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Preface

This book grew out of lectures given at the summer school on “Modular Forms
and their Applications” at the Sophus Lie Conference center in Nordfjordeid
in June 2004. This center, set beautifully in the fjords of the west coast of
Norway, has been the site of annual summer schools in algebra and algebraic
geometry since 1996. The schools are a joint effort between the universities in
Bergen, Oslo, Tromsø and Trondheim. They are primarily aimed at graduate
students in Norway, but also attract a large number of students from other
parts of the world. The theme varies among central topics in contemporary
mathematics, but the format is the same: three leading experts give indepen-
dent but connected series of lectures, and give exercises that the students work
on in evening sessions.

In 2004 the organizing committee consisted of Stein Arild Strømme
(Bergen), Geir Ellingsrud and Kristian Ranestad (Oslo) and Alexei Rudakov
(Trondheim). We wanted to have a summer school that introduced the stu-
dents both to the beauty of modular forms and to their varied applications in
other areas of mathematics, and were very fortunate to have Don Zagier, Jan
Bruinier and Gerard van der Geer give the lectures.

The lectures were organized in three series that are reflected in the title of
this book both by their numbering and their content. The first series treats
the classical one-variable theory and some of its many applications in number
theory, algebraic geometry and mathematical physics.

The second series, which has a more geometric flavor, gives an introduction
to the theory of Hilbert modular forms in two variables and to Hilbert modular
surfaces. In particular, it discusses Borcherds products and some geometric
and arithmetic applications.

The third gives an introduction to Siegel modular forms, both scalar- and
vector-valued, especially Siegel modular forms of degree 2, which are functions
of three complex variables. It presents a beautiful application of the theory
of curves over finite fields to Siegel modular forms by providing evidence for
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a conjecture of Harder on congruences between elliptic and Siegel modular
forms.

Günter Harder came forward with this conjecture in a colloquium lecture
in Bonn in 2003. He kindly allowed us to include his notes for this colloquium
talk in Bonn on the subject. Even though the three lecture series are strongly
connected, each of them is self contained and can be read independently of
the others.

There is quote ascribed (perhaps apocryphally) to Martin Eichler, saying
that there are five fundamental operations in mathematics: addition, sub-
traction, multiplication, division and modular forms. We hope this book will
help convince newcomers and oldtimers alike that this is only partially an
exaggeration.

Oslo, July 2007 Kristian Ranestad



Contents

Elliptic Modular Forms and Their Applications
Don Zagier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Modular Groups, Modular Functions
and Modular Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The Fundamental Domain of the Full Modular Group . . . . . . . . 5
♠ Finiteness of Class Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 The Finite Dimensionality of Mk(Γ ) . . . . . . . . . . . . . . . . . . . . . . . 8
2 First Examples: Eisenstein Series and the Discriminant Function . . . 12

2.1 Eisenstein Series and the Ring Structure of M∗(Γ1) . . . . . . . . . . 12
2.2 Fourier Expansions of Eisenstein Series . . . . . . . . . . . . . . . . . . . . . 15

♠ Identities Involving Sums of Powers of Divisors . . . . . . . . . . 18
2.3 The Eisenstein Series of Weight 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 The Discriminant Function and Cusp Forms. . . . . . . . . . . . . . . . . 20

♠ Congruences for τ(n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3 Theta Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Jacobi’s Theta Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
♠ Sums of Two and Four Squares . . . . . . . . . . . . . . . . . . . . . . . . 26
♠ The Kac–Wakimoto Conjecture . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Theta Series in Many Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
♠ Invariants of Even Unimodular Lattices . . . . . . . . . . . . . . . . 33
♠ Drums Whose Shape One Cannot Hear . . . . . . . . . . . . . . . . . 36

4 Hecke Eigenforms and L-series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1 Hecke Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 L-series of Eigenforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Modular Forms and Algebraic Number Theory . . . . . . . . . . . . . . 41

