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INTRODUCTION

This volume contains an assortment of results based on the Atiyah-
Singer index theorem and its corollaries (the Hirzebruch signature and
Rismann-Roch theorems and the G-signature theorem). Because the
applications of this theory have so wide a scope, the reader will find
himself involved with characteristic classes, finite group actions,
symmetric products of manifolds, and number theory of the naive sort.
On top of this, he may feel that the level of presentation is swinging
up and down in a dizzying fashion. I hope I may prevent, or at least
relieve, his seasickness by a few preliminary remarks sbout the level
and content of the material.

The results ought to be comprehensible to a working topologist
(or even a good graduate student) who is not necessarily a specialist
on the Atiysh-Singer theorem. The non-expert should thus not be put
off by references in the introduction to esoteric theorems of Thom,
Atiyah-Singer, and the like, nor be further discouraged when he finds
that even the first section of Chapter One throws no more light on
these matters. Background material is, in fact, included, but it has
been postponed to the second section so0 that the mein theorems of the
chapter can be collected together at the beginning for reference. A
similar course has been pursued in Chapter Two,

Aside from this point, I should perhaps mention that a much
more thorough treatment of the required background on characteristic
classes, index theorems and group actions can be found in the notes
[21] (if they ever appear), which also contain a further selection
of results in the same direction as those of this volume, and to some

extent complement it (overlap of results has been minimized).
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We now give a summary of the contents of the volume.

Hirzebruch defined for a differentiable manifold X a characteristic
class

L(X) € H*(X;Q) (1)

which, on the one hand, is determined by the Fontrjagin class of X,
and, on the other, determines the signature of X, Thom showed how
to define L(X) when X is only a rational homology manifold,

Our goal in Chapter I will be to generalize this to a definition
of an "equivariant L-class”

L{g,X) € B (X;C) (s €G) (2)
for a rational homology manifold X with an orientation-preserving
action of a finite group G. Apart from their intrinsic interest,
these classes will meke it possible to compute the L-class @n Thom's
sense) of certain rational honology manifolds.

In the differentisble case, we define L{g,X) by

L{g,X) = J,L'(eX%), (3)
where L'(g,X) € B*(x8;¢€) is the cohoﬁology class appearing in the
G-signature theorem, j:Xg C % is the inclusion of the fixed~point
set, and j! is the Gysin homomorphism. We then show (§3) that

™L(X/G) = 5 L(g,X%), (i)
geG

where w:X = X/G is the projection onto the quotient. Since the

map wF:H*(X/6;€) » H*(X;8) is injective, this completely calculates
the L-class in Thom's sense for the simplest sort of rational homology
manif'old, namely the cuotient of a manifold by a finite group.

#e then imitate Milnor's reformulation of Thom's definition to
give a definition of L(g,X) for rational homology manifolds which
agrees with (3) for differentiable manifolds. Formula (4) still holds,
and indeed can be extended to calculdte the new ecuivariant L-classes
for orbit spaces.

As an example (§6), we evaluate L(g,Pnﬁ) for g acting linearly
on P.€, and use this to calculate the L-class of PyC/G for G a finite,
linear action (the result had already been obtained by Bott). Also,
by studying the behaviour of the formula for L(g,PnC), we can formu-
late various conjectures about the nature of the classes L{g,X).

The whole of Chapter II, which occupies half of the volume, is
an application of the result (4). We take X to be the n'" Cartesian

product of a manifold M,and G the symmetric group on n letters, acting



by permutation of the factors. The quotient X/G = M(n), called the
EEE symmetric product of M, is a rational homology manifiold if
dim M = 2s, and we can apply (&) to calculate its L-class. The complete
result is complicated, but displays e simple dependence on n, namely
LM(n)) = Q"6 (5)
where j is the inclusion of M(n) in M{e) and Q,& € H*(M(o)) are
independent of n. Moreover, the "exponential" factor Q is very
simple and, so to speak, independent of M: we have
RO )
where 7 € H*(M{o)) is a class defined canonically by the orientation
class 2z € H*(M), and where
o (m = 1+ (7 4+ 57029 e L )
is a power series depending only on s, The "constant" factor G,
though known, is very much more complicated;}* and is only of any
real use for menifolds with very simple homology. In $13, we compute
it in two cases: for M = st, where we find
o - Qalm) - m0i(n) ®)
RO
and for s=1, i.e. M a Riemann surface. In the latter case, M(n) is
a smooth (indeed, complex) manifold and Q4 (n) = n/tanh  is the
Hirzebruch power series. In this case L{M{(n}) was known (the Chern
class of M(n) was found by Macdonald), so we can check our main
theorem.
We can restate (5) without the class G, in the form
FLM(n+1)) = Q(5*n) - L(M(n)) (9)
{here the first j denotes the inclusion of M{n) in M(n+1)). This is
reminiscent of the relationship between the L-classes of a manifold
A and submanifold B (namely j*L(A) = L(v)-L(B), where j:BCA and w
is the normal bundle). A direct interpretation is impossible because
the inclusion M(n) C M(n+1) does not have a "good" normal bundle,
even in Thom's extended sense (this follows from (9) and the fact

that the power series Qg (t) does not split formally as a finite

Since this volume was written, I have found a simpler expression
for G involving the (finitely many) multiplicative generators of
H*(M(c0);@) rather than the additive basis described in §7.

However, this will appear—-if at all~-elsewhere.
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product H3=1(xj/tanh xj) for s>1). However, eguation (9) seems to sug-

gest strongly the existence of some more general type of bundle
(possibly analogous to the "homology cobordism bundles" defined by
Maunder znd Martin for the category of Z -homology manifolds) which
would be appropriate to inclusions of rational homology manifolds
and which would possess L-classes. There is some resson to believe
that "line bundles" of this type would be classified by maps into the
infinite symmetric product stQw). Since this space (by the theorem
of Dold and Thom) is a K(&,2s), such "line bundles" over X would be
classifiied by a "first Chern class" in [%,K(7,2s)] = HZS(X;%)‘

We end Chapter II by calculating L(g,M(n)), where g is an
automorphism of a 2s-dimensional manifold M of finite order p {then
g acts on M(n) via the diagonal action on M), We find that (9) is
replaced by

FL(emnp)) = (07 0P o (6% L(e,M(n)) (10)
if p is odd, and has no analogue at all if p is even., Again we
have the possibility of checking our results in the two-dimensional
case, this time by taking M:82 and comparing with the results of
Chapter I on the Bott action on P € = s2(n).

In Chapter III we make explicit calculations with the G-signature
theorem on certain simple manifolds (Fn€ with the Bott action,
Brieskorn varieties, and related manifolds), and relate them to the
number-theoretic properties of finite trigonometric sums such as

def(piag,.eray) = (-1)° ji;: cotlds, . cotfidas (1)
(where p 2 1, Gys---»0,, integers prime to p). We prove that (11) is
a rational number whose denominator divides the denominator of the
Hirzebruch L-polynomial L (i.e. 3 for n=1, 45 for n=2, etec.). We
also prove a new "eciprocity law'for the expressions (11), both by
elementary methods and--in two different ways--by specializing the
G-signature theorem,

Although it is not made apparent here, there is a close tie
between the results of Chapter III and the result in Chapter I on
the L-class of P €/G (cf. [21]).



VII

The research described in this volume took place in Oxford and
Bonn during the years 1970-71; I would like to thank both of these
institutions, as well as the National Science Foundation and the
Sonderforschungsbereich Theoretische Mathematik der Universitdt Bomn
for financial support. Above all, my thanks go to Professor

Hirzebruch, who taught me the 1little I know and much more.

Notation is fairly standard, except that for want of italics
we have underlined symbols occurring in the text (not, however,
Greek or capital letters or expressions containing more than one
letter: thus we would write "let a be a point of a set A" but "then
A equals eZvix ."). We use |A] to denote the number of elements
of a finite set A,

References to the bibliography have been made in the normal
way, by the use of appropriate numbers in souare brackets; an
exception is the reference Spanier [38] which like every one else
we refer to simply as "Spanier."

The numbering of theorems, propositions, lemmata and equations
starts afresh in each section. The symbol §3(10) denotes

equation (10) of section 3.
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CHAPTER I: L-CLASSES OF RATIONAL HOMOLOGY MANIFOLDS

In his famous paper "Les classes caractéristiques de Pontrjagin
des variétés triangulées” ([39]), R. Thom showed that it is possible to
define a Hirzebruch L-class L(X) € H*(X;9) (or equivalently a rational
Pontrjagin class) for a rational homology manifold X, in such a way as
to obtain the usual L-class if X possesses the structure of a differen-
tiable manifold. This definition rested on the possibility of meking
precise the notion of a rational homology submanifold of X with a
normal bundle in X, and showing that X has enough such submanifolds to
represent all of its rational homology. The definition was later
simplified by Milnor [31], who observed that it is easy to give a
definition of a "submanifold with trivial normal bundle" agreeing with
the usual concept if X is differentiable (such a manifold is £~ *(p),
where £ is a map from X to a sphere and p is a point of the sphere in
general position), and that it follows from the work of Serre [37] that
there are also enough of these more special submanifolds to represent
all of H,(X;2) (indeed there are just enough, i.e. a one-one correspon-
dence; in Thom's definition each homology class was represented by many
submanifolds and ene had to check consistency as well as sufficiency).
Nevertheless, the definition remained essentially an existence proof
rather than a procedure for actually computing L(X), and as a result
the definition has remained of relatively little intrinsic interest
and has been most important for its use in proving facts about the
ordinary L-class or rational Pontrjagin class (e.g. that this is the
same for two differentiable manifolds with the same underlying PL
structure).

There is, however, one especially simple type of rational homology
manifold, namely a quotient space %X/G of a smooth manifold X by an
orientation-preserving action of a finite group G, and for such a space
it is possible to give a formula for the L-class in terms of the action
of G on X by using the G-signature theorem of Atiyah and Singer. This
formula will be given in §1 and proved in §3. An illustration of it

will be given in $6, where we calculate L(X/G) for X = PC and G =



product of finite cyclic groups acting linearly on X; the L-class of
this space had already been calculated by Bott using a different method.
A much more difficult application is to the L-class of the nlch symmetric
product M(n) of a manifold M (here X =NM" and G is the symmetric group
on n letters, acting on X by permutation of the factors); this will be
carried out in Chapter II.

In the formula for L(X/G), certain cohomology classes L(g,X) €
H*(X;€) occur, defined for each ge€G and such that L(id,X) = L(X).
Their definition in the differentiable case is based on the G~signature
theorem and thus requires a knowledge of certain normal bundles and of
the action of g on these bundles, so that it depends very heavily on
the differentiable structure., However, it is possible to define these
"equivariant L-classes" also when X is only a rational homology G-manifold
in a mamer exactly parallel to Milnor's definition in the non-equivariant
case. This definition will be given in $4; we then show in §5 that the
formula obtained for L{X/G) in the differentiable case holds more
generally when X is a rational homology G-manifold, and indeed can be
generalised to a formula for L{h',%/G) where h® belongs to a finite
group of sutomorphisms of X/G induced by automorphisms of X.

A more precise statement of the results proved is given in §1.

The following conventions will apply throughout: the word
"manifold” will always refer to a connected, closeq ( = compact and
without boundary) manifold, differentiable unless preceded by the
words "rational homology." The coefficients for homology and cohomology
will always be one of the fields ¢, R, or € of characteristic zero or
else a twisted coefficient system locally isomorphic to one of these;
thus there will never be any torsion. We will omit notations for the
coefficient homomorphisms, so that, for example, we will multiply the
class L(X) € H*(X;Q) with elements of H*(X;C) without explicit comment.
Cup products will usually be denoted by Jjuxtaposition but sometimes
written out as xUy. Evaluation of a cohomology class on a homology
class will be indicated by Jjuxtaposition or by <, > . A class in the
cohomology of a disconnected fixed-point set X8 is a class in the
cohomology of each component, and expressions like L'(g,X)[Xg] are to
be interpreted as sums over the connectedness components of the
corresponding cohomology classes evaluated on the fundamental class

of the component in question.



§1. Summary ef results

Let X be an oriented clesed manifeld on which a finite greup G acts
by erientatien-preserving diffeemorphisms. It is known that the signature
of the quetient space %/G is the average ever G ef the equivariant
signatures Sign(g,X) {ef which a precise definitien will be given in §2).
The cemplex numbers Sign(g,x) can in turn be calculated frem the

G-signature theerem eof Atiyah and Singer, which states that
Sign(g,X) = 2L'(g, %), [X8]>, ()

where X® is the submanifeld ef X censisting of peints left fixed by g
and L'(g,X) € H*(x8;€¢) is a certain cohemelegy class, explicitly given
in terms of the characteristic classes ef X® and its equivariant normal
bundle in X. If X% is net erientable, then beth L'(g,X) and the
furdamental class are te be understeed with the apprepriats twisted
ceefficients; this will be made mere pracise in $2.

We also knew that X/G is a ratienal hemelegy manifeld, and thersfere,
by the werk of Them and Milner, has a rational Pentrjagin class and &
rational L-class, Since this class is determined by the signatures ef
the varisus submanifelds (er rather rational homelogy submanifelds),
it is ressonable te assume that the L-class ef X/G cam be calculated
as was the signature, namely by averaging over G sems equivariant L-class
in H*(X). Te get frem the cehemslogy of X/G te that ef X we simply
nesd te apply 7*¥, where 7 is the prejectien map frem X te /G, We

therefere can ressensbly expsct a formula ef the ferm

ML(X/6) = TjéT z L{gX)
ge G

to held, where L(g,%X) is & class im H*(X) defined solely by the action
of g en X. For the definitien of L{g,%), we observe that the G-signature
theerem already prevides us with a class in H*(Xg). The map j* induced
by the inclusien jJ ef %€ in X goes the wreng way te define L(g,X) from
L'(g,%), se we use instead the "Umkehr hememerphism" or Gysin heme-
merphism j,: H* (x®) - H*(X), defined by passing to hemelegy via Foincare
duality ané then applying Jj, in hemelegy {we will define all of these
cencepts mere precisely in §2). Finally, te have (1) held, we need

te insert a facter (deg 7) te compsnsate fer the difference between



the classes m,[X] and [X/G] in H,(X/G). Thus the fermula which we weuld
expect te held, and which will be preved imn §3, is:

Theerem 1: Let G be a finite greup, and X an srientable, clesed,
differentiable G-manifeld. Let 7:X> X/G denete the prejectien map,

,j:Xg C X the inclusien ef the fixed-peint set of an element ge G,

and L'(g,X) € #¢(X8) the Atiyah-Simger class. Then

T LS = 2 Hen, @
where
Lie,X) =, L'(eX) € H*(X). (3)

We make a few comments about the statement eof the theerem. The
class L'(g,X), as stated above, may lie in H*(x8; €) with € a twisted
ceefficient system locally isemerphic te ¢ (E is the tenser preduct ef
the erientation bundle eof X5 with the trivial bundle with fibre €), but
frem the definition ef j, it fellews that the class L(g,X) defined by (3)
is an untwisted class, sé that the summands en the right-hand side ef (2)
are elements of H*(X;€). We then deduce frem (2) that the sum lies in
(the image in H*(X;€) ef) H*(X;0). Thus, even if we are net interested
in the quetient X/G er its L-class as such, we still get interesting
infermation abeut the G-space X itself frem equatien (2), namely a sert
of integrality theorem fer the cohemelogy classes defined by {(3). The
Atiyah-Singer result snly gives the tep-dimensienal cempenent ef this
(i.e. the signatures), but then gives a stremger result: the average
over G of the cemplex (algebraic) numbers Sign(g,X) is net enly a
ratiensl number, but even a ratienal integer.

The next peint about fermula (2) is that if G acts effsctively
(which can always be assumed by factering eut the nermal subgreup
which acts trivially), then deg 7 = |G|, so the numerical ceefficients
can be omitted frem (2), simplifying it semewhat.

Finally, it is knewn that, for cohemelegy with rational er cemplex
cesfficients {or, more gensrally, any field ef characteristic zers er

prime te |G| us coefficients) the map 7* induces an isemerphism
o B (x/e) — (0% < EE(X) (&)

frem H*(X/G) ente the G-invariant part ef H¥(X) (Grethendieck [10],



Berel [2]). In particular 7* is injective, se eg, (2) determines
the L-class ef X/G cempletely.

Theersm 1 as stated azbeve is the first main result ef this chapter.
Hewever, its preef suggests the pessibility ef defining the cohomelegy
classes L(g,X) € H*(X;C) when X is just an eriented rational hemelegy
G-manifeld. Here we canmet use a fermulas such as (3), since it.is net
pessible te define the Atiyah-Singer class fer nen-differentiable
actiens, and indeed it is net clear that the class L(g,X) that we
define vanishes if g acts freely en X, But we can still define the
class, in a way exactly parallel te the Milner definitien ef L(X) fer
a ratiensl hemelegy manifeld X. This will be dene in §. Once L{(g,X)
is defined, eq. (2) makes sense evan for rational hemelegy manifelds X
(since X/G is then alse a ratienal hemelegy manifeld and has an L-class),
and we prove in §5 that it still helds. Indeed, we can generalise it:
Theerem 2: Let X be an eriented ratiensl hemelegy G-manifeld. Fer each
g in G, let L(g,X) in H*(X;0) be the class defined in §4. If h is an
sutomerphism of X of finite erder which cemmutes with the actien ef

G en X, and h' the induced autemerphism eof X/G, we have the relation

#*L(n',%/6) = T(j;—i 2 L(gh,X). (5)
g€

deg 7

Finally, in §6 we evaluate explicitly the guantities L(g,X) fer
X = cemplex prejective space and G acting linmearly en X. This
calculatien will be used in $15 to check a general fermula fer L(g,X)
when X is the nth symmetric preduct ef a manifeld (the space PMG is
the nth symmetric preduct ef 82). When we put the value of L(g,X}
inte Theerem 1 we ebtain a formula fer L(X/G) already ebtained by
Bett by ether metheds (umpublished; see, hewever, Hirzebruch [16]).



§2. Preparatery material

This sectien centains mere detailed descriptiens ef seme of the
cencepts and theerems which were used in §1 fer the formulatien ef the
varieus results stated there. We de not discuss definitions er results
which are very well knewn. Thus, fer esxample, we assume the definitions
of the signature and the L-class of a manifeld and a knewledge eof the
Hirzebruch index theerem, but define the equivariant versiens of these
netiens and state explicitly the G-signature theerem ef Atiyah and
Singer. We zlse define ratienzl hemelogy manifelds and give in seme
detail Milner's fermulatien ef the definitien ef the L~class fer a
rational hemolegy manifeld (that a definitien is persible had been shewn
by Them), This will be espescially impertant te us since we will cepy
the censtructien in & fer the definitien of the ecuivariant L-class
L(g,X) fer ratienal homelegy msnifolds X. The enly point we need te
make fer z reader acquainted with these ideas and wishing te skip this
section is that the class L'(g,X) appearing in §1 is not exactly the
cehomelogy class appearing in the eriginal fermulation ef the G-signature
theerem {Atiyah and Singer [1]) but differs frem it by a pewer of twe
in each dimensien {except the cempenent of tep degree, which fer beth
classes is equal te Sign(g.X)).

We break up the sectien inte three parts. In (I) we discuss
various hemelegical preperties of manifolds: the definitien ef a
ratienal hemelegy manifeld, the erientatien system ef lecal coefficients
fer a manifeld, and related concepts (the Them class of a nen-eriented
bundle, Feincare duslity fer a nen-erientsble manifeld, the Gysin
hememerphism). A descriptien ef Milnor's definitien ef the L-class ef
& ratienal homelegy manifeld then follews in (IT), while (III) centains
the definitien ef Sign(g,X) fer a G-manifeld X and a statement of the

Atiyah-Singer G-signature thesrem.

(1) Hemelegical preperties of manifelds

A ratiensl homelegy manifeld ef dimension n is a triangulated space

in which the boundary ef the star ef each vertex hass the same ratieral

hemelegy greups as s™. Equivalently, it is a simplicial cemplex X
such that

B (L %-{x)30) »  H(R%E-{0];0) (1



fer all xe€X. Then we can define a system of lecal ceefficients fer X,

deneted ery and called the erientatien system of X, which at the peint x

is just the vecter space H (X,X-{x;Q) (where we de net cheese a specific

issmerphism with Q). There is then an srientatien class

[X] € Hn(X;orX) (2)

whese image in H,(X,X - {x}) for x € X is the identity in

[t}

Hom(H(X, X-{x}), H(%,X-{x})) = H (X,X-fx,0r 1 ). ()

Netice that this is independent ef the particular isemerphisms ef

Hﬁ(X,X-fxi) with @ given by (1). If the system er, of lecal ceefficients

is trivial, X is ssid te be erientable; then the element (2) is in Hn(X;Q).
If I' is any system of lecal ceefficients fer X, then the cap

preduct with {X] gives a Peincare duality isemerphism:

N xl = Dy : H;(M;P) E Hn_i(M;I‘Q orX). (4)

If £:X->Y is a map between twe manifelds, the Gysin homemerphism £, is

£, = DY'1 £, Dy : H*(X;f*l"@orX) — H*{Y;1'0 er.f), (5

where I' is a lecal ceefficient system ever Y, f*I' the induced system

ever X, and f, the map from H, (X;£*T) te H, (¥;T). We will only need

this when £ is an inclusien map between differentiable manifolds and I'=Q.
If £ is a real vecter bundle eof dimensien g ever X, it alse

defines an orientatien system ef lecal ceefficients, which at xeX 1s

oré(x) = Hq(EX,EX—fOz), (6)

the fibre of £ at x being deneted Ex' This defines a Thom class
U§ € Hq(E.Ee;ﬂ*eré), 7

where E. is the tetal space E of E minus the zere-sectien X, 7 is the
prejectien mep E~X, and ﬁ*erf is the system ef lecal ceefficients en E
induced frem er. by m. Namely, the Them class is defined uniquely by

the requirement that its restrictien te any fibre is the identity ef

HQ(EX,EOX;W*Qré) = Hem(Hq(Ex,Eex), Hq(Ex,Eax)). (8)



Then the Euler class of £ is defined as the restrictien te the zere-

section X ef the Them class; thus

e(£) € Hq(X;or§). (9)

The bundle & is eriented if er, is trivial; then its Euler class lies
im H*(X;2) (er H*(X;Q) if we used rational ceefficients in (6)). This
is the case if and enly if the first Stiefel-Whitney class ef & 1s zere,
In general, the first Stiefel-Whitney class determines the erientatien
system of ceefficients; thus when we take a direct sum £®7n eof bundles,
the erientatien system of the sum is the tenser preduct er.@er , while
the Stiefel-Whitney class of the sum is the sum wi(ﬁ) + w1(n). In
particular, since Stiefel-Wnitney classes have erder twe, it dees net
matter in equatiems like (4) whether we tenser with ory or orX"1 (we
have already used this freedem in eq. (5), where the pesitiens ef

T and T® er, have been interchanged). Fimally, if X is a differentiable

X
manifeld, then ory equals Oy where TX is the tangent bundle.

(II) Milner's definition of the L-class of a ratienal hemelogy manifeld

It has been preved by Serre [37] that, if X is a C¥ cemplex ef

dimension n<2i-2, then hometepy classes of maps
£: X - st (10)

form an abalian greup ﬂl(X) (the ith cohsmetepy group ef L) which,

up to torsion, 1s isemerphic te Hi(X)‘ Mere precisely, the natural
map wi(x) > Hi(X) sending the map (10) te f*c (where o € Hi(Si) is
the generator) becomes an isemerphism after tensering with . Thus,
for any element x € Hi(X), some multiple Nx can be written as f*o for
some £:X » gt whose homotopy type is unique up to torsion in wi(x).
New let X be an eriented ratienal hemelegy menifeld ef dimension n.
Then there is a fundamental class [X] in HH(X;Q), and therefore we
have an intersectien ferm en Hk(X) (if n=2k) defined as usual by
sending twe elements te the evaluation ef their cup preduct en [X];
thus the signature of X is defined. New ens can preve the fellewing
facts: if £ is & simplicial map as in (10), where s* has some fixed

standard triangulatien, then the inverse image of 2 peint,

4= 1) < X, (1)



is an eriented ratienal hemelegy submanifeld ef X (ef dimensien n-i)
fer almest all pe Si , and mersever, the ceberdism class ef A~-and
hence alse its signature--are indepsndent ef the peint p, again fer
almest all p. This defines then a number I(f) = Sign(A), which enly
depends en the hemotopy type eof A, Mereever, frem the definitien ef
the additien in ni(X) ene easily finds I(f1+f2) = I(f1) + I(fz),

se the map [f] > I(f) defines 2 hememerphism

wi(x) L.z, (12)

If we tenser this with @ and cembine it with the thserem sf Serre
stated abeve and the Peincare duslity isemerphism im X, we ebtain

a umique class

1, e HTNx) (13)
such that
1,_,ufo)[x] = I(f) = sien(a) (14)

fer all maps £ as in (10). This all only helds fer n<2i-2 ser

< (n-2) /2 but we can define l alse fer laréer J by cheesing
a large integer N, deflnlng the class 15 € HJ(XxS ) by the abeve
procedure applied te XxS s and then letting 1. be the cerrespending
class under the isemerphism ef Y (X) with H‘j(XxSN). Then the L-class

of X is defined as the sum ef these classes:

L) = 315 e B(50). (15)
J=0

It is easy te see that this agrees with the usual definitien if
X is a differentiable manifeld, Indeed, since the L-class of a preéduct is
multiplicative and L(SN)='1, we have L(X) = L(XxSN) (whers we have
identified the cehsmelegies sf the twe spaces in dimensiens up te n&N),
se we enly have te chesck that the usual L-class satisfies (14). But
the map f can be chesen within its hemetepy class as differentiable; then
A is a differentiable submanifeld ef X fer almest all p in S:.L and has
trivisl nermal bundle (since a peint has trivial nermal bundle), se the
L-class ef A is the restrictien j*L(X) ef the L-class ef X {where j:ACX).
Also, f*o ¢ H;(X) is the Poincaré dual of j,[A] € Hn_i(X). Therefore

<L(X)Uf*o, [X]> = <L(X), J,[a]> =<3*L(X),[Al> = <L(4),[A]> = Sign(a),
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se the L-class in the usual sense satisfies (14). Since squatiem (14)
defined uniquely the class 13 (fer X a ratiensl hemelegy manifeld),
we ses thet the class {15) is indeed the usual L{X) if X is differentiable,

(III) The G-signature theerem

If & greup G acts en an erientable ratienal hemelegy manifeld X
(here and in future we will tacitly assume that all greups are cempact
Lie greups and that actiens preserve any structure present; thus the
actien here must be simplicial and preserve the erientatisn), thers is
defined a cemplex number Sign(g,X), depending enly en the actien sf g*
en H*(X;R), for every ge G. The definitien is as fellews: If X has
edd dimensien, we set Sign(g,X)=0. If X has dimensien 4k, the
intersectien ferm B(x,y) = <xV y,[X]> is symmetric, nen-degenerate
{because of Peincare duality), and G-invariant {since g,[X] = [X]
by assumition).h‘yz_gﬁg;éégszgfre decenpese the middle cehemelegy
greup i (X;R)as a direct sum H @ H_, where the bilinear ferm B

is pesitive definite en H+ and negative definite en H_ , Then
Sign(g,X) = tr(g*iH) - tr(g*1H_); (16)

this definition is independent ef the decempesitien H2%X)= H & H_.
If X has dimensiem Lk+2, then B(x,y) is skew-symmetric, nmen-degenerate

end G-~invariant. Then if we choese a G-invariant pesitive definite

2k+1

inner preduct <, > en H (X;R) and define an eperater A by requiring

B(x,y) = <Ax,y> fer all x,ye¢ gkt
adjeint, se the eperater J = A/(AA*)"z has square -1. This gives

H2k+1(X;RJ the structure eof a cemplex vecter space, and since g*

(X;R), the sperater A is skew-

cemmutes with J, it acts en H2k+1(X;RJ in a cemplex linear way. Then
X . 1
sign(e,1) = 21 In ( (et 1H (GR))) (17)

where the trace is tsken of the map g* theught ef as an autemerphism
of a complex vecter space. Again this is independent ef the cheices
made. This cemplstes the definitien ef Sign(g,X) in all cases. If

g1 acts en X1 and 8 acts en X,, then the signature ef the preduct

2,
actien ef g4%8, N X1xX2 is given by

The centent ef the G-signature theerem is a fermula fer Sign(g,X)
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in terms ef the fixed-peint set X8 and its equivariant nermal bundle,
in the case that X is a differentiable manifeld. Te state this fermula,
we first define certain characteristic classes ef cemplex and real
bundles (i.e. multiplicative sequences in the Chern er Pentrjagin
classes, respectively). If 6 is a real number, net a multiple ef T,
and £ is a cemplex bundle of (complex) dimension q over a space ¥,

we define

16,4 ceth{x; + i8/2
Lo(¢) = (ceth 3= g ceth 16/2 (19)

where the xj have the usual interpretatien as fsrmal twe-~dimensisenal

cehemelogy classes such that the Chern class ef ¢ is

e{€) = 0 (1 +x,). (20)
Thus Le(f) is an element ef the subring H*(Y;Q)[eia] of H*(Y;C).

