO "THE EICHLER~SELBERG TRACE FORMULA ON SLQ(Z)"

by D. Zagier

The paper in question is a translation of the author's paper "Trace des
opérateurs de Hecke" (8éminaire Delange-Pisot-Poitou, 178 année, 1975/6, n’ 23)
and appeared as an appendix to Part I of Serge Lang's recent book

Introduction to Modular Forms (Springer-Verlag, 1976, pp. 44-Sk; all page and

equation numbers below refer to this appendix). Its purpose was to give a self-
contained account, in the language of the classical theory of modular forms, of
the formula of Selberg and Eichler for the trace of the Hecke operator T(N)
acting on Sk(SLQ(Z)). Unfortunately, as several people have pointed out to me,
the calculation of the contribution from the hyperbolic matrices with rational
fixed points {Case 3 , p.53) is incorrect. The contribution from all such
matrices with given determinant u2 {ueZ, u> 0, N =t2 with t€ %) is given

by
(1) j R(z) &,
F y

where F = {z=x+iyeH | [z]21, |x| s%— } is a fundamental domain for the action

of SLQ(Z) on the upper half-plane H and

(2) R(z) = yk (z=x+iy ¢ H).

a,b,ce @ (a]z|2~b~b»c+<:--ity)k
2 2
b -kac = u

Bubstituting (2) into (1) and interchanging the summation and integration gives

(3) ga(z)dﬁ;}: = ut
¥
F
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with

k
= Y dxdy
(4) 1= g 2. 1 3k 2 °
o (|2 ~ity- 7u“) y

This integral is computed by integrating first over x and then over y ,i.e. as

2 2. 1 -¥ k-2
(5} (x"+y ~ity- 5-u2) dx |y “dy ,
and it is claimed that this leads to the value
(6) (_1)(11'2)/2 2n u‘1 (u+!t})-k+1

k-1

for I, which when multiplied by u gives the eorrect value for (1). However,

the computation given contains a sign mistake (the integral (5) is correctly

w2 a2 N 1
evaluated in the text as ETE:TTT ;;ﬁ:? (~ o G:TET) s Wwhich 1s the negative

of (6)), and in fact the integral (1) is not equal to u times expression (5).
The reason is that the expression obtained by substituting (2) into (1) 1is not
absolutely convergent, so that the interchange leading to (3) 1is not justified;
moreover, equation (4) makes no sense until we specify the order of integration
over H, since the integral is not absolutely convergent.

The correct procedure is to replace the integral (1) by the limit as C + = of
the integral over the compact region FC = {z=x+iyeF | y2C}, in which the
convergence of the sum (2) is uniform. Then equations (3) and (%) remain valid

if the integration over H in (&) 1is interpreted as lim I , Where Hs is
g+ "H
€

obtained from H by removing all points which have imaginary part > %- or which
lie in the interior of a circle of radius i- tangent to the real axis at any
rational point % s (c,d) =1. Since the only poles of the integrand in (k)
are at z= t%'u , we can shrink all of these circles to zero except those tangent

to the real axis at lu and - u. Hence

2

AV
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(1) I=1I- 1lim I - 1lim I
1 e £45U oo €V Tu

where I, 1is the integral (5) and

1
2e tFu+ ‘VEey—y2
T = (x2+y2—ity— {;—ug)-k ax Yk—z ay

- ‘V2€y-y2

o

is the integral over the circle tangent to the real axis at +$u, the integration
being carried out first over x and then over y. Making the substitution

X= +3u + ea, y= eb, we find

k-2

Vo~ b
S b
e srgu T (tua—itb+e(a2+b2))
0 “Vob- b
so 2 Wop-v®
bk-2

imI_,, = —_— e 4a db

e,t4u i
€+0 7 —“éb—b2 (+ua-itb)

m da db ,

2
- - . - k-
= - - u ! S {(uVZb—be—itb) k+1+(uV2’0-‘t>2+1‘(',b) kH} b 2 db
0

where in the last line we have made the substitution b = ;%:T . The latter
integral can be evaluated easily by contour integration (for example, if t>0
then the only pole of the integrand in the upper half plane is at v=i ) and
equals the negative of expression (6). Since also I1 equals the negative of
(6), as stated above, the expressions (7) and (6) are equal.

A second and minor correction is that on page 49, line 3 and page 52,

line 26, the 48 should be replaced by 24, and in the middle of page 52 the %

should be %.
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International Summer School on Modular Functions

BONN 1976
A LIFTING OF MODULAR FORMS IN ONE VARIABLE
TO HILBERT MODULAR FORMS IN TWO VARIABLES
by Henri COHEN
§. 1. - Introduction

Let K be a real quadratic field of discriminant D ; write OK for the ring of

integers of K, » for the different, and x' for the conjugate of x in K.,

When one computes the Fourier coefficients of the Hecke-Eigenstein series of

weight k for SLZ(OK), one obtains the following (see [1]) :

PROPOSITION 1. 1. - Let k=2 be an even integer. Set

2im( +v'z,)
qk(zl,zz>:i—gK<1~k)+Z o T ()

\)gb'l
v 0
where c(vb) = dk“1 (%) Gk-l(NK/Q((Vb)/d)) .
di{vy)
deN©

Then Qk is, up to a constant factor, the Hecke-Eigsenstein series of weight k for

).

K , and thus is a Hilbert modular form on SLZ(O

K

The appearance of ¢ makes one think about the one variable Eisenstein

k-1

Q1 -k)+Z ok_l(n)qn .

nz1
Thus it is natural to ask if proposition 1.1 can be slightly modified so that it holds

geries

3

g, (2)=

with Ok—l(n> replaced by the n't coefficient of an arbitrary modular form, for

instance by T(n).

The purpose of this paper is to show that this is indeed true, but with certain

restrictions.
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The result is as follows (A weaker result was given in [3] and [4]) :

THEOREM 1.2, - Let f= > a(n)q ¢ S, (T (N), x) be a cusp form of weight k

n=1
and character y on I’O(N). Set :
K Ziﬂ(\)zl-%\)’zz)
E, (Zl’zz): E e c{v )
vgb'l
V> 0
where
k-1 4D VD
e =) T ER) a2
dj(ve)
*
delN

Then if k=3 isg an integer, E? is a Hilbert modular form of weight k and

on a congruence subgroup TN of SLZ(OK) of level dividing
1

character ¥ N

K/Q
le , defined by

e B
Iy = {( )€SL2(O a,de Z+N

1 voo
where NI:ZN/{4,D,N), and w=2 if D=1 (mod 8}, w=1 otherwise.

OK’ veN, (Z +WOK)}

K)’ 1

§.2. - Main tools for the proof

K
One of the first things to check before attempting to prove that Ef ig a Hilbert

modular form is that its restriction to the diagonal E_ (z, z) is an ordinary modu-

¢
o 2 .
lar form of weight 2k and character ¥ for FNlﬂ SLZ(Z) = I‘O(Nl) .

One finds easily that :

2 2
By o > a iRy adelelpee
nzl d|n S¢cZ

where here and elsewhere we set a(x)=0 if x¢ IN . If for instance D=1 (mod 4),

2
s =) Q') e

n =1 SCZ

then clearly

K 2
and so the fact that Ef (z, z) is a modular form of weight 2k and character ¥ on

TO(NI) is a consequence of Shimura's theorem on forms of half integral weight

([11]) as improved by Niwa ([8]), which we state as follows :

THEOREM 2.1. (Shimura, Niwa) - Let g= g b(n)g €S (T (4N), x) If t=l

kti
is squarefree, set n>1
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k
k-1 (-1} 4t 2
S(gst) ()= g Q" 5 a* 7 x(@) (5 Bl(n/a)7)
n=1 d|n
Then if k>3 is aninteger, S(git)eS,, (T (2N), xz) .
So it is clear from above that Shimura's theorem is closely tied in with our map-

ping, and it will be (in a slightly generalized form) the first of our two main tools.

Qur other main tool is a combinatorial characterization of Hilbert modular

forms.

We need some notation.
+
Let GLZ (IR)={ (i :)eGLZ(}R) | ad-bc> 013 and let r21 be an integer.

If g is a function defined on the r-fold product of the upper half plane HT ,
a.
i

= T = = i + =i
k (kl,..., kr)eIR , and y-(yl,...,yr) where Y= (ci di)gc}LZ(IR) for 1=isr,
we set :
r ki/Z -k
(g{ky)(zl, e zr): ] (aidi—bici) (cizi+di} g{ylzl, e yrzr)

i=]
Then we have the following theorem :

THEOREM 2,2, - For m¢IN and G any analytic function on HxH , set

(8, (C))z)= g D' (& 27 G, )
052€m 12
where SN (£ H{m-2 ) (k1+L~l)f (k2+m—{,~l ).')_1 .

(We write freely x! in place of I'(x+l) ; furthermore if T is any symbol, BTE

an abbreviation for % .} Then:

a) For any YgGLZ(IR)

tbm(G)l ® (G

2mtk +k, ~ ¥m ’(kl,k v YD)

2
b) Given Y eT and vye¢ GL;(IR) , the following two statements are equivalent :

i) G| (v, v) = xG
(k)
ii) For all m=0

cIDrn(G)Ierwlirkz Y= X CI)m(G)

¢} When k1:k2:k we have
~ m (2k-2)!
<I’m(G)' (-1) {k-1) ' (ktm-1) 2k+m-2)!

1 (mik-g-3/2) 202t

24
CPm(G)(Z): E (_1) L1 (m-22)! (k~3/2)-' ((52’14- 522) (azl-azz)
0=2=m/2

wm(G) ,
where
m-24

Gz, z).
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It will be clear from the proof that this theorem can easily be generalized to

any number of variables,

§.3. - Proof of theorem 2. 2.

a) Set E(z):(z-E)"lz 1/2iy , where y=Imz . The following facts are easily
proved (see [2], §.7) :

+
- If f is a Cw function on H , then for YEGLZ (IR) :
(azf+k£:f} 1k+2y = az(f [ky)+kE(£Iky) .
- For m=0 set

F:)(f) =(3 t {(k+2m=-2) E(2))(3_+(kt2m-4)E(2)) ... (3 +kE(z))

then :
. (2) m, (ktm-1)! m-1 4
ey o f
) Fm () (JL) (k+e-1)! E(z) %
0=L<m
and i) F (9] v=r v
m k+2m m k
Now let f be a Coc fanction on H' . If m:(ml,‘“,mr) and k:(kl”" ,kr} , We
can set (z.) (z.} (z )
A 1
- YV E 2 FE @)
m m m m
1 2 T
Then with the usual conventions for multiindices
m. =L m r mof = m. -4,
(C=11¢,).nr=]|n!, Ez) = | | E(z)) ,
S S B i=1 1 i=1 !
L £ _r m.
ezl 3 e, =TTt ", Iml=m+...+m_,
z z oA ; i 1 r

1 T i=1
m20 @ Vi, miZO) it is easy to see that i) and ii} are still valid.

Now for z={(z ,zr}, t=(t1,...,tr) set :

100

(Ziﬂ)!mitzm Flf;)(f)

Felz, 1) = ™! (kim-1)!
mz0
. ym| 2m . m
(2im)/m 1 em ™
Gz, t)= Z
T ™ (kim-1)!
mz=0

Then as in [2] one shows easily from i) that
T
2im % t. E(z.)
i=1 1 i

z,t)-e Gz, t)

F f

o

From this and ii) one deduces the following proposition :
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PROPOSITION 3.1, - With the above notations,

/2

1
(az +b (ad -bc)®t
flcz+d’ cz +d

,:(ad-bc)'k (cz+d)kaxG {z,t)

(], v

where k
. r o2

s:e21ﬂ igl t; ci/(cizieri)

If we specialize to the case r=2 and take tl =t= —it2 and Y, =Y, =Y, one has

S=1 and theorem 2.2.a) follows.

b) The operator CIJm(G) being linear in G, itis clear that i) = ii) follows
ES
from a). So we need to prove i} = i}. Replacing y by y/{det v)%, we can clearly

suppose v ¢ SL,{IR). Set :
2

h(zl,zz):(Gf(kl,kz)(y,y))(zl, zz) -XG(zl,zz) ,
that is
—k1 —k2 az1+b azz+b
h(z),2,)=(cz +d) (cz,+d) G(m,'c—zz—;a') - X Glzy> 2,)

Our hypothesis tells us that G is analytic on HxH, and so h is also. To

i, i
prove that h=0, it is thus enough to prove that (le BZZ h}{z,2)=0 VzgH and
1 Z

V{ii,iz}gn\um . Call F)\ the proposition :

(#) - Forall i,,i, such that i +i, S\ and all z¢H

A 1’72 i1 1
1
(3 BZZ h)(z,z) =0
1 %
We shall prove (P}\) by induction on A, using ii) at each step,.
- A=0.

(6’0) states that h(z,z)=0. But clearly

-(kytk, )
hiz,z)={(cz+d) Glyz, vz) - ¥ Gz, z)
and so
hiz, z)= (kl ~1)! (kz—l).' (<1>O(G);k1+k2 y- xcpo(G)) =0 Dby ii) , using the fact that
3,(G) = Gz, 2) /((k -} (ky- 1))
So now we assume (PX—I) and we want to prove (PK) , where (=1,

Differentiating with respect to z the known identities

Vie[o, A1) & 3 Thza =0,
Z zZ
. 1 %2
we obtain :
iHA-1-1 i Al
) hiz,z})+3 3 " hiz,z)=0, and consequently :
%1 %2 1 %2
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5 a;“l h(z,2)=(-1)" 3"
172 2
To prove that all these partial derivatives vanish it is thus sufficient to find one non

hiz, z) .

trivial independent linear relation between them, and this relation will be given to

us by ii}). First we need a lemma :

LEMMA 3.2, -

i, i ~(k, +i +3 ) ~(k + i,+j 3
1.2 17171 2 2 2
BZIBZZ h(zl, zz) = (c zl+d) (¢ zz+d) x
057 =4,
< <j
O—_]Z—l2
(i +k, -1)! (i+k,-1)! i i NI i
1751 2752 bl o Ltheh -k ) & 1.2
X7 1y (: ERY (O)CT)-e) (5 a G)yz ' Y2, )-x3 3" Gz, ,z,).
(Jl+k1 1)! (JZ+k2 1)! iy, z, 2, 1 z, z, 1772

The proof of this lermnma is by induction on i, and i, and simply checking that

1 2
the coefficients are correct by differentiating with respect to il (or i2 ). The de-
tailed calculation is left to the reader,
LEMMA 3.3, - For any m=0
1 L -4
- =0.
(-1 em’)L(Bzl BZZ h)(z, z)
0=4{=m
£ .n-4 : . .
Proof. - We replace az Bz h by its expression given by lemma 3., 2.
172

The coeffieint of

~(k, +k +tm+i, +i)  m-j, -j, §. §
1 72 172
(cz+d) (-¢) 1 2(61 a2 G){az-%b’ az*rb3
z1 ZZ cz+d cz+d

is equal to

({;+k -1} (m- {;+k -1 2l (m-g) !

(-l}ﬂema(nbk-l)s( P L U RS N I VN S
0<¢<m R T R PR P e R Gt PO
= i (_1)'6

i (1 k, -1 +k - 1) § (Lajl)} (m_L_jZ)_:

0=<m
and this last sum is equal to
(1)} Iz m‘jl'jz
(m Jl Jz Z A )
0=¢'=m- J1 2
and so vanishes if j1+j2< m . Hence :
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(-1 L™ ) (2, 2) -
m, 4 z1 z,
0=4L=m
L L m-2 L m-1

- (-1) o £ ZIBZZ G(z,z)lk1+k romY X ) 3, "Glz,2))

0si<m
- CPrrl(G)'erl-lhk1+k2 Y-X <I)rn(G) =0

using ii), and so lemma 3.3 is proved.

Lemma 3.3 gives us the missing relation : since by the induction hypothesis we

proved that

h)(z, z)

we have from lemma 3. 3

L)(azk h)(z,2) = 0

e
X 2

0=4=<)
and since ey £>0 it follows that (a;‘ B(z,z) = 0 and so (PX) is true by induction.
’ 2

This ends the proof of theorem 2. 2. b).

c) We first need a lemma :

LEMMA 3.4, -

. 2 -(k-%) 1 m 4 (mitk-2-3/2)! m-24 2
1- B e—_— -
D (I-2stipt) (k-3/2)! t 1) S Tz (%) P
m=0 0<.<m/2
.. 2.2, ~(k-2) m 4L m-4
i) (1-2(x-y)t+(x+y)'t) 2= t dm L5
mz0 0<{L=<m
B m-£, (k-1)! (k+m-1)! (2k+tm-2)!
where d = GO G T o (mot) (kreo1) ! (ki oo1)

Proof. - i) The left hand side satisfies the differential equation :

dy 1

2
(1-2st+pt ) at + (k-2

J2pt-2s8)Y =0,

. m . .
Setting Y = amt we obtain the recurrence relation

mz=0

(m+1)a =Zs(m+k--3§-)am—p(m+2k—2)a

m+1 m-~1

with initial terms a =1, a;= (2k-1)s .

It is now easy to see that the right hand side satisfies these conditions, so i)

follows.

ii) In the recurrence relation above we substitute
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4 m-4 2
dm,/Lx y for a_ ., (x-y) for s and (x+ty) for p .

0={=m

+1- .
Identifying the coefficients of xL ym L we obtain easily :

{m+1)d = {(2m+ Zk-l)[dm -d ]

, -1 m, 4

_ - + ]
(m+2k 2>[dm-1,&-2+2dm-1,{~1 dm—l,&‘

m+l, 4

with initial terms

dg =1 d; = -(2k-1) d) | =2k-1 .

Again it is an easy matter to prove that the expression given for d L satisfies

3

all these conditions, which proves ii}.

The proof of theorem 2.2.c¢) can now be easily completed :

From lemma 3.4.1i) we have the formal identity

(k-1
T =(1-2(3 -3 )t+(d +d 2%y (k-3)
£ m Zl Z2 Zl ZZ

and so we deduce from lemma 3. 4. ii) that

® :;: (_l)m—)c (k-1)! {(ktm-1)! (2Qktm-2)! N

m (2k-2)! 2! (m-4)! (kte-1)! (ktm-2-1)! 2, z,
0<t<m

from which the result follows by definition of d)m

§. 4. - Proof of theorem 1,2, - Preliminaries

LEMMA 4.1.- Let f ,f, be two ¢® functions on €, and k

2 1 kz be given real

numbers. Set :

(k +m-1)! (k +m-1)!
m-4 £
L E (-1 (k Tt 1) (1\2%4): o, hixg i

0=4L=m

+
Then : a) For all YéGLZ (R} we have

F e Yo Rl VI =F 0L o, Y
1 2 1772
b) We have the identity
- 1 f '
For)- (_1)*5(”‘) (kl+m 1)! (k1+k2+2m £-2). a& ’ xam”ﬂf )
m© 1’72 2 (k1+m-/¢-1): (k1+k2+m-2).' z 27 = 1

This lemma is proved in [2] theorem 7.1. Note that part a) follows easily
from theorem 2.2.a) by taking

G(Zl’ ZZ) = fl(zl) fz(zz)
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Part b) can be proved by expanding ai’ (fz % 5:] -&fl) with Leibnitz' formula.

LEMMA 4.2. - Let f:§ a(n)qngsk(TO(N), x) where kelN, k=3,

n=1
For every m¢IN, set

2 2
CK(f):Z qn[ gkl X(d)(4d_D) Z P:: (n/d,s) a((n{d4) D-s )]

nz1 din ScZ

1 4 {(mtk-£-3/2}! n 2{, {, m-24
F (n/d s) “x-3/2)! 5 S Ay (m-20) ! Y (2s) :
OS{Sm/Z

K 2 )
Then Cm(f)es (ro(Nl), ¥} with N, = 2N/(4,D, N).

Zk+Zm
. . K
Proof. - When m is odd, terms in s and -s cancel and so C, (f)=0 . So we may
suppose m even,
Consider first the case where D=0 (mod 4). Take

fl(z): 8{z) , fz(z): (z), k) = /2, k, =k , where

2
21 .
g(z) = e a2 is the usual theta function of weight 1/2

seZ
on I‘O(4). Then using n! (n-1/2)! = (2n)! Z—ZHJﬁ , one sees from lemma 4.1 that

._\-m/2 mi2 ™ 2
(2im) FE(fl,f2)= m' > q" [Z Q_(n,s)a(n-s") ]
2 2 :

n=1 s eZ
) b ket -3/2) jm-24
where Qm(n,s)— £ (m-24)! (
0§L§m/2
-4.k
and F /2 £1.1 Sm+k+%(rO(EN,4J), x ) -

It is now easy to check that, with the notations of theorem 2.1

%):m.‘ (k-3/2)! -2m CK (f)

S((ZiTT)_m/ZF f5)5 (m/2+k-3/2).' 2 m

m/Z(fl’ 2

and thus lemma 4.2 follows from theorem 2.1 in the case D=0 {(mod 4).

If D=1 {(mod 4), we take fz(z):f(él z) instead of f{z) and one shows similar-

ly that
-m/2

- i -
;D) = m! (k-3/2)! ZmCK (f)

S((2im) T (m/2+k-3/2)! m

Fm/z(fvfz)

hence lemma 4. 2 follows,
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COROLLARY 4.3, - When k23 is an integer, E? is a Hilbert modular form of

+
3 1
weight k and character ¥ °NK/(D on theél COIBlgruence subgroup I‘Nl of GLZ(OK)
generated by T {N,) and the matrices ( ) where ¢,,&, are units, €¢€e,>0
o1 4] &, T 1772 ————— 172
and ﬁeOK .
Proof. - Set
— 2im{z. +z_)/2 2im{z, -2z.)/2.,/D
- 172 N 1 72
q=e T=e .
Writing v = (s+n,/D)/2,/D , itis clear that we have
K k-1 4D sd n/d 2D s2
_E n - 4D E n/d)"D -s"
Ef (zl,zz)- q d x(d) ( a ) T al( n )
n=1 d|n scZ

Note that the inner sum is finite since by convention a(x)=0 for x£ N . It is now

easy to see that :

2 2
® (Ef)(z)z(zm)m Z e 5 d“m'lx(d)é% P (n/d,s)a(@/d D-s” d4 D-s )
n=

™ m
dn scZ

and 8o

K m K
v_(ED) = (2im™ X ()

(N },XZ) for all m=0, and we deduce from

K
so by lemma 4.2, mm(Ef )ESZ ({

k+Zm 1
theorem 2.2.b) that for every v ={ :

T
s
a
. Je T (N,)

az, t+tb az_+b

K 1 2

E( , m——
f czl+d cz2+d

) = Xz(d)(cz1+d)k (cz2+ d)k Ef (Zl’ ZZ) .

On the other hand it is clear from the definition of E? that if 61 s E:Z are units such

that 5152>>0 and BEOK , then :

azl+5 cx'z2+s'

K k k K
#* = 1 1 '
(*) ¢ (YZIJr 5 Y'Z2+°')— x (86" )(yz, +6) " (v'2,+0") " E (2, z,)
. a By._,f1 B N _
is true for (Y 5 ) -(0 ¢ ). Thus (¥} is valid for the group I generated by
2¢ g L
1

I'O(NI) and the matrices ( ). This group is described in detail in [4]. Let

0 €
2
us simply show why it is a congruence subgroup.

Let (1,8) bea Z-basis of O, and let u=u,+u, & be a totally positive unit,
K 1 2
O 1 G,.,u 0O 1 0

1”1\11 D 17 e 1)

1 0 u-l
i
Then (Nlu 1) ETNI for ( o 1

Thus for any pair (Cl’ cZ) €ZyZ we have
1 0 1 0 1 0
- €T,
N -
lu2(01+c2§) 1 Nlczu 1 Nl(clq2 cqu) 1
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1 0 . .
8o for any vyeN uZO we have (Y l)g TN . Since for any BgOK we have

K 1
(0 18)6 1"1'\I , we deduce from a deep theorem of Vaderstein [12] that :
1
a g
t D

and so T} ig a congruence subgroup of level dividing N u Much more is shown

Ny 172°
in [4].

However the group we want is abit larger, and so we have to look back at what
we have done. We have essentially used the infinitesimal information around the
diagonal 252,72 with the help of theorem 2.2.b). But one can also use the
"twisted diagonals" z,7uz, z2=u' z , where U is a totally positive integer of
K , so we can hope to enlarge our group (I am indebted to N, Katz for this sug-

gestion),

§.5. - Twisted theorems

Let us fix a totally positive integer ueOK , and write M:NK/(DU =y . We
shall suppose without loss of generality that u is primitive, i.e. u/eeoK and

ecZ implies e=%1,

+
Set F(zl,zz): E?(p 2, u'zz) and u :%QLD* with a=bD (mod 2}. If
e={(a,b), the primitivity condition is equivalentto e=1 or 2, and
e=2 = % # }j)'D (mod 2). It is easy to see that this is equivalent to the existence of

A, Bg Z such that

Aa+Bb =
AZD - BZ =0 (mod ez) .
b a
Set A = A-e-D+Bg . Then we have
2 2
A°D -
22 :D-(—%’——) AM =D (mod 4M) .
e
Zin(z1+zz)/2 Zir(zl—zz)/Zﬁ
LEMMA 5,1, - Setting again g=e , T=e we have :
2
n N k- l 4D ds N (N/d)"D-s" s
F(zl,z2 E 4 ) g XY, )
n=>1 din s—}.— (2M)

Proof, - Writing pv =(s+n,/D)/2./D , it is clear that :
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Playn)=y o Ty @ED) o e/aD (/e
ne 8+n/D)/2

|s]€ n./D d (a+b/D)/2

: Z 2 2
_ qn dk—l X(d)(idg) Z TdS a(!nfdiMD-s ).

nzl din a+b,f5¥s+(n a) /D
2 2
+by/D  s+(n/d)/D . .
One checks immediately that the condition = EJD |S (n 5 L/D is equivalent to
the system of congruences
as -bD{n/d) =0 (mod 2M)
bs ~a(n/d) =0 (mod 2M)
(n/d)zD 2% =0 {(mod 4M) .
From the first two congruences we obtain
b a, n 2M
=(A2D+ B9
s= (A7 B (G) (mod =5
that is s = )\g {mod ————)224 .
Write a= X£+ % Mp . We have
2
2 - A 4M 2
(n/d)?D = & D) ym@7? s RS- SEVe
&2 d S

If e=1, this is indeed congruent to 0 mod 4M .

2

If e=2, 32~ (n/d)2 D=2Mp A(n/d)+ MZ o7 {mod 4M) so the third congruence

above implies 2
2pA(n/d)+Mp~ =0 (mod 4) .