♠ Binary Quadratic Forms of Discriminant −23 . . . . . . . . . . . 42
4.4 Modular Forms Associated to Elliptic Curves

and Other Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



VIII Contents

♠ Fermat’s Last Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5 Modular Forms and Differential Operators . . . . . . . . . . . . . . . . . . . . . . . 48

5.1 Derivatives of Modular Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
♠ Modular Forms Satisfy Non-Linear Differential Equations . 49
♠ Moments of Periodic Functions . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Rankin–Cohen Brackets and Cohen–Kuznetsov Series . . . . . . . . 53
♠ Further Identities for Sums of Powers of Divisors . . . . . . . . 56
♠ Exotic Multiplications of Modular Forms . . . . . . . . . . . . . . . 56

5.3 Quasimodular Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
♠ Counting Ramified Coverings of the Torns . . . . . . . . . . . . . . 60

5.4 Linear Differential Equations and Modular Forms . . . . . . . . . . . . 61
♠ The Irrationality of ζ(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
♠ An Example Coming from Percolation Theory . . . . . . . . . . 66

6 Singular Moduli and Complex Multiplication . . . . . . . . . . . . . . . . . . . . 66
6.1 Algebraicity of Singular Moduli . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

♠ Strange Approximations to π . . . . . . . . . . . . . . . . . . . . . . . . . 73
♠ Computing Class Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
♠ Explicit Class Field Theory for Imaginary Quadratic Fields 75
♠ Solutions of Diophantine Equations . . . . . . . . . . . . . . . . . . . . 76

6.2 Norms and Traces of Singular Moduli . . . . . . . . . . . . . . . . . . . . . . 77
♠ Heights of Heegner Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
♠ The Borcherds Product Formula . . . . . . . . . . . . . . . . . . . . . . . 83

6.3 Periods and Taylor Expansions of Modular Forms . . . . . . . . . . . . 83
♠ Two Transcendence Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
♠ Hurwitz Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
♠ Generalized Hurwitz Numbers . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4 CM Elliptic Curves and CM Modular Forms . . . . . . . . . . . . . . . . 90
♠ Factorization, Primality Testing, and Cryptography . . . . . . 92
♠ Central Values of Hecke L-Series . . . . . . . . . . . . . . . . . . . . . . 95
♠ Which Primes are Sums of Two Cubes? . . . . . . . . . . . . . . . . 97

References and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Hilbert Modular Forms and Their Applications
Jan Hendrik Bruinier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
1 Hilbert Modular Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

1.1 The Hilbert Modular Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
1.2 The Baily–Borel Compactification . . . . . . . . . . . . . . . . . . . . . . . . . 109

Siegel Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
1.3 Hilbert Modular Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
1.4 Mk(Γ ) is Finite Dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
1.5 Eisenstein Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Restriction to the Diagonal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
The Example Q(

√
5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



Contents IX

1.6 The L-function of a Hilbert Modular Form . . . . . . . . . . . . . . . . . . 125
2 The Orthogonal Group O(2, n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

2.1 Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
2.2 The Clifford Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
2.3 The Spin Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Quadratic Spaces in Dimension Four . . . . . . . . . . . . . . . . . . . . 135
2.4 Rational Quadratic Spaces of Type (2, n) . . . . . . . . . . . . . . . . . . . 136

The Grassmannian Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
The Projective Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
The Tube Domain Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Heegner Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

2.5 Modular Forms for O(2, n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
2.6 The Siegel Theta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
2.7 The Hilbert Modular Group as an Orthogonal Group . . . . . . . . . 143

Hirzebruch–Zagier Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
3 Additive and Multiplicative Liftings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

3.1 The Doi–Naganuma Lift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
3.2 Borcherds Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Local Borcherds Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
The Borcherds Lift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Obstructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

3.3 Automorphic Green Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
A Second Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

