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INTRODUCTION 

This volume contains an assortment of results based on the Atiyah- 

Singer index theorem and its corollaries (the Hirzebruch signature and 

Riemann-Roch theorems and the G-signature theorem). Because the 

applications of this theory have so wide a scope, the reader will find 

himself involved with characteristic classes, finite group actions, 

symmetric products of manifolds, and number theory of the naive sort. 

On top of this, he may feel that the level of presentation is swinging 

up and down in a dizzying fashion. I hope I may prevent, or at least 

relieve, his seasickness by a few preliminary remarks sbout the level 

and content of the material. 

The results ought to be comprehensible to a working topologist 

(or even a good graduate student) who is not necessarily a specialist 

on the Atiyah-Singer theorem. The non-expert should thus not be put 

off by references in the introduction to esoteric theorems of Thom, 

Atiyah-Singer, and the like, nor be further discouraged when he finds 

that even the first section of Chapter One throws no more light on 

these matters. Background material is, in fact, included, but it has 

been postponed to the second section so that the main theorems of the 

chapter can be collected together at the beginning for reference. A 

similar course has been pursued in Chapter Two. 

Aside from this point, I should perhaps mention that a much 

more thorough treatment of the required background on characteristic 

classes, index theorems and group actions can be found in the notes 

[21] (if they ever appear), which also contain a further selection 

of results in the same direction as those of this volume, and to some 

extent complement it (overlap of results has been minimized). 
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We now give a summary of the contents of the volume. 

Hirzebruch defined for a differentiable manifold X a characteristic 

class 

L(X) ¢ H* (X;~) (1) 

which, on the one hand, is determined by the Fontrjagin class of X, 

and, on the other, determines the signature of X. Them showed how 

to define L(X) when X is only a rational homology manifold. 

Our goal in Chapter I will be to generalize this to a definition 

of an "equivariant L-class" 

n(g,X) C H*(X;~) (g cG) (2) 

for a rational homology manifold X with an orientation-preserving 

action of a finite group G. Apart from their intrinsic interest, 

these classes will make it possible to compute the L-class ~n Thom's 

sens~ of certain rational honology manifolds. 

In the differentiable case, we define L(g,X) by 

L(g,X) = j,L'(g,X), (3) 

where L'(g,X) ~ H~(xg;c) is the cohomology class appearing in the 

G-signature theorem, j:X g C X is the inclusion of the fixed-point 

set, and j, is the Gysin homomorphism. We then show (§3) that 

~*L(X/~) : ~ L(g,X), (~) 
gcG 

where ~:X ~ X/G is the projection onto the quotient. Since the 

map ~*:H*(X/G;*) ~ H*(X;*) is injective, this completely calculates 

the L-class in Thom's sense hr the simplest sort of rational homology 

manifold, namely the cuotient of a manifold by a finite group. 

We then imitate Milnor's reformulation of Thom's definition to 

give a definition of L(g,X) for rational homology manifolds which 

agrees with (3) for differentiable manifolds. Formula (4) still holds, 

and indeed can be extended to calculMte the new equivariant L-classes 

for orbit spaces. 

As an example (~6), we evaluate L(g,PnC) for g acting linearly 

on Pn ~, and use this to calculate the L-class of PnC/G for G a finite, 

linear action (the result had already been obtained by Bott). Also, 

by studying the behaviour of the formula for L(g, FnC), we can formu- 

late various conjectures about the nature of the classes L(g,X). 

The whole of Chapter II, which occupies half of the volume, is 

an application of the result (~). We take X to be the n th Cartesian 

product of a manifold M, and G the symmetric group on n letters, acting 
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by permutation of the factors. The quotient X/G : M(n), called the 
th 

n___ symmetric product of M, is a rational homology manifold if 

dim M = 2s, and we can apply (4) to calculate its L-class. The complete 

result is complicated, but displays a simple dependence on n, namely 

L(M(n)) = j* (Qn÷IG), (5) 

where j is the inclusion of M(n) in M(~) and Q,G ¢ H*(M(~)) are 

independent of n. Moreover, the "exponential" factor Q is very 

simple and, so to speak, independent of ~: we have 

Q = Qs(~), (6) 
where ~ c H*(M(oo)) is a class defined canonically by the orientation 

class z E H*(M), and where 

Q~(~) = i + (5-s)~ 2 + (5 -s-2.9-s)~ ~+... (7) 

is a power series depending only on s. The "constant" factor G, 

though known, is very much more complicated~ and is only of any 

real use for manifolds with very simple homology. In §13, we compute 

it in two cases: for M = S 2s, where we find 

G = q s ( ~ ) ~  _ ~ , 

and for s=1, i.e. M a Riemann surface. In the latter case, M(n) is 

a smooth (indeed, complex) manifold and Qs(W) = w/tanh ~ is the 

Mirzebruch power series. In this case L(M(n)) was known (the Chern 

class of M(n) was found by Macdonald), so we can check our main 

theorem. 

We can restate (5) without the class G, in the form 

j*L(m(n+l)) = Qs(j*~) .L(m(n))  (9) 
(here the first j denotes the inclusion of M(n) in M(n+1)). Thi~ is 

reminiscent of the relationship between the L-classes of a manifold 

A and submanifold B (namely j*L(A) = L(v).L(B), where j:BCA and v 

is the normal bundle). A direct interpretation is impossible because 

the inclusion M(n) C M(n+1) does not have a "good" normal bundle, 

even in Thom's extended sense (this follows from (9) and the fact 

that the power series Qs(t) does not split formally as a finite 

Since this volume was written, I have found a simpler expression 

for G involving the (finitely many) multiplicative generators of 

H*(M(oo);~) rather than the additive basis described in §7. 

However, this will appear--if at all--elsewhere. 
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product 

gest strongly the existence of some more general type of bundle 

(possibly analogous to the "homology cobordism bundles" defined by 

Maunder end ~artin for the category of ~-homology manifolds) which 

would be appropriate to inclusions of rational homology manifolds 

and which would possess L-classes. There is some reason to believe 

that "line bundles" of this type would be classified by maps into the 

infinite symmetric product s2S(~). Since this space (by the theorem 

of Dold and Thom) is a K(Z, 2s), such "line bundles" over X would be 

classified by a "first Chern class" in [X,K(E,2s)] ~ H2S(x;~). 

We end Chapter II by calculating L(g,M(n)), where g is an 

automorphism of a 2s-dimensional manifold M of finite order p (then 

g acts on M(n) via the diagonal action on Mn). We find that (9) is 

replaced by 

j*L(g,M(n+p)) = ip-S ~p-1Qs(pS )} L(g,M(n)) 

if p is odd, and has no analogue at all if p is even. Again we 

have the possibility of checking our results in the two-dimensional 

case, this time by taking M=S 2 and comparing with the results of 

Chapter I on the Bott action on Pn C = S2(n). 

In Chapter IIl we make explicit calculations with the G-signature 

theorem on certain simple manifolds (FnC with the Bott action, 

Brieskorn varieties, and related manifolds), and relate them to the 

number-theoretic properties of finite trigonometric sums such as 

def(p;q I ..... q2n ) = (-I) n PZ I cot~g~...cot~Jq2n 
j=1 P P 

(where p ) I, ql,...,q2n integers prime to p). We prove that (11) is 

a rational number whose denominator divides the denominator of the 

Nirzebruch L-polynomial L n (i.e. 5 for n=1, 45 for n=2, etc.). We 

also prove a new'~eciprocity la@'for the expressions (11), both by 

elementary methods and--in two different ways--by specializing the 

G-signature theorem. 

Although it is not made apparent here, there is a close tie 

between the results of Chapter III and the result in Chapter I on 

the L-class of Pn¢/g (of. [21]). 

~sj=1(xj/tanh x j) for s>1). However, eeuation (9) seems to sug~ 

(lO) 

(11) 
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The research described in this volume took place in Oxford and 

Bonn during the years 1970-71; I would like to thank both of these 

institutions, as well as the National Science Foundation and the 

Sonderforschungsbereich Theoretische Mathematikder Universi~t Bonn 

for financial support. Above all, my thanks go to Professor 

Hirzebruch, who taught me the little I know and much more. 

Notation is fairly standard, except that for want of italics 

we have underlined symbols occurring in the text (not, however, 

Greek or capital letters or expressions containing more than one 

letter: thus we would write "let a be a point of a set A" but "then 
2~ix 

equals e ."). We use IAl to denote the number of elements 

of a finite set A° 

References to the bibliography have been made in the normal 

way, by the use of appropriate numbers in s~uare brackets; an 

exception is the reference Spanier [38] which like every one else 

we refer to simply as "Spanier." 

The numbering of theorems, propositions, lemmata and equations 

starts afresh in each section. The symbol §3(10) denotes 

equation (10) of section 3. 
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CHAPTER I: L-CLASSES OF RATIONAL HOMOLOGY ~L~NIFOLDS 

In his famous paper "Lee classes caracteristiques de Pontrjagin 

des vari~t~s triangul~es" (~]), R. Thom showed that it is possible to 

define a Hirzebruch L-class L(X) ~ H*(X;~) (or equivalently a rational 

Fontrjagin class) for a rational homology manifold X, in such a way as 

to obtain the usual L-class if X possesses the structure of a differen- 

tiable manifold. This definition rested on the possibility of making 

precise the notion of a rational homology submanifold of X with a 

normal bundle in X, and showing that X has enough such submanifolds to 

represent all of its rational homology. The definition was later 

simplified by Milnor [31], who observed that it is easy to give a 

definition of m "submanifold with trivial normal bundle" agreeing with 

the usual concept if X is differentiable (such a manifold is f-i(p), 

where ~ is a map from X to a sphere and 2 is a point of the sphere in 

general position), and that it follows from the work of Serre [27] that 

there are also enough of these more special subnmnifolds to represent 

all of H~ (X;~) (indeed there are just enough, i.e. a one-one correspon- 

dence; in Thom's definition each homology class was represented by many 

submanifolds and ene had to check consistency as well as sufficiency). 

Nevertheless, the definition remained essentially an existence proof 

rather than a procedure for actually computing L(X), and as a result 

the definition has remained of relatively little intrinsic interest 

and has been most important for its use in proving facts about the 

ordinary L-class or rational Pontrjagin class (e.g. that this is the 

same for two differentiable manifolds with the same underlying PL 

structure). 

There is, however, one especially simple type of rational homology 

manifold, namely a quotient space X/G of a smooth manifold X by an 

orientation-preserving action of a finite group G, and for such a space 

it is possible to give a formula for the L-class in terms of the action 

of G on X by using the G-signature theorem of Atiyah and Singer. This 

formula will be given in §I and proved in §3. An illustration of it 

will be given in ~6, where we calculate L(X/G) for X = F ~ and G a 
n 
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product of finite cyclic groups acting linearly on X; the L-class of 

this space had already been calculated by Bott using a different method. 
th 

A much more difficult application is to the L-class of the n symmetric 

product N(n) of a manifold M mere X = M n and G is the symmetric group 

on ~ letters, acting on X by permutation of the factors); this will be 

carried out in Chapter II. 

In the formula for L(X/G), certain cohomology classes L(g,X) ¢ 

H*(X;@) occur, defined for each gag and such that L(id, X) = L(X). 

Their definition in the differentiable case is based on the G-sigrmture 

theorem and thus requires a knowledge of certain normal bundles and of 

the action of ~ on these bundles, so that it depends very heavily on 

the differentiable structure. However, it is possible to define these 

"equivariant L-classes" also when X is only a rational homology G-manlfold 

in a manner exactly parallel to Milnor's definition in the non-equivariant 

case. This definition will be given in ~4; we then show in §5 that the 

formula obtained for L(X/G) in the differentiable case holds more 

generally when X is a rational homology G-manifold, snd indeed can be 

generalised to a formula for L(h',X/G) where h' belongs to a finite 

group of automorphisms of X/G induced by automorphisms of X. 

A more precise statement of the results proved is given in §I. 

The following conventions will apply throughout: the word 

"manifold" will always refer to a connected, close~ ( = compact and 

without boundary) manifold, differentiable unless preceded by the 

words "rational homology." The coefficients for homology and cohomology 

will always be one of the fields ~, •, or C of characteristic zero or 

else a twisted coefficient system locally isomorphic to one of these; 

thus there will never be any torsion. We will omit notations for the 

coefficient homomorphisms, so that, for example, we will multiply the 

class L(X) (H~(X;Q) wi~h elements of H*(X;C) without explicit comment. 

Cup products will usually be denoted by juxtaposition but sometimes 

written out as xU y. Evaluation of a cohomology class on a homology 

class will be indicated by juxtaposition or by < , > . A class in the 

cohomology of a disconnected fixed-point set X g is a class in the 

cohomology of each component, and expressions like L'(g,X)[X g] are to 

be interpreted as sums over the connectedness components of the 

corresponding cohomology classes evaluated on the fundamental class 

of the component in question. 
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§I. Summary ef results 

Let X be an eriented closed manifold en which a finite greup G acts 

by orientation-preserving diffeemorphisms. It is known that the signature 

ef the quetient space X/G is the average ever G of the equivariant 

signatures Sign(g,X) (of which a precise definition will be given in §2). 

The cemplex numbers Sign(g,X) can in turn be calculated frem the 

G-signature theorem ef Atiyah and Singer, which states that 

Sign(g,X) = £L'(g,X),[X g]> , (I) 

where X g is the submanifold of X censisting ef peints left fixed by 

and L'(g,X) [ H*(xg; ¢) is a certain cohemelegy class, explicitly given 

in terms ef the characteristic classes of X g and its equivariant nermal 

bundle in X. If X g is net erientable, then beth L'(g,X) and the 

fundamental class are te be understeed with the appreprigte twisted 

ceefficients; this will be made m©re precise in §2. 

We alse knew that X/G is a ratienal hemelogy manifeld, and therefere, 

by the werk ef Them and Milner, has • rational Pentrjagin class and g 

rational L-class. Since this class is determined by the signatures ef 

the varieus subma~aifelds (er rather ratienal hemel~ysu~{folds), 

it is reasenable te assume that the L-class ef X/G can be calculated 

as was the signature, namely by averaging ever G seme equivariant L-class 

in H*(X). Te get frem the cehemolegy ef X/G to that ef X we simply 

need te apply ~*, where ~ is the prejectien map frem X to X/G. ~e 

therefere can reasenably expect a formula ef the form 

I 
~*L(X/~)  - 1~1 Z L(g ,X)  

g c G 

t® held ,  where L(g,X) i s  a c l a s s  in  H*(X) de f ined  s o l e l y  by the a c t i o ~  

e f  ~ on X. F e r  t h e  d e f i n i t i e n  o f  L ( g , X ) ,  we e b s e r v e  t h a t  t h e  G - s i g n a t u r e  

t h e e r e m  a l r e a d y  p r e v i d e s  us  w i t h  a c l a s s  i n  H * ( x g ) .  The map j* i n d u c e d  

b y  t h e  i n c l u s i e n  ~ e f  X g i n  X goes  t h e  wrong way t e  d e f i n e  L ( g , X )  f rom 

L ' ( g , X ) ,  se  we use  i n s t e a d  t h e  "Umkehr homomorphism" or  G y s i n  home- 

merphism j!: H*(X g) ~ H*(X), defined by passing to homelegy v i a  Poincar~ 

guality and then applying j, in hemelegy (we will define all ef these 

cencepts mere precisely in §2). Finally, te have (I) hold, we need 

te insert ~ factor (beg ~) te cempensate fer the difference between 
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the classes ~,[X] and [X/G] in &(x/cO.  
expect to hold, and which will be proved in §3, is: 

Theorem I : Let G be a finite group, and X a~ erientable, closed, 

differentiable G-manifold. Let ~:X~ X/G delete the projection map, 

j:X g C X the inclusi@n ef the fixed-point set ef an element ge G, 

and L'(g,X) £ H*(X g) the Atiyah-Simger class. Then 

1 ~*T, (X/G)  _ 1 ~ L ( g , X ) ,  
dog ~ IG-i g¢ G 

Thus the formula which we would 

(2) 

where 

L(g,X) = j !  L ' (g ,X)  e H*(X). (3) 

~Ve make a few comments about the statement of the theorem. The 

class L'(g,X), as stated above, may lie in H*(xg; 7) with ~ a twisted 

coefficient system locally isomorphic to ~ (~ is the tenser product of 

the orientation bundle ef X g with the trivial bundle with fibre ~), but 

from the definition ef j, it follows that the class L(g,X) defined by (3) 

is an untwisted class, so that the summands on the right-hand side ef (2) 

are elements of H*(X;g). ~e then deduce from (2) that the sum lies in 

(the image in H~(X;G) of) H~(X;Q). Thus, even if we are not interested 

in the quotient X/G or its L-claes as such, we still get interesting 

imfermation about the C--space X itself from equation (2), namely a sort 

ef integrality theorem for the cohemelogy classes defined by (3). The 

Atiyah-Singer result only gives the top-dimensional component of this 

(i.e. the signatures), But then gives a stronger result: the average 

ever G @f the complex (algebraic) numbers Sign(g,X) is not only a 

rational number, but even a rational integer. 

The next point about formula (2) is that if G acts effectively 

(which can alwsys be assumed by factoring out the normal subgroup 

which acts trivially), then dog ~ = IGI, so the numerical coefficients 

can be omitted from (2), simplifying it somewhat. 

Finally, it is known that, for cehemel@gy with rational er complex 

coefficients (or, more generally, any field Qf characteristic zero er 

prime te IGI as coefficients) the map ~ induces an isemerphism 

~*: H*(X/G) ~ ~*(X) G C H*(X) (4) 

from H*(X/G) onto the G-invariant part ef H~(X) (Grethendieck [~, 
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B.rel [I]). Ix particular ~¢ is injective, so eq. (2) determines 

the L-class ef X/G completely. 

Theorem I as stated above is the first main result of this chapter. 

However, its proof suggests the pessibility ef defining the cohomelegy 

classes L(g,X) ~ H¢(X;~) when X is just an oriented rational homology 

G-manifold. Here we carmot use a formula such as (3), since it is net 

possible to define the Atiyah-Singer class for nsn-differentiable 

actions, and indeed it is not clear that the class L(g,X) that we 

define vanishes if ~ acts freely on X. But we can still define the 

class, in a way exactly parallel te the Zilnsr definition of L(X) for 

a rational homology manifold X. This will be done in ~+. Once L(g,X) 

is defined, eq. (2) makes sense even for rational homology manifolds X 

(since X/G is then also a rational hem®fogy manifoid and has an L-class), 

and we prove ix §5 that it still holds, l~deed, we can generalise it: 

Theorem 2: Let X be an oriented rational homology G-manifold. For each 

in  G, l e t  L(g,X) i n  H*(X;~) be the c l a s s  de f ined  i n  ~+. I f  h i s  an 

autem~rphism of X ~f finite order which commutes with the acfiien ef 

G ~n X, and h' the induced autemorphism @f X/G, we have the relation 

I ~*L(h',X/G) = I_L Z ~(~h,X). (5) 
deg ~ IG[ geG 

Finally, in §6 we evaluate explicitly the quantities L(g,X) for 

X = cemple~ projective space and G acting linearly en X. This 

calculation will be used in §15 to check a general formula for L(g,X) 
th 

when X is the n symmetric product gf a manifold (the space Pn¢ is 

the n th symmetric product ef $2). ~,~hen we put the value ef L(g,X) 

irate The@rem I we obtain a formula for L(X/G) already obtained by 

Bett by other methods (unpublished; see, however, Hirzebruch [~&]). 



-6- 

§2. Preparatory material 

This section contains more detailed descriptions of some of the 

concepts and theorems which were used in §I for the formulation of the 

various results stated there. ~'~e do not discuss definitions or results 

which are very well known. Thus, for example, we assume the definitions 

ef the signature and the L-class of a manifold and a knowledge of the 

Hirzebruch index theorem, but define the equivariant versions of these 

notions and state explicitly the G-signmture theorem of Atiyah and 

Singer. ~e also define ratien~l homology manifolds and give in some 

detail Milner's formulation of the definition of the L-class for a 

rational homology manifold (that a definition is oorsible had been shown 

by Them). This will be especially important to us since we will copy 

the construction in ~4 for the definition of the e cuivariant L-class 

L(g,X) for rational homology manifolds X. The only point we need te 

make for ~ reader acquainted with these ideas and wishing to skip this 

section is that the Class L'(g,X) appearing in §I is not exactly the 

cohomelogy class appearing in the original f®rmu!atien ef the ~-signature 

theorem (Atiyah and Singer [I]) but differs from it by a p®wer of two 

in each dimension (except the c~mponent ~f top degree, ~hich for both 

classes is equal to Sign(g.X)). 

#e break up the section into three parts. In (I) we discuss 

various hemol©gical properties of manifolds: the definition ef a 

r~tional homology manifold, the orientation system of local coefficients 

for a manifold, and related concepts (the Them class of a non-oriented 

bundle, Foincar~ du:lity for a non-orientable manifold, the Gysin 

homomorphism). A descriptien of Milnor's definition of the L-class of 

a rational homology manifold then follows in (If), while (Ill) contains 

the definition of Sign(g,X) for a G-manifold X and a statement of the 

Atiyah-Singer G-signatur~ theorem. 

(I) Hemelo~ical properties of manifolds 

A rational homology manifold of dimension n is a triangulated space 

in which the boundary of the star of each vertex has the same ratio~al 

sn-1 homology groups as • . Equivalently, it is a simplicial complex X 

such that 

Hi(X, X-lxl ;~)= ~ (~-IOl ;~) (') 
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for all x ~ X. Then we can define a system of local coefficients for X, 

denoted er X and called the orientation s~stem ef X, which at the point 

is just the vector space Hn(x,x-I~;Q) (where we de met cheese a specific 

isomorphism with @). There is them an srientation class 

[X] e Hn(X;erx) (2) 

whose image in H,(X,X - [xl) for x g X is the identity in 

H.m(Hn(X,X-fxt), Hn(X,X-Ixt)) ~ Hn(X,X-fxl,erxtx). (3) 

Notice that this is independent ef the particular isomerphisms ef 

Hm(X,X-[xl) with Q given by (I). If the system er X of local coefficients 

is trivial, X is said t~ be erientable; then the element (2) is in Hn(X;Q ). 

If F is any system of local coefficients for X, then the cap 

product with [X] gives a Peincar~ duality isomorphism: 

IX] = m x : ~(M;F) ~ ~ Hn_i(M;F® Orx). (4) 

If f:X~ Y is a map between two manifolds, the ~ homomerphism f, is 

f ,  : Dy ~ f ,  D x : H*(x; f*r  eOrx)  - - ~  H*(~;r~  ~ry), (~) 

where r is a local coefficient system over Y, f*r the induced system 

ever X, and f, the map from H,(X;f*r) to H.(Y;r). we will only need 

this when ~ is an inclusion map between differentiable manifolds and F=Q. 

If ~ is a real vector bundle ef dimension ~ over X, it also 

defines an orientation system of local ceefficiemts, which at xoX is 

er~(x) = Hq(Ex,Ex-IOl), (6) 

the fibre of ~ at x being denoted E . This defines a Them class 
-- X 

V~ ~ Hq(E.Eo;~*.r~) , (7) 

where E@ is the total space E ef ~ minus the zero-section X, ~ is the 

projection map E ~X, and ~*or~ is the system of local coefficients on E 

induced from er~ by ~. Namely, the Them class is defined uniquely by 

the requirement that its restriction te any fibre is the identity of 

Hq(E,Eo#~*.r ¢) ~ Hom(Hq(E,E®~), Hq(E,Eo~)) (~) 
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Then the Euler class of ~ is defined as the restriction te the zero- 

section X ef the Them class; thus 

e(f) ~ Hq(x;.r~). (9) 

The bundle f is oriented if orf is trivial; then its Euler class lies 

im H~(X;~) (or H*(X;@) if we used rational coefficients in (6)). This 

is the case if and only if the first Stiefel-)Vhitney class of ~ is zero. 

In general, the first Stiefel-%~itney class determines the orientation 

system ef coefficients; thus when we take a direct sum ~@ U of bundles, 

the orientation system ef the sum is the tensor product er~®eru, while 

the Stiefel-~Thitney class of the sum is the sum w1(~) * w1(w). In 

particular, since Stiefel-~nitney classes have order two, it does not 

matter in equations like (4) whether we tensor with or X er erx-i (we 

have already used this freedom in eq. (5), whore the positions of 

F and F® or X have been interchanged). Finally, if X is a differentiable 

manifold, then or X equals OrTX, where TX is t~ tangent bundle. 

(II) ~{ilnor's definition of the L-class of a rational homologv manifold 

It has been proved by Serre ~ that, if X is a C~ complex of 

dimension n ~ 2i-2, then hometopy classes ef maps 

f: X ~ S i (10) 

form an abelian group =i(x) (the i th cohomotopy group of X) which, 

up to torsion, is isomorphic to Hi(x). More precisely, the natural 

H i . i. map ~i(x) ~(X) sending the map (10) to f*~ (where a E (S) is 

the generator) becomes an isomorphism after tensoring with ~. Thus, 

for any element x E ~(X), soms multiple Nx can be written as f*o for 

soms f:X ~ S i whose homotopy ty!Qe is unique up to torsion in ~i(x). 
New let X be ~n oriented rational h~melogy manifold of dimension ~. 

Then there is a fund~lental class [X] in Hn(X;~), and therefore we 

have an intersection form on Hk(x) (if n=2k) defined as usual by 

sending two elements te the evaluation ef their cup product en [X]; 

thus the signature of X is defined. Now one can prove the following 

facts: if ~ is a simplicial map as in (10), where S i has some fixed 

standard triangulation, then the inverse image ef a point, 

A = f-~(p) C X, (~I) 
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is an oriented rational homology submanifeld of X (of dimension n-i) 

for almost all pe S i , and moreover, the cobordism class of A--and 

hence also its signature--are independent ef the point 2, again for 

almest all 2. This defines then a number I(f) = Sign(A), which only 

depends on the hemetopy type of A. Moreover, frem the definition ef 

the addition in ~i(x) one easily finds !(f1+f2) = I(fl) + l(f2) , 

se the map [f] ~ I(f) defines a hemomorphism 

~i(x) ~ ~. (12) 

If we tensor this with ~ and cembine it with the theorem of Serre 

stated abeve and the Peincar~ dudlity isemerphism in X, we obtain 

a umique class 

In_ i • Hn-i(x;~) 

such that 

(In_iUf*a)[X] = I(f) : Sign(A) (14) 

far all maps ~ as in (10). This all only holds for n~ 2i-2 or 

n-i ~ (n-2)/2, but we can define lj also for larger i by choesing 

a large integer N, defining the class 11 ¢ HJ(x×s N) by the above 
- 0 

procedure applied t® XxS N, and then letting 1. be the correspending 

class ~nd, r the isemerphism .f H~(X) ,ith HJ(×SN). Then the L-class 

of X is defined as the sum of these classes: 

L(X) = ~ l ~ H*(X;~). (15) 
j=0 J 

It is easy te see that this agrees with the usual definition if 

X is a differentiable manifeld. Indeed, since the L-class of a pre~uot is 

multipiicative and L(SN)= I, we have L(X) = L(XxS N) (where we have 

identified the cohemolegies ef the two spaces in dimensions up to n(gN), 

so we only have to che, ck that the usual L-class satisfies (14). But 

the map f can be cheseJl within its hemetepy class as differentiable; then 

A is a differentiable submanifold of X for almost all p in S i and has 

trivial mermal bundle (since a point has trivial normal bundle), so the 

L-class ef A is the restriction j~L(X) of the L-class of X (where j:~X). 

Also, £'~ c ~(X) is the Poincar~ dual of j.[A] ~ Hn_i(X). Therefore 

<L(X)Uf*a,[X]> :<L(X),j.[A]> : <j'L(X),[A],: <L(A),[A]> = Sign(A), 
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so the L-class in the usual sense satisfies (14). Since equatiom (14) 

defined uniquely the class lj (for X a rational homology manifold), 

we see that th~ class (15) is indeed the usual L(X) if X is differentiable. 

(IIl) The G-signature theorem 

If a group G acts on an orientable rational homology mamifold X 

(here and in future we will tacitly assume that all groups are compact 

Lie groups and that actions preserve any structure present; thus the 

action here must be simplicial and preserve the erientation), there is 

defined a cempiex number Sign(g,X),depending only on the action of g* 

on H'(X;~)~ for every gc G. The definition is as follows: If X has 

odd dimension, we set Sign(g,X)= O. If X has dimension 4/<, the 

intersection form B(x,y) = <x~ y,[X]> is s~rmetric, non-degenerate 

(because ©f Poincar~ duality), and G-invariant (since g~[X] = [X] 

by assumption). We can therefore decompose the middle cehomology 

greup H~(X;~)las a direct sum H+ • H_, where the bilinear form B 

is pesitive definite on H and negative definite en H . Then 
+ 

Sign(g,X) = tr(g~IH+) - tr(g~IH_); (16) 

this definition is independent of the decomposition ~ =  H ¢ H . 
+ 

If X has dimension 4k+2, then B(x,y) is skew-symmetric, men-degenerate 

and G-invariant. Then if we choose a G-invariant positive definite 

inner product < , > on H2k+I(x;~) and define an operator A by requiring 

B(x,y) = <A~,y> for all x,y¢ H2k+I(x;~), the operator A is skew- 

adjoint, se the operator J = A/(AA+) ~/2 has square -I. This gives 

H2k+I(x;~) the structure ef a complex vector space, and since g~ 

commutes with J, it acts en ~k+1(X;~) in a complex linear way. Then 

Sign(g,X) = 2 i  Im ( t r ( g ~ j ~ k + l ( x ; ~ ) ) l  (17) 

where the trace is taken of the map g* thought ef as an autemorphism 

of a complex vector space. Agaim this is independent of the choices 

made. This completes the definition ef Sign(g,X) in all cases. If 

gl acts on X I and g2 acts en X2, then the signature of the product 

action of glxg2 on XIXX 2 is givem by 

Sign(glxg2,XlXX2) = S ign(g l ,X1) .S ign(g2 ,X2) .  (18) 

The centent ef the G-signature theerem is a fermula fer Sign(g,X) 
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im terms ef the fixed-peint set X g and its equivariant nermal bundle, 

in the case that X is a differentiable manifold. Te state this fermula, 

we first define certain characteristic classes ef complex and real 

bundles (i.e. multiplicative sequences in the Chern er Pontrjagin 

classes, respectively). If ~ is a real number, not a multiple of ~, 

and ~ is a cemplex bundle of (complex) dimension q over a sp~ce Y, 

we define 

Lo(f ) = (c.th~q c.th~ +,i0/2,,,) 
2 "  n c . t~  io /2  ' (19) 

J 

where the x. have the usual interpretatien as fermal two-dimensional 
J 

cehemelegy classes such that the Chern class ef ~ is 

c(~) : n ( 1 + x j ) .  
J 

Thus L~(~) is an element .f the subring H*(Y;Q)[e ie] 

If ~ is a real bundle ever Y, we let 

.f ~(Y;C). 

(20) 

L(~) c H*(Y;Q) (21) 

be the Hirzebruch L-class ef ~ , defined as H t a xj where H(l+x ) 

is the Pentrjagin class ef ~. We let 

, (~) c }~ (Y;.r~) 
be the guler class (cf. eq. (9) abeve), and define 

(22) 

L ( ~ ) =  e(@)L(@) -1 c H*(X;,r~ ~ Q), (23) 

which is legitimate since L(~) has leading coefficient I and is therefere 

invertible. Netice that if ~ is a cemplex bundle and we set 0=~ in (19) 

• 'ste be equal te K) we obtain, (where we have chesen the number ef xj 

after first cancelling the (zere!) facters ceth i~/2 frem mumerater 

and deneminater, a preduce ef the tar~h xj. This then agrees with (23), 

since e(~) : Cq(~) : x 1...xq ~nd L(~) = n (xj/ta~ xj) in tms case. 