But since y is primitive, a/2 #bD/2 (mod 2) and so M is odd. Thus we must
have p even, i.e. s= }\g {mod 2M). Conversely if this is true the three congruences

above are evidently satisfied, s0 lemma 5, 1. follows.

COROLLARY 5.2. -

2 2
PPN = @™ a" ST DERD T R /e a2

n>1 d|n =22 (mod 2M)

This is immediate from lemma 5.1 by definition of CQm and Pm
Our goal is now to prove that cpm(F) is a cusp form on some group. The diffi-
culty lies in the condition s = A{n/d) (mod 2M). We shall deal with this congruence

by the usual method of summing over characters (mod 2M).

For any integer m write X for the group of characters modulo m . Further-
m
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more set
e = (A,M) , A =h/e, . M'=M/e

Then we have :

PROPOSITION 5.3, - Suppose that M is odd when D=1 (mod 4). Then :

com<F><z>=<zm>mZ (20 /o(M/e,)) E 7, 00 S 5x, e, 2)

e Imr ng

2 M'/e
where 2
o5 x, )(z) = 5 q" @R 7, @)
n=>1 din
(n/d)ZD»el‘2 s2
% > %, (8)®_(n/d, 618)a(ez-_“‘—‘—‘_‘WI/e ).
4

seZ

Proof. - We shall first show the following lemma :

LEMMA 5,4, - Suppose that M is odd if D=1 (mod 4).

Then if (n/d)2 D—sz =0 (mod 4M) :

s =A(n/d) (mod 2M) @ s =r{(n/d) (mod M) .

Indeed suppose s =A{n/d) {mod M}, i.e. s=Ailn/d)+oM . Then

2 2
(n/d)? —E—S-—Z‘f‘*—@-)(d)2 AM+20 A5 M+ o ZM
e
If D=l (mod4), M is odd and so s -(n/d) D=0 (mod 4M) implies

2

20 A(n/d)+p"M=0 (mod 4) so pZEO (mod 2) hence s=i(n/d) (mod 2M).

If D=0 {mod 4}, then since }\25 D {mod 4M), X is even and so
sZ— (n/d)z D=0 (mod 4M) is equivalent to

OZME 0 (mod 4).
But D/4=2 or 3 (mod 4) and so one checks that

(a/2)2 (D/4)£ (mod4) = a/2 =b=0 (mod2) = u/z;oK

in contradiction with the primitivity of (. So we must have M#Z 0 {(mod 4},

it follows again that p must be even, whence lemma 5. 4.

Thus we have :

Co-13

and so
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@ Mg =y @ D
n=1 din
(n/d)2D~e§ 8
% Pm (n/d, els)a( ey, )
s =A'(n/d) {mod M")
_ k+m 1 )(% y
62 }M‘ n>l n/d 1 -
n/d} D- elz 2
% Pm (n/d, els) af PV, )]

s =A'{n/d) (mad MY)

> o> a7 >l

eZ}M' nx1 din
(n/d, M'/ep)=1
(n/d)ZD - e% %
hY
2 4M/ez /

% Pm(n/d, els) a(e
s =\'(n/d) (mod M‘/ez)

using the homogeneity in n/d and sZ of Pm'

Since (n/d, M'/ez)zl and (A', M‘/e2)=1 by definition of e it is clear that

L
0 if s# \'(n/d) (mod M'/ez)
X, (W%, (0/a) x, (5) =

X Frprse, oM/ey) i 8=1(0/a) (mod M /e,)

Proposition 5. 3. now follows immediately,

Our aim is now to prove :

PROPOSITION 5. 4. -

2
@(F; %)

3 2
€ Sypram TNy M /eje)), X7)

Proof. - We can clearly suppose ~1)= -l)m since otherwise the terms s and
FaEatied Yy supp %

-s cancel and so @(F; Xl): 0

A
—_ S P
Set SXI(Z)— % xl(s)q when x1{~l) = 1

scZ
2

Bxl(z): le(s) sqs when Xl(-l): -1,
§E
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Then it is well known (see for instance |[11] ) that
2, 2
! -l)=1
exf M) o (TEM /ey, x;) when x (-1)
2, 2 -4
T ! e “1)= -1,
% M, (T UM /e, % 7)) when x(-1)
Furthermore we have the following lemma :
LEMMA 5.5, - Let glz)= E b{n)q € S, (T (N), x) . Then
Y_ ="
b(ezn)q ¢ Sk(l‘o(eZN) s X))
n21
Proof. - Recall that the Hecke operator Tm acts on Fourier coefficients by
k-1 2
ng(z): a™( E x{d} d b{nm/d"}))
n=1 dl{m, n)
k-1 dn
- § x(d) d § (3 .n)q
djm n=1
Thus :
E k-1 k-1 epn 4ye
- f = = 1
x (A AT g(e)) (d Z)wg x(d;)d g b(—)a > u(d")
d'le z 4. le n2 1 ! da'ld
2 172 = 1

where we have written d1 =dd' , and so this is equal to % b(ezn)qn , since the
last sum is zero if dl%l .

Lemma 5. 5. follows immediately.
We distinguish again the cases D=0 or 1 (mod 4). Suppose D=0 (mod 4).
In lemma 4. 1, take

2
fl{z) = QXl(el z) and fz(z) = E a{e2 M/ez Jq
nz1l

Then by lemma 5. 5. f2 € Sk(FO(M N), x), and

2 2, 2 4. v

—_— i - ={w = 1.
exl(elz}gM% V(FQ(AIM /ez)’xl(. VY if X1( 1)={-1)" and v =0 or
So lemma 4.1 shows that

+

-4. vtk

F(m—\})/z(fpfz}GS (r0(4M2 N/e, (4, N)), X, EHY)

and furthermore that

Py
ktm+s
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(m_'\f)
(2im) 2 &V )= m!2 " qn
1 “(m-v)/2 2 (m+v-3 i) X
2 n= 2 2
n—el s
x x;(8) Q_(n, e s)al 2—1\;[76—2-—) .
8 ¢cZ

As in the proof of lemma 4.2, we would like now to use Shimura-Niwa's theorem 2.1,
However this will not exactly give us our function @(F; Xl) since there is a

)-(l(n/d) in its definition. So we need a twisted version of theorem 2. 1.
This is as follows

THEOREM 5. 6. - Let g= b(n)q e sk+l(r (4N),x). Suppose that

=1
-4 k n=
X = Xlxz( )" on (Z/4NZ)" , where XIGINl . X,€ %NZ , where we assume

1\1 N 4N and N2 IN . Write FZ = conductor of XZ . Then for any squarefree t,

1f we get :

k
s<g;t;xl,xz)(z>:§ qné a* "y @ 3 @) bin/ar’

n=1 din

2
we have for k=3 : S(g;t;Xl,XZ)ESZk(TO(ZN(NZ/FZ)), X ).

Asgsuming this theorem for the moment, we deduce from above that :

m-~V
- -2
Sy (2) (zm)( 2 \)F ) ). iz M(k-3/2)!
Xphed. €1 *(m- \)/2 4 PX Xy T TV 3
( 2
and proposition 5. 4 follows in the cagse D=0 (mod 4).

@(F; %)
+k)}!

In case D=1 (mod 4) we must replace fz(z) by
n n
f(2)= § aley /e, 19
2
n=1
and take t=D instead of D/4 in theorem 5. 6. The proof is entirely similar, This

shows proposition 5. 4,

It remains to prove theorem 5. 6. We shall do this by a simple modification of

Niwa's proof [8]. We sketch these modifications, using his notations,

We take the lattice L'= Z@NE Z@%Z and in the definition of §(z,g) we re-

— 2
place X, (xl ) by

Xp (x)) X, (2, N, /N)

We must also change the definition of g, (z) :

’
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(z) = %, (AN,/N) gz, £ . b)
he L'/L
where L=NZ , L‘=(N/N2)Z.

The transformation formulae can then be easgily proved, with some characters

Xy popping up, and the rest of the proof is practically identical.

However the result obtained is not quite theorem 5. 6, but the theorem obtained
by replacing )_(z(n/d) with

zmhk/NZ
T(xz ,n/d)= xz(h} e

he Z N2 Z.
This Gauss sum comes up in the Fourier expansion of the function em(z) .

Since '1:()(2 ,n/d)= Yz(n/d) T(XZ

X, is primitive, theorem 5.6 is proved for X, primitive.

) where T(XZ) is a non zero constant when

If X is not primitive, call \yz the primitive character mod F_ equivalent

2
to X5 - Then :

k
S @y @ T /)b w/a)) -

n=1 din

k
n k-1 1) 4t - 2
N g § a7y (@ Y T /) b((n/a))
>1 y =1
n= (n/dd‘nNz/Fz)
and using the usual trick of introducing the M&bius function to get rid of conditions

of the type {n,m)=1, this is equal to

k.
g HOT e S o > & @ B wat
e[(NZ/FZ) n=1 dn

Now according to [11] proposition 1.5, we still have

2 n . 2
% b{e“n)q Esk+%— (I‘O(4,N), X ) since e [N,

nz1
We deduce from theorem 5. 6 applied to (Xl , x};z) , where 1112 is now primitive, that
k
n k-1 (-1y4t.— n, ., 2 2 2
a a7y @ YT, B et m/at es,, (T M), i)
n=1 dln

and so theorem 5, 6 follows in general.
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Remark. - It is possible that the extra factor NZ,/F2 in the level can be removed.

However for our purposes it does not matter.

§. 6. - End of the proof of theorem 1. 2,

Recall first the following group-theoretical theorem :

THEOREM 6.1. - Let ,N be fixed integers. Then the group generated by
=£r 9, 24

s 1 B8 1 0
TO(N) and all matrices (O | ) and (NQZY .
S

6)6 SLZ(OK) such that :

) (B.ve OK) is the set of rmatrices

i) a,b e Z+NO,

i) yeN(Z+(q,, N)OL)

iii) Let v=2 if lﬁvZ(N)<v2(q2), v=1 otherwise. Then if (l1,8) is a Z-basis

of OK and if one writes

v = N(c +c,(q,,N)g) $=d+d,Ng
we mugt have

d_(c, +1 c, (mod v) ,

2leprl)= ¢,

(This condition is of course empty if v=1.)

This theorem is proved in [4] and depends on Vaderstein's theorem cited
above [12]. The proof being long and very technical will not be reproduced here.

However in the particular case qz:l it can be proved rather shortly.

Let us now put together the results of proposition 5.3 and 5. 4. We obtain

3 2

@m(F)eSZHZm (TO(NIM |

Hence, using theorem 2.2.b) we deduce that for every vy = (i Z)GI‘O(NI M3) :

2
F| to Y V=X @F .
K
Coming back to Ef (zl, zz) = F(zl/u s zz/u’) ., we see that the equality

+ 1 +I
az, 8 GZZB

K k k K
¥* = 1 t
) B (Yz £87 vz, 5) = X880 (2 +0) (v'2, +O)T B (2. 7))
. . a B, ,a bu a b 3
is valid for (Y 6)— (C/u d ) where (C ) el (NlM ).
1 0
. 2 . .
In particular {*) is valid for the matrix (N M2 Wl ).

If we write = My - by 8, where (l,8) is a Z—basm of O, , we deduce, ta-

K
king successively 1 and u that (¥*) is valid for (ll\I M2 g ?)
1 2
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Now if D=0 (mod 4), we choose § = ,/D/4 and we take all u of the form
a-g with a>f, agc¢ IN. We have M= aZ-D/4 , and one checks easily that
((a+l)2—D/4 , aZ—D/4): (2a+l, 1-D) and so is equal to 1 for a suitable value of

a .

1 1
#} i i
Thus {*) is valid for (N 5 N,y

1
We can apply theorem 6,1 with N :N1 and q2:l and theorem 1.2 follows in

1+,/D
> . If
D=5 {mod 8), we take again all u of the form a-§, and we see that

0
?) and hence for ( 1 ) for any vy €0k -

case D=0 {mod 4). Suppose now D=1 {(mod 4). We choose §=

0) gsatisfies (%),

( ! 2
(2a+1}*-D
Nl 2 8 1

A 2
Since \(2a+1)4 D s (2a+3i =D Y= (atl, —I-:—E-)») =1 for a suitable value of a , we
conclude again that (*) is valid for (N 8 (1)) and theorem 1.2 follows again from
1

theorem 6. 1.

Finally if D=1 (mod 8), then if u= My - uze igs of odd norm, one sees easilythat
My must be even. Taking all u of the form 2a+1-2g (a>8, agN), we see that
. 1 0
®) 3 1 ; .
(*) is valid for all matrices ( B (432 D)25 1) and since

1
2
(42 -D, 4(a+l)Z—D)= (2a+1, 1-D)=1 for a suitable choice of a , we conclude that

(#) is valid for (1 ! 0

0
ZNle 1 ) and thus also for (ZNIY 1 ) for any ye OK .

We must now apply theorem 6.1 with =2 . We have v=1 and (q,, N,)=2
y a, 20 Ny

so we get the extra factor w= 2 in this case. This ends the proof of theorem 1. 2.

§. 7. - Concluding remarks

7.1. - Let us first consider possible improvements to theorem 1. 2. First of

all one could hope to improve on the group on which EK is modular. However,

{

inherent in our proof is the fact that Y can be multiplied by an even character

Y e iN of order 2 without changing the resulting character Y oN This implies

K/Q°
that for any such character § and any OgOK such that Ef is modular for
(3 g}, we must have §{88')=1.
This is of course satisfied for d¢ Z +N,O but it shows that a similar proof

17K’
could not allow 6€OK arbitrary, so the group we have found, maybe not the best,

cannot be too much enlarged by our method,

Second, note that our original aim of finding a suitable generalization to cusp

4D
forms of proposition 1,1 is satisfied, but with (g) replaced by (T) This means

simply that one must exclude even d's . It is well possible that the replacement in
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4D D, i . .
c{vd) of (T) by (E) will lower the level, for example transforming N1 into N,
I think it should be possible to do this by finding a still wider generalization of

-4
Shimura's theorem than theorem 5. 6, where the annoying (—) is taken care of.

Lastly one could hope to generalize theorem 1.2 to non cusp forms. It would
be enough to prove it for Eisenstein series. For this I see two (related) ways :
either generalize Shimura's theorem to non cusp forms, or find directly what gshould
be the image of the initial Eisenstein series. In both cases the calculations lead to
complicated Gaussian sums in the field K, and [ have been unable to finish the
proofs except in some cases. However I conjecture that the constant terme one
should add to the definition of EK when f= I a(n)qn is not assumed to be a

f n=0
cusp form, is equal to :

20l Lo x By

7.2.- Our theorem 1.2 is closely related to the Doi-Naganuma map defined in
[5]. In a sense it is at the same time weaker and stronger. It is weaker mainly be-
cause of the group FN obtained, which is not as large as one could hope for. It is
stronger because it is of much greater generality, since Doi-Naganuma [5] and

D
W(T4(D), (3) and to 5

mo re one deduces Doi-Naganuma's mapping from theorem 1.2 by taking a suitable

Naganuma [7] restrict themselves to S (SLZ(Z)). Further-

linear combination of Elf{ where fs: f|kys and Yy sends i» to the cusp s of

8 D
TO(D) (see [13]). One could say (in the case of Sk(I‘O(D) , (7)) that theorem 1.2
is an asymmetrical form of the Doi-Naganuma mapping. It is easy to see on examples

that it does not map Hecke eigenforms to Hecke eigenforms.

7.3. - Recent work of Kudla [6] suggests that, as one can interpret the Shimura
map by a Petersson product with a certain theta function corresponding to an inde-
finite quadratic form of type (2,1) (see Niwa [8]), one should be able to interpret
Doi-Naganuma's or our mapping as a Petersson product with a theta function of an
indefinite quadratic form of type (2,2). This would have the advantage of giving

T

good' group on which E?

proof improved the level given in Shimura's paper. The possibility of using quadra-

certainly a is modular, in the same way that Niwa's

tic forms of type (2,2) was in fact suggested by Niwa himself at the end of his paper,

and carried out explicitly in the case of the Doi-Naganuma map by Zagier [13]
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7.4. - One can think about two further generalizations of theorem 1.2. The
first one would be to extend it to fields K other than quadratic fields, This has been
done by Saito [9] for the Doi-Naganuma map in case K/@Q is cyclic of prime degree,
tamely ramified and h{K)=1 . Saito's lifting being also very much Hecke-invariant,

one would need again an asymmetrical form to generalize theorem 1. 2.

The other generalization would be to find a lifting to Siegel modular forms.
Work of Kudla [6] mentioned above suggests there should be a map from modular
forms of half integral weight to Siegel modular forms o genus 2 given by a Peters-

son product with a theta series of an indefinite quadratic form of type (3,2).
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INTRODUCTION.

In the following we present a new variation of a tune which has been
played in the last 7 years on different instruments [11, [81, [101, [121,
namely the 1lifting of modular forms of one variable to Hilbert modular
forms in two (or more) variables. Our instrument 1s the application of
similarities of quadratic forms. We have seen in 1952 [2], that the
Hecke operators T(n) on theta series of guadratic forms can be realized
by families of similarities on these forms, whose "similarity norm" is n,
provided that such similarities exist. This 1is only the case if n 1is
the norm of an element of the field Q{vg) where g is the discriminant

of the form.

This is no restriction if ¢q is a rational square. Then the idea
leads to a close correspondence between Hecke operators for modular
forms for Fo(q) and principal character and the Brandt matrices attached

to rational quaternion algebras, see [51, [7].

Now we treat definite quaternary quadratic forms of prime discrimi-
nant q. Their similarities can be represented by elements of Lhe se-
cond Clifford algebra attached to the forms. It is a quaternion algebra
K over k = Q(Vq) which is ramified only at the two infinite places. The
relationship is explained in §2, while in 81 the necessary preparations
on Brandt matrices and Hecke operators in Q(vVg) are collected. Further
preparations, namely on the representations of the similarities by sphe-

rical polynomials follow in 83.

In $4% we adapt the results of [2, chap. IV] to our present situation.
In §5 we translate the findings of &4 into function theoretic language.
Theorem 2 in §5 exhibits the Naganuma 1lift of theta series of such qua-

dratic forms to theta series over k.
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We had vainly hoped to prove or to refute the following statement
all modular forms for Fo(q) of Hecke's real "Nebentype" are linear com-
binations of theta series for quadratic forms I of discriminant q and
for the adjoint forms F. Of course we mean generalized theta series
with spherical harmonics. The question seems to be much more difficult
than that for modular forms of character 1, see [51, [7]. 1Its solution
would certainly imply some knowledge on linear relations between such

theta series.
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§1. THETA SERIES AND HILBERT MODULAR FORMS.

Let k = Q(v¥q) be a real quadratic number field, ¢ its maximal order,
and d its different. We assume q = 1 mod 4, a prime number. Under this
condition the fundamental unit of k has norm -1. Elements of k will
be denoted by small Greek letters. The canonical automorphism of k 1is
[ UG~

We consider the totally definite quaternion algebra K/k which is un-
ramified at all finite places. Elements of K will be written with big
Roman letters. There exists an involutorial automorphism M -+ MY which

extends that of k.

Let Ml""’Mh represent all left ideal classes with the same maximal
left order 0. The right orders 0i represent all types of maximal orders;
if k has ideal class number 1, these Oi are different. For a given in-

tegral ideal m of k we form all integral ideals

T
(1) Mij = Mi Mj Mij Mij e X

of  reduced norms N(Mij) = NK/k(Mij) =m which are right equiva-

lent with MIIM..
1 ]

.

The multiplicative group of the Hamilton quaternion algebra over R
has exactly one irreducible representation PZ(M) of I+1 rows (1 =0,1,...)

We form the (1+1)%-rowed representation
= . o
R, (M) = v, (M) x PZ(M ).
Its class is unchanged under M > M°. With a unit € of k we have

(2) R, (M) = n(e)lR (D) = () 'R, 00,

Ne/Q

Unless the opposite is stated we will always assume that 7 is even.
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Then
(3) RZ(CM) = RZ(M).

With these prepartions the Brandt matrices of h(Z+1)2 rows are defined

by
= VR “ ! (i,3 = 1 h)
Hij(m) =} RZ(Mij ej i3 o= 4,0,
4
Bz(m) = (Hij(m))
where ej is the index of the unit group of ¢ in that of Oj' The super-
script x means the canonical antiautomorphism of K/k. It implies that

M- RZ(MK) is an inverse representation. The sum includes all Mij such
that (1) is an integral ideal of the properties described, but of a set
€Mij with units e € ¢ only one element is taken. Which one is taken
does not matter because of (3).

The Kloosterman-Schoeneberg theta series are

-1
K i T .-
(5) 0..(z) = 1 7R (Mu)elﬁ‘cr(zN(M:L MyIN(M;4))
1] e. A
3
with N = Ny - Here z = (21,22) with z, and Z, in the upper half plane
and tr(zX) means Az 4 AOZ2. The sum is extended over all Mij € MglMi.

It has been shown [6 : Theorem 1] that they are Hilbert meodular forms

of weight k = [+2 with respect to the group

(6) 1

—
it
—
—

Q
O ™

) tas-By=1,a€0, BEG *, YE 0, SE 0}.

If 7 > 0, which will always be assumed, they are cusp forms. These se-

ries are arranged in a h(Z*l)Q—rowed matrix

. o
2W1(zlu+22u )
(7) 9,(z) = ) B (me
m» o

with () =m and Bi(u) = B,(m), z, and z, being two complex variables with

2

positive imaginary part. {In the exceptional case L = 0 we would have to intro-

duce also the terms BO(O).)
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The Brandt matrices satisfy the same equations as the Hecke opera-

tors [6 : Theorem 2 and 5]

Bz(ml)BZ(mQ) = Bz(mimz) for (ml,mz) = 1

min(p,0)
n{pJ

iH

B, (p?)2, (p%) (LrDTp (pPt972Ty

T=0
for prime ideals p. The second formula is slightly modified if p is not

principal (see [6]). They are connected with the Hecke operators T(m)
by the equations [6 : Theorem 7]

(9) c™tB (myce, (2) = 0,(2)] T(m)
. 1+2

with a certain matrix C independent of m which does not interest us
here. (9) means that the Brandt matrices represent the Hecke operators
in the space of the theta functions which are the coefficients of the

matrix OZ(Z).

PROPOSITION 1. If k > 2 (or I > 0) all modular cusp forms with respect

to the group (6) are linear combinations of the Kloosterman-Schoeneberg

theta series (5) provided that the ideal class number of the field k is

one.

We prove that the representation T(m) - B, (m) is the same (up to
equivalence) as that of T(m) in the space of cusp forms. The latter
respresentation is semisimple which is shown by using the Petersson
metric [6 : Theorem 6]1. It remains to compare the traces of both repre-

sentations.

The traces of the Brandt matrices have been determined in 3 former
papers, viz. tr BZ(m) = 0 if m is not principal in the narrow sense.
Otherwise

- —, L+
2) pz+1_pz+1 p,Z+1_ A NE

P

+
2 — —_
) p-p p'-p'

h((u—ua2)¢'
w((u-40)¢"

1
tr(BZ(m)) =5 Z
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where u is such that p » 0 and (i) = m. The sum is extended over all

0,9 such that (u—402)¢~2

is the discriminant of an order J in a total-
ly imaginary quadratic extension of k, and h(...), w(...) mean the num-
ber of ideal classes and the index of the unit group of 0 in that of J.

p and p' are the roots of the equations

g
p2 -po+u = 0, 6r? - 5167+ = 0

and the bar means the complex conjugate. Finally the dots indicate a
correction term for the case that m = mi, the square of an indeal in k.
The expression is independent of the number u taken. Indeed, if
m = (ul), My > 0, we have My o= oen with a totally positive unit . Sin-
ce the basic unit has norm -1 in our case, & = Ei with another unit €1
and in the sum we can substitute u, g, ¢, p, p' by uei, oy ¢€1, PEL >

p'el = % p‘311 which leaves it unchanged.

The proof is in principle contained in [3], [5]. It consists of the

determination of all Mii = OiMii in (1). Instead of mere counting

their number one has to enumerate them with the weights tr(RZ(Mii))

which are

1+1 —=1+1 1+1 —1+1 L1 —, 1+
P -p op P -p p -p
p-p p-p p

1 1

-p
in the case of quaternion algebras K over Q or k. This has been car-

ried out in [3] and [51, [7].

The trace of the representation of the Hecke operators T(m) in the
space of modular cusp forms of weight k = I +2 has been given by
Shimizu [11]. It is the same as tr(BZ(m)), perhaps up to the correction
term for m = mi which had been left open. Although these correction

terms can also been shown to be equal, it is easier to prove that they
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cannoct differ. This will follow from the

LEMMA 1. Both traces are symmetric with respect to the automorphism o

of k

tr(T(m)) = tr(T(m), tr(BZ(mO)) = tr(B, (m).

Indeed, these traces are the Fourier coefficients of the following

symmetric modular forms

. o . .o
2ﬂ1(zlu+22u ) 2ﬂ1(zlu+52u )

®(z) = ) tr(T(u))e , ¥(z) = ] B (e
w0 u>g

. .. . 2
Their coefficients are the same for all u with (u) # m, - If they would
differ for the rest, ®(z) - ¥{z) would have Fourier coefficients # 0

2
only for (u) = my which is impossible.

PROOF of the LEMMA. Let D be the matrix expressing the involution

©(21’Zé) > @(zé,zl), and understand T(m) as the matrix representing the
Hecke operator. Then

-1

T(m%) = D T(m) D

which entails the first symmetry.

What concerns the latter, we consider an extension M = M% of the
non-identical automorphism o of k. Under this o the ideals (1) are
transformed into

MO, = MIONO MO
ij i 73 i

which have left orders Og, norms mg, an right orders which are isomor-

phic with Og. The orders Oz, 0? belong to types of Oi” 0., where

3
i - i', 3~ j' is an involutorial permutation. Furthermore
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R,00 = » 0D x r (M%) and chMO) = PZ(MO) x v 00

are equivalent. Both facts result in the equivalence of the matrices

Bz(m} and Bz(mo), which in turn implies the second symmetry.

§2. THE CLIFFORD ALGEBRA AND SIMILARITIES OF QUADRATIC FORMS.

We consider definite quaternay quadratic forms F of discriminant
q = 1 mod 4, a prime number. For their matrices we use the same sym-

bols, and we suppose

F = (fij) with

[NST
Hh

.. f.. € &.
ii i3

A1l such F belong to the same genus. As usual, we attach to them a

metric space 8§ over k such that F is the norm form of the generic

vector of a maximal lattice L in §

1
5 Flx] : £iaxxy = n(} byx)

Nf

with a basis b, of L. The g. c. d. of the coefficients x f.., £.. 1is
1 2 “ii i3
the norm of L.