3.4 CM Values of Hilbert Modular Functions . . . . . . . . . . . . . . . . . . . 168
Singular Moduli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
CM Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
CM Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
CM Values of Borcherds Products . . . . . . . . . . . . . . . . . . . . . . 173
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Siegel Modular Forms and Their Applications
Gerard van der Geer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
2 The Siegel Modular Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
3 Modular Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
4 The Fourier Expansion of a Modular Form . . . . . . . . . . . . . . . . . . . . . . 189
5 The Siegel Operator and Eisenstein Series . . . . . . . . . . . . . . . . . . . . . . . 192
6 Singular Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7 Theta Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8 The Fourier–Jacobi Development of a Siegel Modular Form . . . . . . . . 196
9 The Ring of Classical Siegel Modular Forms for Genus Two . . . . . . . . 198



X Contents

10 Moduli of Principally Polarized Complex Abelian Varieties . . . . . . . . 201
11 Compactifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
12 Intermezzo: Roots and Representations . . . . . . . . . . . . . . . . . . . . . . . . . . 207
13 Vector Bundles Defined by Representations . . . . . . . . . . . . . . . . . . . . . . 209
14 Holomorphic Differential Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
15 Cusp Forms and Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
16 The Classical Hecke Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
17 The Satake Isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
18 Relations in the Hecke Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
19 Satake Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
20 L-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
21 Liftings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
22 The Moduli Space of Principally Polarized Abelian Varieties . . . . . . . 226
23 Elliptic Curves over Finite Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
24 Counting Points on Curves of Genus 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 230
25 The Ring of Vector-Valued Siegel Modular Forms for Genus 2 . . . . . . 232
26 Harder’s Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
27 Evidence for Harder’s Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

A Congruence Between a Siegel and an Elliptic Modular Form
Günter Harder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
1 Elliptic and Siegel Modular Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
2 The Hecke Algebra and a Congruence . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
3 The Special Values of the L-function . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
4 Cohomology with Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
5 Why the Denominator? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
6 Arithmetic Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263



Elliptic Modular Forms and Their Applications

Don Zagier

Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
E-mail: zagier@mpim-bonn.mpg.de

Foreword

These notes give a brief introduction to a number of topics in the classical
theory of modular forms. Some of theses topics are (planned) to be treated
in much more detail in a book, currently in preparation, based on various
courses held at the Collège de France in the years 2000–2004. Here each topic
is treated with the minimum of detail needed to convey the main idea, and
longer proofs are omitted.

Classical (or “elliptic”) modular forms are functions in the complex upper
half-plane which transform in a certain way under the action of a discrete
subgroup Γ of SL(2,R) such as SL(2,Z). From the point of view taken here,
there are two cardinal points about them which explain why we are interested.
First of all, the space of modular forms of a given weight on Γ is finite dimen-
sional and algorithmically computable, so that it is a mechanical procedure
to prove any given identity among modular forms. Secondly, modular forms
occur naturally in connection with problems arising in many other areas of
mathematics. Together, these two facts imply that modular forms have a huge
number of applications in other fields. The principal aim of these notes – as
also of the notes on Hilbert modular forms by Bruinier and on Siegel modular
forms by van der Geer – is to give a feel for some of these applications, rather
than emphasizing only the theory. For this reason, we have tried to give as
many and as varied examples of interesting applications as possible. These
applications are placed in separate mini-subsections following the relevant
sections of the main text, and identified both in the text and in the table of
contents by the symbol ♠ . (The end of such a mini-subsection is correspond-
ingly indicated by the symbol ♥ : these are major applications.) The subjects
they cover range from questions of pure number theory and combinatorics to
differential equations, geometry, and mathematical physics.