If 6 is a real bundle ever Y, we let

L(¢) e H*(1;0) (21)
%<
be the Hirzebruch L-class ef ¢, defined as [ %;Eg—;f where H(1+x§)
is the Pentrjagin class of &. We let J
e{g) € H?(Y;oré} (22)

be the Euler class (cf. eq., (9) szbeve), and define
L(§) = e(€)L(e)™ e B (Xjer, 2 Q), (23)

which is legitimate since L(£) has leading ceefficient 1 and is therefere
invertible. Netice that if & is a cemplex bundle and we set 6=m in (19)
(where we have chesen the number of x.'s te be equal te g) we ebtain,
after first cancelling the (zere!) facters ceth 16/2 frem mumerater
and deneminazter, a preduce ef the tanh x.. This then agrees with (23),
since e(¢) = cq(f) = Xye-.%, and L{¢) = 1 (xj/tanh xj) in this case.

We return te the actisn ef g en a differentiable manifeld X. The
fixed-peint set x8 is a smeeth submanifeld, net necessarily erientsble;
we denete its nermal bundle in X by N®. At each peint x of X, the

actien of g en the fibre Ni can bes decempesed, by standard representatien
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theery, as a sum ef ene-dimensienal subspaces en which g acts as
multiplicatien by -1 and twe-dimensienal subspaces en which g acts by

( ces 0 -sin 0 >,

A sin § ces §

] (24)

where 6 is a real number net divisible by 7 (the eigenvalue +1 cannet
eccur en the nermal bundle Ng). Since A, and A_6 are equivalent, we

can assume that 0< § < 7 fer the represemtatiens (24), and write

g g g
N = N° @ £ N , (25)
* T Ococn %, 0

where Nf 7 is the subspace en which g acts as -1. Each ef the spaces
b

Ni P) (0<6<w) has a natural cemplex structure en which g acts as

’ .

multiplicatien by e'?. The decempesition (25) ef a fibre extends te
a decempesitien #f the whele bundle W as

N = N8 e 3z NE, (26)
m Q<<

where Ni iz new a rezl bundle ever Xg on wnich g acts as -1 and N?

is & cemplex bundle ever %€ on which g acts as 016. In particular,

the bundles Ng all acquire a natural erientatien frem the cemplex
structure, Since X alss has a given erisntatien, we sbtain frem (26)
(and the relatien j*(TX) = N® @ Tx®) an isemerphism between the

systems of twisted ceefficients oy and .rN§ (ef. (I) of this sectien).

We new define a class

L'(g,x) = Lx&).L €). n L. (&) e H:(x5er oC), (27)
LA gy e X&
O<g<r
where we have used the characteristic classes defined abeve and the
isemerphism ryg = orN§ given by the prescribed erientatiens en X
and en the cemplex bundles Ng . Finally, the fumdamental class [Xg]
also lies in the hemelegy greup with ceefficients oryp, S We can
evaluate {27) on this class, The Atiyah-Singer G-signature theerem

states that this is precisely Sign(g,X):
Sign(g, 1) = <L'(gX),[x5]> (28)

Seurces: The material in (I) is standard; it can bs feund sketchily in

Spanier [38] er Deld [8] and in detail in Heithecker [11]. The eriginal
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paper of Them previmg that L-classes can be defined fer ratienal hemelegy
manifelds in a way censistent with the previeus definitiem in the
differentiable case is Them [39]. The definitien ef rational hemelegy
manifelds as given in (I) and the whele centents ef (II) are taken frem
Milner [31]. Finally, the material in {III) cemes frem Atiysh and

Singer [1].
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$3. Preef ef the fermula fer L{X/G)

The starting peint fer tha prosf ef Theersm 1 of $1 will be the

cerrespending relatien fer signatures, namely

sign(s/6) = g7 I Sien(e,A) (1)
g€l

for a G-manifeld A (G finite), In fact this alse helds fer a ratienal
hemelegy menifeld A, since its preef depends enly en the definitien
of Sign(g,A) in terms eof the actien ef g* en H*(A)., It is trivial if
A has edd dimensien (beth sides are zers) or dimensien Lk+2 (then the
left-hand side is identically zere, while Sign(g,A) = -~ Sign(g™®,4)).
If the dimensien ef A is 4k, we use the fact (cf, §1) that

o m(a/e) = ()", (2)

where 7 denetes the prejectien map frem A te A/G (this helds becauss

we are always working with a field ef characteristic zere as ceefficients),
Then cemparing the definitien ef Sign{g,A) (82, (16)) in this case

with the definitien ef Sign{A/G), we £ind that (1) reduces te the
elementary identity ef linear algebra

gm VS = e 3 tr (g]V) (3)

161 ge G

fer the G~invariant part ef a vecter space V.
We will apply this te the set A = f™*(p) appearing in Milner's
definitien ef L-classes (§2, (11)). Since we ars interested in the

L-class ef X/G, we begin by cheesing a simplicial map
= i
F: X/6 - 5. %)
We then define an squivariant map £ frem X te st by
= i

f = fow: X35 (5)

Clearly, f is G-equivariant with Geeting trivially en Sl, i.e. it

is G-invariant . We write

A = £77(p) C X (é)
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A= Fp) = a6 < x/6. (N
Thus A is a G~invariant subspace of X.

We can changs f within its equivariant hemetepy class (i.e. threugh
maps factering threugh X/G) te a differentiable map. Indeed, we just
replace the cempesitien f: X- Si* R;+1 by a differentiable map
£1:X> B! with max 1£(x)- £'(x)| < ¢, and then defime & third map
" frem X te Eé+1 by

£r(x) = T%T gﬁ . £'(gox). (8)

Then " is G-equivariant and differentiable amd, if & is small eneugh,
cleze te f; in particular f£"(X) C Ri+1 —{O§ se we can cempess with
the prejectien g1 -{o} » st te ebtain a map £™ :X- s* which is
G-squivariant, differentiable, and arbitrarily clese te f. If we

apply the whele precess te ft {where f,_ is a hemetepy frem f te f',

s.g. the linear ens) we ebtain sn oquitariant hemetepy frem f te £™ .
We therefere assume that f is differsntiabls. Fer the whele of
Milnor's definitien we ars allewed te exclude sets ef measure zers
fer the peint p in Si; thus here we can use Sard's theerem te have
P a regular value ef the functien f and ef each ef the (finitely
many) functiens fr|X® (ge€G; netice that X is & differsntiable
manifeld)., Then A is & differentiable submanifeld of X and meets
each submanifeld X& transversally with intersectien A8,
We new write L fer L(X/G) fer cenvenience; them Milner's

definitien says that L is uniquely determined by
(LU F*o)[x/6] = sSign(R) (9)

{again fer almest all pesi; we are alse ignering the preblem ef

defining the classes lj for j larger than half the dimensien ef X

since we can remeve such dimensional restrictiens by multiplying

everything with a sphere of large dimsnsien en which G acts trivially).
We new apply (1) te express the right-hand side ef (9) im terms

of the quantities Sign{g,A), and then the G-signature thesrem (§2 (28))

te evaluate the latter. Thus

@LUF*0)[%/6] = Sign(a/6) = l—é—l- ZGSign(g,A)
g€
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- T%T 5 L'(g,A)[A8]. (10)
ge G

The G-signature theersm is applicable becasuse A is a differentiable
manifeld en which G acts,

In the diagram

28 = anx®

3! 3

A i

of differentiable manifelds and inclusien maps, the inclusiesns i and 1'
censist ef the inclusien ef the inverse image of a peint (ef the
differentiable maps f and fEXg, respectivcly) and therefers have
trivial nermal bundle. It fellews that

NaEY e = iv N(XE) e e (11)

where N(A8) denetes the nermal bundle ef 2% in 4, N(x®) denetes that

of X8 in X, and € denetes a trivial bundle (of dimension i). This
isemsrphism is even G-equivariant since A = £7*(p) and £ is a
G~invariant map. Therefere the eigenvalues ef the actien ef g en

N(A8) are the same as these ef its actien en N(XZ), and the cerrespending
eigenbundles Ng alse cerrespend under i'* as in (11). We therefere

deduce frem the definitien eof L' (§2 (27)) that
L'(g,A) = %' L'(gX). (12)

If we put this inte (10) and calculate as in the nen-equivariant

case (§2), we find:

< L'(g:A)’ [Ag] >

i

< i'*L'(g,X), [Ag] >

< L'(g,X),i;‘[Ag] >

#

<L'(g,X), Dygl(£ix®)*o] >

(hcre as in §2 we use that the hemelogy class[f'i(pﬂ for a map ef
the ferm of § (10) is the Peincare dual ef the class f*o, where ¢
is the generater ef H (5%) )
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= <L (g,X),[€ed)* 01N [x%)>
(frem the definitien ef Feincare duality)

= <L'(g,X)Uj*rro, [X5]5

<*f*oUL' (g,x), [x8]>

n

(ene can interchange since L'{g,X) and X% are evon- er edd-dimensienal
classses accerding as X is, and therefere have the same parity, se the

expressien is zere unless i = deg o = deg j*f*o is even)

H

<3*f*o,L' (g, X)N [x8]>
= <j¥f*o, ng(L'(g,X))>
= <f*o,j*ng(L'(g,X))>
= <f*g, Dx(j,L‘(g,X))>

= <f*g, L{g,X) N [X]>

H

L(g,X) Uf*o, [X]> , (13)

where in the last linss we have substituted the definitiens ef j, and

of L(g,X) given in §2 and §1, respectively. In this calculation‘we

have net specified the ceefficients, but if ene fellews threugh the

steps with the definitiens frem §2, part (I) in mind, ene finds that

the calculatien is censistent alse when twisted ceefficients must be

used (i.e. when x€ and hence A% is nen-erientable). In the last line

all the cehemelegy and hemelegy classes appearing have simple ceefficients.

We new substitute (13) inte (10), ebtaining

LU0, [1/6]> = 1—104' L <L(g,X)U f*o,[X]>. (1)
ge G
If we further substitute [X/G] = E;é—; 7, [X] and 7*f* = £*, we get

LU0, [X]> = < (= I L(g,X))Uf*ta,[X]>,  (15)

1Gi ge &

1
< ( deg 7

and the desired equality (eq. (2) eof §1) fellews frem this eguatien
and the fact that (9) defines the L-class L = L(X/G) unigquely.

It is interesting to look more closely at this equation and see
the relation between the properties of the equivariant classes L(g,X)

and the ordinary L-class. These properties of L{g,X) will be used
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later., They also serve to meke Theorem 1 of $1 more plausible by
showing that §1(2) defines uniquely a class L{X/G) € H*(X/G) which
has the properties expected of an L-class (leading coefficient 1,

zero in dimensions #4k, etc.). The properties in question are:
i) If g,h € G, then
n*L{g,X) = L{h *gh,X). (16)

ii) If G acts effectively and G is connected, then the component
of L{g,%) in HO(X) is O if g#1, 1 if g=1.
iii) For all g €6, the component of L{g,X) + L{g™*,X) in Hi(X)
is zero unless i is divisible by four.
iv) L(g,X)[X} = sign(g,X). (17)
v) The sum EgEG L(g,X) dis in H*(X;9) C H*(X;¢).

It follows from i) that the average over G of the classes L{g,X)
is invariant under the action of G on H*(X), and therefore (by the
isomorphism (&) of §1) that it is #* of a uninue element of H*{(X/G).

If we write this element as L/deg 7, then it follows from ii) that L
has leading coefficient 1, from iii) that L is non-zero only in
dimensions Lk, from iv) that L[X] = Sign(X), and from v) that L is

a rational cohomology class. Thus L has all the properties reouired
if it is to be equal to L(X/G).

The proofs of i)~iv) are quite simple. Property iv) follows from
the G-signature theorem {§2(28)) and the definition of j,. Property ii)
is clear since the map j, raises dimensions by the diffefence of the
dimensions of its domain.and target manifolds, so j,L'(g,X) can have a
zero-dimensional component only if dim X6 = X, whiéh for X connected
can only occur if X8=X and therefore (since the action is effective)
if g=1. To prove i), we observe that the map h:X=X defined by the
action of he€G maps X& isomorphically onto x8' (g'=hgh™*) and that
the map h* pulls back the normal bundle N6 to NE {(as G-bundles, i.e.
the splitting into eigenbundles is also pulled back). It follows from
this and from the functoriality of the characteristic classes L, Lﬂ and

L, appearing in the definition of L'(g,X) that
L'(g,X) = h*L'(hgh™*,X). (18)

Moreover, since h is an isomorphism we have h* = (h'1)|, and therefore
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equation (16) follows from equation (418). To prove iii), we note that
the elements g and g~ * have the same fixed-point sets , and that the
eigenvalug1decompositions of the common normal bundle né are related by
N8 = N8 . In particular N = Nf,-i. We substitute this into the
definition §2(27) of L'(g,X), using the fact that j, increases dimensions
by dimX - dim X6 and the fact that L () = e(NE)L(NE)™* only has
components in dimensions = dim Ns (mod 4)., We find that the proof of iii)
reduces to showing that

foL,M03) + m L () e (&)

O<6<m o+ O<o<m

only has components in degrees equal (modulo 4) to

dim X - aim x® - aimN® <= 2 1 &im NS,
m ¢ 6
024254
But this follows easily from the identity coth(xj-ie) = -coth(—xj+i6).
We willmot give a complete proof of property v) here, since in any case
it follows from Theorem 1 of §1 and the rationality of L(X/G). The

method of proof is to write

I L(gX) = Ly, (19)
get YCX
where, for Y a connected closed submanifold of X, LY denotes the sum over
G of the contribution from Y to L{g,X) (i.e. zero unless Y is a component
of Xg, and J,[L(Y) 1 LG(NS)] if Y is such a component, where j is the

inclusion of Y in X and Nf is the e°7 eigenbundle of the action of g on

the normal bundle of Y in X). This makes sense, since LY is zero for

all but finitely many submanifolds Y. One then can show that each of
the classes Ly €H*(X) is a rational cohomology class by a Galois-theory
type of argument. The argument when Y is a single point {x} is given

in the introduction to Chapter III,.
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4. A definition of L(g,X) for rational homology manifolds

The reason that the L-class can be defined for a rational homology
manifold X is that the L-class is related to the signature of certain
submanifolds of X, and that there are enough of these submanifolds to
determine<L®)completely. It is reasonable to ask whether the equivariant
L-class has similar properties which allow its definition for rational
homology G-manifolds.

We cannot expect such a definition for the Atiyah-Singer class
L'(g,X), since it lies in the cohomology of x® and therefore only can
be defined in terms of the local action of g near its fixed-point set,
which presupposes that this action is differentiable, or at least that
it looks like a differentiable action in a neighbourhood of x8 (ef.
Wall [40}, Ch. 14). But the class L(g,X) € H*(X), defined in the
differentisble case as j,L'(g,X), can be characterised in certain
circumstances by a formuia proved in the last section in the course

of proving Theorem 1 of &1, namely (en. (13) of £3)

Sign(g,A) <L(g,X)uf*o,[X] >, 1)

1}

where A = £7*(p), £ being a map from X to st which is G-equivariant
(G acts trivially on Si), P a sufficiently general point of Si, and o
a generator of Hi(Si;Z). Equivalently, if we use the fact that f*o
is the Poincaré dual in X of the homology class i,[A] (this was used
in the proof given in §3), we can consider (1) as saying that the
redue o 15,0 on o siven homeiony Shess 2y Sign(sd), e At

a G-invariant sub@anifold of X which 1s the inverse image of a point
for some map X- st (in the differentiable case, this says that A has
trivial normal bundle in X).

We thus wish to define a class
L(g,X) e H*(X;€) (2)

for a rational homology G-manifold X in such & way that (1) still holds.
For this we require that there are enough "G-invariant submanifolds A
with trivial normal bundle" in the sense defined above, i.e. that such
manifolds exist in enough homology classes of X to determine L{g,X)
completely, and also that there are not too many, so that the conditions
{1) do not conflict with one another. We cannot expect that all of the
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elements of H,{X) are represented by embedded manifolds A of the type
desired (as was the case for Milnor's definition, at lesst in rational
horiology), since a G-invariant submanifold A of X can certainly only
represent a G-invariant homology class. Therefore (1) only tells us
how to evaluate on elements of H*(X)G, or rather only on those elements
of H,(x)¢

reasonable hold on the group H*QOG, we must assume that G is finite,

which can be represented by good submanifolds A. To have a

in which case this group is isomorphic to H*(X/G) under the map 7,
{cf. {(4) of §1). Then knowing the value of a cohomology class only
on the G-invariant part of H,(X) only determines the cohomology class
if it is itself G-invariant (for then it corresponds to an element

of H*(X/G) and is determined by its values on elements of H,(X/G)).
But we saw in §3 that

W*L{g,X) = L(h™*gh,X) € H (X;¢) {all h € &) (3)

in the differentiable case, and it is easy to see that the same
formuls will hold for a class L{g,X) defined using {1) (Just
replace f in eq. (1) by foh, which is also a G-invariant map from
X to Si). Therefore if we want the cohomology class L{g,X) to
be invariant under the action of G on H*(X), we should require that
h™*gh = g for all g,h€G, i.e. that G be abelian. Unlike the
reguirement thet G be finite, however, this does not limit the
generality of our definition, since we want our class L{g,X) to
share with the Atiysh-Singer class the property of depending only
on g and its action on X but not on G, and therefore we can always
replace G by the abelian subgroup generated by g.

We can now state the theorem of this section:
Theorem 1: Let X be an oriented rational homology G-manifold, G finite abelian.
There is a unique class L{g,X) in H*(X;G)G satisfying (1) for all
simplicial G-invariant maps f:X-*Si, and this class agrees with the
class L{g,X) of §3 if X and the action of G are differentiable.
Proof: The last statement follows from the assertion about unique-
ness, since we saw in §3 that the differentiably defined class L(g,X)
satisfies (1).

We now proceed as in the non-equivariant case outlined in §2.
We work with complex coefficients, so that we are allowed to use the
isomorphism {4} of §1. We also assume that we have multiplied X with

a G-invariant sphere of large dimension to remove restrictions on the
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dimensions of the cohomology groups to which we can apply Serre's
theorem. Then H*(X/G;€) is generated by cohomology classes which can
be represented by maps f:x/6 > Si. Such maps define G-invariant maps
f:X - Si by f=Fow, and conversely any G~invariant map £ factors through
%/G. The same applies to equivariant homotopies. We thus obtain a

commutative diagram in which all arrows are isomorphisms:

H (1/6;€) T - i (1;6)°
(&)
7 (%/6) st L e 17 ()% €
We now define, for each p € Si, a map
T, 7w (Xt - €, T (fer) = Asign(e, ), (5)

where A.p = £"*(p). We can prove that this is defined and independent
of p and of the choice of f within its equivariant homotopy class. The
proof is just the same as in the non-equivariant case (Milnor [31]). We
choose an open simplex Ai of S:.L (Si has a fixed triangulation with
respect to which f is simplicial) and, using Sard's theorem, a regular
value p € Int(Ai) of f. Then there is a homeomorphism (given explicitly
in {51}) from £~*al to Apxai, commuting with the obvious maps to Ai, and
from the definition this is a G-homeomorphism if f is G-equivariant. It
follows that Tp(f): Tp,(f) for almost &ll p and all p'close to p. Then
a homotopy from £ to a map f' gives a cobordism from £™*(p) to £'"*(p) for
almost all p, and this is a G-cobordism if the homotopy is G-equivariant.
But the equivariant signature Sign(g,A) is an equivariant cobordism
invariant of A (cf. Ossa [33]), so we deduce that Tp(f) = Tp(f') for f,f'
equivariantly homotopic. Since f is equivariantly homotopic to its
composition with any simplicial automorphism of Si, we can carry Ai onto
any desired i-simplex of st without changing Tp(f). Therefore Tp(f) =
Tp,(f') for £,f' equivariantly homotopic and almost all p,p' (now without
requiring that p'be close to p). This shows that the map Tp is well=
defined, and that it is independent of p for almost all p. We denote
this common map by T. It is not hard to show that T is a homomorphism.
Using the isomorphisms (4) and Poincaré duality in X/G (which is a
rational homology manifold) we deduce the existence of LSH*(X/G) with
T(f) = <7*LU f*o,[X]>. Set L(g,X) = m™L € H*(X;C)G.

1
deg 7
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§5. The formula for L(h',X/G)

Now that we have defined L(g,X) for rational homology G-manifolds,
we find that the right-hand side of the formula for L(X/G) proved in $3
in the differentiable case is also defined when X is & rational homology
manifold, and we can ask whether it still gives the value of L(X/G).
This is the case, and we even have the following more general result, which was
stated in somewhat other terms as Theorem 2 of $1:

Theorem 1: Let X be an oriented rational homology U-manifold, where U
is a finite abelian group, and let G be a subgroup of U. Then the
equivariant L-classes (in the sense of §4) of the induced action of U/G
on the rational homology manifold X/G are given by the formula:

1

m™L(¢,X/6) = w2 5L(u,x), (1)
ue€

deg 7

where ¢ € U/G is a coset of G and 7 the projection X- X/G.
Proof: Equality (1) is modelled after and proved using the corresponding

equation for the equivariant signatures, namely

e Sten(6,4/0) = o I Sl n), (2)
where & is @ coset of G in U and A is & U~manifold (or rational
homology U-manifold; (2) is a purely homological statement). This
is proved just as was the special case U=G (eq. (1) of §3) by
applying to the positive and negative eigenspaces of the middle
cohomology group of A the corresponding theorem for the traces
tr(§[¢5 and tr(ulV) of the action of U on a vector space V and of
the induced action of U/G on VG.

To prove (1), we must show that the right-hand side is G-invariant
(so that (1) defines an element of H*(X/G)) and that the class L{¢,%X/G)
that it defines satisfies the basic equation (1) of §4. But we
pointed out in §4 that equation (3) of that section holds also
when X is & rational homology manifold; it follows that the right-
hand side of (1) is G-invariant, (Here we do not need that U is
abelian, which implies h*L(u,X) = L(u,X) for heG; it is sufficient
if G is a normal subgroup of U, in which case the actions of G on
the left and right in (1) change the summands on the right-hand

side but leave the whole sum invariant. Theorem 1 is thus also
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true in this more general situation). Now we have to check that the
class L(€,X/G) defined by (1) satisfies (1) of §&. Choose & (U/G)-
invariant map * from X/G to s and let A denote the inverse image of
a sufficiently general point of s*. Let f=for denote the corresponding
U-invariant map X- S1 and A the inverse image of 2 point under Sl, s0
that & = 4/G. If we substitute ?ie_;"n' m,[X] for [X/G] in the definition
of L{£,%/G) we can rewrite this definition as
1 - i -

Toes < TL(GX/G)Umre, [X]> = sign(S,4), (3)

and if we then substitute for m*L(£,X/G) its value as given by (1), we

obtain as the equation to be proved
T I < LX) Urte,[x] > = Sien(&,4/0). ()
ueg

But the elements summed on the left-hand side of this are precisely
the numbers Sign{u,A), again by eq. (1) of &, and therefore the

thecrem has been reduced to the equality (2) given above.
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§6. Application toaformula of Bott and some remarks on L(g,X)

To illustrate the behaviour of the equivariant L-class L{g,X),
we will calculate it in a simple case, namely for linear actions on
X = PnC. Since this is a smooth action, we can calculate L(g,X) by
the Atiyah-Singer formula.

We write points of X as (zO:...:zn), where (zo,...,zn) ¢ gon+!
is an (n+1)-tuple of complex numbers. Then the (n+1)-dimensional

torus group Tn+1 acts on X by coordinatewise multiplication, i.e. for

1 1 1
g = (§0)°'°:Cn) € Tn+ =8 X eeex S (1)
we define the action on X by
go(zoz...:zn) = (gozo:...:gnzn). (2)

We must calculate the fixed-point set of g. Clearly this is
g _ s = 3=
x* = {(zo.....zn) | Z;2; = {24, 1=0,...,n for some { 1. (3)

Since at least one of the numbers z; is non-zero, the complex
number { is uniquely determined by z€X and must belong to the
finite subset {go,...,gn} of 8'. Therefore we can write X% as a

finite disjoint union

¥ = v x(g) ()
LesSt
where
x{¢) = ?{zoz...:zn) € X | ¢z, = 02, i=0,.,.,n}
= §(z0:...:zn) | 2;=0 for all i with §i¢§} (5)
and
X(2) = 8 Aif L& flpe.al ) (6)

Therefore X(Z) is isomorphic to a projective space PS(G), where s+1
is the number of indices i with {,=( (we set s==-1 in the case (6)).
In particular X(¢) is connected whenever it is nonempty, so that (&)
is precisely the decomposition of X8 as the finite disjoint union of

its comnectedness components.
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The value of L(g,X) is now given by the Atiyah-Singer recipe as a
sum over the components; we now calculate the contribution L{g,X), to
L{g,X) from a given component X{{). We let s denote the (complexg

dimension of X({), and for convenience renumber the coordinates so that
go:"-»gs = g €s+1,---7§n #{ 3 (7)
then

X(¢) = f(zgi...iz:0:...:0)} = PO, (8)

and we shall use this isomorphism to identify X(€) and P€ without

further comment. Let
x ¢ B, y e EEQ) (9)

be the usual generators of the cohomology of complex projective space.
Thus y = c1(H) where H is the Hopf bundle over X({). Since the normal
bundle of X({) in X consists of n-s copies of the Hopf bundle, its
Chern class is (1+y)n-3. Moreover, if we identify this normal bundle N&
with a tubular neighbourhcod of X({) in X, we see that the action of g

is given by multiplication with g‘*;i on the ith copy of H, Indeed
the fibre Ni of N& at zeX is identified with €7 > by the correspondence

(y1""’yn~s) - (zot...:zs:y1:...:yn_s)
and the action of g on N5 is therefore

go(y1,...,yn_s) > go(zo:...:zszy,]:...:yn_s)

#

(COZO:".:€528:§S+1y1:".;gnyn“S)

(€ZO:"':§ZS:§S+1y1:°":gnyn-s)

i

- . N -1 . -t
= (zO ..... IRT S SO FERPILTS gnynws)
A (€-1§s+1 Tqr cens §'1§n yn—s)'

As was pointed out in §2, the Atiyah-Singer characteristic class L"(g)
can be obtained from the same formula as that giving Le(f) if € is a
complex bundle splitting up as a sum of complex line bundles. In our
case N8 splits up into a sum of n-s complex line bundles in an

equivariant way, and each line bundle has characteristic class y,
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while X{¢) itself has total Chern class (1+y)S+1 and therefore

L-class {y/tanh y)$+1. Therefore the Atiyah-Singer formula (eq. (27)

of §2) gives for the class L'(g,X)g € B*(X(¢)) the value

L' (e, %), L(x(¢)) gLe(NS)

o, 2
- e v

(y/tanh y) n - . 10
j=s+t1 € lngZy -1 (10)

Now it is clear that the Poincaré dual of y* € H-T(X(f)) is precisely

the homology class represented by the submanifold Ps-rc' If j denotes

the inclusion X(¢) € X, we have j*[Ps—r$] = [Ps_rw] , where the

pight-hand side denotes the homology class in X represented by the

submanifold P € C P €. The Poincaré dual of this homology class is
sTr n=-s+r n-2s+2r

then in turn equal to x € H (X). This shows that the

Gysin homomorphism j, is given by
. r -
J!(y ) = s (11)

Thus to obtain L(g,X)g from L'(g,X)g we must replace y by x in
formila (10) and then multiply the whole expression by x . This gives

. s+1 g"lg.ezx + 1
Wex), = (p2—)  m (xg—-;jz—J

J=s+1
n rtr e g
=0 g"gje X_oq1/0

where in the last line we have used the equality §j=g for j=0,...,s.
Equation (12) is symmetric in the various coordinates, so the fact

that we renumbered the coordinates at the beginning of the calculation
does not matter, and (12) gives the desired contribution to L{g,%X) from
the component X(¢{). If we now sum over the components, i.e. over all

L€ g’ (that this is legitimate follows from the fact that (12) vanishes
if ¢ ¢ fCO,---,Cn}, since then each of the n+1 factors is a power series
in x beginning with a multiple of x rather than a constant term, and

1 2 0 in B¥(X)), we obtain:

n+1

Theorem 1: Let g e T act on X = P C by the action defined in (2),

where go,...,gn € 31 are complex numbers of norm 1., Then the equivariant
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L-class L(g,X) is given in terms of the Hopf class x € HZ(X) by

-1 2x
n T l.e + 1
L(g,X) = £ 0 ( x ——l— ) (13)
¢ est j=0 g‘lgje -1 ‘

The sum is in fact a finite one since the product appearing vanishes
in H*(X) if ¢ ¢ {go,...,gni.

Corollary: Let Hy c s' denote the cyclic subgroup of ath roots
of unity, where a is a positive integer, and let
1 24 .
G = uaox...xpan = §(go,...,gn) €T | L=, i=0,...,n}  (4)

be a finite subgroup of Tn*1, acting on X = PnC as in the theorem,
where LRCRRRTL N positive integers. Let g denote the greatest
common divisor of the integers 8. Let p: X~ X/G be the projection
map and all other notations as in Theorem 1. Then

n & .X

PSS ) B (5)
Osé<n =0 tanh aj x+ié

1

i

P*L{X/G)

Here the sum over all real numbers & between O and 7 is in fact finite,
since the product vanishes unless ajé = 0 (mod #) for at least one J.
Note: Formula {15) was originally proved by Bott {not yet published).