We return to the actien ef ~ on a differentiable manifeld X. The 

fixed-point set X g is a smeoth submanif@id, net ~ecessarily erientable; 

we denete its nermal bundle in X by N g. At each peint ~ ef X, the 

actien of ~ on the fibre N g can be decompesed, by standard representation 
X 
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theery, as a sum ef ene-dimensienal eubspaces en which ~ acts as 

multiplicatien by -I and twe-dimensienal subspaces en which ~ acts by 

A0 = ( c.s 0 -sin 0 ) ,  ( 2 4 )  
sin 0 cos e 

where 0 is a real number not divisible by ~ (the eigenvalue +I cannot 

occur an the normal bundle Ng). Since A 0 and A_0 are equivalent, we 

cam assume that 0< 0 < ~ far the representations (24), and write 

N g = N g e s N g (25)  
X x,~ 0<0<~ X,0 ' 

where N g is the subspace on which ~ acts as -I. Each of the spaces 

N g (0<0<~) has a natural complex structure on which ~ acts as 
x, 0 

multiplication by • i0. The decomposition (25) of a fibre extemds to 

a decempesition of the whole bumdle I~ as 

N g N g @ Z N g 
= ~ 0 < ~ < ~  b ' 

where N g is new a real bundle aver X g en which ~ acts as -I and N~ 

is a cemplex bundle aver X g an which ~ acts as e i6 In particular, 

the bundles N~ all acquire a natural orientation from the complex 

structure. Simce X also has a given orientation, we obtain from (26) 

(and the relati@m j*(TX) = N g @ TX g) an isomorphism between the 

systems of twisted ceefficients 

We maw define ~ class 

(26) 

Orxg and orN~ (cf. (I) .f this section). 

L'(g,X) = L(xg).L (N~)- ~ L0(N~) 6 H*(xg;orxg®¢), (27) 
0 < ~ < ~  

where we have used the characteristic classes defined above and the 

isomorphism Orxg = o~ given by the prescribed erientati,ns on X 

and en the complex bundles N~ . Finally, the fumdamental class [X g] 

also lies in the homology at,up with coefficients Orxg, so we can 

evaluate (27) en this class. The Atiyah-Singer G-signature theerem 

states that this is precisely Sign(g,X): 

Sign(g,X) : < L'(g,X),[xg]>. (28) 

Sources: The material in (I) is standard; it can be found sketchily in 

Spanier [$8] or Deld [8] and in detail in Heithecker ~I]. The eriginal 
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paper ef Them preying that L-classes can be defined fer ratie~al hemelegy 

manifelds in a way censistent with the previeus definitie~ in the 

differentiable case is Them ~. The definitien ef ratienal hemelegy 

manifelds as given in (I) and the whele contents ef (If) are taken from 

Milner [~I]. Finally, the material in (III) cemes frem Atiyah and 

Singer [ t ] .  
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§3. Proof e f the formula for L(X/G) 

The starting point f@r the proof ef Theorem I ef §I will be the 

corresponding relation for signatures, namely 

I 
Sig~(A/G) = Vgi z Sign(g,A) (I) 

g(G 

for a G-manifold A (g finite). In fact this also holds for a ratienal 

hemelegy manifold A, since its preef depends only en the definition 

ef Sign(g,A) in terms ef th~ action ef g* en H*(A), It is trivial if 

A has odd dimension (both sides are zero) or dimension 4k+2 (then the 

left-hand side is identically zero, while Sign(g,A) = - Sign(g-±,A)). 

If the dimension ef A is 4k, we use the fact (cf. §I) that 

~: H*(A/G) ---~ ~(A) ~ , (2) 

whore ~ denotes the prejection map from A to A/G (this holds because 

we are always w~rking with a field of characteristic zero as coefficients). 

Then c.mpari~ the definiti.n .f Sign(g,A) (§2, (16)) in this case 

with the definition of Sign(A/G), we find that (I) reduces to the 

elementary identity of linear algebra 

dim V G I = IGl Z tr (gJV) (3) 
gc G 

for the G-invariant part ef a vector space V. 

We will apply this to the set A = f-1(p) appearing in Milnor's 

definition of L-classes (§2, (11)). Since we are interested in the 

L-class of X/G, we begin by chaosing a simplicial map 

~: x/G ~ s i (~) 

We then defi~o an equivariant map ~ from X to S i by 

f = ~o~: x~s ~ (5) 

Clearly, ~ is g-equivariant with g actin6 trivially en S z, i.e. it 

is g-invariant . We write 

A -- f-1(p) c x, (6) 
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i = f-~(p) : A/G c x/G. (7) 

Thus A is a G-invariant subspace af X. 

We can change ~ within its equivaria~t hemetepy class (i.e. threugh 

maps factering threugh X/G) tea differentiable map. Indeed, we just 

replace the cempesitien f: X~ si ~i+I by a differentiable map 

f':X~ i+I with max If(x)- f'(x)J < e, mad the~ defiae a third map 

f" frem X te ~i+I by 

I 
f"(x) - IGl Z f'(gox). (8) 

g¢ g 

Then f" is G-equivariant and differentiable and, if e is small emaugh, 

clese te f; in particular f"(X) C ~i+I _i01 se we cam cempese with 

the prejectien R i+I -Iol ~ s i te ebtain a map f"' :X ~ S i which is 

G-equivariant, differentiable, and arbitrarily clese te ~. If we 

apply the whale precess taft (where ft is a hemetepy frem fte f', 

e.g. the linear ene) we abtaim am equivariant hemetepy frem f te f" . 

~e therefere assume that f is differentiable. Far the whele ef 

Milnor's definitien we are allewed te exclude sets ef measure zera 

far the paint ~ in S:; thus here we can use Sard's theerem te have 

a regular value ef the functiea ~ and ef each ef the (finitely 

many) functiens fiX g (g ¢ G; natice that X g is a differentiable 

manifeld). Then A is a differentiable submanifeld ef X and meets 

each submanifeld X g transversally with intersectien A g. 

~Ve new write L fer L(X/G) far cenvenience; them Milner's 

definitien says that L is uniquely determined by 

(~f*~)[x/G] = s~(X) (9) 

(again fer a!mest all p¢S~ we are alse ignering the preblem ef 

defining the classes lj fer ~ larger than half the dimensien ef X 

since we can remave such dimensional restrictiens by multiplying 

everything with a sphere ef large dimensien en which g acts trivially). 

~e new apply (I) te express the right-hand side ef (9) in terms 

ef the quantities Sign(g,A), and then the g-signature theerem (§2 (28)) 

te evaluate the latter, TB~ 

I 
(LUf~o)[X/G] = Sign($g) - Lgl Z Sign(g,A) 

geG 
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I 
~, L' (g,A) [fi]. LGI 

gcG 

The G-signature theerem is applicable because A is a differentiable 

manifeld en which G ~cts. 

In the diagram 

~g = A~ X g i' ~ X g 

1 I 
1 A • X 

0o) 

ef differentiable manifelds and inclusisn maps, the inclusions i and i' 

oensist af the inclusion af the inverse image ef a pgint (el the 

differentiable maps ~ and fiX g, respectively) and therefore have 

trivial nermal bundle. It fellaws that 

N(A g ) , ~  ~ i'*N(X ~),~ (11) 

where N(A g) deno te s  the  nermal  b u n d l e  ef  A g i n  A, N(X g) deno tes  t h a t  

ef X g in X, and ¢ denotes a trivi~l bundle (of dimension ~). This 

isomorphism is even G-equivariant since A = f-i(p) and ~ is a 

G-invariant map. Therefere the eigenvalues of the action of ~ an 

N(A g) are the same as those ef its action en N(xg), and the cerresponding 

eigenbundles N~ alse cerrespend under i'* as in (11). We therefore 

deduce frem the definition ef L' (@'2 (27))  that 

L' (g ,A)  : f ' *  L ' (g ,X) .  (1~) 

If we put this inte (JO) and calculate as in the nen-equivariant 

c a s e  (§2~, we find: 

< ~'(g,A), [A g] > = < i'*L'(g,X), [A g] > 

= < L'(~,x),i~[Ag]> 

= <L'(g,X), Dxg[(f;xg)*o] > 

(here as in §2 we use that the hemel©gy class [f-±(p)] fer a map ef 

the form of §2 (10) is the Peincare dual ef the class f'a, where 

is the generator ef Hi(s i) ) 
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= <L'(~,X),E~oJ)" oJnExg]> 

(frem the definitien ef Peincar~ duality) 

= <j*f*ov L' (g,X), [x~b 

(ane can interchange since L'(g,X) and X g are even- er edd-dimensicnal 

classes accerding as X is, and therefere have the same parity, se the 

expressien is zere unless i = deg o = deg j'fca is even) 

= <j.f.~, Dx~(L'(g,X))> 

= <f*~ , J .Dxg(L ' (g ,X) )>  

= <f*~, L(g,x) n [ x ] >  

= ~ ( g , X )  u f * o , [ x ] >  , (~3) 

where in the last lines we have substituted the definitiens ef j! and 

ef L(g,X) given in §2 and §I, respectively. In this calculatian we 

have net specified the ceefficients, but if ene fellews threugh the 

steps with the definitiens frem §2, part (I) in mind, ene finds that 

the calculatien is censistent alse when twisted ceefficients must be 

used (i.e. when X g and hence A g is non-erientable). In the last line 

all the cehemelegy and hemelagy classes appearing have simple ceefficients. 

~e new substitute (13) inte (10), ebtaining 

- I 

<LVf'o,[X/G]> - IGI Z <L(g,X)Vf*o,[X]>. (14) 
gcG 

If we further substitute [X/G] = deg ~ ~[X] and ~f~ = f~, we get 

I 
1 ~*L)Uf*o , [X]>  = < ( ~ gC G < ( ~ z L(g,X) ) v r*o, Ix] >, (15) 

and the desired equality (eq. (2) @f §I) fellews frem this equatien 

and the fact that (9) defines the L-class L = L(X/G) uniquely. 

It is interesting to look more closely at this equation and see 

the relation between the properties of the equivariant classes L(g,X) 

and the ordinary L-class. These properties of L(g,X) will be used 
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later. They also serve to make Theorem 1 of §I more plausible by 

showing that §I(2) defines uniquely a class L(X/G) ~ H~(X/G) which 

has the properties expected of an L-class (leading coefficient I, 

zero in dimensions ~4k, etc.). The properties in question are: 

i) If g,h ~ G, then 

h*~(g,x) : L(h-~gh, X). (~6) 

ii) If G acts effectively and G is connected, then the component 

of L(g,X) in HO(x) is 0 if g~1, I if g=l. 

iii) For all g cG, the component of L(g,X) + L(g-±,X) in Hi(x) 

is zero unless ~ is divisible by four. 

iv) L(g,X)[X] = Sign(g,X). (17) 
v) The sum ~gEG L(g,X) is in H*(X;Q) C H*(X;¢). 

it follows from i) that the average over G of the classes L(g,X) 

is invariant under the action of G on H*(X), and therefore (by the 

isomorphism (4) of §I) that it is ~* of a unique element of H*(X/G). 

If we write this element as L/deg ~, then it follows from ii) that L 

has leading coefficient I, from iii) that L is non-zero only in 

dimensions 4~k, from iv) that L[X] = Sign(X), and from v) that L is 

a rational cohomology class. Thus L has all the properties reouired 

if it is to be equal to L(X/G). 

The proofs of i)-iv) are quite simple. Property iv) follows from 

the G-signature theorem (§2(28)) and the definition of J!" Property ii) 

is clear since the map j! raises dimensions by the difference of the 

dimensions of its domain and target manifolds, so j,L'(g,X) can have a 

zero-dimensional component only if dim X g = X, which for X connected 

can only occur if xg=x and therefore (since the action is effective) 

if g=1. To prove i), we observe that the map h:X~ X defined by the 

action of h ¢ G maps X g isomorphically onto X g' (g'=hgh -i) and that 

the map h* pulls back the normal bundle N g' to N g (as G-bundles, i.e. 

the splitting into eigenbundles is also pulled back). It follows from 

this and from the functoriality of the characteristic classes L, L and 

L8 appearing in the definition of L'(g,X) that 

L'(g,X) = h*L'(hgh-1,X). (18) 

Moreover, since ~ is an isomorphism we have h ~ = (h-l),, and therefore 
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equation (16) follows from equation (18). To prove iii), we note that 

the elements ~ and g-i have the same fixed-point sets , and that the 

eigenvalue decompositions of the common normal bundle N g are related by 
g-i g-i 

N g = N ~ In particular N g -~ N . We substitute this into the u " ~ ?T 

definition §2(27) of L'(g,X), using the fact that j, increase~ dimensions 

by dim X - dim X g and the fact that L (N g) = e(Ng)L(Ng) -~ only has 

components in dimensions m dim N g (mod 4). We find that the proof of iii) 

reduces to showing that 

L~ (N~)+ ~ L_e (N~) • H* (xg; ¢) 
0<~<~ 0<~<~ 

only has components in degrees equal (modulo 4) to 

dim X - dim X g - dimN g~ = 2 Z dimcN$. 
0<~<~ 

But this follows easily from the identity coth(xj-i~) = -coth(-xj+i~). 

We will rDt give a complete proof of property v) here, since in any case 

it follows from Theorem I of §I and the rationality of L(X/G). The 

method of proof is to write 

Z L(g ,X)  = Z Ly, (19) 
g•G Y C X 

wher~for Y a connected closed submanifold of X, Ly denotes the sum over 

G of the contribution from Y to L(g,X) (i.e. zero unless Y is a component 

of X g, and j,[L(Y) H L~(N~)I if Y is such a component, where ~ is the 

@ Ng is the e i~ eigenbundle of the action of ~ on inclusion of Y in X and 

the normal bundle of Y in X). This makes sense, since Ly is zero for 

all but finitely many submanifolds Y. One then can show that each of 

the classes Ly •H*(X) is a rational cohomology class by a Galois-theory 

type of argument. The argument when Y is a single point Ixl is given 

in the introduction to Chapter III. 
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§4. A definition of L (g,X) for rational homology manifolds 

The reason that the L-class can be defined for a rational homology 

manifold X is that the L-class is related to the signature of certain 

submanifolds of X, and that there are enough of these submanifolds to 

determine L~)completely. It is reasonable to ask whether the equivariant 

L-class has similar properties which allow its definition for rational 

homology G-manifolds. 

We cannot expect such a definition for the Atiyah-Singer class 

L'(g,X), since it lies in the cohomology of X g and therefore only can 

be defined in terms of the local action of ~ near its fixed-point set, 

which presupposes that this action is differentiable, or at least that 

it looks like a differentiable action in a neighbourhood of X g (cf. 

Wall [~o], Ch. 14). But the class L(g,X) ¢ H'(X), defined in the 

differentiable case as j,L'(g,X), can be characterised in certain 

circumstances by a formula proved in the last section in the course 

of proving Theorem I of §I, namely (ee. (13) of §3) 

Sign(g,A) : < L(g,X)Ur~o,[x] > , (I) 

where A = f'~(p), ~ being a map from X to S i which is G-equivariant 

(G acts trivially on si), ~ a sufficiently general point of S i, and a 

a generator of Hi(si;~). Equivalently, if we use the fact that f'~ 

is the Poincar~ dual in X of the homology class i~[A] (this was used 

in the proof given in §3), we can consider (I) as saying that the 

value of L(g,X) on a given homology class is Sign(g,4), where A i~ 
represenzs mnls class ann wr~cn 

a g-invariant submanifold of X which fs the inverse image of a poin~ ^ 

for some map X ~ S i (in the differentiable case, this says that A has 

trivial normal bundle in X). 

We thus wish to define a class 

L(g,X) ~ H~(X;¢) (2) 

for a rational homology G-manifold X in such a way that (I) still holds. 

For this we require that there are enough "G-invariant submanifolds A 

with trivial normal bundle" in the sense defined above, i.e. that such 

manifolds exist in enough homology classes of X to determine L(g,X) 

completely, and also that there are not too many, so that the conditions 

{~) do not conflict with one another. We cannot expect that all of the 
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elements of H~(X) are represented by embedded manifolds A of the type 

desired (as was the case for Milnor's definition, at least in rational 

homology), since a G-invariant submanifold A of X can certainly only 

represent a G-invariant homology class. Therefore (I) only tells us 

how to evaluate on elements of H~(X) G, or rather only on those elements 

of ~(X) G which can be represented by good submanifolds A. To have a 

reasonable hold on the group H~ G, we must assume that g is finite, 

in which case this group is isomorphic to H,(X/G) under the map ~, 

(cf. (4) of §I). Then knowing the value of a cohomology class only 

on the G-invariant part of H.(X) only determines the cohomology class 

if it is itself G-invariant (for then it corresponds to an element 

of H*(X/G) and is determined by its values on elements of H~(X/G)). 

But we saw in §3 that 

h~L(g,X) = L(h-:gh, X) ~ H~(X;~) (all h ~ G) (3) 

in the differentiable case, and it is easy to see that the same 

formula will hold for a class L(g,X) defined using (I) (just 

replace ~ in eq. (I) by foh, which is also a G-invariant map from 

X to si). Therefore if we want the cohomology class L(g,X) to 

be invariant under the action of G on H~(X), we should require that 

h-lgh = g for all g,h c G, i.e. that G be abelian. Unlike the 

requirement that G be finite, however, this does not limit the 

generality of our definition, since we want our class L(g,X) to 

share with the Atiyah-Singer class the property of depending only 

on ~ and its action on X but not on G, and therefore we can always 

replace G by the abelian subgroup generated by ~. 

We can now state the theorem of this section: 

Theorem I: Let X be an oriented rational homology C--manifol~ Granite abelian. 

There is a unique class L(g,X) in H*(X;$) G satisfying (I) for all 

simplicial G-invariant maps f:X~ S I, and this class agrees with the 

class L(g,X) of §3 if X and the action of G are differentiable. 

Proof: The last statement follows from the assertion about unique- 

ness, since we saw in §3 that the differentiably defined class L(g,X) 

satisfies (I). 

We now proceed as in the non-equivariant case outlined in §2. 

We work with complex coefficients, so that we are allowed to use the 

isomorphism (4) of §I. We also assume that we have multiplied X with 

a G-invariant sphere of large dimension to remove restrictions on the 
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dimensions of the cohomology groups to which we can apply Serre's 

theorem. Then H~(X/G;C) is generated by cohomology classes which can 

be represented by maps f:X/g ~ S i. Such maps define G-invariant maps 

f:X ~ S i by f=fo~, and conversely any G-invariant map ~ factors through 

X/G. The same applies to equivariant homotopies. ~e thus obtain a 

commutative diagram in which all arrows are isomorphisma: 

~-(x/G;c) ~ . Hi(x;~) G 

~i(x/G)~ ¢ ~* i(x)G e 

We now define, for each p ¢ S i, a map 

Tp: ~i(x)®~ ~ ~, Tp(f@X) = ASign(g, Ap), (5) 

where A = f-1(p). We can prove that this is defined and independent 
P 

of ~ and of the choice of ~ within its equivariant homotopy class. The 

proof is just the same as in the non-eouivariant case (Milnor [31]). We 

choose an open simplex A i of S i (S i has a fixed triangulation with 

respect to which ~ is simplicial) and, using Sard's theorem, a regular 

value p c Int(A i) of ~. Then there is a homeomorphism (given explicitly 

in [31 ]) from f-~A i to ~×A i, commuting with the obvious maps A i , to and 

from the definition this is a G-homeomorphism if ~ is G-equivariant. It 

follows that Tp(f)= Tp,(f) for almost all ~ and all ~'close to ~. Then 

a homotopy from ~ to a map ~' gives a cobordism from f-~(p) to f'-~(p) for 

almost all ~, and this is a G-cobordism if the homotopy is G-equivariant. 

But the equivariant signature Sign(g,A) is an equivariant cobordism 

invariant of A (cf. Ossa [33]), so we deduce that Tp(f) = Tp(f') for f,f' 

equivariantly homotopic. Since ~ is equivariantly homotopic to its 

composition with any simplicia! automorphism of S i, we can carry A i onto 

any desired i-simplex of S i without changing Tp(f). Therefore Tp(f) = 

T ,(f') for f,f' equivariantly homotopic and almost all p,p' (now without 
P 

requiring that ~'be close to ~). This shows that the map Tp is well- 

defined, and that it is independent of ~ for almost all ~. We denote 

this common map by T. It is not hard to show that T is a homomorphism. 

Using the isomorphisms (&) and Poincar~ duality in X/G (which is a 

rational homology manifold) we deduce the existence of L~H~(X/G) with 

- I--!-- ~'L ~ ~(x;~) G. T(f) = <=*Luf*a,[X]>. Set L(g,X) - deg 
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§5. The formula for L(h',X/G) 

Now that we have defined L(g,X) for rational homology C--manifolds, 

we find that the right-hand side of the formula for L(X/G) proved in §3 

in the differentiable case is also defined when X is a rational homology 

manifold, and we can ask whether it still gives the value of L(X/G). 

This is the case, and we even have the following mere general result, w~icb ~ 

stated in somewhat other terms as Theorem 2 of §I: 

Theorem 1: Let X be an oriented rational homology U-manifold, where U 

is a finite abelian group, and let G be a subgroup of U. Then the 

equivariant L-classes (in the sense of ~4) of the induced action of U/G 

on the rational homology manifold X/G are given by the formula: 

J ~*L (~,X/G) - I 
deg ~ IGJ Z L(u,X), (I) 

u¢~ 

where # c U/G is a coset of G and ~ the projection X~X/G. 

Proof: Equality (I) is modelled after and proved using the corresponding 

equation for the equivariant signatures, namely 

I Sign(~, A/G) I P. Sign(u,A), (2) 
deg ~ - IG-I ue 

where ~ is a coset of G in U and A is a U-manifold (or rational 

homology U-manifold; (2) is a purely homological statement). This 

is proved just as was the special case U:G (eq. (I) of §3) by 

applying to the positive and negative eigenspaces of the middle 

cohomology group of A the corresponding theorem for the traces 

tr(~l~ and tr(ulV) of the action of U on ~ vector space V andof 

the induced action of U/G on V G. 

To prove (I), we must show that the right-hand side is G-invariant 

(so that (I) defines an element of H~(X/G)) and that the class L(~,X/G) 

that it defines satisfies the basic equation (I) of ~+. But we 

pointed out in ~4 that equation (3) of that section holds also 

when X is a rational homology manifold; it follows that the right- 

hand side of (I) is G-invariant. (~ere we do not need that U is 

abelian, which implies h*L(u,X) = L(u,X) for hcG; it is sufficient 

if G is a normal subgroup of U, in which case the actions of G on 

the left and right in (I) change the summands on the right-hand 

side but leave the whole sum invariant. Theorem I is thus also 
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true in this more general situation). Now we have to check that the 

class L((,X/G) defined by (I) satisfies (I) of ~+. Choose a (U/G)- 

invariant map ~ from X/G to S i and let A denote the inverse image of 

sufficiently general point of S i. Let f=fo~ denote the corresponding 

U-invariant map X~ S i and A the inverse image of 2 point under S i, so 

I ~,[X] for IX/G] in the definition that A = A/G. If we substitute deg ~ 

of L(~,X/G) we can rewrite this definition as 

I < ~*L(~,X/&)Kg~*9*o,[X]> = Sign((,~), (5) 
deg = 

and if we then substitute for ~*L(~,X/G) its value as given by (I), we 

obtain as the equation to be proved 

I 
Z < T.(u,X) Uf*o,[X] > = Si~(~,A/G). (4) 

IGL uc( 

But the elements summed on the left-hand side of this are precisely 

the numbers Sign(u,A), again by eq. (I) of ~+, and therefore the 

theorem has been reduced to the equality (2) given above. 
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§6. Application toa formula of Bott and some remarks on L(g,X) 

To illustrate the behaviour of the equivariant L-class L(g,X), 

we will calculate it in a simple case, namely for linear actions on 

X = Pn C. Since this is a smooth action, we can calculate L(g~X) by 

the Atiyah-Singer formula. 

We write points of X as (Zo:...:Zn), where (z 0 ..... Zn) ~ S 2n+I 

is an (n+1)-tuple of complex numbers. Then the (n+l)-dimensional 

torus group T n+1 acts on X by coordinatewise multiplication, i.e. for 

g : (~0' "'~n ) ¢ Tn+1 $I " $I .. = × .. × (I) 

we define the action on X by 

go(zo:...:Zn) = (~0Zo:...:~nZn). (2) 

We must calculate the fixed-point set of ~. Clearly this is 

X g = I (Zo:...:Zn) I ~izi = ~zi, i=O ..... n for some ~ I- (3) 

Since at least one of ths numbers z i is non-zero, the complex 

number ~ is uniquely determined by z e X and must belong to the 

finite subset I~0,...,~nl of S I. Therefore we can write X g as m 

finite disjoint union 

X g = U X(C ) (4) 
~cS ~ 

where 

and 

x(~) = I(Zo:...:Zn) £ X I ~izi = ~z i, i=O ..... n~ 

= I(Zo:...:Zn) I zi=O for all ! with ~i#~ 

x(~) : ~, if ~ I~ o ..... ~n I. 

Therefore X(~) is isomorphic to a projective space Ps(¢), where s+1 

is the number of indices ! with ~i=< (we set s=-1 in the case (6)). 

In particular X(~) is connected whenever it is nonempty, so that (4) 

is precisely the decomposition of X g as the finite disjoint union of 

its connectedness components. 

(5) 

(6) 
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The value of L(g,X) is now given by the Atiyah-Singer recipe as = 

sum over ths components; we now calculate the contribution L(g,X)~ to 

L(g,X) from a given component X(~). We let ~ denote the (complex) 

dimension of X(~), and for convenience renumber the coordinates so that 

~0 .... '~s = ~' ~s+1 .... '~n * ~ ; (7) 

then 

x(¢): I(~0:...:~ :0:...:0)I = p c ,  (8) 
s s 

and we shall use this isomorphism to identify X(C) and P ¢ without 
s 

further comment. Let 

x ~ ~(x>, y ~ ~2(x(~)) (9) 

be the usual generators of the cohomology of complex projective space. 

Thus y = Cl(H ) where H is the Hopf bundle over X(~). Since the normal 

bundle of X(~) in X consists of n-s copies of the Hopf bundle, its 

Chern class is (l+y) n-s. Moreover, if we identify this normal bundle N g 

with a tubular neighbourhood of X(~) in X, we see that the action of 

is given by multiplication with -~ the i th ~i on copy of H. Indeed 

the fibre N g of N g at zcX is identified with C n-s by the correspondence 
z 

(Yl .... 'Yn-s ) +-+ (z0:"':Zs:Y1:''':Yn-s) 

and the action of ~ on N g is therefore 
z 

go(y I ..... Yn_s) *-~ go(z0:...:zs:yl:...:Yn_s) 

= (~0z0:...:~sZs:~s+lY1:...:~nYn_s) 

= (~z0:...:~zs:~s+lY1:...:~nYn_ s) 

: (Zo:...: z i -i -i ) s" ~ ~s+IYI:''': ~ ~nYn-s 

4-. (~-I~s+I Yl ..... ~-i~n Yn-s )" 

As was pointed out in §2, the Atiyah-Singer characteristic class L(f) 

can be obtained from the same formula as that giving L~(f) if ~ is a 

complex bundle splitting up as a sum of complex line bundles. In our 

case N g splits up into a sum of n-s complex line bundles in an 

equivariant way, and each line bundle has characteristic class ~, 
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while X(.<) itself has total Chern class (1+y) s+1 and therefore 

L-class (y/tanh y)S+1 Therefore the Atiyah-Singer formula (eq. (27) 

of §2) gives for the class L'(g,X)~ ¢ H*(X(~)) the value 

L'(g,X)~ : L(X(~))  n =~(N~) 

n ~ - * ~ e  2y + I 
: (y/tanh y)S+1 n 

j=s+l -~-1-~j e2y - 1 0o) 

Now it is clear that the Poincar~ dual of yr ~ H2r(x(~)) is precisely 

the homology class represented by the submanifold P ¢. If j denotes 
s-r 

the inclusion X(~) C X, we have j,[Ps_r ¢] = [Ps_r ¢] , where the 

Fight-hand side denotes the homology class in X represented by the 

submanlfold Ps-rg C Pn ¢. The Poincar~ dual of this homology class is 

then in turn equal to x n-s+r ~ ~n-2s+2r(x). This shows that the 

Gysin homomorphism j! is given by 

j, (yr) = xn-S+r (11) 

Thus to obtain L(g,X)~ from L'(g,X)~ we must replace y by 
n--s 

formula (10) and then multiply the whole expression by x 
2x 

( ) ( x ) H x 
L g,X ~ = ta~ x j=s+1 ~-1~jeZX - I 

n ~- l~e2X + I 1 
= ~ ( x ~_1~je2X 

j=O - I  ' 

x in 

This gives 

(12) 

where in the last line we have used the equality ~j=~ for j=0,...,s. 

Equation (12) is symmetric in the various coordinates, so the fact 

that we renumbered the coordinates at the beginning of the calculation 

does not matter, and (12) gives the desired contribution to L(g,X) from 

the component X(~). If we now sum over the components, i.e. over all 

c S I (that this is legitimate follows from the fact that (12) vanishes 

if ~ ¢ I~0,...,~nl, since then each of the n+1 factors is a power series 

in ~ beginning with a multiple of ~ rather than a constant term, and 
n+1 

x = O in H~(X)), we obtain: 

Theorem I: Let g ~ T n+1 act on X = P ¢ by the action defined in (2), 
n 

where ~0,...,~ n e S I are complex numbers of norm I. Then the equivariant 
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x ~ ~ ( x )  by L-class L(g,X) is given in terms of the Hopf class 

_ ~ 2x 

L(g ,X)  = z n x -~ 2~ (13)  
¢ S I j=0 ~ ~je - I " 

The sum is in fact a finite one since the product appearing vanishes 

in H=(X) if ~ ~ I~ 0 .... ,~n ~. 

Corollary: Let ~a C S I denote the cyclic subgroup of a th roots 

of unity, where a is a positive integer, and let 

a. 

g = ~aoX...x~a n = I(~0 ..... ~n ) £ Tn+1 I ~i I = I, i=O ..... nl (IZ~) 

be a finite subgroup of T n+1, acting on X = Pn ~ as in the theorem, 

where ao,...,a n are positive integers. Let d denote the greatest 

common divisor of the integers a i. Let p: X ~ X/G be the projection 

map and all other notations as in Theorem I. Then 

n a.x 
I 

~ L  (X/G) = ~ Z n t ; ~  ~ (15) 
o~.~<~ j:o (aj (z+i~) ) 

Here the sum over all real numbers ~ between 0 and ~ is in fact finite, 

since the product vanishes unless aJ ~ 0 (mod ~) for at least one j. 

Not___~e: Formula (15) was originally proved by Bott (not yet published). 

It is quoted in Hirzebruch [16] (equation (I)) and a proQf is given in [~I]. 

Proof of corollar2: By Theorem I of §I we have 

p*L(X/G) ~ z L ( g , X ) ,  (16) = I~1  
g c G  

deg p i s  s imply the r e c i p r o c a l  of  the order  of the and the f a c t o r  LGI 

subgroup H of G of  elements  a c t i n g  t r i v i a l l y  on i .  C l e a r l y  

H = I(C o ..... C n) ~ G I C O ..... ~n I 

and it follows from the definition of G that 

greatest common divisor of a O, ... ,a n. 

by using the trigonometric identity 

a 
~z+1 z +I 

Z - a - -  
~ a : l  kz - I z a - 1 

(which is proved by observing that the two sides have the same poles 

H = #d' where _d is the 

We can evaluate the sum in (16) 

(~7) 
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and the same residues). Thus 

Z L(g,X) = ) 
gcG 

~0 .... '~n 
a. 

~iz:i 

n ~-i~e 2x + i o . . . . . . . .  ) 
~S1J=0 ~-~je 2x - i 

2x 

= ~ x • 
j=O a. ~-i~j e2x 

~ S ~ CjJ=I 

= ~ aJ~' < aa ............ + 1, 
j=0 - " e2aj x " 

c S  = ~ a j  1 

(~) 

This sum is transformed into the one occurring in (15) by the substi- 

tution ~ = e -2i~, and the corollary is therefore proved. 