The notes are organized as follows. Section 1 gives a basic introduction
to the theory of modular forms, concentrating on the full modular group
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Γ1 = SL(2,Z). Much of what is presented there can be found in standard
textbooks and will be familiar to most readers, but we wanted to make the
exposition self-contained. The next two sections describe two of the most im-
portant constructions of modular forms, Eisenstein series and theta series.
Here too most of the material is quite standard, but we also include a number
of concrete examples and applications which may be less well known. Sec-
tion 4 gives a brief account of Hecke theory and of the modular forms arising
from algebraic number theory or algebraic geometry whose L-series have Eu-
ler products. In the last two sections we turn to topics which, although also
classical, are somewhat more specialized; here there is less emphasis on proofs
and more on applications. Section 5 treats the aspects of the theory con-
nected with differentiation of modular forms, and in particular the differential
equations which these functions satisfy. This is perhaps the most important
single source of applications of the theory of modular forms, ranging from
irrationality and transcendence proofs to the power series arising in mirror
symmetry. Section 6 treats the theory of complex multiplication. This too is
a classical theory, going back to the turn of the (previous) century, but we try
to emphasize aspects that are more recent and less familiar: formulas for the
norms and traces of the values of modular functions at CM points, Borcherds
products, and explicit Taylor expansions of modular forms. (The last topic
is particularly pretty and has applications to quite varied problems of num-
ber theory.) A planned seventh section would have treated the integrals, or
“periods,” of modular forms, which have a rich combinatorial structure and
many applications, but had to be abandoned for reasons of space and time.
Apart from the first two, the sections are largely independent of one another
and can be read in any order. The text contains 29 numbered “Propositions”
whose proofs are given or sketched and 20 unnumbered “Theorems” which
are results quoted from the literature whose proofs are too difficult (in many
cases, much too difficult) to be given here, though in many cases we have tried
to indicate what the main ingredients are. To avoid breaking the flow of the
exposition, references and suggestions for further reading have not been given
within the main text but collected into a single section at the end. Notations
are standard (e.g., Z, Q, R and C for the integers, rationals, reals and complex
numbers, respectively, and N for the strictly positive integers). Multiplication
precedes division hierarchically, so that, for instance, 1/4π means 1/(4π) and
not (1/4)π.

The presentation in Sections 1–5 is based partly on notes taken by Chris-
tian Grundh, Magnus Dehli Vigeland and my wife, Silke Wimmer-Zagier, of
the lectures which I gave at Nordfjordeid, while that of Section 6 is partly
based on the notes taken by John Voight of an earlier course on complex
multiplication which I gave in Berekeley in 1992. I would like to thank all of
them here, but especially Silke, who read each section of the notes as it was
written and made innumerable useful suggestions concerning the exposition.
And of course special thanks to Kristian Ranestad for the wonderful week in
Nordfjordeid which he organized.
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1 Basic Definitions

In this section we introduce the basic objects of study – the group SL(2,R)
and its action on the upper half plane, the modular group, and holomorphic
modular forms – and show that the space of modular forms of any weight and
level is finite-dimensional. This is the key to the later applications.

1.1 Modular Groups, Modular Functions and Modular Forms

The upper half plane, denoted H, is the set of all complex numbers with
positive imaginary part:

H =
{
z ∈ C | I(z) > 0

}
.

The special linear group SL(2,R) acts on H in the standard way by Möbius
transformations (or fractional linear transformations):

γ =
(
a b
c d

)
: H → H , z �→ γz = γ(z) =

az + b

cz + d
.

To see that this action is well-defined, we note that the denominator is non-
zero and that H is mapped to H because, as a sinple calculation shows,

I(γz) =
I(z)

|cz + d|2 . (1)

The transitivity of the action also follows by direct calculations, or alterna-
tively we can view H as the set of classes of

{(
ω1
ω2

)
∈ C2 | ω2 �= 0, I(ω1/ω2)>0

}

under the equivalence relation of multiplication by a non-zero scalar, in which
case the action is given by ordinary matrix multiplication from the left. Notice
that the matrices ±γ act in the same way on H, so we can, and often will,
work instead with the group PSL(2,R) = SL(2,R)/{±1}.