It is quoted in Hirzebruch [16] (equation (1)) and a proof is given in [21].
Proof of corollary: By Theorem 1 of $1 we have

ds

pL(x/e) = SEE 2 1(gX), (16)
geG

de

G

subgroup H of G of elements acting trivially on X. Clearly

and the factor is simply the reciprocal of the order of the

Ho o= [(geenl) €61 gg=eenl ]

and it follows from the definition of G that H = Hqs where 4 is the
greatest common divisor of ag;eees® . We can evaluate the sum in (16)

by using the trigonometric identity

Az + 1 22+ 4
S—— = a (17)
AR=1 Az =1 7% - 4

(which is proved by observing that the two sides have the same poles
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and the same residues). Thus

X

1, 2
«on e + 1
g€6 Z_J J=0 g'lgje -1

51:1
E;w n g"g.azx +
= n X -y —‘"J""--——->
/. 5=0 < -~ ot 2 - 1
Lest c S J
J

n —%eZ%X .
a ajx -a: 2aix .
Lo J g Je J

(18)
ces? -1

This sum is transformed into the one occurring in (15) by the substi-
; -2i¢
tution { = e

, and the corollary is therefore proved.
We could of course write down an analogous formula for the
n+1/G on the

quotient space PnQ/G by using Theorem 2 instead of Theorem 1 of §1.

equivariant L-class of the action of an element of T

We will give a second application of Theorem 1 in §15. But the
theorem is interesting for its own sake as well as for its applications,
since it illustrates the behaviour of the equivaeriant L-class.

The first fact illustrated by (13) is that, even in the case of &
differentiable action, L{g,X) € H*(X;€) need not be a continuous function
of g. In a way this is surprising, since L{g,X) is defined using the
equivariant signatures Sign(g,A), and the equivariant signature not only
varies continuously but actually remains constant as one varies g (since
it is determined by the action of g* in cohomology). However, the sub-
manifolds A on which L(g,X) must be evaluated themselves depend on g
(it is insufficient to know the value of L(g,X) only on G-invariant
submanifolds if G is an infinite group), and therefore one cannot
conclude that L(g,X) varies continuocusly. Indeed, we see that (13)
has discontinuities at points geG where two of the Ci's are equal
for two reasons. First of all, the set {go,...,gnE over which the sum
in {13) is to be taken becomes smaller when two of the §i*s coalesce;
this discontinuity would not be there if one counted each L(g,}()g

with @ multiplicity equal to the number of gi's with gizg. But even
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if one were to do this, the right-hand side of (13) would still be

disecontinuous as a function of (go,...,gn) € T"**  because the function

- 2%
x * ie + 1 (19>

et -

is not continuous as & function of { at [ = gj. Indeed, although for
each fixed { this is a continuous function (power series) in x, its
constant term (obtained by setting x=0) is zero if { = ¢ and one if
£=2¢5e

It is therefore certainly not the case that, for X a rational
homology manifold, the function L(g,X) defined in § for g € G' =
felements of finite order in G| is a continuous function from G' to
H*(X;€). Therefore our first idea of extending the definition of
L(g,X) to all of G by using the denseness of &' cannot work. Never-

theless, it may be possible to define L{g,X) by continuity. We state a

Conjecture: Let G be a compact abelian Lie group acting on a rational
homology manifold X, G' the dense subgroup of elements of finite order,
U the open subset {geG| xB=x"}, and U' = UNG'. Then the function

U* = H*¥(¥X;€) defined by the class L{g,X) of & is continuous.

The point about this conjecture is that, one the one hand, it holds
for differentiable actions and therefore has some hope of being true,
and, on the other hand, it is strong enough to permit a consistent
definition of L{g,X) on all of G if it holds. To see the first state-
ment, observe that the definition of L(g,X) of $& agrees with the
previous definition $1(3) if X is a smooth G-manifold, and the Atiyah-
Singer class L'(g,X) clearly is a continuous function of g as long as
the fixed-point set does not change. To see how the conjecture's
truth would lead to a definition of L{g,X) for all geG, we make the
additional assumption that the action of G on X has only finitely many
isotropy groups GX (if X is an integral homology manifold, for instance,
this is known to hold: c¢f, Borel [2], Ch. VI). Let GyseersGy be the
various isotropy groups occurring, and for each subset IC{1,...,kl}
define G(I) =N G, U(I) = [geG| geGy = iel}, and X(I) =

iel i’

{xeX| G =G, for some i€I}. Then G is the disjoint union of the oK

sets U(I), so it suffices to define L(g,X) for geU(I). But G(I) is a
closed subgroup of G, and U(I) = [geG(I)| xB = X(I)} is for G(I)

precisely the set U of the conjecture, so if the conjecture holds, the
L{g,X) of & is defined and continuous on a dense subset U{I)' of U(I)

and can be extended to all of U(I). As before, we note that assuming
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that G be abelian is harmless, since for arbitrary compact G we can
def'ine L(g,X) by considering only the closed subgroup of G generated
by g&.

As well as revealing the discontinuity of the equivariant L-class
L(g,X), equation (13) is interesting because of a certain formal
similarity with the main result of §5. To meke this more appar ent,

2 1
we rename the spaces and groups involved. We now write X for S o

considered as the unit sphere in Cn+1, let U= Tn+1 = S1x...xS with
the obvious action on X, and let G be the circle group S1 embedded in
U as the diagonal ({,...,{). Then the quotient X/G = P € is the space 1),

and equation (13) can be restated in the form

H

r £(u) (¢ € u/c = T/5"), (20)
u€é

L(¢,%/G)
where

£{u)

it

n (x 54—-———’) (4= Ggeeert el (21)
J_

Equation (20) is very similar to §5(2), which states that

™L{&,X%/¢) = £ L{u,X) (22)
ueé

if G is finite and acts effectively on a rational homology manifold X.
We might therefore conjecture that a formula like (20) holds in general,
at least for G a compact abelian Lie group, if G acts freely (so that
X/G is a manifold) or if only a finite number of elements of G have
fixed points (e.g. for a semi~-free S1-action). The class f{u) would
then presumably satisfy #*f{(u) = L{u,X), making (22) a consequence
of (20), and would also have to be such that £f{u)=0 for sll but
finitely many u in each coset ¢ € U/G (so that the sum (22) makes
sense}. I do not know if this is in general true. It is if G is
finite abelian, since then L{u,X) is invariant under G and we can
simply take f(u) = #*"'L{u,X)., It also is possible to define f(u)
if the action is differentiable, since then (X/G)é is the disjoint
union of the sets XU/G with uefé (and all but finitely many of these
sets are empty) just as in (4), and so we can take for f(u) the
contribution in the Atiyah-Singer formula for L(&,X/G) coming from
the component XU/G of the fixed-point set (X/G)g.



CHAPTER II: L-CLASSES OF SYMMETRIC FRODUCTS

In Chapter I we obtained a formula for the calculation of the L-class
of the quotient of a differentiable manifold by & smooth, orientation-
preserving action of & finite group. In this chapter, we apply this to
the gquotient Xn/Sn of the nth Cartesian product of X with itself by the

symmetric group on n letters, i.e. to the njm symmetric product X(n) of X.

In order that the action of Sn on Xn be orientation-preserving, it is
necessary that X have even dimension 2s.

We give in §7 a description of the rational cohomology of %(n), as
well as the various notation necessary for a statement of the formula
for L(X(n)), which is then given in the following section. Since the
complete formula obtained is rather obscure, we also make several couments
oxplaining the meaning of the various terms and of the formula as a whole.
The proof occupies the following four sections. Section 13 contains an
explicit evaluation of the formula in two special cases-- X z sphere of
even dimension, and X & Riemann surface. In the latter case, X(n) is a
complex manifold whose Chern class {and hence also L-class) was already
known (Macdonald [26]); thus we are able to check our general formula.

In §i4kwe consider the more general situation where a finite group G
acts on X. Then there is an induced action on X(n) (diagonel actien),
and we can apply the result of §5 to calculate L{g,X(n)) for this action.
Since the calculation is similar to that in the non-equivariant case, we
give the proof more briefly, in a single section. The formula obtained is
sven more complicated than the non-equivariant one, but sgain we find that
the dependence of L{g,X{n)) on n is very simple--if the order of g is odd.
In the last section of the chapter we compute explicitly the form which
the equation for L(g,X(n)) takes if X is an even-dimensional sphere. If X
is Sz, then X(n) = PDC and we can check the result with the computation
of L{g,PnG) made previously in connection with the theorem of Bott.

The most interesting fact which emerges is the very simple dependence
of L(X(n)) on the number of factors n in the symmetric power. Namely, if
we consider the inclusion j of X(n) in X(n+1) induced by choesing a base-
point in X, and then form Q= FLX{(n+1))L{X(n))™* (this is possible

since L(X(n)) is invertible; Q, would be the L-class of the normal bundle
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if X(n) were a smooth manifold smoothly embedded in X(n+1) ), it turns
out that Qn is independent of n in the sense that j*Qn+1 = Qn‘ Thus
Q, is the restriction to X(n) of a class @ in the cohomology of X{w).
Moreover, Q turns out to be in a certainsense independent of X. There
is namely a canomically defined element 7 € st(XGw)) arising from
the orientation of X, and the class Q is equal to Qs(n) with Q_a power
series in one variable whose coefficients depend only on s = {dim X)/2.
For example, Q1(t} = t/tanh t; this corresponds to the case where X
is a Riemann surface, in which case X(n) is a smooth manifold and Q
really can be interpreted as the L-class of the normal bundle of

X(n) € X(n+1). TFor s larger than 1, however, the power series Qs(t)
does not split formally as a finite product H3:1(xj/tanh xj), and we
deduce that the inclusion of X(n) in X(n+1) does not have a normal
bundle in the sense of Thom.

In the equivariant case, if g acts on X and has finite order p,
we get a similar result if p is odd, namely the restriction to H*(X(n})
of L{g,X{n+p)) equals the product of L{g,X(n)) with a factor O which
is independent of n, of X, and of the action of g on X, but depends
only on s and p (it is again a power series in 7, this time with
coefficients depending on p as well as on s; for instance it equals
n/tanh pn if s=1). This result has two features of interest:
first, that there is a simple relation between L{X(n)) and L(X(n+p)),

50 that there is a kind of periodicity with period p in the eouivariant
structure of the symmetric products of X, and secondly, that there is a
different behaviour for elements of odd and even order (if p is even
there is no periodicity).

Since the calculations are long and perhaps unconvincing, I have
tried to give as many computations as possible for which a known result
was available for comparison. Unfortunately, this was only possible for
X two-dimensional, since the power series Qs(n) for s>1 has not previously
occurred in this connection. As already mentioned, it wes possible in two
cases: Macdonald's work on symmetric powers of Riemann surfaces for the
non-equivariant case, and the formula of $ (here X=82) for the equivariant
case. In both cases, the previous result had been obtained by quite
different methods (Macdonald dces not use the index theorem, and in §6
we did not use the fact that Pnc is a symmetric product) and in a quite
different form requiring a long computation to be shown equal to our
result. Thus these verifications lend considerable credibility to the

theorems of this chapter.
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§7. The rational cohomology of X({n)

If X is a compact, connected topological space and n a positive

integer, the nth symmetric product of X is the space

X(n) = X/s (1)

with the quotient topology, where Sn is the symmetric group on n letters

acting on the nth Cartesian product X™ of X with itself by permutation

of the factors. Thus X{n) is the set of all unordered n-tuples of points
of X, with the obvious topology. If n=0, we define X{n) to be a point.

The nth symmetric product of X is also sometimes called its nth symmetric
power, and is variously denoted X(n), X[n], and sP™X.

If we choose a base-point erX, then there is a natural inclusion
3t X(n) € x(n+1) (2)

sending an unordered n-tuple fx1,...,anC X to its union {xo,x1,---,xn§
with {xol. However, there is no natural projection map from X(n+1) to
X(n), since there is no natural way to choose n elements from a set of
n+1 elements. We will also use the letter j to denote compositions

of the map (2) with itself, i.e. any inclusion X(n)C X{m) with m>n. Let
X() = 1lim X(n) (3)

be the limit of the direct system defined by the maps Jj, and use J to
denote the inclusion of X(n) in X{wo) also.

The purpose of this section is to describe the (additive) rational
cohomology of X{n). This is very easy, using H*(X/G;Q) = H*(X;Q)G and
elementary properties of cohomology (as found in Spanier), and this
section canbe skipped except for the equations (8), (9), (17) giving
the notations used for the basis of H*(X(n);Q) and for one easy
proposition {eq. (24)).

All cohomology in this section is to be understood with coefficients
in § {or Ror €; we only need to have a field of characteristic zero).
This results in two simplifications. First, as mentioned above, the
map 7 :H*(X/@) > H*(X) is then an isomorphism onto H*(X)G (ct. §1);
this isomorphism will be used without explicit mention to identify
H*(X/G) with H*(X)G'C H*(X) for any G-space X with G a finite group.
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Secondly, there is a natural isomorphism of H*(XxY) with H*(X) @ H*(Y).
Therefore

B (™) = H*(X) @ ... @ H*(X) (1)

has as a basis Efilx...xfi | i4,04.,ip € I, where ffii i e I} is an
n
additive basis for the finite~dimensional vector space H*(X) over Q.

Recall that the map in cohomology induced by the interchange mapping
T: XxY » ¥xX (5)

sends vxue Hj+i(YxX) (where ue Hi(X), ve Hj(Y) ) to (—1)ijuxve Hi+j(XxY).
In particular, with X=Y we see that the map induced in cohomology by an
interchange of factors is not simply the corresponding interchange, but
contains a further factor -1 if two terms of odd degree are transposed.

It follows that, for o€ S , the effect of o* on Ht(x™) (where o acts

on Xn‘by o(x1,...,xn) hd (xa(1)""’x0(n)) ) is
g*(u1x...xun> = (-1)Y Ug=a(g)X oee X uc'l(n)’ (6)

where u,,...,u in H*(X) are homogeneous elements and v is the number

of transpositions i«>j of the permutation o for which Uy and u‘j have odd
degree (this number is well-defined, i.e. independent of the decomposition
of 0 as a product of transpositions, modulo 2). Write TrJ.:Xn - X for the

projection onto the jth factor; then we can reformulate (6) as

g*(u1x...xun) = (-1 wg(ug-1<1))Li...&)ﬁ;{uo_i(n>)

i

ﬂch)u1u...uﬂg(n)un, (7

where in the last line we have used graded commutativity. (0ne can

see this more easily by noting that Ti00 = W5y, SO that c*(wguj)

= T j)uj') Therefore the symmetrization of u,x...xu is

1

- E3 e 23 Ed
Ugseee,l > = Z"a (uﬂx...xun) = % n8(1)u1 vee ”G(n)un
ge3 o €S
n n
e B (x™)%n = B¢ (x(n)). (8)

Here and in the future, we omit the symbol U and denote cup products
simply by Jjuxtaposition.

We choose a basis fj,...,f} of H*(X) with £ =1 and each £,
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homogeneous, say of degree d . Then H* {x{n)) is spanned by the elements
<fj ,...,fJ. > . Since this element is independent (up to sign) of the

1 n
order of the indices ji’ we need only specify the number ns of times a

given index j (j=0,1,...,b) appears in the set §31,...,3n}. Thus, let

<no(f'0)...nb(f‘b)> = <f ,...,f‘;,&,...,ft,...,‘fi),.. 3%
o "y 1S
e H'(X(n)), (9)

where Ngtes oDy =0, There is, however, one more restriction if we
wish to have a basis: namely, n, must be €1 if dizdeg £, is odd.

Indeed, from (8) we see immediately that if, for example, U=l and is
of odd degree, then <u1,...,un> is zero. Thus we have

Froposition 1: Let f‘o, ...,f_ be a homogeneous basis for H*(X;Q). Then
a basis for H*{¥(n);@) is given by the set of elements (9) with

Dgte.stny = 1 and nis'l for all i with deg fi odd.

0
Corollary: The Poincaré polynomial
oC
P(x(n)) = = % ding H (X(n);90) (10)
r=0

of X(n) is given in terms of the Betti numbers

By = dimy H(50) (11)

of X by the formula

T a0 P(x(n)) = @ < ! >ﬁ‘in <1 . dfd

J - + X

=0 a0\ T - tx&/ a0 . (12)
d even d odd

In particular (x= -1), the Euler characteristics of X(n) and X are

related by

oo e(x)
1

s " e(X(n)) = (t:E') . (13)
n=0

Note: Formulas (12) and (13) are due to Macdonald [24].

Proof of cerellary: By the proposition, we have

dimQ H(X(n)) = ”{no,...,nba O ng+...+n =mn, ng <1 for d, odd,

n0d0+...+ nbd.bzr},

from which we find:
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00 oo Nataeset n.d.+...+
oz % dim H(X(n)) = y g O ”‘bxoo ol
n=0 r=0 L

no,...,nb;O

n.st for 4, odd

i i

b ® n ndj b 1 n nd ;
= n ( 2t x > n < F ot x >
J=0 \ n=0 =0 \ n=0
dd even dj odd

b 1 b a :
= n <—T> 1 (1+tx ‘])
3=0 N1 = tx 9/ j=0

d. even d. odd
d J
©o a.-By - a s
= 0 (1-tx ) ¢ g (etx ) @ (14)
d=0 d=0
d even d odd

We now want to compare the cohomology of X(n) with that of X(n+1),

1

using the inclusion (2). The inclusion §' of X" in X as X" x x

0
induces the map

. ( ugxe.axuy, if upeq = 1
(LY E 1 -
J ( 1x"'x n+1) i Z

(1)

o, if Uy % 1

in cohomelogy; therefore the map j* from H¥(X(n+1)) = Iﬂl"‘()(m'1)sl”l‘M

to H¥(X(n)) = H"‘(Xn)sn , which is simply the restriection of j'* to

the S n+‘|)
n+

~-invariant subspace of H*(X , operates by

1

% = y * * *
AR VP LR ﬂc(?)(u’l)”'ﬁn+1(uo"l(n-r‘!)>”°Trcf(n+1)(un+1)

n+1
O€ Bpyg
U 1 =
o™ (n+1)
n+_1
=§ V * u...ﬁ...w* u
L/ o(1) ™1 n+t 7§ o(nst) net
uJij‘ Uésnﬂ
3 o(§)=n+1
n+1
= ji <u,, "’u,j""’un+1>’
o f
u :1
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where as usual the " indicates the omission of a factor. Therefore

7 <ng(£) e on (£,) > { nb<n0(f0)"6nb—1(fb~1);g:7(fb)> ii zbiz’
b“ ’

or

1 1 —
el A _ -
j*( T <n0(fD),..nb(fb)>) = T <n0(fo)...nb_1(fb_1)nb 1(fb)>.
? (16)
Thus if we renormalize the element (9) by dividing by nb!, we obtain
an element which is stable under j*. We therefore define
_ g, if n<natoe.tny 4
[ng(fg) e omy 4 (£ )], = { -1 L ¢ e
()7 <ng(fy).von (£, _Im (£,)>

if nzngh...tm o,
€ B (X(n)), (17)

where in the case n2ng+...+n, . We have defined M a5 NNgTe. T .
Then (16) states

Flagleg)eeen (6, 01 = [ng(fg)eeen, (£ D1 - (18)
In other words, the sequence [no(fo)...nb_1(fb_1)]n (n=1,2,...)
defines an element
[ng(fg)eeeny (£, )] € B (X6o)) = 1im B¥(X(n)) (19)
such that "
Flog(eg)eeen (£, )] = [ng(£p)..ony (£, )], (20)

for the inclusion j: X(n) C X(e0). Because of relation (20), we will
omit the subscript n in future, leaving the question whether the stable
element or its restriction to some X(n) is meant to be decided by the
context. Notice that, since fo,...,fb_1 have pesitive degrees, there
are only finitely many elements (19) of given degree, so that each

of the groups Hj(X(aﬁ) is finite-dimensional over @ (though infinitely
many of them are non-zere). In particular X(o) has a well-defined

Poincaré power series, which from eqg. (12) above is clearly

P(x(od)) = GRS ST oL (21)
d>0, even d>0, odd
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We have looked especially closely at the role of fb=1 in expression
(9) above, However, there are other fi's in (9) which act in a special
way, namely those of the highest degree occurring (or, more generslly,

any fi such that fif =0 for all f‘j of positive degree). Assume that fo

J

is such an element, and that its degree 4 is even (this is the only

case we will need later). Define

n
d
N, = [1(f0)]n = 3§ mf, e H (X(n})). (22}
i=1
Then
n
- z 3 % *
NS Uppeeerd >= 3 %, (wifc)(ﬁc(1)u1)...(no(n)un).
i=1 GEDn

In the expression on the right, we interchange the summations and replace
i by j=o(i), obtaining (since f, is of even degree and commutes with every-

thing)

n
erSn RO s (3 5y (o)) (TF yag)-

But ujfo is zere unless uj=1, by our assumption on fo, so this is

no(- -
z L b (ﬂ;“)u,i)...(fr’;(j)fo)...(Wz(n>un)J

J=1 oeSn
u,= 1
J
n
= ij <u1,...,uj~1,ﬁ0,uj+1,...,un>.
u.= 1
J

Therefore (we use an overline raether than brackets to avoid ambiguity)
n, < no(fo)...nb_1(fb~1)nb(fb)> = nb<no+1(f0)...nb_1(fb_1)nb—1(fb)>,

or, finally,

ny [ng(Eg)eeeny (8,1, = [ngr T (£0)n, (8 )eemy (2, ). (23)

Clearly the sequence n_ (n=1,2,...) defines an element n € Hd(XQ”)) and
(23) is a stable relation. We have thus proved
Propesition 2: Let deg fo = 4 be even and d;di for all i. Then

[ng(£)n, (£,) . eony (£, )] = " O (o, (£)eemy (5,01 (24)

in H(X(w)), where 7= [1(£,)] € H'(X(=)).



We now assume that the space X whose symmetric powers are being
studied is & closed, connected, oriented differentisble manifold. Then
the action of the symmetric group Sn on Xn is smooth; the condition
that Xn/Sn be a rational homology manifold is that this action is also
orientation-preserving. Since Sn is generated by transpositions (for
n>1), this is the case exactly when the interchange map T:XxX » XxX
is orientation-preserving. Because of the graded commutativity, this
holds if and only if the dimension of X is an even number 2s.

We let

2 € H3() ™)

be the Poincare dual of [pt.] € HO(X). We then choose a basis for
H*(X) as in §7, i.e. fO,...,f with each f, homogeneous and with
f0=z and fb= 1. We also introduce a second basis

€ H*(X), e =1, e

PR3 0=

90’ b b =z, (2)

which is dual to {fi} under the intersection form, that is,

<eifj,[x]> = by (1,3 = 0,1,...,b). (3)

Thus 8 is homogeneous of degree Zs-di, where di = deg fi'
The result of the last section was that a basis for H*(X(o)) is

given by the elements

og(E)eeem (5] = 1 O Iy (e)eemy (8 0L @)
where the square brackets have the meaning given in &7 and whers
n= el € HP(KE) (5)
is the element whose restriction to X{(n) is
mgo= o= mre..emz e HOX(0). (6)

The map J*:H*(X(eo)) » H*(X(n)) is surjective, and a basis for H*(X(n))

is given by the images under j* of the elements (4) for which

ng + ... +my 4 < n.
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We now state the main theorem of this chapter.
Theorem 1: Let X be a connected, closed, oriented differentiable
manifold of dimension 2s. Let n be the element defined in (5) and (6).
Lat j denote the inclusion of X(n) in X(n+1), Then

FLE@+1)) = Q (ny) - L{x{n)), )

where Qs(—) is the power series in one variable defined below, and
depends on 8 but not on the space X or the number of factors n. An
equivalent statement is that there exists an element G of H¥*(X(w))
such that (if we use j also to denote the inclusion X(n)C X(eo))

L(x(n)) = Lo (™ - el 8)

The power series Qs is defined as the unique even power series such that

coefficient of t2F in Qs(t)2k+1 (2k+1)"3*" (x20). (9)
It can also be defined as
() = & (10)
s fs t) ?
where
3 5 7
£(t) = got(t), e (t) = trmaeE L (11)
5 3 5 33 58 78

The firat few terms of these power series are given in the table at the
end of this section,
The class G ¢ H**(X(0)) is defined as follows: Let B be the graded
povier series ring over @ in variables tO""’tb-1 with ti of degree di’
i.e. B is the quotient of Q[[tg,...,tb_1]] by the relations
bt = (-1)didj t.t, (3,9 = 0,1,...,b-1) (12)
35 = 3% »d=0,1,..., .

Let A be the graded tensor product of H**(X) with B. We use e to
denocte e@1 (for e€ H**(X)) and t; to denote 18t {i=0,...,b=1); then

da.
et = (Do (eei(n)) (13)
in A, We define a €A by

a = eo‘to + ...+ eb-—1tb-1 . (14)
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Since B is a power series ring rather than a polynomial ring and we
tensored with H**(X) instead of H*(X) in forming A, it is legitimate
to form power series (with rational coefficients) of elements in A;
thus gr(a) € A is well-defined. We write Lc(X) for the component

of degree 2c of the L-class of X (this deviates from the usual notation

where Lc denotes a certain polynomial in Pontrjagin classes of total
degree #c), or for the corresponding element LC(X)@1 of A. There is
a linear map < -,[X]> from the graded ring A to the graded ring B,
defined on the generators e1§1...t. of A by

1k
<e ti1...tik,[x]> = <e,[X]> tiq'°‘tik € B. (15)
Set
s
H = I <8 4 (0L, (X),[X]> < B (16)
and define numbers e €Q as the coefficients in the expansion
0°* *fp=1
H . n
e BT o, Mb-1
—ﬁ—y— = c L7 € B, (17)
(1_t3)eX 2 /. no...n.b_1 0 b-1

where e(X) is the Euler characteristiec, eH denotes exponentiation, and

the sum is over all integers nO,...,nb_120. Then

6 =) ey %)

the summation being as in (17), where Qs(-) and fs(—) are the power

0T [no(fo)--- b =1 (fb_»])]:

(18)
series defined above and f;(—) is the (formal) derivative of fs(—).

Before discussing the interpretation or significance of Theorem 1,
we should perhaps make some remarks elucidating the formalism, since
the complete statement is somewhat involved and perhaps confusing.

In the first place, the essential and most interesting assertion
of the theorem is the relatively simple statement (7), either as a pure
existence theorem (namely the existence of a power series Qs independent
of n for which (7) holds) or, combined with the formula for Q  siven in
eq. (9) or in egs. (10)-(11), as a precise statement of the relationship
between the values of L(X(n)) for two successive values of n. The

interest of this relation lies in a certain formal resemblance to a
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similar relation involving the L-class of a normal bundle; this will
be discussed below., As stated in the theorem, equation (7) is
equivalent to the existence of a cohomology class G in X(o) such that (8)
holds for every n. To see this, we notice that (8) trivially implies (7)
since the inclusion of X(n) in X(e) is the composition X(n)CX(n+1)C
X(eo). Conversely, if (7) holds for every n, we define a class G, in
H* (X(n)) as QS(nJ'""i L(%(n)) and deduce from (7) that P*G ., =G,
which means that the seguence §Gn§:;1 defines an element G of the
inverse limit 1im H*(X(n)) = H*(X(o)) with j*G = G, for all n. Thus
we can break the theorem up into the main statement, that L(X(n))
behaves exponentially as a function of n (i.e. is of the form e+l ¢
with §, G independent of n), the statement that Q is given by the
expressions (9)-{11), and the statement that G is given by the proce-
dure stated in the remainder of the theorem.

The definition of the power series Qs(t} =1+ t2/38+ e
(the first few coefficients of QS and various related power series are
given in the table at the end of this section) requires little comment.
The equivalence of the definition (9) and the definition given in egs.
(10) and (11) is of course an exact parallel to the characterisation

of the function
Q(t) = ot (19)
1 tanh t

given by Hirzebruch ([12], Lemmal51), and the proof is exactly the same.
The functions Qo(t) and Qj(t) can be written in closed form (Qo(t) is
equal to [1 + VIT5E2}/2 ) but the series Q () for 522 is not an
elementary function. Note that, since Qs(t) is an even power series
and 7 has degree 2s, equation (7) implies that L(X{n)) and L{X{m+1})
agree up to degree 4s {or more precisely, j*Li(X(n+1)} = Li(X(n)) for
i <2s), so the value of L{X(n)) is essentially independent of n in
degrees smeller than 2dimX,

Even less need be sald to explain the definition of G, though
this is more complicated. We only remark that, since gr(t} is a
power series with no constant term, H considered as a power series in
the ti’s also has no constant term, so it is legitimate to form the
power series eH in equation (17).

It would be very pleasing to have a simple proof of equation (7),

or equivalently of (8) without an explicit evaluation of the power



series G, One way to do this might be to assume given the class
L{(¥(n+1)) and show directly that Qs(nn)‘1 F*L(X(n+1)) satisfies
Milnor's definition for the L-class of X(n).