We could of course write down an analogous formula for the 

equivariant L-class of the action of an element of Tn+I/G on the 

quotient space Pn¢/G by using Theorem 2 instead of Theorem I of §I. 

We will give a second application of Theorem I in §15. But the 

theorem is interesting for its own sake as well as for its applications, 

since it illustrates the behaviour of the equivariant L-class. 

The first fact illustrated by (13) is that, even in the case of a 

differentiable action, L(g,X) ¢ H~(X;¢) need not be a continuous function 

of ~. In a way this is surprising, since L(g,X) is defined using the 

equivariant signatures Sign(g,A), and the equivariant signature not only 

varies continuously but actually remains constant as one varies ~ (since 

it is determined by the action of g* in cohomology). However, the sub- 

manifolds A on which L(g,X) must be evaluated themselves depend on 

(it is insufficient to know the value of L(g,X) only on G-invariant 

submanifolds if G is an infinite group), and therefore one cannot 

conclude that L(g,X) varies continuously. Indeed, we see that (13) 

has discontinuities at points g6G where two of the ~i's are equal 

for two reasons. First of all, the set I~0,...,~n I over which the sum 

in (13) is to be taken becomes smaller when two of the ~i's coalesce; 

this discontinuitywould not be there if one counted each L(g,X)~ 

with m multiplicity equal to the number of ~i's with ~i=~. But even 
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if one were to do this, the right-hand side of (13) would still be 

discontinuous as a function of (~0 .... ,~n) c T n÷1, because the function 

x { - ~ j e 2 X  + 1 (19 )  
{ - 1 -  2x 

~je - I 

is not continuous as a function of ~ at ~ = ~j. Indeed, although for 

each fixed ~ this is a continuous function (power series) in ~, its 

constant term (obtained by setting x=0) is zero if ~ = ~j and one if 

= ~j. 

It is therefore certainly not the case that, for X a rational 

homology manifold, the function L(g,X) defined in ~4 for g ~ G' = 

lelements of finite order in G 1 is a continuous function from G' to 

H~(X;~). Therefore our first idea of extending the definition of 

L(g,X) to all of G by using the denseness of g' cannot work. Never- 

theless, it may be possible to define L(g,X) by continuity. We state a 

Conjecture: Let G be a compact abelian Lie group acting on a rational 

homology manifold X, G' the dense subgroup of elements of finite order, 

U the open subset Ig~GL xg=xGI, and U' = U~ G'. Then the function 

U' ~ H~(X;~) defined by the class L ( g , X )  of ~+ is continuous. 

The point about this conjecture is that, one the one hand, it holds 

for differentiable actions and therefore has some hope of being true, 

and, on the other hand, it is strong enough to permit a consistent 

definition of L(g,X) on all of G if it holds. To see the first state- 

ment, observe that the definition of L(g,X) of ~+ agrees with the 

previous definition §I(3) if X is a smooth G-manifold, and the Atiyah- 

Singer class L'(g,X) clearly is a continuous function of ~ as long as 

the fixed-point set does not change. To see how the conjecture's 

truth would lead to a definition of L(g,X) for all g~g, we make the 

additional assumption that the action of g on X has only finitely many 

isotropy groups G x (if X is an integral homology manifold, for instance, 

this is known to hold: cf. Borel [2], Ch. VI). Let G I ..... g k be the 

various isotropy groups occurring, and for each subset IC I1,...,kl 

define G(I) = ~i~I Gi' U(I) = Ig~G1 g~G i ~=~ icIl, and X(1) = 

Ix~X[ Gx=g i for some icIl. Then G is the disjoint union of the 2 k 

sets U(I), so it suffices to define L(g,X) for gGU(I). But g(I) is a 

closed subgroup of G, and U(I) = IgcG(I) I X g = X(I)I is for G(I) 

precisely the set U of the conjecture, so if the conjecture holds, the 

L(g,X) of ~4 is defined and continuous on a dense subset U(1)' of U(I) 

and can be extended to all of U(I). As before, we note that a~suming 
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L(~,X/G) 

where 

that G be abelian is harmless, since for arbitrary compact G we can 

define L(g,X) by considering only the closed subgroup of G generated 

by ~. 

As well as revealing the discontinuity of the equivariant L-class 

L(g,X), equation (13) is interesting because of a certain formal 

similarity with the main result of §5. To make this more appar ~nt, 

we rename the spaces and groups involved. We now write X for S 2n+I, 

considered as the unit sphere in C n+1, let U = T n+1 = SI×...×S I with 

the obvious action on X, and let G be the circle group S I embedded in 

U as the diagonal (~ ..... ~). Then the quotient X/G = Pn C is the space (I), 

and equation (13) can be restated in the form 

= Z f(u) (~ E U/G = Tn+I/sI), (20) 
u~ 

n {'e2X i) 
f(u) = j=on (x ~je2 x~ +_ (u = (~:0"" "'~n ) ~ u). (21) 

Equation (20) is very similar to §5(2), which states that 

~L(~,X/G) = Z L(u,X) (22) 

if G is finite and acts effectively on a rational homology manifold X. 

We might therefore conjecture that a formula like (20) holds in general, 

at least for G a compact abelian Lie group, if G acts freely (so that 

X/G is a manifold) or if only a finite number of elements of 0 have 

fixed points (e.g. for a semi-free sl-action). The class f(u) would 

then presumably satisfy ~f(u) = L(u,X), making (22) a consequence 

of (20), and would also have to be such that f(u)= O for all but 

finitely many u in each coset ~ e U/G (so that the sum (22) makes 

sense). I do not know if this is in general true. It is if G is 

finite abelian, since then L(u,X) is invariant under G and we can 

simply take f(u) = ~'-iL(u,X). It also is possible to define f(u) 

if the action is differentiable, since then (X/G) ~ is the disjoint 

union of the sets xu/G with ue~ (and all but finitely many of these 

sets are empty) just as in (Z~), and so we can take for f(u) the 

contribution in the Atiyah-Singer formula for L(~,X/G) coming from 

the component xu/G of the fixed-point set (X/G) ~. 



CHAPTER II: L-CLASSES OF S~METRIC FRODUCTS 

In Chapter I we obtained a formula for the calculation of the L-class 

of the quotient of a differentiable manifold by a smooth, orientation- 

preserving action of a finite group. In this chapter, we apply this to 

quotient xn/Sn of the n th Cartesian product of X with itself by the the 
th 

symmetric group on n letters, i.e. to the n symmetric product X(n) of X. 

X n In order that the action of S on be orientation-preserving, it is 
n 

necessary that X have even dimension 2s. 

~Ve give in §7 a description of the rational cohomology of X(n), as 

well as the various notation necessary for a statement of the formula 

for i(X(n)), which is then given in the following section. Since the 

complete formula obtained is rather obscure, we also make several comments 

explaining the meaning of the various terms and of the formula as a whole. 

The proof occupies the following four sections. Section 13 contains an 

explicit evaluation of the formula in two special cases-- X a sphere of 

even dimension, and X a Riemann surface. In the latter case, X(n) is a 

complex manifold whose Chern class (and hence also L-class) was already 

known (Macdonald [~); thus we are able to check our general formula. 

In ~14we consider the more general situation where a finite group Q 

acts on X. Then there is an induced action on X(n) (diagonal action), 

and we can apply the result of ~5 to calculate L(g,X(n)) for this action. 

Since the calculation is similar to that in the non-equivariant case, we 

give the proof more briefly, in a single section. The formula obtained is 

even more complicated than the non-equivariant one, but again we find that 

the dependence of L(g,X(n)) on ~ is very simple--if the order of ~ is odd. 

In the last section of the chapter we compute explicitly the form which 

the equation for L(g,X(n)) takes if X is an even-dimensional sphere. If X 

is S 2, then X(n) = P ¢ and we can check the result with the computation 
n 

of L(g, Pn¢ ) made previously in connection with the theorem of Bott. 

The most interesting fact which emerges is the very simple dependence 

of L(X(n)) on the number of factors ~ in the syz=etric power. Namely, if 

we consider the inclusion i of X(n) in X(n+1) induced by choosing a base- 

point in X, and then form Qn = J~L(X(n+J))'L(X(n))-± (this is possible 

since L(i(n)) is invertible; Qn would be the L-class of the normal bundle 
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if X(n) were a smooth manifold smoothly embedded in X(n+1)), it turns 

out that Qn is independent of ~ in the sense that J*Qn+1 = Qn" Thus 

Qn is the restriction to X(n) of a class Q in the cohomology of X(~). 

~oreover, Q turns out to be in a certaln~nse independent of X. There 

is namely a canonically defined element ~ ~ H2S(x(~)) arising from 

the orientation of X, and the class Q is equal to Qs(~) with Qs a power 

series in one variable whose coefficients depend only on s : (dim X)/2. 

For example, Q1(t) = t/tanh t; this corresponds to the case where X 

is a Riemann surface, in which case X(n) is a smooth manifold and Qn 

really can be interpreted as the L-class of the normal bundle of 

X(n) c X(n+1). For 2 larger than I, however, the power series Qs(t) 

does not split formally as a finite product Hs j:1 (xj/tanh xj), and we 

deduce that the inclusion of X(n) in X(n+1) does not have a normal 

bundle in the sense of Thom. 

In the equivariant case, if ~ acts on X and has finite order ~, 

we get a similar result if ~ is odd, namely the restriction to H~(X(n)) 

of L(g,X(n+p)) equals the product of n(g,X(n)) with a factor Q which 

is independent of ~, of X, and of the action of ~ on X, but depends 

only on ~ and ~ (it is again a power series in ~, this time with 

coefficients depending on ~ as well as on ~; for instance it equals 

~/tanh p~ if s=1). This result has two features of interest: 

first, that there is a simple relation between L(X(n)) and L(X(n+p)), 

so that there is a kind of periodicity with period ~ in the eouivariant 

structure of the symmetric products of X, and secondly, that there is a 

different behaviour for elements of odd and even order (if ~ is even 

there is no periodicity). 

Since the calculations are long and perhaps unconvincing, I have 

tried to give as many computations as possible for which a known result 

was available for comparison. Unfortunately, this ~as only possible for 

X two-dimensional, since the power series Qs(~) for s>1 has not previously 

occurred in this connection. As already mentione~ it was possible in two 

cases: Macdonald's work on symmetric powers of Riemann surfaces for the 

non-equivariant case, and the formula of §6 (here X=S 2) for the equivariant 

case. In both cases, the previous result had been obtained by quite 

different methods (Macdonald does not use the index theorem, and in §6 

we did not use the fact that Pn ~ is a symmetric product) and in a quite 

different form requiring a long computation to be shown equal to our 

result. Thus these verifications lend considerable credibility to the 

theorems of this chapter. 
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§7. The rational cohomology of XIn ) 

If X is a compact, connected topological space and ~ a positive 
th 

integer, the n ~ymmetric product of X is the space 

X(n) = xn/Sn (I) 

with the quotient topology, where S n is the symmetric group on ~ letters 

acting on the n th Cartesian product X n of X with itself by permutation 

of the factors. Thus X(n) is the set of all unordered n-tuples of points 

of X, with the obvious topology. If n=O, we define X(n) to be a point. 
th th 

The n symmetric product of X is also sometimes called its n symmetric 

power, and is variously denoted X(n), X[n], and spnx. 

If we choose a base-point xoCX , then there is a natural inclusion 

j: X(n) C X(n+1) (2) 

sending an unordered n-tuple Ix I .... ,XnIC X to its union Ix0,x I ..... Xnl 

with IXol. However, there is no natural projection map from X(n+1) to 

X(n), since there is no natural way to choose B elements from a set of 

n+1 elements. We will also use the letter ~ to denote compositions 

of the map (2) with itself, i.e. any inclusion X(n)CX(m) with m>n. Let 

X(~) = l~m X(n) (3) 

be the limit of the direct system defined by the maps ~, and use ~ to 

denote the inclusion of X(n) in X(~) also. 

The purpose of this section is to describe the (additive) rational 

cohomology of  X(n).  This i s  ve ry  easy ,  u s ing  H~(X/G;Q) m H*(X;Q) G and 

e l emen ta ry  p r o p e r t i e s  of cohomology (as found i n  S p a n i e r ) ,  and t h i s  

section can be skipped except for the equations (8), (9), (17) giving 

the notations used for the basis of H*(X(n);Q) and for one easy 

proposition (eq. (24)). 

All cohomology in this section is to be understood with coefficients 

in ~ (or ~ or ~; we only need to have a field of characteristic zero). 

This results in two simplifications. First, as mentioned above, the 

map ~':H*(X/G) ~ H~(X) is then an isomorphism onto H~(X) G (cf. §I); 

this isomorphism will be used without explicit mention to identify 

H*(X/G) with H*(X) G C H*(X) for any G-space X with G a finite group. 
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Secondly, there is a natural isomorphism of H~(X×Y) with h~(X) ® H~(Y). 

Therefore 

H~(X n) = H~(x) ~ ... ~ H*('x) (~) 

has as a basis Ifilx...xf. I i± ..... i n E If, where Ifil i c I 1 is an 
In 

additive basis for the finite-dimensional vector space h~(X) over ~. 

Recall that the map in cohomology induced by the interchange mapping 

T: XxY ~ Y×X (5) 

sends vxu£ HJ+i(YxX) (where u¢ ~(X), vE Hi(y) ) to (-!)iJuxv~ Hi+J(xxY). 

In particular, with X=Y we see that the map induced in cohomology by an 

interchange of factors is not simply the corresponding interchange, but 

contains a further factor -I if two terms of odd degree are transposed. 

It follows that, for ~ £ Sn, the effect of a* on H~(X n) (where ~ acts 

on X n by a(x~ ..... Xn) ~ (x (1) ..... x (n)) ) is 

o~(ul×...×u n) = (-I) v ua-i(1)X . . . x  U _~(n), (6) 

where Ul, .... u n in H~(X) are homogeneous elements and v is the number 

of transpositions i~-~j of the permutation a for which u. and u have odd 
l 3 

degree (this number is well-defined, i.e. independent of the decomposition 

ef ~ as a product of transpositions, modulo 2). ~rite = :X n ~ X for the 
J 

projection onto the jth factor; then we can reformulate (6) as 

g*(Ul×...XUn) = (-1)u ~(ua_ ~(1))U. ..U~n(ua_$(n)) 

= ~ (I)Ul~. • • U~(n)Un, (7) 

where in the last line we have used graded commutativity. (One can 

o~ : so that ~(~uj) see this more easily by noting that ~j ~a(j)' 

= ~(j)uj.) Therefore the symmetrization of uflx...xu n is 

<U I ..... Un> : Z a*(ulx...×Un) : Z /t~(1)u I ... 2~(n)Un 
~S aeS 

n n 

g H~(in) ~n = H~(X(n)). (8) 

Here and in the future, we omit the symbol U and denote cup products 

simply by juxtaposition. 

We choose a basis fo,...,fb of H~(X) with fb=i and each fi 
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homogeneous, say o$ degree d.. Then H*(X(n)) is spanned by the elements 
l 

<fj ,...,fjn > . Since this element is independent (up to sign) of the 

order of the indices Ji' we need only specify the number nj of times a 

given index j (j=O,l ..... b) appears in the set !Jl ..... Jn I" Thus, let 

<no(fo ) ' ' ' n b ( f b  )> = <~0 . . . . .  f ~ ' f l  . . . . .  f l  . . . . .  ~b . . . . .  fb > 

c ~ * ( X ( n ) ) ,  (9) 

~vhere no+...nb=n. There is, however, one more restriction if we 

wish to have a basis: namely, n i must be -<I if di=deg fi is odd. 

Indeed, from (8) we see immediately that if, for example, u1=u 2 and is 

of odd degree, then <ul, ...,Un> is zero. Thus we have 

Proposition I: Let f0 .... 'fb be a homogeneous basis f~r H~(X;~). Then 

a basis for h~(X(n);~) is given by the set of elements (9) with 

no+...+n b = n and ni-<l for all i with dog fi odd. 

Corollar~: The Poincar@ polynomial 

oo 

P(X(n)) = Z X r dimQ Hr(X(n);~) (lO) 
r=O 

ef X(n) is given in terms of the Betti numbers 

~d = dim~ sd(x;~) (11) 

of X by the formula 

co = . 

Z t n P(X(n)) Il ( 1 ~#di1 / d 
n:O d.>O I - - - ~  d) d.>O\ I +  txd . (12) 

d even d odd 

In particular (x= -I), the Euler characteristics of X(n) and X are 

related by 

co I e(X) 
£ t n e(X(n)) = ('~_t) (13) 

n=O 

Note: Formulas (12) and (13) are due to Macdonald IMP]. 

Proof of corollary: By the proposition, we have 

dim~ Hr(X(n)) = #Ino .... ,nb g O[ no+...+%= n, 

nod 0 + . . .  + mbdb = r t ,  

n, -< I for d. odd, 
l l 

from which we find: 
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co co 

Z 
n=O r=-O 

tnx r dim Hr(X(n)) = tn0+.°.+~b 

n o ..... r~O 

n.~1 for d odd 
l l 

b 
b ( o o H  Z tn xndj I H ( 15 tn ndj I x  

j=0 n=0 j:0 n:0 
d. even d. odd 
J J 

nodo+..-+nb% 
X 

b ( 1 ) b  ( t x  dj ) Fl ~ H 1+ 
j=0 1 - tx J j=0 

d. even d. odd 
J J 

txd) "~ ~ tx d #d n ( 1 -  d n (1+ ) 
d=0 d=0 

d even d odd 

We now want to compare the cohomology of X(n) with that of X(n+1), 

using the inclusion (2). The inclusion j' of X n in X n+1 X n as x x 0 
induces the map 

ulx...XUn, if Un+ I = I (15) 
J'*(UlX---XUn+ I) 

O, if Un+ I * I 

in cohomelogy; therefore the map j' from H* (X(n+1)) : h TM (X n+1) Sn+1 

to H'(X(n)) = H*(xn) sn , which is simply the restriction of j'* to 

the Sn+1-invariant subspace of H*(xn+I), operates by 

= "i'/* j*<Ul, . . . .  ,Un+l> a(1)(ul).../z~+1(u _l(n+l)).. /t* d(n+1)(Un+l) 
a £ Sn+ I 

u -l(n+l):l 

T T ~(1)Ul "'" ~ "'" ~(n+1)Un+l 
j=1 ~Sn+ I 

u .=I 
J a(j)=n+l 

n+1 
A 

2 < Ul,...,u~,~ ...,Un+ I> , 
j=1 

uj=1 
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where as usual the indicates the omission of a factor. Therefore 

j~ < n o ( f o ) . . . ~ ( f b )  > I nb<no ( f o ) . . . ~_ l ( f b_ l )~ -~ ( f b )>  i f  %>0, 
0 if nb=0, 

o r  

1 1 <no(fo) ...%_l(fb_t)~--~(fb)>" J'( T <n°(f°)'"%(fu)>) : ~ 
(16) 

Thus if we renormalize the element (9) by dividing by nb! , we obtain 

an element which is stable under j~. iVe therefore define 

I O, if n< n0+...+nb_ I, 
[n0(f0)'''%-1(fb-1 )]n = !)-i 

(% <no (fo) • • • no-1 ( fb_ l )% (fb)> 

if n >~ no+...+%_I ' 

H*(X(n ) ) ,  (17) 

where in the case n~ n0+...+nb_ I we have defined n b as n-n0-...-%_ I. 

Then (16) states 

J~ [no(fo)"" "%- I  (fb-1) ]n+l = [no(fo)" " '%-1 (fb-1) ]n " 

In other words, the sequence [n0(f0)...%_1(fb_1)]n (n=I,2 .... ) 

defines an element 

(18) 

[no(f0)...%_1(fb_1)] ~ K~(x(~)) 

such that 

= lira H* (X(n)) (19) 
n 

j~[no(fo)...%_1(fb_1) ] = [no(fo)...%_1(fb_1)]n (20) 

for the inclusion j: X(n) C X(~). Because of relation (20), we will 

omit the subscript n in future, leaving the question whether the stable 

element or its restriction to some X(n) is meant to be decided by the 

context. Notice that, since fo,...,fb_1 have pesitlve ~grees, there 

are only finitely many elements (19) of given degree, so that each 

of the groups HJ(x(~)) is finite-dimensional over Q (though infinitely 

many of them are non-zero). In particular X(~) has a well-~l~fined 

Poincare power series, which from eq. (12) above is clearly 

P(X(c~)) : R (1 - xd) -p'd U (1 + xd) ~d . (21) 
d>O, even d>O, odd 
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We have looked especially closely at the role of fb=l  in expression 

(9) above. However, there are other fi's in (9) which act in a special 

way, namely those of the highest degree occurring (or, more generelly, 

any fi such that fifj=0 for all fj of positive degree). Assume that f0 

is such an element, and that its degree ~ is even (this is the only 

case we will need later). 

~7 n = [1(fo)] n = 

Then 

rl 

Define 

n 

~ fo 
i=I 

Hd(x(n)). (22) 

~n< ul ..... Un>= Z Z ( ~ t f o ) ( ~ ( 1 ) U l ) . . . ( ~ ; ( n ) U n ) .  
i=1 aeS n 

In the expression on the right, we interchange the summations and replace 

i by  j=cr( i ) ,  o b t a i n i n g  ( s i n c e  fo  i s  of  even  degree  and commutes w i th  e v e r y -  

t h i n g )  
n 

c~eS j= l  
n 

But u j f  0 i s  ze ro  u n l e s s  u j = l ,  by our  assumpt ion  on f o '  so t h i s  i s  nL ] 
Z Z (~ (I)UI)... (~(j)fo) • • • (~;(n)Un) 

j: I o~ S 
n 

u.=1 
J 

n 

= Z <u 1 . . . .  , U j _ l , f O , U j +  1 , . . . , u n > .  
j= l  

u . = l  
J 

Therefore (we use an overline rather than brackets to avoid ambiguity) 

Nn < no(fo)'''nb-1(fb-1)nb(fb ) > = nb<no+1(fo )'''nb-1!fb-1)~-~(fb )>' 

or, finally, 

Un [ n o ( f o ) . . . n b _ l ( f b _ l ) ] n  = [ n o + l ( f O ) n l ( f l ) o . o n b _ l ( f b _ l ) ] n  • (23) 

C l e a r l y  the sequence ~n (n=1,2 . . . .  ) d e f i n e s  an eZement ~ c H~(X(~))  and 

(23) is a stable relation. We have thus proved 

Preposition 2: Let deg fo = d be even and d~d i for all i. Then 
n O 

[ n o ( f o ) n l ( f l ) . . . n b _ l ( f b _ l ) ]  = W [ n l ( f l ) . . . n b _ l ( f b _ 1 ) ]  (24) 

in H*(X(~)), where N = [1(fo)] e Hd(x(~)). 
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~ .  Statement and discussion of the formula for L(X(n)) 

We now assume that the space X whose symmetric powers a re  being 

studied is a closed, connected, oriented differentiable manifold. Then 

X n the action of the symmetric group S n on is smooth; the condition 

that xn/Sn be a rational homology manifold is that this action is also 

orientation-preserving. Since S is generated by transpositions (for 
n 

n > I), this is the case exactly when the interchange map T:X×X ~ XxX 

is orientation-preserving. Because of the graded commutativity, tDis 

holds if and only if the dimension of X is an even number 2s. 

We let 

~. ~ ~(x) (I) 

be the Poincare dual of [ p t . ]  6 Ho(X ).  We then choose a basis for 

H*(X) as in §7, i.e. f0,...,fb with each fi homogeneous and with 

f0 = z and fb= 1. We also introduce a second basis 

e0,...,e b g H*(X), e 0 = I, e b = z, (2) 

which is dual to Ifil under the intersection form, that is, 

<eifj,[X]> = 8ij ( i,j = 0,1 ..... b). (7) 

Thus e i is homogeneous of degree 2s-di, where d i = deg fi" 

The result of the last section was that a basis for H*(X(oo)) is 

given by the elements 

n O 
[n0(f0 )'''nb-1 (fb-1) ] = ~ [nl (fl)'''nb-1 (fb-1) ]' 

where the square brackets have the meaning given in §7 and where 

(4) 

: [1(f0)] , ~S(x(oo)) (5) 

is the element whose restriction to X(n) is 

~ n - -  ~ ' ~  = ~P '  ÷ " ' "  ÷ ~ z  ~ ~ S ( X ( n ) ) .  (6) 

The map j*:H*(X(oo)) * H*(X(n)) is surjective, and a basis for H*(X(n)) 

is given by the images under j* of the elements (4) for which 

n O + ... + rib_ I ~< n. 
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We now state the main theorem of this chapter. 

Theorem I :  Let X be a connected, closed, oriented differentiable 

manifold of dimension 2s. Let ~ be the element defined in (5) and (6). 

Let ~ denote the inclusion of X(n) in X(n+1). Then 

j*L(X(n+I)) = Qs(Un). L(X(n)), (7) 

where Qs(- ) is the power series in one variable defined below, and 

depends on ~ but not on the space X or the number of factors ~. An 

equivalent statement is that there exists an element G of H**(X(~)) 

such that (if we use ~ also to denote the inclusion X(n)C X(~)) 

L(X(n)) = j*[Qs(~) n+1 • G] . (8) 

The power series Qs is defined as the unique even power series such that 

coefficient of t 2k in Qs(t) 2k+I = (2k+I) -s+1 (k~0). (9) 

It can also be defined as 

Qs(t ) = t 

where 

t 3 t 5 t 7 

fs (t) = gs-~(t)' gs(t) = t + --3s + --5 s + --7s + ... 

( l o )  

. (11)  

The first few terms of these power series are given in the table at the 

end of this section. 

The class G e H**(X~)) is defined as follows: Let B be the graded 

p~mr ~rimsring over ~ in vari~les to,...,~_ I with t i of degree di, 

i.e. B is the quotient of @[[t 0 ..... ~_i ]] by the relations 

d.d. 
t.t.z J = (-I) i j tjti (i,j = 0,1 ..... b-l). (12) 

Let A be the graded tensor product of H**(X) with B. We use ~ to 

denote e@1 (for • e H*~(X)) and t i to denote l@t i (i=O ..... b-l); then 

et i : (-I) d% tie ( • cHd(x) ) (13) 

in ~ We define ~ £A by 

= eot 0 + ... + eb_Itb_ I . (14) 
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Since B is a power series ring rather than a polynomial ring and we 

tensored with H~(X) instead of H~(X) in forming A, it is legitimate 

to form power series (with rational coefficients) of elements in A; 

thus gr(~) ¢ A is well-defined. We write Lc(X ) for the component 

of degree 2c of the L-class of X (this deviates from the usual notation 

where L c denotes a certain polynomial in Pontrjagin classes of total 

degree 4c), or for the corresponding element Lc(X)@I of A. There is 

a linear map < -,IX]> from the graded ring A to the graded ring B, 

defined on the generators etil...tik of A by 

= <e, EX]> til...tlk, c B. (15) < e til ...t.lk, [X]> 

Set 
H = ~s c=O <gs+l-c(~)Lc (x) '  Ix] > ~ 

and define numbers c c ~ as the coefficients in the expansion 
n0-.-nb_ I 

eH L n° ~ -  (1 - t~)e(X)/2 = Cn0 "''nb-1 t O . . . t  11 B, (17) 

where e(X) is the Euler characteristic, • H denotes exponentiation, and 

the sum is over all integers no,...,nb_1~0. Then 

~ -n0-' ' '-r~-I 
G = f~(u) Cno...r~_ 1 Q s ( W )  [n0(fo)...nb_l(fb_l)], 

(18) 

the s ~ t i o n  being as in (17), where qs( - )  and f s ( - )  are the power 
series defined above and f ~ ( - )  is the (formal) der ivat ive of f s ( - )  

Before discussing the interpretation or significance of Theorem I, 

we should perhaps make some remarks elucidating the formalism, since 

the complete statement is somewhat involved and perhaps confusing. 

In the first place, the essential and most interesting assertion 

of the theorem is the relatively simple statement (7), either as a pure 

existence theorem (namely the existence of a power series Qs independent 

of ~ for which (7) holds) or, combined with the formula for Qs given in 

eq. (9) or in eqs. (10)-(11), as a precise statement of the relationship 

between the values of L(X(n)) for two successive values of ~. The 

interest of this relation lies in a certain formal resemblance to a 



similar relation involving the L-class of a normal bundle; this will 

be discussed below. As stated in the theorem, equation (7) is 

equivalent to the existence of a cohomology class G in X(~) such that (8) 

holds for every ~. To see this, we notice that (8) trivially implies (7) 

since the inclusion of X(n) in X(~) is the composition X(n) CX(n+I) C 

X(~). Conversely, if (7) holds for every~, we define a class G n in 

H*(X(n)) as Qs(~ -n-~ L(X(n)) and deduce from (7) that O~Gn+ I "  = Gn, 

which means that the sequence IGnln= 1 defines an element G of the 

inverse limit l~m H~(X(n)) = H*(X(~)) with j'G = G n for all ~. Thus 

we can break the theorem up into the main statement, that L(X(n)) 

behaves exponentially as a function of ~ (i.e. is of the form Qn+1G 

with Q, g independent of ~), the statement that Q is given by the 

expressions (9)-(11), and the statement that g is given by the proce- 

dure stated in the remainder of the theorem. 

The definition of the power series Qs(t) = 1 + t2/3s+ ... 

(the first few coefficients of Qs and various related power series are 

given in the table at the ~nd of this section) requires little comment. 

The equivalence of the definition (9) and ~he definition given in egs. 

(10) and (11) is of course an exact parallel to the characterisation 

of the function 

t (19) 
QI (t) = tanh t 

given by Hirzebruch ([I~, Lemma1.~), and the proof is exactly the same. 

The functions Q0(t) and Q1(t) can be written in closed form (Q0(t) is 

eaual to [I +~]/2 ) but the series Qs(t) for s~2 is not an 

elementary function. Note that, since Qs(t) is an even power series 

and U has degree 2s, equation (7) implies that L(X(n)) and L(X(n+I)) 

agree up to degree 4s (or more precisely, J~Li(X(n+I)) = Li(X(n)) for 

i < 2s), so the value of L(X(n)) is essentially independent of ~ in 

degrees smaller than 2.dim X. 

Even less need be said to explain the definition of G, though 

this is more complicated. We only remark that, since gr(t) is a 

power series with no constant term, H considered as a power series in 

the ti's also has no constant term, so it is legitimate to form the 
H 

power series e in equation (17). 

It would be very pleasing to have a simple proof of equation (7), 

or equivalently of (8) without an explicit evaluation of the power 
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series G. One way to do this might be to assume given the class 

L(X(n+I)) and show directly that Qs(Wn) -I j*L(X(n+I)) satisfies 

Milnor's definition for the L-class of X(n). 

However, despite the rather cumbersome formula for G, it is 

possible in certain situations to use the entire formula (8) to 

obtain completely explicit formulas for L(X(n)). This is the case 

when X has especially simple cohomology and L-class, for example if 

it is a sphere (of even dimension) or a Riemann surface (for these 

two cases the calculation will be given in §13). Moreover, it is 

possible to write G in a shorter and more natural way--in particular, 

in such a way that it does not involve the choice of a basis for H*(X)-- 

and indeed it is this basis-free version which will emerge from the 

proof im §§9-12. We preferred the more unwieldy form given here 

because the basis-free formulation requires the introduction of yet 

more abstract notation which would have made the statement of the 

theorem even more obscure, and because one is in any case obliged to 

expand in terms of a basis for concrete applications such as those 
H 

mentioned above (indeed, even the power series gr(~) and e used to 

shorten the statement of the theorem given here must be expanded in 

the course of an explicit calculation). 