Elliptic modular functions and modular forms are functions in H which
are either invariant or transform in a specific way under the action of a dis-
crete subgroup Γ of SL(2,R). In these introductory notes we will consider
only the group Γ1 = SL(2,Z) (the “full modular group”) and its congruence
subgroups (subgroups of finite index of Γ1 which are described by congruence
conditions on the entries of the matrices). We should mention, however, that
there are other interesting discrete subgroups of SL(2,R), most notably the
non-congruence subgroups of SL(2,Z), whose corresponding modular forms
have rather different arithmetic properties from those on the congruence sub-
groups, and subgroups related to quaternion algebras over Q, which have
a compact fundamental domain. The latter are important in the study of
both Hilbert and Siegel modular forms, treated in the other contributions in
this volume.
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The modular group takes its name from the fact that the points of the
quotient space Γ1\H are moduli (= parameters) for the isomorphism classes
of elliptic curves over C. To each point z ∈ H one can associate the lattice
Λz = Z.z + Z.1 ⊂ C and the quotient space Ez = C/Λz, which is an elliptic
curve, i.e., it is at the same time a complex curve and an abelian group.
Conversely, every elliptic curve over C can be obtained in this way, but not
uniquely: if E is such a curve, then E can be written as the quotient C/Λ
for some lattice (discrete rank 2 subgroup) Λ ⊂ C which is unique up to
“homotheties” Λ �→ λΛ with λ ∈ C∗, and if we choose an oriented basis (ω1, ω2)
of Λ (one with I(ω1/ω2) > 0) and use λ = ω−1

2 for the homothety, then we see
that E ∼= Ez for some z ∈ H, but choosing a different oriented basis replaces
z by γz for some γ ∈ Γ1. The quotient space Γ1\H is the simplest example of
what is called a moduli space, i.e., an algebraic variety whose points classify
isomorphism classes of other algebraic varieties of some fixed type. A complex-
valued function on this space is called a modular function and, by virtue of the
above discussion, can be seen as any one of four equivalent objects: a function
from Γ1\H to C, a function f : H → C satisfying the transformation equation
f(γz) = f(z) for every z ∈ H and every γ ∈ Γ1, a function assigning to every
elliptic curve E over C a complex number depending only on the isomorphism
type of E, or a function on lattices in C satisfying F (λΛ) = F (Λ) for all
lattices Λ and all λ ∈ C×, the equivalence between f and F being given in
one direction by f(z) = F (Λz) and in the other by F (Λ) = f(ω1/ω2) where
(ω1, ω2) is any oriented basis of Λ. Generally the term “modular function”, on
Γ1 or some other discrete subgroup Γ ⊂ SL(2,R), is used only for meromorphic
modular functions, i.e., Γ -invariant meromorphic functions in H which are
of exponential growth at infinity (i.e., f(x + iy) = O(eCy) as y → ∞ and
f(x + iy) = O(eC/y) as y → 0 for some C > 0), this latter condition being
equivalent to the requirement that f extends to a meromorphic function on
the compactified space Γ\H obtained by adding finitely many “cusps” to Γ\H
(see below).

It turns out, however, that for the purposes of doing interesting arithmetic
the modular functions are not enough and that one needs a more general class
of functions called modular forms. The reason is that modular functions have
to be allowed to be meromorphic, because there are no global holomorphic
functions on a compact Riemann surface, whereas modular forms, which have
a more flexible transformation behavior, are holomorphic functions (on H and,
in a suitable sense, also at the cusps). Every modular function can be repre-
sented as a quotient of two modular forms, and one can think of the modular
functions and modular forms as in some sense the analogues of rational num-
bers and integers, respectively. From the point of view of functions on lattices,
modular forms are simply functions Λ �→ F (Λ) which transform under homo-
theties by F (λΛ) = λ−kF (Λ) rather than simply by F (λΛ) = F (Λ) as before,
where k is a fixed integer called the weight of the modular form. If we translate
this back into the language of functions on H via f(z) = F (Λz) as before, then
we see that f is now required to satisfy the modular transformation property
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f