However, despite the rather cumbersome formula for G, it is
possible in certain situations to use the entire formula (8) to
obtain completely explicit formulas for L(X(n)). This is the case
when X has especially simple cohomology and L-class, for example if
it is a sphere {of even dimension) or a Riemam surface {(for these
two cases the calculation will be given in $13). Moreover, it is
possible to write G in a shorter and more natural way--in particular,
in such & way that it does not involve the choice of & basis for H*(X)--
and indeed it is this basis-free version which will emerge from the
proof in §§9-12. We preferred the more unwieldy form given here
because the basis-free formulation reguires the introduction of yet
more sbstract notation which would have made the statement of the
theorem even more obscure, and because one is in any case obliged to
expand in terms of a basis for concrete applications such as those
mentioned above (indeed, even the power series gr(a) and e’ used to
shorten the statement of the theorem given here must be expanded in
the course of an explicit calculation).

We can use the evaluation of G to obtain complete results for
L(X(n)) not only when X is a simple manifold, but alsc for arbitrary X
and small values of n., This is slightly easier using the basis-free
form of Theorem 1 but can also be done with the form given here., For
n=1 we can easily check that Theorem 1 really does give L(X) as the
value of L{X(1)). For n=2 we obtain (with m:XxX » X(2) the projection)

m*L{X(2)) = L{X)xL(X) + e(X) zxz. (20)

In particular, the signature of the symmetric square of X equals
[(sign X)% + e(X)]/2, a special case of a formula of Hirzebruch for
Sign(X(n)) which will be proved in §9 (and deduced from the formula
for L(X(n)) as a check on the latter in §13). For n23 the formula
for 7*L(X(n)) is rather more complicated; it is & certain polynomial
in the 1ifts to H*(X7) of the elements z € H->(X), L(X)e H*(X), and
a€ H3(XxX), this last being the restriction to XxX of the Thom class U
in Hgs(XxX,XxX-A) (where A is the diagonal in XxX).

The fact that L{X(n)) is given--when X is a differentiable
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manifold--by a certain polynomial in the classes 3, LC(X), and a

and their lifts to H*(Xn) makes it clear that Theorem 1 still makes
sense when X is a rational homology manifold. Indeed, the cohomology
classes z and @ are defined for any space satisfying Poincare duality
{i.e. with the global homological properties of an oriented differen-
tiable manifold), while L{X) is defined for a rational homology
manifold by the definition of Thom or of Milnor. In the spirit of
Chapter I, we ask whether a result involving L-classes which is known
to hold for differentisble manifolds and which involves no differentiable
data (normal bundles, eigenvalues, etc.) also holds for rational
homology manifolds. If we look at the proof of Theorem 41, we find that
only at one place did we use the differentisbility, namely an applica-
tion of the G-signature theorem of Atiyah and Singer which was used to
prove the following result:

Proposition 1: Let X be a compact, connected, closed, orientable
differentiable manifold of dimension 2s. Let o:X'= X' be the
permutation map sending (x1,...,xr) to (x2,...,xr,x1). Let £:85 52K
be 2 smooth map with f{ooy) = £(¥y) for all ye X¥, and choose

pEe S2k a5 a regular value of f and of f|, (where 4 C X" is the
diagonal); thus A = £ *(p) is a submanifold of X' of dimension

2rs -2k and ANSA is a manifold of dimension 2r- 2k. Then

e(X), if r is even, k=0,
Sign(o,A) = 0, if r is even, k30, (21)
r Sign(ana), if r is odd.

Thus we have a statement, formulated purely in homological terms and
with notions that make sense for X a rational homology manifold (we
let f be simplicial and interpret transversality in the sense of Thom),
but only known for X a smooth manifold. A proof of Proposition 1 for
any rational homology manifold X would prove that Theorem 1 also holds
for X, since the other steps in §§9-12 carry over without change. There
is an analogous proposition if a finite group acts on X whose truth
would imply the validity of the result of §i4 for L{g,X{(n)}) for X a
rational homology manifold.

We close this section with a discussion of equation (7) and its
above-mentioned resemblance to a formula involving normal bundles.
Recall (p. 1) that Thom showed how to define a bundle v over a
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rational homology menifcld embedded in a certain way (one says that N is

a submsnifold with orthogonal normal structure) in another rational

homology manifold M. A rational homology manifold M always has enough
such submanifolds to generate its rational homology. If M is a smooth
manifold and N a smooth submanifold, then v is the usual normal bundle,
so we can consistently refer to v in general as a normal bundle. It is
a real vector bundle whose dimension equals the codimension of N im M.
Pinally, Thom showed that the L~classes of M and N (in his sense) are

related to the L-class of v just as in the differentiable case, i.e. by
FLM) = L(»L(), (22)

where j is the inclusion map from N to M.

Equations (7) and (22) are identical in form if we take for N and
M the rational homology manifolds X(n) and X(n+1), and our first thought
is that this formel identity cannot be accidental but rather arises
because X{n) really is a rational homology submanifold of X(n+1) with
orthogonal normal structure, its normal bundle Vo in the sense of Thom

then inevitably satisfying
L(v) = 9 (n) (25)

However, this is not the case if s is greater than one (if s=1, X(n)
is a differentieble and even a complex manifold, and Vo is the normal
bundle of X(n) in X(n+1) in the usual sense; the first Chern class of Vh
equals 7 € H(X(n)) and Qs(nn) = nn/tanh 7, is the usual L-class
of & complex line bundle). To see this, we apply in reverse the
multiplicative sequence used to define the L-class in terms of the
Pontrjagin class (cf. Hirzebruch [42], §1, especially for the proof
that the multiplicative sequence associated to x/tanh x is invertible).
Since Qén) is a power series in n?, it follows from the properties

of multiplicative sequences that the sequence Rs(n) obtained is also

a power series in n®. But 7® has degree 4s, and the bundle v, (if

it exists) has dimension 2s and therefore a Pontrjagin class cutting
off at dimension ks. Therefore if (23) holds, we have from p(vn) =
Rs(nn) that the series RS must break off after the second term:

Rs(n) = 14+ an?. (24)

But the multiplicative seguence x/tanh x applied to (24) gives

as the corresponding L-class the series
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1+ ﬁsanz + (ﬁ: - ﬁZS)azn€72 + ... ’ (25)

where we have written fi_ for the coefficient 22k(22k_1 -1)Bk/(2k)! of
k
xF in x/sin 2x (this coefficient is denoted by s, in [12]). Since

3 2 1 2 4 )
o m) = 1+ ( gg me o+ ( gg - ;g M+ e, (26)

it can only be of the form (25) if the relation holds which is obtained
by equating coefficients of nZk in (25) and (26) and eliminating a, i.e.

By = Py 93
—555-— = ? - 2. (27)

It is easy to see that (27) is fulfilled only for s=1.

We have therefore proved that X(n) is not in general a rational
homology submanifold of X(n+1) with orthogonal normal structure. Howsver,
the formal analogy between (7) and {22) still suggests that it has a
particularly nice normal structure in some sense. We can hope to find
some more general type of normal bundle than O(n)-bundles, for which
(rational) Pontrjagin classes or L-classes are still defined and such
that the inclusion of the nth symmetric product of a menifold in the
(n+‘|)St always has a normal bundle in the generalised sense. In fact,

a definition recently has been given for such a generalised bundle for
homology manifolds (Martin and Maunder [26]). These objects, called
"homology cobordism bundles," are (roughly) defined as projections E-B for
which the inverse image of a cell in B is H-cobordant to the product of
the cell with the fibre, the fibre being taken as D" in an n~dimensional
bundle. It was shown (in the paper referred to above and in Maunder [27])
that these objects form a reasonable category, allowing Whitney direct
sums, that they possess an L-class, that the inclusion of N as a
homology submanifold in a homology manifold M always has a normal
homology cobordism bundle v and (22) is satisfied, and finally that

the set KH(X} of stable isomorphism classes of homology cobordism
bundles over X is an abelian group and that X-*KH(X) is a representable
functor. These results were proved in the category of homology manifolds
but possibly still hold if one only requires that the spaces be
rational homology manifolds, and replaces homology by rational homology
in the definition of H=-cobordism. Then equation (7)couhibe interpreted
as saying that the L-class of the rational homology cobordism bundle Vi
of X{n) in X(n+1) is given by (23).
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In [27), the Pontrjagin class of a homology cobordism bundle was
defined by using Thom's definition of the rational Pontrjagin class of
a homology manifold (as the class cbtained by applying to the L-class
defined in §2 the inverse of the Hirzebruch multiplicative sequence
x/tanh x) and then requiring {22) or its analogue for Fontrjagin classes
to hold; this suffices to define L{v)} for any bundle since a bundle cam
be thought of as the normal bundle of its zero-ssction in its total
space. However, this seems to be the wrong generalisation of the
Pontrjagin class, since, as shown above, the Fontrjagin class defined
in this way for Yy does not break off at the right point., Indeed, it
almost certainly does not break off at all, since the formal power
series Qs(n) in a variable n of degree 2s does not seem to split as a
finite product HiQ1(xi) with varizbles X of degree 2, It seems more

appropriate to define the Pontrjagin class of our normal bundle Vy by
- 2
p(vn) = 1+ 7. (28)

If s=1, then v is a complex line bundle over %{(n}, and (28) is the
usual Fontrjagin class. In general we call v, & "line bundle of type s”
(we omit in future the words "rational homology cobordism” before
“bundle”). The standard model is obtained by taking for X a sphere of
dimension 2s. The fact that Qs(-) is independent of the number of
factors p in the symmetric product suggests that the bundle v, over
st(n) is itself independent of m, i.e. that j*v_, = v . In any case,
this certainly holds for the L-class as defined in (23) or the Pontrjagin
class as defined by (28). We then obtain as classifying space for line
bundles of type s the limit 1im S2S(n) = st@w), over which there is a
universal line bundle of type s defined as the limit of the bundles Vo

and for this bundle v we have
Lv) = o (), pl) = 1+0% (29)

where 71 is the generator of H*{stﬁn),ﬂ) = g[{n]]. We then define in
general a line bundle of type s to be the pull-back of v to a space X
by some map f:X - SZSGM), its L-class and Pontrjagin class are then
defined as the pull-backs of the elements (29). Therefore there is an
isomorphism between the set of homotopy classes of maps f and the set

of isomorphism classes of bundles of type s over X, But a well-known
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theorem of Dold and Thom [9] states that the homotopy groups of an
infinite symmetric product X(e0) are isomorphic to the homology groups
of X, and thus in particular that the space SZSQ”) is & K(%,2s). The
isomorphism classes of line bundles of type s are therefore in 1:1
correspondence with the elements of [X,K(Z,2s)] = HZS(X;Z). Thus

a line bundle € over X is completely classifisd by a "first Chern class"
c1(§) € st(x;z), where f:X - szs(oo) is the classifying mep of & (i.e.
£ = %),

All of these remarks are naturally conjectural only, depending on
the existence of an appropriate category of rational homology bundles
enjoying at least the properties of the Martin~Maunder bundles (namely
that direct sums and induced bundles can be formed, that there is a
classifying space, and that the bundles have L-classes). We can go
further in the description of the form the theory might take if these
bundles exist. For a direct sum ¢ = &f.

i
over a space X, we could define the total Chern, Pontrjagin and L-

of line bundles éi of type s

classes as H(1+xi), H(1+x§) and an(xi), respectively, where x, = 01(§i).
We might even hope that there is a splitting theorem analogous to

the one for ordinary complex bundles, i.e. that there is a natural
class of "bundles of type 8" — bundles £ such that g*& is a sum of
line bundles, for some map g:Y-X for which g*:H*(X)~>H*(Y) is a
monomorphism, Then if it is also true that the classes c(g¥f), p(g*€)
and L(g*¢) defined above lie in the image of g*, we have definitions
for the corresponding characteristic classes for the bundle £, This
would then suggest a whole series of further gquestions. First, we
would want a geometric characterisation of those rational homology
cobordism bundles which are of type s in this sense (a necessary
condition, for example, would be that the L-class is zero in dimensions
not divisible by L4s)., This geometric description should be such as to
allow the actual construction of the map g with g*£ a sum of line bundles
(analogous to the well-known construction for complex bundles). We
could then ask if every bundle in our category is a direct sum of
bundles of type s, and, if so, if the representation is unigque (e.g.
could it happen that a line bundle of type 6 is the direct sum of

a line bundle of type 4 and one of type 2?). This question is clearly
related to the independence of thet§£§23§series Qs(t). Knowing the
answers to all of these questions would provide information about the

cohomology of the classifying space for ratiocnal homology cobordism
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bundles, For instance, if the splitting into bundles of type s always
exists and is unique, then the classifying space would contain elements
pi of degree 4is for every i,s21 (pl being the usual ith Pontrjagin
class). The classifying space for bundles of type s and dimension n
(i.e. having a pull-back which is a sum of n line bundles of type 5)
would be a space BU: whose cohomology contains the classes p; with

isn, and there would be a map BUi « (K(Z,2s))" (sending n line bundles
over a space to their direct sum) which would map p: to the ith
elementary symmetric polynomial in nf,...,n; (where ny is the generator
of the cochomology of the jth factor K(%Z,2s)). The L-class of a

bundle with eclassifying map f:X - BU; would have the component
s .
LS (003, ..., 8%p]) € HUO(x0) (30)

in degree 4is (isn), where L; is a generalized L-polynomial defined
as the multiplicative sequence in the sense of Hirzebruch with
characteristic power series QJHE). The first few values of the
polynomials L; are given in the table on page 51, in the pious hope

that some day there will be a theory to back up all these fancies.
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THE FUNCTION Qn(t) AND RELATED POWER SERIES

TABLE:

+§%)t5+

i

t+ (- gm0 v (-

o (t)

£.(8) = ¢

n n
2(PysPy) + Ls(pysppsbs) + o o

(py) + L

n
1

R Qn(xi) = 14+ 1L
i=1

) (ith elementary symmetric polynomial)

2
|

2
4

= Gi<X

Py

where

and:

) py

]
3

(py) = (

n
L

1
(ppppy) = (gm- é% )p

n
L2

n
Ly

) Py

28
tarm

o

+ { %% -

(P1;p2:P5:P&)

n
Ly,

+
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§9. The action of Sp on gﬁ

We wish to calculate the L-class of X(n) = Xn/Sn, using the general
formula for the L-class of a quotient space which was proved in $3. It
is clear from that formula that the calculation consists of three steps:
a calculation of the fixed-point sets (X™)° and their equivariant normal
bundles (for all oc¢ Sn) in order to cempute L'(o,X")e H:((x™M)%); e
description of the Gysin homomerphism ef the inclusien (X™)° C x™ in
order to evaluate L{(0c,X") ¢ H*(X"); and finally a summation ever all €S .
These three steps will be carried out in this section and the two
folleowing ones, and will result in a formula which is already in a shape
suitable fer computations but in which the dependence of L{X(n)) on n
has not yet been made explicit; a fourth section will then be devoted
te the transformation of this expression intoc the one given in Sectien 8.

We begin, then, by examining the fixed-point set of the action ef
o€ Sn on X7, The permutation g can be written as a product of cycles,
and it is clear from the definition of the action on X" that this action

has a corresponding decemposition as a product of actions ef the form

o_: x¥ - Xr

: (1)
(x»]!""xr) Land (12,...,xr,x1).
Obviously for the standard action by cyclic permutation O the fixed-

o
point set (X7) T consists of the points (X,...,x) for x X, i.e.
o
(Xr) T oz b, < % (diagonal). (2)

The diagonal is naturally isomorphic te X under x< (%,2..,%); this
issmerphism will be used tacitly in future, so that we shall consider
the nermal bundle of the fixed-point set of o, as a bundle ever X and

the inclusion of the fixed~point set as the diagonal map

d = d4: X -~ x7,

: x e (x,...,%x). (3)

Returning to the permutatior g om Xn, we specify a little more
precisely the decompesition inte cyclic permutations. Let kr be the
number ef cycles of length r; thus k1 is the number of integers i lef't

fixed by g and k2 the number of pairs of integers i, j interchanged by o.
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Since g acts on n integers altogether, we have

no= Ak, o+ 2k, + 3~k3 e e ey (&)

i.e. we have associated te the permutation g ef {1,...,n§ a partitien
7= (kq’kg"") of n. Clearly the number of permutations with asseciated

partition 7 is

n'
N{# = -~ 5
() K, eyt K ka 7 ©)

since of the n! ways of putting n objects into k1+k2+... numbered boxes
(there being kr bexes having r slots, ard the slets in each box alse
being numbered), twe yield the same permutatien if and enly if there

is a permutation of the kr r~boxes (giving the factor kr!) er a cyclic
permutatior within an r-box {giving a factor r for esach of the kr
r-boxes).

Te illustrate the sert ef calculation which must be done when
working with these eslements, we give another derivation of the fermula
of Macdonald for the Euler characteristic of X(n) which was proved
earlier (Proposition 1 of §7) by a direct computation of the cohomelogy.
He use the fellowing fermula fer the Euler characteristic ef the quotient
of a space by a finite greup actioen, which zeems to be less well known
than it sheuld be:

e(%/5) = gg;(xgx (6)

i

i,e. the desired Euler characteristic is just the average over G of

the Buler characteristics of the fixed-point sets of the individual
slements of G, [Te see that (6) holds, we work (as usual) with rational
coefficients, se that the cohomelegy of X/G is the G-invariant part of
H*(X), and use the elementary result from linear algebra that the
dimension of the G~invariant part of a G-~vecter space is the average

over G of the traces of the individual elements of G. Then

e(X/G)

g (-0Yaim B = ¢ (-0 aim B¢
120 120

> (-1 L r *]Hi = e{g,X),
2 (-1)7 (g ngt(g (1)) = 157 e (g, %)
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where e(g,X) is the equivariant Buler characteristic 3 (-1)"tr(g*lH (X)).
i

It only remaims to shew that
e(s,X) = o(x5); (7

this is the Lefschetz index fermula, and can alse be immediately ebtained
from the equivariant Atiyah-Singer theorem on applying it te the de Rham
complex of X {cf, [13], §9, eq. (11))J

Applying (6) to eur situation gives, since the fixed-peint set ef

an element g corresponding to the partitien (4) has besn found te be

1+ 2+o.-

isemerphic te X and therefere te have Euler characteristic

1+k2+...

o) ,

k1+k2+.o.

n! e(X(n)) = j{: N(m) e(X) . (8)

7 a partitien of n

If we substitute expression (5) for N(m) into this, we obtain

T P e(t(n)) = Y

n=0
k1,k2,...zo

tk1+2k2+3k;+... ky+ko+. ..

e (%)

Ky tkpt... 1KioKe

"

b ( . trke(x)k/rkk!> - etre(X)/r . o~¢(¥) log (1-t)

r=1 k20 r=1

(1-t)" ), (9)

in agreement with equation (13) ef §7. However, the method given here
has the advantage, as well as that of illustrating the technique eof
manipulating averages over the symmetric greup, that it can be used
witheut change to compute the Euler characteristic ef Xn/G for any
subgreup G of Sn' For example, if we take G= An to be the alternating
group, the omly change in (8) and (9) is that the sum is restricted

te those kr with k2+k#+... even {since we only have even permutations),
and that the factor |G| by which we have te divide is n§/2 rather than
n! (if n22). We deduce immediately

Propositien 1: Fer n>1, we have the equality

e(Xn/An) = coefficient of t in {(1—t)'°(x) + (1+t)°(x)}. (10)

Ve can apply exactly the same technique to the signature. Thus,
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if we set 7 equal to the signature of the cyclic permutation 1),

. r
7. = Sign (or,X 1, 1

we see that the signature ef a permutation ¢ with associated partitien
(&) is rfl riz... (sines signature behaves multiplicatively for a

preduct action), and a cemputation exactly like (9) then yields

0 [
3 t” Sign (X(n)) T 0 % £ Sign(o,x") )
n=0 n=0 ’ oeSn

1

exp [ 301 T.t/r] . (12)

It will fellew frem the calculatien ef L'(0,X") later in this section

that the integers T, are given by

[ (%), if r is odd, (13)
e (X}, if r is even,

where {X) is the signaturs of X, and therefore (12} becomes
Theoram 1 (Hirzebruch [14]): The signature of the nt? symmetric product

X{n) of an even-dimensional closed oriented manifold is given by

)e(X)/Z( .t )Sign(X)/Z

1 1
(== 1 -t ' (1)

® n
Tt Sign (X(n))
n=0

Nete that the right-hend side eof (14) is a rational function of t

since &(X) and Sign(i) are equal medule 2,

We now turn te the main task of this sectien: the calculatien
ef the actien ef g on the normal bundle ef (x™ in x™, and the
resulting svaluatien of L'(o,Xn). Since the equivariant L-classes
behave multiplicatively fer preduct actions, we can restrict eur
attention te the cyclic element oL of {1}, As stated previously, we
shall identify the fixed-peint set Ar‘ with X without explicit mention,
so that when we speak of the normal bundle ef the fixed-peint set we
mean its pull-back te X under this isemerphism; clearly this bundle
is isemorphic te a sum ef r-1 copies of the tangent bundle of X. At
2 peint (x,...,x) of X', the tangent bundle ef X' consists ef r-tuples
(v1 ...,vr) with v, € TXX, and Tx(Ar) consists ef r-tuples (V,...,v),
so we can represent the fibre N of the nermal bundle by those vectors

with v1+...+vr=0. The action ef o is given by cyclic permutation of
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27ik/r

the vecters v Since 0. has order r, its eigenvalues zre e , where

k ranges frem 1 te r-1, More precisely, for k*r/Z, there is a subbundle
N(27k/r) of N on which o, acts by the matrix

cos ZWk/r - sin 2ﬂk/r
( ) ; (15)

sin 27k/r ces 2mk/r
the fibre Nx(2nk/r) of this bundle at (x,...,X) consists eof vectors

(v1,...,vr) with vj = v' canij/r + v" sin 2njk/% for some v', v"¢ TxX’

s that
N(2nk/r) = TX @ TX. (16)

Since the matrix (15) is equivalent te the same matrix with k replaced
by -k, we can assume O< k< r/2. The remsining eigenvecter -1 (in the
case that r is even) has as eigenbundle the bundle N(w) whese fibre at P

consists of vectors (v,-v,... . -v), se
w(r) = TX. (17)

The isomerphism (16) refers te N(27k/r) as a resl bundle, but it also
has the structure of a cemplex bundle if we require the action of 0.

to be given as multiplication by ezwlk/r, and then

N(2mk/r) = TXeC . (18)

We new have assembled sufficient infermation te apply the Atiyah-~

Singer fermula, which, we recall, states

P —dimmNg(e)
L'(e,¥) = 1 (i tan ) "L(Y8)L(NE(r)) " e (WO () -
O<O<7
n Le(Ng(e)), (19)
O<b<nr

where Le(é) is a multiplicative sequence defined for cemplex bundles ¢ by

tanh 3§/2
Ly(¢) = f tanh (xj + 16/2) ?
J

(20)

the xj's being fermal two-dimensional cohomology classes of the base
space of £ whose kth elementary symmetric polynonial is ck(é).

We apply (19) with Y= X* and g= 0. First consider the case of
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even r. Since N(7) = TX is then a bundle of dimension equal to that
of Yg, the class (19) is enly nen-zere in the tep dimension 2s. The
various L- and L9~clasaes all have leading term 1, and therefore can

be emitted. The Euler class of N&(7) is then (_1)(r/2 - 1)s e(X) z,
where z ¢ HZS(X) is the class of en, (1) of § . The reason for the

sign is that, in the Atiysh-Singer recipe, Ng(n) is supposed te be
oriented by the natural erientations en T(Y) and on the N8(¢) for 6#n
(assuming that Y€ alse has a given erientatiom, which is the case here),
the latter being given the erientation coming frem their structure as
cemplex bundles. New it is known (see for instance [12], p. 66) that,

if £ is an eriented bundle of dimension g, the orientation en £ ® €

= £ 8 coming frem the cemplex structure differs from the natural
erientatien em £6¢ by a factor (_1)q(q-?)/2. Thus fer 1<ks{r-2)/2,

the esrientation en Ng(zﬁk/r) as a cemplex bundle differs frem the
orientation of TX@TX by a facter of (-1)3, and therefere the erienta-
tions en N8(7) given by the Atiyah-Singer procedures and by its
natural identificatien with TX differ by a facter (—1)S(r-2>/2.

ir
we put all this infermation inte (19), and use
o
dimglN Tlonk/r) = 2s (1sks-’21 - 1), (21)
we ebtain
=1
2 -2 s{r/2-1
L'(Ur,Xr) = 1 (i ‘cem”?k) ® -(-1)(/ )-e(X)-z, (22)
k=1
er, since
g s
(tan %) (tan2(5-k)) = 1, (23)
L'(cr,Xr) = o)z € st(X} (r even). (24)

#e now assume that r is odd. Again we can use (21) and (23) to
see that the first preduct in (19) simply is the factor (this time

(=1 )s(r—1 Y/2

from the Atiyah-Singer recipe (i.e. induced from the orientations on Y

) giving the differsnce betwsen the orientation ef ¥é

and the complex bundles N5(6) ) and i%s orientation obtained by
identifying it with X. Thereforg (19) reduces te
—

L-(ar,xr) = L{X) ki Lzﬂk/r(N(Zﬂk/r)). (25)

New, by definition, the Pentrjagin class ef TX is H(1+-x§) where
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c(Txet) = {1 - x?) (the Chern class of a bundle £@f satisfies 20y, 47

and we are always working with rational er cemplex coefficients where

0,

torsion elements are killed). That is, by using the identificatien (18)
we can take for the set of formal two-dimensional classes in (20) the
set §xj§ U E-xj}, where the Xj are the feormal two-dimensional classes
of X defined by

p(X) = n(1 + x?). (26)
Therefore (20) and (25) combine to give
X, (r-1)/2 .
L' XF) = j M tanh m_k/r tanh ia}c/r
r tanh x. tanh (x.+irk/r) tanh{~x.+ivk/r)
Xj J k=1 J J
X,
= E EEEEQFEE (r edd), (27)
3

where in the last line we have used the trigonometric identity
(r=1)/2
I coth (x + irk/r) = coth rx (r edd). (28)
k=-(r-1)/2
We state the results (24) and (27) together as a preposition:
Proposition 2: Let o be the action (1) en X given by cyclic

permutation ef the coordinates. Then

L'(or,xr) = { eéfz Z, if r is even, (29)
r L (%), if r is edd.

z
Oscss
Here s = % dim X, e(X) is the Euler characteristic, z is the element

in st(X) given in (1) of €8, and LC(X) is the cempenent in Hzc(X) ef
the L-class of X.

An immediate cerollary is that the number
. T r
T, = Slgn(sr,fﬁ = <L‘(ar,x ), X (30)

has the value given in (13), completing the proof of Theorem 1,
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§$10. The Gysin hememerphism ef the diagonal map

In this section we compute the Gysin homemorphism d, of the diagenal

d: X — xn

2

1
X (X:L;-”’Xn)’ ( )
which, we recall, is defined by

d, = Difi 4Dy : H¥(X) — H¥(X"), (2)
where DX is the Peincare duality isomorphism frem cohomology te hemology
defined by capping with the fundamental class, and d, is the map induced
by 4 in homelogy.