We can use the evaluation of G to obtain complete results for 

L(X(n)) not only when X is a simple manifold, but also for arbitrary X 

and small values of ~. This is slightly easier using the basis-free 

form of Theorem I but can also be done with the form given here. For 

n=1 we can easily check that Theorem I really does give L(X) as the 

value of L(X(1)). For n=2 we obtain (with ~:XxX ~ X(2) the projection) 

~*L(x(2)) = L(x)×L(x) + e(X)z×z. (2O) 

In particular, the signature of the symmetric square of X equals 

[(Sign X) ~ + e(X)]/2, a special case of a formula of Hirzebruch for 

Sign(X(n)) which will be proved in §9 (and deduced from the formula 

for L(X(n)) as a check on the latter in §13). For n~3 the formula 

for ~%(X(n)) is rather more complicated; it is a certain polynomial 

in the lifts to H*(X n) of the elements z E~S(x), L(X) g H*(X), and 

a~ H2S(XxX), this last being the restriction to XxX of the Thom class U 

in H2S(XxX,XxX-A) (where A is the diagonal in X×X). 

The fact that L(X(n)) is given--when X is a differentiable 
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manifold--by a certain polynomial in the classes ~, Lc(X), and 

and their lifts to H~(X n) makes it clear that Theorem I still makes 

sense when X is a rational homology manifold. Indeed, the cohomology 

classes ~ and~ are defined for any space satisfying Poincare duality 

(i.e. with the global homological properties of an oriented differen- 

tiable manifold), while L(X) is defined for a rational homology 

manifold by the definition of Thom or of Milnor. In the spirit of 

Chapter I, we ask whether a result involving L-classes which is known 

to hold for differentiable manifolds and which involves no differentiable 

data (normal bundles, eigenvalues, etc.) also holds for rational 

homology manifolds. If we look at the proof of Theorem I, we find that 

only at one place did we use the differentiability, namely an applica- 

tion of the G-signature theorem of Atiyah and Singer which was used to 

prove the following result: 

Proposition I: Let X be a compact, connected, closed, orientable 

differentiable manifold of dimension 2s. Let a:X r~ X r be the 

permutation map sending (x I ..... Xr) to (x 2 ..... Xr, Xl). Let f:~S 2k 

be a smooth map with f(aoy) = f(y) for all ye X r, and choose 

p~ S 2k as a regular value of ~ and of fl A (where A C X r is the 

diagonal); thus A = f-1(p) is a submanifold of X r of dimension 

2rs -2k and A~A is a manifold of dimension 2r- 2k. Then 

I e(X), if E is even, k=0, 

Sign(u,A) = 0, if Z is even, k}0, (21) 

r -k Sign(A~A), if [ is odd. 

Thus we have a statement, formulated purely in homological terms and 

with notions that make sense for X a rational homology manifold (we 

let ~ be simplicial and interpret transversality in the sense of Thom), 

but only known for X a smooth manifold. A proof of Proposition I for 

any rational homology manifold X would prove that Theorem I also holds 

for X, since the other steps in §§9-12 carry over without change. There 

is an analogous proposition if a finite group acts on X whose truth 

would imply the validity of the result of §14 for L(g,X(n)) for X a 

rational homology manifold. 

We close this section with a discussion of equation (7) and its 

above-mentioned resemblance to a formula involving normal bundles. 

Recall (p. I) that Thom showed how to define a bundle v over a 
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rational homology manifold embedded in a certain way (one says that N is 

a submanifold ~ith orthogonal normal structure) in another rational 

homology manifold M. A rational homology manifold M always has enough 

such submanifolds to generate its rational homology. If M is a smooth 

manifold and N a smooth submanifold, then v is the usual normal bundle, 

so we can consistently refer to v in general as a normal bundle. It is 

a real vector bundle whose dimension equals the codimension of N in M. 

Finally, Thom showed that the L-classes of M and N (in his sense) are 

related to the L-class of v just as in the differentlable case, i.e. by 

j~L(M) = L(~)L(N), (22) 

where ~ is the inclusion map from N to M. 

Equations (7) and (22) are identical in form if we take for N and 

N the rational homology manifolds X(n) and X(n+1), and our first thought 

is that this formal identity cannot be accidental but rather arises 

because X(n) really is a rational homology submanifold of X(n+1) with 

orthogonal normal structure, its normal bundle v in the sense of Thom 
n 

then inevitably satisfying 

L(Vn) = Qs(Un). (23) 

However, this is not the case if s is greater than one (if s=1, X(n) 

is a differentiable and even a comple~ manifold, and v n is the normal 

bundle of X(n) in X(n+1) in the usual sense; the first Chern class of v n 

equals ~n ¢ H2(X(n)) and Qs(~n) = Wn/tanh Wn is the usual L-class 

of a complex line bundle). To see this, we apply in reverse the 

multiplicative sequence used to define the L-class in terms of the 

Pontrjagin class (cf° Hirzebruch [~, §I, especially for the proof 

that the multiplicative sequence associated to x/tanh x is invertible). 

Since Qs(U) is a power series in W2, it follows from the properties 

of multiplicative sequences that the sequence Rs(U) obtained is also 

a power series in W~. But ~2 has degree 4s, and the bundle v n (if 

it exists) has dimension 2s and therefore a Pontrjagin class cutting 

off at dimension 4s. Therefore if (23) holds, we have from P(Vn) = 

Rs(Wn ) that the series R must break off after the second term: 
S 

~s(~) : I + ~ .  (24) 

But the multiplicative sequence x/tanh x applied to (24) gives 

as the corresponding L-class the series 
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2 ~2s) a2 

where we have written #k for the coefficient 22k(22k-I - I)~/(2k) ! of 
2k 

x in x/sin 2x (this coefficient is denoted by s k in [I~]). Since 

1 1 2 (26) 
I + .,- ( s s  9 s . . . .  

it can only be of the form (25) if the relation holds which is obtained 

by equating coefficients of U 2k in (25) and (26) and eliminating ~, i.e. 

~ - ~2s 9 s 
= 5" 2. (27) 

it is easy to see that (27) is fulfilled only for s=1. 
We have therefore proved that X(n) is not in general a rational 

homology submanifold of X(n+1 ) with orthogonal normal structure. However, 

the formal analogy between (7) and (22) still suggests that it has a 

particularly nice normal structure in some sense. We can hope to find 

some more general type of normal bundle than 0(n)-bundles, for which 

(rational) Pontrjagin classes or L-classes are still defined and such 
th 

that the inclusion of the n symmetric product of a manifold in the 

(n+1)st always has a normal bundle in the generalised sense. In fact, 

a definition recently has been given for such a generalised bundle for 

homology manifolds (~artin and Maunder [~6]). These objects, called 

"homology cobordism bundles, " are(roughly)defined as projections E~ B for 

which the inverse image of a cell in B is H-cobordant to the product of 

D n the cell with the fibre, the fibre being taken as in an n-dimenslonal 

bundle. It was shown (in the paper referred to above and in Maunder ~7]) 

that these objects form a reasonable category, allowing ~qitney direct 

sums, that they possess an L-class, that the inclusion of N as a 

homology submanifold in a homology manifold M always has a normal 

homology cobordism bundle v and (22) is satisfied, and finally that 

the set KH(X ) of stable isomorphism classes of homology cobordism 

bundles over X is an abelian group and that X~ KH(X ) is a representable 

functor. These results were proved in the category of homology manifolds 

but pos sibly still hold if one only requires that the spaces be 

rational homology manifolds, and replaces homology by rational homology 

in the definition of H-cobordism. Then equation (7)couldbe interpreted 

as saying that the L-class of the rational homology cobordism bundle v n 

of X(n) in X(n+J) is given by (2}). 
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In [17], the Pontrjagin class of a homology cobordism bundle was 

defined by using Thom's definition of the rational Pontrjagin class of 

a homology manifold (as the class obtained by applying to the L-class 

defined in ~2 the inverse of the Hirzebruch multipiicative sequence 

x/tanh x) and then requiring (22) or its analogue for Pontrjagin classes 

to hold; this suffices to define L(u) for any bundle since a bundle cam 

be thought of as the normal bundle of its zero-section in its total 

space. However, this seems to be the wrong generalisation of the 

Pontrjagin class, since, as shown above, the Pontrjagin class defined 

in this way for u n does not break off at the right point. Indeed, it 

almost certainly does not break off at all, since the formal power 

series Qs(U) in a variable U of degree 2s does not seem to split as a 

finite product ~iQl(xi) with variables x i of degree 2. It seems more 

appropriate to define the Pontrjagin class of our normal buadle u n by 

(2~) p(Un) : I + Un. 

If s=l, then u is a complex line bundle over X(n), and (28) is the 
n 

usual Pontr~agin class. In general we call u n a "line bundle of type ~" 

(we omit in future the words "rational homology cobordism" before 

"bundle"). The standard model is oh.rained by taking for X a sphere of 

dimension 2s. The fact that Qs(- ) is independent of the number of 

factors ~ in the sy;~mmetric product suggests that the bundle u n over 

s2S(n) is itself independent of £, i.e. that j~Un+ I = u n. In any case, 

this certainly holds for the L-class as defined in (23) or the Pontrjagin 

class as defined by (28). We then obtain as classifying space for line 

bundles of type ~ the limit lim s2S(n) = B2s(~), over which there is a 

universal line bundle of type ~ defined as the limit of the bundles u n, 

and for this bundle u we have 

L(~) = qs(~) ,  p(~) = I + ~ ,  (29) 

where ~ i s  the genera to r  of  m(S2S(oo),~) : ~ [ [ ~ ] ] .  ~e then de f ine  in  

general a line bundle of type A to be the pull-back of ~ to a space X 

by some map f:X ~ s2S(~), its L-class and Pontrjagin class are then 

defined as the pull-backs of the elements (29). Therefore there is an 

isomorphism between the set of homotopy classes of maps f a~d the set 

of isomorphism classes of bundles of type A over X. But a well-known 
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theorem of Dold and Thom [9] states that the homotopy groups of an 

infinite symmetric product X(oo) are isomorphic to the homology groups 

of X, and thus in particular that the space s2s(~) is a K(~,2s). The 

isomorphism classes of line bundles of type s_ are therefore in I :I 

correspondence with the elements of [X,K(~,2s)] ~ ~S(x;z). Thus 

a line bundle @ over X is completely classified by a "first Chern class" 

c I(~) ¢ H2S(x;~), where f:X ~ s2S(oo) is the classifying map of ~ (i.e. 

All of these remarks are naturally conjectural only, depending on 

the existence of an appropriate category of rational homology bundles 

enjoying at least the properties of the Martin-Maunder bundles (namely 

that direct sums and induced bundles can be formed, that there is a 

classifying space, and that the bundles have L-classes). We can go 

further in the description of the form the theory might take if these 

bundles exist. For a direct sum ~ = ~i of line bundles @i of type s 

over a space X, we could define the total Chern, Pontrjagin and L- 

alasses as ~(1+xi) , ~(1+x~) and ~Qs(Xi), respectively, where xi= c1(@i ). 

We might even hope that there is a splitting theorem analogous to 

the one for ordinary complex bundles, i.e. that there is a natural 

class of "bundles of type s" --bundles ~ such that g*~ is a sum of 

line bundles, for some map g:Y~X for which g~:H~(X) ~ H~(Y) is a 

monomorphism. Then if it is also true that the classes c(g*~), p(g*~) 

and L(g~@) defined above lie in the image of g~, we have definitions 

for the corresponding characteristic classes for the bundle ~. This 

would then suggest a whole series of further questions. First, we 

would want a geometric characterisation of those rational homology 

cobordism bundles which are of type _s in this sense (a necessary 

condition, for example, would be that the L-class is zero in dimensions 

not divisible by 4s). This geometric description should be such as to 

allow the actual construction of the map g with g~@ a sum of line bundles 

(analogous to the well-known construction for complex bundles). We 

could then ask if every bundle in our category is a direct sum of 

bun@lee of type _~, and, if so, if the representation is unique (e.g. 

could it happen that a line bundle of type 6 is the direct sum of 

a line bundle of type 4 and one of type 2~). This question is clearly 
varlous 

related to the independence of the~power series Qs(t). Knowing the 

answers to all of these questions would provide information about the 

cohomology of the classifying space for rational homology cobordism 
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bundles, For instance, if the splitting into bundles of type A always 

exists and is unique, then the classifying space would contain elements 
s Pi of degree 4is for every i,s>1 (pl being the usual i th Pontrjagin 

class). The classifying space for bundles of type ~ and dimension 

(i.e. having a pull-back which is a sum of ~ line bundles of type ~) 

would be a space BU~ whose cohomology contains the classes p~ with 

i~n, and there would be a map BU s ~ (K(~,2s)) n (sending ~ line bundles 
n s th 

over a space to their direct sum) which would map Pi to the i 

elementary symmetric polynomial in U~ ..... U~ (where Uj is the generator 

of the cohomology of the jth factor K(Z,2s)). The L-class of a 

bundle with classifying map f:X ~ BU~ would have the component 

s s ~s 
.,f pi ) c ~) Li(f*pl,.. ~iS(xl (30) 

in degree 4is (i~n), where L~ is a generalized L-polynomial defined 
l 

as the multiplicative secuence in the sense of Hirzebruch with 

characteristic power series Q#4%). The first few values of the 

polynomials L s i are given in the table on page 51, in the pious hope 

that some day there will be a theory to back up all these fancies. 



'~
 

L -
~ 

Iz
~ 

I 
I 

~ 
~ 

II 

I 
l 

i 
+ 

+ 
'~

 
~_
~.
:~
 

QO
 

I 

~ 
,.!

:- 
J,

.,
 

4"
 

? + ! 

v '-
d 

It 
"°

 

",.
-.;

., 
LI Q

 

v 

c'
~ 

dl
, c.
l,-

 

H
, 

0 0 

v + -.i
- 

v + v 

I 

+
 

.~
-L

.,
 

"~
 

+ 
+ 

, 
~

-,
 

+ 
?

" 

, 
~F

-~
 

+ 
-m
 

+ ! .4
- 

+ 
+ 

x.
o 

+ 

I!
 i 

I I 



- 52 - 

§9. The action of Sn on X n 

We wish to calculate the L-class of X(n) = xn/Sn , using the general 

formula for the L-class of a quotient space which was proved in §3. It 

is clear from that formula that the calculation consists of three steps: 

a calculation of the fixed-point sets (xn) ~ and their equivariant normal 

bundles (for all ~ Sn) in order to compute L'(a,xn) c H~((xn)a); a 

description of the Gysin homomerphism ef the inclusion (xn) ~ C X n in 

order to evaluate L(a,X n) e H~(xn); and finally a summation ever all ~S n. 

These three steps will be carried out in this section and the two 

following ones, and will result in a formula which is already in a shape 

suitable for computations but in which the dependence of L(X(n)) on 

has net yet been made explicit; a fourth section will then be devoted 

te the transformation of this expression into the one given in Section 8. 

"#e begin, then, by examining the fi~ed-point set of the action ef 

X n" ac S n on The permutation g can be written as a product of cycles, 

X n and it is clear from the definition of the action on that this action 

has a corresponding decomposition as a product of actions ef the form 

a : 
r 

X r .~ X r 

(X I .... ,Xr) ~.~ (x 2 ..... Xr, Xl)" (I) 

Obviously for the standard action by cyclic permutation ar, the fixed- 

point set (xr) Gr consists of the points (x,...,x) for x X, i.e. 

(xr) °r = A r < X r (diagonal). (2) 

The diagonal is naturally isomorphic te X under x*-~ (x .... ,x); this 

isemerphism will be used tacitly in future, so that we shall consider 

the normal bundle ef the fixed-point set ef a r as a bundle over X and 

the inclusion of the fixed-point set as the diagonal map 

d = d : X -~ X r, 
r 

x ~, (~ ..... x). (3) 

Returning to the permutati~r ~ o~ X n, we specify a little more 

precisely the decomposition into cyclic permutations. Let k r be the 

number ef cycles of length ~; thus k I is the number of integers ! left 

fixed by ~ and k 2 the number of pairs of integers ~, ~ interchanged by ~. 
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Since 2 acts on ~ integers altogether, we have 

n : 1"k I + 2"k 2 + 3"k 3 + .... (4) 

i.e. we have associated te the permutation 2 of I1,...,nl a partition 

~= (kl,k 2 .... ) ef ~. Clearly the number of permutations with associated 

partition ~ is 

N(~) = n! (5) 
k1!k2!... Ik~2k~... ' 

since of the n! ways of putting ~ objects into k1+k2+.., numbered boxes 

(there being k r boxes having E slots, and the slots in each box also 

being numbered), two yield the same permutation if and only if there 

is a permutation of the k r E-boxes (giving the factor kr! ) Ira cyclic 

permutation within an E-box (giving a factor E for each ef the k r 

E-boxes). 
Te illustrate the sort of calculation which must be done when 

working with these elements, we give another derivation ef the formula 

of Macdonald for the Euler characteristic of X(n) which was proved 

earlier (Proposition I of §7) by a direct computation of the cohomology. 

We use the following formula for the Euler characteristic ef the quotient 

efa space by a finite group action, which ~eems to be less well known 

than it should be: 

~ e (xg ) ,  (6) e ( x / ~ )  - I~I gcG 

i.e. the desired Euler characteristic is just the average over G of 

the Euler characteristics of the fixed~point sets of the individual 

elements of G. [To see that (6) holds, we work (as usual) with rational 

coefficients, so that the cohomology of X/G is the G-invariant part of 

H*(X), and use the elementary result from linear algebra that the 

dimension of the G-invariant part of a G-vector space is the average 

over G of the traces ef the individual elements ef G. Then 

• (X/G) = Z (-I) i dim Hi(X/G) = Z (-I) i dim Hi(x) G 
i~>O i>~O 

I I 
= ~ (-I)i (T~T ~ tr(g*IHi(x)))= T~T ~ e(g,X), 

i~0 gcG g~G 
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where e(g,X) is the equivariant Euler characteristic 

It only remains te sh@w that 

(-I)itr(g*IHi(X) ). 
i 

e(g,x) : e(xg); (7) 

this is the Lefschetz imdex f~rmula, and can also be immediately obtained 

from the equivariant Atiyah-Singer theorem on applying it te the de Rham 

complex ef X (of. [I~, §9, eq. (11)).] 
Applying (6) to our situation gives, since the fixed-point set ef 

an element 2 corresponding to the partition (4) has been found te be 

isomorphic te X k~+k2+''" and therefore te have Euler characteristic 
e(X) ki+k2+''" , 

n! e(X(n)) = ~ N(~) e(X) kz+k2+''" (8) 

a partition of n 

If we substitute expression (5) for 

oo 

z t n e(X(n)) = 
n=O 

N(~) into this, we obtain 

V tk1+2k2+3k3+"" e(x)k~+k2+"" 

z_J kz:k2!.. " 1ki2k2... 
k 1,k2, ...~>0 

I Z trke(x)k/rkk! ) = ~ e tre(X)/r = e -e(X) log (l-t) 
r=l k.>0 r=-1 

: b-t) -e(x), (9) 

in agreement with equation (13) ef §7. However, the method given here 

has the advantage, as well as that ef illustrating the technique ef 

manipulating averages over the symmetric gr@up, that it can be used 

without change to compute the Euler characteristic ef Xn/G for any 

subgroup g ef S n. For example, if we take G= A n to be the alternating 

group, the omly change in (8) and (9) is that the sum is restricted 

te these k r with k2+k4+.., even (since we only have even permutations), 

and that the factor IGi by which we have to divide is n!/2 rather than 

n! (if n~2). We deduce immediately 

Fro~esitien I: For n>1, we have the equality 

e(xn/An ) = coefficient of t n in ~1-t) -e(X) + (1+t)e(X)~. (10) 

We can apply exactly the same technique to the signature. Thus, 
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if we set T r equal te the signature of the cyclic permutation (I), 

T r = Sign (~r, Xr), (11) 

we see that the signature of a permutation £ with associated partition 
kl k2 

(4) is T~ 7~ ... (since signature behaves muitiplicatively for a 

product action), and a computation exactly like (9) then yields 

~ I Z Sign(c,X n) ) Z t n Sign (X(n)) : Z t n ( n-~. 
n=O n=O a£S n 

= exp [ ~ Trtr/r ] . (12) 
r=1 

It will fellow from the calculation ef L'(a,X n) later in this section 

that the integers r r are given by 

I T(X), if r is odd, (13) 

Tr = e(X), if r is even, 

where (X) is the signature of X, and therefore (12) becomes 
th 

Theorem I (Hirzebruch [14]): The signature of the n symmetric product 

X(n) of an even-dimensional closed oriented manifold is given by 

I )e(x)/2( I + t )Sign(X)/2 
Z t n Sign (X(n)) = ( ~ (14) 

n=0 

Note that the right-hsnd side of (I$) is a rational function of t 

since e(X) and Sign(X) are equal module 2. 

We now turn te the main task of this section: the calculation 

of the action ef G on the normal bundle of (xn) ~ in X n, and the 

resulting evaluation of L'(a,xn). Since the equivariant L-classes 

behave multiplicatively for product actions, we can restrict our 

attemtien te the cyclic element o r ef (I). As stated previously, we 

shall identify the fixed-point set A with X without explicit mention, 
r 

se that when we speak ef the normal bundle ef the fixed-point set we 

mean its pull-back te X under this isomorphism; clearly this bundle 

is isomorphic tea sum ef r-1 copies of the tangent bundle ef X. At 

a point (x .... ,x) ef X r, the tangent bundle ef X r consists ef r-tuples 

(v I .... Vr) with vic TxX , and Tx(Ar) consists ef r-tuples (v .... ,v), 

so we can represent the fibre N x ef the normal bundle by those vectors 

with Vl+...+Vr=O. The action ef a r is given by cyclic permutation of 
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the vectors v.. Since o has order r, its eigenvalues are e 2~i'~r, ~/ where 
I r 

ranges from 1 to r-1. More precisely, for k,r/2, there is a subbundle 

N(2~k/r) ef N on which c acts by the matrix 
r 

COS 2~k/r - sin 2~k/r ) 

sin 2~k/r ces 2~k/r ; (15) 

the fibre Nx(2~k/r  ) ef this bul~dle at (x . . . . .  x)  consists ef vectors 

(v I ..... Vr) with vj = v' ces2wjk/r + v" sin 2~jk/r for some v', v"~ TxX, 

so that 

N(2#k/r) ~ TX @ TX. (16) 

Since the matrix (15) is equivalent to the same matrix with ~ replaced 

by -~, we can assume 0< k<r/2. The remaining eigenvector -I (in the 

case that ~ is even) has as eigenbundle the bundle N(~) whose fibre at 

consists of vectors (v,-v ..... -v), so 

N(~) ~ TX. (17) 

The isomorphism (16) refers to N(2~k/r) as a real bundle, but it also 

has the structure of a complex bundle if we require the action of o 
r 

to be given as multiplication by o 2~ik/r, and then 

N(2~k/r) ~ TX®C . (1~) 

We now have assembled sufficient information to apply the Atiyah- 

Singer fermul% which, we recall, states 

o -dimcNg(0) 
L'(g,Z) = H (i tan g) "L(Yg)'L(Ng(~))-I.e(Ng(~" 

0<0<~ 

n LO(Ng(O)), 
0<0<~ 

(19) 

where Le(@) is a multiplicative sequence defined for complex bundles ~ by 

tanh I~/2 (20) 
= ~ tanh (xj + ie/2) ' L0(~) xj 

.'s being formal two-dimensional cohomology classes of the base the x 3 

space of ~ whose k th elementary symmetric polyno~!ial is Ok(~). 

We apply (I 9) with Y= X r and g= o . First consider the case of 
r 
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even ~. Since Ng(~) ~ TX is then a bundle of dimension equal to that 

of Yg, the class (19) is only non-zero in the top dimension 2~. The 

various L- and Ls-classes all have leading term I, and therefore can 

be emitted. The Euler class of Ng(=) is then (-I) (r/2 - 1)s e(X) z, 

where zc~S(X) is the class of e~. (I) of § . The reason for the 

sign is that, in the Atiyah-Singer recipe, Ng(~) is supposed to be 

oriented by the natural orientations on T(Y) and on the Ng(0) for 0v~ 

(assuming that Yg also has a given orientation, which is the case here), 

the latter being given the orientation coming from their structure as 

complex bundles. New it is known (see for instance ~], p. 66) that, 

if ~ is an oriented bundle of dimension ~, the orientation on ~ @ 

~ ~d coming from the complex structure differs from the natural 

orientation o. ~d~ by a fac to r  ( - I )  q ( q - i ) / 2 .  Thus f o r  l ~k~ ( r -2 ) /2 ,  

the orientation on Ng(2~k/r) as a complex bundle differs from the 

orientation of TX@TX by a factor ef (-I) s, and therefore the orienta- 

tions on Ng(~) given by the Atiyah-Singer procedure and by its 

natural identification with TX differ by a factor (-I) s(r-2)/2. If 

we put all this information into (19), and use 

Ur r dim~N (2~k/r )  = 2s (i  ~ k~ ~ - I ) ,  (21) 

we obtain 
_r_ I 
2 

L'(~r,X r) = H 
k=l 

or, since 

(i  t,. ~ ) - 2 s  . ( -1 )s ( r /2 -0  • e ( x ) .  z, (22)  

~k ~ r 
(tan ~ - )  ( t a n ~ ( ~ - k ) )  = I ,  

L'(Or, Xr) : , (X) ~ ~ ~S(X) r even). 

(23) 

(24) 

We new assume that r i8 odd. Again we can use (21) and (23) te 

see that the first product in (19) simply is the factor (this time 

(-I) s(r-1)/2 ) giving the difference between the orientation ef Yg 

from the Atiyah-Singer recipe (i.e. induced free the orientatie~ ~n Y 

and the complex bundles Ng(e) ) and its orientation obtained by 

identifying it with X. Therefore (19) reduces to 
r-I 
2 

L'(Gr,Xr ) = L(X) R L2~k/r(N(2~k/r)). 
k=l 

Now, by definition, the Pentrjagin class of TX is ~(I+ x~) where 

(25) 
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c(TX~¢) : ~(I - x~) (the Chern class of a bundle f®¢ satisfies 2c2i+I: O, 

and we are always working with rational er complex coefficients where 

torsion elements are killed). That is, by using the identification (18) 

we can take for the set of formal two-dimensional classes in (20) the 

set Ixjl U I-xjl, where the xj are the formal two-dimensional classes 

@f X defined by 

p(x) : n(1 + x~). (26) 

Therefore (20) and (25) combine to give 

x 4 (r-l)/2 ta~i~k/r tanh i~k/r 
L' (~r,X r) = x.H tanh x.j k= In tanh (xj+i~r) tanh (;xjI;i~k/r)# 

J 

X .  

n 
tanh rx. 

x. J D 

(r edd), (27) 

where in the last line we have used the trigonometric identity 

(r-1)/2 
H coth (X + i~k/r) = coth rx (r odd). 

k=- (r-1)/2 

We state the results (24) and (27) together as a proposition: 

X r Proposition 2: Let c r be the action (I) en given by cyclic 

permutation of the coordinates. Then 

(2B) 

L'(°r'Xr) = I e(X) z, if r is even, (29) 
Z r c-s Lc(X), if r is odd. 

0~c~s 

I 
Here s = ~ dim X, e(X) is the Euler characteristic, ~ is the element 

in H2S(x) given in (I) of §8, and Lc(X ) is the component in ~C(x) ef 

the L-class of X. 

An immediate corollary is that the number 

T r = Sign(Cr,~= <L'(~r, Xr),[xr]> (3o) 

has the value given in (13), completing the proof of Theorem I. 
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§10. The @~sin hememerphism ®f the dia6onal map 

In this section we compute the Gysin homemorphism d! @f the diagonal 

d: X --* X n , 

,-,. ( ~  . . . . .  x.), (I) 

which, we recall, is defined by 

where D X is the Poincar~ duality isomorphism from cohomology t~ homology 

defined by capping with the fundamental class, and d, is the map induced 

by ~ in homology. 

All notation will be as in previous sections; thus X is a closed 

oriented manifold of even dimension and two bases leili¢ I and Ifilig I 

far H*(X) are given which are dual to each other under the intersection 

pairing. All that will be used are elementary pr@perties of the various 

products (cup, cap, slsnt) in homology and cohemolegy, as given, for 

instance, in 5.6, 6.1, and 6.10 of Spanier. 

We first give a formulation of the result in terms ef the given 

bases for H*(X); afterwards we will restate it in a basis-free manner. 

Preposition I: For x c H*(X), the following formula holds: 

d,x : ~ ~ <e .... e x,[X]>f ×...×f , (3) 
• ~ l~..,ig ! i 1 n 11 I n 

i~,...,in£I 

. . . .  ell e.f .... f where sil...i n +I is the sign obtained on rearranging 
in In ii 

as +e. f .... e. f. and taking into account graded commutativity (this 
Ii Ii in in 

sign is equal te (-1)r(r-j/2, where _r is the number of ei. of odd degree. ) 
J 

Proof: Since H°~(X n) is spanned by the elements ej±×...×ejn (j± ..... jneI), 

it is sufficient t~ show that the two sides of (3) agree after we cup with 

this element on the left and evaluate on [xn]. Since <eif j, [X]> = 3ij , 

<(eji×'''×ejn)(fi~×'''xf'in) [xn]>' 

= ~ O, if (i± ..... in) ~ (j~ ..... Jn), (Z~) 

L eJz.-.Jn' if (ii ..... in) = (j~ ..... Jn). 
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Therefore it is only necessary to prove 

<(ejlx...xejn )(d!x),[X n]> : < ejl...ejnX, IX]> . (5) 

But from the definition ef d, and elementary manipulations of the cup 

and cap products, we obtain 

<(ej±×...×ej)(d~),[X hI> : <~j×...×ej,(d~)n IX ~]> 

= < ejlx...Xejn, hxn(d!x) > 

: < ej1×...×ejn, d ~ ( D x x ) >  

= < d*(ej × ..×ejo), xn [x]> 

: < d~(ejlx...xejn)x,[X]> 

But d~(ejlx...Xejn ) = ej±~... ~ejn by definition of the cup product. 

(6) 

~e now wish to reformulate the content of the proposition in a 

basis-free way. To de this, we use the slant product. Recall that, 

for two topological spaces A and B, the slant product sends an element 

u e Hr(AxB) and an element z c Hq(B) to u/z c Hr-q(A). If ~ is a product 

a×b (with ac H~(A), bE H~(B) ) ,  we have the formula 

(a×b)/z : <b,z> a ~ H~(A). (7) 

New take A : X n, B = X, and z = [X] e H2s(X ). Then 

(fi×...×f ×y)/[x] : <y,[X]> f. ×...×f ~ ~*(x n) (s) 
l~ I i i n 

for all ye H*(X). Substituting this into (}) and using graded commuta- 

tiviiy, we obtain: 

d,x. : L ~i~ . ..ioI(fi×-'-×fin)×(ei"'e =n x)I/[X] 

ii, ...,in~i 

= Z sil...in[(~fil)...(~fin)(eil...einx)I/[X] 

= ~ [(~fiJei)(~fi×ei)...(~Zfio×%)(1×~)I/[x], 

where the summation is always over the same indices. Here ~.  is the 
0 

projection X n ~X ente the jth factor, and the expression in curly brackets 

is an element of H $ (xnxx). In tile last line we can bring the summation 
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into the product, obtaining 

d~x : I (  z ~ I f i x e i ) - - . (  z ~ f i × e i ) ( l × ~ ) l / [ X ] "  (?) 
ici i~l 

Clearly 

Z ~f.×e. = (~jxl)~a c H~(xnxx), (10) 
igI g z I 

where 

a : ~ f . × e .  ~ ~ ( X x X )  (11) 
i~i ! z 

and where 

" i f .x1 : xnx  X--~ Xx X (12)  

is the product of the jth projection and the identi~y map. The 

element a defined by (11) is independent of the choice of bases leil 

and IfiI. One way to see this is to notice that, if e'1 = Z cije j and 

f,' = ~ d..f. are another pair of dual bases, then the matrix c is the 
l 13 J 

transpose of the inverse of d, from which it follows that Z f'×e: = 
- l 1 

Z f.xe.. Another proof is to notice that, by the case n=2 of Proposi- 
1 1 

tion I, we have 

a = d : l  ~ :~2S(X×X), ( I~ )  

where d:X~ XxX is the diagonal. Yet a third way is te deduce from 

equation (11)  the identity (for all x , y  ~ H~(X) ) 

<(x×y)~,[x×x] > : < xy,[x]> (14) 

and to notice that this characterizes ~ completely. Finally, from 

Lemma 6.10.1 of Spanier we see that ~ is the restriction to X×X ef 

the Them class 

u ~ H2S(x×x,x×x - d(X)) (15) 

whose existence is equivalent to the erientability of X. 