To the space § we attach the first Clifford algebra over Q, spanned
by all formal products of r vectors (a,...a,) subject to the relations
1) the empty product is the unit element,

2) (al...ar)(bl...bs) = (a

17 APy

3) Coeeay ylagxgsbiy.da, o) = % ( a )+

LL.G. L a.a, .
1 1-17171+1

= yi(“'ai—ibiai+1"')’

L) (ab) + (ba) = (a,b) = Z(n(a+b) - nla) - n(b)),

where X;s y; mean elements in Q. For the following see [2, §4 and §5].

The second Clifford algebra of S over Q is the subalgebra of the

first spanned by the products (al...ar) with even r. This is
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isomorphic to the totally definite quaternion algebra K over k = Q(vqQ)

which is unramified at all finite places [9].

The inversion of the order of factors in

Ko
(al...ar) = (Qr"‘al)

is the canonical antiautomorphism of K. The space § always containsg a
vector ¢ of norm 1. The transformation of the elements of the second
Clifford algebra K with e in the sense of the first Clifford algebra in-
duces an involutorial automorphism
(e)(a,...ad(e) = () Ta,...a)(e) = (a,...a)’
1 T 1 r 1 r

It is easily seen that e transforms the product of 4 naturally orthogo-

nal vectors bi""’bu into its negative. This product has the property
2 _ -k
(bi"‘bu) =2 n(bi)...n(bq)
which is up to a rational square equal to g. Furthermore it generates

the center of K which is k. Thus o induces In k the canonical auto-

morphism.

Evidently ¢ and x commute
MOK = MKO.
It has to be borne in mind that ¢ is not uniquely determined since

there exist infinitely many vectors of norm 1.

PROPOSITION 2. All similarities of the metric space §, of positive de-

termination, are given by

(10) (x) = (x'y = mM*(OM

where x is the generic vector of S and (x) the corresponding element in

the first Clifford algebra. m # 0 is an arbitrary rational number and

M # 0 an arbitrary element in the second Clifford algebra. The norm of




Eich-10 208

the similarity is n’n (M)) = mzn(N(M)).

1/Q Nk /k

Two pairs my » M1 and m,, M, yield the same similarity if and only if

1

M2 = “Ml’ m, = n(u) m u € k.
PROOF. Let b1 be an orthogonal basis of S§. The canonical antiautomor-
phism k transforms an element M = EO +El(b2b3) + ... with g, €k into
M< = €9 -El(b2b3) - ... . Their product is the norm

K o_ gk _ _
MM™ =M™ M = N(M) = NK/k(M)'
From (10) we find for two vectors

(x'y") = m2M(ON M) (yIM.

The transformation of an element K by a one-member element (a) of the
first Clifford algebra induces an isomorphism which is not trivial in

k. But since k has only one non-identic automorphism, we have
(x'y") = m’NODO M€ (xyIM.
The sum of this formula and that with x, y inverted yields

(X', 4"y = men(MOD) (x,y)

which exhibits a similarity of norm n? n(N(M)).

The last statement on two pairs my M, and m,, M, is easily checked.
It remains to be shown that all similarities are given in this way.
Since every totally positive u € k is the norm of some M € K, all
n(u) > 0 occur as norms of similarities. (10). According to [2 : Satz

11.1] all similarities have such norms.

At last we show that all proper isometries can be obtained in the
way (10) with m2n(N(M)) = 1. Indeed, a proper isometry induces an

automorphism in both Clifford algebras and is therefore representable
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as

() = (x') = MEooM = NoD T M (oM

which has the form (10).

From now on we consider only the special similarities

(11) (x) » (x') = M“(xOM.

To a maximal lattice L in 8 we attach the order 0 in K which is gene-

rated by all symbols n(L)-P(ai...aQP) with as € L [see 2 : §141; n(L)
means the norm of L. Since L is a maximal lattice, 0 is a maximal or-
der [9 : §5]1. Conversely, L is uniquely determined by 0 up to a trivial

similarity L = ml with m € Q.

THEOREM 1. Let [ be a maximal lattice and 0 the maximal order attached

to it. If M is an ideal with left order 0 and right order 0', there

exists a maximal lattice L' attached to 0' such that each of the equa-

tions
N K = '
DM MpOpMp N(MYO',
(12) P
n ME = (L
DM p(Lp)Mp (G
P
implies the other, and
(13> n(N(M)In(L) = nk/Q(NK/k(M))n(L) = n(L').

Conversely, if [ and L' are given maximal lattices, there exists such

an ideal M. M is determined by L' resp. 0' up to an ideal factor m of

k.

In (12) p runs over all prime numbers and Mp over all elements of
the p-adic extensions Mp' (Lp) and (L) mean the elements in the first

Clifford algebra attached to the generic vectors of these lattices.
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The equations (12) can briefly be written

MSOM = N(MYOT,
(12a)

MECLYM = (L),

The proof is evident for principal ideals M = OM, and the p-adic ex-
tensicn of ideals are always principal. We have to observe that ideals
and lattices are the intersections of their p-adic extensions. The
uniqueness of M in the sense of the theorem stems from the fact that all

ambigue ideals are Om, m an ideal of k.

COROLLARY. There is a one-to-one correspondence between the similarity

classes of maximal lattices in § and the (inner) isomorphy types of

maximal orders in K.

PROPOSITION 3. The group U{(L) of proper units of a maximal lattice [

(i.e. those of determinants +1), divided by its centre {+ E} , and the groups

U{0) and U(p) of its order (¢ in X and of ¢ are connected by

U(L)/{xE} = U(0)/UCe).

PROOF. An isometry or a unit of [ induces an isomorphism of 0. The units

+E, or in other words x-—#+x , yield the identicel isomorphism of { . We dis-
tinguish automorphisms of 1st kind which leave the elements of k fixed,
and those of 7nd kind which do not. Because K is unramified at all fi-
nite places and 0 is maximal, all automorphisms of 1st kind are given
by the transformation of 0 by units V of 0. V and oV with a € K yield

the same automorphism.

Let a4, be an orthogonal basis of 5. Then a = (al...au) is an ele-
ment of the second Clifford algebra which generates the subfield k.

An isometry of S, as a linear transformation of the a, maps o on
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a.det(A). So it is proper if and only if k is left fixed. This com~

pletes the proof.

§3. THE REPRESENTATION OF THE SIMILARITIES.

Now we make some preparations for the following.

PROPOSITION 4. Let bv be a basis of §. The representations (11), namely

- K _
(b)) = (b)) = (b O™ = (] bq )

. . . . . It
with Ay € k is equivalent with Rl(M) = Fi(M) x v, (M ).

For the proof we compare the traces. We may extend S by R. The
space SR/R has an orthogonal basis 3, with n(év) = 1, and we replace the
bv by the 4 . The Clifford algebra is likewise extended to KR and then

has a basis [2 : p.31]
{1, (/5243), (545, (5152>] x 11, (414243%)].

The (5263) etc., satisfy the same relations as the commonly known Hamil-
ton quaternions. The second factor is isomorphic with R ©® R, since the
square of § = (515253éu) is 1, and kR = R ® R. The automorphism ¢

keeps the (Aubv) fixed and transforms § in -§. The representations and

the trace tr(Rl(M)) are given in the following table, where we use the

Pauli matrices
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M 1 8 (/.\263) 6(52».33) (/3361) 5(6361) (4152) %5(4142)
ry (1) Po | 8P5 | Pq 8§y Py 8py P3 6py
v, ey |-8p, | Py ~6pq Py -6py P3 =8P
@ )] -y 0 0 0 0 0 g
{

It is easily verified that the similarities generated in the way (11)

by these elements M have the same traces.

PROPOSITION 5. Let L be a lattice of norm n(l) and F the guadratic form

attached to a basis bv of L. TFurthermore, let C be a real matrix satis-
fying
ctc=r

and p,(x) a basis of the homogeneous spherical harmonic polynomials of

d i i . i t
egree I in 4 variables % (understood as a row vector of length

(Z+1)2). Finally let Q{(M) be the representation of M € K in the way of

Proposition 4.

Then R, (M) = (;“v(M)), defined by

P, (CQUDX) = é pu(Cx);UV(M>

is an inverse representation of M which is equivalent to the representa-

tion RZ(MK) defined in 8§1.

PROOF. It is evident that M = ﬁZ(M) is inverse. As in the proof of
Proposition 4 we may use an orthonormal basis A, of SR/R. Then M and
MY become independent, and according to Proposition 4 the group of the

Q(M) becomes a direct product isomorphic with rl(M) % Pl(MU).

All homogeneous polynomials of degree I can be written as
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[2/2] 2 2 A
£,00 = L (x] 4o xy) Py_gy (0

A=0
with homogeneous spherical polynomials pZ—ZA(X) of degrees 1-2X. The
representation of the orthogonal group 0, in the space of the fz(x)
splits up into the representations in the spaces of the pZ—ZA(X)’ the
latter being irreducible.{This is known for the representations of O(3,R) and

is easily extended to those of O0{4,]R).)The same is true for the similarities.

143 My - (1+1)2

7+3
There exists (7;7) linearly independent £,(x), and (737

linearly independent pz(x).

The matrix C translates n(l) % FIx] into } xi. As was already remark-
ed , QM) is isomorphic with rl(M) x rl(Mo), and we may assume M and M°
as independent. Then all irreducible representations of this group are
equivalent with le(M) % PZ2(M0), their degrees being (Zl+1)(12+1). In
our case the representation of M by the pV(Cx) is equivalent with that

of MO, because rl(M) x rl(Mc) ~ rl(MO) X rj(M). Hence 21 and ZQ must be

equal, and equal to I. This completes the proof.

S4. SIMILARITIES AND THETA FUNCTIONS OF QUADRATIC FORMS.

Let Fl""’Fh represent all classes of quadratic forms of the propepr-
ties fixed in §2, and Ll""’Lh the underlying lattices in S. By bi v
5
(v = 1,...,4) we denote bases of the Li such that

1
n(} bi,vxv) = 5 F;Ix].

Without loss of generality we may assume the Fi primitive or, in other

words, that the norms of the Li are 1.

For a given n we let Xj be a column vector with coefficients

X € Z i i
3,V satisfying

(1u) % F.lx.1 = n.

Furthermore for a given m let Xij be a matrix with coefficients in %
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such that

T

. . = . . >
(15) le Fl i mFJ det(le) 0
Then
(186) X, = X..X.

i 1373
is a column vector with the property
(173 £~F [x.] = nm

2 ti

We will count all situations (14)-(17), but we will attach to the X5

x., X.,. certain weights.
32 A4 g

t
For this purpose we fix a real matrix C1 such that C1C1 = Fl' Then

we have
(18) C.

with C;ici transforming the basis b1

- 1 .
C: Cj transforming bi,v

found in such a way that the denominators of the coefficients are po-

into bi y Or more generally,

3 3

into bj,v' We claim that the C;lcj can be

wers of one particular prime P, # gq. Indeed, considering the LO as ma-
ximal lattice over the domain Z(po) of numbers whose denominators are
powers of Py they are arithmetically indefinite, and by Meyers' theo-
rem [13 : 104 : 5] they are isomorphic and their norm forms equivalent.
This proves the contention. We take a Py with (ﬁil = 1. It is then

o
the norm of an element of k.

Let Q1<M) be the representation of a similarity of S by the basis

b1 v @s described in Proposition 4. Tt acts on a basis pv(x) of homo-
3

geneous spherical harmonic polynomials in the way of Proposition 5
(c.q,00C. %) = P : (1+1)2
P, (C;Q, (MC, %) = ) pu(x)ruv(M), VEd,...,(1+

or more briefly with pv(x) understood as a row vector
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_1 ~
(19 p(ClQl(M)C1 x) = p(xIRM.

The matrices ij in (15) can be written

. o1, -1
X;5 = €5 Cp Y CgCy

with a proper similarity Y of F According to proposition 2,

1
Y = le(M..) with an m € Q and an element M.,. € K attached to X... If

17713 ij 1]
m is the norm of an element of k, we have le(Mij) = Ql(Mij) with some
other Mij. Now we suppose that Xij be a primitive matrix. Therefore

. -1
also Y must be primitive with respect to all primes for which Ci C1 and
-1

C1 Cj are integral. Due to our construction these are all primes except
one pg. So m can at most be a power of Py But since Py is the norm

of an element of k, we arrive at Y = Ql(Mij) and

-1 -1
(20) Xij = Ci C1 Ql(Mij)Cl Cj'

With these preparations we attach to each vector x, with components

1

X, (in § b. _x. ) the vector

i,v i,vii,v
_ B 2
p(Cyx) = (pv(; Ci,ukxi,k))’ Vor o d,...,(2+1)°.

Equation (16) and (20) lead to

-1
p(Cixi) = p(CiXijxj) = p(lel(Mij)Cl ijj)

or more briefly

(213 p(C;x.) = p(ijj)R(Mij).

Now we report on some results from [2 : §18]. We quote them without
repeating [2]. Only we replace the representations of the vectors and
matrices by those just introduced. (In [2] representations were used
which were not irreducible and which contained the present ones as sum-

mands.) We restrict ocurselves to two cases
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1) m = pys 2 prime number with (éL) =1,
1

2y m = pzl, the square of a prime with (éL—) = -1, and the g. c. d.
-1
of the elements of the matrix Xij in (15) is 1.

We introduce h(Z+1)2 rowed vectors

(22) my(n) = (.., | Py (Cyxs5)5- )
(3 = 14...,h; v = 1,...,(2+1)2), the sums extended over all integral so-
lutions of (14). Similarly we form the h(Z+1)2—rowed matrices
(23) Pom) = (] R, (M, .0esD)
s 17i37%5 o

for each pair i,j summed over all primitive matrices satisfying (15),
(that Xij be primitive has been assumed in §11.4), where ej means the
number of proper units of Fj' According to Proposition 3, ej equals
the group index [U(Oj) : U(e)]l. Each individual case of (14)-(17)
yields an entry into the vector mz(n) and the matrix Pz(m), and the

weights of the Xi’xj are connected by (21).

Satz 18.4 is an intermediate result which must be adapted to our pre-
sent purpose. The solutions of (17) are at first distributed intoc cer-

tain residue classes Cv mod p, or pgl, and we have
(24) m, (P, (n) = é p(CImy (nm,C ),

where the mz(nm,Cv) is the sum (22) restricted to X; € C and the p(Cv)

v?
are certain invariants of the classes. They have been calculated in
§11, p. 68-71. In the first case m = pl,there are two classes C, and
CO, consisting of the primitive and the imprimitive vectors X The
number of "ideals" in the sense of p.70 is w = 2(p1+1); and (11.13),

(11.16) yield p(Cl) = 2, while (11.9) and (11.15) yield p(CO) :2(p1+1).

Adding up the primitive and the imprimitive vectors gives

mz(npi) = ml(npl’cl) + mz(npl,co)
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and writing the imprimitive X, = plxi

A -1
mz(npi,CO) = plmz(np1 ).
The considerations end up with

1 1+1 -1
(25) mz(n) 5 Pl(pl) = mz(npl) +py mz(np1 )

for (24), where the second summand vanishes if n is not divisible by

Pq-

In the second case m = p%l we have 4 classes (gee p.71, case B). C1

. N 1
01 and COO contain the Xy T P_q¥y

e e 1 '
primitive and 5 Fi[xi] % 0 mod p_, resp.

contains the primitive xi,C with xi

1 [
5 Fi[xi] = (0 mod P_q- Lastly
the X; € Cyqq are divisible by pzl. The number of "ideals" is this time

T o= p%l + 1, and from (11.9)and (11.18) we collect

2
p(Cl) = 1, Q(C01) = p . +1, p(COO) =1, p(COOO) =p, + 1.

-1

Similarly to the first case we have

2 2 2
mz(np_l) =mz(np_1,C1) o4 ml(np—l’COOO>

and
5 pEl(n)mZ(n) if (n,p_y) =1
my(p_y5Chy) =
0 if (n,p_i) > 1,
2 21 -2 .
mz(np—i’COGO) = p_imz(np_z) if (n,p_l) > 1.
Now (24) becomes
2 I+1 .
) mz(np_l) + P4 m, (n) if (n,p_l) = 1,
(28) m; ()P, (p_y) =
m; {n 2 ) o+ s (n —2) if (n )y > 1
A P_1 P_1 7 p-1 ’p—l M

The matrices % Pz(pl), Pz(pgl) express the action of the Hecke opera-

tors T(Pl)’ T(pgi) on the theta functions
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mitF, [x]
Gi,v(T} = Xé[ﬂ p,(C;x)e

Arranging them in h(l+1)2-rowed vectors we can write them

(27) 8 (1) = J m(ryel™nT,
2 l
n=1
With this notation (25) becomes
o . oo 2minp, T
1 2minT 7+1 1
@Z(T) 5 Py(py) = nzl mz(npl)e + D, Z m,(n)e
(in the second summand we have written n instead of npil). The right
hand side is
1+1 P
+ - T+t‘
D 6, (p. 1) + p ) 8 )+ 6,(T) I T(p.).
1 ARSI 1L, ¢ 5] 149 1
So we have proved
1 -
(28) GZ(T) 5 PZ(pi) = GZ(T) |Z+2 T(pl).

Equation (26) is

8. (1) P (pg )= § m (npz )GQﬂlnT £+1( z m) (e 2minT _ T om,(np kgﬂlnplr)
z l 1 & A -1 O A |
m=1 n=l n=l

1 1
o 21+2 2 A T+
RS TR AS IR LR S A R A

and this is
2 _ ) 1+1
(23) 8, (0 PZ(p_1> = GZ(I) | T(p 1) +p 4 8 (T)
1+2

With (28) and (29) we have proved

PROPOSITION 6. The space spanned by the theta series 0(t,F,p) with
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spherical harmonic polynomials of degree 7 is closed under the Hecke

operators T(p,) and T(p%l).
One must be careful not to confound the matrices % P(pi), P(pgl) with
the matrices representing the T(pl), T(p%Q) since the 8(t,F,p) are in

general not linearly independent.

§5. THE NAGANUMA LIFT.

In order to avoid a difficulty (however small), we assume in §5 that
the ideal class number of k is 1. Then the correspondence between the

Fi, Li’ Oi’ and the ideals Mi is one-to-one.

If the basis pv(x) of the spherical polynomials is suitably chosen,

the following matrices are equal

_ K
RZ(Mij) = RZ(Mij)

according to Proposition 5, and the matrices {(23) can be written
Pz(m) =7 B, (wd,

summed over all ideals (u) of %k with p ®» 0 and n{(u) m. Here we have
used the one-to-one correspondence between the ideals Mi and the clas-

ses Fj. In our two special cases this is

{Pz(%) - 3,00 48, (%) (p, = (1 ().

(30) Y 5
{Pz(p_l) = Bz(p_i)

The matrices BZ(”) can be transformed simultaneously into diagonal
form. This follows from Proposition 1 and the analogue property of the
representations of the Hecke operators (but it can also be proved in-

dependently). Let

(31) A7t8, (- diag(B; (1))
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and

| A71 0, (2)A = diag(s,(2)),

(32) o
2ﬁi(zlu+22u )
2. (2) = g B;(we .

With the same matrix we also transform the theta series (27)

{GZ(T)A = (...,¢i(T),...)
(33) d

“i(r) . I% Ai(m)e“im,

(i = 1,...,h(1+1)2). Some of the @i(r) will in general vanish. For
those which do not we may even assume without loss of generality
Xi(l) = 1. Then ki(m) for such m which are norms from k, are eigenva-

lues of T(n).

Now we restrict ourselves to the indices i for which
_ c
(34) Bi(u) = Bi(u )

holds. TFor these the equations (28) (together with (30)) and (23%) im-
ply

( ; ] o

4Bi(ﬁ) = Ai(pl) (p1 = (m)(w )
(35)

R 2 7+1
Bi(p_q) = A;(p_y) + P2 7

The equations (35) can be interpreted as a relation between the zeta

functions

1]

-8
Z;(s) = ] 8;GOn()" 7,

ti(s) =} Ai(m)m-s

attached to the @i(z), $;(t). According to Hecke's theory they are

Euler products
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2,(s) = I(1-8, (On(m) % +n(mF*1I2871,
- _ -8 q 1+41-2s5,-1
Ci(s) = T(1 Xi(p)p +(P) D Y.
We need yet other functions, namely
(36) T.(0 = 6, (1) | 0 -1t - 4.y t?
i i 742 4 0 i'grt :

They are also modular forms with respect to FO(q) and, by the way, they

are obtained by the analogue linear combinations as (33) from the

-1

_1 ~
(37) 0,(22, F, P) ——s
1igTe o 2,02

where F means the quadratic form adjoint to F. Let
(28) 3.0 =7 X (melTImT,
i i
From the well known fact for p # q,
0 -1 0 -1
(39) T ( [ ] = @ { ] T
D) q 0 p) q 0 (p)
we conclude that the gi(r) are also eigenfunctions of the T{(p), and that
40 X, = () AL (p.
(40) Al(p) (p) Al(p)
The zeta functions attached to the Ei(r) are also Euler products
~ by -s 1+1-2s5,~1
;(s) = M(1-X,(p)p 4'(%)p ) .
Now (35) and (40) imply

(41) Zi(s) = Ci(s)ci(s),

perhaps up to the Euler factors for q.

But we can also show that the Euler factors for gq are equal on both
sides of (41). TFor this we apply the functional equations. @i(z) is a

modular for with respect to the group (6). Especially it satisfies
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1+2
-1 -1 1
b (—, —=) () = %.(z,,2,)
i qzl’ az,""Qz4%Z, i~%1°72
whence the functional equation
(42) 0.(s) = q° | 0,(it,,it,)(t,t )5 tar at
i =4 S kb A 19%2
0

Q®(2mOr() %2, () = ¥, (142-5).

From (36) follows in the same way the functional equation

(43) bi(s) = ¥ 2mET ()T ()
= ¢8/? J @i(it)ts_ldt = 9, (k+2-s)
0
where 5i(s) is formed in the same way with Ei(s) instead of gi(s). (43>

implies that wi(s)gi(s) satisfies the same functional equation (42) as
Wi(s). The quotient of both sides of (41) (we omit the subscript i)
satisfies the same functional equation
-s T -5 1+2-s
(1-2(g)g ")-3(g)g ") _ (1-x(g)g"
1_B(va)q-s_+ql+1~28 1-8(vVg)6q

) (1-3 (g t% %)
s-1-2 2g-1-1
+q

An easy computation concludes from this
£y _ oy _ 1+l
x(q) + x{q) = B8(Vq), A {(g)rx{g) = ¢q s

which indeed implies (41).

THEOREM 2. We assume that the ideal class number of k is 1. Let

®i(z) = @i(zl,ZQ) be the modular forms with respect to the group (6)

which are eigenfunctions of the Hecke operators, and whose eigenvalues

are symmetric : Bi(u) = Bi(uc). They are linear combinations of the

theta functions @Z(Z) introduced in 81. Lastly we assume that the ana-

logue linear combinations (33) of the theta functions GZ(T) introduced

in 84 (see (27)) do not vanish.

Then the zeta functions attached to @i(z), ¢i(r), and the "adjoint”

functions $i(r) defined in (36) are connected by (41).
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The map ¢i(r) - @i(z) is the Naganuma 1ift, restricted to these ¢i(r).
It is left open here whether the ¢i(1) span all modular forms for Fo(q)
and of "Nebentype". Saito has shown [10] that all @i(z) with symmetric
coefficients Bi(u) = Bi(uo) are either obtained by the Naganuma 1ift
from modular forms for Ty(q) and of "Nebentype", or by the Doi-Naganuma
1ift from modular forms for the full modular group SL(2,Z). Both sorts
of ¢i(z) are different. Thus the existence of the latter @i(z) implies
the existence of linear dependencies between GZ(T) (which can be written

(bi(T) = O)-

The ¢i(r) corresponding in the way (32), (33) to those ®i(z) whose
coefficients are not symmetric (Bi(u) #* Bi(ug}) vanish also. This 1is

an easy consequence of Naganuma's theorem and our Proposition 1.

Lastly even some of the ¢i(z) may vanish, and then the corresponding

¢i(r) must vanish, too.

REMARK. Proposition 1 has only been proved under the assumption that the
ideal class number of the field k is one. Without this assumption fur-
ther operators V{(m) in the Hecke ring and matrices A(m), introduced in
[6], and their products with the T(m) and Brandt matrices B(m) have to

be considered and their traces compared.
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SERIES THETA DES FORMES QUADRATIQUES INDEFINIES

Marie-France VIGNERAS

Introduction.

Le but de cet exposé est de décrire un critére simple pour la cons-
truction générale de formes modulaires associées 3 une forme quadrati-
que indéfinie, qui est l'analogue des résultats classigues sur la cons-
truction des séries théta associées 3 des formes quadratiques définies

positives.

Théoréme 1. Soit qg(x) une forme quadratique sur r" , de signa-
ture quelconque (s,t) , soit LCR"” un réseau sur lequel ¢(x) prend
des valeurs entiéres et soit p(x) : R" % ¢ une fonction avec les pro-
priétés suivantes :

e=2malX®) | oinei que D{x)f(x)

*} La fonction f£{x) = p(x)
et R(x)f(x) pour toute dérivation D(x) d'ordre € 2 et tout poly-
ndme R(x) de degré € 2 sont définies et appartiennent a
L2 ®™) n it .

**) p{x) satisfait 1'équation différentielle
(E-XA)p(x) = é% p{x) , pour un entier % , ol E est 1l'opérateur d'Euler

et A le laplacien associé & g{x) .

Alors la série théta
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=\ s
8(r) = v7/2 o o) AT o, v = 1m(1)>0]

est une forme modulaire non holomorphe de poids k = A +n/2 ; son niveau

et son caractére sont ceux de q(x).

Pour faire mieux comprendre ce théoréme, je voudrais donner quel-
ques exemples d'applications. Un cas trés important est celui ol p{x)
est homogéne, de poids A , et sphérique pour g(x), c'est-a-dire ou
**%) est remplacé par les deux conditions : Ep(x) = *p(x) , 8p(x) =0 .
Alors la fonction 8(7) égale a

Jp, plx) 272007
est holomorphe. Si la forme quadratique g(x) est définie positive, on
peut montrer que les fonctions sphériques et homogénes sont des poly-
ndmes, et on retrouve ainsi les séries théta classiques (Hecke [4],
ogg [9], Schoeneberg (117, Shimura f1a]).

Si g(x) est de signature (2,n-2), soit <x,y>=q(x+y) -qgi{x) -a(y
la forme bilinéaire associée & q{(x) et soit z¢€ c” , tel que ql(z)=0,

<z,z> > O . Alors la fonction

(X)k—l

2img(x)T
XEL <x Z>k+n-—2 €

[k>n/2]

est une forme modulaire (holomorphe) de poids k .