A1l netation will be as in previous sectioms; thus X is a clesed
fesdier and If3dier
for H*(X) are givem which are dual to each other under the intersection

oriented manifeld of even dimension and twe bases

pairing. All that will be used are elementary preperties of the various
preducts (cup, cap, slent) in hemolegy and cochomelegy, as given, for
instance, in 5.6, 6.1, and 6.10 of Spanier,

We first give a fermulation of the result in terms of the given
bases for H*(X); afterwards we will restate it in a basis-free manner.
Propesition 1: For x € H¥(X), the following fermula holds:

d,x = ;{J Eil...in<°i1"'einx’[xl> fi1x...xfin, (3)

1s5e00,1pel

where €, . = +1 is the sign obtained en rearranging e, ...e. . ...f,
ig..01p 11 ip 11 1n

as +e. . ...e. f. and taking into account graded commutativity (this
1,74, in i

n
sign is equal teo (-1)r(r_1»Q, where r is the number of e; of odd degree.)
J

Proof: Since H*(X") is spanned by the elements € Koo ex®s (Jay-eesdnel),
1 n

it is sufficient te show that the two sides of (3) agree after we cup with

this element on the left and evaluate on [X ). Since <ot [X]> =5,

n
<(ejlx"’xejn)(fi1x°"Xfin)’[X 1>

-

. o if (L15000510) ¥ (Jaseeesdnds )

€. ) if (ilr--"in) = (jly'-')jn)O
di«eedn
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Therefore it is only necessary to prove

<(ejlx...xejn)(d!x),[xn]> = < ejl...ejnx,[X]> . (5)

But frem the definition of d, and elementary manipulations of the cup

and cap products, we obtain

< (ejix...xejn)(d!x),[xn]> <8, Xe..xe, , (d!x)('\ (x>

J1 Jdn
= ey xe.xes DXn(d!x)>
= ey xeeaxey d*(DXx)>
= <d*(e, x...xe. ), xN[X]>
Ji Jdn

= < d*(ej1x...xejn)x, [%]> (6)

But d*(e. x...xe. ) = e, U...Ue, by definition of the cup product.
J1 dn J1 Jn

We new wish to reformulate the content of the propesition in a
basis~free way. To de this, we use the slant product. Recall that,
fer two topological spaces A and B, the slant product sends an elemsnt
we H (AxB) and an slement ze¢ H (B) to uw/zeH 4(a)., If u is a product
axb {with ac H*(4), be H#*{B) ), we have the formula

(axb)/z

New take A =X, B =X, and z = [X] ¢ H, (X). Then

it

<b,z> a € H*(A). (7)

(filx...xfinxy)/[X} = <y, [XI> £y xxfy € B+ (x%) (8)

fer all ye H*(X), Substituting this into (3) and using graded commuta-

tivity, we obtain:

d,x . . f. xoo.xf, &, ...e, b
! Y e e et Dx(ey ey 01/08)
P, PN

S5y, 100y Deen (g, ey eney x)1/[X]

b {(Tr’!l‘fiixej_1 ) (n’éfigxciz) oee (w;finxein) (1xx) }/[%],

where the summatien is always over the same indices. Hers ?TJ. is the
projection GRS onte the ,jth factor, and the expression in curly brackets

is an element of H* (anX). In the last line we can bring the summation
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inte the product, obtaining

= * *
a,x {(iil ﬂ1fixei)...(i§1 7t xe ) (1) }/[X]. {9)
Clearly
# - * n
izI ﬁjf‘ixei = (wjm) a e HY (X <X}, (10)
where
a = I f.xe, € H3(XxX) {11)
. 1771
ieX
and where
:ﬁ'J.x‘i: DMx X Ix X (12}

is the product of the jth projection and the identity map. The
element g defined by {11) is independent of the choice of bases Eei§

and ifi§. One way to see this is to notice that, if e = I ¢ and

. .8
1J d
fi =7 dijfj are another pair of dual bases, then the matrix ¢ is the
transpose of the inverse of d, from which it follews that Z f{xei =

Z fixei. Another proof is to notice that, by the case n=2 of Proposi-

tien 1, we have
2s
a = 4,1 € H (%K), (13)

where d:X- XxX is the disgonal. Yet a third way is te deduce from
equation (11) the identity (for all x,y € H*{X) )

<(xxy)a,[XxX] > = <xy,[X]> (14)

and te notice that this characterizes a completely. Finally, from
Lemma 6.10.1 of Spanier we sse that a is the restriction to XxX of
the Thom class

U € st(XxX,XxX - a(x)) (15)

whose existence is eguivalent to the orientability of X.
#e can now restate Froposition 1 as:
>sition 2: Let d:X> X" be the diagonal map, 7.:X"> X the projection
> the §°® factor, ﬂjx1:anX-> XxX the product ofJnJ. with id,, and
ae st(XxX) the slement defined by (13) or (14k). Then for all xe H*(X),
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the image of x under the Gysin homomorphism 4, of 4 is given by the
fermula

ax = {((rpt)ea).. . ((rx)va) (10 }/[X] € B (X"). (16)
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$11. Preliminary fermula for L(X(n))

We can new apply the result of Chapter I, which here states

L{X(n)) = Es L(o,x™) ; (1)

we omit the 7* since we are alresady using it to identify H*(X(n)) with
H*(Xn)sn. If g is broken up inte a product of cyclic permutations o
then L(0,X") is the x-product of the correspending L(or,Xr). The
latter are obtained by combining the results ef the preceding twe

sections, and are given by

Lio,¥) = (a,),L (o,,X")
- { e(X) ZXeeoX 2y if r is even,
(B T ) (gt (o )Y/ 1], )

if r is odd.

For the first line we do not need the results of the last sectien,
since by definition of the Gysin homomerphism and of the element Zy
of the top-dimensional cohemelogy group ef a manifeld X we have
Zy = f‘*zX for any map f:X-»Y at all.

New if (31,...,jr) is the set of integers cyclically permuted
by ¢, then the ith projection map ni:Xr+ X is replaced by nj_:Xn» X

1

W RR2
Jqe e ip en

which o acts. (here Xj denotes the jth factor of X7), This substi-
tution must thus be made in (2) to obtain the factor of L(o,X")

when we identify the X" on which o, acts with the X

corresponding to the factor Op of o; for example, for even r we

obtain e(X) (ﬂ§ Z)"-(”3 z). In principle we have to keep track
1 r

of the order of the j;'s (determined up te cyclic permutation by g),
but since the cehemeclegy classes a, z, and LC(X) are all of even
degree and thus commute with everything, we will not in fact have
te do se. Thus, for A = §j1,...,jr} any subset of N = {1,...,n}

we have defined a class in H¥* (X%

r N .
L(a) = L s e(X) Mooa ™52, if r = [Al is even, )
g r Foo((mox1)*a) « (=L _(X)R/[X], 4if r is odd,
Ogcss jen *t ¢

and for any o € Sn we have



L{o,x™)

i

I L(4). (&)
A a cycle of o

We repeat that the class L(4) is even-dimensional and independent of
the ordering of the slements of A.

When we calculated the Euler characteristic and signature of X(n)
in the last section, we wrete the summation over the symmetric group Sn
as a summation ever all partitions 7 of n, fellowed by a summatien
over the N{7) permutations in Sn with associated partition 7. In a
similar way, we now write the summation occurring in (1) as a sum
over all partitiens of N inte subsets Ai fellowed by a sum over
all permutetiens of N whose cycles are precisely the A,. Since )
tells us that L(U,Xn) then only depends on the Ai's, the latter sum
will simply be M3L(A;) times the number N(A1""’Ak) of permutations
of N consisting precisely of cyclic permutations of each Ai. A set

of r slements clearly has (r-1)! cyclic permutations, se

N(Ap, oot ) = (a0 =10 ... (lal - 0. (5)

We also have to divide the sum over all subsets A1""’Ak by k!,
since the same partition of N inte disjeint subsets is ceunted k!
times with different numberings ef the Ai's. Therefore we can

write eguation (1) as

n k
L{X(n)) = y k—‘,— o <(iAjI -1t L(Aj)> ; (6)
k=1 L J=1
Aﬂ,...,AQZN

Ai's disjoint

A&J...Lﬁk: N
which, combined with equation (3) for L(A), completes the determination
of the L-class of X{n)., Nevertheless, the expression ebtained is
extremely unwieldy, and we will devete the remainder of this section and
the whole of the next one to a reformulation of it inte a better form.

Ne intreoduce dummy variables x ,...,xn; the functien of xj will

be as & marker, indicating the jth ;actor in the preduct ® or its
cohemelogy H(X)@...@H(Xn). The xj's are supposed to cemmute with one
another and with the elements of the cehomelogy of x™ but to satisfy

no ether relations; i.e. we will be working in the ring H*(Xn)[xﬂ,...,xn}
of pelynomials in the xj's with coefficients in H*(X"). We fix the

follewing netatiens, which will be used throughout this and the next
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sections: N will alwsys refer to the set {1,...,n}; for ACN,
we write X, feor 1 X3 for £ a power series or polynemial in
i€A

the xi's and A & subset of N, 4,f is the ceefficient of x in f.

A A

Then fer A1,...,Ak arbitrary subsets ef N, the conditions that
1<k<n, that the sets 4, are disjoint, and that the unien of the Ai's
is N, are together ecuivalent te the single condition xA1...'Ak = Xy
Therefsre {6) becomes

L(X(n)) ‘;_30 T y r]}: < (1asi-1) L(AJ.))

k: g =1
A1,...,A£:N

=0

x ve s X =x,“

Ay Ay
T n ( ) (a.)
= o (5 4 3 ﬂ<!A.!—1!x LA.))
N(k:O k Apseeosdy CN 5ot J Ay

ca k

L 1 x
aN(kio k! 321 (}éNUAl R ))
= ax l l" 1 x d » 7
oy [ p(AgN(A 1)t x, L(4) )] (7)

This expressien, eguivalent to (6), is censiderably mere pleasing. Te
make further progress, we must substitute the value of L{A) from (3).
We write the expenent in (7) as K(x1,...,xn) or simply ¥, and the
cerresponding sum restricted te subsets A with exactly r elements

as Kr' Thus fer r even, we obtain

X = % (r-1)! x, e(¥) z (8)
r AN A A
[Al=r
(we use a similar notation te that fer Xps i.e. Zy = it Zss where a5

ieh

denetes 7z = 1x...xzx...x1 € H#*(X™), the product having a z in the ;8

place). Since the summation over A is a sum over unordered subsets

of N, we have te divide by r! if we sum instead over all i1,...,ir€Iﬁ,

so (8) becomes

1
K. = T = «(X) X eeeRy By eeeBy
igpeeesd eN 1 r 1 r
r
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it =1 7T I B
r n
= Eﬁﬁl I < I x.2z, >
r X . i1
J=1 i=1
= e(X) (x1z1+ e e +xnzn)§G', {r even). (9)

Exactly similarly, if r is odd we obtain frem the second line of (3):

K, = % o {(x1(ﬂ1x1)*a Faaot xn(wnx1)*a)r(1XLC(X»}/[X]: (10)

H Do

c=0

where the expressien in curly brackets is in the ring

R = B (XK) x50 epx ] (11)
which is mapped by /[X] te the ring

R = }?*(Xn){xv...,xn}. (12)

Mere precisely, the expressions considered are in the Sn~invariant
subrings R*Sn and Rsn, where S acts by simultansously permuting the

facters ef the tenser preduct H*(Xx") = ® , H*(X) and the x; 's.

i=1
We write
Z = XE, k...t X2 € R, (13)
a = x1(n1x1)*a +oaa. + xn(ﬂnx1)*a € R' (14)

for the elements appearing in equations (9) and (10). Then the
expenent K of (8) is given by

K = % K, = S e(x) z%/r + 5 ;rc‘°'1{ar(1ch(x))}/(x]
r=1 r=1 r=1 ¢=0
r even r odd
W1 5 . .550 {6, 1_o (&) (10 (0))}/1x], (15)

where the fumction g is the powsr series defined in §8. This

s+l=c
K is an element of the ring R defined in {12), e therefere alse is,

the symbel o\ defined sbeve maps R te H*(x"), and eur final result is

K nsn
L(X(n)) = aN(e ) e He(X) M. (16)
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§12. The dependence of L(X(n)) en n

In this section we investigate the dependence en n ef the expressien
for L(X(n)) feund in the last section, and complate the proof ef Theorem 1
of §8.

We centinue te use the notatiens of the lsst sectien invelving the
dummy variables x,. The elements of R = H*(Xn)[x1,...,xn] which

occurred were all pelynemials in elements of the form

Sn
g TE 4 e+ x WP € R™ < R, (feH*(X)). (1)

X

With the netation f=z,...,f;=1 for a basis of H*(X) used in the
preceding questions, the element (1) can be written as a linear
combination of the elements

Sp

t. = x nﬁf. + eeo + X TP, € R
i i

5 y 0 T (0sisb), (2)

50 t?at we are really enly interested in the subring Q[to,...,tb]

of '™ . Note that t, = Z and t_= x,+...+x_. These t. are tne
0 b 1 n i

ti of the theorem ef §8, which were there intreduced as rather

mysterious dummy variables with the same cemmutatien preperties as

the fi, but which now are defined mere naturally in terms of erdinary

scalar or cemmuting dummy variables x .s%x . Te express & € R' in

17 n
terms of the t., we use fermula (11 of §10 te write
b
a = iEO ty x e, € Q[to,...,tb]®H*(X) C ReH*(X) = R'. (3)

Then the main result (15), (16) of $11 is

L(X(n)) = oy G(tg,.-rty), (u)
where s
; ZoBs-c & txes ) (L @]
G(to,...,tb) = (1—t3)°(xj72 e . (5)
e now look at the effect ef the restriction j*:H¥(X™* 1) ¢ (x).

We label all objects in the cohomoleogy eof X" with a subscript n. Then
it fellows immediately frem the descriptien of j* (eq. (15) of §7) that

) = { (t3), if O<ih, (4
Xyt eee +X if i=b.

(0 (t5)

i/n+1

n+1’
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As a cemsequence, we find that, fer BCN, and any pelynemial T,

51 [R((t) s een (8)

Y1} = 0g[F((tg) s eees (8) DB O™, (7)

n+1

The reasen that we cannet use (7) te assert the stability under j* ef
the expressien (4) is that the set N itself changes as we pass frem
»+! te n.

It is clear frem {6) that te study the effsct ef j* sn a pely-
nomial F in to,...,tb it is necessary te losk separately at the
dependence of F en the first b variables tO""’tb—1 and on the last

variable tb= XgtooatX The fermer relates te the stable elements

[no(fo)...nb_1 (f‘b_1)] € H*(X(n)) defined in eq. (17) eof §7, namely

n
0 Mo n
= 3
s 6B(to ceety s Yy = [no(fo)...an(qu} e HF(X). (8)
BCHN
Te see that (8) helds, set r= my+...+n, _ and nete that the summands
on the left-hand side of (8) with |Bl# r are certainly zere. Thus

ine £00. b= - ~
(replacing toCee 27 by tj "'tj , where Jo, ..., € 0, eu.,b=1}
1 r

are indices, not necessarily distinct) the left-hand side ef (B) is

p (%

...tj IR

veesl
’ 1 T

1? r

i.e. we expand tj ...tj as & polynemial in the xi'sL emit amy term
1 r
in which seme X, appears te a higher power than the first, and then

1
t ) . .
set all the x,'s equal te one., Clearly this yields z;:;7T<tj1,..”

tj s1,0.451> in the notation of (8) of §7, where the number ef 1's

isrn—r. Re-expressing this in terms f the netation eof (9) and (17)
of §7 then gives squatien (8).

It remains to study the effect en (4) of the dependence of G en
the variable tb' First we nete that since the slant preduct with [X]

sends uxv te u<v,[X]> and since e =z has the same dimension as [X],

b
the only nen-zereo menemials ef the ferm

k

[ (tgxeg) °...(tbxeb)kb(1ch(X))i/{X1 (k, > 0) (©)

are these %ith ky=...zk =0, c=0, and k=1 {for which values {(9)
squals tbtoo). Therefore an expansien ef the exponent in (5) as a

Tayler series in pewers ef (tbxeb) censists of the censtant term
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ebtained by setting tb equal te zere, plus a linear term tbg;+1(to):
]
RO

G(tgseeerty) = G(tgreeosty_q50). (10)

But g;” (t) = ga(t)/t (this fellews immediately frem the definitien
of gs), and the value eof G(to,...,tb~1,0) obtained frem (5) is exactly
the pewer series of eq. (17) ef Theorem 1 in $8, se we find that the

enly step still necessary to deduce that theerem from (L) is the

fellewing fact abeut pewer series.
Prepositien 1: Let G = G(to""’tb~1) be a power series, 8 the series
defined in (11} ef §8, and fs and Qs the pewer series defined by

= ™% - - - =
f‘s(t) =gt (t) =t - ..., Q4(t) = t/fs(t) 214 . . (11)
Then
(x,4enetx_) g (£.)/t
1 07 "0 -
oyl e n ) = rima )tz o () e,
N s s ACN s A
(12)
Here f; denetes the first derivative, and NEZgtea o ta .

Preef: We write ¢ fer XyteeotX, and ¢ = @(to) feor gs(to)/to. The
definitien ef BA as the eperater sending a power series { te the

ceefficient of X, in f is clearly equivalent te the fermula

s e . =..,2x =0 (13)

i i 1 “n

(this is the reasen fer the netation 8A), and therefere we can make

use of a generalized Leibniz's rule fer aA of a preduct ef twe functiens:
2 (F,F) = z a_(F,) 8.(8)) = I o (¥ )8, (F,)).
AV 2 B,CC 4 BV 1/ “cM2 Bop B17ABY2 (1)

BU C=4
BNC=0

We apply this rule te the preduct en the left-hand side of (12) to get

ée g9
o( %6 )= 2 &G0, (%), (15)
N AeN A N-A

New we expand the expenential as a pewer series and apply (14) again:

o 1 r r
a(e®6)= 3 06 3 == 5 o (67, (€. (16)
N ACN & p=0 T'pcpyen B O N-A-B
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But §=x1+...+xr, 58 §r= by X, oeeeXg o, and thersfore
i1,...,ireN 1 r
r ! if |N-A-B| =
(€)= { i st e (17)
0, if |N-A~B| # r,

and (16) simplifies te

T a6 aB(w'N"A'B‘). (18)
A,BCN

AMB= &

New for any functien h ef ene variable, and CCN, we have

3C(h(t0)) = ceefficient of x, in h(x1 1+...+xnzn)
= ([CI) z; + ceefficient ef g1C1 40 h(t)
C C
= 1z (@!®l/at! S huge) l4=0° (19)
where z denetes HieC z; - Mereover, since G is a functien enly ef

tO""’tb-1’ and since fiz = 0 for i=0,...,b=1 (here we need that
fi is of pesitive degree, i.e, that G is independent ef tb), we
cenclude that Zg aAG = 0 if ANB + £ (for if J is in beth A and B,
then in the jth place in a typical menemial we have beth a facter z
and a facter fi fer seme i=0,.,.,b-1, and their preduct is zere).

Therefere we can substitute (19) in (18) and emit the cenditisn ANB=¢:

lB| n-1A]-|B}
£¢ gg(t )
2.(5%C) = 1 oc¢ 3 <s > :]
N acn A pcy B t=or (20

Cemparing this with the equatien (12) which we want te preve, we see

that it only remains te preve, for Osjsm, the fermuls

k=0 {,BCN ] at® \_ £ () )”' ‘k] = Qs(n)“”"'j £i(n). (21)

IBl=k £=0

But it fellews easily frem 32: O that the first expressien in sguare
brackets in (21) is just nk/k!, while the second facter equals

~k-1

k! restzo[(gs(t)/t)n-j—k t at] = k! res O[Q " J+1 k-1

£i(ylayl,s

as we see by substituting y= gs(t), t= fs(y). Equatien (21) fellews.
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§13. Symmetric preducts ef spheres and ef Riemann surfaces

This sectien cemtains three applicatiens ef the theerem of §8.
The first, included selely fer the purpese ef illustrating the use
of that theersm, is a secend derivatien ef Hirzebruch's fermula fer
the signature of X(n) (&9 eq. (14)). The secend is an evaluatien
of the fermula fer X an even-dimensienal sphere; the calculatien
here is very easy since the cohemelegy and L-class eof X are trivial,
The third applicatien, rather harder, is te the case where X is
twe-dimensienal, i.e, & Riemann surface (the case where Qs(t) is the
usual series t/tamh t). In this case, X(n) is a cemplex manifeld,
a prejective fibre bundle sver the Jacebian ef X if n+e (X)> O,
and its Cherm class has been cslculated {(Macdenald [25])., This ef
ceurse slse gives the L-class eof X, and therefers we sre sble te
check the cerrectness of the main theerem ef this chapter.

We start, then, by evaluating Sign{X(n)). Since 22 = 0, we have
n
1 =
n/nl = Zyeeezy (1)

(a similar fermula fer all nk/k! was already used at the end ef the

last sectien)., Therefere

Sign(X(n))

<L(x(n)),[x(n)]>
= (deg m)7* <L(X(n)),m, [X"]>

1 n
= ;7<W*L(X(n)),[x 1>
- L {od in ok
= = ceefficient of z,...2 in7 L(X(n))
=  ceefficient of 1" in 7*L(X(n)).
Frem egs. ({7) and (18) ef $8 we then ebtain

Sign(X(n)) = ceefficient of n" in [f‘;(n)Qs(n)”+1 x

0
x n£>0 cnOO...O Q‘s(??) 1 ]
2

= ceefficient of 7" in [£2(n)a ()™ x
QH(fs(n),O,...,O)/(1 _r (n>2)3(x)/2 ].
s

The substitutien t = fs(n) then permits us te rewrite this as
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o H(fs(1),0,...,0 -
Sign(X(n)) = res fs(n) dn e = (1) : (n)n¢1_J

Q
nn+1 G - fs(n)2)e(x)/2

s l‘ at eH(t,O, veey0)
= - >
t=0|  n+1 (1-t2 )e(x)/z _}

or
°z°0 +® Sign(i(n)) = (1-t7) (82 JH(£,0,...,0) )

Finally ene obtains frem the definitien ef H {eq. (16) of §8) and

the fact that 00=1 is zere-dimensional that

3
z
¢=0

H(t,0,...,0)

<gs+1-c(t 30>LC(X)7 [X} >

= <g,(t) (sign(x)2),[X]>

= sign(x) g,(t), (3)
which, substituted inte (2) gives (since g1(t) = tanh™® t = -;— leg —E%
“.F - 2 ,1xt.\Sign(X)/2
P " sign(x(n) = (1-t2)0) (FxhyStend 2, (&)
n=0
the formula which was te be proved,
Even simpler is the cemplete svaluatien of L(X(n)) when X = S2S.

Here the basis is just e =f,=1, e,=f,=2z (b=1), and the L-class is

of course trivial. Therefere the functien H(ty,...,t, _,) is just

s+1-c(t0°O)Lc(X>’[X]> = 0. (5)

s
H(to) = 5 <g
C:O
Of ceurse the Euler characteristic is two, s0 the pewer series
eH(tO’""tb‘1)/(1—t8)e(x)/2 is just (1—t8)_1, and therefere the

facter G ef the formula fer L{(¥(n)) is simply

b -2 2 f£!
£i(n) & Q)70 g0 = )
n=0 1=

Therefore the whele sxpressien fer L{X(n)) is given by
Prepositiem 1: Let X = 823, n a pesitive integer, and 7 € st(X(n))

the usual element z,+...+z . Then the L-class ef X(n) is given by
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1

£:1(n) n+
)2 (fs?ﬂ)) ) (6)

1= £ (n

L{x(n)) =

Netice that this fermula autematically has the preperty that
the ceefficient of nn in it is equal te one er te zere accerding as
n is even sr odd. This is in accordance with (4), wince e(X) = 2
and Sign(X) = 0 fer an even-dimensional sphere, For the case s=1,
X(n) is the nth symmetric preduce of P1C, and can be naturally
identified with P €; then n ¢ HZ(PQC) is the standard generater
and {6) reduces (since f1(t) = tanh t) to the usual relatien

n+1

L(Pnﬂ) = (E;é%—;) . (7)

We will consider this special case X = 82 mere thereughly when

discussing the equivariant versien ef our theerem.

#e now come te the last appiication eof this section. Assume
that X is a Riemann surface ef genus g. Fer the basis f ""’fb-1
of the cohomeloegy we choose the standard generaters of H (x), i.e.

f,e.05F

0 BBy Gyyeeesd

b a/’l"", a' (8>

b1 g

g

with z € Hz(X) as usual and the a's ons-dimensional classes satisfying:

al = 0 (all 1i,3), aia3=a{%f=0 (i#j),0;0f = ~ajo; = z. (9)

Then the dual basis Eeii is §1,-a%,...,-aé,a1,...,agi. Te apply

the procedure of $8, we must new intreduce new variables to,...,tb_1~-
here relsbelled t,t1,...,tg,t',...,té to parallel the labelling of
the fi‘s-- which are subject te the cemmutation rules

= - Pzt = -ttt i, j<g).
titg = tjti, titj tjti, titj tJtl (151, j<g) (10)

In particular ti2=t'2=0. Of ceurse the first variable i commutes with

i
everything, since it corresponds to an even-dimensienal cehomelegy
class.

Since L(X) = 1 and s=1 in our cass, formula (16) of §8 becemes
H = H(t,t1,...,tg,t;,...,té} = < go(t + 8), [X] >, (1)

where we have used & te denote the quantity
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[ g 1
- i v
5 = RIRA .§ tie; € H (X)[tyseeest

st et (12)
=1 i=1 1 &

g

Because { commutes with &, we can expand the expressien gg{t+3) appearing
in (11) as a Tayler series in pevers of 8. MNersover, § is a one-
dimensional cohemelogy class and [X] is a twe-dimensisnal homelegy

class, se enly the term g4(t) 8%/2! ef the Tayler series centributes, se

1
H = 5%;l< V,[X]>=-ggﬁ)(tﬁ;+”.+t;%L (13)

where 4o obtain the last line we have used (9), (10) and (12).

We new set

s, = -t t! (1sisg) (14)

and ebserve that the various si‘s commute with one anether bu® that

2 — ) 1 1 1 -
5 = Gt o= -ttt = 0 (15)

in view of the fact that tiz=o. Therefore we ebtain frem (13):
wf
t ..
L) (s

ﬁ esigg(t)

i

1

i=1

g
= nL1+ sigg(t) + sizgg(t)z/é! +oaee ]
iz

g
= [ 1+ s.88(8) ]
. i
i=1

g
= 2 ay(s)’ ) 5. ...5. . (16)

=0 1<i1<...<ir5g

We new recall that, since s=1 in our case, we have

£ (n) = tanh 1,  Q(n) = n/tash 1, £ (n) = sech®n ,

and alss e(X) = ~2g+2. Therefore if we substitute (16) inte the
recipe for caloulating & (88, egs. (17) and (18)), we ebtain

- g -
G = sech®p (1-tanh®n)® g gi(tanh n)° (n/tanh 1) 2r
r=0

x b [1@;1)1(ai1)...1(a; )1(ai )] . 7

1si1<...<irsg r r
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Furthermere, we deduce from the multiplicatien laws (9) that

{1(a )1(a ...1(a{ )1(ai )1 = [1(a )1(a )]...{1(a; )1(ai 1. (18)

We write

Y= DeDi(e)] ¢ BEE) (1), (19)

Then the substitution inte (17) of equation (18) and ef the fact that

1 = tanh®n = sech®n gives

g
28 2(tanh n)\r
G (sech 7) b .—5§§—Eﬂ) b Yo wadd,
0 ( n*/tanh“n . . i, i,

= 1511<...<1rsg

#

#

g
(sech n)zg no[1+4

tanh®
i=1 K

g4(tanh 1) ] (20)

Hewever, frem the definitien of gs(t), it is clear that its derivative

is precisely gs_1(t)/t. Mersover, g1(t) = tanh™*t. Therefors

d, t nh 1y 1 tanh™ 1t
g'z'(t) = dt( = ) = t(1-'t2> - a.t2 . (21)

Inserting this in (20) preduces

g - 2
¢ = N [sech®y + y (L0 n;ﬂ seeh’n y 7, (21)
i=1

Therefere the L-class ef the symmetric preduct %X(n) is given by

- g 2
s (™ L (™ ot
2
Y. ( tanhtanhg sech”n ) 1. (22>

Finally, we can use the fellewing censideratiens te simplify (22}.
Write

= (a1 €] = ()] e K (X()), o = &,¢] € B (X(=)),  (23)

se that we have, em restricting te H*(X(n)),

n
o, = % Z (ﬂ*a )(n*a ) = 8 (wra.)(n*al) + Z ﬂ*(a a')
k=1 1=1 ey £ FTLE

11

[1(ai)1(a£)] + [1(z)] = ¥+ (24)
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But new we can repeat an argument used earlier in this sectien, namely

2
o3 = §3848581 = - 6865848 = O

since the fi's are one-dimensiensl, and therefere pewer series in o,

break eff after the first pewer, Thus fer any peower series f,
f<xi) = f(’? - Gi) = f(ﬂ) - Uif'(??).

Applying this te the pewer ssries t/tanh t gives

¥,
— . DL, ( 1 - 7 )
tanh ¥, tanh 7 i‘ tanh 7 sinh*n
¥,
i ggn-qz
~  tanh 7 * Siab n (25)

Substituting this inte eq., (22) gives finally

Theerem 1 (Macdenzld [25]): Let X be a Riemann surface ef genus g and
B & pesitive integer. Cheese a basis fer H1(X) as in (9) and define
the classes ¥ . and n in HZ(X(n)) as abeve., Then

n~2g+1 & L5

tanh ¥, ° (26)
i

-
L) = (g )
i=1
What Macdenald in fact preved was mers. Namely, X{(n) is knewr te
be a cemplex manifeld when X is a Riemann surface, and Macdenald shewed
that its Chern class is given by

o(x(m)) = (14 )" [ (14w, (27)
i=1

We have intreduced the netations ass ai, éi’ 55, Ois T used abeve

in accerdance with the netatien ef Macdenald's paper,
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§14. The equivariant case

If a finite group G acts on X, then the diagonal action of G on X"
induces an action on X{n) sending an unordered n-tuple §x1,...,xn§ to
the n-tuple §goxi,...,goxn§. If X is an even-dimensional manifold as
in §8, then X(n) is a rationsl homology manifold and L{g,X(n)) is
defined by the theory given in §i4; from the result of §5 we obtain
the formula for the calculation of L(g,X(n))

ﬂ*L(g,X(n)) = Z L(goo,Xn), (1)
<7€Sn

where for o € Sn the automorphism goo = gog of X" is the map
sending (x1,...,xn) to (goxa(1),...,goxa(n)). We therefore must
calculate L(goo,X®) in order to evaluate the equivariant L-class
on X{(n), and this can be done by the Atiyah-Singer theorem. The
proof is fairly similar to the proof for L(X(n)) given in the last
four sections, and we will therefore give a briefer account of it,
only emphasizing the points of difference with the non-equivariant
result.