We can new restate Proposition I as: 

~sition 2: Let d:X~X n be the diagonal map, ~.:X n~ X the projection 
3 

:xn×x~ X×X the product of ~. with idx, and the jth factor, ~ j x l  a 

at H2S(XxX) the element defined by (13) or (14). Then for all x~ h~(X), 
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the image ef ~ under the Gysin hemomorphism d! of ~ is given by the 

fermula 
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§11. Preliminary formula for L(X(n)) 

We can new apply the result of Chapter I, which here states 

L(X(n)) = Z L(o,Xn); (I) 
agS 

n 

we o~t the ~ since we are already u~in~ it to identify H*(X(~)) with 

H~(xn) Sn. If ~ is broken up into a product of cyclic permutations d r 

then L(a,X n) is the x-product of the corresponding L(ar,Xr ). The 

latter are obtained by combining the results of the preceding two 

sections, and are given by 

L(ar, X r) = 

O~<c~<s 

(dr) iL'(ar ,Xr) 

e(X) zx...x Z, if r is even, 

r c-S I((~lXl)#a).. .((~rXl)#a)(lXLc(X))l / [X], 
if r is odd. 

(2) 

For the first line we do not need the results of the last section, 

since by definition of the Gysin homomerphism and of the element z X 

ef the top-dimensional cohemelogy group of a manifold X we have 

Zy = f~z X for any map f:X~Y at all. 

Now if (Jl .... ,jr) is the set of integers cyclically permuted 

by ~, then the i th projection map ~i:X r~ X is replaced by ~ji:X n~ X 

when we identify the X r ×Xjr on which ar acts~ with the XjI×... on 

which a acts (here X. denotes the jth factor of xn). This substi- - j 

tution must thus be made in (2) te obtain the factor of L(a,X n) 

corresponding to the factor a r of [; for example, f@r even ~ we 

z)...(~ z). In principle we have te keep track obtain e(X) (~1 r 

of the order of the ji's (determined up to cyclic permutation by ~), 

but since the oohomelogy classes ~, £, and Lc(X ) are all of even 

degree and thus commute with everything, we will not in fact have 

te de so. Thus, for A = lj I ..... jrl any subset ef N = 11 ..... nl 

we have defined a class in H~(X~ 

L(A) = [ e(X) RicA ~[z, if r = [AI is even, 
L rC-Sl n ((q×1)~a).b×Lc(X))I/[x], if r is od~, 

O~c~s i~A 

(3) 

and for any a ~ S n we have 



~ ( ~ , x  n) = n ~(A).  (¢) 
A a cycle of 

We repeat that the class L(A) is even-dimensional and independent ef 

the ordering ef the elements of A. 

~Wnen we calculated the Euler characteristic and signature ef X(n) 

in the last section, we wrote the summation over the symmetric group S 
n 

as a summation ever all partitions ~ of ~, followed by a summation 

ever the N(~) permutations in S n with associated partition ~. In a 

similar way, we now write the summation occurring in (J) as a sum 

• ver all partiti@ns ef N into subsets A i followed by a sum over 

all zermutatiens of N whose cycles are precisely the A i. Since (4) 

tells us that L(~,X n) then only depends on the Ai's , the latter sum 

will simply be HiL(Ai) times the number N(A 1 . . . . .  Ak) ,f permutations 

of N consisting precisely of cyclic permutations of each A i. A set 

of ~ elements clearly has (r-l)! cyclic permutations, so 

We also have te divide the sum over all subsets At,..., ~ by k!, 

since the same partition of N into disjoint subsets is counted k! 

times with different nu~foerings ef the Ai's. Therefore we can 

write equation (I) as 

n 
L(X(n)) = ; 

k= I 
k~ n (mjl-1)~ ~(Aj) , (6) 

j=1 

AI,...,AkCN 

A.'s disjoint 
l 

AIU...~= N 

which, combined with equation (3) for L(A), completes the determination 

of the L-class of X(n). Nevertheless, the expression obtained is 

extremely unwieldy, and we will devote the remainder of this section and 

the whole of the next one to a reformulation of it int~ a better form. 

~e introduce dummy variables x I .... ,Xn; the function of xj will 

be as a marker, indicating the jth factor in the product X n or itz 

cohomology H(X)®...®H(Xn). The x.'s are supposed to commute ~vith one O 
another and with the elements of the cohomelogy of X n but to satisfy 

no other relations; i.e. we will be working in the ring H~(xn)[xl .... ,x n] 

of polynomials in the x's with coefficients in H*(xn). ~e fix the 
J 

foll~wing notations, which will be used throughout this and the next 
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sections: N will always refer te the set I1,...,nl ; for ACN, 

we write x A for ~ xi; far ~ a power series ar polynomal in 
i~A 

the xi's a~ A a s~set ~ N, aAf is the coefficient ef x A in ~. 

Then for AI,...,A k arbitrary subsets @f N, the conditions that 

1~k~n, that the sets A i are disjoint, and that the u~an of the Ai's 

is N, are together eouivalent te the siagle condition XA1...xAk = x N. 

Therefare (6) becomes 

~I 7 k(IAjl L(Aj) : k-T n ( ) 
~0 " ~ , j=1 

AI,...,~CN 

: a N Z ~T. z n (IAjI-I)! XA L(Aj) 
..., ~CN k=0 AI, j:1 J 

oo k 

k=O " j=1 ACN 

= a N [exp ( Z (IAL-I)! x A L(A) )] . (7) 
ACN 

This expression, equivalent to (6), is considerably mere pleasing. To 

make further progress, we must substitute the value of L(A) from (3). 

We write the expanent in (7) as K(x I ..... Xn) er simply K, and the 

carrespanding sum restricted t@ subsets A with exactly ~ elements 

as K . Thus far r even, we obtain 
r 

K r = ~ (r-l)! x A e(X) z A (8) 
ACN 
IA~=r 

(we use a similar notation te that for XA, i.e. z A = N zi, where z i 
icA 

th 
denotes ~Tz = Ix...xzx...xl ~ H*(xn), the product having a z in the i 

l 

place). Since the summation over A is a sum over unordered subsets 

ef N, we have to divide by r! if we sum instead over all il,...,i reN, 

se (8) becomes 

: Z ! e(X) x .... xi zi I z 
Kr ij,...,ir~N r ml r r 
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n n e ( X )  
Z "'" Z ................ x, z .... x. z. 

ii=I ir=1 r a I z I i r m r 

r n 

r _=_ 1 1 

= e(X) (xlz1+... +XnZn)Tr , (r even). (9) 

Exactly similarly, if r is odd we obtain frem the second line of (3): 

S 
1 Z r c-s 

Kr = r c=0 I(x1(~IXl)*a +''" + Xn(~nXl)*a)r(IxLc(X))I/[X]' (10) 

where the expressien in curly brackets is in the ring 

R' = H*(XnxX)[Xl . . . . .  Xn] 

which is mapped by /IX] te the ring 

(11) 

R = H*(xn)[xl ..... Xn]. (12) 

More precisely, the expressions censidered are in the S -invariant 
n 

subrings R 'Sn and R Sn, where S n acts by simultaneously permuting the 

faoters ef the tenser pr@duct H*(xn) = @i:In H*(X) and the x.'s.l 

We write 

z c ~ ,  (13) z = XlZl + "'" + Xn n 

: x 1 ( ~ 1 × 1 ) * a + . . .  +Xn(~×1)*a c ~' (14)  

fer the elements appearing in equations (9) and (10). Then the 

expoment K of (8) is given by 

co oo oo s rC_S_1 r 
K : ~ ~ -- ~ e(X) ~r/r + ~ Z I~ (I×T,o(X))I/[X] 

r:1 r= l  r= l  c=O 
r even r edd 

=--iog(I - ~) + z I%+1_o(~) (l~c(X))l/[x], (15) 
c=0 

where the f u n c t i o n  gs+ l - c  i s  the power s e r i e s  d e f i n e d  i n  §8. Th~s 

K i s  an etement  e f  the r i n g  R de f i ned  i n  (12) ,  e K t h e r e f o r e  als® i s ,  

the symbel a N defined abeve maps R te H*(xn), and eur final result is 

L(X(~)) = aN(J ) ~ H*(xn) s~ (16) 
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§12. The dependence ef L(X(n)) en n 

In this section we investigate the dependence en ~ ef the expressien 

for L(X(n)) found in the laet section, and cemDlete t-he proof ef Theorem I 

of §8. 

We continue te use the notations ef the last sectien involving the 

variables xi" The elements ef R = ~(xn)[xl ..... Xn] which dummy 

occurred were all polynomials in elements of the form 

RSn ~*f ~ C R, (f~ H*(X)).  (1) Xl ~f + "'" + Xn n 

With the notation f0=z,...,fb=1 for a basis of H*(X) used in the 

preceding questions, the element (I) can be written as a linear 

combination ef the elements 

S n 
= ~*f. ~ R (O~i~b), (2) ti xl ~fi + "'" + xn n l 

so that we are really only interested in the subring ~[to,...,tb] 
o 

• = = These t. are the ef R Un N©te that t O E and t b x1+...+x n. l 

t. ef the theorem ef §8, which were there introduced as rather 
l 

mysterious dummy variables with the same commutation properties as 

the fi' but which now are defined mere naturally in terms ef ordinary 

scalar cr commuting dummy variables xl,...,x n. Te express ~ e R' in 

terms ef the ti, we use formula (11) ef §10 te write 

b 

= Z t i × • i ~ ~[t o ..... %]~H*(X) C R~H~(X) ~ R'. (3) 
i=O 

Then the main result (15), (16) of §11 is 

L(X(n)) = ~N G(to ..... tb)' (4) 

whe re s 

[ ~ ]  c~Ogs-c+l (Z tixei ) (I×Lc(X))~X ] 

G(t o ..... %) = • - (5) 

~e now look at the effect ef the restriction j':H~(Xn+I) ~ H~(xn). 

We label all objects in the cohomology of X n with a subscript n. Then 

it fellows immediately from the description of j* (eq. (15) ef §7) that 

j.((ti)n+1) = [ (ti)n , if 0~<i<b, (6) 

t x I+ ... +x=+ I, if i:b. 
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As a consequence, we find that, for BC N, and any polynomial F, 

J*[aB[F((t0)n+ I ..... (tb)n+ I)]I = aB[F((t0) n ..... (%)n)]¢H*(Xn). (7) 

The reason that we camaet use (7) te assert the stability under j~ ef 

the expression (4) is that the set N itself cha~ges as we pass from 

n+1 te _n. 

It is clear from (6) that te study the effect ef j~ on a poly- 

nomial F Im to, ...,~ it is necessary te leek separately at the 

dependence of F em the first b variables to,...,~_1 and en the last 

variable tb= x1+...+x n. The former relates te the stable elements 

[no(f0)...nb_1(fb_1) ] c H*(X(n)) defined in eq. (17) of §7, namely 

no 
~ 0B ( to ... ~I ) = [no(fo)...nb_1(fb_1] ~ H,(Xn). 

B< N 

Te see that (8) helds, set r = mO+...+nb_ I and nets that the summands 

on the left-hand side ef (8) with IBI • r are certainly zere. Thus 

(replacing t00.n ..<b11_ by tj1 .... t ,jr where Jl ..... Jr c 10 ..... b-lJ 

are indices, net necessarily distinct) the left-hand side ef (8) is 

(8) 

z ), 
all I . . . . .  irl (tj1"''tj r 

~-<iI<... <ir-<n 

i.e. we expand tjl .tjr as a polynomial im the xi's, emit any term 

in which seme x i appears tea higher power than the first, amd then 

set all the xi's equal te one. Clearly this yields ~<tjl, 

t. ,I .... ,I> in the notation ef (8) ef §7, where the number ef 1's 
Jr 

is n-r. Re-expressing this in terms ef the notation ef (9) and (17) 

ef §7 then gives equation (8). 

It remains te study the effect en (4) ef the dependence ef G en 

the variable ~. First we note that since the slant product with [X] 

sends uxv te u<v,[X]> and since eb=z has the same dimension as [X], 

the only non-zero menemia]~ ef the form 

k 0 
I(toxe O) ...(tb×eb)kb(1×Lc(X))I/[X] (k b > O) 

are those w i t h  k I . . . . .  ~_1=0 ,  c=O, and ~ = t  ( f e r  which va lues (9) 
k 

equals ~to0 ). Therefore an e x p a n s i . ,  ef the exponent i n  (5) as a 

Taylor series in powers ef (tbxeb) consists ef the constant term 

(9) 
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! @btained by setting ~ equal te zere, plus a linear term tbgs+1(t0) : 

tbg~+1(t0)/t 0 
G(t 0 . . . . .  tb) = e g(t 0 . . . . .  t b _ l , 0  ). (10) 

! 
But gs+1(t) = gs(t)/t (this felL,ws immediately from the definition 

e f  gs) ,  a ~  t h e  v a l u e  e f  g ( t  0 . . . . .  t b _ l , 0  ) o b t a i n e d  f rom (5) i s  e x a c t l y  

the power series ef eq. (17) of Theerem 1 in §8, so we find that the 

only step still necessary to deduce that theerem frem (4) is the 

fellewing fact about pewer series. 

Propositi,n I: Let g = G(to,...,~_1) be a pewer series, gs the series 

defined i~ (¶I) ef §8, and fs and %s the pewer series defined by 

f s ( t )  = g ; ~ ( t )  = t - . . . ,  Qs( t )  = t / f s ( t  ) = 1 + . . . .  (11) 

Then 

(x1+-.-+x n) gs(t0)/t0 
a N ( • 

(12 )  

Here f' denotes the first derivative, and U=z1+...+z n 
S 

Preef: 7~e write d for x1+...+x n and ~ = ~(t0) for gs(t0)/t0. The 

definitien of a A as the operator sending a power series ~ to the 

ceefficient of x A in ~ is clearly equivalent te the fermula 

~r 

aAf = ( ~ x  . . . .  ~ x  " f )  
11 m r x1=''':Xn =0 

(this is the reason for the netation aA) , and therefere we can make 

use ef a generalized Leibniz' 

(13) 

s rule for @A of a product Qf two functions: 

aA(F1F2) = B, CCZ A aB(F1) 8c(F2) = BC• A~B(F1):~A-B(F2) '  (14) 

BJ C=A 
B~ C=O 

~e apply this rule te the preduct on the left-hand side of (12) to get 

AC N 

Now we expand the exponential as a pewer series and apply (14) again: 

AC N r=0 • BCN-A 
06) 
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But f=x1+...+Xr, se fr= 
i I, • .., irEN 

aN_A_B(~ r) : [ 

xi1"''Xir' and therefere 

and (16) simplifies te 

E 
A, BCN 

~AG aB(~IN-A-BI). 

r!, if IN-A-BI = r, 

O, if IN-A-BI * r, 
(17) 

(~) 

Now fer any functien h ef ane variable, and CC N, we have 

ac(h(to)) = ceefficient ef x C in h(XlZl+...+xnzn) 

= (ICl)! z C • ceefficient eft ICI in h(t) 

: z C .(dlCl/dtlCl)~(t)It=0, (19) 
where z C denetes I]iE C z..l Mereever, since G is a functien enly ef 

t0,...,tb_1, and since f.zl = 0 fer i=O,...,b-1 (here we need that 

fi is af pesitive degree, i.e. that G is independent ef tb) , we 

cenclude that z B #A G = 0 if A~B • ~ (fer if j is in beth A and B, 

them in the jth place in a typical menemial we have beth a facter z 

and a facter fi fer seme i=0 .... ,b-l, and their prQduct is zere). 

Therefere we can substitute (19) im (18) and emit the cenditien AgLB=~: 

aN(e~ G): AC~' N ~AG ~c~ N zB "dr -T~ ~:o" (20) 

Cemparing this with the equatien (12) which we want te preve, we see 

that it enly remains te pr®ve, fer 0.<j.<n, the fermula 

Z Z ~gs(t)~ ^ I ~n+1-j 
k=o Bc~ B d-~ \ - T - -  ~t=o= ~s~J f~(,7), (2~) 

IBl=k 

But i t  fellews easily frem z2= 0 that the f i r s t  expressien in square 

brackets in (21) is just wk/k!, while the secand facter equals 

n-j+1-k-1 , 
k! rest=o[(gs(t)/t) n-j-k t -k-1 dt] = k! reSy=0[Qs(y ) ~ fs(y)dy], 

as we see by substituting y= as(t), t= fs(y ). Equatien (21) fellows. 
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§13. Symmetric preducts ef spheres and ef Riemann surfaces 

This sectien centains three applicatiens ef the theerem ef §8. 

The first, included selely for the purpese of illustrating the use 

ef that theerem, is a secend derivatien ef Hirzebruch's fermula far 

the signature ef X(n) (§9 eq. (14)). The second is an evaluatien 

ef the fermula far X an even-dimensienal sphere; the calculation 

here is very easy since the cehemelegy and L-class ef X are trivial. 

The third applicatien, rather harder, is t@ the case where X is 

twe-dimensienal, i.e. a Riemanm surface (the case where Qs(t) is the 

usual series t/taah t). In this case, X(n) is a cemplex manifeld, 

a prejective fibre bundle ever the Jacebian ef X if n+ • (X)> 0, 

and its Chern class has been calculated (Macdenald [~]). This ef 

ceurse alse gives the L-class ef X, and therefere we are able te 

check the cerrectness ef the main theerem ef this chapter. 

We start, then, by evaluating Sign(X(n)). Since z 2 = 0, we have 

~n/n! = z 1...z 

(a similar fermula far all wk/k: was already used at the end ef the 

last sectien). Therefere 

Sigm(X(n)) : <L (X(m)), [X(n) ] > 

: (deg ~)~ <~(X(n)),~,[Xn]> 

1 < / [ * L ( X ( n ) ) ,  [X m] > = m-'; 

1 = - -  c e ~ f f i c i e n t  . f  z l . . . ~  n i n  ~ * L ( X ( n ) )  
n '  

-- c e e f f i c i e n t  of  n i n  ~ * L ( X ( ~ ) ) .  

Frem eqs. [17) and ( t ~ )  ef ~ we then ebtain 

Sign(X(n)) = coefficient ef n in [f;(u)Qs(u) n+1 x 

x Z C QS(~) -nO 
no 

no~> 0 no0...O ~ ] 

coefficient ef n in ' n÷1 : [ f s ( ~ ) Q ~ ( ~ )  x 

× e H ( f s ( ~ ) ,  ° ,  . . . .  o ) / b  - f s ( ~ ) ~ ) e ( x ) / 2  ]. 

The substitutien t = fs(~) then permits us te rewrite this as' 

(I) 
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Sig~(X(~)) : reS~O L q(~) d~ 
n+1 

eH(fs(n),O . . . . .  O) ] 

(I  - fs(~)~)  e(x)?~ Qs(')°*~ 

~ dt oH(t,0 . . . . .  0) q 
= rest= 0 

t n+1 ( l _ t 2 ) e ( X ) / 2  J 

o r  

t n Sign(X (n) )  : ( l _ t 2 ) - e  (X)/2 e l l ( t ,  0 . . . . .  0) 
n=0 

(2) 

Finally ene obtains from the definition of H (eq. (16) of §8) and 

the fact that eo=1 is zera-dimensienai that 

S 

H(t,o . . . . .  0) = z <gs+l_o( teo)Lc(X) , [X]>  
c=0 

: < g l ( t )  (sig~(×) z ) , [ x ] >  

= S~gn(X) g~(t), (3) 

1 l + t ~  
~hich, substituted into (2) gives (since gl(t) = tanh -I t = [ leg T_~¢ 

Z t n S ign(X(n) )  : ( l _ t 2 ) - e ( X ) / 2  f l + t~S ign (X) /2  
n=0 

the formula which was te be proved. 

Even simpler is the complete evaluatien of L(X(n)) when X : S 2s. 

Here the basis is just e0=f1=1, e1=f0=z (b=1), and the L-class is 

ef course trivial. Therefere the function H(to,...,~_1) is just 

S 

H(t0)  : Z <gs+1_c( t0e0)Lc (X) , [X ]>  : 0. (5) 
c:0 

Off course the Euler characteristic is two, so the power series 

e H(tO .... 'tb-1)/(1-t~) e(X)/2 is just (1-t$) -I, and therefere the 

factor G of the formula for L(X(n)) is simply 

f~(u) ~ Qs(~) -2nO ~ 2n0 : f~(~) 

no=O I - fs(~) ~ " 

Therefore the ~hole expression for L(X(n)) is given by 

Prepositie~ I: Let X = S 2s, ~ a pesitive integer, and U g ~S(X(n)) 

the usual element z1+...+z n. Then the L-class of X(n) is given by 
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~ ( x ( ~ ) )  - 

I - f s ( ~ )  ~ 
(6) 

Notice that this formula automatically has the property that 
n 

the coefficient of ~ in it is equal to one or to zero according as 

n is even er odd. This is in accordance with (4), wince e(X) = 2 

and Sign(X) = 0 for an even-din~nsional sphere. For the case s=1, 
th 

X(n) is the n symmetric produce of PI $, and can be naturally 

identified with Prig; then W ¢ ~(Pn~) is the standard generater 

and (6) reduces (since fl(t) = tar~ t) te the usual relatio~ 

n+J 
L(Pn~) U : ( t a ~  ~)  

We will consider this special case X = S 2 mere thoroughly whem 

discussing the equivariant version ef our theorem. 

We mew come te the last application of this section. Assume 

that X is a Riemana surface ef genus ~. For the basis f0,...,fb_1 

ef the cohemelegy we cheese the standard generators ef Hi(x), i.e. 

(7) 

with 

, =,  (8 )  fo,...,fb_1 = z, al,...,~g , %,..., g 

z • ~(X) as usual and the ~'s one-dimensional classes satisfying: 

~.= =;=[  : 0 ( a l l  i , j ) ,  ~ . a ' = a ; e = O  ( i ~ j ) , ~ . ~ '  = -c~;~. = z .  (9 )  
~io z O  z a  z ~  I z  1 1  

Then the dual basis leil is II,-% ..... g,% ..... ~gl- Te apply 
the procedure of ~8, we must now introduce new variables t0,...,tb_1-- 

here relabelled t,t 1,..°,tg,t~ .... ,tg to parallel the labelling @f 

the fi's--which are subject to the commutation rules 

t i t j =  - t j t i ,  t i t  J = - t ~ t i ,  t ' t ' l  3 = - t : t ' o  m ( l '< i ' j~<g) "  ( I 0 )  

In particular ti2=t~2=0. Of course the first variable _t commutes with 

everything, since it corresponds to an even-dimensiomal cohomology 

class. 

Since L (X)  = 1 and s=l  i n  our  case, f o r m u l a  (16) o f  ~8 becomes 

H = H ( t , t  1 . . . . .  tg ,  t 1 . . . . .  t ) = < g2 ( t  + 8) ,  [X ]  > , (11)  

where we have used 8 to denote the quantity 
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g g H 1 ', t 8 = - Z t . ~  + Z t~ i e ( x ) r t  1 . . . . .  tg, t I . . . .  ~ ] .  ( 1 2 )  
i = I  z m i=I 

Because ~ commutes with 8, we can expand the expression g~(t+8) appearing 

in (11) as a Taylor series in powers ef 8. Moreover, 8 is a @no- 

dimensional coh@m@iogy class and IX] is a two-dimensional homel@gy 

class, se only the term g~(t) 82/2! ef the Taylor series contributes, se 

i : g ~ ( t )  < ~ ,  [ x ]  > : - g ~  / + + "ft ~ (t t' tgt 2 1 1  ~)' (13)  

w h e r e  t o  o b t a i n  t h c  l a s t  l i n e  we have  used  ( 9 ) ,  ( 1 0 )  and ( 1 2 ) .  

We new set 

s :-it: O.<i.<g) (I~) 
1 I ! 

and ebserve that the various s. 's commute with one anether bu~. that 
1 

2 
s. = t.t:t.t' = - t.t.t.t.' ' = 0, (15) 
l I 1 I 1 1 1 1 1 

in view ef the fact that t.2=O. Therefore we obtain from (13) : 
1 

egg(t) (a1+...+s~) 
e 

,,() 
g eaig2 t = ,U 

i=I 

g si2g~ = H [ 1 + s i g ~ ( t  ) + ( t ) 2 / 2 !  + . . .  ] 
i =1  

g 
= n [ I + sigh(t) ] 

i =1  

g 
: Z g~(t) r- - 2 s . . . .  s. " -'(16) 

r=-O I~<iI<... <ir~<g ~I ~r 

We new recall that, since s:1 in eur case, we have 

a n d  a l s e  e ( X )  = - 2 g + 2 ,  T h e r e f e r e  i f  we s u b s t i t u t e  ( 16 )  i n t e  t h e  

recipe for calculating G (~8, eqs. (17) and (18)), we ®brain 

g 
G = sech2u (1-tanh2u) g-1 Z g2(tanh U) r (~/tanh ~)-2r " X 

r:-O 

(~iI 
× ~ [ 1 ~ I ) 1  ) . . . l ( h  ) 1 ( %  ) ]  . 

1~i1<...<ir~g r r 
(17) 
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Furthermore, we deduce from the multiplication laws (9) that 

[ 1 ( ~ ; 1 ) l ( ~ i l ) . . . l ( ~ i r ) l ( ~ i r ) ] '  : [1(~ i l ) I (~ i1 '  ) ] . . . [ t ( ~ r  ) l ( ~ i r  ) ] "  (18) 

We write 

q = [ i ( ~ ) I ( 5 )  ] ~ E2(× (~ ) )  ( I { i ~ ) .  ( i~ )  

Then the substitution inte (17) ~f equation (18) and of the fact that 

- tanh~ = sech2~ gives 

g g~ (tanh ~))r G = (sech ~)2g Z ( ~/tanh~u Z Ei l . . .E .  
r=O l(il<.,.<ir(g ir 

g tanh2~ ,, (seth ~)2g H [ I + EL ~2 g~(tanh ~) ] (20) 
i= l  

However, frem the definition ~f go(t), it is clear that its derivative 

is precisely gs_l(t)/t. Moreover, g1(t) = tanh-lt. Therefore 

d ~- )= t - ~  - t ~ 
g~(t) = ~ (ta it I tanl/-It 

i~serting this in (20) produces 

g 

i= l  

Therefore the L-class ef the symmetric product X(n) is given by 

2 
. - - . n + l  _- ÷ L(x(A) " ) G = (tanh ~ "tanh ~" i=I  

yi( tanh ta~z~'U"""- U seoh2u ) ]. 

(21) 

(21) 

(22) 

Finally, we can use the fallowing considerations te simplify (22). 

Write 

q = [ 1 ( % ) ] ,  q = [ I ( ~ Z ) ]  ~ . l ( x ( ~ ) ) ,  ~ i  = q q  ~ ~ ( x ( ~ ) ) ,  (23) 

s. t~t .e have, ,~ restricti~ to ~*(X(n)), 

n n m 

, kS1 ~ ° i  = k=l~ 1=1Z ( ~ i ) ( ~ l ~ i )  = k¢lZ ( ~ i ) ( ~ i )  + = ~ (~ i~ )  

: [ 1 ( % ) 1 ( . ~ ) ]  + [ l ( z ) ]  : - q  + n . (2~) 
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But new we can repeat an argument used earlier in this section, mamely 

2 
a i ~i~idi~ i = - ~ididi~i = 0 

simce the @i's are ~ne-dimensienal, and therefore power series in a i 

break off after the first power. Thus for any power series ~, 

f ( ~ i  ) = f ( ~  - a i )  = f ( u )  - a i f ' ( u  ) .  

Applyimg this te the power series t/tanh t gives 

i = ~ - I ~ ) 
tanh Y. tanh~ ai( tanh 

1 

= + 
tanh 

(25) 

Substituting this into eq. (22) gives fimally 

The,ram I (Macdonald [z~): Let X be a Riemann surface of genus ~ and 

a positive integer. Cheese a basis for HS(X) as in (9) and define 

the classes ~ i and ~ im H2(X(n)) as above. Then 

n-2g+l g ~i 
L ( X ( n ) )  = ( ~ J ~ tanh g, (26) 

tanh ~ i:1 l 

What Macdonald in fact proved was mere. Namely, X(n) is knew~ to 

be a cemplex manifold when X is a Riemann surface, and Macdonald shewed 

that its Chern class is given by 

g 
c (X (n ) )  = (1 + n)n-2g+1 ~ ( t  + ~ i ) .  (27)  

i = I  

at ! We have imtreduced the notations ~i' i' ~i' ~i' ai' W used above 

im accordance with the notation of Macdonald's paper. 
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§14. The equivariant case 

If a finite group G acts on X, then the diagonal action o£ g on X n 

induces an action on X(n) sending an unordered n-tuple Ix I .... ,Xnl to 

the n-tuple Igoxl,...,gOXnl. If X is an even-dimensional manifold as 

in ~8, then X(n) is a rational homology manifold and L(g,X(n)) is 

defined by the theory given in ~+; from the result of §5 we obtain 

the formula for the calculation of L(g,X(n)) 

~ * L ( g , X ( n ) )  = Z L ( g o a , x n ) ,  (1 )  
a¢ S 

n 

w h e r e  f o r  ~ ¢ S n t h e  a u t o m o r p h i s m  goa = ~og o f  X n i s  t h e  map 

sending (x I ..... Xn) to (goxo(1) ..... goXo(n) ). We therefore must 

calculate L(go%X n) in order to evaluate the equivariant L-class 

on X(n), and this can be done by the Atiyah-Singer theorem. The 

proof is fairly similar to the proof for L(X(n)) given in the last 

four sections, and we will therefore give a briefer account of it, 

only emphasizing the points of difference with the non-equivariant 

result. 

Just as before, if o is a product of two permutations, then 

goG also acts on X n as a product o£ the corresponding two operations. 

Therefore, since any permutation is a product of cyclic permutations, 

and since the equivariant L-class is symmetric, it suffices to 

consider L(goar,Xr), where a r is a cyclic permutation of 11 .... ,rl. 

Similarly, since the equivariant Euler class e(g,X) defined in §9 

(cf. equation (6) of §9) and the signature Sign(g,X) defined in §2 

are multiplicative, we can express the values of these invariants 

for X(n) in terms of the corresponding numbers for the cyclic 

permutation o r. For example, Sign(g,X(n)) is given by a formula 

exactly corresponding to (12) of §9, with the difference that T 
r 

now denotes Sign(goar, Xr), and e(g,X(n)) is given by a similar 

Sormula with T r replaced by e(gOGr, Xr ). The values of the equivariant 

signature and Euler characteristic will be computed below for gOar; 

we give here the resulting formulas for X(n): 

tn ~ ~r r (X gr) z e(g,X(n)) = ~ exp [ e ], (2) 
n=0 r=1 
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co [t~ r 1 ~ Ftr Sign(gr, x 1 
t n 8ign(g,X(n)) = ~exp e(X g r=_1~L ~- 

n=O r=-I L 
r even r oaa (3) 

The first step is to compute the fixed-point set of goG r- 

consists of the set of r-tuples (Xl,...,Xr) with 

(X 1 . . . . .  x r )  = (gox 2 . . . . .  gOXr, gOXl), 

2 r 
from which we conclude that x1= gox 2 = g ox3= ...= g ox I. Thus 

(xr) g°Ur = I (x,g - l ox , . . . , ~ - rox )  l g r x=x l .  