Ce corollaire qui m'a été suggéré par Eichler, Zagier et Deligne
redémontre que les fonctions O(zl,z2,T) définies par Zagier [18],
sont modulaires (elles correspondent au cas n=2).

Si 1'on rajoute la condition

*%*%) (E+ A +n-2-4ng(x))(E-N)p(x) = 4r p(x) , re€mw
la fonction 8(T) est alors une forme de Maass [7].

De telles formes permettent de construire les séries théta des
corps quadratiques réels, associées aux Grdssencharakter (Hecke [47,
Maass [6], Gelbart [3]) et ont été utilisées dans des situations diver-—

ses (correspondances entre formes modulaires & une variable et a deux
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variables ([2], [5], [18]) ou entre formes modulaires de poids % entier
et de poids entier ([8], [10], [15])).
Mentionnons enfin que ce théoréme peut &tre généralisé pour donner

des formes modulaires de Hilbert et de Siegel.

Ce théoréme admet une démonstration élémentaire reposant sur la
formule de Poisson et les propriétés des fonctions d'Hermite, qui donne
en plus toutes les fonctions p{x) wvérifiant *) et **). Mais, 11 existe
une autre démonstration ElG] consistant & remarquer que les séries théta
construites dans ce théoréme sont des séries théta de Weil [17] et que
*%) est une condition sur le comportement de f(x) pour le groupe des
rotations opérant sur LZ(Rn) par la représentation de Weil, ce gui
permet d'obtenir le théoreme en utilisant un résultat de Shintani

({157, proposition 1-7).

1. Définition des séries théta.

On suppose donnés :

- un espace vectoriel réel quadratique, non dégénéré, V , de di-
mension n , muni d'une forme quadratique ¢(x), & laquelle on associe
la forme bilinéaire <x,y> = gl(x+y) - gl(x) - gly):

- un réseau L , sur lequel ¢(x) est entiére, dont on note L

le dual
*
L = {x€v | <x,y»€7,vyeL} .

On rappelle gue le groupe modulaire est engendré par les deux ap-
plications T = 741 , v = -1/7 . On désire déterminer un ensemble de
fonctions p : vxrT =+ ¢ , telles que les séries de Fourier (appelées
séries théta)

— b Ziﬂq(x)‘i’ - ¥ — . >
gh(“f) «E€T4h p{x,v) e . ne€L , T u+ivée , v>0

convergent et se transforment simplement sous l'action du groupe modu-—

laire. Le comportement sous l'action de T = 741 est déterminé par la
i)



230
Vig-h

forme de eh(T) , on a :

_ e2iﬁq(h)

(1) Gh(7+l} Sh(r) .

Aussi, on est ramené 3 la question suivante : déterminer un ensemble de

fonctions p(x,v) telles que eh(—l/T) ait une valeur convenable.

2. La formule de Poisson.

Il s'avére trés naturellement que la formule de Poisson est l'outil
adapté au calcul de eh(-l/T}. Trés briévement, la formule de Poisson
peut se résumer ainsi (Bochner [1] th. 67).

Etant donnés :

- une fonction f(x) sur V , pour laguelle 1'intégrale suivante

(appelée transformée de Fourier de f(x)) :

* . -0 T >
£ (%) = B £(y) e 21F€x, v ay
Y

a un sens (dy est une mesure de Haar quelcongue sur V)

- un réseau L de V dont le volume d'un domaine fondamental
dans V , pour la mesure dy , est noté vol{L}.

La formule de Poisson s'écrit :

L f(x) = vol(]".s)ml

x€L £ (=) .

by
xEL*
Elle est indépendante du choix de dy et est valable si f(x) vérifie
certaines hypothéses. Elle est vraie pour la fonction f—l/T(X) défi-

nie par :

£.(x) = plx,v) eZiﬁTq(x)

ol elle donne :

-1 g 2im<h, k> 5 %
e - = z 13
h( 1/7) vol(L) heL* e XERAL f_l/T(x) .
h{mod L)
Dans 1'hypothése ou
*
(2) £ 00 = (02 2 o, aeR

la valeur de Gh(~l/T) est égale & :
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(3) 8,(-1/7) = vou() ™t (=0)F /2 B e (n)
Une relation telle gue (3) s'introduit assez naturellement si on sup-
pose d'abord que Re(T) = O & cause de la régle suivante :
[f(X/v;)]*(y) = Vn/2 f*(yv;) , V>0 . La définition de (”r/i)>\+n/2 est
précisée de la sorte : Arg w étant la valeur de l'argument d'un nombre

complexe w vérifiant ~7 < Arg w < T , on pose

1 1
Log w = Log [wl + 1 Argw et Wi = o Log w

. On vérifie que
(wow )% = ¢ wiwi od e=1 si -m <€A +2a <7 et e=-1
waWy)? = e wiwg o = si rg w; rg w, e =

sinon.

3. Formule de transformation de thé&ta.

Que la forme quadratique g(x) soit définie positive ou non, les
formules (1) et (3) impliquent des formules de transformations de
Gh(T) pour l'action du groupe modulaire. Je référe a Shimura ([14],
p. 454) pour la démonstration dans le cas positif ; elle s'applique
aussi au cas gquelconque.

On note :

- A la matrice de g(x) sur une base de L (si x = (x

)

ceesX
1’ "“n

sur cette base, g(x) = % x A tX) :
- D 1le déterminant de A , & son discriminant & = (—l)n/ZD si
n est pair et 2D si n est impair :
- N le niveau de A , c'est-a-dire le plus petit entier tel que
la matrice NA_l soit paire ;
A

- X le caractére de A défini par x(p) = (5) , le symbole (

c et Aa€7Z, étant défini comme dans [14]. En fait, D , &4 , N, ne

)I

Q10

dépendent pas du choix de A , mais de q(x) et de L .

Théoréme 2. Sous 1'hypothése (2), on a :

* pour tout ¥ = (2 g) € SL,(Z) , c =0 (mod N)
aT+b, _ 4 A+n/2
8, (28) = (3) v(v) (cT+a) 8 () .

ou v(y) =1 si n est pair et wv(y) = (%)(:Cl‘—})“n/2 si n est impair.
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I ~A=-n/2 .
** 1a limite de Gh(ﬂ(T))(cT+d) est finie quand T tend
vers iew , pour tout T = (2 g) € SLz(Z).

4, Les fonctions d'Hermite.

Une solution £ _(x) de (3} doit &tre pour T=1i une fonction

propre pour la transformation de Fourier ; on aura :
* Y
(4) £ (x) = (-1)7 £(x) (£(x) = £,(x))

Mais inversement, la relation (4) entraine que les fonctions £_(x)

définies par
(5} fT(x) = V_K’/2 £(x\v) eZlﬂuq(x) T = usiv , v>0

sont des solutions de (3) lorsque u = Re(7) = 0 (d'aprés la régle
*

donnant f£(xVv) ). L'idée est de trouver toutes les fonctions f£(x) ,

propres pour Fourier, telles que les fT(x) définies par (5) soient

d=s solutions de (3) pour T quelcongue.

L'espace L2(V) posséde une base orthonormale, formée de fonc-
tions propres pour la transformation de Fourier, appelées les fonctions
d'Hermite (Appel et Kampé de Fériet [0], 3e partie).

On note

- (xl,...,xn) les composantes de x€V sur une base telle que

2
alx) =% (x; +...x§ - xs+l—...—xi) , n = s+t
_ 2 2
- q+(x) =% (x1+...+xn)
_ n - n
- pour m = (ml,...,mn)EIN , A€ER et h (hl,...,hn)ER ,
mbo=mleem b, AT = AT e g s T
n 1 n
e{m) = myte..mo=m o a-...om o, et

e = (-1)™ Vm 2™1/4 o0/2

Les fonctions d'Hermite sont définies par :

e—4ﬂq+(x+h) - e-znq+(x) 5
méEND
Elles sont propres pour la transformation de Fourier et sont solution

m
h
Cm HCim(X) mi °
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d'une équation différentielle du 2% ordre :

* _ . E(m)
(6) ¥ (x) = (-i) Bo(x)

2 s—t
- PR =) ¥
(7) (&-8m"g(x)) ﬂm(x) 4m(e(m) + ==) ¥ (x)
. s 2 noo32 ,
ol & = iél g—i - 24 g;i est le laplacien de g{x).

La référence donnée (0] convient pour une variable. On généralise (6)
et (7) & un nombre quelcongue de variables et 3 une forme quadratigue

de signature (s,t) en utilisant gque Mm(x) est le produit
*

m +1
s

* * *
H (xl)...ﬁmn(xn). que ﬁm(X)==§ml(xl)...ﬁms(xs)ﬁ (-x

1
m,
et que ﬁm'(xi) = (-1) * ﬂm (—xi).
i i

*
s+l}"'gm (-Xn)
n

8i 1'on considére la fonction pm(x) = Hm(x) eZHq(x) , 1l'éguation

différentielle {7) devient :

(8) (E-e(m)+q) p_(x) = z= p_(x)

I
fiti s

| , 3
' 1
ou E est l'opérateur d'Euler, E 1 ¥ 5S¢

1

i

5. Calcul d'intégrales.

. 2 . o 2
- -k -
Lemme 1. g S1TTY" - 2imxy dy = (7/i) % e inx"/T
R

C'est bien connu. On généralise a un plus grand nombre de variables.
Soit

G2imua(x) = 2mvay(x) _i

g,(x) = 3

1 j=g+1

Lemme 2. g, (x)" = (7/1)™2 (F/1)"% g (x) .

En considérant vt/z gT(x) , on élimine le terme en 7T ; autrement dit,

1

la transformée de Fourier de la fonction

_ t/2 2imug(x)
By, (x) = v B o(xfv) e

est donnée par :

Lemme 3. ﬁZ'T(X) = (_i)(t-s)/2 T(t"’S)/Z ﬁo’_l/.r(X) .
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On généralise & m quelcongue en utilisant les propriétés remar-—
, ; . . 3 .
quables des fonctions d'Hermite (on appligue le fait que 5% et ~2TMix
sont duales par rapport a Fourier, et les relations

H H H =
¢ m+1(X) + 4ﬁcm>< m(x) + 4ﬁcm_ m (x) o,

m+l 1 m-1

Hilx) - 2mx ¥ (x) = a1/ ﬁm(x) , pour x€R).

* _ oy (t=s8)/2 _—(A4n/2)
Lemme 4. Hm'T(x) = (-1i) s)/2 ; n H

n —l/T(X) avec

A= €e(m)-q .

6. Le lemme 4 nous donne une base dans L2(V) des fonctions £(x)
cherchées. Elle est formée des fonctions ﬂm(x) , telles que X =¢(m)-q.
Les fonctions f£{(x) sont (avec 1'hypothése ) supplémentaire du thé-
oréme de l'introduction) les solutions de 1'équation différentielle (7),

égquivalente pour p(x) = £(x) ezﬂq(X> a l'équation différentielle de

*%). Le théoréme 1 est démontré.

Si la forme qg{x) est définie positive, les fonctions pm{x)
sont des polyndmes. Les polyndmes pm(x) tels que my+...+m = A for-
ment une base (finie) des fonctions p(x) vérifiant les deux condi=-

tions du théoréme. Si g(x) est indéfinie, la base est infinie.

7. Dérivées et formes de Maass.

Parmi les fonctions du demi-plan supérieur, se transformant sous
l'action du groupe modulaire comme dans le théoréme 2, se trouvent les
formes de Maass, qui sont les valeurs propres de 1'opérateur de
Beltrami (généralisé) du demi~plan supérieur. Cet opérateur au moyen de

théta se reléve sur les fonctions p(x) . On note :

,

- P, 1l'ensemble des solutions p{x) de l1l'équation différentielle

-2mg(x)

{(B-k)pl{x) = A/4m p(x) telles que f(x) = p{x) e appartienne a

1'espace de Schwarz de V .

- 8(7,p) 1la série théta associée & p(x)€ P, . dans le théoréme 1.

-6

X l'image de P, par l'application &(7,p) , k = X+n/2 .
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-~ A
Sur P, , on définit deux opérateurs K, et A, qui sont les
relévements des opérateurs usuels de dérivation Kk et Ak sur ek .

On démontre la proposition suivante :

Proposition. Si p{x) € P, satisfait 1'éguation différentielle

(E+ A +n=-2-4nq(x))(E-M)p(x) = 4r p{x) , ré€R

les séries &(7,p) sont des formes de Maass.

. . _k .3 .20
Démonstration : Kk =z +igz Ak = ivT ==
( 3 _ 3 _ . 3 3 _ 3 £ i 3 )
on pose st T 5a 1 ST 5 = Y 1 a—\; .
~ ~ -
Définition. K, = % + g - anglx) K o= - §3,2_ i

On vérifie que Ky, et Wl sont des applications de P, , respec-
tivement dans P)\+2 et Py_, v ¢'est~a~dire que les diagrammes suivants

sont commutatifs :

ﬁx Kx
Py ™ P2 Py ™ P,
8(T,p) l } 8(7,p) 8(7,p) l l 8(7,p)
Ky A
ek ek+2 @k ek—2

Les égalités 6(7,K,p) = K_6(1,p) et S("r,?\d)\p) = A_8(7,p) montrent
que les images de séries théta par les opérateurs de dérivation sont
des séries théta.
& ! & A
Dans 1'opérateur Kk—2 X

k
2 22 3 ,
Ak = -v" g% + ikv 57 {opérateur de Beltrami généralisé)

admet des valeurs propres, gui sont des formes de Maass ([7]

le relévement de Ak a Py étant
T, = -((EM)/2 + n/2 = 1 - 27q(x)) (E-})/2

on en déduit la proposition.

Exemples : Les séries th8ta des corps guadratiques réels.

On note :
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v = R2 .
L = un idéal d'un corps quadratique réel K , de discriminant 4 ,

d'élément générique 1w , dont le conjugué est ', plongé dans R2 par

w * {u,p') ; n(L) est la norme de L .

neya~ly  , n#o.

atxy) = 7y -

On peut construire des séries thé&ta de poids A€Z , de niveau A,
qui sont des formes de Maass avec 4r = K2‘+t2 , ou t est de la forme
t = 2fn/Logle| , €>>0 unité de K .

Le théoréme 2 nous permet de construire des séries th&ta de poids

A, de niveau N :

\ 2imu E%JT
h2E g (v, wVv) e n{L

eh(T) =V u€L+h “m,n

avec m-n = A+l et

£ n00¥) = ¥ (o) (B o ((xy)BED)

m,n
Remarquons gue pour a€r” ; l'application (x,y) = (ax,a—ly) est une
unité de q{x,y) et par conséguent fm n(ax,a_ly) vérifie (7).

D'autre part, fm n(aMV;, a-lu'V;) est le produit d'un terme polyndmial

-1 -ﬁv(a2u2-+a_2u‘2)
en aufv et a 'YV par une exponentielle e .

Pour tout caractére a = alt fixant globalement L+h , donc
t = 2mtn/Loglel , € unité de k , n€z ,

OO

& it da
g = 1 aa

() SO a'te (1) &

N » - ~ N -1
ou l'on a noté eh(T,a) la série théta correspondante a fm n{ax,a V).
Les séries §h(T} sont des séries théta de poids A de niveau N ;

elles s'écrivent

2iTu i%iy
v M2 9 VvV v e nlk

g = Z
S (M) HEL+h
v mod(E€ )nEZ
ou
it 4
I rl(x,y) = S a* £, 1q(x,y) _a_a (xy # 0)
I O r

est bien définie pour xy ¥ O . Si 1'on pose :
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X
p(x,y) = g_ (xy) e-—zrr HL%
m,n
on obtient des fonctions p(x,y) vérifiant (8) ainsi gu'une autre
équation différentielle
x pl{x,y) -y pi’,(x,y) = -it p{x,y)
que 1l'on obtient en dérivant par rapport & b 1'égalité
p(bx,b™'y) = b7 px,y) .
I1 est aisé d’en déduire que p(x,y) vérifie Xk pix,y) = 4r p(x.vy)
avec 4r = K2-¥t2 , donc les séries §h(T) sont des formes modulaires

de Maass.



Vig-12

(o]

[1]

[2]

[3]
(4]

[5]
[6]

[7]
(8]

(9]
[10]
[11]

[12]

[13]

[14]

238

Bibliographie

APPEL P. et KAMPE DE FERIET J.- Fonctions hypergéométriques et
hypersphériques. Polyn8mes d'Hermite -~ Gauthier-villars,
(1926) (3e partie).

BOCHNER S.- Lectures on Fourier Integrals. Ann. of Math. Studies,
N°® 42, Princeton University Press (1959).

DOI K., NAGANUMA H.- On the coincidence of two Dirichlet series
associated with cusp forms of Hecke's "Neben'"-tvype and
Hilbert modular forms over a real quadratic field.
J. Math. Soc. Japan 25 (1973), 547-555.

GELBART S.- Automorphic forms on adele groups. Ann. of Math.
Studies, N° 83, Princeton University Press 1975.

HECKE E.- Mathematische Werke, Vandenhoeck und Ruprecht, G&ttingen
(1959).

KUDLA Theta Functions and Hilbert Modular ¥orms. (Preprint).

MAASS H.- Uber eine neue Art von nichtanalytischen automorphen
Funktionen und die Bestimmung Dirichletscher Reihen
durch Funktional Gleichungen. Math. Annalen 121 (1949),
141-183.

MAASS H.- Lectures on Modular Functions of One Complex Variable.
Tata Institute (1904), chap. IV et V.

NIWA S.- Modular Forms of half integral weight and the inteqral of
certain theta functions. Nagoya Math. Journal 56 (1975),
147-163.

OGG A.- Modular Forms and Dirichlet Series. Benjamin (1969),
chap. VI.

RALLIS S. et SCHIFFMANN G.- Automorphic forms constructed from the
Weil Representation, holomorphic case (1976) (preprint).

SCHOENEBERG B.- Das Verhalten von mehrfachen Thetareihen bei
Modulsubstitutionen. Math. Annalen 116 (1939), 511-523.

SHALIKA I., TANAKA S.- On _an explicit construction of a certain
class of automorphic forms. Amer. J. of Math. 91 (1969),
1049-1076.

SHIMIZU H.- Theta series and automorphic forms on GL(2). Journ.
Math. Soc. Japan, 24 (1972), 638-683.

SHIMURA G.- On modular forms of half-integral weight. Ann. of Math.
97 (1973), 440-481.




239
Vig-13

{15] SHINTANI T.- On construction of holomorphic cusp forms of half
integral weight. Nagoya Math. Journal 58 (1975), 83-126.

g I ra . 3

[16] VIGNERAS M.-F.- Séries thé&ta des formes quadratiques indéfinies.
Séminaire de théorie des nombres Delange~Pisot-Poitou
(1976-1977) .

{17] WEIL A.- Sur certains groupes d'opérateurs unitaires. Acta Math.
111 (1964), 143-211.

[18] ZAGIER D.- Modular Forms associated to real gquadratic fields.
Inventiones Mathematicae 30 (1975), 1-48.




International Summer School on Modular Functions
Bonn 1976

AUTOMORPHIC FORMS AND
ARTIN'S CONJECTURE

V)]
by Stephen Gelbart

1)
Work supported by a grant from the National Science Foundation

CONTENTS
INTRODUCTION 243
I. ARTIN'S CONJECTURE 245
1.1. Artin's original conjecture 245
1.2. Hecke theory for GL{(n) 246
1.3. Langlands' reciprocity conjecture 253
IT. AUTOMORPHIC FORMS ON GL(2) AND GL(3) 256
2.1. Base change for GL(2) 256
2.2. Lifting from GL(2) to GL(3) 258
2.3. GL(n) *x GL{m), 2 € n<m< 3 261
I1T. LANGLANDS' PROOF OF ARTIN'S CONJECTURE FOR
TETRAHEDRAL © 264
3.1. Construction of “pseudo(g} 265
3.2. Proof that ﬂps(o) = w(o) (F = @) 267
3.3. Proof that WPS(O) = m(g) (F arbitrary) 269

REFERENCES






Gel-1
243

INTRODUCTION

Various objects in algebraic geometry and number theory have asso-
ciated to them L-functions with Euler product. Examples include the L-
functions attached to algebraic varieties, complex Galois representa-
tions of a number field, and strictly compatible systems of £Z-adic re-
presentations. The conjecture ig that all these L-functions should pos-
sess analytic continuationg and functional equations. 1In fact, accor-
ding to R.P. LANGLANDS and A. WEIL, these functions should coincide
with the Euler products naturally asscciated to automorphic forms on

groups such as GL(n).

In [13] Langlands described this philosophy in a sequence of dazz-
ling conjectures. The particular conjecture which is of interest to us
here relates Artin L-functions of degree n to cusp forms on GL(n).

When n = 1 this reduces to the fundamental reciprocity law of abelian
class field theory. Thus we refer to it as "Langlands' reciprocity
conjecture”. It asserts that there is a natural map between n-dimension-
al irreducible Galois representations and cusp forms on GL(n). Since
this map preserves L-functions, its existence implies the truth of Ar-

tin's conjecture.

Recently Langlands has been able to prove his reciprocity conjec-
ture -and hence Artin's conjecture~ for a wide class of 2-dimensional
Galois representations. A brief sketch of the proof appears in [1u]
and [415]. The modular ingredients include

(i) the theory of base change for GL(2) as developed by

Saito [171, Shintani [19] and Langlands [14];

(ii) the theory of "1ifting" from GL(2) to GL(3) developed by my-

self and Jacquet (Gelbart-Jacquet [7]);
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(iii) the work in progress of Jacquet, Piateckii-~Shapiro and Shalika
on the "converse theorem for GL(3)" and L-functions on

GL(3) x GL(3) (cf. [12]).

The purpose of this paper is to describe the significance of these
modular results in more detail. Particular emphasis is on the role
these results play in Langlands' proof of Artin's conjecture for the
so-called tetrahedral representations of the Galcis group of an arbitra-

ry number field.

Some of the work described here is still in progress, and still
more is not yet published. Thus I am grateful to all those concerned
for allowing me to make this report. I am also grateful to P. CARTIER,
J-P. SERRE and J. TUNNELL for helpful remarks on the material of Sec-

tions II and III.
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I. ARTIN'S CONJECTURE

Fix an integer n and a number field F.

1.1. Artin’'s Original Conjecture.

Suppose K is any Galois extension of F and
g : Gal(X/F) - GL(n,T)

is an n-dimensional representation of Gal(K/F). For each place v of F
let g, denote the restriction of o to the decomposition group of Gal(K/F)
at v. The Artin L-function attached to ¢ is then given by an infinite

Euler product
L(s,0) = I L(s,0_)
v v

extending over all the places of F. If v is unramified in K, and Frv

denotes a Frobenius element over v, then

-1
~ -8
L(s,cv) = [det(Imc(FrV)Nv D B

Artin's Conjecture. Suppose ¢ 1s irreducible and non-trivial. Then

L(s,0), originally defined only in some right half-plane, extends to an

entire function of C.

Non-trivial results in the direction of Artin's Conjecture were
first obtained by E. Artin and R. Brauer. Artin proved his conjecture
for monomial representations -those induced from one-dimensional repre-
sentations of a subgroup. In fact, for such ¢ Artin proved that L(s,o)
is L(s,¥), a Hecke L-series with character Xx. Thus Artin proved a dual

form of the fundamental reciprocity law of abelian class-field theory.
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For arbitrary o, Brauer proved that L(s,c) is at least meromorphic
in €. Until recently, however, very little was known in general about

the entirety of L(s,o).

As already indicated, one purpose of this paper is to report on re-
cent progress mady by R.P. Langlands on the proof of Artin's conjecture
for two-dimensional ¢. TFor irreducible such o, it is known {(cf. [181,

§2.5.) that the image of 0(Gal(K/F)) in PGL(2,L) is either

(i) dihedral, in which case o 1s monomial;

(ii) isomorphic to Au - the tetrahedral case;

(iii) isomorphic to 5, - the octahedral case; or

(iv) isomorphic to A5 - the icosahedral (or non-solvable) case.
Langlands' work concerns cases (11) and (i1i) but not (iv). Before

describing his results, we need to reformulate Artin's Conjecture in

terms of the so-called Hecketheory for GL(n).

1.2. Hecke Theory for GL(n).

Let G denote the algebraic group GL(n). In this section we shall
describe the automorphic representations of G. To save space, we
shall often sacrifice precision for the sake of speed. For a more de-

tailed development of the theory, see [1]1, [5] or [6].
For each place v of F let Fv denote the completion of F at v.
Let AF denote the adele ring of F, and Gp the adele group
GL(n,A) = I GL(n,FV) (a restricted direct product).
v

For each algebraic subgroup H of G, Hp will denote the group of adelic

points of H.
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An automorphic form on GL(n) (over F) is a slowly increasing left

GL(n,F)-invariant function on which is right invariant by an appro-

Ca

priate compact subgroup; for the definition of slowly increasing, see

[5]. An automorphic form is cuspidal if
f dp(ux)du = 0
UF\ Un

for each unipotent radical U of a proper F-parabolic subgroup of GL{(n)}.

Examples (n = 1,2).

(a) Examples of automorphic forms on GL(1) are provided by grdssencha-
x

rakters of F, i.e., characters of the idele class group FX\/AF. Since

GL(1) has no proper parabolic subgroups, every automorphic form on

GL(1) is (automatically) cuspidal.

{b) Suppose F = Q. Then an automorphic form ¢ on GL(2) extends the

notion of a modular form

defined classically in H = {z : Im(z) > 0}, The left invariance of ¢
with respect to GL(2,F) corresponds to the fact that f is "automor-

phic™ in the classical sense for some congruence subgroup of SL(2,Z).
The cuspidal conditicon on ¢ corresponds to the fact that f 1s a cusp
form in the usual sense, i.e. f wvanishes at each cusp; in particular

ag = 0.

(c) Suppose F is a real quadratic field. Then automorphic forms on

GL(2) over F generalize the classical notions of Hilbert modular form.

Now suppose 7 is any irreducible unitary representation of GL(n,A).

If ™ can be realized by right translation operators in the space of
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automorphic (resp. cuspidal automorphic) forms on GL(n) we call 7 an

automorphic (respectively cuspidal) representation of GL(n). To at-

tach to 7 an L-function with Euler product we need to factor 7 as a

product of local representations.

According to [8] and [11] there is associated to 7 a family of local

representations T, -uniquely determined by m- such that

(i) for every v, m, is irreducible;
(ii) for almost every v, T, is "unramified"; and

(iii) in a sense to be made precise below,

(1.1) T = ® 7 .
Y

This result is really only true for "admissible" w. However, it is

easy to show that every cuspidal 7 is admissible.