Just as before, if o is a product of two permutations, then
goo also acts on X" as a product of the corresponding two operations.
Therefore, since any permutation is a product of cyclic permutations,
and since the equivariant L-class is symmetric, it suffices to
consider L(goar,xr), where o is a cyclic permutation of f1,0..,7}.
Similarly, since the equivariant Euler class e(g,X) defined in §9
(cf. equation (6) of §9) and the signature Sign(g,X) defined in §2
are multiplicative, we can express the values of these invariants
for X(n) in terms of the corresponding numbers for the cyclic
permutation o . For example, Sign{g,%X(n)) is given by a formula
exactly corresponding to (12) of §9, with the difference that T.
now denotes Sign(goor,xr), and e(g,X(n)) is given by a similar
formila with 7 replaced by e(goor,xr}. The values of the equivariant
signature and Buler characteristic will be computed below for 8003

we give here the resulting formulas for X{(n):

5 te(ek(m) = T e [ e(xf) ], (2)
n=0 r=1
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® n bt I 3 it t7 r

I t" sign(g,X(n)) = TNep|=— e(x8) T ep| = Sign{g ,X)

n=0 r=1 r r=1 v (3)
r sven r odd

The first step is to compute the fixed-point set of 800 - This
consists of the set of r-tuples (xﬁ""’xr) with

(X1, -0-’xr) = (5012; ---,SOXr,gOX"),
from which we conclude that Xy = goX, = g20x5= ree = groxq. Thus

800 -1 1-r r
(X)) = [(x,8 ox,...,8 ox)| &x=xj. (%)
In particular, the fixed-point set of goar on Xr is isomorphic to
the fixed-point set of gr on X. As a first consequence, we obtain
from the Lefschetz formula (eq. (7) of §9) that

o(goa ) = o((X)57T) = (), (5)

and equation (2) follows. If we let j denote the inclusion in X
of the fixed-point set of g, i the inclusion in X° of the fixed-
point set of goo, d = & the diagonal map X~ x*, and g the map

from X© to itself sending (x1,...,xr) to (x1,g"1ox2,...,g1‘roxr),
and h the isomorphism of %8 onto (Xr)goor given by (4), we have

from (4) the commutative diagram

r oo
x& h > (xF)®
ilc cli (6)
X d oy E ¥
C ~

This will be used to study the inclusion i and in particular the
corresponding Gysin homomorphism i, = (8odo jo h™*), = g,4,4,h7%,
Here the Gysin homomorphisms of g aﬁd h are easy to co&pute‘sinée’
one has in genersl £, = (£*)™* = (£ *)* for an isomorphism f:X=>Y.
The Gysin homomorphi;m of dr was calculated in $10. Finally, it
will turn out from the formula for L'(gocr,Xr) that the Gysin
homomorphism j, only needs to be applied to L'(g5,X) € H*(Xgr),

on which it of'course gives L{g",X).

Leaving till last the calculation of L'(gOo},Xr), we show
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how to deduce from it a formula for L(g,X(n)). We proceed as in the
non-equivariant case (§11). Thus for A = (j1,...,.jr) with the j,'s
distinct elements of N = {1,...,n], we define a projection map Ty
from X" to X* by

"A(x1""’xn) = (xj1’--~’xjr) (7)
and set
L(a) = 7 L(geo,,X") e me(x"). (8)

The only difference with the non-equivariant situation in this part of
the calculation is that L(A) depends on the order of the Ji's rather

than just on the unordered set A. To see what this dependence is, set
r r
L. = b*L'(goo,X) e H* (X8 ) ; (9)

this is the class which will be calculated below. It depends on r, g
and X but not on o (i.e. if we replace o by another cyclic permutation
of {1,...,r}, or equivalently renumber the r factors of Xr, the value

of L; is unchanged); this will follow from the evaluation of L; below
and can also be seen directly. We then set

L, = J§,L; ¢ H* (X). (10)

r

Then by the remarks following diagram (6) we have
r ~
L(goo ,X") = &*(a,L.) (11)

and therefore

L(a) = (Bom)*(a,L). (12)
The map éowA from X to X' is

“ -1 ~r+1

gowA(x1,...,xn) = (xj1,g osz,...,g oxjr). (13)

Clearly, if A' = (37(1)""’jr(r)) for some 7€S_ is an r-tuple with the

same elements as A but in a different order, then

-1 -1+
xJ. 8 oxJ. yeeos B =}
(1) 7(2)

gom ,(x1,...,xn) = x )

Ir(r)
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-1 TS
=70 (g T (1)+1ox. T (r}+1°x. )
31 Jr
= T 0 éT o "A (11,..-,Xn), (““)
where
oyl _-1
i o= g7 (1)+1 < x g T (r)+1 c - xEL (15)

T

Since d‘Lr € H*(Xr) is clearly symmetric, i.e. fixed under the action
of 5 on H*(XT), we have

L(A") (gom ')*(d!Lr) = (TOéToﬂ)*(d!Lr) = WZé:T*(d!Lr)

™ g (a,L). (16)

This shows the dependence of L(A') on the order of the elements of A'.
It follows that the sum of L(A') over all A' with the same underlying

set as A is given by

f- L{A') = 1! nz( T(d,L,) ), (17)

where T:H*(X")~ H* (X) is the average of the maps éi:

i

1 N
T(e1x...xer) o Z g:(e1x...xer)
T€Sr

- 11 i
j; (g*) €, Xaaex {g*) rer. (18)

i eeyl
iR

a permutation
of 0,-1,...,-r+1

In the non-equivariant case, the right-hand side of (17) was simply

r! L(A). It follows that the term (r-1)! L{A) occurring in (6) and
(7) of §11, and corresponding to the (r-1)! possible cyclic permuta-
tions of a set A of r elements, must in the equivariant situation be
replaced by (r-?)!wi(T(d!Lr)), and therefore that equation (7) of &1

becomes
L(g,X(n) = oy["], (19)

XK = K(x1,...,xn) = K, + K2 +oaee (20)

where
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K, = AéN (r-1)t x, nK(T(d!Lr)). (21}
|Al=r

If we now substitute for 4, the formula given in £10, namely

4L, = {((n1x1)*a)...((Frx1)*ﬂ)(1er)§/[X}, (22)

r

and proceed as in the non-equivariant case (cf, the derivation of egs.
(10), (15) of §11), we find

1 LT
K. o= = T( & ()] ), (23)
where @ is the element defined in §11(14).
I
We now calculate the classes L' and L . Set 2m= aim(x€ ).
Proposition 1: The class L} defined in (9) is given by

r is even, (24)
¢c-m_,, I . .

I r Lc(g »X), if r is odd,

cz0

Lo { e(x€") [x87], if
-

where [Xgr] denoctes the fundamental class in cochomology of the
fixed-point set of gr on X (with the relevant twisted coefficients
if Xgr is not oriented), e(Xgr) is the Euler characteristic, and
Lé(gr,X) is the component in Hzc(Xgr) of L'(g5,X)e H*(Xgr). There-
fore the class L = j/L] € H*(X) is given by

321

r
g . .
L - { e(X€) s, if r is even, (25)
r

"y L (gr,X), if r is odd,
€45~ -
cz0

where z is as usual the fundamental class in cohomology of X, and
Lc(gr,x) is the component in H-°(X) of L{(g",X) € H*(X).

Proof: To apply the G-signature formula, we must calculate the
normal bundle of X8 embedded in X° as the fixed=-point set of 800,
(i.e. embedded by the map godej in the notation of (6)), the
eigenvalues of the action of go0,, on this bundle over Xgr, the
corresponding eigenbundles, and their characteristic classes. The
idea is very simple but the details a little complicated because

of the special role played by the eigenvalue 4 in the Atiyah-Singer

formula. To make it more clear what the splitting is, we first
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consider the case of a complex manifold X with group action. A point
x€X with grox= x is identified under the inclusion map gdj with the

point (x,g-1ox,...,g~r+1ox), which we denote X, soO
r
_(X = TX -1 X& ... - X . 6
. (x) FOT 1 Ko o @T puy (26)

We use V to denote the vector space T X, and identify T _5,4 X with V
oX
by the map induced by’g 1. Then the decomposxtlon (26% becomes

Ti(xr) = Ve ..oV (rcoples) (27)
with g0, acting by
r
(v1,...,vr) - (v2,...,vr,g v1), (v1,...,vr€V) (28)

where grv? refers to the action of gr on V which is the differential

of the map gr of X, No action of g appsars before the vectors VoseeesVy
because we have already used the map g in identifying (26) and (27);

the map gr then appears because we have used g r-1 times to identify

T _ X with V and therefore the ma from T _ Xto T _. X=YV
g T+l P& e r+1ox g Fox

gets identified with the map gr from V to V.
So far everything is the same as in the real case. However, in
the complex case we can immediately deduce the eigenvalues of 800,

from {28), namely (v1,...,vr) is an eigenvector of Aef if
(72,-..,Vr,AN1) = (Av1,...,kvr), (29)

where we have used A to denote the linear map gr:V-*V;and clearly

this is the same as
Avg = AV = ATV = el = AV (30)

That is, A is an eigenvalue of 800, exactly when AT is an eigenvalue

of grlv, and the eigenspaces correspond under
v e (v,Av,...,Ar_1v) (veV, Av = ATv). (31)

If we remove the eigenspace of eigenvalue 1, which corresponds to
passing from the restriction to (X¥)°°r of T(X*) to the normal
g00p r\ &%, cyrs
bundle N of (X ) , we therefore have found the splitting
of this normal bundle (henceforth denoted N) into eigenbundles:
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namely, for A*#1 the complex subbundle NA of N on which g0, acts as
multiplication by A is given by

N,o= Mg (32)

r
if Ar$1 {here M denotes the normal bundle of ¥ in X, and Mﬁ the complex
subbundle of M on which g acts as multiplication by &) and by

NA > TXgr (33)

if AT=1. We write LA for the characteristic class Ly of §2, where
A= oie, i.e. for a complex bundle ¢ with Chern class ﬂ(1+xj),

2%
As"7d 4 1
L) =1 =S—. (3i)
A xj Aosz -1

Then the Atiyah-Singer formula together with (32), (33) gives
h*L'(goo'r,Xr) = L(Xgr) I LA(TXgr) nonoL, (M), (35)
AF=1 & AT=9
A1

We now use the identity

1 if r is even
A{ 1 3 - ¥
L { 52541 (36)
A =8 —_—, if r is odd.
ﬁzr—1

We find that if r is even, (35) reduces to IEN where x; ranges over
the formal roots of the Chern class of TX8', and this product is just
the Euler class of TXE ., If r is odd, (35) reduces to

. xj ) coth rxj 0 . 8e2rxj 1 (37)
r \ltanh x. coth x, 8 x.(M.) 19321'1:'3- - N
% (TX8) J J iWe

1

r
and if we multiply this by r® {whers m = dim, X€ ) it becomes exactly

the Atiyah-Singer expression for L'(gr,X) exgept that each two-
dimensional class x'j is replaced by rxj, i.e. it is the sven- .
dimensional cohomology class whose component of degree 2c¢ is r times
the 2c-dimensional component of L'(g",X). This proves (24) in the
complex case.

We now turn to the real case, where the idea is similar but the

splitting up into eigenspaces more involved. Since the eigenvalues



of goo_ on N are the v roots of the eigenvalues of g on M (the
notations are the same as those introduced for X complex except that
N and M are now real bundles), and since the eigenvalue -1 receives
special treatment in the Atiyah-Singer formula, we will have two cases
according as -1 is an rth root of +1 or of -1, i.e. according as r is
even or odd.

For a kxk matrix A, we define an rkxrk matrix Fr(A) by

0

Io...
00 I...0
: (38)

Fr(A)z o
400...0

O .
O
.

p
-

where 1 denotes a kxk identity matrix and 0 a kxk zero matrix. Then
(28) states that the action of goo  on Ti(xr) in terms of a basis
given by the isomcrphism (27) is given by the matrix Fr(A), whers A

is the matrix of the action of g on T X=V. We split up the normal
bundle M of Xg in X as in §2 (eq. (26)), namely as the direct sum

of a real bundle N of dimension 2s(7) on which g° acts as multiplica-

tion with -1 and of rezl bundles N, (0<6<w) of dimension 2s(8) on

[F}
which gr acts with respect to a suitable basis as the matrix A of
eq. (24) of §2 (or rather, as the Kronecker product A, ®I (6))

Then, since V = T (Xg YoM, and g° acts as the 1dent1ty on the

vector space TX(Xgr) of dimension 2m= dim X8 = 2s - 2s{w) - £ s(9),
. Q<6<
we obtain
A2 (MNe e (-1)e1I ® T Ael R (39)
T 2s(m) ® I %e®Ts(e)

where (1) and (-1) denote the corresponding 1x1 matrices. We must
therefore write Fr(1), Fr(-1), and Fr(AG) as a direct sum of matiices
1, -1, and AB in order to apply the Atiyah-Singer formula to £00 .

This obviously gives ( x denotes similarity of matrices)

F(1)= 14 onfr ® B/ @ 00 @ Aoy (z oda),  (40)
B = 1e-1eh, /) 8..04,,), (r even),  (41)
F-1) = -1@ Ayfp @ Ay v eee @ A oy (xr odd), (42)
F (1) = A/ ® con ® Ay (r even),  (43)
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Fr(AG) ® A@/r ® A(9+2n)/r @ ... 8 A(9+(r-1)ﬂ)/r (a1l ).

(u)

From equations (39)=-(44) we obtain the eigenvalue decomposition of the

normal bundle N, Namely, if r is even, then

r
5-1 r-1
N = N & ¢ N @ £ N ® b N,
T gy 2/ T o<e<r
k odd r¢=f mod 27
where
b of
= g
N, (X&) ,
g” r
NZNk/r = T (X8 )et (for k=1,2,...,§-1),
Nﬂk/r 2 M &€ (for ¥=1,3,...,v=1),
N(p = M, (for O<6<w, 1o = 8 (mod 2m)).
If r is odd, then
r-1
2 r-2
N = 2 N N & I N @ T N,
2 A N A o<o<r @
k odd re=6 mod 27
where
r -1
g - =1
Nzwk/r T{X8 )&€ (for k=1,2,..., > Js
N = M,
K m
ka/r = MWQG (for k=1,3, cu.,v=2),
N¢ # Mg (for O<<w, rp = 6 (mod 27)).

r
Wa denote the Chern classes of thea complex bundles T(Xg Jat, Mﬂ@&,

2

2s(m)
and MG by Hj

m
=1(1+xj), Lo

(45)

(16)
(47)
(48)
(49)

(50)

(51)
(52)
(53)
(5u)

(1+x§), and Hjis}(1+x§), respsctively.

Then substituting (45)-(49) in the G-signature formula (eq. (27) of §2)

gives, for r even,
r

-1
2
r r
h*L'(gocr,Xr) = L(x8)- L (T(x8))- kg1 ngk(T(xgr)oa)
T
r=1
. L. (Met). nL (M)
k=1 LES O<B<m LA

k odd T r¢=0 mod 27

(55)
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Now L"(g) = o(£)L{£)"* by definition for a real bundle £. If we
substitute this in (55) we see that all the L-classes cancel (this
follows either from (36) with r even or directly, if we note that
coth(6+im/2) = tanh 6 = 1/coth 6, and therefore L6(§)L6+1’/2(§) =1
for any complex bundle £, so that the L-classes occurring in (55)

cancel in pairs), and therefore
r r r r
W*L'(goo,X) = e(T(XE')) = e(x8) (X6 ], (g even) (56)

where the first e denotes the Euler class, the second e the Euler

characteristic, and the square brackets the fundamental class in

cohomology. If, on the other hand, r is odd, we get from (50)-(54):
(r=1)/2

r r r
h*L'(goo,X ) = L(x8)- n Lgﬂ_k(T(xg Jee) - L (v )
= -
r-2
- n L (Met) - n L (M) (57)
k=1 1’1‘5 i o<ger @ ¢
k odd r¢=6 mod 27
2m , x, (r-1)/2 .
= n (t_a-n—lql—x— n coth (x, + 1_111_<)> . e(Mﬂ) .
=1 o k=1 4T
2s(w) stanh x| r-2 T imk
)i (—-—-——‘lﬂ T coth (x; + ?)> .
=1\ x" k=1 J
k odd
s(6) ;
i n < ) coth (xe + 1'22)>
O<o<mr j=1 ro=6 mod 2 J
2m X, 2s(m) tanh rx| s(9)
=eM) N =—3— 7 ———3 1 T cothrx, (58)
T, tanh rx. . T . 3
J=1 =1 x. O<b<m j=1

J

where the last line has been obtained by using the identity (36) for
r odd. Clearly, if we multiply expression (58) by r", then it is
exactly the Atiyah-Singer expression for L'(g’,XT) except that each
two-dimensional class x5 has been multiplied by r. This proves the
case r odd of (24), and therefore together with eq. (56) proves
Proposition 1.

We now return to the calculation of L(g,X(n)). Because L, is

homogeneous of top dimension for r even (eq. (25)), we can compute
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d'Lr directly, without using the result of $10 on the Gysin homomorphism

of the diagonal map 4. Therefore for even r we can replace (22) by
r r
aL. = e(X€") 4,z = e(X8') zx...xz, {r even). (59)

Since the action of G on X preserves the orientation, T{zx...xz) =
Zx...x2z (hare T is the map (18)). Therefore (21) reduces to

r
& -
K. = e(x8") b2 (r-1)1 x5

£ *
. . feexy (11j z)...(wj z)
1<31<...<Jr\n

1 r 1 T

r
g
= Eﬁér_l (x1w§z ¥ oaes + xnﬁ;z)r, (r even), (60}

or, in the notation of §12, simply

gt
K = Ei%r-l tg, (r even). (61)

r
From (23) and (25), on the other hand, we get

K. = oo o a (na_(0)YIX)), (2 ooad), (62)

where m = (dim X8")/2 depends on r. Formules (61} and (62), combined
with (19) end (20) and the definitions of y» t;» and so on as given
in §§11-12, provide a complets evaluation of the class L(g,X(n)).

Just as in §12, we want to study the dependence of L(g,%(n}) on m,
and we know from our experience there that, to do so, we must study the
dependencs of X = K(ty,++st, ) and of G = ¥ = 6(tg..sty) ont,. By
eq. (61), K, = Kr(to) for even r, so the dependence of X on t, only
comes from the odd r terms (62). Just as in §12 (cf. eos. (9), (10}),
we can write out % as I tixei and note that, since e, =z hag the same
degree as [X], the only dependence of (62) on t, must come from monomials
of the form (tyxe, I‘_ﬁ}(tbxeb)Lo(gr,X). Since ¢>0 and s»m, we have
c+s-m>0 unless c¢=0 and s=m. Since X is connected, x6" can only have the
sams dimension as X if it equals X, i.e, if gr = id. This is a further
difference from the non-equivariant case, where the L-class always had
a non-zero leading coefficient. If g' = id, then s=m, L(g",X) = L(X),
and LO(X) = 1, We have therefore proved that

® -5 _r-1
K(tgreeerty) = K(tgeonrty _1,0) + % T SR S (63)
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If g has even order, then gr is never the identity for odd r, so
we £ind from (63) that K and hence also G are independent of tb’ This
does not, however, mean that L(g,X(n)) has especially nice stability
properties. To the contrary, L(g,X(n)) and L(g,X(n+1)) are completely

unrelated for r odd. For if we expand

¢ = 3 LNOPE (6x)

cn
0 Tp-1

(the sum is taken over all no,...,nb_120), we find

a6 = I Cnge ety [ng(£g)ewem (£, )1, (65)

where the sum is taken over all no,...,nb_1 with n0+...+nb_1 = n, and
therefore the values of BNG for n and for m+1 involve entirely different
coefficients of the expansion (64).

If, however, the element g has odd order p (we assume that G acts
effectively, so that g has the same order as an element of G and as an
automorphism of X), then we obtain from (63) that

G = Gty eeunty) = etb olto) Gty enesty _450), (66)

where o(t) = p-stp_1 + ... is the power series

oo - - -s 8s(t)
o) = % (p)™ P71 o p 2 (67)
k odd

where gs( ) is the power series defined in §8. We now proceed just as
in the proof of Proposition 1 of §12. The proof is identical up to (20)
of §12, which in our notation states that 26 equals

non ak n-j-k
z z(z z><2 aG(t,...,t_,o)> ==( () ")), o
3=0 k=0 \BCN 2/\ gcn 4 ° b1 at t=0
[Bl=k [Al=] (68)
The first factor equals n&/k!, and the second factor is a well-defined
element G, in the stable homology group H*(X(c)), namely if we expand
G(to,...,tb_1,0) as in (64) then Gj is given by expression (65) with

the sum over all no,...,n -1 satisfying no+...+nb_1 = j {(a finite sum).

b
The last factor can be evaluated by setting y = gs(tp):
k ) g (tP)\n-j-k
-2E< @(t)n Jd k> = k! + coefficient of tk in <p s st >
dt



-89 -

= k! « coefficient of t" 9 in (p

.

T g, (17"

Clearly this is zero if n-j is not divisible by p, while if n-j=ap it is

dx - ~k |
K res o |y (7 &) J

f!
k! res (y)dy P-S )ap-k
¥y= )3.4‘1 y

]

H

1
- Kk k ap+ fv( )
= 1 p@sp sk £P1 04 . N £ y
P P coefficient of y in _.___ﬂm .
fs(y)
Therefore (68) becomes
[n/p] s _ap+1 s
26 = 5 G P 3l (69)
N a=0 n-ap PRYS
£,(p"n)

We have proved the following theorem:

Theorem 1: Let all notations and definitions be as in Theorem 1 of §8.
Assume further that g is an orientation-preserving diffeomorphism XX
of order p. For j20, define G, € H*(X()) by

G, = z a4, coeny fng(£g) ooy 4 (8,01, (70)
1’10+...+nb_1=3 0 -1
where the numbers 4 € § are the coefficients in the expansion
no...nb_1
no nb 1

z dn n t
no,...,nb_1;0 0 -1

0 b 1

— oo gr [ S R -
= expL 5 &l o+ g y ro7? T ereT.L (gr,X),[X]i] (71)
r 0 c .

r=2 r=1 ¢=0

r even r odd

r

Here e(X€ ) is the Euler characteristic of the fixed-point set of g,
Lc(gr,X) is the component in HzC(X) of the equivariant L-class of g,

«,[%)> is the map from A to B defined in Theorem 1 of §8, and

T’ = ;17 by (g*i1a)...(g*ir’a), (summation as in (18)), (72)

where o€ A is the element of $8(14) and g* acts on A via its action

on H*(X). Then if p is even, we have

LeX(n) = 3¢, (73)
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where j* is the restriction map H*(X(e0)) » H*(X(n)). If p is odd,

s [n/P]

L{g, X S 2/ P YR ) a
(g:X(n)) e £1(pn) o Cn-ap %, ()" (%)
where Qs p(-) is the power series
0, (8) = —E— = ;7 g (%), (75)
’ £.(p7t)

Corollary: Let X, g be as in the theorem, dim X = 2s, g of odd
order p. Let j denote the inclusion of X(n) in X(n+p). Then

FLeXmp) = o (1) Llex(n). (76)

It should perhaps be observed that the occurrence here of the
inclusion X{n) C X(n+p) rather than X{n) C X{n+1) is perfectly
natural, since it is this map which arises in the equivariant setting.
Recall that the map j:X(n) € X(n+1) was defined by

{xp"-)xn} > {XO’XP“”xn}’ (77)
with Xy € X a fixed basepoint. This map is equivariant only if
X5 is fixed by G. In general, the set XG is empty and the only way

to get an equivariant inclusion map is to use the map
-1
ix1"..,xn§ > Zxoygx(:)"*-)gp xo)x11""xn} (78)

from X{(n) to X(n+p). That is, instead of mapping an unordered set
of n points of X to its union with a fixed point of X, we map it to
its union with a whole orbit Gxo C X, This also means that, if we
wanted to talk about the action of G on X(»), we really should form

p different limit spaces 1im X(n), with n ranging over a fixed
residue class (mod p) and inclusion meps defined by (78). These
spaces would all be homeomorphic, but would not necessarily be the

same when considered as G-spaces. However, for our purposes {eq. (74))
we need only the cohomology of X(w), and so do not need to enter into
these subtleties.
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§15. Equivariant L-classes for symmetric products of spheres

In §13 we evaluated the expressien previously obtained for L(X(n))
in two cases of especially simple nature, namely for X a sphere and for
X a Riemann surface. The case of a sphere was much the simpler, and is
the only one we are also able to cope with in the eguivariant case.

Let X be a sphere 825 on which a finite group G acts orientably.
Since H*(X) consists only of the elements 1 and z, both preserved by G,
the group G acts trivially on the cohomology of X and of its products
and symmetric products. In particular, the averaging operator T of
$14, eq. (18) is the identity, and (using (7) of §9) we also have

e(x8) = e(dfX) = e(x) = 2. (1)

Since only HO(X) and HZS(X) are non-zero, only Lo(gr,}{) and Lc(gr,X)
could be non-zero, and the latter equals Sign(g’,X) and is therefore
certainly zero since X has a vanishing middle homology group, The
class Lo(gr,X) is one if gr= id, and zero if gr* id. Therefore the
right-hand side of (71) of &4 is

% 2.7 0 -s-1 _r I 1
exp| I Sty o+ I r <a ,[X] >J = T s (2)
r=2 r=1 0
r even r odd
g = id

since the sum over odd r vanishes (a = toeo, and since eo=1 has degree
zero, <a',[X]> = 0) and the sum over even r equals =~ log (1 ~- 1;8 .
Therefore the coefficients 4 of Theorem 1 of §14 (here b=1) are equal
to 1 if n, is even and to O i Dy is odd. Substituting this into (70)
of $14 and using $8(4), we find

6. = g, ?f ‘Q :.LS odd, (3)
J 7", if j is even.

We then obtain from (73)-(75) of §14 that:
L(g,%(n)) = [ 0, if p is even, n is odd, %)
nn, if p is even, n is even,

while for odd p
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n
Wex(n) = =R 3 —— . (5)
£ (p'n) Osasn/p £ _(p'n)

n=a mod 2

Write q = [n/p]. The sum in (5) over Osa<q can be replaced by a sum
over o < a<q, since for negative a we have r;nfs(psn)_a = 0 (because
the power series fs begins with a term of positive degree, and nn+1 =0
in H*(X(n)) ). Thus it is a sum over & = q, Q=2, Q=4,... if g=n (mod 2)
and over a = g-1, g=3, ... if g#n {mod 2). Since
- 2-1 by —4
yisy +y ... = 7%;5
and similarly with g replaced by g-1, we obtain from (5) that
s £1(p"n) n
L(g)X(n)) = E Z M S > <2 . STZ [n/p]
£.n) 1 - () £ .(pn)

(podd, n=[n/p] (mod2)), (6)

£1{p° n
°n Jom .

T ') 1 - 6ME g ()[R

(podd, n# [n/p] (mod 2) ). (7)

We state these results as a theorem.

Theorem 1: Let X = S23 be an even-dimensional sphere, g & diffeomorphism
of X to itself of order p, preserving the orientation. Then the equi~
variant L-class of the induced action of g on the nth symetric product
X(n) is given by equation (&), (6), or (7), depending on the values

of p, n, and n - p[n/p] modulo 2. For example, if X = 82 and p is

odd, then

n+1
HeS"(n) = rraomyk (g 0ad) (8)
where
K = {{n/pl + 1, if n=[n/p] (wod 2), (9)
[n/pl, if n# [n/p] (mod 2).

The last assertion follows since for s= 1 we have fs(t) = tanh t,
and therefore f;(t) =1 - fs(t)2 = sech®t., The case X = S2 is of

interast since it provides a verification of the theorem of §14; namely,
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the nth symnetric product of 82 is equal to complex projective space Pnﬂ,
for which certain equivariant L-classes were computed in $. To
identify S (n) with P €, we wrlte s? as P 4T, so that a point of 52 is
written (z:w), where (z W) € g2 - {0} and (z:w) = (tz:tw) for tet*

= € - [0}, TFor Ogi¢n, we define

By @ -op® > ¢ (10)
by
by ((24,w,)50 00, (20w ) = IéN (321 z )(321 W) (11)
II]=1

Clearly, if we multlply (z W ) by teC* then each h; is also multiplied
by t (since the j coordlnate appears in exactly one of the products
in each summand in (11)). Therefore the point (hO:...:hn) is unchanged
if we replace (zj,wj) by (tzj,twj), 50 we have an induced map

i (59" - Pt (12)

mapping (z1:w1),...,(zn:wn) to (hoz...:hn), where h; is given by (11)
for any representatives (Zj’wj) of the points in Sz. This map is

clearly symmetric, so induces a map

n: §°(n) > 2. (13)
The map sending (h teessh ) € P G to the unordered n-tuple of roots
(zj,wj) of the homogeneous equatlon ha io0 By Wi oo (which is

clearly independent of the choice of h's representing the given point
of P C) is then an 1nverse to the map h, which therefore is an isomorphism.

Now let G = p C S be the group of p 0 roots of unity, acting on

82 by
2
Lo(z:iw) = (Lziw) (P =1, (z:w)es ). (14)
Then G scts diagonally on Sz(n), sending f(z W, )§ n to
1y enny
feo(z.iw )i, . Using the map h to 1dent1fy P L& with S (n),
J 3 d=,..0,0

we find from (14) and (11) that the induced action on P ¢ is

O » - 2 - -
go(ngieeoin) = (nyigh,:g Byiae.:h ). (15)
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In particular, the action of G on PnG is linear, and for linear actions
we calculated the equivariant L-class in §6. Substituting the definition
(15) of the action of G into the result for L(g,PnC) given in eq. (13)

of §6, we obtain

n 4,k 2n
Mest@) = xon (g Dl (16)
Aes’ k=0 Xy e -1/

where 7 ¢ HZ(X(n)) is the usual element, and corresponds under the
isomorphism h to the Hopf class x € HZ(PHE).