This 

(~) 

In particular, the fixed-point set of god r on X r is isomorphic to 

the fixed-point set of gr on X. As a first consequence, we obtain 

from the Lefschetz formula (eq. (7) of §9) that 

e X r g°Gr e(gO~r, Xr ) = (( ) ) = e(xgr), (5) 

and equation (2) follows. If we let ~ denote the inclusion in X 

of the fixed-point set of gr, ~ the inclusion in X r of the fixed- 

point set of god r, d = d r the diagonal map X ~X r, and g the map 

from X r to itself sending (x I ..... Xr) to (xl,g-lox2,...,gl-roxr), 

and h the isomorphism of xg r onto (xr) g°ar given by (4), we have 

from (4) the commutative diagram 

r 
x g h ) (xr)g °o 

j IC C I i 

X d ~ X r g ~X 
C = 

This will be used to study the inclusion ! and in particular the 

corresponding Gysin homomorphism i, = (g o d o j o h-l)! = ~,d,j,h~ ±. .... 

Here the Gysin homomorphisms of g and h are easy to compute since 

one has in general f, = (f.)-1 = (f-l), for an isomorphism f:X ~ Y. 

The Gysin hcmomorphism of d r was calculated in §10. Finally, it 

will turn out from the formula for L'(gOar, Xr ) that the Gysin 

homomorphism j~ only needs to be applied to L'(gr, x) c H*(xgr), 

on which it of course gives L(gr, x). 

Leaving till last the calculation of L'(gO~r,Xr), we show 

(6) 
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how to deduce from it a formula for L(g,X(n)). We preceed as in the 

non-equivariant case (§11). Thus for A = (jl,...,jr) with the Ji's 

distinct elements of N = I1,...,nl, we define a projection map ~A 

from X n to X r by 

~A(Xl ..... x n) = (Xjl ..... Xjr) 

and set 

L ( A )  = ~ L(goar, Xr ) c H¢(xn). (8 )  

The only difference with the non-equivariant situation in this part of 
• ! the c a l c u l a t i o n  i s  t h a t  L(A) depends on the order  of the a i  s r a t h e r  

than just on the unordered set A. To see what this dependence is, set 

L'r = h*L'(g°ar 'xr) ¢ H*(xgr) ; (9) 

this is the class which will be calculated below. It depends on E, 

and X but not on ~r (i.e. if we replace a r by another cyclic permutation 

of I1,...,rl, or equivalently renumber the K factors of X r, the value 

of L' is unchanged); this will follow from the evaluation of L' below 
r r 

and can also be seen directly. We then set 

L r : j!T,~ ~ H*(x). (1o) 

Then by the remarks following diagram (6) we have 

L(goar, X r) = ~*(d!Lr) (II) 

and therefore 

L(A)  : ( ~ o q ) * ( a ~ L r ) .  

The map ~o~ A from X n to X r is 

-1 - r + l  
go~A(X I ..... x n) = (Xjl,g axj2 ..... g 

Clearly, if A' = (Jr(1) ..... jr(r) ) for some T~S r 

same elements as A but in a different order, then 

-1 - r + l  
go~A,(X I ..... x n) = (xjT(1),g °xjm(2) ..... g 

(12) 

o~. ). (13) 
O r 

i s  an r - t u p l e  w i t h  t h e  

ox ) 
J~(r) 
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g-~-~  - T - ' ( r ) + l o x "  ) : ~ o ( (1 )+1o~ . . . . . .  g 
Jl Jr 

= T o i T  o ~A (Xl . . . . .  X n ) '  (14) 

where 

-W -$ (I)+1 -r -i(r)+1 X r X r. ~ : g × ... × g : ~ (15) 

Since d!L r E H~(X r) is clearly symmetric, i.e. fixed under the action 

of S r on H~(xr), we have 

L(A') : (~oq,)*(d!L r) : (~o~ o=)*(d~L r) = q~,*(d,: r) 

~* (16) = q g~ (d~r).  

This shows the dependence of L(A') on the order of the elements of A'. 

It follows that the sum of L(A') over all A' with the same underlying 

set as A is given by 

z L ( A ' )  = r! q ( T ( ~ ! s  r ) ) ,  
A' 

where T:H~(Xr) ~H~(X r) is the average of the maps *~' 
gT' 

(17) 

I 
T ( e l × ' ' ' × e r )  = ;7. T~SZ gT**(e l× ' ' 'Xer)  

r 

: (g * )  e 1 

a permutat ion 
of 0,-I,...,-r+I 

i 
× . . . ×  ( g * )  re . ( 1 8 )  

r 

In the non-equivariant case, the right-hand side of (17) was simply 

r! L(A). It follows that the term (r-l)! L(A) occurring in (6) and 

(7) of §11, and corresponding to the (r-l)! possible cyclic permuta- 

tions of a set A of ~ elements, must in the equivariant situation be 

replaced by (r-1)!~(T(d!Lr)), and therefore that equation (7) of §11 

becomes 

L(g ,X(n) )  : 8N[eK] , (19) 

~: = ~:(*1 . . . . .  ~n) = KI + I<2 + . . . .  (20)  
where 
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= Z ( r - l ) !  x A ~ (T (d !L r )  ). (21) 
Kr A CN 

IAi=r 

If we now substitute for d, the formula given in §10, namely 

d!L r = I ( ( ~ l X l ) * a ) . . . ( ( ~ r X l ) ~ a ) ( l X L r ) l / [ X ] ,  (22) 

and proceed as in the non-equivariant case (cf. the derivation of eqs. 

( Io) ,  (15) of §11), we find 

K = i T( la r (1×Lr) I/[X]), (23) 
r r 

where ~ is the element defined in §11(14). 
r 

We now calculate the classes L' and L . Set 2m = dim(X g ). 
r r 

..... ' defined in (9) is given by Proposition 1: The class L r 

i gr L' = e(X gr) [X ], if ~ is even, 

r Z rC-mL~(gr,x), if ~ is odd, 

c~O 

where [X gr] denotes the fundamental class in cohomology of the 

fixed-point set of gr on X (with the relevant twisted coefficients 

if X gr is not oriented), e(X gr) is the Euler characteristic, and 

L~(gr, x) is the component in ~C(xgr) of L'(gr,x)¢ H~(xgr). There- 

= " ' ~ H*(X) is given by fore the class L r J!L r 

e(X gr)'" z, if ~ is even, 

L -~ C r Lr r ~ r ~,~.~g ,X), if ~ is odd, 
c~0 

where z is as usual the fundamental class in cohomology of X, and 

Lc(gr, x) is the component in of L(gr, x) ¢ H'(X).  C(x) 
Proof: To apply the G-signature formula, we must calculate the 

normal bundle of X gr embedded in X r as the fixed-point set of go~ r 

(i.e. embedded by the map ~odoj in the notation of (6)), the 
gr 

eigenvalues of the action of go~ r on this bundle over X , the 

corresponding eigenbundles, and their characteristic classes. The 

idea is very simple but the details a little complicated because 

of the special role played by the eigenvalue ~ in the Atiyah-Singer 

formula. To make it more clear what the splitting is, we first 

(2~-) 

(25) 
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consider the case of a complex manifold X with group action. A point 
r 

x ¢ X with g ox = x is identified under the inclusion map ~dj with the 

-I -r+1ox), which we denote ~, so point (x,g ox,...,g 

T~(X r) = TX~ Tg_1oX~ ... ~ Tg_r+1oxX . (26) 

We use V to denote the vector space TxX, and identify T -i+I X with V 
i-I ~ ox 

by the map induced by g Then the decomposition (26 becomes 

T~(X r) = V~... ~V (~copies) (27) 

with go~ r acting by 

(Vl, .... Vr) ~ (v 2 .... ,Vr, grvl) , (v I ..... VreV ) (28) 

r r 
where g v I refers to the action of g on V which is the differential 

r 
of the map g of X. No action of ~ appears before the vectors v2,...,v r 

because we have already used the map £ in identifying (2b) and (27); 

the map gr then appears because we have used £ r-1 times to identify 

Tg_r+1o J with V and therefore the map £ from T -r+1 X to Tg_roxX = V 
g ox 

r 
gets identified with the map g from V to V. 

So far everything is the same as in the real case. However, in 

the complex case we can immediately deduce the eigenvalues of goa r 

from (28), namely (v I ..... Vr) is an eigenvector of Ac~ if 

(v 2 .... ,Vr,~V I) = (~v I ..... ~Vr), (29) 

where we have used A to denote the linear map gr:v~ ~and clearly 

this is the same as 

Av I = Av r = A2Vr_ I ..... ~rv I. (30) 

That is, ~ is an eigenvalue of goa r exactly when Ar is an eigenvalue 

of grlv, and the eigenspaces correspond under 

v *-~ (v,Av . . . . .  Ar-lv) (vE V, Av = Arv). (31) 

If we remove the eigenspace of eigenvalue I, which corresponds to 

passing from the restriction to (xr) g°~r of T(X r) to the normal 

bundle N g°~r of (xr) g~rr, we therefore have found the splitting 

of this normal bundle (henceforth denoted N) into eigenbundles: 
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namely, for A*I the complex subbundle N A of N on which go~ r acts as 

multiplication by A is given by 

N A m M r 

r 
if Ar,1 (here M denotes the normal bundle of X g 

subbundle of M on which gr acts as multiplication by 8) and by 

if Ar=1. We write L A for the characteristic class L 8 

A = e i8, i.e. for a complex bundle ~ with Chern class 

xe2Xj + I 
LA(f) = n 

x. ~e2Xj - 1 
J 

Then the Atiyah-Singer formula together with (32), (33) gives 

(32) 

in X, and M s the complex 

of §2, where 

n(1+xj), 

(33) 

(34) 

h'L'(g°~r'Xr) = L(xgr) Ar~- -I Lx(Txgr) H~ Ar=oH LA(Mo)" (37) 

We now use the identity 

Az+I ~ I, if ~ is even, 
k ~ 0 Az-1 : [ ~zr+l 

= , if r is odd. 
0zr_1 

(36) 

We find that if r is even, (35) reduces to Nxj, where xj ranges over 

the formal roots of the Chern class of TX gr, and this product is just 

the Euler class of TX gr. If r is odd, (35) reduces to 

Q x. coth rxj~ Q oe2rXj +I ) 

II ta2 " coth xj # ll ~ oe2rXj (37) 
xj (Txgr) xj 0 xj (M~) I ' 

and if we multiply this by r m (where m = dimcX gr) it becomes exactly 

the Atiyah-Singer expression for L' (gr, x) except that each two- 

dimensional class xj is replaced by rxj, i.e. it is the even- 

dimensional cohomology class whose component of degree 2c is r c times 

the 2c-dimensiorml component of L'(gr,x). This proves (24) in the 

complex case. 

We now turn to the real case, where the idea is similsr but the 

splitting up into eigenspaces more involved. Since the eigenvalues 
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of go~ r on N are the r th roots of the eigenvalues of gr on M (the 

notations are the same as those introduced for X complex except that 

N and M are now real bundles), and since the eigenvalue -I receives 

special treatment in the Atiyah-Singer formula, we will have two cases 
th 

according as -I is an r root of +I or of -I, i.e. according as r is 

even or odd. 

For a kxk matrix A, we define an rkxrk matrix Fr(A ) by 

0 I 0...0 
0 0 I...0 

Fr(A)= 0 ; 0 . ' . I  ' 
A 0 0...0 

(38) 

where I denotes a kxk identity matrix and 0 a k×k zero matrix. Then 

(28) states that the action of goar on T~(X r) in terms of a basis 

given by the isomorphism (27) is given by the matrix Fr(A), where A 

is the matrix of the action of gr on T X=V. We split up the normal 
r x 

bundle M of X g in X as in §2 (eq. (26)), namely as the direct sum 

of a real bundle N of dimension 2s(~) on which gr acts as multiplica- 

tion with -I and of real bundles N~ (0<~<~) of dimension 2s(a) on 

which gr acts with respect to a suitable basis as the matrix A~ of 

eq. (24) of §2 (or rather, as the Kronecker product A~ @Is(~))- 

Then, since V = Tx(xgr)@ M, and gr acts as the identity on the 

vector space Tx(Xgr ) of dimension 2m =dim xg r = 2s - 2s(~) - Z s(~), 

we obtain 0<~<~ 

A m (1)@I2m e ( - l ) @ I 2 s ( ~ )  ~ Z AS@ Is(8)  , (39) 
0<0<~ 

where ( I )  and ( - I )  denote the corresponding I x l  matrices. We must 

therefore write Fr(1), Fr(-1), and Fr(A~) as a direct sum of matrices 

I, -I, and A e in order to apply the Atiyah-Singer formula to goa r. 

This obviously gives ( = denotes similarity of matrices) 

FrO)  = I ~ A2~/r ~ A ~ / r  ~ . . .  ~ A ( r _ 1 ) , / r  (m odd), (40) 

Fr(1 ) = I @ - I  @ A2~/r @ . . .  @ A ( r _ 2 ) , / r  (~ even), (41) 

Fr(-1 ) = - I  $ A / r  $ A3~/r + . . .  ~ A( r_2)~ / r  (~ odd), (42) 

Fr(-~) = A/r ~ ... ~ A(r_~)~/r (Z even), (43) 



- 85 - 

Fr(A@) ~ A~/r @ A(~+2=)/r @ ... @ A(~+(r_1)=)/r (all ~). (4/+) 

From equations (39)-(44) we obtain the eigenvalue decomposition of the 

normal bundle N. Namely, if r is even, then 

N = N 

r - 1  r - 1  
2 

@ Z N2 . ~ r~/ @ ~ N . / r~/ @ E N 
k= l  k= l  O<e<~" (P 

k odd 
r ~ e  mod 2~ 

(¢5) 

where 

N ~ T (xg r) , 

N2~k/r = T (xgr)®c 

N~'IrK/ ~ Mrr ~ 

N ~ M 0 ~o 

If _r is odd, then 

r-1 
2 

N = ~ N2~k/r ~ N @ 
k=l 

where 

r (for k=1,2 ..... ~-I), 

(for k=1,3 ..... r-l), 

(for 0<~<~, r~ ~ ~ (mod 2~)). 

r-2 

r N~/rK/ @ E N 
k=1 0<~<~" @ 

k odd r~8 mod 2~ 

( ~ 6 )  

(¢7) 

(~) 

(~9) 

, (50) 

N2~k/r ~ T(xgr)~ (for k=1,2 .... ,.~!), (51) 

N ~ M , (52) 

(for k=1,3, , r-2), (53) N k/r ~ M@¢ ... 

N ~ M e (for 0<8<~, r@ ~ e (mod 2#)). (54) 

gr 
We denote the Chern classes of the complex bundles T(X )®¢, M~, 

andM0 bY H2mj=1(1+xj)' g2s(~)(1+x;),j=1 and n~!~)(1+x~), respectively. 

Then substituting (45)-(49) in the G-signature formula (eq. (27) of §2) 

gives, for E even, 
r 

gr ~-I 
h * L ' ( g O ~ r , X r  ) = L ( x g r )  • L ( T ( X ) ) .  n L2~k(T(xgr)@~) 

! ( = 1  - -  

r-1 r 
L k(M ~ ). H L (M0). (55) 

k=-I ~ 0<~<~ 
r 

k odd rflo~8 mod 2~ 
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Now L (~) = e(~)L(~) -~ by definition for a real bundle ~. If we 

substitute this in (55) we see that all the L-classes cancel (this 

follows either from (36) with ~ even or directly, if we note that 

ooth(e.i~/2) = tanh e : I/coth ~, ~nd therefore S0(~)L~+~/2(¢) = I 

for any complex bundle ~, so that; the L-classes occurring in (55) 

cancel in pairs), and therefore 

' = : [xg ] ,  (~ even) h*L (gOar, Xr ) e ( T ( x g r ) )  e(xgr) r (56) 

where the first e denotes the Eu].er class, the second e the Euler 
w 

characteristic, and the square brackets the fundamental class in 

cohomology. If, on the other hand, ~ is odd, we get from (50)-(54): 

(r-I)/2 
h*L'(gOar,X r) = L(xgr) • [I L2~k(T(xgr)®¢) • L (M) 

k= I 
r 

r - 2  

fI LTrk(Mrr®¢) • I'I L (M0) 
k = l  ~ 0 < 0 < ~  

k odd r r~e mod 2~ 

(57) 

2m / X .  ( r - 1 ) / 2  , oot  
j 1 a xj k=1 

H coth (xj + ~-r" 
j :1  \ x ~. k : l  

O k odd 

• e ( M )  . 

n H H coth (xj + ) 
0<~<~ jr1 r~ mod 2~ 

2m x. 2s(~) tanh rx ~. s(~) 8 
= e(M ) Z ~ ~ ~ ~ ~ H coth rxj, 

jr1 tanh rxj j=1 x. O<e<~ jr1 
a 

where the last line has been obtained by using the identity (36) for 

E odd. Clearly, if we multiply expression (58) by r m, then it is 

exactly the Atiyah-Singer expression for L'(gr,x r) except that each 

two-dimensional class x. has been multiplied by ~. This proves the a 
case ~ odd of (24), and therefore together with eq. (56) proves 

Proposition I. 

We now return to the calculation of L(g,X(n)). Because L r is 

homogeneous of top dimension for E even (eq. (25)), we can compute 

(58) 
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d!L r directly, without using the result of §10 on the Gysin homomorphism 

of the diagonal map ~. Therefore for even ~ we can replace (22) by 

d!L r = e(X gr) d!z = e(X gr) zx...xz, (~ even). (59) 

Since the action of G on X preserves the orientation, T(zx...xz) : 

z x . . . x z  (here T i s  the map (18)) .  Therefore (21) reduces to 

gr 

I~<J1<. • • <jr~<n 
(r-l) ! x .... X. 

~1 ~r (~ ; IZ ) " ' (~ ; r  ~) 

e(X gr) 
r (x1~z + "'" + x#~ z)r' (_~ even), (60) 

or, in the notation of §12, simply 

e(X gr) r (r even). 
Kr = r to' (61) 

From (23) and (25), on the other hand, we get 

m c-m-1 = zo= 0 r T( f~(lxLo+s_m(gr, x ) ) t / [ x ]  ), (Z odd), (62) 

where m = (dim xgr)/2 depends on r. Formulas (61) and (62), combined 

with (19) and (20) and the definitions of N' ti' and so on as given 

in $$11-12, provide a complete evaluation of the class L(g,X(n)). 

Just as in §12, we want to study the dependence of L(g,X(n)) on _n, 

and we know from our experience there that, to do so, we must study the 

dependence of K = K(t 0 ..... tb) and of G = e K = G(t 0 .... ,~) on ~. By 

eq. (61),  K r = K r ( t 0 )  f o r  even r ,  so the dependence o f  K on t b on l y  

comes from the odd r terms (62). Just as in §12 (cf. eos. (9), (I0)), 

we can write out ~ as Z tixe i and note that, since e b= z has the same 

degree as [X], the only dependence of (62) on ~ must come from monomials 

of the form (toxe0)r-1 (tbxeb)L0(gr, x). Since c.~O and s>m, we have 

c+s-m>0 unless c=O and s=m. Since X is connected, X gr can only have the 

same dimension as X if it equals X, i.e. if gr = id. This is a further 

difference from the non-equivariant case, where the L-class always had 

a non-zero leading coefficient. If gr= id, then s=m, L(gr, x) = L(X), 

and Lo(X ) = I. We have therefore proved that 

co 

K(to,-..,%) = K(t 0 ..... %_I,0) + % ~ r -s to -I. (63) 
r=l 

r odd 
r 

g = id 
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r . 
If ~ has even order, then g Is never the identity for odd r, so 

we find from (63) that K and hence also G are independent of ~. This 

does not, however, mean that L(g,X(n)) has especially nice stability 

properties. To the contrary, L(g,X(n)) and L(g,X(n+1)) are completely 

unrelated for r odd. For if we expand 

no 
G = Z Cno...%_1 t o ... (64.)  

(the sum is taken over all n o .... ,~_I>~0), we find 

ON G = E Ono...%_1 [no(fo)...nb_1(fb_1)], ( 6 5 )  

where the sum is taken over all n o , ...,nb_ 1 with no+...+nb_ I = n, and 

therefore the values of 3N G for n and for n+1 involve entirely different 

coefficients of the expansion (64). 

If, however, the element g has odd order ~ (we assume that G acts 

effectively, so that g has the same order as an element of G and as an 

automorphism of X), then we obtain from (63) that 

t b q~(t O) 
G = G(t 0 . . . . .  tb) = • G(t 0 . . . . .  ~_i,0), (66) 

where @(t) = p-StP-1 + ... is the power series 

oo -s gs(tp) (67) ~(t) = Z (kp)-S tkp-1 = P t ' 
k=l 

k odd 

where as( ) is the power series defined in ~8. We now proceed just as 

in the proof of Proposition I of §12. The proof is identical up to (20) 

of §12, which in our notation states that aNG equals 

"°( )( ) Z Z ~ z B ~ 0AG(t 0 ..... tb_1,0 ) d-~( ~(t)n-j-k))t_ O. 
j=O k=O BCN ACN 

IBl=k IAI=j (68) 

The first factor equals wk/k!, and the second factor is a well-defined 

element Gj in the stable homology group H'(X(~)), namely if we expand 

G(t 0 ..... ~_I,0) as in (64) then Gj is given by expression (65) with 

the sum over all no,...,nb_ I satisfying no+...+nb_ 1 = j (a finite sum). 

The last factor can be evaluated by setting y = gs(tP): 

dk( ) ( gs~tP) In- J-k 
~(t) n-j-k = k! • coefficient of t k in p-S 
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= k! • coefficient of t n-j in (p-S gs(tP))n-~-k • 

Clearly this is zero if n-j is not divisible by ~, while if n-j:ap it is 

= k! reSx=OL~+1 (p-S gs(a))ap-k ] 

F f~(Y)dY ] 
= k! res A-------~. (p-S y)ap-k 

Y=H_fs(y)a+~ 

= k! p-aSp pSk . coefficient of yk in ~skY) 
f ~ ~a+1 
skY) 

Therefore (68) becomes 

[n/p] s ap+1 f~(pS ) 
aNG : Z G P 

a=0 n-ap fs(pSu)a+1 
(69) 

We have proved the following theorem: 

Theorem I: Let all notations and definitions be as in Theorem I of ~8. 

Assume further that ~ is an orientation-preserving diffeomorphism X ~X 

of order ~. For j~0, define Gj e H*(X(~)) by 

J %+...+%_1:J 
w~ the numbers d 

%'"%-1 
d 

no. . .%_ 1 n o . . . .  ,%_1)o 

dno.., nb_ 1 [no(fo)... nb_1 (fb_1) ], (70) 

¢ Q are the coefficients in the expansion 

n o I 

e(X gr) r ~ s rC_S_1 r r 
t o + 2 Z <T~ .Lc(g ,X),[X] (71) exp 

r r=1 c=0 
r even r odd 

r r 
Here e(X g ) is the Euler characteristic of the fixed-point set of g , 

Lc(gr, x) is the component in HZC(x) of the equivariant L-class of gr, 

< -,[X]> is the map from A to B defined in Theorem I of ~8, and 

= _I Tar r! Z (g*i1~)...(g*ir~), (summation as in (18)), (72) 

where ~c A is the element of ~8(14) and g* acts on A via its action 

on H*(X). Then if p is even, we have 

L(g,X(n)) : j*G n , (73) 
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where j+ is the restriction map H*(X(~)) ~ H*(X(n)). If 2 is odd, 

[~/p] 
L(g,X(n))  = ~°s~ f's (pSi1) Z G p(r/) a 

fs(P W) a=O n-ap qs, ' 

where Qs,p(- ) is the power series 

(74) 

qs,p(t ) _ t p -s fs (pst) - p t p-I Qs(pSt). (75) 

Corollary: Let X, g be as in the theorem, dim X = 2s, ~ of odd 

order ~. Let ~ denote the inclusion of X(n) in X(n+p). Then 

j+L (g,X (n+p)) = Qs, p(~n) L(g, X(n)). (76) 

It should perhaps be observed that the occurrence here of the 

inclusion X(n) C X(n+p) rather than X(n) C X(n+I) is perfectly 

natural, since it is this map which arises in the equivariant setting. 

Recall that the map j:X(n) C X(n+1) was defined by 

I x  1 . . . .  ,x n} + {Xo ,X  I . . . . .  Xn], (77) 

with x 0 ~ X a fixed basepoint. This map is equivariant only if 

x 0 is fixed by G. In general, the set X G is empty and the only way 

to get an equivariant inclusion map is to use the map 

Ix I .... ,Xn~ + Ix0, gx 0 ..... gP-lxO,x I ..... Xnl (78) 

from X(n) to X(n+p). That is, instead of mapping an unordered set 

of 2 points of X to its union with a fixed point of X, we map it to 

its union with a whole orbit Gx 0 C X. This also means that, if we 

wanted to talk about the action of G on X(~), we really should form 

different limit spaces l~m X(n)+ with ~ ranging over a fixed 

residue class (mod p) and inclusion maps defined by (78). These 

spaces would all be homeomorphic, but would not necessarily be the 

same when considered as G-spaces. However, for our purposes (eq. (74)) 

we need only the cohomology of X(~), and so do not need to enter into 

these subtleties. 



- 91 - 

§15. Equivariant L-classes for symm.etriq products of spheres 

In §13 we evaluated the expressien previously obtained for L(X(n)) 

in two cases of especially simple nature, namely for X a sphere and for 

X a Riemann surface. The case of a sphere was much the simpler, and is 

the only one we are also able to cope with in the equivariant case. 

Let X be a sphere S 2s on which a finite group G acts orientably. 

Since H ~(X) consists only of the elements I and z, both preserved by G, 

the group G acts trivially on the cohomology of X and of its products 

and symmetric products. In particular, the averaging operator T of 

§14, eq. (18) is the identity, and (using (7) of §9) we also have 

r 
e(X g ) = e(gr, x) = e(X) = 2. (I) 

Since only HO(x) and ~S(X) are non-zero, only Lo(gr, x) and Lc(gr, x) 

could be non-zero, and the latter equals Sign(gr, x) and is therefore 

certainly zero since X has a vanishing middle homology group. The 

class Lo(gr, x) is one if gr= id, and zero if gr~ id. Therefore the 

right-hand side of (71) of §14 is 

2 r -s-1 ~ I 
e x p  Z ~ t O + Z r <o~ r , [ X ]  > = , ( 2 )  

r=2 r=1 
r even r odd 

r 
g = id 

since the sum over odd ~ vanishes (~ = toeo, and since e0=1 has degree 

zero, <~r,[x]> = 0) and the sum over even ~ equals - log (I - t~). 

Therefore the coefficients d of Theorem 1 of §14 (here b=l) are equal 

to I if n O is even and to 0 i~ n O is odd. Substituting this into (70) 

of §14 and using ~8(4), we find 

I o, if ~ is odd, (3) 
Gj = uj if ~ is even. 

We then obtain from (73)-(75) of §14 that: 

L(g,X(n)) = I n0' 
, 

while for odd p 

if p is even, n is odd, 

if p is even, n is even, 
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s n 

f s ( p s )  o.~ a-~ n/p f s  (psi)  = 
n~-a rood 2 

Write q = In/p]. The sum in (5) over O-<a-<q can be replaced by a sum 
n ~ s ~-a 

over -oo < a.<q, since for negative a we have D fs~P 77) = 0 (because 
n+ I 

the power series f begins with a term of positive degree, and U = 0 
s 

in H ~(X(n)) ). Thus it is a sum over a = q, q-2, q-4 .... if q=-n (mod 2) 

and over a = q-l, q-3, .-. if q@n (mod 2). Since 

2-1 4-q ~-q 
Y-q + Y + Y + "'" = 1-y~ 

and similarly with q replaced by q-l, we obtain from (5) that 

S fi(pS) U n 
L(g,X(n)) = ~ ~ 

fs(pS,) I - f (pS)~ f (ps)[n/pj ' 
s s 

( p odd., n -= I n / p ]  (rood 2) ) ,  

f, (pS) n 

f (pS) I -f (pS)~ f (pS)[n/p]-1 ' 
s s s 

(6) 

( ~ odd, n * [ n / p ]  (mod 2) ). (7) 

We state these results as a theorem. 

Theorem I: Let X = S 2s be an even-dimensional sphere, ~ a diffeomorphism 

of X to itself of order ~, preserving the orientation. Then the equi- 
th 

variant L-class of the induced action of ~ on the n symmetric product 

X(n) is given by equation (4), (6), or (7), depending on the values 

of ~, ~, and n - pin/p] modulo 2. For example, if X = S 2 and 2 is 

odd, then 

n+l 
L(g, S2(n)) = ~ ) k  , (~ odd) (8) 

where 
k : F [n/p] + I, if n ~ [n/p] (mod 2), (9) 

t [n/p], if n @ [n/p] (mod 2). 

The last assertion follows since for s= I we have fs(t) = tanh t, 

and therefore f~(t) = I - fs(t) 2 = sech2t. The case X = S 2 is of 

interest since it provides a verification of the theorem of §14; namely, 
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th 
the a symmetric product of S 2 is equal to complex projective space Pn ~, 

for which certain equivariant L-classes were computed in ~%. To 

identify $2(~) with Pn ¢, we write S 2 as PI~, so that a point of S 2 is 

written (z:w), where (z,w) ~ ¢2 - iO 1 and (z:w) : (tz:tw) for t ¢~* 

= ¢ - IOI. For O¢ign, we define 

hi: (¢2-I01)n ~ ¢ (10) 

by 

hi((Zl,W I) .... ,(Zn, Wn)) : z ( n ( n (11) ICN j~1 zj) j,I w~) 
IIl=i 

Clearly, if we multiply (zj,wj) by tee ~, then each h i is also multiplied 

by ~ (since the jth coordinate appears in exactly one of the products 

in each summand in (11)). Therefore the point (h0:...:hn) is unchanged 

if we replace (zj,wj) by (tzj,twj), so we have an induced map 

h: ($2) n ~ Pn C, (12) 

mapping (z1:wl) .... ,(zn:Wn) to (h0:...:hn) , where h i is given by (11) 

for any representatives (zj,wj) of the points in S 2. This map is 

clearly symmetric, so induces a map 

h: S2(n) ~ Pn c. (13) 

The nmp sending (h0:...:hn) ~ Pn¢ to tb~ uno~ered n-tuple of roots 
n hi w i n-i (zj,wj) of the homogeneous equation El= 0 z = 0 (w~ich is 

clearly independent of tb~ choice of h's representin~ tb~ given point 

of PnC) is then an inverse to the map h, which therefore is an isomorphism. 

Now let G = ~p C S I be the grot~p of pth roots of unity, acting on 

S 2 by 

~o(z:w) = (~z:w) (~P=I ,  (z:w) c S2). (14) 

•hen C .c ts  ~ g o n ~ l l y  on S2(n), sending I ( z j : w j ) t j :  1 . . . .  ,n to 

I ~ ° ( z j : w j ) } j : l  . . . . .  n" U s i ~  the m~p ~ to iden t i f y  Pn ¢ with S2(n), 

we f i n d  f rom (1¢) and (11) t ~ t  the induced a c t i o n  on Pn c i s  

~o(ho:...:hn) = (h0:~h1:~2h2:...:~nhn). (15) 
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In particular, the action of G on P ¢ is linear, and for linear actions 
n 

we calculated the equivariant L-class in ~6. Substituting the definition 

(15) of the action of G into the result for L(g, PnC ) given in eq. (13) 

of ~6, we obtain 

n ( A.~A~k e2U + I ) (16) 

A¢S 1 k=~0 A-t~ k e 2W - I ' 

where U E H2(X(n)) is the usual element, and corresponds under the 

isomorphism h to the Hopf class x c H2(PnC). 