When n = 1 the decomposition (1.1) corresponds to the fact that eve-
ry grdssencharakter x can be written as a product of local characters
Xy Condition (ii) corresponds to the fact that the restriction of ¥
to the group of units in Fi is trivial for almost every v, i.e., for
almost every v, Xy ig "unramified" in the usual sense.

In general, n, unramified means that the restriction of m, to the
standard maximal compact subgroup K, of GL(n,FV) contains at least
one fixed vector. In this case, the theory of spherical functions for

GL{n) shows that
(a) K, has exactly one fixed vector in the space of n,> and
(b) T, corresponds canonically to a semi-simple conjugacy class

A, in GL(n,C).
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The significance of (a) is that (1.1) is meaningful when interpreted as
a restricted direct product with respect to these K -fixed vectors.
The significance of (b) is that one can canonically attach to most 7w

an "Buler factor" of degree n.

Examples (n = 1,2).

x
(a) Suppose n = 1 and Ty is an unramified character of F,. Then Av is

wv(a), the value of m, at any local uniformizing variable of F .

(b) Suppose n = 2, F = @, and Te = ® ﬂp is generated by the classical
modular form
_ o 2minz
f(z) = § ae
£ n

on SL(2,Z). The decomposition Te = ® ﬂp corresponds to the fact that
f is an eigenfunction for all the Hecke operators Tp’ ice., Tpf = apf
for all p. The unramified representation Wp then corresponds to the

conjucagy class

o 0
P
A =
7 a
8P
R
if and only if det(Ap) = 1 and tr(Ap) = p 2 ay-

As already indicated, Hecke theory for GL(n) starts with the notion of

an L-function attached to each irreducible unitary reperesentation

of GL(n,A). Given m, let § denote the finite set of places v of
F outside of which T, is unramified. For each v € S let Av denote the

semi-simple conjugacy class in GL(n,C) corresponding to m,+ Then
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consider the infinite Euler product

(1.2.) I L(s,m) = 1 [det(I-{A }(N ) )17
vE&Ss v &S
extending over (most of) the non-archimedean places of F. This is an

Euler product of degree n in the sense that each Euler factor L(s,ﬂv)
is of the form P_l((Nv)_S) with P a polynomial of degree n such that
P(0) = 1. The infinite product can be shown to converge for Re(s)

sufficiently large.

Tn many known cases the function defined by (1.2) actually extends
to a meromorphic function in € with simple functional equation. In
the context of Example (a) this amounts to Hecke's fundamental result

for the Euler product

~ -8 1
L(s,x) = i (1-x(w IN_ )
vE&Ss VoV
a Hecke L-series with grdssencharakter yx. In the context of Example

(b) it amounts to Hecke's classical theory of Dirichlet series associated

to modular forms. In this case 1 -1
I L(s,m ) = I (1-a_p °) (1-8 )
veEs p <o P P
_at 1 v -1
= 1 (1—app s +pk 1-2s )
b
g
:Zan :D(S',f),
n
with s' = s + (E%l). Thus the analytic continuation of I L(s,ﬂv)
v &S

results from the known holomorphy of D(s',f), and the functional equa-

tion results from the invariance (up to sign) of
_Sl
(2m) I'(s'")D(s',f)

with respect to the change of variable s' - k-s'.
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In general, one has the following result

THEOREM 1. (Jacquet-Langlands [11], Godement-Jacquet [9]).
Suppose T = & L is an irveducible unitary representation of GL(n,A)
%

with S and A, as above. Then one can define an infinite Euler product

Lis,w) = 0 L(S,ﬂv),
v

and local factors E(S,WV), go that for v € S,
L(s,m ) = [det(I-{AV}(Nv)-S)]~1, and e(s,n )= 1. Moreover, if w is an

automorphic representation of GL(n), then

(z) L(s,m), initially defined only in some right half-plane, extends
to a meromorphic function of s with only finitely many poles in
O
(¢2) L{s,m) = (O E(s,m,))L{1-5,m) with m the representation contra-
v

gredient to w; and

(112) Zf ©m is cuspidal (and non-trivial when n=1), then L{(s,m) is

entire and of finite order.

Remarks.

(a) Properties (i)-(iii) above essentially characterize the irreducible
unitary representations of GL(2,A) wich are cuspidal. This is Theorem

11.3 of [111; it generalizes earlier gpecial results of Hecke and Weil.

Similar results for GL(3) have been obtained in [121; together these

results constitute a converse theorem to Hecke theory for GL(2) and

GL(3).

(b) Langlands has conjectured in [13] that Theorem 1 should hold in a
much more general context. More precisely, fix a finite-dimensional

semi-simple analytic represgentation
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r : GL(n,C) - GL(m,T)

with n € m, and define, for v € S, an Euler factor of the form

L(s,ﬂv,r) = [det(I—r(Av)(Nv)_S)]_

Conjectured generalization of Theorem 1. Suppose 7 = & T, is an auto-

morphic representation of GL(n). Then one can define L(s,ﬂv,r) for
v € S so that the function
L(s,m,r) = 1 L(s,m_,r)
v v

satisfies conditions (i) and (ii) of Theorem 1 with some &(s,ﬂv,r) in

place of E(S,WV).

Note that the assertions of this conjecture reduce to those of Theo-
rem 1 when r is the standard representation of GL{(n,C) by itself. In-

deed if we denote this representation by
R GL(n,C) » GL(n,C),

then

L(s,ﬂ,pn) = L(s,m).
In general, L(s,m,r) is defined so that

L(s,m,r, @ rz) = L(S,n,rl)L(s,ﬂ,rz).

1

(c) Functoriality of Automorphic Forms with respect to the Associate

Group.
Suppose G' = GL(m) and p : GL(n,C) » GL(m,&) is a homomorphism. Then
there should be a map p, taking automorphic representations of G to
automorphic representations of G' so that for each semi-simple repre-

sentation r of GL(m,T),
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Lis,m,rop) = L(s,p*(w),r).

But GL{(n,C) (resp. GL(m,€)) is {(essentially) the associate group of
GL(n) (resp. GL(m)) (cf. [13]1 and [14]1). Thus this assertion amounts
to Langlands' principle of "functoriality of automorphic forms with

respect to the asscciate group".

1.3. Langland's Reciprocity Conjecture.

Theorem 1 suggests we ask if every Artin L-function of degree n is
the Hecke L-function of an automorphic representation of GL(n) ? In

other words, fix a Galois representation
o : Gal(X/F) - GL(n,C)

and consider the corresponding collection of conjugacy classes {O(FPV)}
in GL(n,C). Does there exists an automorphic representation % m, of
GL(n,A) such that A, almost always coincides with the class of o(Fr ) 2
The first precise response to this question was conjectured by Lang-

lands in [13].

Langlands' Reciprocity Conjecture. For each Galois representation

¢ : Gal(K/F) - GL(n,T)
there exists an automorphic representation m(o) of GL(n,AF) such that
L(s,0) = L(s,n{o)).
Moreover, if ¢ is irreducible and non-trivial, then 7m(g) is cuspidal.
Remarks.
(a) This conjecture implies Artin's conjecture. In fact, as already

mentioned, this is how Artin proved his conjecture for one-dimensional

g.
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(b) In [16] (see also [2]) Langlands showed that the factor e(s,o) aris-
ing in the functional equation of L(s,0) can be factored as a product
of appropriate local factors E(S,Ov)- Thus, by the converse theorems
to Hecke theory already discussed, Artin's conjecture can be shown to

be equivalent to Langlands' reciprocity conjecture when n = 2 or 3.

(c) These same converse theorems also imply the truth of the reciprocity
conjecture for two and three dimensional irreducible monomial represen-
tations ¢, i.e., irreducible representations of Gal(K/F) induced from
grossencharakters of quadratic (resp. cubic) extensions of F. In either
case the resulting automorphic representations w(o) will be called mono-
mial. The case n = 2 is due to Jacquet-Langlands [11] (generalizing
earlier classical constructions of Hecke and Maass); the case n = 3 is

due to Jacquet, Piateckii-Shapiro, and Shalika [12].

The classical content of Langlands' reciprocity law is this. Suppose

F =@, and 0 is an irreducible two-dimensional representation of

0
-1

representation m(g) corresponds to a classical cusp form of weight 1.

Gal(Q/Q) taking complex conjugation to [é 1. Then the (hypothetical)

“

In [3] Deligne and Serre prove that all forms of weight 1 are so ob-
tained. More precisely, suppose f 1s a cusp form of weight 1 and a
"primitive form" of odd character in the sense of [3]. Then there
exists an irreducible two-dimensional representation ¢ of Gal(Q/Q)
with odd determinant such that L(s,c) = D(s,f). In other words, modulo
Artin's conjecture, there is a 1-to-1 correspondence between such repre-

sentations of Gal(Q/Q) and appropriate cﬁsp forms of weight 1.

We close this Section by describing Langlands' reciprocity law in

a local setting. This law will be particularly useful in Section II.
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For the moment, let F denote a local field and ¢ an n-dimensional
representation of Gal(K/F). From the global theory we expect to be
able to attach to ¢ an irreducible (admissible) representation m(o)
of GL(n,F) whose L and ¢ factors coincide with those of ¢. We want to
assert more, however. Thus we consider representations not just of
Gal(K/F) but also of WF -the absolute Weil group of F. Our assertion then

is that there is a natural correspondence
g« w0}

which is bijective. For precise definitions, and a discussion of the
present state of this conjecture, see [1] and [6]. The case n = 1 is
equivalent to the local reciprocity law of abelian class field theory.
In general, every representation of Gal(K/F) may be regarded as a re-

presentation of WF but not conversely.

Concluding remark. Although the correspondence o <> 7(g) should preserve

L and € factors, it is not expected that these factors should always de-
termine the representation. In particular, in the statement of Lang-
lands' reciprocity conjecture, it is not asserted that n(g) is Qnique—
ly determined by the condition L(s,n(o)) = L(s,0). Tor n = 2 or 3,

however, the L and ¢ factors do locally determine .
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II. AUTOMORPHIC FORMS ON GL(2) AND GL(3)

Although the results of this Section are included primarily because
of the role they play in the proof of Artin's conjecture, all are im-

protant in their own right.

2.1. Base Change for GL(2).

Suppose I is a global field, and E is intermediate between K and ga-
lois over F. If ¢ is a two-dimensional representation of Gal(K/F), res-
triction to Gal(K/E) gives rise to a representation Z. Thus Langlands’

reciprocity law suggests that the map

should index a "base change" map
wl{c) = (L)

between automorphic representations of GL(Z,AP) and GL(Z,AB).

To be more precise, suppose m = & L is a cuspidal representation of
GL(Z,AF). Let w denote an arbitrary place of E and suppose m' = @ W&
is a cuspidal representation of GL(?,AE). If v is such that T, is
unramified, then T, E ﬂv(ov) for some two-dimensional representation
g, of the Weil group WFV. In particular, L(s,cv) = L(s,ﬁv). If w is

a place of E dividing v, we write Z, for restriction of o, to the Weil

group of Ew' We say m' is a base change 1lift of = if

ot
LI ﬁw(Zw)

for almost every w.
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Since the elements of Gal(E/F) act on GL(2,E)\ GL(Z,AE) they also
act on automorphic representations of GL(Z,AE). If 7' is such that

()T = 7' for all T € Gal(E/F), we say that n' is Balois invariant.

THEOREM 2. (Langlands [14]). Suppose E/F Zs cyclic of prime degree.

Then
{a) every cuspidal representation of GL(Z,%F) has a base change
lift to GL(Z,AE);
(b) a cuspidal representation of GL(Z,%E)is the base change 1ift of
some T on GL(2,AF)if and only i1f it Zs Galois Znvaritant;
(¢) 2f ™ and ©' have the same base change lift to GL(2,ME)then there

exists a character w of XN (Mg)\ A? such that ' = 1T 8 w.

E/F
{Here NE/V denotes the norm map from E to F and 7 ® w denotes

the representation n(g) @ wl(det g).)

Langlands proves this theorem in [14] using the Selberg trace for-
mula. Special cases of it had been proved earlier by Doi and Naganuma

(I41), Jacquet ([91), Shintani ([19]), and Saito ([17]1).

Remark. Because E/F is assumed to be cyclic of prime degree, say q,
the relation bewteen the functionsL(s,m) and L(s,n') is particularly
simple to describe. In general, almost every component m, of 7 is

unramified. Thus T, corresponds to some semi-simple cojucagy class

-g,-1 eg. 1
- s s . . ;
and L(s,ﬂv) = (1~aV(NV) ) (1—BV(NV) ) . But since g is prime,
almost every v either splits completely in E or else remains prime.
If v splits, and w denotes a prime of E lying over v, then

L(s,w&) = L(s,m,). On the other hand, if v is inert, and w lies
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over v, then

¢

_ -1 q .ag =1
! q qs _ as
Lis,n ) = (1—av<Nv) ) (-8 (N D )

Example. Suppose E = Q(vVd) is a real quadratic field with discriminant

D and class number 1. Let f(z) = § anelenz

be a cusp form of weight k
on SL(2,Z) and assume

TS iy (1-a p S+ 1T?8) s (1m0 p”
P D P

P

bt 5, - -s,-1
L apn ) 1(1—Bpp SyTe.
n=l
Then by Theorem 2, and the above remark, f 1lifts to a Hilbert modular
form F over I whose L-series is described as follows. If p splits in

E, and v divides p, put a, equal to ap. On the other hand, if p 1is

inert, and v divides p, put a equal to aé—?pk_i. Then
v
B iy s k-1-25,-1
L{(s,F) = g(l av(Nv) + (NV) )
- -1-2g.°2 2 g~ 2 g.-
= n (1-a_p ° +pk B ZS) I {(1-a_p 20) 1(1-8 P %) s
p splits P p inert p P

This generalizes the set-up of [4].

2.2. Lifting Forms from GL(2) to GL(3).

Let A denote the three-dimensional representation of PGL(2,C) deter-

mined by the adjoint action of PGL(2,L) on the Lie algebra of SL(2,CL).
Denote the resulting three-dimensional representation
PGL(2,C)

GL{(2,T) »> GL(3,0)

of GL(2,C) by A2(02). We call this representation the adjoint square

of the standard two-dimensional representation py. It differs from
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the usual symmetric sgquare Symz(pz) by a power of the determinant. In

particular, Az(pz) is trivial on scalar matrices, whereas Symz(pz) is

not.

Suppose ¢ is any two-dimensional representation of the Galois (or
Weil) group of a local (or global) field. Then we let A2(o) denote

the composition of ¢ with Az(pz). This is the adjoint square of o.

Now suppose # = & n_ is an automorphic representation of GL(?,A?)
and T = @ I is an automorphic representation of GL(3,AF). Using the
notation of the local reciprocity correspondence, we say I is a
GL(3)-1ift of m if, for almost every v,

_ 2
n, = M,(A"(a )

whenever n_ = 7_{(0c_ ).
v v v

THEOREM 3. (Gelbart-Jacquet [7]).

(7) Every automorphic cuspidal representation T of GL(?,AF)
has a lift to GL(S,AF);

(172) the 1ift of w is cuspidal <f and only Zf m is cuspidal but
not monomial, Z.e., not of the form w(c) for some monomial

representation o of Gal{K/F).

THEOREM 4. ([71). The conjectured Generalization of Theorem 1 Zs true

with r equal to Az(pz). Moreover,
2
L(s,T,A (pQ)) = L(S,H,QS)
i8 entire.

1 1"

Example. Suppose F = Q. If 7 is generated by the (normalized) "new
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form

-g -1 -
-5 N s _ s
on SL{2,Z) then Tof = a,f for each p. If Ian’”=01 Gap™ Gep™
define an Euler product LQ(s,f) of degree 3 by the formula

2 -35/2 +1, ., 5-k+2 ey et 7S T
Lo, £) = > T rE )y (10 8717 p "pP v
p %%

Then
2 2
Ls,m,A"(p,)) = L™ (s+k-1,f).

Thus the Corollary above implies Lz(s,f) is entire (cf. Shimura [201).

What Theorem 3 implies is that
2
L{s,I) = L(s,n,A (pz))

for some cuspidal representation 1 of GL(3,A_).

Q

Remark. The lifting

from GL(2) to GL(3) is a special case of the type of correspondence predic-
ted by Langlands' "principle of functoriality of automorphic forms
with respect to the associate group”. Indeed the "associate group" of

GL{n) is just GL(n,&) x Gal(K/F). Thus the correspondence

taking automorphic representation of GL(2) to GL(3), corresponds natur-

ally to the homomorphism of associate groups determined by the map

A2(92> : GL(2,C) - GL(3,0).
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Cf. Remark (c) at the end of Section 1.2.; the correspondence m - Il is
"natural” in that it preserves L-functions, i.e.,

L(S,H,p3) = L(S,W,AQ(pz)).

Similarly, the base change lifting
o> o'

described in 2.1. corresponds to an appropriate homomorphism of associate
groups. More precisely, let E denote a Galois extension of F contained
in K. Let G' denote the algebraic group over [ obtained from GL(2) by

restriction of scalars from E to F. Then the associate group of G' is
( I GL(2,8)) x Gal(K/T)
Gal(K/E)\ Gal(K/F)
with Gal(X/F) acting on @I GL(2,C) via its action on coordinates. The
base change lifting

o> 7!

taking automorphic vepresentation of GL(Q,AP) to GL(Z,AE) corresponds
to the homomorphism of associate groups which maps GL(2,L) onto the

diagonal and operates as the identity on Gal(K/F).
For a more detailed discussion of Langlands' functoriality principle
see [11, [6], and [14]. In [1] the "associate group" is renamed the

"L-group”.

2.3. Automorphic Forms on GL{(n) x GL(m).

Suppose 2 € n €« m < 3. If T, and ﬂ; are unramified representations
of GL(n,FV) and GL(m,FV) respectively, let AV and A; denote the cor-

responding conjugacy classes in GL(n,C) and GL(m,C). A natural Euler
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factor attached to the pair (Wv,ﬂ;) is given by the formula

“

L(s,m, x n!) = [det(I-(A, ® A)(N )751 .

This is an Euler factor of degree nm.

Now suppose m = ® T is an automorphic cuspidal representation of
GL(n,Ap) and m = @ n; is one of GL(m,Ap). According to work still
in progress of Jacquet, Piateckii-Shapiro, and Shalika one can define

an infinite Euler product

L{g,m x w') = g L(s,nv X ﬂ;)

which extends over all the places of F.

THEOREM 5. The function L{s,m x n') , originally only in some right
half-plane, extends to a meromorphic function of € with functional equa-

tion

X
3
~

i

L(s,T (I e(s,m

x 1/ ))L{1-s,m x n'),
v \4

v

THEOREM 6. Suppose n = m = 3, and m and 7' are self-contragredient.

Then :
(i) L{s,m' % w) has a pole at s = 1 2f and only if 7w is equivalent
to w';
(i) for each place v, L(s,wv x ﬂ;) 18 non-gero at s = 1;

(ii7) for each place v, L(S,ﬁv x ﬂv) is pole-free in the closed half-

space Re(s) = 1.

Remarks.
(i) Theorem 6, as stated above, has not yet actually been proved; how-

ever, a weaker form of it, already sufficient for application to Artin's
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conjecture, will appear in a forthcoming note of Jacquet and Shalika.

(ii) The proof of Theorem 5 for n = m = 2 already appears in [10]; for

function fields, the general global theory is discussed in [12].

(iii) By combining Theorems3, 4 and 5 one can obtain parts of the Con-
jectured Generalization of Theorem 1 for the third and fourth symmetric
squares of Py. More precisely, if r = Sym3(p2) or Symu(pz), then
L{(s,m,r) should have a meromorphic continuation and functional equation.
The argument below, due to Deligne, was shown to me by Serre. It does

not prove that L(s,m,r) has only finitely many poles.

Assume 7 is not monomial. By Theorem 3 we can 1lift 7 to a cuspidal
representation T of GL(3) with the property that L(S,W,AQ(QQ)): L(s,0).
Thus it follows from Theorem 5 that the functions L(s,m x ) and
L(s,II x II) have analytic continuations and functional equations. But

L(s,m x II) = L(s,n,p2 o Symz(pz)), and

L(s,T x 1) = L(s,m,Syn’ (p,) x Syn’(p,)).

Moreover,

Symz(pz) = 0y Symg(p2) ® (92 ® AQDQ),

sym' (5,0 @ (Syn®(p,) 847 (p,)) @ (A%,

Sme(pz) @Sme(pz)

Now apply L(s,m,.) to both sides of the equations above and solve for
L(s,ﬂ,SymS(QQ)) and L(S,W,Symu(pz). From this we obtain the desired

analytic continuations and functional equations of these functions.

Concluding Remark. As already indicated, Theorem 6 will be used in the

proof of Artin's conjectue given in Section III.
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III. LANGLANDS' PROOF OF ARTIN'S CONJECTURE
FOR TETRAHEDRAL o

As always, F is an arbitrary number field and K is a finite Galois
extension of F. If ¢ is a two-dimensional representation of Gal(K/F),
m(o) denotes an automorphic representation of GL(Z,AF) with the proper-

ty that
L(s,n(c)) = L(s,0)

(at least in the sense that the local factors of these L-functions agree

almost everywhere).

The assertion that w(g) actually exists comprises the content of
Langlands' reciprocity conjecture. In particular, if ¢ is irreducible,
m{o) should be cuspidal. Thus Artin's conjecture is a consequence of
Langlands' conjecture. Since both are thecrems when F is a function

field, we consider only number fields in this paper.

The purpose of this Section is to describe Langlands' proof of his
reciprocity conjecture -and hence Artin's conjecture- for tetrahedral o.

The proof breaks up naturally into two parts. The first part produces

a natural candidate for w(g). This is the cuspidal representation
Langlands calls %ﬁeudo(c). The second part establishes that %meudo(G)

actually equals n{(g).

The construction of = (o) was first outlined in [14]. The
pseudo

primary tool used is Langlands' theory of base change (Theorem 2). The

proof that = {(¢) = w{(o) can be carried out in two different ways.

pseudo

The first uses the result of Deligne-Serre quoted earlier; thus it works
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only over §. The second works for arbitrary F but uses all the modular

results described in Section 2.

3.1. Construction of (o).

" pseudo

We assume that
o : Gal(K/F) » GL(2,L) —&» PGL(2,L)

is such that p o o(Gal(K/F)) is isomorphic to A, embedded in
PGL(2,C) = 80(3,C) in the geometric way. If we let E denote the inter-

mediate field
FCECK

corresponding to the pull-back of (Z/2Z) x (Z/2Z) in Au then E is cubic

over T.

Let I denote the restriction of ¢ to Gal{(K/E). Since I must be mo-
nomial, we can apply to it the reciprocity law for Galois representa-
tions of E. The result is that w(I) exists as an automorphic cuspidal

representation of GL(2,AE).

On the other hand, I is invariant under conjugation by Gal(K/F).
Thus it follows that 7(I) is Galois invariant (in the sense of Section

2.1) and we can apply to it the theory of base change for GL(2).

According to Theorem 2, w(I) is also the 1lift of 7 ® w whenever w

* X X 3 . =
is a character of FXNE/F(AE)\;AF. Since only one of these "twists” is

what we want to call ﬂpseudo(g)’ we proceed as follows. Recall that

X X
class field theory implies that F*N (AE)‘\AF is igomorphic to Gal(E/F)

E/F
and hence cyclic of order 3.
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The central character of 7 is defined by the formula

a 0 %
ks = wﬂ(a)I (a € AF).

2 . .
Thus the central character of 7 8 w is wﬂm‘. In particular, if 7 ® w

is to equal n(g) (or w (o)), we must have

pseudo
w_w = det o.
ki

Thus we choose w so that wwwz = det o. Having done so, we write
ﬂpsaﬁo(c) for m & w. (Since w is defined up to a character of order 3,

and its square is known, it is uniquely determined.)

Our task now is to prove that

(o) = (o).

Trpseudo

What we know a priori is that ﬁps O(o) is at least the best possible

eud
candidate for w(o). In other words, if w(o) exists at all, it must be
ﬂmwudo(G)' Indeed, suppose ﬂpseu&)(c) = @ m,» and W, = m, (o) for al-
most every v. If we regard 0; and o, as two-dimensional representa-

tions of WF , it follows from the definition of base change 1ift that
v

1
o and agree on
o, agree on WE

v What remains to be shown is that a, and 0;

W
agree on wF . This 1s what is done in Sections 3.2. and 3.3.

Y

Remark. We can also use the theory of base change to construct
ﬂbsaﬁo(c) when ¢ is octahedral. In this case poo(Gal(¥X/F)) is isomor-
phic to Su. Thus the pull-back of the normal subgroup Ay determines a

quadratic extension L of F and the restriction of ¢ to Gal(K/L) is te-

trahedral. This means we can construct 7 (o) as follows.

pseudo

Let I denote the restriction of o to Gal(K/L). In Sections 3.2. and
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3.3. we shall prove that Langlands' reciprocity law is true for tetra-
hedral Galois representations. Thus we know that 7m(I) exists as an
automorphic cuspidal representation of GL(Z,AL). But w(I) is again
seen to Galois invariant. Thus by base change we know that n(I) is
the 1ift of some cuspidal representation 7 of GL(2,Ap).

The next step is to define = (0) as an appropriate "twist" of w.

pseudo

In this context, however,m ® w lifts to m(I) whenever w is a character

X
of FXN (Af)\ AF' But L is quadratic. Thus, there is no natural way

L/F
to distinguish between these twists. Indeed the square of any charac-

ter w of FXNT/F(AE)\ A; ig trivial. TI.e., the twist of m by a nontriv-
ial w has the same central character as 7. Thus we can no longer uni-

quely specify w (¢0) by requiring that w“pseumj(o) = det o.

pseudo

Concluding remark. When ¢ is icosahedral, the image of o(Gal(K/F)) in

PGL(2,C) 1is not solvable. Thus the theory of base change can not be
used to construct ﬂpseudo (o) or nlo).

3.2. Proof that = (o) = 7(o) (F = Q).

pseudo

Fix ¢ : Gal(K/T) - GL{(2,C) and assume that

(1) o is irreducible;

(iiy F = @3

(1iii) o takes complex conjugation to [é _g]. Let f denote the clas-
sical cusp form which corresponds (canonically) to the hypothetical re-
presentation m{c}. Then f is a normalized primitive cusp form of

weight 1 and odd character. Thus we call ¢ classical.

In [3] Deligne and Serre prove that every such cusp form has associa-
ted to it some ¢ of this type. More precisely, the Mellin transform of

any such cusp form is the Artin L-seriesof some ¢ satisfying (1)-(iid)
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above. Thus we have a map
f - U

which inverts the hypothetical reciprocity map

The purpose of this paragraph is to prove that this last map exists
whenever ¢ is tetrahedral. In terms of the theory of base change, this

amounts to proving that

(o) = w(o)

i pseudo

for classical tetrahedral o. Using the result of Deligne-Serre, how-

ever, this result is simple to establish.