We wish to show that (16) agrees with the result of Theorem 1,
namely that L(g,SZ(n)) is given by (4) or by (8) according as p is
even or odd. Recall from §6 that (16) is & finite sum, the only
non~zero summands being those with A equal to one of the eigenvalues
{k. In particular, A can only contribute to (16) if it:is a pth
root of unity. Since we want the element { to have order exactly p,
{ is a primitive pth root of unity and therefore A must be a power
of {. Therefore (16) canbe rewritten

n n k~J e2n

2 1
L(E57() = 30 (0 ) (17)
j=1 k=0 I e -1
. . . 2mi/p
or equivalently, since we might as well assume { = e s
2 n n ke
L(Z,5°(n)) = £ I (n coth(n+ -51 7)) (18)
J=1 k=

It is clear from either of these expressions that

L(¢,5°(m+p)) = Q 1(2,5%(n)), (19)
where
j 2
Q = 1 (gﬁi—f—;—i—’ ). (20)
=1 g9 e - 1

This was evaluated in eq. {(36) of $i4 :
np if p is even,
Q = o {21)
n*/tanh p , if p is odd.

If we compare this with expression (4) for even p or (8) for odd p, we
see that the value of L(Q,Sz(n)) computed in Theorem 1 also satisfies
equation (19). Therefore if the value computed there agrees with (18)
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for some n, it also agrees for m+p, and so we only have to check values
of n which are smaller than p. If Os<n<p, the number k defined in (9)

equals zero or one according as n is odd or even, so (8) states

2 n+1 if n is odd
L(6,5%(n) = [ pn”, ;
. /tanh pn, if n is even

s

(0<n<p), (22)

for odd p. But nn+1 = 0 in H*(Pn€), so0 {22) also agrees with the

expression (&) proved for even p. We therefore only need to prove
that (17) and (22) are equal for Osn<p. We state this as a lemma.
Lemma 1: Let n, p be integers, Osn<p, and { & primitive pth root of

unity. Then the following identity holds:

n k 1, if n is odd,
% z I &giii_:_l ® { 22t if n is even (23)
AP k=0 ATz - 2P -1’ = :
Proof: Define a rational function F(z) by
n 4
Fz) = n &2l (24)
k=0 {7z -1

Then the left-hand side of (23) is the rational function

6(z) = + 5 Flaz). (25)

ol

Since m is smaller than p, the factors in (24) have their poles in
distinct points (namely at z = gak, k=0,1,...,n<p), and thersfore F(z)
is a rational function which has at most a simple pole for z a pth
root of unity and is holomorphic everywhere else (including z=eo).
Therefore G(z) has the same properties. Moreover, G(z) is invariant
under 2z v 9z for any pth root of unity 6, so 6(z) is a meromorphic
function of zp, with a simple pole at zP=1 and regular everywhere
else. Therefore G(z) must be of the form a + b/(z°-1) for some
constants a and b. To evaluate these, we cbserve that F(e) = 1 and
F(0) = (~1)", and therefore G(z) also equals 1 at z=oo and 0 at z=0,
It follows that G(z) is the function appearing on the right of (23).

As a corollary of the lemma, the residue of G(z) at z=1 equals
2/p or 0 according as n is even or odd. Since the residue of FQE)
at z=1 is clearly O for )@g"i (3=0,1,...,n) and 2 L (gk"j +1)/(§k"j-1)
for A={ Y, we obtain the identity (independent of p)

‘ . o
2o oo, eyl @+ ch1 = Il (26)



CHAPTER III: THE G-SIGNATURE THEOREM
AND SOME ELEMENTARY NUMBER THEORY

In this chapter we study the number-theoretical properties of
certain elementary trigonometric sums occurring in connection with
the G-signature theorem. It is clear from the form of the G-signature
theorem that, if the group G is finite, the expression for the equi-
variant signature Sign(g,x) involves the evaluation of certain finite
sums whose terms are products of the cotangents of rational multiples
of m. The motivation for the further study of such cotangent sums
arose from two discoveries. One was that the formula given by Brieskoran
for the signature of the variety

a,

v, = {(21,...,zn)€ vl g zil =11, a = (a1,...,an)€ Z:l, (1)
can be expressed in terms of such a sum. The second was that cotangent
sums of this sort appear in the classical literature, and indeed in a
variety of contexts: +the theory of modular functions, the Hardy-
Ramanujan-Rademacher formula for the partition function, the theory of
quadratic residues, the theory of indefinite binary quadratic forms,
the problem of the class numbers of quadratic fields over @, and the
problem of generating random numbers, We shall say nothing about
these classical appearances of cotangent sums (references, however,
have been given for all of them), nor--except for a brief remark about
the Legendre~Jacobi symbol and the law of quadratic reciprocity--
about their connection with the theory of group actions on manifolds.
Indeed, it still seems to be mysterious that the same expressions occur
in the theory of the transformation of the Dedekind modular function n{z)
under the action of SL(2,%) and in the theory of four-dimensional
manifolds with group action. The connection between the signature
theorem on 4-manifolds and the theory of ocuadratic extensions of @, on
the other hand, has been accounted for since its discovery by the work
of Hirzebruch on the Hilbert modular group and the resolution of certain
two-dimensional complex singularities; it manifests itself, for example,

in the equality of two invariants associated to a Tz-bundle over S1, one
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defined topologically and the other purely number-theoretic.
To see the sort of topological expression which arises, we special-
ize the G-signature theorem to the case of a component of a fixed~point

set X8 that reduces to = simgle point x. Thus x is an isolated fixed

point of g and the action of g on T X is given by eigenvalues )‘,j - e2i€j
#1 (jﬂ’-- .sn, 2n= dim X), and the G-signature theorem gives
;\:tlint} = i cot 6, ... cot 6, (2)
]

as the contribution to Sign(g,X) from the component {x] of X&. 1If g
has order p, then E)j must be a multiple aj of m/p, where a; is an
integer defined modulo p; if further the point x is an isolated fixed
point of all the powers of g (except of course of g¥=1), the integers
aj (j=1,...,n) must all be mutually prime to p. Then the contribution

of fx} to the sum I Sign{h,X) {(where G is the cyclic group generated

heG
by g) is squal to
ag an
A 1 e A ~ 1
def_ = def(pP3aayevesan) = T al_i.' =
P A -1 A -1
A=1
AF1

p-1 kay kag - p=1
= 3 _§T....‘L.1_§_*'_1 = i %7y cotwi...cotﬂ—l@-”
k=1 ¢ ay _ 1 ¢ kag,

-1 k=1 P LENG),
(‘.: ezm/r)

The reason for the interest in the expression £ Sign(h,X) is its

.

appearance in the formula for the signature of the quotient X/G (§3(1)).
For any submanifiold Y of X, we define defY (the "signature defect of Y";
ace Hirzebruch [17]) as the sum, taken over all g€G for which Y is a
component of Xg, of the Atiyah-Singer expression for the contribution
from Y to Sign(g,X). This is of course only non-zero for finitely

many manifolds Y, which are necessarily connected and of even codimen-

sion in X. Then

16} sign(%/6) = ¢ Sign{g,X) = SignX + = def, , (&)
gei YX

so the numbers def’Y can be thought of as defects specifying the
amount by which the formula Sign X = |G| Sign X/¢ (which holds for

free actions) fails to be true. In the special case that G is cyclic

and x an isolated fixed-point of every geG -{1} , we obtain (3).
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Notice that the expression def(p;q1,...,qn) defined in (3) is a
rational number. Indeed, in the second to the last formula of (3),

we could have taken any primitive pth root of unity for { without
changing the sum, so the sum belongs to the subfield of the cyclotomic
field of order p of elements equal to all their conjugates, and this
subfield is precisely §. Moreover, if c¢ = %E% where Ap: 1, then
(c+1)? = (-1, s0 ¢ satisfies an algebraic equation with integer
coefficients and leading coefficient p, and therefore pc is an
algebraic integer. It follows that the expression (3) when multi-

plied by pn is a rational integer:
n
P def(p;a1,...,an) € Z. (5)

We will show in §16 that the p~ in (5) can be replaced by pn'1, or
by Hyos where Hy is a known integer and is independent of p (it is
the denominator of the Hirzebruch Ln—polynomial: see [12) ). The
same sort of reasoning used to prove (5) shows that defY is always
a rational number, and indeed an element of E[%], where d = |G].
These remarks give some idea of the subject matter of this
chapter and of the type of interplay which takes place between the
topological and the number-theoretical aspects of expressions such

as def(p;a1,..-,a ). A more precise description of the contents of

the chapter is as ?ollows: The purely number-theoretic aspects of

the cotangent sums are considered in §16. We first give an elementary
treatment of the expression (3) for n=2 (this is the sum that appears
most in the literature, in connection with modular functions and
quadratic fields), showing its connection with the Legendre-Jacobi
symbol and giving an elementary proof of a reciprocity law, due to
Rademacher, from which the law of quadratic reciprocity can be
deduced. We then consider the general case, giving a rational expres-

sion for def(p;a1,...,a ) and proving a generaliszation of the

Rademacher reciprocity ?aw; the latter is then used to prove the
above-mentioned result on the denominator of def(p;a1,...,an). The
formula giving the signature of the Brieskorn variety as a cotangent
sum is also proved. In §17 we construct two explicit group actions
for which the statement of the G-signature theorem reduces to the
Rademacher reciprocity law (or rather its generalization to higher n).

One of these is precisely the action of a product of cyclic groups
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on P € {the Bott action) which was studied in §6. The other is a direct
generalization of the construction given by Hirzebruch [47] for the
case n=2, but is included because it requires the theorem of §3 for
the L-class of a quotient space and thus provides a further link with
the results of Chapter I. In the final section, we give a computation
of Sign(g,Va), where V_ is the manifold (1) and g acts by multiplying
Zy with an akth root of unity. The computation is exactly parallel to
Brieskorn's in the case g=id. The result can be rewritten as a
trigonometric sum by using the results of §16, the case g=id being

the formula for Sign(Va) mentioned at the beginning of the introduction.
That this formula involves cotangents suggests that it can be obtained
by the use of the G-signature theorem, and indeed this can be done:
one studies a certain hypersurface in Pnt invariant under the Bott
action. However, this alternate proof will not be given here; it was
given by Hirzebruch in the course of a series of lectures in which

a dirsct proof was given of the result of Bott proved in §6 [21]. In
one special case, we do give an evaluation using the G-signature
theorem. Namely, when the action of G on Va is free, we can calculate
Sign(g,Va) by replacing the non-compact manifold V, with the bounded
manifold Va!WD2n, and if we then glue onto the boundary the Dz—bundle
associated to the S'-bundle (vanszn") > (v.n g%n-? )/51, we obtain

a closed G-manifold to which the G-signature theorem can be applied.
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§16. Elementary properties of cotangent sums

We wish to study the trigonometrical sums

p=1
def(pjas,...,an) = (_1)n/2 by Lxa: t Z%in (1)

cot === ,,. co
k=1

defined in the introduction, where p is a positive integer and the
™ in (1)

since the sum is clearly zero for odd n (the substitution k- p-k

a;'s are integers prime to p. We can write (=1) 2 for 1

replaces each cotangent by its negative).
We begin by an elementary treatment of def(p;q,r). We shall

later give a rational expression for (1) which simplifies, when n=2, to

der(pia,r) = b 1 ((2) (()), @)
k=1

where ((x)) is the standard notation

(x) = (3)

{ x - [x] - %, if x is not an integer,

o, if x is an integer.

We can always take r=1 in {2), since r is prime to p and therefore kr

runs over all residues (mod p) as k does. Then (2) can be rewritten

def(p;q,1) = - % (a,p)p » (&)
where
b
(@ely = =60 5 ((FN(ED). (5)

This last quantity is the "Dedekind symbol," studied by Dedekind [5]
in connection with the behaviour of his modular function 7n(z) under
the action of modular transformations (he used the notation (q,p), but
we will reserve this notation for its usual meaning as the greatest
common divisor of two integers g and p). The reason for the factor 6p
in (5) is that it is exactly the factor required to make (q,p)D an
integer.

To study the expression (5), we introduce a slightly more

convenient integer-valued function, namely
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-1
(o) - T ox(9). (©)

We also note the formula (valid if (p,q)=1, as will always be assumed)

p-1
k -1 =1
: [B] - > . )
k=1 P
This can be obtained by counting the lattice points below the diagonal
of the rectangle O<x<p, O<y<g, or by substituting p~k for k in (6).
Since (p,q)=1, the set of numbers qk-—p[%?} runs over a complete

set of non-zero residues (mod p) as k does, so

p~1 p-1
£ (ak-p[ED? = 3 ok,
k=1 P k=1
or, evaluating the various terms,
p-1
k
(@® - Ne-1)@p-1) -12qf(pa) +6p [E)F= 0 @)
k=1
On the other hand,
q-1 X
£f(e,p) = 3z x[Z} =  ( 1  x)
x=1 4 O<x<q O<ksxp/q

= r { bt x
O<k<p [%k]ﬂsisqﬂ )
p"1 1
- (a2 o o - 13Kz _ 0k
= kzz(q q {p] {p})
(eg=1)(a=D(p=1) _ 1 ¥ gk
5 5 31 [p] . (9)
Combining (8) and (9), we obtain
a £(p,0) + P fla,p) = 75 (p-1)(a=1)(Bpa-p-a-1). (10)

On the other hand, it is easy to write £(p,q) interms of (q,p)D :

£(p,a) = 75 (p-1)(upa - 20 - 3p) - 3 (ap) (104)

(notice that it follows immediately from this formula that (q,p)D is

an integer). Therefore we can write (10) in terms of (q,p)D:

2 2 4 -
p(pa)y + a(ep), = Btotl-Jpd (11)
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Equation (11) is the reciprocity law of Dedekind. Together with the
fact that (q,p)D only depends on the residue class of g mod p, it

suffices to define the symbol (q,p). entirely (by a Buclidean algorithm).

D
Stated in terms of the defect, &g, (11) becomes
1 1 p° + % + 1
'I-) dcf(?;cb“) + g def(Q;P’1) = 1= 3pq . (12)

This is the form in which the reciprocity law was generalized by
Rademacher [36], who proved that

Laer(psayr) + S aef(q3p,r) + +def(ripyq) = 1 - B 2 X% (43
P q r 3pqr

where p,q,r are positive and mutually prime. We will prove later a
generalization of (13) for the higher defect symbols defined in (1).

First, however, we complete the "elementary" part of this section
by relating the Dedekind symbol (q,p)D and the Legendre~Jacobi symbol
(%) This symbol is defined whenever g,p are relatively prime integers
with p odd (e.g. as the sign of the permutation on %Z/p% induced by
multiplication with g), and is given, Jjust as in the special case
of prims p, by GauB's lemma, namely

N

2 = =0 *?, (p odd, (a,p) = 1), (1)
where
Nq,p = Ifx:1sx$-&;:l, qx-p[%)> gfi. (15)
Therefore, modulo 2, we have
. : : .. (p~;)/2 (2ax
9P 0<x <p/2 x=1 P

[2ax/p] odd

i

p-1 p~1 _ _

poE] = r en) (B8] = £(pq) - Letlest)

k=1 P k=1 p (16)
k even

From (14) we deduce

(-%) = 2N o+ 1 (mod &), (17)

and combining equations (1CA) (16), and (17), we cbtain the desired
relation’ between the Dsdekind and Legendre-Jacobi symbols:

* This was known to Dedekind (Crelle 83 (1877) 262-292; Gesammelte
Werke, Band I, 174-201, $§6).
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(2) « (@p) = B (moau). (18)

Since (-g) can only take on the values t1, it is completely determined
by (18), so that a knowledge of the Dedekind symbol also gives the
Legendre-Jacobi symbol. Also, if we substitute (18) into the Dedekind

reciprocity law (11), we obtain, after a short calculation,
-1){q-1
D+ @ = S+ 2 (mod 4), p,q 0dd, (p,a)=1,

which is precisely the law of quadratic reciprocity.

We now turn to the general case of definition (1), Our first
goal is a rational expression for def(pjas,...,an) generalizing
equation (2). This is given by
Theorem 1: Let p be a positive integer, and a; (j=1,...,n) integers

prime to p. Then

def (pjas,...,an) = 2°p ) (... By, (19)
1<Ky, ..., knsp T p

pl asks+...+anky

Proof: We will make freguent use of the well-known dual formulas

5 Ar [ g, if ptr, (20)

AP=1 p, if plr,

Py 0, if A1

b A = 4 4 (21)
X=1 p, if A=1,

where in the latter formula A is any pﬁh root of unity. Our proof of

eq. {19) will be based on the following formula of Eisenstein:

p-1
a 1 -a A+ =1 . 2nka 7k
(( p ) = e pz A =< % k—z—;1 sin cot o (22)
A =1 .
A%1

This can be proved in several ways; the easiest is to note that the
difference of the right-hand side for a=b and a=b-1 is (using (20))

1 -b A+ -1 L1-b  -b
295)‘ A_1(1-/\)-2pi()\ + A )

&x s if b=0,1 (mod p) b et
{ e  Hf bHO,1 (mod p) = ((5))- (('-p—)).
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From (20) we obtain the formula

P - - if A1,
PRS- { A% -
AP = 0, if A=,
Aa#1

where A is any pth root of unity. Substituting this into (1) gives

an

a
A 1 A4
def(p;ai,...,an) = 1§ P ha cos =
Af=1 ATt-q AT
AF1

z

[ = e

- : )\J.+‘I
1[~ AP=1, A.#1 A5 < j
377
. j;’ j;’ Al Aprl
P - - As =1 An =1
AaalPa o 2aB21 Ak, ..., kosp
Rty oeesAn®d

APer -

+a. kg + ... +apky -ki

Az ~kn

A ceARTT,

The sum over A can now be evaluated using (20), and the sum over )\.j
(3=1,...,n) using (22). The result is precisely (19).

Since the denominator of ((%)) is at most 2p, it follows from
the theorsm that

n-1
P def(p;a1;eeeran) € % . (23)
This is a sharpening of eq. (5) of the introduction, and will be
further improved later.
The second theorem we state for the numbers def{(p;a;,...,an)
is a generalization of the Rademacher reciprocity law (12).

Theorem 2: Let Bs e resBny be positive and mutually prime integers.

Then
2k 1 L
h we A8F(8.58 5000y B.500038. ) = 1 = M . (24)
5= 0 aj j’o 3 2k Bye v e 8oy

Here a; denotes the omission of 85 and Lk(p1,...,pk) is the R

Hirzebruch L-polynomial in the variables Py = oj(ag, ...,agk), where

oj is the jth slementary symmetric polynomial.
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Proof: Consider the poles of the rational function

2k &3

1 Z + 1
£(z) = = n E2=—=— . (25)
2z J=0 7 J - 1

These clearly lie at 0,99, and those points z on the unit circle with
a:
z 9 =1 for some J. Since the aj's are prime to ones another, it can

as as
only happen that z ~ = z Y = 1 if z itself is 1; thersfore the pole

a.
of £ at a point z with 2 J=1, z¥1 1is simple and its residue can be

calculated immediately from (25). Applying the residue theorem gives

0 = I res —t( £(z) dz )
te¢ =
2k
= res tres .+ .Z a? resz=t + r082:1
3=0 %5 =1
t+1
_ 2k 2k aj
= i; + 1% + 3z :; n E;v—i—l + resz_1(f(z)dz).
j=OJi=OtJ—1 -

i*xJ
R . . . 2t
Finally, we find on substituting e for z that

res, . (£(e??) - 26% at)

resz=1(f(z) dz) £0

res coth ayt ... coth a, t dt )

t=0 ( 0 k
- 2k

— res i a.]__' t dt
8ge s 8oy t=0 3=0 Tarn ajt t2k+1

By definition of the L-polynomials, however,

2k a.t oo 2r
R EEEﬁLETE = b Lr(p1,...,pr) 7. (26)
J=0 J r=0

Therefore

Lk(p1,...,pk)

a ?

res _, (£(z) dz) = =

0°* * 8ok

and the proof of the theorem is complete.
The case k=1 of Theorem 2 is just eq. (12). For k=2, the
right-hand side of (24) is

1 - (7P2 - P12)/4-5 abcde,
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where a,b,c,d,e are positive and mutually prime integers and
Py = a® + b2 + c? + a% + o3, P, = a%b? + ... + d%*,

Just as the numbers def{p;q,r) turned out to be multiples of 1/3 (eq. (&)},
we can deduce from the reciprocity law for k=2 that 45 def(a;b,c,d,e)
is an integer. In general, let Hye be the denominator of Lk’ i,e. the
smallest positive integer such that ukLk(p1,...,pk) is & polynomial
with integer coe;af‘f‘:'u:ien‘tsz.k Thus u,=3, Hy=45, and in general (see [12])

]

[T=
= g 117

T » (27)

where 1 runs over all odd primes. If we multiply equation (24) by

My 8ge 8oy the right-hand side is certainly an integer. Because
the aj‘s are relatively prime, and because def(aj;ao,...,éj,...,aZk)

is in Z[ g% 1 (by ea. (23)), we can deduce from this that
d

def(aj;ae,...,éj,...,a € Z. (28)

My o)

This is only true by the above argument if all of the a,'s are prime

to one another., However, tc see that ykdsf( P381,...,8n) is always

an integer (here n=2k), we observe that its value only depends on

the residue classes of a, (mod p), and that a; is prime to p; therefore
we can use Dirichlet's theorem to replace each &; by a large prime
without changing its class in %Z/pZ, and so we can assume that the aj's
are prime to one another as well as to p. Combining this with (23)

and the formula (27) for Hy» we obtain:

Theorem 3: Let p21 and ai,...,a; (n=2k) be integers with (aj,p)=1 for
all j. Then def(p;ai,...,an) is a rational number whose dsnominator
divides Hy (independently of p and the ai's). More precisely, the

denominator is at most sgual to

(=]
o1 1-1 ,

(29)
whers the product runs over the odd prime divisors 1 of p.

We note that Theorem 3 is quite sharp. If p is prime to Hyes of
course, it states that def(p;a;,...,an) is an integer (this is the
case if p has no prime factor <n+t), but if b and u do have a common

factor, then the bound for the denominator in (29) really can oeccur,
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For n=2, for instance, def{pjq,r) is an integer if and only if p is
not a multiple of 3 (this can be seen easily from the treatment of
(q,p)D given at the beginning of the section). For higher n, we
can test the sharpness of (29) by taking p small. Thus
. ok 2k 2k
Jn _ 1 ~1 - 2
et T = ) () = 3

2
def(3;1,...,1) = I
J=1

has denominator exactly Sk, and

%
def(531,...,1) =

J

0o

.2
(cot 45)
1 5

#

-5-1[(5+2f5)k+(5-2f5)k]

[k/2] [k/2]

has denominator at most 5 (exactly 5

multiple of 5).

unless k is an odd

(=)™ (J=B)™ (=)™ (V=)™

The last trigonometric sum evaluated in this seetion will be the

one giving the signature of the Brieskorn manifold Va (ea. (1) of the

introduction to the chapter). It differs from the previously
considered sums in that the expression given for it will be an
integer rather than just a rationsl number. The reason is that the
sum only involves cotangents of the form cot g% (; odd). Just as
we observed that c¢ = %E% is 1/p times an algebraic integer if A is
a pth root of unity (cf. the discussion leading to (3) of the intro-
duction), we see that ¢ #dtself is an algebraic integer if APz -1,
since then the equation (c+1)® + (c-1)¥ = 0 1leads to an algebraic

equation for ¢ with leading coefficient 1. Thus cot 4= (j odd) is

2p (
an algebraic integer, and a rational expression involving such
cotangents is therefore a rational integer. We now state

Theorem 4: Let ai;...,35 2 2 be integers, and

t(ag,eeeyap) = |{@1”.”xn)ezn:0<xj<aj(ﬁ1p.”nL

o<X , +-§ﬂ<1 (mod 2)1 |
n

(30)



- 108 -

be the expression given by Brieskorn [3] for the signature of the
variety V . Here O<y<t (mod 2) means that 2k < y <2k+1 for some

integer k. Then t(a)::t(ai,...,an) is zero if n is even, and
n-1

2 2N -1 . . R
t(a) = L0 L cot 45 cot 4., cot L (31)
N .j=1 2N 2&1 2an

J odd
if n is 0dd, where N is any multiple of the integers ai,...,an.
Proof: The statement for even n follows immediately on replacing
each x5 by ayx; in (30). We could prove (31) by one of the methods
used earlier in the section (e.g. by a residue or Fourier series
technique or using the formula of Eisenstein), but prefer the
following more elementary approach. Let N>0 be as in the theorem
and set bj = N/a‘j (4=1,...,n). Define a polynomial f(t) by

£(t) s tb1x1~+... + bpxy (32)

I

O<xy<ay,

.
.
.

0<Xn<an

u b, 2b (a;=1)b:
n (td+4t d+...+¢ 9 79

J=1

0 b N
t Y -t
= n ——————a . (33)

=1 1 -t J

i

If we write o for the coefficient of t¥ in £(t), it is clear that

the number t(ai,...,a,) is precisely CybeeetOy 4= O yee =Cop F
CoNpq toeeFCagg T e e s LeCs

t(a) = res_ [£(t70)g(t) T (34)

=0 t
where
g(t) — ot ...+ Ne-1 _ tN+1 - - t2N—1 . t2N+1 . ...
N
N~1 N t-1 1
= (t+ ...+t )/(1+t)_1-'t m, (35)

The residue in (34) is well~defined since f{t) is a polynomial and
£(t') is therefore meromorphic at t=0, Since f(t) is a polynomial,
moreover, f£(t~') has no other pole, and it is clear from (35) that

g(t) has poles only at points t with g - -1, these being simple, The
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residue theorem therefore gives

- = £(z) rest_z[ﬁiﬁggi]
N =

AN |

t(a)

b
- - 3 Tt d a1 e
= -
w11 - t°d 1 -t
tN=-1 a=1

i}
T
This is equivalent to equation (31).

Notice that the theorem gives even more information about the
cotangent sum appearing than the remarks preceding the theorem, for
from these remarks it only follows that a cotangent sum involving
terms cot éz must be an integer, while it follows from (31) that
the cotangent sum appsaring there is ectually a multiple of N,

It is possible to prove a large number of similar results. For
example, a specialization of a very slight generalization of Theorem 4

(see Hirzebruch [18]) yields an integer expression for the quantity

n/2 2p-1 . :
i:il——— z cot 4817 ... cot J2n7
X 2p 2p

1
= 3 [ def(2p;as, ... an) - aef(pjas,...,an) ),

where p is a positive integer and the ai's are odd integers prime
to p. This expression gives a formula for the Browder-Livesay of
the free involution T on the lens space L(pjas,...,an) defined as

the covering translation of the double covering
L(pjas,..vpan) — L(2pjas, ... an).

Howsver, we have only given in this section the formulas relating

to the topological situations considered in §§17-18.
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$17. Group actions and Redemachsr reciprocity

In this section we construct two finite group actions on complex

manifolds for which the eguality of the G-signature theorem is
precisely the gensralized Rademacher reciprocity law proved in §16.
To obtain the defects def(pja,,...,a,), we have to look at manifolds
of complex dimension n; thus the original reciprocity law of Rademacher
(eq. {13) of §16) corresponds to manifolds of real dimension four.

The first action is the same as that studied in §6, namely the

linsar action of G = Hg Xooe xua on Pnﬁ, where “y denotes the

group of ath roots of unity and aof...,an are mutually prime integers.
The calculation is relatively short because the fixed-point sets and
their normal bundles were already found in $6.

The other action considered is the action of a finite cyclic
group on a space obtained as the quotient of another finite group
action on a hypersurface in complex projective space. This situation
was used by Hirzebruch [17] to obtain the classical Rademacher recipro-
city law from the G-signature theorem; the only difference is thai for
manifolds of dimension higher than four we need the whole L-class and
not just the signature of certain quotient spaces, and therefore the
use of the G-signature theorem must be replaced by the use of the
result of §3 of Chapter I.

(I) A group action on projective space

We will use without comment the notations of §6, thus X = an,

G =y, XeooXidy and X(¢) denotes the component of X (for a fixed geG)
[¢]

given in $6(5), It follows from the assumption that the aj's are
mutually relatively prime that each X({) is empty or consists of
exactly one point if {+1 : it is empty if { is different from all of
the coordinates gi of g,and consists of the single point

p; = (0:...:0:1:0:,..:0) (ith coordinate = 1) )

if (= Ci + 1. We write Sign(i) for the total contribution of the

point p; to ZGSign(g,X), i.e.
ge

Sign(i) = z <L*(g,X)§ »[py 1> (i=0,...,n). (2)
geG, Ci¢1 i
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n
Thus 2 Sign{i) represents the total contribution to = Sign{g,X) from
i=0 geG

all fixed-point set components X({) with {+1. Similarly, we write S for

the total contribution from the components X(1), i.e.