(
az + b

cz + d

)
= (cz + d)k f(z) (2)

for all z ∈ H and all
(
a b
c d

)
∈ Γ1; conversely, given a function f : H → C satis-

fying (2), we can define a funcion on lattices, homogeneous of degree −k with
respect to homotheties, by F (Z.ω1 + Z.ω2) = ω−k

2 f(ω1/ω2). As with modular
functions, there is a standard convention: when the word “modular form” (on
some discrete subgroup Γ of SL(2,R)) is used with no further adjectives, one
generally means “holomorphic modular form”, i.e., a function f on H satisfy-
ing (2) for all

(
a b
c d

)
∈ Γ which is holomorphic in H and of subexponential

growth at infinity (i.e., f satisfies the same estimate as above, but now for
all rather than some C > 0). This growth condition, which corresponds to
holomorphy at the cusps in a sense which we do not explain now, implies that
the growth at infinity is in fact polynomial; more precisely, f automatically
satisfies f(z) = O(1) as y → ∞ and f(x+ iy) = O(y−k) as y → 0. We denote
by Mk(Γ ) the space of holomorphic modular forms of weight k on Γ . As we
will see in detail for Γ = Γ1, this space is finite-dimensional, effectively com-
putable for all k, and zero for k < 0, and the algebra M∗(Γ ) :=

⊕
kMk(Γ ) of

all modular forms on Γ is finitely generated over C.
If we specialize (2) to the matrix

(
1 1
0 1

)
, which belongs to Γ1, then we see

that any modular form on Γ1 satisfies f(z + 1) = f(z) for all z ∈ H, i.e., it is
a periodic function of period 1. It is therefore a function of the quantity e2πiz ,
traditionally denoted q ; more precisely, we have the Fourier development

f(z) =
∞∑

n=0

an e
2πinz =

∞∑

n=0

an q
n

(
z ∈ H, q = e2πiz

)
, (3)

where the fact that only terms qn with n ≥ 0 occur is a consequence of (and
in the case of Γ1, in fact equivalent to) the growth conditions on f just given.
It is this Fourier development which is responsible for the great importance of
modular forms, because it turns out that there are many examples of modular
forms f for which the Fourier coefficients an in (3) are numbers that are of
interest in other domains of mathematics.

1.2 The Fundamental Domain of the Full Modular Group

In the rest of §1 we look in more detail at the modular group. Because Γ1

contains the element −1 =
(−1 0

0 −1

)
which fixes every point of H, we can

also consider the action of the quotient group Γ 1 = Γ1/{±1} = PSL(2,Z) ⊂
PSL(2,R) on H. It is clear from (2) that a modular form of odd weight on Γ1

(or on any subgroup of SL(2,R) containing −1) must vanish, so we can restrict
our attention to even k. But then the “automorphy factor” (cz + d)k in (2) is
unchanged when we replace γ ∈ Γ1 by −γ, so that we can consider equation (2)
for k even and

(
a b
c d

)
∈ Γ 1. By a slight abuse of notation, we will use the same

notation for an element γ of Γ1 and its image ±γ in Γ 1, and, for k even, will
not distinguish between the isomorphic spaces Mk(Γ1) and Mk(Γ 1).
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The group Γ 1 is generated by the two elements T =
(

1 1
0 1

)
and S =

(
0 1− 1 0

)
,

with the relations S2 = (ST )3 = 1. The actions of S and T on H are given by

S : z �→ −1/z , T : z �→ z + 1 .

Therefore f is a modular form of weight k on Γ1 precisely when f is periodic
with period 1 and satisfies the single further functional equation

f
(
−1/z

)
= zkf(z) (z ∈ H) . (4)

If we know the value of a modular form f on some group Γ at one point
z ∈ H, then equation (2) tells us the value at all points in the same Γ1-orbit
as z. So to be able to completely determine f it is enough to know the value at
one point from each orbit. This leads to the concept of a fundamental domain
for Γ , namely an open subset F ⊂ H such that no two distinct points of F
are equivalent under the action of Γ and every point z ∈ H is Γ -equivalent to
some point in the closure F of F .