Note that our assumptonson ¢ imply that the field E used to define

. U . .
7(Z) is totally real. Now let p_ denote the two-dimensional represen-

0
-1

the sense of the local Galois classification of representations of

tation of Gal(&/R) which takes complex conjugation to [é 1. In

GL(2,R), 0

m(L ) = mlpy)
for each infinite place w of E; for details, see [6] and [14]. But
ﬂpsaﬂo(O) = ® ﬂp 1lifts to w(Z). Thus the definition of base change

R . . 0
lifting implies that m, must also be of the form m(p_J). Hence

“psaﬁo(c) corresponds to a classical cusp form of weight 1 to which

the theorem of Deligne-Serre applies.

. . - - 1
Applying Deligne-Serre, we conclude that ﬂpsmﬂo(a) = m(o') for

some "classical" Galois representation ¢'. To conclude that ¢ = o'

we note that ¢ and ¢' have the same restriction to WE‘ Moreover,

x x
o' = 0 ® w with w some character of FXNE/F(AE)\‘AF' So since
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det o = det o', we must have w = 1. This proves 7w(o) = n(g') =7 (o).
pseudo

Remark. A similar argument proves Artin's conjecture for octahedral clas-

sical o provided the gquadratic field used to define 7 {g) is real;

pseudo

cf. the remark towards the end of 3.1. For more details, see [14].

eudo

3.3. Proof that s (g) = w(o) : o arbitrary tetrahedral.
In this paragraph we describe a more natural proof of the fact that

npseudo(c) = w(g)

for tetrahedral o. This proof is also due to Langlands and was sketched
by him in [15]. It is "natural" in the sense that it makes no appeal

to the result of Deligne and Serre, hence no appeal to the algebraic
geometry underlying their result. Instead it draws only on basic (al-
beit non-trivial) results in the theory of modular forms. It also works

for arbitrary I and arbitrary tetrahedral o.

_ . _ . e
Recall that ﬂpsamo(c) = ® 7, with T, Wv(ov) for every unramified

m,- What we want to prove is that
(3.1.) ol =0

t .
for almost every v. Here o, is a two-dimensional representation of Wg
v
whose restriction to WBW agrees with the restriction of o to WEW. We

denote these restrictions by L, and Z; respectively.

If v splits in E, then (8.1) is immediate. Thus we assume henceforth that

Ew is unramified and cubic over Fv‘ If Frv denotes a Frobenius element

of Gal(Ew/Fv) we suppose
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and o 0
, v
OV(FPV) = .

is conjugate to [c O}

3 3 3
But the fact that I = Z; implies that o (Fr ) = o;(Prv) (since (Fr,)

belongs to WEW). Thus

is conjugate to [ci a

In particular, for some pair of cube roots of 1, say & and &',

Gy T gav
and
- 1
d, = g'b.
We claim now that £' = €2. Indeed 7 (o) is chosen so that
pseudo
= det i g i i 'z
w“pseudo(G) 6. Since this implies det o, det 0,5 We must have
EE' = 1, i.e., &' = 62. To prove (3.1) it suffices to prove
(3.23 £ = 1.

To continue, consider the three-dimensional adjoint-square represent

ation
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A%(p,) : GL(2,0) = GL(3,0),
described in Section 2.2. If we assume that
(3.3) Az(p Yoo! = AQ( Yoo

: 2 v Py v

then cv(Frv) and cé(FrV) must differ by some scalar. Indeed the kernel
of the homomorphism Az(pz) is precisely the group of scalar matrices

{[é 2]}. Thus for some X # 0,

is conjugate to

To prove (3.1) it suffices to prove X = 1.

Since the last two matrices above are conjugate, either

Aav = fa
(1) 2“ or
(Ab, = E7b,
2
rxa, = E£E'b
(ii) v v
Ab. = gav

But case (i) implies A = £ = £°, i.e. X = 1 (since & is a cube root of 1).

Thus OV(FPV) is conjugate to Gé(Frv) and there is nothing left to prove.

In case (ii), all we can deduce immediately is that
a 0 1 0
GV(FPV) = v
0 a, 0 AE

with A% = 1. But if X = -1, this means Az(pz) oo, takes Fr  to
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4 0 0
0 A-lg=1l o0
0 0 1

with £A of order 6. This is a contradiction since AL\L has no element of

order 6. Therefore A = 1 and we are done.

We have now shown that Artin's conjecture for tetrahedral ¢ is true
once we prove (3.3) for almost all v. To prove (3.3) we introduce the

following cuspidal representations of GL(S,AF) (not GL(Z,AF)).

Let m denote the cuspidal representation of GL(3,AF) associated to

the three-dimensional Galois representation AQ(DQ) 00. As observed by

Serre, AQ(QZ) 0 0is actually monomial. Thug by the known case of Lang-
lands' reciprocity conjecture, "y exists as a cuspidal representation.
Now consider 7 (0) as a cupsidal representation of GL(2,A_).

pseudo F
. ~ . e ' - -
Recall that if ﬂpsaﬁo(o> = m(¢'), then ¢ must be 0. In particular,
m p&mdo(o) cannot be monomial in the sense of Section 1.3. Therefore
TTpseudo(O) has a cuspidal 1ift to GL(E,AF) by Theorem 3. Call this

lift Wt. To prove (3.3) for almost every v it suffices to prove
(3.4) T, =T

Indeed, the left hand side of (3.4) corresponds almost everywhere to
2 . .

A (92) oga, and the right hand side corresponds almost everywhere to
2 '

A (pz) 0o .

To prove (3.4}, we argue analytically. Let L{s,w, X %1) and

1
L(s,n? x %1) denote the L-functions on GL(3) x GL(3) described in Sectio

2.3. By definition,
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L(s,rr1 x %1) = g '(s,(nl)v x (M) )
and
Lis,m) x #,) = T L(s,(mp) x (F) ).

Moreover, for almost every v,

Lis, (m ) x (%1)V)

1]

L(s,a% (o) @ A% (¥ ))
and

L(s,<w§>v x (5.0 )

Dy L(S,A2<c;> ® a%(5 7).

H

Keeping in mind that AQ(o) is monomial it is easy to check that
v _ * N4
(3.5) L(s,(wl)V x (ﬂl)v) = L(s,(wl)v X (ﬂl)v)

for almost every v. Indeed if Az(o) is induced from the grdssencharakter

8 of the extension E, then

2,v |
A (Gv) = & Ind(wF ,WE ,Gw)
wlv v w
From this it follows that
2 2,v | -1
A (Ov) ® A (ov)-® Ind(WF SWE 5L ® 6, ).
w|v vooTw
On the other hand,
2 2,v B -1
A (Gv) ® A (GV) = & Ind(WF ’WE L @ ew )

WiV v W

So since Zw = I' almost everywhere,

1
Y

Ls,(m), ® (F,) )

L(s,A%(o,) ® A%(3,))

i

L(s,a% (o)) @ A3 )

1]

Ls, (), x (F))

for almost all v.
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Using (3.5), it remains now to show that NI = om - So suppose (3.5)

holds for all v outside the finite set S. Then

* v
L(s,(m, ) x (w,)_)
L(S,ﬂ* x %1) = (I 1 1V )L(s,Tr1 X ﬂi).
vES L(s,(Wl)v x (%1)v)

But by Theorem 6 of Section 2.3, L(s,ﬂ1 X %1) has a pole at s = 1. More-

over, the expression in parentheses is non-zero at s = 1. Therefore,
L(s,ﬂi x %1) has a pole at s = 1, and this implies (by the same Theorem)
that ﬂ: = - (Actually, since the complete story on Theorem 6 has not

yet been worked out, a slight modification of the above argument is

needed; we suppress this subtlety for the sake of exposition.)

This completes our discussion of Artin's conjecture for tetrahedral o.
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RELATIONS BETWEEN AUTOMORPHIC FORMS

PRODUCED BY THETA-FUNCTIONS

by
Stephen S. Kudla

1. GENERAL PHILOSOPHY

I want to begin with a few philosophical remarks on how theta-
functions attached to indefinite quadratic forms can be expected to
produce relations between modular forms and automorphic forms of one
and several variables.

First it should be pointed out that this 'philosophy' is, in a
certain sense, not new. It is certainly contained in Siegel's papers
[7] on indefinite quadratic forms and function theory (1951/52). More
recently, Shintani [10] and Niwa [5] have revived these ideas and have
made a beautiful application to the theory of automorphic forms of %—
integral weight.

Now suppose

0 = an n-dimensional vector space over 0
and
Q: 910 X QIX] = 'xQX
is an indefinite quadratic form of signature (p,g). Take
L c @n a Z-lattice such that QIL] ¢ 2Z.

If we want to construct a theta-funetion attached to Q and L, we
will also need a majorant R of Q3 that is: R ¢ Mn(R), n =p+ g
such that (1) R =R, R >0, and (2) RQ 'R = Q. For example, if

Q 1is in diagonal form for some basis of R

International Summer School on Modular Functions
BONN 1976
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l\ 1
1
Q = then R = is a majorant.
-1
\\11 )
If we let
$0(Q) = {g ¢ SL (R) such that ts0g = Qlgl = Q},

and if R 1is one majorant, then every majorant has the form R[g] =

thg for some g € 30(Q). Let ¥ = the space of all majorants of Q.

Then, by the preceding comment, X is the symmetric space attached to

80{(Q), since S0(Q) N SO(R) 1is a maximal compact subgroup of S0(Q).
We can now make a theta-function:

q/? 7 eiﬂ(uQ+ivR)[£]
L€L

86(z,R) = wv

which we view as a function of two variables, (z,R) € $x ¥ where
Z = u+iv €§ = upper half-plane.

For our purposes, the important fact about o ig that it has a
transformation law, like that of an automorphic form, in each variable.
More precisely:

P-q

2

(1) 8{yz,R)Y = (cz+d} 6(z,R)

a b
Y vy = < ) € Tl(N) for suitable N, e.g., N = 2detQ will do.

c d
If we let FL = {U ¢ 80(Q) such that UL = L} = unit group of L,
then
(2) 8(z,R[U]) = 6(z,R).
Remarks:

a) (2) is obvious from the definition of 8, while (1) follows from

the usual Poisson-summation argument.

b) Notice that n = p+q = p-g mod 2 so that, if n is even, 8
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has integral "weight"; and if n is odd, & has half-integral

"weight. "

q/2

¢) 6 is not holomorphic in z, and up to the v factor it is

Siegel's 1851 o

Now that we have 6, we can state the basic idea: If you have
¢{z) on § or VY(R) on X which transform in the same way as 8

in 2z or R, then you can make the integrals:

b-g
9 (R) = J 9(z)6(z,R)v 2 du dv
¢ \-5 V2
Fl(N)
and
o¥(z) = f ¥(R)8(z,R) dR.
r\X

L
And the functions @@(R) and @W(Z) will again have a nice transfor-
mation law with respect to FL or Fl(N) respectively . If everything

goes well, this procedure will actually carry automorphic forms to

automorphic forms:

automorphic forms on automorphic forms on

$ for T < SLZ(Z) X for PL.

§2. SOME PARTICULAR CASES

In order to get something more in keeping with the general themes
of this conference, however, we want to interpret "automorphic forms
on X" as something more modular. To do this, we make use of some
"accidental” isomorphisms which occur for orthogonal groups of low

dimension. In particular we have:

(1) S0(2,1) ~ SLz(R) so X =9 and I SLQ(Z)
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for a certain choice of Q.

(2) 80(2,2) ~ SLQ(R)X SLQUR) 50 X =$Hx$ and FL c SLQ(OK)

where k = real quadratic field, Ok = integers of %k, again for a
certain choice of Q. Using these, and recalling the earlier remark
about the "weight" of 6, we see that there ought to be correspon-

dences:

modular forms of %u-integral modular forms (of integral
—y.

1
weight on & welght) on $
modular forms of integral Hilbeft modular forms
(2)
weilght on $ —_ on $ xH.

The first of these relations has been worked out by Shintani
(SO(2,1)——>SL2) and Niwa (SLZ——>SO(2,1)) in their Nagoya Journal
papers [10], [5]. The SLZ——*SO(Q,l) relation gives an alternative
proof of Shimura's result [9], on forms of %«-integral weight. As a
corollary, Niwa is able to settle Simura's conjecture about the pre-
cise level of the form of even integral weight. The relation
SLZ—->SO(2,2) has been investigated by Niwa and Asai and by myself
[3] independently. 1In this case, the construction with the theta-

function gives an alternate proof of the results of Doi-Naganuma [217,

Cul.

§3. THE S0(2,2) CASE
Let k = Q(WVA), & > 0, the discriminant, and let o = the

Galois automorphism of k/¢. Let



281 Ku-5

and define Q: V—@ by

- _ o
QX3 = -2 det X = -Q(Xlxl-anxu).

Then @ has signature (2,2). Let

p: SLz(k)-—» S0(Q)

be the representation given by p(g)X = gng‘l. Now, over IR, we

get a representation:
o: SLzﬁR}X SLZUR)-——* SO(Q%R ~ 80(2,2)
and a corresponding isomorphism:

$ x8 X = space of majorants of Q

sa ( z,) R
y 212257 7 212,

Now for the lattice, take:

n
L = X = s %, €0 3o%y €z

1 Kk X

0° X = character of (Z/NZ)X, and v € Z>O such that

X(-1) = (-1)Y, Finally take z = utiv ¢® and (z,,z,.) € $x$ with
1°72

Choose N ¢ Z
>

= + 3 = ) : i - 3 :
24 uy *ivy and z, u2-+lv2, and define the theta-function
9(2,21322)
in(uQ+ivRZ 2 yIX3
_ -v/2 o v 1272
= v(vlvz) ¥ X(xg) =Xz 2,+x 2 X 2,t%, ) e

XeL

Obvicusly this is like Siegel's theta function except that there is
now a character and a 'spherical function' thrown in. The relevant

trans formation law is:

8(vz,2,,2,) = X(d)(%)(cz+d)ve(z,zl,zz)
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a b
Vv = (c d) € FO(N') with N' = l.c.m. of N and A.

Now take ¢ ¢ SV(TO(N’), X+ ( %)) and let

viz.,z,) = 0(z)6(z,2-,2 772 du dv.
1°72 F 1°72
1
TD(N )
where SV("') is the space of cusp forms of Neben type and weight
and F ' is a fundamental domain for T, (N') in 8. Let
FO(N ) 0

~ a B ~
rO(N) = {g = (Y 5) € SLZ(Ok) gsuch that v ¢ NOk} and put X(§) =

x(68°) for & ¢ 0y -

THEOREM 1. If v = 7, w(zl,z?) is holomorphic on 9 x$; and
Vv(gzy,8%2,) = Y(a)<Yzl+a>V<Y022+ao)vw<zl,zz>

for all g ¢ ?OcN). In faet ¥ ¢ sv<?O<N>,%>.

Suppose now that N = 1, X = 1, and A = prime = 1(#) with

h{a} = class number of k = 1. Then N' = A. Let
plz) = z;zl ane2ﬂlnz be the Fourier expansion of ¢, and let
Lis,q) = E::l ann—s be the corresponding Dirichlet series. Set
_ v/ 2 -y
@l(z) = p{-1/a2)a (Az) and let
~ —_— 2
wl(zl,ZQ) = IF ¢l(z)e(z,zl,22)v du dv
IgCa)

be the corresponding Hilbert modular form. Finally put w(zl,ZQ)

Vs

-V . .
(2122) wl(—l/zl,—l/zz). Then ¢ ¢ SV(SL2(Ok))’ and it has a Fourier

expansion:
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. 2n g -2n
@ 2nilEe, z.+E ¢ Z )
¥z ,2,) = ) cg) § e 0"z re T2
zept ) nE-=
<€>>0m0dUk

where D—l is the inverse different of k, and e is a generator

0
for the group Uk of units of k. Let

D(s,¥y) = ) c(g)zg?)”®

rep™t
£>>OmodUi

be the corresponding Dirichlet series.

THEOREM 2. With the above assumptions on N, X ete., and if ¢ is

an eigenfunction of all the Hecke operators T(n) with a, = 1, then:
2g=-v+1
Dis,¥) = €& ° L(s,0)L(s,0;).

This shows that the mapping ¢ — V¥ produced by the theta-function is
essentially the same as the Doi-Naganuma mapping on forms of Neben-type

described in [4].

Remarks:
a) The restriction v = 7 is the result of some bad estimates. Pre-

sumably you can do better.

b) The restrictions on N, X and h(k) in Theorem 2 can certainly be

dropped.

e) It is possible, by taking a different Q, to produce a mapping
from SV(FO(*),*)——»SV(F,*) where T ¢ SLQ(R)><SL2(P) is the unit
group of a division quaternion algebra B over k. More precisely,
let B be an indefinite quaternion algebra over § and put B =
B0 ® k. Let ¢ be the main involution on B, and let o act on

L

B wvia 1®o0. Then take V = {X ¢ B such that X~ = -X"} and
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Q: V—0, Q[X] = -2v(X) where v is the reduced norm from B

to k.

d) Let o, € SV(FO(N'), X(%—)) be the n-th Poincaré series., Then
it is not difficult to show that the corresponding Hilbert modular
form is the function mn(zl,ZZ) which was introduced by Zagier

[11]. Therefore, Zagier's function Q(t,2 ,22) is essentially

1
the 'holomorphic part' of e(r,zl,zz).

§4. SOME OTHER POSSIBILITIES

There are several other "accidental" isomorphisms which allow the
correspondence described in Section 1 to be interpreted in a more
classical way.

First, S0(3,1), the Lorentz group, is essentially the same as
SLQ(Q). Therefore there is a correspondence between modular forms of
integral weight on $ and (non-holomorphic!) automorphic forms on
H = hyperbolic 3-space with respect to subgroups of SLZ(OK) where
K=0(V=2). In fact V and Q may be taken precisely as in Section
3 with K replacing k. This case has been considered by Asai [1].

Another posgibility 1s the relation between S0(3,2) and
Sp(2,R) which is described, for example, in part X of Siegel's
Symplectic Geometry [81. 1In this case we may identify X and

$, = {Z € M () such that %2 = 2 and Im(Z) > 0}, the Siegel space

"
of genus 2. Applying the procedure of Section 1 we obtain the map-

ping:
automorphic forms of Siegel modular forms
%-integral weight —_— of genus-2
on $ on ‘52

It should be very interesting to give a description of this mapping

in terms of Dirichlet series.
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If Q has signature (p,2) for any p, X 1s of Hermitian type,
so that it is possible to consider holomorphic automorphic forms on X.
The relation between crdinary modular forms and such forms on X has
been investigated by Oda and by Rallis & Schiffmann [6] from a slightly
different point of view.

Finally it should be noted that the above type of relation be-
tween automorphic forms can be formulated in the language of group
representations via the Weil representation. The problem in this more
general context has been considered by R. Howe, and I am indebted to

him for describing his program to me several years ago.
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THE RING OF HILBERT MODULAR FORMS FOR REAL QUADRATIC FIELDS
OF SMALL DISCRIMINANT

F. Hirzebruch

In this lecture we shall show how the resolution of the singulari-
ties at the cusps of the Hilbert modular surfaces [7] can be used for
a detailed study of these surfaces which makes it possible in some

cases to determine the structure of the ring of Hilbert modular forms.

1. CUSP SINGULARITIES AND INVOLUTIONS.

Let K be a real gquadratic field, M € X a module (free Z-module of
rank 2) and Ug the group of the totally positive units e of K with
eM =M. The group U; is infinite cyclic. Let V C U; be a subgroup of

finite index. The semi-direct product

G(M,V) = {(g §)|e € v,y € M}

acts freely on H? by
(21,22) (g (ez1 tu,e'z, '),

where x P x' is the non-trivial automorphism of K. We add a point to

H2/G(M,V) and topologize HZ/G(M,V) U {=} by taking
2
{(zy,2,) € H 1y1y2 > CH/Q(M,V) U {=}

(for C > 0) as neighborhoods of =. (Notation : 2y =% +j.yj with
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X555 5 € R and V5 > 0). Then H2/G(M,V) U {=} is a normal complex space
with * as the only singular point. This is the "cusp singularity” de-
finédvby M,V. The local ring at « is denoted by 0(M,V). It is the ring
of all Fourier series f convergent in some neighborhood of = of the

form

Qﬂi(le+A'22)
(1 f = a, + a.e

= ©
a5 T ag, for e €V

where M* is the dual module of M, i.e.

M*¥ = () ex | Tr(Ap) € % for all u €M}.

The singular point « can be resolved [7]. Under the process of minimal
desingularisation it is blown up into a cycle of r non-singular rational
curves (r > 2) or into one rational curve with a double point (r = 1).

Such a cycle is indicated by a diagram

where -bo, -b

have bi > 2. This cycle of numbers is denoted by ((bO’bl""’b

q»--- ave the selfintersection-numbers (for r > 2). We
r«l))'
It is determined by the denominators of a periodic continued fraction
associated to M, see [71.

The non-singular surface obtained from H2/G(M,V) U {«} by resolving the

singular point will be called X{M,V). Of course, it is not compact.

For the intersection point of two consecutive curves of the cycle we
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have a natural coordinate system (u,v) centered at that point [7]. Any
f € 0(M,V) can be written as a power series in u,v (this is analogous

to the g-expansion in one variable.)

If M = M', then the cusp is called symmetric. The involution

T @ (21,22) > (22321) operates on HQ/G(M,V) U {=} with t(=) = . The
fixed point set of 1 in HQ/G(M,V) is a non-singular curve C consisting
of 2,3 or 4% components. Therefore, the quotient of HQ/G(M,V} U {e} by
T has no singular point except possibly *.» the image of ». The involu~
tion T acts on 0(M,V), and 0(M,V)" (consisting of all f din (1) with

ay = ayy for A € M) is the local ring at < The involution T can be
lifted to X(M,V). The curve C extends to a non-singular curve in
X{M,V), also denoted by C. If the number of curves in the cycle is
even, then T maps none or two of the curves in the cycle, say S and T,
to themselves and interchanges the others. If the number of curves in
the cycle is odd, then t maps one curve S in the cycle to itself and
interchanges the others. The curve ( intersects each curve S and T
transversally in two points or in one point depending on whether the
selfintersection number of S or T respectively is even or odd. The
fixed point set of 1 in X(M,V) consists of C and an isolated fixed
point on each of the curves S and T which have odd selfintersection-
number. Blowing up the isolated fixed points of 1 gives a surface
X(M,V) on which T operates having no isolated fixed points. The excep-
tional curves on i(M,V) obtained by this blowing up belong to the fixed
point set of 1. The surface %(M,V)/T is non-singular. On it we have

a chain of rational curves mapping to «. - This is a resolution of =
It need not be minimal. In fact, . could be a regular point. In any
case, the existence of this resolution by a chain of rational curves
proves that = is a quotient singularity [6], [1]. The above investi-
gation of X(M,V) for M = M' is due to Karras [12] (Lemma 3.3). The

fact that = 1s a quotient singularity was proved earlier by H. Cohn



291 Hi-b

and E. Freitag (see the literature quoted in [12]). @Gundlach [5] has
given necessary and sufficient conditions that . is regular. Such

symmetric cusps are called guasi regular.

THEOREM (Karras). A cusp given by (M,V) with M = M' is quasi regular if

and only if its cycle ((bo,b ""br—l)} is equal to cne of the follo-

1°?

wing cycles

i) ((3,2,...520) with m > 0
| S e — -
m
i1)  ((4,2,...,2)) with m > 0
\~_'V"‘~’"“‘I =
m
1ii) ((2,...,2,3 42,...,2,3)) with m>n
| g L VU -
D m

and if in iii) the two curves of selfintersection number -3 are inter-

changed under 1t (which is automatic for m > n).

Consider the following curves in C2 (coordinates X,Y)

D X+ x? +y™ey = o with m

>0
i) ZayH 2 +y™3) 0 withm > 0
ii1) O eyH 2 Y™ s 0 withm >0 > 0
Let F(X,Y) = 0 be one of these curves. The double cover of @2 branced

along F(X,Y) = 0 has the point above (0,0) € ¢2 ag isolated singular

point whose minimal resolution is a cycle of rational curves with self-
intersection numbers as given in the preceding theorem of Karras. This
can be checked directly. By a theorem of Laufer [15] (see also [13]) a
singularity whose resolution is a cycle of rational curves is determined
up to biholomorphic equivalence by its cycle of selfintersectiocn numbers.
Therefore, the structure of the local rings 0(M,V) of quasi regular

cusps 1is now known ([12], Satz 3), namely
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(2) 0M, V) = C[C,Y,21/(2% = F(X,¥))

where F(X,Y) is the polynomial given in i), 1i), iii) above and where T
corresponds to the natural involution of the double cover. See also

H. Cohn as quoted in [12].
In the following examples a), b), c¢) of quasi regular cusps we indicate

the fixed point set C of 1 on X(M,V) by heavily drawn lines. Isolated

fixed points of 1 on X(M,V) do not occur in examples a), b), c).

a}

¢)
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In example a) we have K = Q(V8) with M = V5.0 and [U& : VvVl = 2. (For
a field K we dencte its ring of integers by 0.) After dividing by 7
(which interchanges the two (-3)-curves) we have in X(M,V)/1 the follo-

wing situation

a) : ./ : g

The non-singular rational (-1)-curve is the image of the two (-3)-curves.
The image curve of C will also be denoted by C. It simply touches

the (-1)-curve in two points. If we blow down the {(-1)-curve we get
(HQ/G(M,V))/T U {mT} which shows that «_ is regular. After blowing

down the (-1)-curve, the two components of C become singular. Each

has a cusp (in the sense of curve singularities). The two cusps have
separate tangents which checks with iii) (m=n=0). The structure of
0(M,V) is given by (2). Therefore, there must exist three Fourier se-
ries £, g, h as in (1) generating 0(M,V) and satisfying

2

n? = (g2 (£legd).

In example b) we have K = Q(V2) with M = 0 and V = ut

M
CI
C
1 CQ N
oo
~h
b) —
2
P ]
/)
C3 Ch
%

in X{M,V) in X(M,V) /7t
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We have numbered the four branches of C.

In X(M,V)/1 we blow down the (-1)-curve, the (-2)-curve becomes a (-1)=-

curve and can be blown down also. The image of the two curves is o

which ig therefore a regular point. In (HZ/G(M,V))/T U {=} the four

branches of C in a neighborhood of =0 behave ag follows
C3 Ch

b)

C3, C, touch simply, all other intersections are transversal. This

checks with 1i) (m = 1).

In example c) we have K = Q(v7) with M = v/7.0 and V = U

+
M*

e) -2 l l

in X{(M,V) in X{M,V)/t
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In X(M,V)/1 the (~2)-curve touches the component C, of C simply.