8§ = I <L'(gX),,[x(1)]> (3)
geG
Then
n
S+ 3 Sign(i) = : Sign(g,X) = |G| Sign X/G, (4)
i=0 gel

by the usual formula for the signature of a quotient. Morsover, the
action of & embeds in an action of the connected group Tn+1 (ef. §6),
30 G acts trivially on H*{X) and therefore 3Sign X/6 = Sign X =
Sign Pnﬁ. We can assume that n is even (otherwise all the signatures
are zero), so that Sign P& = 1. Since |G| =ag...a , we ocbtain

n
S + 3 Sign(i) = 8ge o2 (n even). (5)

i=0 n

The Rademacher reciprocity law will thus have been exhibited as a

special case of the G-signature formula when we have shown that:

Sign(i) = ao...éi...an def(ai;ao,...,éi,...,an), (8)
n -3
- - =4
S = I(ppeeop) = res [jilo tanh @y ayl. ()

In the last equation we have used the notation of $6; thus k= n/2

and by = oj(ag,...,agk).

To prove (6), we consider geG, ¢={;#1. The eigenvalues of g on
the tangent space at the isolated fixed point p, are {ef. $6) §-1Cj
(3=0,...,n, j*i), so
DTy et
I E=TE%_:_? s
=0 > =3
J#i

i

<L'(g,X)§, [p; 1>

and therefore (2) becomes

i {3t + 1
Sien(i) = ) n ( 3 s )
ay §=0 a;_, 1%
S
{3#1
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n e?

= T i < a. gl———:-l ) (8)
& 4 =0 o /0
771 5am 1
gy

where the last line has been obtained by a simple trigonometric
identity.” The right-hand side of (8) is precisely the expression (6).
To compute S, we need to evaluate L'(g,X)1 on [X(1)]. Renumber
the coordinates (for a fixed g = (go,...,gn) € G) so that Lo=e-=5=1,
gy# (i=s+1,...,n). Then X(1) = P_C, and if we denote the generator

of HZ(PSG) by y, We can express L'(g,X)1 by
(6.1) PO ©)
L'(g,X = = — 9
1 tanh y i=s+1 CieZy -1

(eq. (10) of §6). Evaluation on [X(1)] corresponds to taking the
coefficient of y° in (9), so we obtain

giGZy -1

- n
1
<L'(g,X),s[X(1)]> = res L(coth y)s+ n Zee— dy:i
1 y=0 i=s+1 gie?.y -1

B riely & 1
= res . 11 ——-—--gl 5 dy . (10}
YV 420 L3V - 1

If we sum over all geG for which g0=...=§s=1, §S+1,...,gn +1, we gat

as the total contribution fronm PSG the sxpression

- n 2y
res O[_ (coth y)s+1 1 ( 3 £E§__i_l ) dy :
¥= iz=s+1 gai=1 {e Y o
#

n
11« s cothay - cothy )dy ], (1)

= res [{coth y)
y&:O i=s+1

where again the last line has been obtained by using an elementary
identity. The unsymmetric form of (11) is due to the renumbering of
the coordinates., In general, if I is a subset of N= {0,1,..,,n],

then the total contribution to S from elements geG with §i=1 = jel 1is

res._o [ Hiel(coth v) niéI( a; cotha,y - coth y)dy].

* Namely $6(17).
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bundle of Va in V, we obtain from the G-signature theorem that

st1 P .02 4+ 1
L'(a,V) = tanh Ny (t = = ) n -‘h—?—-——— . (26)
ani y jeset @ sV -1
It is also easy to see that ,j,(ir) = ¥ *T | where J] is the inclusion
map from ¢ to V; therefore
. tamh Ny D [ a3+
L(o,V) = §,L'eV) = ==L g1 (y-5 . (27)
! Y =0 a ey - 1

Summing this over ac¢H (recall that ay = 1) and using the theorem of §3,

we obtain
n 2y
L) = ta?\;h Ny | (y 5 ae2 + 1 >
Y =0\ Pioq aeY -1
n b
- tanh Ny 1 v (28)

>
Ny 320 tanh b jy

whare 7 denotes the projection from V to V/H = W, bQ = 1, and the last

line has been obtained by the usual identity.
It follows immediately that (22) holds. Indeed,

<L), [9)> = o <0, m VD> = i <L), [V]>

Sign W
n-1

= -]%ﬂ- ( coefficient of LN—- in 7*L(W) )

(this last equation holds because i,[V] € HZn-Z(Pnc) is the Poincare
dual of Nx € H2(Pnﬂ7), and evaluatioh on the fundamental class in P ¢

consists in picking out the coafficient of xn), and since N = [H]|
= H?_O bj’ we obtain equation (22). But the calculation (28) can also
be used to evaluate the number SY appearing in (21)., Indeed, Y is

defined exactly like W but with one coordinate fewer, soc we hazve

n b.z
_ tanh Nz i
Ly) = N tamb (29)

where z € HZ (Y) is the analogue a dimension lower of (n*) 'y € HZ(N)
(we use complex coefficients where 7* is an isomorphism). The
complex manifold Y is embedded in W with a normal bundle whose first
Chern class is precisely z, and G = Hy acts on this normal line bundle

nth

by multiplication with roots of unity. Finally, evaluation on [Y]
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b -
the numbers { ° (1sjsn, j#i), and the contribution of w to Sign({,W)

is therefore equal to

|
=1 gbj -1
J#i

We must multiply this with a, (since W(i) contains a; points, all with
the same eigenvalues) and sum over all (G for whlch WC = YU W),
i.e. over all ¢ with ( i1=1, ¢4+1. This proves equation (20).

To prove (21) and (22), we will need to calculate the L-class of W.
Pirst we evaluate the L-class of the hypersurface (12), Let i denote
the inclusion of V in P € and v the normal bundle, and let x € Hz(Pnta)
be the standard generator. Clearly v is a complex line bundle with
c1(v) = Ny, where y = i*x ¢ HZ(Y). Therefore

n+1

L(V) = L(»)™* L(PC) = -‘“‘—-‘l(,canh =) (23)

To calculate the L-class of W = Y/H, we will use the theorem of §3.
We must first find the fixed-point sets. Let a = (ao,...,an) € H

(here a0=1, i.e. we have identified H with 1xH for convenience; thus

agi = 1 where b, = 1). Using the results of §6, we find
o a
v = (PE€) NV = U {z2eV] o, 3 =2,=0]
n 1 i i
LeS
= [zeV | ai¢1 = zi=OE. (24)

The last equality follows because the integers 1,b ..,bn are coprime,

17"
1

so for (€8S -{1§ there can be at most one 1 with aizg, whereas V

does not c¢ontain any point with only one non-zero coordinate, If we

renumber the coordinates so that ¢

=...=a_=1, «a cees ¥1, we find
s n

0

s+1?

= {(zo:...:z :0:,..:0)eP €| 2 +... 2 = oi, (25)

so that the fixed-point set of ae H on V is also a hypersurface of
degree N. Clearly its normal bundle in V is the direct sum of n-s
copies of the restriction i*n of the Hopf bundle 7 over PSE to Va,
and the action of & on this normal bundle consists of multiplication
with a (J- ...,n-s) on the jth summand. We dencte by % the
standard generator of H (P ¢) and by y= i¥*Xx its restriction to v

Then, in view of (23) and of the description just given of the normal
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To obtain S, we must sum this over all subsets I of N, getting

=0 [ 1<§N igl(coth v) igl(aicothaiy - coth y) dy ]

res. o [ R {coth y + a, coth a;y - coth y) day 1,
ieN
which is equal to the right-hand side of squation (7).

(I1) A group action on a hypersurface

We changs our notation somewhat. We now let n be an odd
integer and by,...,bp mutually relatively prime integers (al1 positive).
We write N for the product b;...b, and a; for the guotient N/bi' Let
G denote the group Hy and H the group ubf...xubn. The product GxH
acts on the hypersurface

N N

V = fz= (zo:...:zn)epnﬂl zo+...+zn=o; (12)
by

(£,03, - osan)o(zgienniz)) = ((T*2giaaz ten.zonzy), (13)

where §N=1 and a:i=1 . It is easy to see that the map V-*Pn_1C given
by projection onto the last n coordinates gives an isomorphism from
V/G onto P _40. The induced action of H on P _,€ is of the type
considered above and in §6 and acts trivially on the cohomology, so

Sign(V/GxH) = Sign(Pn_,IG/H) = Sign P__,0 = 1, (14.)

the last equality holding because of the assumption that n is odd.
The quotient W = V/H is naturally & complex manifold, since
the action of H on V, although it does have fixed points, has at a
fixed point a representation which is a sum of the standard represen~
tation of H, on €, and the quotient of this standard representation
is non-singular (the map z = zb gives an isomorphism G/ub - €). We

will apply the G-signature theorem to the action of G on W, using
Sign(W/6) = Sign(V/6xH) = 1. (15)

Let Y be the hypersurface in W defined by

Y = {zev] zo=o}/ﬂ. (16)
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Since G acts trivially on Y, we have Y<w® for every geG, We claim
that, for ge G- {1}, the fixed-point set W& is the disjoint union of
Y and finitely many isolated points. Indeed, we can identify W-Y

with the Brieskorn variety
f(wla“-,wn)ecn | Wfi"‘---‘*wﬁn: "1} (17)

b.
by the map w, = (zi/zo) *, and in terms of these coordinates W5 for

W-Y, the action of G is given by

g o (w11'~'»wn> = (gbi Wigoeooy gbn Wn)- (15)

b.
Therefore w is a fixed point of { if and only if ¢ Y= 1 whenever wi¢0.

This can be the case for at most one i if [ is not the identity (since
the bi's are relatively pgl:.me), and then the condition that w lies
og.the variety (17) is wilz -1. Thugﬁ acts freely on W-Y if each
I4 J is different from one, while if ¢ to 1, {+1, the fixed-point set
of { on W-Y is the set of a; points

a

W(i) = f(O,...,wi,...,Q}‘ Wi = -1} < W,

From this description of the action of G on W, we cbtain

N = 16| = |G| Sign W/G = ¥ 3ign(¢,W)
LeG
n
= Sign W + SY + iisi, (19)

whers S, is the sum over (€G- f1] of the contribution to Sign({,W)
of the component Y of W, and Si is similarly the total contribution

from the set W(i). We claim that

~

S, = &y def(bi; Bayeees Bysenns bn), (20)
n
Sy = res o [(N - coth y tanh Ny) '1_}1(coth bjy) dyl, (21)
n ”
Sign W = res o [ (coth y tanh Ny)jﬂ1(coth bjy) dy]. (22)

Clearly the Rademacher law follows from equations (19)-(22).
We begin by calculating Si' If weW(i) is an isolated fixed

point of {, then we see from (18) that the eigenvalues of { at w are
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-2
corresponds to finding the coefficient of yn /N. Therefore the
G-signature theorem tells us that

e2Z+1

Sy = & <L{Y) » [Y]>

Y M= €e2z_1
{1

n b.z 2z -
dz tanh Nz . (t J ) 5 Lo 1
1

i N
= res
2=0 L Zn 2 P Nz anh bjz §N=1 4,622 -1
L+t

n
= res o [dz (tanh Nz T coth bjz) (N coth Nz - coth z)] .

This completes the proof of squation (21).
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§18. Equivariant signature of Brieskorn varieties

Let a = (ai,...,a5) be an n-tuple of integers »2, and
v n a4 an
. = fze €] zit+.. .4z = 1] 1)
be the corresponding Brieskorn variety. The group

G = uaix...xyan (2)

(where u, is the group of a™ roots of unity) acts on v, by
fot = (C1Z4,.+.,ln%n) (Le G, 2 EVa). (3)

Here §i or 2z, denotes the ith component of {, 2z respectively.

We will evaluate the equivariant signatures for this action by
using the known description of the cochomology of Vé and the action of G
on this cohomology. We state the general result as a theorem, and single
out three special cases as corollaries. The first, obtained by taking
{ = id, is Brieskorn's result for the signature of Va itself. The
second is a result of Hirzebruch and Jinich on the Browder-Livesay
invariant of a certain involution on Va defined when each as is even.
The third gives the equivariant signature for the action of a certain
cyclic group embedded in G; when this action is free it embeds in a
free S1—action the signature of which will be calculated later in this
section.

To state the theorem, we use abbreviated notation for n-tuples.
Thus if ¢ = (L4,.v-sln) € G and j = (ji,...,3n) is an n-tuple of
integers, we write gj for gf*...gﬂ“. Similarly O0< j<a means that

0 <y, <oy (k=1,...,n) and g denotes gf Faaa ¥t gﬁ .

Theorem 1: The signature of { = ({14,...,{n)€ G on V, is given by
sien(¢,v,) = © @) ¢?, ()
O<j<a
where
+1, if O<x <1 (mod 2),

e(x) = { -1, if 1<x <2 (mod 2), (5)
0, if  xeZ.

This can also be written as a trigonometric sum:
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=N
-
+

o

n 1+ gkt'bk

sign(f,v,) = = £ = @ (6)
a N -t o =
A keO 1-¢,t
.n+?2  2N-4 - ) .
_ 1 s oot T cot L{2sa=d) o m(2sn-j)
N =1 2N 2a,y 2anq .
j odd (7)

Here N is any common multiple of ai,...,ap and bkzN/ak. The numbers

s, in equation (7) are defined (mod ak) by

k

gk eZ:rrisk/ak . (8)

Corollary 1 (Brieskorn [3]): The signature of V,_ is zero for p odd

and, for neven is given by

sign(V)) = 2 e(d) = t(a) (9)
O<j<a
241
= iif—-—- 2N)3—1 cotdZ cot=dT. . cotdT (10)
- N 51 2N 2a,""" 2ap °
j odd

Corollary 2 (Hirzebruch and Jinich [19]): If ai,...,an are even, the

involution T:V_ ~V_ sending (Z14+0452n) t0 (=24,...,-2n) has signature

Sign(T,V.)) = 5 e(@) . (=)Fretn (11)
a h a
O<j<a
n
= Liﬁ 2N2-1 cot-‘jltan-'jl ?;an-ﬂ (12)
- N 321 2N 2an" """ 2ap ”
J odd

Corollary 3: Let N, bk be as above. The Hy acts on Va by
b b N
to (2a,.00520) = (t7 721,005t '3q) (t7=1). (13)

The signature of this action is given by

Sign(OZ"ih/N,Va) =z e(-i-) 2mih(i/a) (1)
0<j<a

n+2 2N-1 . . .
‘i—N-— b co*l:li%l-l cot =i ... cot—L, (15)
j‘—‘1 2 2&1 Qan

J odd

Proof: The corollaries are obtained from the theorem by specializing ¢
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and performing simple manipulations with the formulas. The proof that
(&) and (6) are equal is exactly like the proof given in §16 for the
special case {=1id (i.e. for the equality of (9) and (10)). We thus
only need to prove equation (4). To do so, we use the results on the
cohomology of V_ given in Pham [(35], Brieskorn [3], Hirzebruch-Mayer [20].
One can give a G-equivariant deformation retraction of Va onto
a

U = fzeV | 2 X
a

a « 1is real and 20 (k=1,...,n}]. (16)

The space Ua is naturally homeomorphic to the join Hy *...tua of the
1

B
diserete spaces 4 {3=1,...,n). It follows that v, is (n=2)~connected
J
and H (V ) is free abelian of rank H(ak-1). We denote by w, the action
TR " k
of the generator of uak on H’*(Va)' Let ¢ be thelrd)simplex of U_ that

corresponds to 1€G in the identification of Ua with “a:"'*“a «. The
n

group Ca‘gUa) of n-chains is Z[GJe, where Z[G] is the group ring of G.
Since the boundary operator from C'Mto Cn-z commutes with the action
of G, the element

h = (1—w1)...(1-wn)e € Z[G6] 17
is a cycls., In fact h is a generator of H”_'fUa) as a Z[GJ-module:

-1
, 1<ksn), (18)

HM(Ua) z Z[Glh = zz[c;l/(1+wk+...+w;k

This describes Hn..(Ua)‘ We can take as a basis the set of monomials

wd = wfi...wg” with 0<j<a, and the action of G is given in the obvious
a -
way by taking into account the relations 1+wk+...+wkk =0, Finally,
the intersection form on HM(Ua) is given by
S(xh,yh) = E(x¥n) (x,y ¢ z(6]), (19)

where n = (1~wy)...(1-w,) € Z[G] and E is defined on the generators
of Z[G] by

i 3 ~ 8, if ji=...=3p=0,
E(wit...wd") = i -8,  if ji=...=3n=1, (20)
0, ctherwise,

where

5 = (_1>n(n-1)/2 .

For r = (r'y,e.. ) an r-tuple of integers
defined modulo a, we denote by Lr the element w h = wfl...wﬁnh of

Hn-1 (Ua)’ or rather the corresponding element in Hn_1 (V&) under the
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isomorphism induced by the inclusion of Ua in Va. Then (19) implies:

(-1)% 3f £ of the numbers s -r, are =1 and the rest =0,
S(Lr’Ls) = -(-1)t if t of the numbers s, -T| are =0 and the rest =-1,

0 otherwise, (21 )

We define a new basis for H _, (Va) by

Jy (8 ,=1)dy &1
k ak
vy o= IT(1+§k Wt e+ & ) h (22)
k=1
jr
= ) s L, (23)
r mod a
where ¢, = °2ﬂl/ak = (J1y.vv,dn) is an n-tuple of integers .jk$0
(mod &), and £9T denotes £9*T*...£2"" . Then, from (21) and (23),
jr+k
S(vj,vk) = 3 gIrtis 5(LLg)
r,s mod a

sz UM (g L (g - (PO L (6]

r mod a

_ _ n % (J +k )r
8 (1-65%)u. . (1-65MG-e 767 1 ( T ¢

i=1 =1

k -k RPN
= {Sal---an(""fii)v- "fnn)@ §1. ---fn ") if j+k=0 (mod a),
0 otherwise.

Thus the only non-zero elesments of the matrix of S with respect to

the Vs {(where we fix j by O<j<a) are the elements

n o Jj. /2 -3, /2 - _
oy = S(vj,v_j) = 8 aj...ay H(f =&, )(§1J1/2...§rxJn/2
i=1 . _;
_ 5‘171/2“.5{"«}0/2}

i

-{-1 )n(n-1 /2 (Ei)n+1 sin(ﬂ*-&. cet Lh) sinDa , ginTda (24)
aq ap as an

2, 3
i e(-;l) (real, positive number). (25)

In particular, S is a non-degenerate form if and only if the n-tuple a
is such that -‘1 ‘h Fooot .J.n. ¢ Z whenever 0O<j<a,

We 1ntroduce a new basls
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A, = v, o+ v B, = s ; jeM 26
3t ey By= Ay - v o), (Gew),  (26)
where M is a set of indices j with 0<j<a such that, for any k with
O<k<a, exactly one of k, a-k is in M (this is necessary to have a

basis, since the elements (26) satisfy Aa—j = Aj’ Ba~j= —Bj)’

We now suppose that n is odd. Then the intersection form M is

symmetric, and we obtain {(J,keM)

S(Aj,Ak) =285 o5 S(Bj,Bk)z 2 ajk ¢, S(Aj,Bk) = 0, (27

J

where 531{ is the Kronecker delta. Thus S is diagonal. If we write
s
= (Qasovesln) = witens Win € G (28)

(thus §k = estk/ak ; the notation using the w's is the one intro-
duced to denote the action of G on Hn_1 (Va)), then it is clear from (23)
that vj is an eigenvalue of the action of { in homology:

I B 116 )
Levy = (T vs=e vy oo (29)

where g’J has the meaning explained before Theorem 1 and

+ S0day, (30)

an

6(3)

“v s

27 (4_51 s,
ag
Therefore

g*Aj = A; cos 8(3) - Bj sin 6(3), Q*Bj = Bj cos 6(3) + Aj sin 6(3).

If we substitute this and egquations (27), (25) into the definition of

the squivariant signasture for a manifold of dimension =0 (mod L), we gst

i

Sign(¢,V,) te(C 18 (V) - (g, (V)

it

T 2 e(j) cos 6(j).
JjeM

Since £(j) and cos 6(J) are the same for j and a-j, we can write this

Sign(L,V.) = = e(3) cos 8(5).
a O<j<a

This is equivalent to (4) since n is odd.

Now assume that n is even. Then, for j,k €M, we have
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s(AJ.,Ak) = S(BJ.,Bk) =0, S(Aj,Bk) = -S(Bk,AJ.) =218y oy (28)

Therefore the matrix C:Hn_ v )-*Hn_1(Va) corresponding to S after

1V a
the introduction of the scalar product defined by the basis fAj, B jl,jeM§

. 0 =23 . .
is (2ic 230) with respect to this basis, where c is the diagonal

a2
matrix of the cj's (jeM).  Therefore CC* = -C*® has the matrix ( %f ~i22)

with respect to his basis; this is positive definite since c(i is pure
imaginary for even n by (25). The positive definite square root of

2iel O )
0 2jel’"

in the definition of Sign{{,V) for a manifold V of dimension =2 (mod 4)
(see (III) of §2) has the matrix

this has matrix { Therefore the souare root of -I appearing

R A C I NEEE IR G AL (29)

that is, J is given by

. ey ]
e U O I R U F S (30)

If we substitute (25) for e and observe that il = -i for even n, we get
JA. = =g(J) B. J(B. = 5)A.. 1
(45) () By, (3,) e(3) 5 (31)

In general, if V is a real vector space on which j:V-V is a map with
square -I, and V has a basis of the form 01,...,er,Je1,...,Jer, then
for a map G:V—->V commuting with J, the trace of G thought of as a
complex matrix on a complex vector space is tr G' + i tr G", where

G' and G" are the matrices defined by G(ej) = I (ngek + ngﬂek).
k

We take for V the homology group Hn—1(va) and for G the action of (.
For e,,...,e  we take gAji.jeM}. The action of { is just as in the

case of odd n, i.e.

u

LA

. 6(j) - B. sin 6(j
3 A; cos (3) BJ sin 6(jJ)

cos 9(J) Ay o+ e{3)sin 6(3) JAJ,
and we conclude that

Sign(g,va} = 23 Im( tr(C| Hn_1(Va)J )
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= 21 % &(3) sin 6(3).
JeM

Since e{a-j)=-&(J), siné&{a~j)= -sin 6(j) for even n, this eguals

iz e(3) sin 8(3) = T e(y) 016(3).
O<j<a O<j<a

This proves (4) for even n and completes the proof of Theorem 1.

We now wish to study the ocdd-dimensional smooth manifold
5, = 2 €] 22%...42%" = 0, 1241%+...41201% = 1]. (32)

This is diffeomorphic to the boundary of V ND, where D is a disc in ¢

of large radius. The advantage of using the homogeneous equation I Zy S =0

is that the action of ty described in Corollary 3 of Theorem 1 now

extends to an S1-actlon, defined by the same formula (13) with tES .
Recall that the G-signature theorem can be used to define an

invariant of certain group actions on odd-dimensional manifolds (Atiyah

and Singer [1]). The definition of this "a-invariant" is as follows:

if the disjoint union of m copies of a G-manifold I is equivariantly

diffeomorphic to the boundary of a G-manifold X, then

a(t,3) = 21 sien(t,x) - ' (t,0)[x"] } (33)

for any te€G acting freely on & (so that x*nox = #). It has also
been proved (Ossa [34]) that, if G = s' and the action on I is fixed-
point free (i.e, G is a finite subgroup of S for svery x€X), then
some multiple m of Z always does bound an S -manifold (we can even
take m to be a power of two), and therefore the a-invariant is defined.
It is a rational function of t which can only have poles at values of t
which have fixed-points on £. The action of s’ on z, glven by (13) is
certainly fixed-point free; indeed, it is clear that tes can only have
a fixed point if tN=1. However, we will not be able to calculate the
a~invariant of this action on the Brieskorn manifold in general. The
problem is to £ind the manifold X with mz = 3X; we can take m=1 and
X = V ND as above, but the dlffeomorphlsm of Z onto V f\aD can only
be made uN—equ1var1ant since there is no natural actlon of S on V .
There is, however, one case for which we can calculate the
a-invariant, namely when the action (13) is free. This is a general

fact: 1if I is a free S1-manifold, then the projection I ~ E/S1 = Z



- 425 -

defines an 81—bundle ¢ over Z, and we can consider I as the boundary
1

of the associated D2—bundle X. Clearly Xt = 2 for t€ 3 -{1]. Then

equation (33) gives (Atiyah and Singer [1])

. tezx + 1
a(t,2) = Signe - < —— L(2),[2] >, (34)

te -1

where x¢ HZ(Z) is the first Chern class of the complex line bundle ¢
and ¢ is the following quadratic form on Hn‘j(z) (where 2n~3=dim %):

o(a,) = <ap@x,[2]> (a,8 € H2(2) ) . (35)

We now apply this with I = Ea (we correspondingly write Xa and Za for

the X and Z above), We first have to know when the action of the group 81
on is free; this is the case if the n numbers bk:N/ak are mutually
coprime, The quotient Za = Za/S1 is then a complex manifold. We will
need the following facts about Za and the class

x = e (e) ¢ H(z), (36)

which were communicated to the author by W. D. Neumann:

Theorem 2 (Neumann, unpublished): The cohomology of zZ, is

T

ACR I (57)

0 if i is odd

is even 7 { Hn—?(za) if i=n-2 }

0 if i*n-2

{here Hn“1(8a) is free abelian of rank |{jl 0< j<a, § € Z}| ; this is a
consequence of the description of the intersection form (19» and the
generator of the summand % in dimension 2k, denoted Xk’ is related to

the element (36) by

X ¥, if 2k<n-2, ()
- dark if 2k3 n-2,

Here 4 = N/bi...bn , which is an integer since each bk divides N and

the bk's are mutually coprime. The Chern class of T(Za) squals

1 n
T Tix ‘:‘1(1 + b ). (39)

k

Using this information, we can easily evaluate the right~hand side
of (34). It follows immediately from (39) that the L-class of zZ, is
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n b, x
tanh Nx k
Lz ) = n . (40)
a Nx k=1 tanh bkx
Furthermore, we have
Fz) = - (1)

and therefore the second term in (34) equals

n=-2 ter 1
a{t,% ) - Sign ¢ = d . coefficient of x in —meemTL(Z )
a ter_1 a
dx  te2X41 tanh Nx o _ bkx T
= d-res, o T L2 N Ytarh box
x=0| x 12X -1 X ey b8 X

talX n
= res ol k2 tanh Nx 1l coth b, x dx]
x=0 X

___te2 -1 k=1 Kk
. b
~ res tz+1 zN-1 ; z k+1 dz :} (1,2)
z=1| tz-1 Nt g zok-1 22|

2
where the last line has been obtained by substituting z = e %, The

rational function in square brackets in (42) has, as well as the pole

- . N
at z=1, poles at 0, oo, t7*, and values of z with z =-1. The factors
b

z ~ -1 in the denominator do not give new poles, since the zeroes of
these polynomials for different k are (except for z=1) all distinct
because the bk’s are relagively prime, and the simple zero in the
denominator at a point 2 k. 1, 2¥1 1is offset by the vanishing of
zN-? in the numerator at such a point. All the poles except z=1 are
simple and their residuss therefore easy to evaluate. Applying the
residue theorem then gives

a(t,Za) - Sign ¢ = -resy -res - Tes .y - NE res,
z = =1
n -N A n Px
- -(-1) + 1 _t7 - - t +1 1 5 bzl oz
] -b — .
2 e T B I WL S TR

To evaluate Sign ¢, we use equation (37). We find that Hn-j(za) is

zero if n is even, while if n is odd it is isomorphic to Z with

(n-5>/2. Since xn‘z[za] is negative (eq. (41)), the

signature of the quadratic form (35) is =1 in the latter case; thus
n

Sign ¢ = =1 . (1)

generator x
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Combining (43), and (44) and using the usual identity

& -y _1
4 N N

t

we obtain:
Theorem 3: Let ba,...,bg be positive, mutually coprime integers, 4 a
positive integer, N = db,;...b,, and a = N/bk' The free S1-action

bn

b 1
t0(21,0ees2p) = (3 221,...5t "2p) (tes’)

on the Brieskorn manifold (32) has a-invariant (for t#1) given by

t+z 1 + t Pk n 1+ zbk
at,z ) = — [ —y - I — :I (46)
k=1 1-% k=1 1~ 32 )

Notice that the values t=z in (46) do not give poles since then
the two products in the square brackets agree. The values t k. 1, t#1,
also do not give poles of a(t), as one can see from the altesrnate
expression (43) (by the argument given sbove since the bk's are coprime
and divide N), Therefore (46) defines a rational function of % whose
only pole is at t=1, which is as it should be for the a-invariant of
a free circle action,

To connect this result with the signature calculations at the
beginning of this section, we observe that, for t € by - f1} , we can
calculate the @-invariant by using the diffeomorphism from Z to
a(V’(\D), since this diffeomorphism is ug-equivariant. Then m=1 in (33)
and Sign(t,X) = Sign(t,V ) is the number calculated in Corollary 3 of
Theorem 1, so we only have to calculate L'(t,V )[V ] (we can replace
V ND by Va everywhere if the radius of D is large enough). Because
the b ‘s are coprime, this is easy: the fixed-point set of tx1 is
empty unless t =1 for some k and consists of ay isolated points
with eigenvalues th (3=1,...,k,...,n) if tb . The calculation is
the one done in (II) of §17. We find that, for tN=1, t+1, the value
of-L'(t,Vé)[V:] is precisely the value of the first sum in (46) (i.e. of
the sum of the first product in the square brackets), while from (15)
we see that Sign(t,Va) is just the second sum in (46). This provides
a check on the calculations and, incidentally, an alternate proof of

the equality of (14) and (15), at least when the numberséiare coprime.
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