We wish to show that (16) agrees with the result of Theorem 1, 

namely that L(~,S2(n)) is given by (4) or by (8) according as ~ is 

even or odd. Recall from §6 that (16) is a finite sum, the only 

non-zero summands being those with A equal to one of the eigenvalues 

~k. In particular, A can only contribute to (16) if it,is a pth 

root of unity. Since wm want the element ~ to have order exactly ~, 
th 

is a primitive p root of unity and therefore A must be a power 

of ~. Therefore (16) can b e rewritten 

n n 
L(~,S2(n)) = Z ~ ( ~ ~k-j e2~ + i ), (17) 

j=1 k=O ~k-j e2~ _ I 

or equivalently, since we might as well assume ~ = • 2~i/p, 

n n 
Z n ( W coth(w + ~)). (18) L(~'S2(n)) = j=1 k=O 

It is clear from either of these expressions that 

L(~,S2(n+p)) = Q L(~,S2(n)), (19) 

where 

~Ji e2U + 1 
Q = ~ ( ~ ) .  (2O) 

j=l ~J e 2W - I 

This was evaluated in eq. (36) of §14 : 

I ~P if ~ is even. (21) 

Q = uP/tanh p , if 2 is odd. 

If we compare this with expression (4) for even ~ or (8) for odd 2, we 

see that the value of L(~,S2(n)) computed in Theorem I also satisfies 

equation (19). Therefore if the value computed there agrees with (18) 
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for some 2, it also agrees for n+p, and so we only have to check values 

of ~ which are smaller than ~. If 0 ~ n < p, the number ~ defined in (9) 

equals zero or one according as ~ is ecld or even, so (8) states 

L ( [ ' S 2 ( n ) )  = I P n + l  , i f  _ n i s  odd (O~n<p), (22) 
~Tn+I/tanh p~, if ~ is even 

n+l f o r  o a n ~ .  But ~ = 0 i n  H*(Pn¢) ,  so (22) a l so  agrees w i t h  the 

expression (4) proved for even ~. We therefore only need to prove 

that (17) and (22) are equal for 0~n<p. We state this as a lemma. 
th 

Lemma I: Let 5, ~ be integers, 0~n<p, and ~ a primitive p root of 

unity. Then the following identity holds: 

n %~k { I, if ~ is odd, 

! Z H , z + 1 = L zP+ !,, if n is even. 
P AP= I k=O k~ kz - 1 z p-I ' - 

Proof: Define a rational function F(z) by 

n ~kz + 1 
F(~) = 

k=0 ~kz - 1 

Then the left-hand side of (23) is the rational function 

(23) 

(2~) 

G(z) = Z z F(X,). (27) 
P ~P= I 

Since ~ is smaller than ~, the factors in (24) have their poles in 

distinct points (namely at z = ~-k, k=-0,1 .... ,n<p), and therefore F(z) 
th 

is a rational function which has at most a simple pole for z a p 
w 

root of unity and is holomorphic everywhere else (including z_-oo). 

Therefore G(z) has the same properties. Moreover, G(z) is invariant 

under z ~ ~z for any pth root of unity ~, so G(z) is a meromorphic 

function of z p, with a simple pole at zP=1 and regular everywhere 

else. Therefore G(z) must be of the form a + b/(zP-1) for some 

constants ~ and ~. To evaluate these, we observe that F(~) = I and 

F(O) = (-I) n, and therefore G(z) also equals I at z--co and 0 at z=O. 

It follows that G(z) is the function appearing on the right of (23). 

As a corollary of the lemma, the residue of G(z) at z=1 equals 

2/p or 0 according as ~ is even or odd. Since the residue of F~z) 

at z=1 is clearly 0 for ~-~ (J=0,1 ..... n) and 2 Ejmk (~k-j +1)/(~k-j_1) 

for A=~ -j, we obtain the identity (independent of ~) 

zn nn I + ( -1 )n  (26) 
j=O k=O, k~j [(~k+~j)/(~k-~j)] = 2 



CHAPTER III: THE G-SIGNATURE THEOREM 

AND SOME ELEMENTARY NUMBER THEORY 

In this chapter we study the number-theoretical properties of 

certain elementary trigonometric sums occurring in connection with 

the G-signature theorem. It is clear from the form of the C--signature 

theorem that, if the group G is finite, the expression for the equi- 

variant signature Sign(g, X) involves the evaluation of certain finite 

sums whose terms are products of the cotangents of rational multiples 

of ~. The motivation for the further study of such cotangent sums 

arose from two discoveries. One was that the formula given by Brieskorn 

for the signature of the variety 

a. 

: z I 11 , a : (a I, .,an) E2~n (I) Va I(zl ..... Zn )Ecnl i Z i = "" + ' 

can be expressed in terms of such a sum. The second was that cotangent 

sums of this sort appear in the classical literature, and indeed in a 

variety of contexts: the theory of modular functions, the Hardy- 

Ramanujan-Rademacher formula for the partition function, the theory of 

quadratic residues, the theory of indefinite binary quadratic forms, 

the problem of the class numbers of quadratic fields over ~, and the 

problem of generating random numbers. We shall say nothing about 

these classical appearances of cotangent sums (references, however, 

have been given for all of them), nor--except for a brief remark about 

the Legendre-Jacobi symbol and the law of quadratic reciprocity-- 

about their connection with the theory of group actions on manifolds. 

Indeed, it still seems to be mysterious that the same expressions occur 

in the theory of the transformation of the Dedekind modular function W(z) 

under the action of SL(2,~) and in the theory of four-dimensional 

manifolds with group action. The connection between the signature 

theorem on 4-manifolds and the theory of cuadratic extensions of ~, on 

the other hand, has been accounted for since its discovery by the work 

of Hirzebruch on the Hilbert modular group and the resolution of certain 

two-dimensional complex singularities; it manifests itself, for example, 

S I in the equality of two invariants associated to a T2-bundle over , one 
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defined topologically and the other purely number-theoretic. 

To see the sort of topological expression which arises, we special- 

ize the C--signature theorem to the case of a component of a fixed-point 

set X g that reduces to a simgle point ~. Thus ~ is an isolated fixed 

point of ~ and the action of ~ on TxX is given by eigenvalues Aj = e 2i~ 

• I (j=1,...,n, 2n= dim X), and the G-signature theorem gives 

A,~ + 1 Xn  + 1 - n  
A~ - I """ ~n - 1 = i cot el ... cot ~n (2) 

as the contribution to Sign(g,X) from the component [xl of X g. If 

has order ~, then ej must be a multiple aj of v/p, where aj is an 

integer defined modulo ~; if further the point ~ is an isolated fixed 

point of all the powers of ~ (except of course of gP = I), the integers 

aj (j=1,...,n) must all be mutually prime to ~. Then the contribution 

of Ixl to the sum ZhE G Sign(h,X) (where G is the cyclic group generated 

by ~) is equal to 

A ai + I ... % an - 1 
clef = def(p;al,...,an) = Z 

x A al - 1 A an - 1 
AP=I 

A¢I 

p- I ~ka~ p-1 
= Z + I .... ~ kan -n ~ka± ~kan 

• • I = i ~ cot ... cot -- . 
k=1 .(ka~ _ I ~ kan - I k=1 P P (3) 

The reason for the interest in the expression Z Sign(h,X) is its 

appearance in the formula for the signature of the quotient X/G (§3 (I)). 

For any submanifold Y of X, we define defy (the'~ignature defect of Y"; 

see Hirzebruch [~) as the sum, taken over all g~G for which Y is a 

component of X g, of the Atiyah-Singer expression for the contribution 

from Y to Sign(g,X). This is of course only non-zero for finitely 

many manifolds Y, which are necessarily connected and of even codimen- 

sion in X. Then 

IGL Sign(X/G) : ~ Sign(g,X) : Sign X + ~ defy , (~) 
gcg Y*X 

so the numbers defy can be thought of as defects specifying the 

amount by which the formula Sign X = IGL Sign X/G (which holds for 

free actions) fails to be true. In the special case that G is cyclic 

and ~ an isolated fixed-point of every g ~ ~ -111 , we obtain (3). 
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Notice that the expression def(p;q I .... ,qn) defined in (3) is a 

rational number. Indeed, in the second to the last formula of (3), 
th 

we could have taken any primitive p root of unity for f without 

changing the sum, so the sum belongs to the subfield of the cyclotomic 

field of order ~ of elements equal to all their conjugates, and this 

A+I Ap= subfield is precisely ~. Moreover, if c = ~ where I, then 

(c+I) p = (c-I) p, so ~ satisfies an algebraic equation with integer 

coefficients and leading coefficient ~, and therefore pc is an 

algebraic integer. It follows that the expression (3) when multi- 
n 

plied by p Is a rational integer: 

pn def(P;al ..... an) c ~ . (5) 

n n-1 
We will show in §16 that the p in (5) can be replaced by p , or 

by ~n ' where ~n is a known integer and is independent of ~ (it is 

the denominator of the Hirzebruch Ln-polynomial: see [I~] ). The 

same sort of reasoning used to prove (5) shows that defy is always 

a rational number, and indeed an element of ~[~], where d = IGI. 

These remarks give some idea of the subject matter of this 

chapter and of the type of interplay which takes place between the 

topological and the number-theoretical aspects of expressions such 

as def(P;al,...,an). A more precise description of the contents of 

the chapter is as follows: The purely number-theoretic aspects of 

the cotangent sums are considered in §16. We first give an elementary 

treatment of the exoression (3) for n=2 (this is the sum that appears 

most in the literature, in connection with modular functions and 

quadratic fields), showing its connection with the Legendre-Jacobi 

symbol and giving an elementary proof of a reciprocity law, due to 

Rademacher, from which the law of quadratic reciprocity can be 

deduced. We then consider the general case, giving a rational expres- 

sion for def(P;al,...,an) and proving a generalization of the 

Rademacher reciprocity law; the latter is then used to prove the 

above-mentioned result on the denominator of def(P;al,...,an). The 

formula giving the signature of the Brieskorn variety as a cotangent 

sum is also proved. In §17 we construct two explicit group actions 

for which the statement of the G-signature theorem reduces to the 

Rademacher reciprocity law (or rather its generalization to higher ~). 

One of these is precisely the action of a product of cyclic groups 
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on P ~ (the Bott action) which was studied in ~6. The other is a direct 
n 

generalization of the construction given by Hirzebruch ~7] for the 

case n=2, but is included because it requires the theorem of §3 for 

the L-class of a quotient space and thus provides a further link with 

the results of Chapter I. In the final section, we give a computation 

of Sign(g, Va), where V a is the manifold (I) and ~ acts by multiplying 

with an akth root of unity. The computation is exactly parallel to z k 

Brieskorn's in the case g=id. The result can be rewritten as a 

trigonometric sum by using the results of §16, the case g=id being 

the formula for Sign(Va) mentioned at the beginning of the introduction. 

That this formula involves cotangents suggests that it can be obtained 

by the use of the G-signature theorem, and indeed this can be done: 

one studies a certain hypersurface in Pn ~ invariant under the Bott 

action. However, this alternate proof will not be given here; it was 

given by Hirzebruch in the course of a series of lectures in which 

a direct proof was given of the result of Bott proved in §6 ~I]. In 

one special case, we do give an evaluation using the G-signature 

theorem. Namely, when the action of G on V a is free, we can calculate 

Sign(g, Va) by replacing the non-compact manifold V a with the bounded 

manifold V ND 2n, and if we then glue onto the boundary the D2-bundle 
a ~$2n_I s2n_ I associated to the St-bundle (V a ) ~ (Va~ )/S I, we obtain 

a closed G-manifold to which the G-signature theorem can be applied. 
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§~6. Elementar~ properties of cotangent sums 

We wish to study the trigonometrical sums 

(_1)n/2 p-1 ~ka~ ~kan 
def(p;al .... ,a,) = Z cot ... cot 

k=1 P P 
(I) 

defined in the introduction, where p is a positive integer and the 

ai's are integers prime to p. ,Ve can write (-I)n/2 for i -n in (I) 

~ince the sum is clearly zero for odd n (the substitution k~p-k 

replaces each cotangent by its negative). 

Vie begin by an elementary treatment of def(p;q,r). We shall 

later give a rational expression for (I) which simplifies, when n=2, to 

P 
def(p;q,r) = 4p Z ((k~p)) ((~)), (2) 

k= I 

where ((x)) is the standard notation 

4 

i x - Ix] - ~, if x is not an integer, 
((x)) : ~ - (3) 

O, if x is an integer. 

We can always take r=1 in (2), since r is prime to p and therefore kr 

runs over all residues (mod p) as k does. Then (2) can be rewritten 

2 def(p;q,1) = ~ (q'P)D ' (4) 

where 

P 
(q'P)D =-6p z ((~>)((~)) (5) 

k= I 

This last quantity is the "Dedekind symbol, " studied by Dedekind Is] 

in connection with the behaviour of his modular function ~(z) under 

the action of modular transformations (he used the notation (q,p), but 

we will reserve this notation for its usual meaning as the greatest 

common divisor of two integers q and p). The reason for the factor 6p 

in (5) is that it is exactly the factor required to make (q'P)D an 

integer. 

To study the expression (5), we introduce a slightly more 

convenient integer-valued function, namely 
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p-1 
f(p,q) : Z k [kp -9-] . 

k= I 

We also note the formula (valid if (p,q)=1, 

p-1 
Z [~] = (p-1)(q-1) 

k:1 2 

(6) 

as will always be assumed) 

(7) 

This can be obtained by counting the lattice points below the diagonal 

of the rectangle 0<x<p, 0<y<q, or by substituting p-k for ~ in (6). 

Since (p,q)= I , the set of numbers qk- p[~] runs over a complete 

set of non-zero residues (mod p) as ~ does, so 

p . 1  p-1 
(qk - p[~k])2 : Z k ~ 

k~ 1 ~ k= 1 

or, evaluating the various terms, 

(q~ - 1)(p-1)(2p - I) 

On the other hand, 

q-1 
f(q,p) = Z x [x -2] : Z ( 

x= I ~ O<x<q O<k<~ xp/q 

12 q f(p,q) + 6 p ]2 = O. (8) 
k=1 

x) 

O<k<p [ p'~] +l.<'ir-<q- 1 

p-1 1 q~ ~pk -[~]) 
: z ~( _q_[ ]2 

k=1 

(2~-1)(q-1)(p-1) I p;1 ~pk 
: ~ 2 [ ]~" (9) 

k= I 

Combining (8) and (9), we obtain 

q f(P'9) + P f(q'P) = ~2 (p-1)(q-1)(8pq-p-q-1). (10) 

On the other hand, it is easy to write f(p,q) interms of (q'P)D : 

f(p,q) : ~ (p-1)(4pq - 2q - 3p) - ~ (q'P)D (I0~) 

(notice that it follows immediately from this formula that (q'P)D is 

an integer). Therefore we can write (10) in terms of (q'P)D: 

p~ + q2 + 1 - 3Pq ( 1 1 )  
P (P'q)D * q (q'~)D : 2 
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Equation (11)  is the reciprocity law of Dedekind. Together with the 

fact that (q'P)D only depends on the residue class of ~ mod ~, it 

suffices to define the symbol (q'P)D entirely (by a Euclidean algorithm). 

Stated in terms of the defect, eq. (11) becomes 

_ p2 q~ 
i def(q;p, 1) = 1 + + I (12)  1 def(p;q, 1) + - - . 

P q 3Pq 

This is the form in which the reciprocity law was generalized by 

Rademacher [36], who proved that 

! def(r;p,q) 
p~ + q2 + r ~ 

1 def(q; r) r 1 - 3pqr ' udef(p;q,r) + ~ P' + = (13 )  

where p,q,r are positive and mutually prime. We will prove later a 

generalization of (13) for the higher defect symbols defined in (1). 

First, however, we complete the "elementary" part of this section 

by relating the Dedekind symbol (q'P)D and the Legendre-Jacobi symbol 

(~). This symbol is defined whenever q,p are relatively prime integers 

with 2 odd (e.g. as the sign of the permutation on ~/p~ induced by 

multiplication with 4), and is given, just as in the special case 

of prime ~, by Gauf~'s lemma, namely 

N 
(~) = (-I) q'P , (~ odd, (q,p) = I), (14) 

whe re 

= • Nq, p I I x :  l"<x'< 2 ' qx - p [  ] > ] i 

Therefore, modulo 2, we have 

N = Z 1 
q'P 0 <x <p/2 

[ 2 q x / p ]  odd 

( p - 1 ) / 2  
z r ~  ] - p 

x = l  

p-1 ~__ p-1 
( p - 1 ) ( a - 1 )  

= Z [~--~] ~ Z (k-l) [~-~] = f(p,q)- 
k = l  ; k=-1 = 2 

(16)  
k even 

From (14) we deduce 

(~) ~ 2 Nq, p + I (mod 4), 

and combining equations (IOA} (16), and (17), we obtainthe desired 

relatlon between the Dedekind and Legendre-Jacobi symbols: 

(17) 

* This was known to Dedekind (Crelle 83 (1877) 262-292; Ges~mmelte 
Werke, Band I, 174-201, ~6). 
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(~) + (q'P)D " P+~2 (moa $ ) .  (18) 

Since (~) can only take on the values ±I, it is completely determined 

by (18), so that a knowledge of the Dedekind symbol also gives the 

Legendre-Jacobi symbol. Also, if we substitute (18) into the Dedekind 

reciprocity law (11), we obtain, after a short calculation, 

(~) + (~) . (p -1 ) (q -1 )  + 2 (moa ~) ,  p,q odd, (p,q): l ,  
2 

which is precisely the law of quadratic reciprocity. 

We now turn to the general case of definition (I). Our first 

goal is a rational expression for def(p;al,...,an) generalizing 

equation (2). This is given by 

Theorem I: Let ~ be a positive integer, and aj (j=l,...,n) integers 

prime to ~. Then 

def(p;a~ .... ,an) 2 n ; 

1-<k~,...,kn-<p 

Pl alk1+...+ankn 

(19) 

Proof: We will make frequent use of the well-known dual formulas 

$ k r = F O, if p$ r, (20) 
AP=I [ p, if P l r, 

PZ Ak = F O, if k $ I, (21) 
k=1 [ p, if k= I, 

th 
where in the latter formula A. is any p root of unity. Our proof of 

eq. (19) will be based on the following formula of Eisenstein: 

a 1 A.-a A.+I -1 p-1 2~ka ~k 
(( ~ )) = 2p r ~/T = ~p z sin cot --. (22) 

k= I P P 
AP= 1 

This can be proved in several ways; the easiest is to note that the 

difference of the right-hand side for a= b and a= b-1 is (using (20)) 

I Z A. -b XX.I (I-A.):-I ~ (A.I b+ XX-b) 

2-p if b~0,1 (rood p) 
I 2p ' 

I/p if b~0,1 (mo~ p) 
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From (20) we obtain the formula 

~ ( 1 P A~k Aak 
AP= 1 k= 1 
A±¢1 

th  where A i s  any p 

def(p;a~ . . . . .  an) 

k a +1 
i if X * l ,  A a -I ' 

O, if A=I, 

root of unity. Substituting this into (1) gives 

A a l + l  A an +1 

AP=I A a l - 1  A an -1 
A¢1 

Z ~ Z 

xp=l  j = l  AP=I, A . * I  
J J 

AAJ+I-1 q lp P A-kj A÷ajkjl]z 

j k .:1 '] 
J 

= w 
n 

p • 

kl,...,Xn~1 

~_~ A;  +1 A n +1 

A~ - 1 An - 1 

1 ~<kl, ..., kn~< p 

x A ÷a~kl + "'" ÷ankn A[kl...A~kn 

The sum over A can now be evaluated using (20), and the sum over kj 

(j=J ..... n) using (22). The result is precisely (19). 

Since the denominator of ((~)) is at most 2p, it follows from 

the theorem that 

n-1 
p d e f ( p ; a i  . . . . .  an) ~ ~ • (23) 

This is a sharpening of eq. (5) of the introduction, and will be 

further improved later. 

The second theorem we state for the numbers def(p;al ..... an) 

is a generalization of the Rademacher reciprocity law (12). 

Theorem 2: Let a 0 .... ,a2k be positive and mutually prime integers. 

Then 

2k 
Z 

j=0 

Here a. 
J 

^ 

-!"1 d , f ( a j ; a  0 . . . . .  a j  . . . . .  a2k ) = I - L~(P! .... " " P ~ )  
aj ao...a2k 

denotes the omission of aj, and Lk(Pl,...,pk) is the k th 
: a 2 Hirzebruch L-polynomial in the variables pj oj(a~ .... , 2k), where 

a. is the jth elementary symmetric polynomial. 
J 

(24) 
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Proof: Consider the poles of the rational function 

1 2k z aj + 1 
f(z) = -- n 

2z j=0 z aj - I 
(25)  

These clearly lie at O, Q@, and those points ~ on the unit circle with 

aj 's are prime to one another, it can z = I for some ~. Since the aj 

a i 
only happen that z = z aJ = I if ~ itself is I; therefore the pole 

of ~ at a point ~ with zaJ=1, z$I is simple and its residue can be 

calculated immediately from (25). Applying the residue theorem gives 

0 = Z reSz: t ( f ( z )  dz ) 
t ¢ ¢  

2k 
reSz=O + reSz=oo + Z Z reSz=t + reSz:1 

j=0 taj =1 
t ~ l  

-1 +--~-1 + 2kz I u2k taJ + 1 + res z 1 " f ' z ' L  t ) d z ) .  
2 a U taj 1 = j=0 i:O - 

i~j 

2t 
Finally, we find on substituting e for ~ that 

reSz:1(f(z) dz) : rest= 0( f(e 2t) • 2e t dt) 

rest= 0 ( 

I 

a0..-a2k 

coth a0t ... coth a2k t dt ) 

L 2k a.t dt j 
rest= 0 H 1 

j=0 tanh ajt t 2k+I 

By definition of the L-polynomials, however, 

2k a.t 
= Z Lr(Pl, • pr ) t 2r tanha.t " "' " 

j=0 0 r=O 

Therefore 

Lk(P 1 . . . .  ,Pk ) 
res: I ( f ( z )  d~) : % " ' a 2 k  , 

(26) 

and the proof of the theorem is complete. 

The case k=-1 of Theorem 2 is just eq. 

right-hand side of (24) is 

(12) .  For k=2, the 

I - (7p 2 - p~)/,5 abcde, 
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where a,b,c,d,e are positive and mutually prime integers and 

Pl = a2 + b2 + c2 + d2 + e2' P2 = a2b2 + "'" + d2e2° 

Just as the numbers def(p;q,r) turned out to be multiples of I/3 (eq. (4)), 

we can deduce from the reciprocity law for k=2 that 45 def(a;b,c,d,e) 

is an integer. In general, let ~k be the denominator of Lk, i.e. the 

smallest positive integer such that ~kLk(Pl , . ..,pk) is a polynomial 

with integer, coefficients. Thus ~I=3, ~2=45, and in general (see [11]) 
2k 

#k = t] 1 [ T ~ ' ]  , ( 27 )  

where ! runs over all odd primes. If we multiply ecuation (24) by 

~k a0'''a2k' the right-hand side is certainly an integer. Because 

the aj's are relatively prime, and because def(aj;a0,...,a j .... ,a2k) 

is in ~[ ~. ] (by eq. (23)), we can deduce from this that 
J 

~k def(aj;a0 ..... aj ..... a2k ) c ~ . (28) 

This is only true by the above argument if all of the a's are prime 
J 

to one another. However, to see that Mkdef(p;a~,...,an) is always 

an integer (here n=2k), we observe that its value only depends on 

the residue classes of a i (mod p), and that a i is prime to ~; therefore 

we can use Dirichlet's theorem to replace each aj by a large prime 

without changing its class in ~/p~, and so we can assume that the aj's 

are prime to one another as well as to 2. Combining this with (23) 

and the formula (27) for #k' we obtain: 

Theorem ~: Let p~1 and al ..... an (n=2k) be integers with (aj,p)=1 for 

all ~. Then def(p;a~,...,a,) is a rational number whose denominator 

divides ~k (independently of ~ and the ai's ). More precisely, the 

denominator is at most equal to 

n 

n i , (29) 

where the product runs over the odd prime divisors ~ of ~. 

We note that Theorem 3 is quite sharp. If ~ is prime to ~k' of 

course, it states that def(p;al .... ,an) is an integer (this is the 

case if ~ has no prime factor ~n+1~ but if ~ and ~k do have a common 

factor, then the bound for the denominator in (29) really can occur. 
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For n=2, for instance, def(p;q,r) is an integer if and only if p is 

not a multiple of 3 (this can be seen easily from the treatment of 

(q'P)D given at the beginning of the section). For higher n, we 

can test the sharpness of (29) by taking ~ small. Thus 

def(3;1 ..... I) = j=lZ(c°t ~) = ) + = 

has denominator exactly 3 k, and 

4 2k 
def(5;1 .... ,I) = ~ (cot ~) 

j=1 

2k 

2 
- [ (5 ÷2~5)  k~ ÷ ( 5 - 2 v 5 )  k ] 

5 k 

has denominator at most 5 [k/2] (exactly 5 [k/2] unless ~ is an odd 

multiple of 5). 

The last trigonometric sum evaluated in this seation will be the 

one giving the signature of the Brieskorn manifold V (ec. (I) of the 
a 

introduction to the chapter). It diffQrs from the previously 

considered sums in that the expression given for it will be an 

integer rather than just a rational number. The reason is that the 

sum only involves cotangents of the form cot j~ ~ odd). Just as 
2p 

k+l is I/p times an algebraic integer if ~ is we observed that c - k-1 
th 

a p root of unity (cf. the discussion leading to (3) of the intro- 

duction), we see that ~ dtself is an algebraic integer if AP=-I, 

since then the equation (c+I) p + (c-I) P = 0 leads to an algebraic 

equation for c with leading coefficient I Thus cot ~ (~ odd) is 
- " 2p 

an algebraic integer, and a rational expression involving such 

cotangents is therefore a rational integer. ~e now state 

Theorem 4: Let a~,...,an ~ 2 be integers, and 

[ I(x~ ..... xn) ~ 2~n: O<xj<aj (j=1 ..... n), 

o<X-A + ... + xn <I (mod 2) I [ 
a~ a n 

t(a~ ..... an) 

- [ I x~2~n: O< xj <a j, I< X_~al + "'" + x-Aan < 2 (rood 2) I I (30) 
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be the expression given by Brieskorn [3] for the signature of the 

variety V a. Here 0<y<l (mod 2) means that 2k<y<2k+1 for some 

integer k. Then t(a) = t(a~ ..... an) is zero if n is even, and 
n-1 

r cot j~ cot j~ . cot ~ ~ t(a) 
N j=1 2N 2a~ "" 2an 

j odd 

if n is odd, where N is any multiple of the integers al, ...,an. 

Proof: The statement for even n follows immediately on replacing 

each xj by aj-xj in (30). We could prove (31) by one of the methods 

used earlier in the section (e.g. by a residue or Fourier series 

technique or using the formula of Eisenstein), but prefer the 

following more elementary approach. Let N > 0 be as in the theorem 

and set bj = N/aj (j=l ..... n). Define a polynomial f(t) by 

(3~) 

f(t) = Z t blxl +''" + bnxn 

O<Xl<a~ 

O<xn<an 

(32) 

n b .  2 b j  
= 11 (t~ +t 

j=1 

n t b j _ t N 
= H 

j=1 1 - t OJ - 

+ ... + t(aS)bJ ) 

(33) 

If we write c for the coefficient of t r in f(t), it is clear that 
r 

the number t(a~,...,an) is precisely c1+...+CN_ I- CN+1-...-C2N_1+ 

C2N+l+...+C3N_1 - ..., i.e. 

dt 
t(a) = rest= 0 [f(t-l)g(t) ~-] (3~) 

where 

g(t) t+ + t N-I - t N+I - t 2N-I + t 2N+I 
= .~. -- .., + . . .  

t- t N I 
= (t + ... + t N-I)/(I + t N) = 

I - t " ~ " (35) 

The residue in (34) is well-defined since f(t) is a polynomial and 

f(t -I) is therefore meromorphic at t=O. Since f(t) is a polynomial, 

moreover, f(t -~) has no other pole, and it is clear from (35) that 

g(t) has poles only at points ~ with t N = -I, these being simple. The 
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residue theorem therefore gives 

t (a )  = - Z f (z )  reSt :z [  t t ~ ]  
N 
z =-1 

tbj+ 1 t+ 1 n 
= - E H • 

t N = - I  j=l ~ 1 - t N 

This is equivalent to equation (31). 

Notice that the theorem gives even more information about the 

cotangent sum appearing than the remarks preceding the theorem, for 

from these remarks it only follows that a cotangent sum involving 

terms cot j~ must be an integer, while it follows from (31) that 
2a 

the cotangent sum appearing there is actually a multiple of N. 

It is possible to prove a large number of similar results. For 

example, a specialization of a very slight generalization of Theorem 4 

(see Hirzebruch [|4) yields an integer expression for the quantity 

~/(,1~n/2 2 p - I  ja~ jan~ Z cot ... cot 
P j=1 2p 2p 

j odd 

= ! [ def(2p;a~ ..... an) - def(p;al .... ,an) ] p 

where ~ is a positive integer and the ai's are odd integers prime 

to ~. This expression gives a formula for the Browder-Livesay of 

the free involution T on the lens space ~(p;al,...,an) defined as 

the covering translation of the double covering 

L(p;al ..... a.) --~ Z(2p;al ..... a.). 

However, we have only given in this section the formulas relating 

to the topological situations considered in §§17-18. 
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§17. Group actions and Rademacher reciprocity 

In this section we construct two finite group actions on complex 

manifolds for which the equality of the G-signature theorem is 

precisely the generalized Rademacher reciprocity law proved in §16. 

To obtain the defects def(p;al,...,a,) , we have to look at manifolds 

of complex dimension ~; thus the original reciprocity law of Rademacher 

(eq. (13) of §16) corresponds to manifolds of real dimension four. 

The first action is the same as that studied in ~6, namely the 

linear action of G = ~a o×.. . ×Wan on Pn ¢, where ~a denotes the 

group of a th roots of uni~y and a0,...,a n are mutually prime integers. 

The calculation is relatively short because the fixed-point sets and 

their normal bundles were already found in ~6. 

The other action considered is the action of a finite cyclic 

group on a space obtained as the quotient of another finite group 

action on a hypersurface in complex projective space. This situation 

was used by Hirzebruch [17] to obtain the classical Rademacher recipro- 

city law from the G-signature theorem; the only difference is that for 

manifolds of dimension higher than four we need the whole L-class and 

not just the signature of certain quotient spaces, and therefore the 

use of the G-signature theorem must be replaced by the use of the 

result of ~3 of Chapter I. 

(I) ~ group action on pro~ective space 

We will use without comment the notations of §6, thus X = Pn ¢, 

G x. and X(() denotes the component of X g (for a fixed g~G) 
= ~ao "'X~an' 

given in ~6(5). It follows from the assumption that the a's are 
J 

mutually relatively prime that each X(~) is empty or consists of 

exactly one point if ~¢I : it is empty if ~ is different from all of 

the coordinates ~i of ~pand consists of the single point 

Pi = (0:...:0:1:0:...:0) 

if <=~i ~ I. We write Sign(i) 

point Pi to Z Sign(g,X), i.e. 
g£G 

Sign(i) = Z <L'(g,X)[i,[Pi]> 
geG, ~i¢I 

(i th coordinate : 1) (I) 

for the total contribution of the 

(i=O . . . . .  n). (2) 
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n 

Thus Z Sign(i) represents the total contribution to Z Sign(g,X) from 
i=O gcG 

all fixed-point set components X(~) with ~I. Similarly, we write S for 

the total contribution from the components X(1), i.e. 

s : z < L'(g,x) 1,[xO)]> (3) 
geg 

Then 
n 

S + Z Sign(i) = Z Sign(g,X) = IGI Sign X/G, (4) 
i=O geg 

by the usual formula for the signature of a quotient. Moreover, the 

action of G embeds in an action of the connected group T n+l (cf. §6), 

so G acts trivially on H ~ (X) and therefore Sign X/G = Sign X = 

Sign P ~. We can assume that n is even (otherwise all the signatures 
n 

are zero), so that Sign Pn C = i .  Since IGI = a O...a n , we obtain 

n 
S + Z Sign(i) = a0...a n (n even). 

i=O 

The Rademacher reciprocity law will thus have been exhibited as a 

special case of the G-signature formula when we have shown that: 

(5) 

^ 

Sign(i) = a0...~i...an def (ai; a 0 .... ,a i ..... an) , 

n ~j 

S = Lk(Pl ..... Pk) = resy:o [j=O N tanh ajY dy]. 