-1 -2 -2

Blowing down gives the regular point . where

Ci, CQ, C3 behave locally like
ey +¥% = 0
. 3 2 . . o3
with X© + Y = 0 corresponding to C3, and X £ 1.Y" = 0 to C1 and C2
respectively (compare iii), n = 0, m = 3).

The following symmetric cusp is not quasi regular.

d) e = isolated fixed point of T

We have K = Q(vVI3) with M = 0 and [Uj : V] = 3. Before dividing by T
we blow up the isolated fixed point. Then we divide by T and obtain a

configuration
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which after blowing down the (-1)-curve shows that = is a quotien

singularity admitting the minimal resoclution

Thus it is the quotient singularity of type (363 11,1), see [6].
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§2. THE DIMENSION FORMULA FOR HILBERT CUSP FORMS.

Let K be a real quadratic field and 0 the ring of integers of K.
The Hilbert modular group SLy (/A * 1} operates effectively on B . Ac-
cording to Siegel the volume of HQ/SLZ(O) equals ZQK(-l). The volume
is normalized such that if T is a subgroup of SL,(0)/{ £ 1} of finite

index a which acts freely on H2, then

(3) vol(H2/T) = 20,(-1).a = e(H’ /)

where e(A) denotes the Euler number of the space A. (Though H%/r
is non-compact, the Euler number can be calculated by the volume, this
is a special case of a result of Harder, see [7] and the literature

quoted there.)

Let Sk(F} be the complex vector space of cusp forms of weight k for T

where T is a subgroup of SLZ(O)/{i 1} of finite index.
The weight k of a form f is defined by the transformation law

1 ]
azl+b a z2+b

- k 1k
f(Czl+d 5 c’22+d') = (czl+d) (e'zy +d") f(zl,zz)

This is well-defined also for k odd, because the expression

a b

(c21+d)k(c'zz+d')k does not change if (7 d) is replaced by ( 2 _b)

-¢ =-d

THEOREM. If T has index a in SLQ(O)/{t 1} and acts freely on H2, then

for x 2 3

) dim 8,.(T) = ﬁ(—k—Qﬁ

CK(-l).a +

= KOeD ol o+ oy,

where ¥ = 1 + dim S,(T).
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The formula (4) is found in the literature only for k even. But it
seems to be known also for odd k (see Shimizu [17], p. 83, footnote 11).
On my request, H. Saito has checked that (4) can be proved for odd k

in the same way as Shimizu does it.

If T acts freely, then H2/F is a non-singular complex surface which can

be compactified by finitely many points, the cusps, to give a compact

surface HZ/F. The isotropy groups of the cusps are of the form G(M,V).

The cusps are singular points of H2/F and can be resolved in the mini-
mal canonical way as recalled in §1. The resulting surface is a non-
singular algebraic surface Y(I')., It is a regular surface, i.e. its
first Betti number vanishes, but it is not necessarily simply-connected.
The cusp forms of weight 2 can be extended to holomorphic differential
forms on Y(I') (sections of the canonical bundle of Y(I')). Therefore,
dim 82(F) is the geometric genus Pg of ¥(T') and x the arithmetic genus.
The fact that the constant term in the Shimizu polynomial (4) is the

arithmetic genus of Y(T) was discovered by Freitag (compare [71, 3.6.).

§3. THE FIELD K = Q(/5).

In the field K = Q(v5) the ring 0 of integers consists of all linear
combinations a + p(1+V5)/2 with a,b € Z. To the prime ideal generated
in 0 by v§ there belongs a principal congruence subgroup of SLZMU , which

we denote by T.

T ={($ S) € SL,(0)|a=6=1(mod V5),8B =y =0(mod V5)}.

Because {51-2} € I', the group I can be regarded as a subgroup of the

Hilbert modular group G = SL,(0)/{*1} = PSL,(0). The group I acts
freely on H2. The volume of HZ/G is equal to 2¢K(~1) = 1/15. The

factor group G/T is isomorphic to PSLQGTS) because 0/v5.0 = Fc. In
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its turn, PSLQ(FS) is isomorphic to the alternating group Ag. Namely,
Ag is the group of automorphisms of the icosahedron and acts on the

six axes of the icosahedron through its vertices in the same way as
PSLZ(ES) acts on the six points of the projective line Pl(fs). We have

L

15 = 4

2 - -
(5) e(H"/T) = |A5|.2cK(—1) = 50,

The space Hz/F is compactified by adding six cusps. Since the class
number of 0(v5) is 1, the action of G on P,(K) = KU {«} has only one
orbit, while the action of I on Pl(K) has six. This follows, because
the isotropy group of G and T at = satisfy |6_/T_| = 10. In fact,
G,/T, is the dihedral group of order 10, this will be used later. Two
points a/8 and v/8 in Pl(K) with a,8,v,8 € 0 and (a,8) = (y,8) = 1
belong to the same orbit precisely when o = y (mod V5) and g = §

(mod v5), that is when a/B and y/§ represent the same point of Pl(FS).

The surface HZ/F, compactified by six points, is denoted by H’/T. This
six

is an algebraic surface witthingular points corresponding to the six

cusps. Since the action of G on H? induces an action of A, = G/T on

5
2

H"/T which acts transitively on the cusps, these six singular points

have the same structure, and it is sufficient to investigate the struc-
ture of the singularity at = = 1/0 . The isotropy group of T at this

point has the form

(6) T, = {(S Ef)|e unit in 0,e =1(mod V%) ,u=0(mod v5)}.

The fundamental unit of 0 is €y = (1+V/5)/2. The condition € = 1

(mod V5) means that e must be a power of —e%. The group I',, can also

be written as G(M,V) where M = v5.0 and V is generated by Eq

0 Thus

[U; : V1l = 2 and G(M,V) is as in example a) of §1.

On the surface Y = Y(I') that arises from E2/T by resolution of the six

singular points there are six pairwise disjoint configurations
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(7

As a 4-dimensional manifold, Y can be obtained as follows

HQ/F has asdeformation retract a compact manifold X whose boundary has
six components. Each boundary component is a torus bundle over a circle.
All boundary components are isomorphic. Every configuration (7) in Y
has a tubular neighborhocd having as boundary such a torus bundle. The
manifold Y arises by glueing to X the tubular neighborhoods of these
six configurations (7). Since the Euler number of each tubular neigh-

borhood is 2, it follows from (5) and the additivity of e that
(8) e(¥) = e(X) + 6.2 = e(HZ/T) +12 = 16

The action of A5 on HZ/F described above induces an action on Y. The
diagonal 2, = 2, of H2 yields a curve in HQ/T, which can be compacti-
fied to a curve C in Y. The subgroup of I' carrying the diagonal into
itself is the ordinary principal congruence subgroup ['(5) of SLZ(Z),
which can also be regarded as subgroup of SL,(Z)/{ + 1}, the quotient
group being A5 again.

Therefore, each element of A5 when acting on Y carries C to itself.
The curve H/T{(5) has normalized Euler volume ~%.60 = -10 and twelve
cusps. The compactified curve H/T{(5) has Euler number -10+12 = 2,
thus is a raticonal curve which maps onto C. For reasons of symmetry,
the curve C must pass through each of the six configurations (7)
exactly twice. We now describe how the curve cuts a resolution (7) by
reducing the question to the corresponding question for the diagonal

in HZ/G = (HQ/T)/AS. There is an exact sequence
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(9) 0 = O/NE.0 > G /T, »> UL/V > 1

The groups 0/V5.0 and U&/V are cyclic of order 5 and 2 respectively,
and G_/T_ is a semi-direct product, namely the dihedral group of order
10.

To understand the formation of the guotient of the configuration (7)
by this dihedral group, we check first that any non-trivial element g
of 0/V5.0 carries each of the two (-3)-curves to itself and has their
intersection points as isolated fixed points. By blowing up these two

points we come to the following configuration

-1 -1 (the verticals are fixed lines for g)

After factorizing by 0/v5.0 we obtain

+ . . . .
The group U,/V = Z/2Z acts on this quotient by "rotation”, carrying
each {(-1)-curve to the other one, each (-5)-curve to the other one.

Factorization leads to -5
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and blowing down the (-1)-curve gives a configuration consisting of a

rational curve with a double point. This is the resclution of the

cusp of HQ/G. The curve in the desingularized compactification of
HZ/G represented by Zy = 2, is usually called Fl (see [10]). It passes
transversally through the resolved cusp as follows

Fy

(10) (see [71, 84.)

As explained the configuration (7) is a ten-fold covering of (10). We
conclude that C passes through each configuration (7) in the two

"corners"”

and meets in these two points each (~3)-curve of the confi-
guration (7) transversally. This is illustrated in the following dia-

gram

VN TN TN N TN TN,
ANZAR N NP7 N A A '

(11) ¢C

The curve C 1s non-gingular, because of the described behaviour at the
cusps of §77; and because two curves on HZ equivalent to the diagonal
2, =z, under SLZ(O) cannot intersect in H2 (see [111, 3.4. or [101).
Therefore H/T(5) =~ C is bijective. The value of the first Chern class

cq of Y on C equals twice the Euler volume of H/T(5) (which is -10)

plus 24 (see [7], 4.3. (19)). Thus we have in Y
(12 e ¢l =4 and C.C =2 (by the adjunction formula).

Because Y is regular, this implies that Y is a rational surface

(compare [9], [71).
The curve Azz - A'zi = 0 in H2 with A = V@.eo is a skew-hermitian curve
which determines the curve F5 in H2/G (see [10]). The inverse image D

of Feg in H2/F consists of 15 connectedness components. Namely, as can
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be checked, the subgroup of AS = G/I' which carries the curve in H2/T
given by Azz - X’zl z 0 to itself is of order 4. The curve F; passes

through the resolved cusp of HQ/G as follows

Therefore D intersects each configuration (7) in the following way

A component of D intersects exactly two of the configurations (7) and
each in two points, one intersection point on each (-3)-curve. It is

easy to see that each component of D is a non-singular rational curve.

The involution (21’22) a4 (22,21) on H2 induces an involution T on HQ/F,
because A' € T if A € T, The involution T keeps every cusp of HQ/F
fixed, because it operates on Pl(K) by conjugation {(x ¥ x') and the
cusps can be represented by rational points. Each cusp is symmetric,

I' operates on each of the configurations (7) by interchanging the two
(-3)-curves. The curve ( is pointwise fixed under 1. 1In fact, C is
the complete fixed point set. This can be seen as follows. The invo-
lution (z1,z2)h4(z2,z1) induces an involution on HZ/G which has Fl U Fg as

fixed point set ([71, §4.).
Therefore, the fixed point set of 1 on H2/F is at most C U D. The inter

section behaviour of such a component Dj with a configuration (7) shows

that Dj is carried to itself under 1, but is not pointwise fixed.
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The quotient Y/t is a non~singular algebraic surface. We have
1 1
(13) e(Y/1) = §(e(Y) + e(C)) = 5(16 +2) = 9

By example a) in §1, the surface Y/1 has six exceptional curves. If
we blow them down, we get an algebraic surface Y, with e(Yy) = 3 and

six distinguished points P -5 Pg resulting from the exceptional

'ERE
curves. Since Y is rational, Y/T and YO are rational. Thus YO is the

complex projective plane, and the image of C on Y, is a rational curve

0
with a double cusp in each point Pj (3 =1,...,8) and is otherwise non-
singular. "Double cusp in Pj" means that the curve has two branches
in Pj’ each with a cusp, the two cusps having separate tangents. We
denote the image of C in Y, also by C. Each double cusp reduces the
genus in the Pllicker formula by 6. Thus the degree n of € in

Yy = P,(L) satisfies

(n-1)(n-23 _

5 5.6 = 0.

Therefore C 1is a curve of degree 10 in PQ(E), as can also be infered

from (12). The image of D in Y, = P,(€) (also denoted by D) is the
union of the 15 lines joining Pl""’PB’ as can be proved in a similar
way.

The involution T operating on Y commutes with each element of G/T =Ac.
This follows from the fact that matrices A,A' € SLQ(O) are equivalent

mod V5. Therefore, AS acts effectively on Y/t and on Yy = PQ(E).

Every action of A5 on Pz(m) can be lifted to a 3-dimensional linear

representation, because Hz(AS,%3) = 0.
[I. Naruki has shown me a proof that H2(G,Z3) = 0 for a non abelian,
finite simple group G whose order is not divisible by 9. Such results

essentially can be found in Schur's papers.]
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The 1ifting is unique, because Ag is simple. The character table shows
that there are exactly two equivalence classes of non-trivial 3-dimens-
ional representations of A5. They are related by an outer automorphism
of Ag. Hence the action of Agon P, (&) which we have found is essen-
tially the one whose invariant theory was studied by F. Klein [14].

We recall some of Klein's results.

The group A5 is isomorphic to the finite group I of those elements of
S0(3) which carry a given icosahedron centered at the origin of the
standard Euclidean space R® to itself. The group 1 operates linearly
on R3 (standard coordinates XO’Xi’XQ) and thus also on PZCR) and PQ(E).
We are concerned with the action on P,(C). A curve in Pz(Q) which is
mapped to itself by all elements of I is given by a homogeneous poly-
nomial in Xgs%Xqs%, which is I-invariant up to constant factors and
hence I-invariant, because I is a simple group. The graded ring of
all I-invariant polynomials in XgsXy 5%, is generated by homogeneous
polynomials A,B,C,D of degrees 2,6,10,15 with A = Xé +x§ +x§. The ac-
tion of I On P,(C) has exactly one minimal orbit where "minimal"

means that the number of points in the orbit is minimal. This orbit
has six points, they are called poles. These are the points of

P,R) C P,(C) which are represented by the six axes through the ver-

tices of the icosahedron. Klein uses coordinates

0> A1 = Xy +ix2, Ay = % -ix2

and puts the icosahedron in such a position that the six poles are

given by

(AO’Al’AQ) = (V/5/2,0,0)

(1 Vv ~v)

(Agshgs8y) = (5,e7,¢

with € = exp(2ri/5) and 0 € v < 4.
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The invariant curve A = 0 does not pass through the poles. There is

exactly one invariant curve B = 0 of degree 6 which passes through the
poles, exactly one Invariant curve C = 0 of degree 10 which has higher
multiplicity than the curve B = 0 in the poles and exactly one invariant

curve D = 0 of degree 15. 1In fact, B = 0 has an ordinary double point
(multiplicity 2) in each pole, C = 0 has a double cusp (multiplicity %)
in each pole and D = 0 is the union of the 15 lines connecting the six
poles. Klein gives formulas for the homogeneous polynomials A,B,C,D

(determined up to constant factors). They generate the ring of all I-

invariant polynomials. We list Klein's formulas
A=A+ AA
ot Ah,
B = saga A, - 2828242 + adad - A (a+Ad)
¢ = 320a0A5A2 - 160alaln) + 20A0A%A0 SAiAg
- A (AD+AD) (32A0-20A0A A, +5A%A2) 4 ar% + a2l
12D = (Ai—Ag)(~1OZMA%G+3840A331A1
—38u0AgA§A§ + 1200ASA§A;
-10087A1A0 + A3AD)
v aga1%-a3") (35280216082 8 +1087A2)
+ (125

According to Klein the ring of I-invariant polynomials is given as fol-

lows
(1) Clay,A, 8,17 = CIA,B,C,D1/(R(A,B,C,D) = 0)

The relation R(A,B,C,D) = 0 is of degree 30.
We have

(15) R(A,B,C,D) =

~1uup? - 17288% + 720acB® - s0alc?B

+6ua3(sB2-acH2 + C3
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The equations for B and C show that the two tangents of B = 0 in the

pole (v5/2,0,0) are given by A 0, A, = 0. They coincide with the

1 2

tangents of C =0 in that pole. Therefore the curves B = 0 and C = 0
have in each pole the intersection multiplicity 10. Thus they inter-
sect only in the poles.

When we restrict the action of I to the conic A = 0, we get the well-
known action of I on Pl(m) (which can also be obtained via the isomor-
phism S0(3) = PSU(2)). The curves B = 0, C = 0, D = 0 intersect A = 0
tranversally in 12, 20, 30 points respectively. If one uses a suitable
conformal map 82 - Pl(m) = {A = 0} these points correspond to the 12
vertices, 20 center points of the faces, 30 center points of the edges
of the icosahedron (always projected from the origin ofiR3 to SZ).
Putting A = 0, the relation R(A,B,C,D) = 0 gives a famous icosahedral

identity.

We consider the uniquely determined double cover W of Pz(m) branched

along C = 0. The action of I can be lifted to the double cover.

The study of the Hilbert modular surface H2/F led to an action of

G/T (= Ag) on the complex projective plane. We also found the invari-
ant curve C = 0. We use an isomorphism G/T = I to identify G/T and
the icosahedral group. Since the action of I on the projective plane
is essentially unique and the invariant curve C = 0 well determined as
curve of degree 10 with double cusps in the poles, we have proved the

following result.

THEOREM. Let T be the principal congruence subgroup of SLZ(O) for the

ideal (VB) in the ring 0 of integers of the field Q(v5). Then the

Hilbert modular surface H2/F can be compactified by six points (cusps

in the sense of modular surfaces) to give a surface H/T with these

cusps as the only singular points. The surface H%/T admits an action
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of the icosahedral group I. It is I-equivariantly isomorphic to the

double cover W of P,(C) branched along the Klein curve C = 0. This

curve has singularities ("double cusps") in the six poles of the action

I and otherwise no sgingularities. The double cover W has a singular

point above each double cusp of C and no further singular points.

Under the isomorphism these singular points correspond to the six

singular points of HQ/F. The involution of the double cover W corres-

ponds to the involution of HZ/P induced by (21’22) - (22,21) on H2.

The surface W 1is rational.

We use this theorem to gain information on the modular forms relative
to I'. A modular form of weight k is a holomorphic function f(Zl,ZZ)
on H2 transforming under elements of T as recalled in §2. The form f
is a cusp form if it vanishes in the cusps. The forms of weight 2r
correspond bijectively to the holomorphic sections of k" where X is
the canonical bundle of H2/F. A form is symmetric if

f(zl,zz) = f(zz,zi), skew-symmetric 1if f(zi,zz) = 'f(22’21)' Let W'
be the double cover W of PQ(E) with the six singular points removed
and Pé(@) the projective plane with the six poles removed. Let

T oW o> Pé(m) be the covering map, Y the divisor in W' represented by
the branching locus C = 0 and vy the divisor in Pé(@) given by C = 0.
If L 4is a line in Pé(@), then ; + 77 (-3L) is a canonical divisor of W'.
Because W*Y = 2;, we conclude that w*(y—BL) is twice a canonical divi-
sor and also 7 (4L) is twice a canonical divisor on W'. Therefore,
under the isomorphism Hz/F > W', a homogeneousg polynomial of degree 4r
in AO’Ai’AQ defines a section of K2r and thus a modular form relative
to I' of weight 4Yr. It can be proved, that the abelian group T/I[T,T]
has a trivial 2-primary component. This implies that a homogeneous
polynomial of degree k in AO’Ai’AQ defines a modular form relative to
I of weight k. In fact, these modular forms are symmetric. There is

a skew-symmetric form of weight 5, whose divisor is y (under the
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isomorphism HQ/F > W'). We denote it by <. Thus we have obtained a
graded subring

2
M'(I) = ] MMT) = €lA,,A, A, ,cl/(c"=C)
WS K 02152

of the full graded ring M(T) = § M, (T) of modular forms for I. (Here

C is the Klein polynomial of degree 10.) We have

. k+2 k-3 2
dim MU(T) = (C5°) + (5,7) = k" - 2k + 7 for k > 3
dim MJ(T) = 6
dim MI(T) = 3

The arithmetic genus x of the non-singular model Y of Hz/r equals 1,
because Y is rational. The dimension formula (8§82 (4)) and §3 (5) im-
ply that ME(P) = Mk(F) for k > 2. We have to use that there exist six
Eisenstein series of weight k (for k > 2) belonging to the six cusps
which shows dim Mk(F) - dim Sk(T) = 6 for k > 2. Because the square of

a modular form f of weight one belongs to M,(TI) = Mé(r), the zero

divisor of f gives a line in P2(m). Thus Ml(F) Mi(r). 0f course,

there are no modular forms of negative weight.

THEOREM. The ring of modular forms for the group I' is isomorphic to

2
ClAy,A, A, ,c]/(c”=0).

The ring of symmetric modular forms for [ is

ClAy,A, A, ]

The vector space of gkew-symmetric forms is

C.E[AO,Al,A2}

The group G/T = I = icosahedral group operates on these spaces by the
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Klein representation of I of degree 3 in terms of the coordinates

3
AgsA ,A, of C°.

We now consider the full Hilbert modular group G = SL?(O)/{i 1} for

Q&/5) and obtain in view of (1u) and (15).

THEOREM. The ring of modular forms for the group G is isomorphic to

CLA,B,c,D]/(144D%=-17288%+720Ac B3 ~80A2c"B

+ 64A3(582—Ac2}2+c6)

The ring of gymmetric modular forms for G is isomorphic to

(186) ¢la,B,C,D1/(R(A,B,C,D) = 0)

For the preceding theorems compare the papers of Gundlach [3] and
Resnikoff [16] and also [8] where results on 0(V5) where derived

using the principal congruence subgroup of SLQ(O) for the prime ideal
(2). In [8] the relation R(A,B,C,D) = 0 was obtained in a different
form connected to the discriminant of a polynomial of degree 5. The
modular form D occurs in Grundlach's paper [3] as a product of 15
modular forms for I' of weight 1 each cuspidal at 2 cusps and vanishing
along the "line" between these 2 cusps. The zero divisors of the six
Eisenstein series for T of weight 2 correspond to the six conics
passing through 5 of the six poles. (Each Eisenstein series is cuspid=-
al in five cusps.) In HZ/G the curve C = 0 becomses Fl (given by

zy = ZZ)' The restriction of B to Fi gives a cusp form of weight 12
on H/SLQ(%), therefore must be A (up to a factor). The curves B = 0,
C = 0 intersect only in the six poles of the action of I, in agreement

with the fact that A does not vanish on H.

Remark. I. Naruki has given a geometric interpretation of the curve
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B = 0. Let S(5) be the elliptic modular surface in the sense of

T. Shioda associated to the principal congruence subgroup T(5) of

SLZ(%). Choose a "zero section" o of S(5), then each regular fibre
of S(5) becomes a group (1-dim. complex torus). The binary icosahe-
dral group I' = SLz(IS) is the group of automorphisms of S{(5) which

carry ¢ to itself. The element -1 € I' acts as the involution which

is x @ ~-x on each regular fibre. Dividing S(5) by this involution and
blowing down 24 exceptional curves which come from the 12 singular
fibres of S(5) gives P,(C) x P, (€) on which I = I'/{+1} operates.
Dividing Pl(ﬁ) X P1(®> by the natural involution interchanging compo-
nents yields Pz(@} on which I acts by the Klein representation. Under
this procedure B = 0 is the image of the curve in S(5) containing all
the points of the regular fibres of S(5) which have precisely the order
4. A paper of Naruki (Uber die Kleinsche Ikosaeder-Kurve sechsten

grades) will appear in Mathematische Annalen.

§4. THE FIELD K = Q(V2).

In this field the ring 0 of integers consists of all linear combi-
nations a + b2 with a,b € Z. The fundamental unit is €q = 1+ V7.
We consider the principal subgroup T(2) of SLZ(O) for the ideal (2).
The group T(2)/{*1} is a subgroup T(2) of the Hilbert modular group
G = SL,(0)/{+1}. The group G/I'(2) is an extension of the symmetric
group S, by a group of order 2 (which is the center of G/T(2)). The

non-trivial element in the center is represented by the matrix

of SLQ(O). Let T be the subgroup of G obtained by extending I'(2) by
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D8 . Then G/T = § The group T acts freely on Hz. We shall inves-
0
tigate T similarly as we treated the congruence subgroup with respect

Le

to (V5) in §3. Often details will be omitted an proofs only skecthed.

The Hilbert modular surface HQXF(Z} has six cusps, each resolved by a

cycle of type ((4,2,4,2)). The non-singular surface thus obtained will

be called YZ' The curve Fl in H2/G is given by Z4 % Zg the curve F2
by Az, - K'zl = 0 with A = V?.EO. The inverse images of Fl and F, in
Y, are also denoted by Fl and F, respectively. F, has 8 and F, has 6

components in YZ' The curves F, and F

1 2 in Y, pass through each of the

six resolved cusps as follows

(17> 2 2

-l

The 1% components of Fl Y F, are disjoint, non-singular rational curves.

Each component of Fl has selfintersection number -1, hence is an



exceptional curve. Each component of F, has selfintersection number -2.

2
%, the Euler number of HQ/F(2) is 48/6 = 8, and we
have (as in 83 (8))

Because ZCK(-l) =

e(YQ) = 8 + 6.4 = 32

In fact, Y2 is a K3-surface with 8 points blown up. This can be shown

by the methods of [8], see [2]. The involution on YZ given by De
0

will be denoted by 6. It operates freely on Y The non-singular

5
model Y for HQ/F (obtained by resolving the six cusps) equals Y2/6.

Therefore, Y has Euler number 16, it is an Enriques surface with 4

points blown up. (An Enrique surface can be defined as a surface with

fundamental group of order 2 whose universal covering is a K3-surface.)

Each cusp of H2/T is resolved by a cycle of type ((4,2)) (type ((4,2,4,2)

divided by 8). The inverse image of F, and F, in Y are also called
Fl’FZ' They have 4 or 3 components respectively, the four components
of F, being exceptional curves. The curves F1 and F, in Y pass through

each of the six resolved cusps as follows

F1 F‘l

S
(18) -2 \

N

o5
The involution 1 : (21,22) - (22,21) on H2 induces an involution T on
Y, because A € ' += A' € T. It commutes with the action of every ele-

ment of G/T = §,

, on Y, because A,A' are equivalent mod 2. The fixed

point set of T on Y 1is F1 Y F,. We have e(Fl) = 8 and e(F2) = 6.
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Therefore

e(Y/T) = He(¥) + e(F) + e(F,)) = l16+846) = 15

We now look at example b) of 81 and see that, from each cusp, Y/T has

2 curves to blow down successively. We blow down these 12 curves and
obtain a surface Y, with e(YO) = 3. If A is a component of F, on Y0
and B a component of Fz on Y,, then a simple calculation shows

Cl(A) = 3 and 01(8) = 6 where ¢y is the first Chern class of Y,. There-
fore Y, is rational and is in fact the projective plane PQ(@), on which
Fl becomes a union of 4 lines intersecting in 6 points and F2 a union of
3 conics with a contact point in each of the six points (compare
example b) in 81). The group G/T = Su operates on Y, = P2(¢) with

Fl Y F, as an invariant curve of degree 10. The isomorphism G/T = =
is established by the permutation of the four components of Fl' There
is up to projective equivalence only one projective representation of
Sy permuting four lines in general position. It can be lifted in 2
ways to a linear representation

Embed QS in ¢* by

(19) x1+x2+x +xu:0

Take the permutations of XXy sXg 5%y, (representation Py of Su) or
the permutations followed by multiplication with their signs (represen-

tation 0y of Sq).

Consider the projective plane with homogeneous coordinates Xy 3%y s Xg Xy,
subject to (19). Then
F1 is given by Ky oXp.Xg.x)y = 0,

because this 1s the only invariant curve of degree 4 which has 4 lines
as components. The six cusps of H/T correspond to the six intersection

points (0,0,1,-1) (and permutations) of the 4% lines. Furthermore,
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Y(x, %, +X

P, is given by (x X +x,x, ) (X Xa+X, %, 1 Xy t%,

) X3) = 0

because this is the only invariant curve of degree 6 passing through

(0,0,1,-1) with 3 irreducible conics as components. Let 0y be the kth
elementary symmetric function of Xy sXnsXasXy, (6120). The polynomial
(20) Cc = Xy 2xgxu(x Ky +XaX, ) (x 1 Xq XX )(X1XH+X2X3)

2
64(03'”0204)
5

of degree 10 describes the branch locus Pl U F

THEOREM. Let I be the extended principal congruence subgroup of

G = SLZ(O)/{iii} for the ideal (2) in the ring 0 of integers of the

field Q(v2). Then HQ/F ig _isomorphic to the double cover W of P2(¢)

along the curve C = 0 of degree 10. This curve has exactly 6 singular

points which give singular points of W corresponding to the gix cusps

of HQ/F. Degsingularizing W in the canonical way gives a surface Y
which is an Enriques surface with 4 points blown up. (The exceptional
points in Y come from the 4 linear components of C = 0.)

To gain information for the modular forms relative to 'y one has to
deal with difficulties arising from the fact that I' has a non-trivial
character T —- {1,-1}. If one compares with the result of Gundlach [4]
where these "sign questions" were treated, one can prove as in 83 that

the ring of modular forms for the group T is isormorphic to
(21) m[xl’XQ’X3’Xu’c]/(01:0,02=C)

This checks with the dimension formula (82 (4)), because as in 83 we
have e(HQ/F) = 4 and ¥ = 1 {since Y is an Enriques surface). Compar-
ing with Gundlach [4] shows in addition that G/T = S, operates on the

ring (21) by the representation p,. The ring of invariant polynomials
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for this representation is generated by 02,04,03,03A where A= I (xiuxj)
i<y
is the disgcriminant. We have a relation R(OQ,OQ,05,03A> = 0 for these

generators, namely

2 ~ 2
(22) R(cz,cq,o3,G3A) = 2?(03A) +

2 3 2 3 2,2

[-4(o5+120,)7 + (2703+202—720204) 103

which can be taken from the formula for the discriminant of a polynomial

of degree 4. It follows

THEOREM. The ring of symmetric modular forms for the Hilbert modular

group G = SL,(0)/{ * 1} of the field 0(v/2) is isomorphic to

Z 2
Q[oz,04,03,03A]/(R{02,ou,03,03A) = ).

This agrees with Gundlach [4], Satz 1. But there the relation was not
determined. The ring of modular forms for G 1is obtained attaching

the skew-symmetric form ¢ of weight 5 satisfying

c® = C = Gu(Og—QGQGM)

The modular forms G,H,H,8 (belonging to various characters of SLQ(O)/{tID

which Gundlach [4] mentions in his Theorem 1 find the following de-

scription in our set up (up to a factor). We also give the zero divi-
sors.

G = A s (six lines)

H = 04 s (three lines)

H = VG2 T o5 .

3 27y ? (part of the branching locus; three
conics)
6 = Vo, s (part of the branching locus; four

lines)
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The theory we have developed for §(v2) involves the symmetry group Sl+

of a cube. Similar considerations for Q(v3) are possible, but more
complicated. Here the group Ay (symmetry group of a tetrahedron) enters.
Gundlach [4] has also investigated Q(v3), but the translation into our

geometric method must be done at some other occasion.

§5. ON _THE FIELDS Q(V7) AND Q(V13).

In Q(vV7) there is no unit of negative norm. Therefore, we consider
the extended group GL;(O) of all matrices (3 g) with a,B,v,8 € 0 and
determinant a totally positive unit. For the prime ideal (V7) let
r*(V7) consist of all matrices of GL;(O) which are congruent to
(é 2) mod (v7). Let D be the group of diagonal matrices (g 2

€ a unit. Since the fundamental unit €4 equals 8 +3v7, this diagonal

group is contained in I' (V7). The groups GL;(O)/D and TT(/7)/D operate

+

) with

effectively on HZ. We denote them by ¢Y and T respectively. 6" is the
extended Hilbert modular group with [G7 : Gl = 2 where G = SL,(0)/{ %1}

We have

+
G /T = PSLZ(E7) = G168

This is the famous simple group of order 168. The group I operates
freely on Hz. The surface Hz/F is compactified by 24 points (cusps).
Each cusp is resolved as in §1 (example c¢)). This gives a non-singular

surface Y. Because C@(VW)(-l) = %, we have

e(Y) = %.168 + 5.24 = 232

[V N

We consider the curves Fi»Fp,F, in HQ/G+. They are given by Z4 T Zp,
3wz, - (3-v7)z, = 0 and 2z, - z, = V7 respectively. Their inverse
images in Y will also be denoted by F,3F,,Fy. These are non-singular

disjoint curves in Y. They pass through each of the 24 cusps as
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follows

(23)

5

The Euler numbers of F1’F4’P2in Y are given by

-1 S
e(F,) = -3.168 + 24 = -4
e(F,) = -1.168 + 24 = -18

i Ik
e(F,) = -1.168 + 2u = -18
2 il S

because -%, —%, -% are the normalized Euler volumes of the curves

. 2,
Fl’FM’FZ in H°/G .
The involution (21,22) - (22,31) of H2 induces an involution 1 of Y
commuting with each element of 6T /r = 6168' The fixed point set of

T in Y is F1 UF, v F,y. Therefore,

(21) e(Y/1) = 3(232-4-18-18) = 96.

The example c¢) in §1 shows that each cusp gives rise to three curves

which can be blown down successively. We obtain a surface Yy with
e(YO) = 96 -~ 3.24 = 24

The group 6168 actson Y. One can proof that Y, is rational. There is
a famous action of 6168 on PQ(Q}, see [18]1, §88, 8133-140. This action

has an orbit consisting of 21 points. Up to an equivariant isomorphism
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YO is obtained from Pz(m) by blowing up these 21 points. The curves

Fl’Fq’FQ become invariant curves of degrees 4,18,12.

This result has to be proved in some other paper. It should be used
to investigate the structure of the ring of Hilbert modular forms rela-

tive to I and G'.

Our last example concerns the field Q(V13). It is due to van der Geer
[2] who has proved many interesting results on the Hilbert modular sur-
faces of principal congruence subgroups. Let ¢ be the ring of integers
in Q@(VI3). Let T be the congruence subgroup of SLQ(O) for the prime
ideal 2 of 0. Then I = T/ +1} is a normal subgroup of G = SLZ(O)/{t 1k

The quotient group is SLQ(Fu) = Ag. We consider the Hilbert modular

surface Hz/T. It has 5 cusps. Each is resolved as in §1, example d).

Let Y be the non-singular surface obtained in this way. Since

2t (-1) =%
L1i3) s
we have

e(Y) = %.eo + 5.9 = 65.

The inverse image in Y of the curve Fl on Hz/G has 10 disjoint com-
ponents which are non-singular rational curves of selfintersection
number -1. (Proof as in [8]1). The inverse image will also be denoted

by F,. It passes through each of the five cusps as follows

(25)
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Each component of F1 goes through 3 of the 5 cusps and is determined
by these three cusps. We blow down the ten components of F, and obtain

1

a surface Y1 of Euler number 55. It has arithmetic genus 5 =% G(HQ/F)a
see [7]. Therefore pg = 4. The surface Y1 is a minimal surface of

general type. The space of sections of the canonical bundle K of Y1
is isomorphic to the space of cusp forms SQ(T). The cusp forms define

" "

a "map

The action of G/T = Ag on SZ(T) is the standard action on o represent-

ed in ¢° by

It turns out that by is holomorphic of degree 1 and ¢K(Y1) is given in

P, (C) by

(286) gy = 0, 0,05 = 20, = 0,

where Oy is the kD elementary symmetric function of x The

ERRERE
surface (26) has 15 double points which are images under by of the 15

configurations \“<2\\\>*<T/;2”/'on Y, (see (25)). Otherwise ¢, is
bijective. Because (26) gives a relation between the cusp forms of
weight 2, it can be used to gain more information on the ring of modu-
lar forms for T (see [21).

The ideal (2) does not divide the discriminant of Q(v13). Therefore,

we do not have an involution t on Y commuting with G/T.

Remarks.

1) The surface Yl is diffeomorphic to the general quintic hypersurface
in PS(E).

2) Consider a subgroup of Ag of order 5. It operates freely on Yi'
The quotient is a minimal surface of general type with arithmetic

genus 1, Euler number 11 and Chern number ci = 1. We recall that
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Godeaux has studied free actions of groups of order 5 on quintic
surfaces and considered the corresponding quotients (L. Godeaux,
Les surfaces algébriques non rationelles de genres arithmétique et

géometrique nuls, Paris 1934).
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ON ZETA-FUNCTIONS OF RANKIN TYPE ASSOCIATED WITH

SIEGEL MODULAR FORMS

by A.N. ANDRIANOV

Nowadays, when the theory of Hecke operators on the spaces of modular
forms of one complex variable has been so heavily exploited by so many prominent
mathematiclans, there is a quite natural and similar field where one can see at the
moment more blank spots than cultivated areas: the theory of Hecke operators on the
spaces of Siegel's modular forms. In this report we want to present some recent
results in this field and especially some open questions. I'd like to thank Prof,

Stefan, who helped me to improve the language of the manuscript.

1. Siegel's modular forms.

Here we collect some definitions and facts. For details, see [[1],

Let

. t
B o= {z=x+iv €M (@); 2z =2, Y > 0}

be the Siegel upper halfplane of genus n and
Fﬂ = = . t E
sp(2) M ¢ My (Z); MIM .},

0 E

where J_ = (

n E On) , be the Siegel modular group of genus n . A function £(Z) ,
n

holomorphic on Hn , 1s called a modular form of gemus n and weight k (k is an
integer, k > 0) if the following two conditions are fulfilled:

_ ,AB ™
1) for every M = (C D) € and Z € H

£((az+B) (cz+D)™ 1) = det(czem)X £(z)
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2) f£(z) 1is bounded in regions of the form

{z=x+iY€Hn,Y2cEn(c>o)}.

We denote by EE the (€-linear space of all modular forms of genus n
and weight k . The space g; has finite dimension over € ., Each form £ € gﬁ

can be expanded into a Fourier series

£(z) = 2. a(®) exp (2 T i Tr(Nz)) (1.1
NEN ,
N
where

2a,, €z}

L
N = {n-= (aij) €M (@Q); NN >0, ag,, 1

is the set of all symmetric semi-definite semi-integral matrices of order n . It is

easy to see that

a N U) = a(y) (NeN, UESL(z) (1.2)

The example of the theta-series of genus n (see [2] ) shows that the
Pourier coefficients a(N) of a modular form £ can have important arithmetical
interpretation in the terms of integral solutions of some systems of quadratic
equations. That was the original reason to introduce these modular forms and that
is why the theory of Hecke operators we are going to discuss is so concerned with

the properties of the Fourier coefficients of modular forms,

2, The Hecke operators,

For details, see [3] and [4] .

Let H S G be two multiplicative groups such that for each g € ¢ the
sets H\HgH and HgH/H are finite, Denote by L(H, G) the free Q-module { @ 1is
the field of rationals)generated by the left cosets (Hg) (g € G) . The group H

acts on L(H, G) by multiplication from the right:

h: %, a,(Bg,) —> I, a, (Hg;h) (h e W)
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Denote by D(H, G) the submodule of all H-invariant elements in L(H, G) . D(H, G)

is an associative ring with respect to the multiplication:

(Zi ai(Hgi))'(Zj bj(ng)) = Zi,j aibj(Hgigj) .
Ttering D(H,G) is called the Hecke ring of the palr (H, G) (over Q ).

Let

= ot = .t -
s=38 {mM€ Mzn(Q), MI M=rDI M) € @, (M) > 0}
and for a prime number p let

s, = sg = {mes® nw, ( zlp™'); i ezipy

where Z[p'lj is the ring of all rational numbers of the form a/pr with
a€Z ,r€Z ., 8 and Sp are groups, T=Spn(za)c:spcs and for each M€ 8

the sets TN\I' M and T M[/T are finite, So we can define the Hecke rings

L=1"=D(T, 8, 1L =1" =0T, 5) .
P P P

The rings L, Lp are commutative integral domains and L 1s the tensor product
of Lp where p runs over the set of all prime numbers,

If

fég{: and X =%, a,TH) €L,
then the function
glx = £ x = 7, a £, M,
_ (AB
where for M (C D) € 8 we set

nk-n(n+1)/2

£], M=) det(cz + DX £((az + BY(cz + D)D),

k

does not depend on the choice of the respresentatives Mi in the left cosets T Mi

and again belongs to the space Mi . In this way we get a linear representation of the
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ring L on the space Mi . The corresponding operators on Mi are called the

Hecke operators.

As 1t was proved by Maass and Jarkovskaya (see [4], § 1,3) each space

HE has a basis {fi} such that each £ is an eigenfunction of all Hecke operators

i
from L :

£l =M f xeL) .

We shall therefore consider below only the eigenfunctions of all Hecke operators

from L (or Lp ).

If f € Mﬁ is an eigenfunction of all Hecke operators from Lp (p is

a prime number):
£l = A)£ ®eL),

then the map X = A(X) 1is a non-zero homomorphism of Lp into € . The set of

all non-zero homomorphisms of LP into & can be described as follows:

n+l

* *
Let A = (o, aj,...,a ) € (€) (¢ =¢ - {0}) and let

in the left coset [ M, can be

X= I ai(T Mi) € LP . Each representative M;

chosen in the "triangular" form

d
d ' i1 * *
iot -1 P o
P tDi By o dio
M, = , where D, = P ore .
o b
1 d;
0 0....p
We set
n -3 dij
R jr=10 @ P

The map X = wA(X) is a non-zero homomorphism of Lp into € and each such homo-

*

morphism has the form §, for some A € (C )L and ¥, =V, If andonly if
+1

A' =wA , w€ W ,vwhere W is the finite group of transformations of @H"
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generated by all permutations in QAyreeesly and by transformations

4y e Gy 0y Ay ,Ohj-*aj (3 #0, 1) (i=1,,,.,n) .

Each W-invariant polynomial in miil can be expressed as a polynomial in wA(Xj)

for some finite set {x}} < L (see [3]).

If f ¢ Mﬁ is an eigenfunction of all operators X €1 with. the eigen-
P
values kf(X} and Xf(x) = wA(X) , where A = Af(p) = on(p), al(p),...,an(p))
%* .
€ (e )n+1 , we shall call the numbers (ao(p),...,an(p)) the p-parameters of f .,
Considering the action on Mz of the element (I p EZn) €L it is easy to see
- P

that the p-~parameters Gxi(p)) of an eigenfunction £ € §§ satisfy the equation

nk - n{n+l)/2

o2(p) oy (). (p) = p (2.1)

3. Eigenvalues of Hecke operators and Fourier coefficients of eigenfunctions,

The problem of finding and studying the relations between the Fourier
coefficients of an eigenfunction of the Hecke operators and the corresponding eilgen-
values is of significant importance for the arithmetical theory of modular forms.

On one hand, the relations would help us to understand the multiplicative properties
of the Fourier coefficients, which would have significance in arithmetics; on the
other hand,without such relations we can not find andyticalrelations between the
eigenfunction and associated Euler products constructed by the eigenvalues and there-

fore investigate analytical properties of the Euler products,
If n=1 the solution of the problem (given by Hecke) is very simple:
let £ € ﬂi be an eigenfunction of all Hecke operators from Ll , in particular

£] T(m) =h.(m) £, (m=1,2,...)

where
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T = ¢ T w et (m=1, 2,...)
M€ l"l\Mz( Z), det M=nm
then
alm) = a(1) Xf(m) , m=1, 2,,..) (3.1)

where a(0), a(1l),..., are the Fourier coefficients of £ ,

The relations (3.1) allow to investigate the analytical properties of
two types of the Euler products (zeta-functions) associated with the eigenfunction
f

Let for each prime p (ao(p), al(p)) be the p-parameters of f , The

coefficients of the polynomials

Qp,f(t) = (1«10(p)t)(quo(p)al(p)t):
26y = (1=, (M) (1= T (re)
Qp,f ‘al P t -a]. P

are invariant with respect to the group VW (see § 2), and therefore they can be

expressed in the terms of the eigenvalues, Define the Euler products

25 = T [o ™07,
P
ZEZ)(S) = g[Qéfé(p-s)Tl .

The Euler products converge absolutely and uniformly if Re s is sufficiently large,

From (3,1) and properties of the Hecke operators follow the relations

2 o L)), (3.2
m=1 ms £

@ 2

s 2D oy n a4+ -1 . 2D Ly el
- s s-k+1 £
m=1 m P P
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The series on the left hand of (3.2) can be written by the Mellin integral transform

of £ ; this fact permitted Hecke to prove that Zf(s) has an analytical continuation

(2)
p (s)

was investigated originally by Rankin [ 5] by means of another relation, Rankin's

over all s-plane and satisfies to a functional equation, The zeta-function Z

results were improved by Shimura [ 6], who has used the relation (3.3) and the fact
that the series on the left hand of (3.3) can be expressed by means of an integral
convolution of the product of £ by a theta-series with an Eisenstein series for a

congruence subgroup of Tl .

For n > 1 one can hardly expect that such simple relations as (3,1)
ever exist, However, relations similar to (3,2) and (3,3) can be obtained for

all n :

Let £ € Mi be an eigenfunction of all Hecke operators from 1" and
let, for each prime p, Gxo(p), al(p),,,,,an(p)) be the p-parameters of £ , Define

the polynomials

n
Qp’f(t) = (1-0.0(p)t) rgl oS (1» - ao(p)ail(p)“.air(p)t) R
1511""<1r$’1
¢ = 1 (4 -a @0 -atee
b, £ s ;P a; (@ .

The coefficients of these polynomials are invariant with respect to the group W,
and therefore they can be expressed in the terms of the f-eigenvalues of the Hecke
operators from Lg . The Euler products

2 = 1 (o, (™1

-1
2 2 -
Zé )(s) = g {Qésé(p )

converge absolutely and uniformly if Re s is sufficiently large, We shall call

these Euler products the zeta-function of the Hecke type and of the Rankin type,
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respectively,

The following result of Jarkovskaya (Math, Sbornik, 1975) gives a generali-
zation of (3.2) for arbitrary n=z 1 :
Suppose that f € ME is an eigenfunction of all Hecke operators from Ln with the
Fourier expansion (1,1), and let zf(s) be the associated zeta-function of the
Hecke type. For each given N € N~ we have the identity
a(m N)

©
g 2L -

2 S f,N(S) T z.(s) (3.4)
m=1 m

where R (s) is a Dirichlet series which is 2"-restricted (we call the Dirichlet

£,N
series
D ew
n=l o’

d-restricted 1f c(m) = 0 as soon as m = 0 (mod pd) for some prime p),

As to the zeta-function of the Rankin type, we have proved the following

result

Theorem 1, 1If £ € yﬁ is an eigenfunction of all Hecke operators from

1" , with the Fourier expansion (1,1), then for each given N € N we have

t
E a(my M) REZ; (s) ZEZ)(S - k+1) (3.5
(det m)° ’

M SL_{(ZN\ RED)
n n

where M runs over a representative system for the left cosets, by SLn(ZQ s
of the set of Integral matrices of order n with positive determinant, and

Rézé(s) is a Dirichlet series which is (n+l)-restricted,
3

To prove the relations 1like (3,4) and (3,5) it is sufficient to prove
the corresponding "local" relations for each prime p ., For example (3.5) is a

consequence of the following result,
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Theorem 1', 1Let f € ME be an eigenfunction of all Hecke operators from

LE , where p is a prime number, and let (1,1) be the Fourier expansion of f .

Then, for each given N € N ., the formal power series

(2). k-1 ot
QP ) { b3 (
p,f d=0 MESLH(Z)\M;(Z)

det M = pd

a(M N tm) ) td}

is a polymomial of degree not more than n

.

This result as well as all other known results of this kind are speciali-

sations of the following general theorem,

Denote for a prime p by H

o Hg the Hecke ring over @ of the pair

(sL_(z), T°) , where
& P

T; ={Men (2 ; dgetm=p%,da=0,1,...}

(the same definition as above, although Tg is not a group but a semigroup) and
3*
let Hp = Hp[v] be the polynomial ring in one variable over Hp . Define a repre-
*
sentation of the ring Hp on the space of all function a : Eﬂ - @ which satisfy

*
to (1,2): if y= %, c, v i(SLn( Z)'Mi) < Hp and a(N) 1s a function we set

i71i

(a| )W) = % k(n-1)-n(n+)

i t ~d:n{n+1}/2
FCH a(p M, N Mi) , (W€ gn) s bi = p n(n+1)/ (detMi)

In these notations, we have

Theorem 2, Let £ € yﬁ with the Fourier expansion (1.1) be an eigen-

function of all Hecke operators from Lz for a prime p , Suppose that Vor Fyoees

3%
is a sequence of elements from Hp such that the formal power series

() = T ygt

s
is rational in the sense that there is a polynomial q(t) over Hp, q(0)=1, such that
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q{t) Y{t) is a polynomial, Then there is a polynomial Q(t) # 0 over €, which de-
pends only on q{(t) and the f-eigenvalues of the Hecke operators from o,
and whose coefficients can be effectively expressed in the terms of the eigenvalues,

such that for each given N € ﬁn , the formal power series over (

UL T (aly) ®) ) (3.6)
da=0

is a polynomial,

This theorem (together with its proof) contains in particular all known
relations between Fourier coefficients of eigenfunctions and eigenvalues of Hecke
operators, The proof is based on a study of the relations between the Hecke rings

%
Lp and Hp , realised as subrings of a Hecke ring of the group

m={¢her", c-0}. (3.7
The proofs will be published in Matem, Sbornik,

As to the computations of the series (s) and Rézé(s) in
3

Reon
(3.4) - (3.5), or more generally, of the polynomials (3,6) for arbitrary n ,

some new ideas will have to be found, For n = 2 the series (s) can be

Rew
computed without difficulty from the results of [4], Ch. 2; the series Rézé(s)
3

are computed in [7].

4, On integral representations of Euler's products,

The theorem 2 allows us to get a lot of relations like (3.4), (3.5)
with different kinds of Euler products., We restrict ourselves to the zeta-

functions of the Hecke type and of the Rankin type, because even for n=1 they



335 An-11

are the only types of the Euler products whose analytical properties can be in-

vestigated at the moment,

Because of the relatioms (3,4) and (3.5) to get some "good" integral
representations of the zeta-functions in the terms of the modular form £ it is

enough, provided of course that we can compute the series (s) , REZ;(S) ,

RN
to do it for the series on the left hand of the relatioms. As to (3.4), for =n=l

it is the Mellin transform of £ , for n=2 the situation is far more complicated:
it was shown in [4] that the series can be obtained as the result of an integral
convolution of the restriction of £ on the symmetric space of the group

SLZ(G) imbeded in H, , with an Eisenstein series for a discrete subgroup of

SLZ(G) of the Picard type, This allows to prove that in this case the zeta-function
Zf(s) has an analytical continuation and satisfies a functional equation; for

n > 2 nothing is known in the most interesting case when £ 1is a cusp form (if

f 1is not a cusp form, Zf(s) can be expressed through the similar function for

a modular form of genus n-1), The situation is much better for the relations (3.3):
the series on the left hand side has a "good" integral representation for all n .,
For example, if n is even, f € ﬁi is a cusp form and N € N ,N>0, the
following integral representation can be proved: if Re s is sufficiently large,

we have

n
t
g MDA ek um )82 {7 T ¢ s-§+1 )} - 5 a(My M)S~h =
i=1 (det M)
+
MesL (z\M (Z2)
(4.1
- I (@) eV (@ (der P2y
foo(q})
Yg(det D) det(cz+pykn/2-h -
X E 4 Z,
|det(cz + py| 5720+

AB
(¢ DET\T (@
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where h=0 if %k 1is even and h=1 otherwise, q is the smallest natural number
such that the matrix q(ZN)-1 has rational-integral coefficients and even coeffi-
cients on the main diagonal,

I

T (@ =Th@={¢ N er”, c=0 (mod )},

To is the group (3.7), D(To(q)) is a fundamental domain of To(q) on H_,

* -(n+1) _ .
d z = (det Y) i dxij dyij (Z =X +1iY € Hn)
1$isisn

is the invariant measure on H_, T(s) 1is the gamma-function,

(n)

®2N

z) = b (det M)h exp(2mi e (M) (4.2
ME Mn( Z)

is a theta-series of the matrix 2N , and Yoy is a Dirichlet character mod g
which can be defined by

n

3 2
¥g(®) = (sign @2 ({)_dee 2N

|al
where (—} is the generalized Legendre symbol.

For the proof for n=2 , see [7] . The proof in the general case is the

Same,

Accordingly to [7], § 5, the theta-series (4,2) is a modular form of
the weight (% + h) with the character %y With respect to the group Tz(q) .
Therefore in order to study the analytical properties of the integral im (4.1) it
is actually sufficient to study the Eisenstein series under the integral. For
n = 2 this can be done following the ideas of the Maass' work [ 8] , which allow
us to prove that the integral has an analytical continuation over the entire s-plane,

Unfortunately, we could not obtain a functional equation in this way. As to the case of
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general n , now everybody refers for everything connected with Eisenstein series

to the famous Langland's preprint, I wonder, however, whether it is easy (or possible)
to extract the properties of the Eisenstein series in (4,1) from this preprint, Here
I mean just this question: what are the explicit gamma and zeta-factors to get a

holomorphic function with a functional equation?

Finally we should like to mention that some examples suggest that 1f
fE€ Mﬁ is a cusp form, then to get a holomorphic function we have to replace

ZEZ)(S) by the product

2 22

where £(s)} is the Riemann zeta-function.

The Leningrad Branch of the
Steklov Mathematical Imstitute,
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