In the last equation we have used the notation of §16; thus k= n/2 

and pj = oj(a~ .... ,a~k ). 

To prove (6), we consider geG, f=~i~1. The eigenvalues of g on 

the tangent space at the isolated fixed point Pi are (cf. §6) ~-1~j 

(j=O .... ,n, j;i), so 

n ~-i<~ + I 
<L' (g,X)~, [pi] > = 

j:o - ~J I ' 

j~i 

and therefore (2) becomes 

sign(i) = z n ~. -~ 
j :o ~ .J= l  ~ i ~ - 1  

i = I j.i 

(6) 

(7) 
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-a i n( "I I Z ~ a 
iai j=0 J ~;ai - I ' 

.( = I j~i 

"(i* 1 

(~) 

where the last line has been obtained by a simple trigonometric 

identity. ~ The right-hand side of (8) is precisely the expression (6). 

To compute S, we need to evaluate L'(g,X)I on [X(1)]. Renumber 

the coordinates (for a fixed g : (~0 ..... Cn ) c G) so that ~0 ..... ~s :I' 

~i~I (i=s+1 ..... n). Then X(1) = Fs¢ , and if we denote the generator 

of H2(Es¢) by Z, we can express L'(g,X) I by 

s+1 n ~i e2y + I 
L ' (g ,  X)I = ( ta-~a~ y) n (9) 

l=s+l ~i  e2y - 1 

(eq. (10) of §6). Evaluation on [X(1)] corresponds to taking the 

coefficient of yS in (9), so we obtain 

L'(g,X)I,[X(1)]> = reSy=0 ~ (coth y)S+1 n {i e2y - 1 < n By 
i=s+1 ~i e2y - I 

L n ~ie2y + I 
= reSy=O ~ dy . 

i=0 ~i e2y - I 
( lo) 

If we sum over all gcG for which ~0 ..... ~s:l, ~s+l,...,~ n ~I, we get 

as the total contribution from P ¢ the expression 
S 

'<e2Y + I I dy~ 
reSy=O~ (c°th Y)S+1 i:!+II cai: I ~e2Y - I 

n 

reSy=0 [(coth y)S+1 H 
i:s+1 

( aicothaiY - ooth y ) dy ], 01) 

where again the last line has been obtained by using an elementary 

identity. The unsymmetric form of (11) is due to the renumbering of 

the coordinates. In general, if I is a subset of N= IO, 1,..,,nl, 

then the total contribution to S from elements gcG with ~i=I ~=~ ieI 

resy=0 [ Niei(coth y) Ni~i( aicothaiY- coth y)dy] . 

is  

* ~ l y  ~ 0 7 ) .  
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bundle of V ~ in V, we obtain from the G-signature theorem that 

ta_~ y )S+I n ~.i e2~ + I 

N~ j=s+l aje - I 

n-s+r 
It is also easy to see that j!(~r) = Y , where j is the inclusion 

map from V ~ to V; therefore 

tanh ,Ny n / o;~2Y+ 1 h 
L(~,V) j,L'(~,V) , rr ( 2 7 )  

Ny j=0 ~Y ~j e2y- 1 J 

S,,mm~ng this over ~¢H (recall that ~0 = I) and using the theorem of §3, 

we obtain 

n I ~e2Y + I ) ~*L(W) = tanh Ny N y Z 
Ny j=O ~bj= I ~e 2y 1 

n 
: tanh Ny ~ b~y (28) 

Ny j=0 tanh bjy " 

where ~ denotes the projection from V to V/H = W, b 0 = I, and the last 

line has been obtained by the usual identity. 

It follows immediately that (22) holds. Indeed, 

I <L (W) , ~, [V]> = 1 <~*L(W),[V]> Sign W = <L(W),[W]> = ~ 

n-1 
I : ~ ( coefficient of N~-- in ~'L(~) ) 

(this last equation holds because i,[V] c H2n_2(PnC ) is the Poincare 

dual of Nx ¢ ~(Pn~), and evaluation on the fundamental class in Pn C 

consists in picking out the coefficient of xn), and since N = IHi 

= Hnj=0 b j, we obtain equation (22). But the calculation (28) can also 

be used to evaluate the number Sy appearing in (21). Indeed, Y is 

defined exactly like W but with one coordinate fewer, so we have 

n b.z 
~(y) : ta~h Nz ~ (29) 

Nz ~ tanh b.z ' 
j=1 j 

where z ~ ~(Y) is the analogue a dimension lower of (~,)-ly e ~(W) 

(we use complex coefficients where ~' is an isomorphism). The 

complex manifold Y is embedded in W with a normal bundle whose first 

Chern class is precisely z, and G = ~N acts on this normal line bundle 

by multiplication with N th roots of unity. Finally, evaluation on [Y] 
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bj 
the numbers .( (1~<j,<n, j$i), and the contribution of w to Sign(~,W) 

is therefore equal to 

n bj 
,{ + 1  

We must multiply this with a i (since W(i) contains a i points, all with 

the same eigenvalues) and sum over all ~G for which W ~< = Y [J W(i), 

i.e. over all ~ with .~ bi =I, ~$I. This proves equation (20). 

To prove (21) and (22), we will need to calculate the L-class of W. 

First we evaluate the L-class of the hypersurface (12). Let i_ denote 

the inclusion of V in Pn ¢ and u the normal bundle, and let x £ h~(Pn ¢) 

be the standard generator. Clearly v is a complex line bundle with 

C1(U ) = Ny, where y = i~x E H2(y). Therefore 

tanh N~ ~ n+1 
L(V) = L(v) -I i*L(Pn¢ ) = Ny (tanh y) (23) 

To calculate ~he L-class of W = Y/H, we will use the theorem of §3. 

We must first find the fixed-point sets. Let s = (SO,...,an) ¢ H 

(here s0=l , i.e. we have identified H with IxH for convenience; thus 

s bi = I where b 0 = 1). Using the results of §6, we find 

V ~ = (Pn¢) ~ n V = U I z~V I s i * ~ ~ z.: 0 1 
~cS1 l 

= Iz~V I si~1 ~ z=01. (2~) 1 

The last equality follows because the integers 1,bl,...,b n are coprime, 

so for ~ ~ S I -Ill there can be at most one ~ with ~i=~, whereas V 

does not contain any point with only one non-zero coordinate. If we 

renumber the coordinates so that SO=...=es=1, ~s+1,...,~n~1, we find 

V ~ = I(z0:...:Zs:O:...:0)¢Pn ¢ I z~ +... + z N = 01, (25) 
s 

so that the fixed-point set of ~¢ H on V is also a hypersurface of 

degree N. Clearly its normal bundle in V is the direct sum of n-s 

copies of the restriction i'u of the Hopf bundle W over P ¢ to V ~, 
s 

and the action of s on this normal bundle consists of multiplication 

with ~s+j (j=1 ..... n-s) on the jth summand. We denote by ~ the 

standard generator of H2(ps¢) and by y= i~ its restriction to V =. 

Then, in view of (23) and of the description just given of the normal 
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To obtain S, we must sum this over all subsets I of N, getting 

S = reSy=0 [ Z n (coth y) n (aicothaiY - coth y) dy ] 
I CN icI i~I 

= reSy:0 [ N (coth y + a icothaiy - coth y) 
ion 

which is equal to the right-hand side of equation (7). 

dy ], 

(II) ~ group action on a h ypersurface 

We change our notation somewhat. We now let ~ be an odd 

integer and b~,...,bn mutually relatively prime integers (all positive). 

We write N for th~ product bl...bn and a. for the quotient N/b.. Let 
1 1 

G denote the group ~N and H the group ~biX...X~bn. The product GxH 

acts on the hypersurface 

V = IZ = (Zo:...:z n) ¢ PnCl z~ + ... + zNn = 01 (12) 

by 

( ~ ,~ i  . . . . .  ~n)O(Zo:...:Zn) : (~-iZo:~Iz1:...:~nZn), (13) 

b± 
where ~N=I and ~ i  = 1 . I t  i s  easy to  see t ha t  the map V ~Pn_l  C g iven  

by projection onto the last ~ coordinates gives an isomorphism from 

V/G onto Pn_1 ¢. The induced action of H on Pn_1 ¢ is of the type 

considered above and in §6 and acts trivially on the cohomology, so 

Sign(V/GxH) = Sign(Pn_1~/H ) = Sign Pn_1 ~ = I, (~) 

the last equality holding because of the assumption that ~ is odd. 

The quotient W =V/H is naturally a complex manifold, since 

the action of H on V, although it does have fixed points, has at a 

fixed point a representation which is a sum of the standard represen- 

tation of ~b on C , and the quotient of this standard representation 

is non-singular (the map z ~ z b gives an isomorphism ~/~b ~ ~)" We 

will apply the G-signature theorem to the action of G on W, using 

Sign(W/G) = Sign(V/gxH) = I. 05) 

Let Y be the hypersurface in W defined by 

Y = Iz~Vl z 0=01/H. (16) 
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Since G acts trivially on Y, we have YCW g for every gEG. We claim 

that, for g¢ G-111, the fixed-point set W g is the disjoint union of 

Y and finitely many isolated points. Indeed, we can identify W-Y 

with the Brieskorn variety 

a1 an i (w ,  . . . . .  w , )  ~c  n I w, + . . . + w ,  : -1 t  (17)  

b i ,  
by the map w i = (zi/Zo) and in terms of these coordinates wj for 

W-Y, the action of G is given by 

o .. , ..., ~ bn (w~, . , w , )  : (~b~ ~ w , ) .  (18)  

b i 
Therefore ~ is a fixed point of ~ if and only if ~ = 1 whenever wi$O. 

This can be the case for at most one ~ if ~ is not the identity (since 

the b.'s are relatively prime), and then the condition that w lies 
l ai -- 

on the variety (17) is w. : -I. Thu~.~ acts freely on W-Y if each 
bj 

is different from one, while if ~ l: I, ~# I, the fixed-point set 

of ~ on W-Y is the set of a i points 

a. 
I 

w ( i )  : f (o  . . . . .  w i . . . . .  o )  1 w i : - 1 1  c w. 

From this description of the action of g on W, we obtain 

N : IGI : IGI S i g n  W/G : E Sign(~,W) 

n 
= Sign W + Sy + ~ S i, (19) 

i: 1 

where Sy is the sum over ~ E g - 111 of the contribution to Sign(~,W) 

of the component Y of W , and S i is similarly the total contribution 

from the set W(i). We claim that 

S i = a i def(bi; b I ..... b" i ..... bn) , (20) 

n 
Sy = ~ s  0 [(N - coth y tanh Ny) ~ (coth b j y )  dy ] ,  (21) 

j : l  
n 

Sign W = reSy=0 [ (coth y tanh Ny) ~ (coth bjy) dy]. (22) 
j:I 

Clearly the Rademacher law follows from equations (19)-(22). 

We begin by calculating S.. If w c W(i) is an isolated fixed 
I 

point of ~, then we see from (18) that the eigenvalues of ( at w are 
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corresponds to finding the coefficient of 

G-signature theorem tells us that 

~e 2z 
Sy = Z < L(Y) ' +I [y]> 

~:I ~e2z-1 ' 
~I 

yn-2/N. Therefore the 

L~ ~ t~hN~ ~(tb0z I ~ ~2z+I 
reSz=O zn-2 s Nz = anh bjz ~N=I ~e 2z I 

n 
: reSz: 0 [dz (tanh Nz ~ coth bjz) (N coth Nz - coth z)] . 

j=1 

This completes the proof of equation (21). 
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§18. Equiyariant signature of Brieskorn varieties 

Let a = (al,...,an) be an n-tuple of integers ~2, and 

al an V : Izecnl z~ +...+zn = 1t 
a 

(1) 

be the corresponding Brieskorn variety. The group 

G = ~a X . o . X ~ a  n (2)  

(where #a is the group of a th roots of unity) acts on V a by 

~o~ = (~z~ ..... ~°~.) (~ G, z eVa). (3) 

Here [i or z.1 denotes the i th component of [, z respectively. 

We will evaluate the equivariant signatures for this action by 

using the known description of the cohomolog y of V a and the action of G 

on this cohomology. We state the general result as a theorem, and single 

out three special cases as corollaries. The first, obtained by taking 

= id, is Brieskorn's result for the signature of V a itself. The 

second is a result of Hirzebruch and JNnich on the Browder-Livesay 

invariant of a certain involution on Va defined when each aj is even. 

The third gives the equivariant signature for the action of a certain 

cyclic group embedded in G; when this action is free it embeds in a 

free S1-action the signature of which will be calculated later in this 

section. 

To state the theorem, we use abbreviated notation for n-tuples. 

Thus if [ = ([~ .... ,~n) ¢ G and j = (Jl ..... in) is an n-tuple of 

integers, we write ~J for ~i...~n. Similarly 0 < j < a means that 

0 <Jk<ak (k=1, ,n) and ~ denotes jl +... + Jn 
"'" a a± a n 

Theorem I: The signature of ~ = (~±,...,~n)~ G on V a is given by 

Sign(~,Va) = Z e (~) ~J , (4) 
0<j<a 

where 

i +I, if O<x <I (mod 2), 
~(~) = -~, if 1<x <2 (rood 2), (5) 

O, if x ~ ~. 

This can also be written as a trigonometric sum: 
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1 l + t  n 1 + ~k t-bk 
- - -  R (6) 

Sign(<'Va) : R Z 1-t k:0 I - ~k t-bk 
tN=- 1 

in+2 2N-I 
N Z cot ~j cot ~ ( 2 s 1 ~ i )  .cot ~ ( 2 s n - j )  

- 2N 2a l  " " 2an 
j:1 (7) 

j odd 

Here N is any common multiple of a~,...,an and bk=N/a k- 

s k in equation (7) are defined (mod ak) by 

~k = e2~isk/ak 

Corollary 1 (Brieskorn [3]): 

and, for n even is given by 

Sign(V a) = 

0<j<a 

(-1)~ +I 
N 

The numbers 

The signature of V is zero for n odd 
a 

(~]) : t(a) 

(~) 

2N-1 
Z 
j=1 

j odd 

(9) 

cot 2~ c o t ~ ' ' ' c o t 2 ~ n  " (10) 

If al,...,an are even, the 

sending (zl ..... Zn) to (-zl ..... -Zn) has signature 

(11) 

Corollar~ 2 (Hirzebruch and J~nich [ 1 9 ] ) :  

involution T:V ~V 
a a 

Sign(T,Va) = Z ~(~) • (-1)Ji+'"+Jn 
O<j<a 

n 

: (-I 7 
N 

2N-1 
Z 

j = l  
j odd 

be as above. 

(12) 

(13) 

Corollar 2 ~: Let N, b k 

to (zl ..... z.) = 

c°t2N tan~an" Lan " 

The ~ acts on V a by 

(tblz~, .... tbnzn) (tN:1). 

The signature of this action is given by 

Sign(e2~ih/N,Va ) = Z ~(~)  e 2 ~ i h ( j / a )  
O<j<a 

Proof: 

( 1 4 )  

in+2 2N-1 ,~{2h-j) ~ . cot ~. 05) = ~ Z C O ~  cOt2a~ "" Lan 
j:1 

j odd 

The corollaries are obtained from the theorem by specializing 
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and performing simple manipulations with the formulas. The proof that 

(4) and (6) are equal is exactly like the proof given in §16 for the 

special case ~=id (i.e. for the equality of (9) and (10)). We thus 

only need to prove e0uation (4). To do so, we use the results on the 

cohomology of V a given in Pham [35], Brieskorn [3], Hirzebruch-Mayer [20]. 

One can give a G-equivariant deformation retraction of V a onto 

a k 
U a = IZ£Val z k is real and )0 (k=1,...,n)l. (16) 

The space U a is naturally homeomorphic to the join ga1~...~u of the 
an 

discrete spaces ~a (j=1,. .., n). It follows that Va is (n-2)-connected 
J 

andH,_,(Va) is free abelian of rank k~(ak-1). We denote by w k the action 

of the generator of ~ak on H~ (Va). Let e be the~4~implex of U a that 

corresponds to 16G in the identification of U a with ga2...~gan. The 

group C~IUa) of n-chains is 2~[g]e, where ZS[G] is the group ring of g. 

Since the boundary operator from C ito Cn_ Z commutes with the action 

of G, the element 

h = ( 1 - W l ) . . .  ( 1 - W n ) e  E 2~ [ C,- ] ( 1 7 )  

is a cycle. In fact h is a generator of Hn~a ) as a 2~[G]-module: 

ak-1 
H tUa) ~ 2Z[G]h = Z'[G]/( I+Wk+.. .+w k , 1.<k.<n). (18) 

This describes ~IUa). 7~e can take as a basis the set of monomials 

w j = wJi...w jn with 0<j<a, and the action of G is given in the obvious 
ak-1 

way by taking into account the relations 1+Wk+...+w k =0. Finally, 

the intersection form on H~Ua) is given by 

S(xh, yh) : E(~y~) (~,y~[G]), (19) 

w h e ~  ~ = O - w , ) . . .  ( 1 - w , )  c ~ [ G ]  and E i s  d e f i n e d  on the  ~ n e r a t o r s  

of ~[G] by 
• ~ 8, if j± ..... jn=O, 

~(w~'- . . .w~") = l -~ '  i f  j,. . . . . .  jo= l ,  (2o) 
O, otherwise, 

where 8 = (-I) n(n-1)/2 . For r = (r±,...,rn) an r-tuple of integers 
r~ r n 

defined modulo a, we denote by L r the element wrh = wi ...wn h of 

(Ua) , or rather the corre,ponding element in Hn_ I (Va) under the Hn- I 
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isomorphism induced by the inclusion of U 

S(Lr, L s) : 

in V . Then (19) implies: 
a a 

(-I)t8 if ~ of the numbers sk-r k are =I and the rest =0, 

-(-I) t if ~ of the numbers sk-r k are =0 and the rest =-I, 

0 otherwise. (21) 

We define a new basis for Hn_ 1 (Va) by 

n Jk (ak-1) Jk ak-1 
= H (I + ~k Wk + "'" + ~k Wk vj k: 1 

) h (22)  

= Z ~jr Lr , (23) 
r rood a 

where ~k = e2~i/ak ' J = (j~ ..... Jn) is an n-tuple of integers Jk$O 

(mod ak) , and ~jr denotes ~jlri...~jnrn Then, from (21) and (23), 

= Z djr+ks S (Lr,Ls) 
S(vj'vk) r,s rood a 

: 8 ~. f ( j + k ) r  [ ( 1 _ f k l ) . . . ( l _ ~ n k n )  - ( _ l ) n ( l _ f [ k ~ ) . . . ( l _ ~ k n ) ]  
r mod a 

n ai 
= 8 (1-~k~),..(1-~kn)o-~[k~...~[kn) n ( Z ~J ji+ki)ri ) 

i=I r=-I 

-k 
= I 8a~'''a"(1-~)'"(1-~9(1-~O ~...~;kn) if j+k~Ootherwise(mOd, a), 

Thus the only non-zero elements of the matrix of S with respect to 

the v. (where we fix j by O<j<a) are the elements 
J 

c = = -~i ) "'" 

i _  J I2...cjJ2) 

--(-1)n(n-1)/2 (2i)n+1 sin(~i +'''+~)sin~J~al "''sin~a~t (24) 

"n~il ~(a ~) (real, positive number). (25) = l 

In particular, S is a non-degenerate form if and only if the n-tuple a 

is such that j = Jl +...+ Jn ~ ~. whenever O<j<a. 
a a i 8 n 

We introduce a new basis 
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Aj: vj+ v ., ~.: i(v ), a-J J j - Va-j (j ~ M), (26) 

where M is a set of indices i with 0<j<a such that, for any ~ with 

0<k<a, exactly one of k, a-k is in M (this is necessary to have a 

basis, since the elements (26) satisfy Aa_ j = Aj, Ba_j= -Bj). 

We now suppose that ~ is odd. Then the intersection form M is 

symmetric, and we obtain (j,k E M) 

S(Aj,Ak) = 2 3jk cj, S(Bj, Bk)= 2 8jk cj, S(Aj,Bk) = O, (27) 

where 8jk is the Kronecker delta. Thus S is diagonal. If we write 

: ( ~  . . . .  ,~n)  : w ~ . . .  w~ n ~ G (2~) 

2~is~a k (thus ~k = e ; the notation using the w's is the one intro- 

duced to denote the action of G on Hn_1(Va)), then it is clear from (23) 

that vj is an eigenvalue of the action of ~ in homology: 

= ~ - J  = . ( 2 9 )  ~, vj vj e i0(j) vj , 

where ~-J has the meaning explained before Theorem i and 

e ( j )  : 2~  ( s ~  + . . .  + ~ j ~ ) .  (3o) 
a l  an 

Therefore 

~Aj = Aj cos 0(j) - B.j sin 0(j), ~Bj = B.j cos 0(j) + A.j sin 0(j). 

If we substitute this and equations (27), (25) into the definition of 

the equivariant signature for a manifold of dimension n0 (mod 4), we get 

Sign(~,Va) = tr(~IHn_l(Va)) - tr(~IHn_l(Va) ) 

: z 2 ~(j) cos 0(j). 
jcM 

Since ~(j) and cos 0(j) are the same for i and a-j, we can write this 

Sign(~,Va) = ~ ~(j) cos 0(j). 
O<j<a 

This is equivalent to (4) since ~ is odd. 

Now assume that n is even. Then, for j,k £ M, we have 
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S(Aj,~) = S(Bj,Bk) = 0, S(Aj,Bk) = -S(Bk,Aj) = -2i 8jk cj.. (28) 

Therefore the matrix C:Hn_1(Va) ~ Hn_ i (Va) corresponding to S after 

the introduction of the scalar product defined by the basis IAj, BjljeMl 

-2ic 
is (2~c 0 ) with respect to this basis, where ~ is the diagonal 

I-4c 2 0 
.'s (jcM). Therefore CC ~ = -C ~ has the matrix k 0 -4c ~) matrix of the cj 

with respect to his basis; this is positive definite since c. is pure 
J 

imaginary for even ~ by (25). The positive definite square root of 

this has matrix (2~cI 
0 

21ci ). Therefore the souare root of -I appearing 

in the definition of Sign(~,V) for a manifold V of dimension ~2 (mod 4) 

(see (III) of §2) has the matrix 

c/(cc,)g2 ( 0 -ic/lol ), (29) J 
: : i c / I c l  o 

that is, J is given by 

ic~ 
J(Aj) : ii~ Bj, a. (3O) 

-{oil J(Bj) : Icjl O 

If we substitute (25) for c. and observe that in2-1= -i for even ~, we get 
J 

J(Aj) = - s (J )  Bj, J(Bj)  = ~ ( j )  X.. (31) 
J 

In general, if V is a real vector space on which j:V ~ V is a map with 

square -I, and V has a basis of the form el,...,er, Jel,...,Je r, then 

for a map G:V ~V commuting with J, the trace of G thought of as a 

complex matrix on a complex vector space is tr g' + i tr G", where 

G' and G" are the matrices defined by G(ej) k 

We take for V the homology group Hn_1(Va) and for G the action of ~. 

For el,...,e r we take IAjLjeMI. The action of ~ is just as in the 

case of odd ~, i.e. 

~Aj = Aj cos ~(j) - Bj sin @(j) 

= cos 8(j) Aj + ~(j)sin 8(j) JAj, 

and we conclude that 

Sign(~,Va) = 2i Ira( tr(~(l Hn_ 1(Va) J ) 
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= 2i Z s(j) sin e(j). 
jcM 

Since e(a-j)=-e(j), sin~(a-j)=-sin @(j) for even ~, this equals 

i S s(j) sin e(j) = ~ s(j) e ie(j). 
O<j<a O<j<a 

This proves (4) for even ~ and completes the proof of Theorem I. 

We now wish to study the odd-dimensional smooth manifold 

a l  a£ 2 + . .  2 Z = IzE cn{ zl +...+zn = O, {zi{ .+{zn{ = I]. (32) 
a 

This is diffeomorphic to the boundary of V OD, where D is a disc in 6n 
a 

a k of large radius. The advantage of using the homogeneous equation Z z k = O 

is that the action of #N described in Corollary 3 of Theorem I now 

extends ~o an S -action, defined by the same formula (13) with tcS I. 

Recall that the G-signature theorem can be used to define an 

invariant of certain group actions on odd-dlmensional manifolds (Atiyah 

and Singer [I]). The definition of this "~-invariant" is as follows: 

if the disjoint union of ~ copies of a G-manifold Z is equivariantly 

diffeomorphic to the boundary of a G-manifold X, then 

I [ Sign(t,X)- L'(t,X)[Xt] I (33) 

for any tcG acting freely on Z (so that xt~ aX = ~). It has also 

been proved (Ossa [34]) that, if G = S I and the action on 2 is fixed- 

point free (i.e. G x is a finite subgroup of S I for every xeZ), then 

some multiple ~ of Z always does bound an St-manifold (we can even 

take ~ to be a power of two), and therefore the a-invariant is defined. 

It is a rational function of ~ which can only have poles at values of 

which have fixed-points on 2. The action of S I on Z given by (13) is 
a I 

certainly fixed-point free; indeed, it is clear that tES can only have 

a fixed point if tN=1. However, we will not be able to calculate the 

~-invariant of this action on the Brieskorn manifold in general. The 

problem is to find the manifold X with mE = aX; we can take m=1 and a 

X = V a~D as above, but the diffeomorphism of Za onto VaNaD can only 

be made ~N-equivariant since there is no natural action of S I on V a- 

There is, however, one case for which we can calculate the 

~-invariant, namely when the action (13) is free. This is a general 

fact: if Z is a free St-manifold, then the projection ~ ~ E/S I = Z 
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defines an St-bundle ~ over Z, and we can consider 2 as the boundary 

of the associated D2-bundle X. Clearly X t = Z for t¢ $I-111. Then 

equation (33) gives (Atiyah and Singer [I]) 

te 2x 
~(t,2) = Sign @ - < + I L(Z),[Z] > , (34) 

te 2x - I 

where x e~(Z) is the first Chern class of the complex line bundle 4 

and ~ is the following quadratic form on Hn-3(Z) (where 2n-3= dim ~): 

,(~,#) : <~#x,[z]> (~,~ ~Hn-3(z)). (35) 

now apply this with 2 = 2 (we correspondingly We write X and Z for a a a 
the X and Z above). We first have to know when the action of the group S I 

on a is free; this is the case if the ~ numbers b k =N/s k are mutually 

coprime. The quotient Z a = ~a/S I is then a complex manifold. ~ge will 

need the following facts about Z and the class a 

x = cI(~) ~ H2(Za ), (36) 

which were communicated to the author by W. D. Neumann: 

Theorem 2 (Neumann, unpublished): The cohomology of Z a 

~(Za ) = [ ~ if ~ is even ~ I Hn-1(~a) if 

0 if ! is odd j 0 if 

H~'I(Za) is free abelian of rank IIJ 0< j< a, (h~re 
consequence of the description of the intersection form 

generator of the summsnd ~ in dimension 2k, denoted Fk' 

the element (36) by 

k ~ ~k if 2k < n-2, 

x = ~ d~k if 2k~n-2. 

is 

i:n-2 I (37) 
i* n-2 

~.II ; this is a 

(I 9)) and the 

is related to 

(3~) 

Here d = N/bz...bn , which is an integer since each b k divides N and 

the bk'S are mutually coprime. The Chern class of T(Za) equals 

I n 
I +Nx n (1+bkX). (39) 

k= I 

Using this information, we can easily evaluate the right-hand side 

• is of (34) It follows immediately from (39) that the L-class of Z a 
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tanh Nx n bkX 
=(z a) : 

Nx k=1 tanh bkX 
(4o) 

Furthermore, we have 

n - 2  
x _[z a]  : -d,  ( ~ )  

and therefore the second term in (34) equals 

n-2 te2X+1~r. 
~(t, Za) - Sign @ = d • coefficient of x in 

te2X_l n~a ) 

~ dx te2X+1 tanhNx n bk x ] 
= d • resx= 0 x--W=T te 2x-I Nx N tanhbk----~ 

k=1 

i-te2x+1 n ] 
= reSx=0 L ~  tanh Nx k=H1c°th bkX dx 

n j [tz+1 zN-1 H zbk+1 dz 
= reSz=1L t-/~-1 zN+1 k=1 z~k-i 2z , 

( 4 2 )  

2~ 
where the last line has been obtained by substituting z = e The 

rational function in square brackets in (42) has, as well as the pole 

at z=1, poles at O, ~, t -i, and values of ~ with zN=-1. The factors 

b k 
z -I in the denominator do not give new poles, since the zeroes of 

these polynomials for different ~ are (except for z=1) all distinct 

because the bk'S are relatively prime, and the simple zero in the 

denominator at a point z bk = I, z~1 is offset by the vanishing of 

zN-1 in the numerator at such a point. All the poles except z=1 are 

simple and their residues therefore easy to evaluate. Applying the 

residue theorem then gives 

¢(t,Z a)_r - Sign @ = -res^u -res - res_-i~ - Z res 
N z 
z =-I 

n t -bk +1 1 NZ tz+1 n bk~ -(-11n ~ 'tuN-1 n N ~k: n " 
= 2 * ~ - t-N+1 k=1 t --~k -I z :-~ I (~3) 

To evaluate Sign @, we use equation (37). We find that ~H~-3(Za ) is 

zero if n is even, while if n is odd it is isomorphic to Z~ with 

generator x (n-3)/2. Since xn-2"ZL a ] is negative (eq. (41)), the 

signature of the quadratic form (35) is -I in the latter case; thus 

Sign ~ (-1) n - 1 
= 2 

(~) 
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Combining (43). and (44) and using the usual identity 

tN-1 I 

t N + l  N N 
z = -I 

zt+1 
zt-1 ' 

(¢5) 

we obtain: 

Theorem ~: Let bl .... ,bn be positive, mutually coprime integers, ~ a 

positive integer, N = dbl...bn, and a k = N/b k. The free sl-action 

to(z1, . . . .  z.)  = (tbxz± . . . . .  tbnzn) (t  ¢S 1) 

on the Brieskorn manifold (32) has ~-invariant (for t#1 ) given by 

1L t+z[ n 1+ tbk n ] e(t, Za) - N ~-z n - H 1 + z bk 

k=-I I -t °k k=1 ~ " 
zN=-I 

(&6) 

Notice that the values t= z in (46) do not give poles since then 

the two products in the square brackets agree. The values tbk= I, t*1, 

also do not give poles of ~(t), as one can see from the alternate 

expression (43) (by the argument given above since the bk'S are coprime 

and divide N). Therefore (46) defines a rational function of ~ whose 

only pole is at t=l, which is as it should be for the ~-invariant of 

a free circle action. 

To connect this result with the signature calculations at the 

beginning of this section, we observe that, for t E ~N - 111 ' we can 

calculate the ~-invariant by using the diffeomorphism from Z a to 

a(V a ~D), since this diffeomorphism is ~N-equivariant. Then m=1 in (33) 

and Sign(t,X) = Sign(t,Va) is the number calculated~in Corollary 3 of 

Theorem I, so we only have to calculate L'(t,Va)[V~] (we can replace 

V ~D by V everywhere if the radius of D is large enough). Because 
a a 

the b, 's are coprime, this is easy: the fixed-point set of t;1 is 
K bk 

empty unless t = 1 for some k and consists of ~. isolated points 
b;j . - b k 

with eigenvalues t (j=1,...,~,...,n) if t =1. The calculation is 

the one done in (II) of §17. We find that, for tE=1, t,1, the value 

of-L'(t,Va)[V~] is precisely the value of the first sum in 
I 

(~6) (i .e.  o f  

the sum of the first product in the square brackets), while from (15) 

we see that Sign(t,Va) is just the second sum in (46). This provides 

a check on the calculations and, incidentally, an alternate proof of 
N 

the equality of (14) and (15), at least when the numbers~kare coprime. 
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