Proposition 1. The set

F1 =
{
z ∈ H | |z| > 1, |(z)| < 1

2

}

is a fundamental domain for the full modular group Γ1. (See Fig. 1A.)

Proof. Take a point z ∈ H. Then {mz + n | m, n ∈ Z} is a lattice in C.
Every lattice has a point different from the origin of minimal modulus. Let
cz + d be such a point. The integers c, d must be relatively prime (otherwise
we could divide cz + d by an integer to get a new point in the lattice of even
smaller modulus). So there are integers a and b such that γ1 =

(
a b
c d

)
∈ Γ1. By

the transformation property (1) for the imaginary part y = I(z) we get that
I(γ1z) is a maximal member of {I(γz) | γ ∈ Γ1}. Set z∗ = T nγ1z = γ1z + n,

Fig. 1. The standard fundamental domain for Γ 1 and its neighbors
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where n is such that |(z∗)| ≤ 1
2 . We cannot have |z∗| < 1, because then

we would have I(−1/z∗) = I(z∗)/|z∗|2 > I(z∗) by (1), contradicting the
maximality of I(z∗). So z∗ ∈ F1, and z is equivalent under Γ1 to z∗.

Now suppose that we had two Γ1-equivalent points z1 and z2 = γz1 in F1,
with γ �= ±1. This γ cannot be of the form T n since this would contradict
the condition |(z1)|, |(z2)| < 1

2 , so γ =
(
a b
c d

)
with c �= 0. Note that

I(z) >
√

3/2 for all z ∈ F1. Hence from (1) we get
√

3
2

< I(z2) =
I(z1)

|cz1 + d|2 ≤ I(z1)
c2 I(z1)2

<
2

c2
√

3
,

which can only be satisfied if c = ±1. Without loss of generality we may
assume that Iz1 ≤ Iz2. But |±z1+d| ≥ |z1| > 1, and this gives a contradiction
with the transformation property (1).

Remarks. 1. The points on the borders of the fundamental region are Γ1-
equivalent as follows: First, the points on the two lines (z) = ± 1

2 are equiva-
lent by the action of T : z �→ z + 1. Secondly, the points on the left and right
halves of the arc |z| = 1 are equivalent under the action of S : z �→ −1/z. In
fact, these are the only equivalences for the points on the boundary. For this
reason we define F̃1 to be the semi-closure of F1 where we have added only the
boundary points with non-positive real part (see Fig. 1B). Then every point
of H is Γ1-equivalent to a unique point of F̃1, i.e., F̃1 is a strict fundamental
domain for the action of Γ1. (But terminology varies, and many people use
the words “fundamental domain” for the strict fundamental domain or for its
closure, rather than for the interior.)

2. The description of the fundamental domain F1 also implies the above-
mentioned fact that Γ1 (or Γ 1) is generated by S and T . Indeed, by the very
definition of a fundamental domain we know that F1 and its translates γF1 by
elements γ of Γ1 cover H, disjointly except for their overlapping boundaries
(a so-called “tesselation” of the upper half-plane). The neighbors of F1 are
T−1F1, SF1 and TF1 (see Fig. 1C), so one passes from any translate γF1

of F1 to one of its three neighbors by applying γSγ−1 or γT±1γ−1. In parti-
cular, if the element γ describing the passage from F1 to a given translated
fundamental domain F ′

1 = γF1 can be written as a word in S and T , then
so can the element of Γ1 which describes the motion from F1 to any of the
neighbors of F ′

1. Therefore by moving from neighbor to neighbor across the
whole upper half-plane we see inductively that this property holds for every
γ ∈ Γ1, as asserted. More generally, one sees that if one has given a fundamen-
tal domain F for any discrete group Γ , then the elements of Γ which identify
in pairs the sides of F always generate Γ .

♠ Finiteness of Class Numbers

Let D be a negative discriminant, i.e., a negative integer which is congruent
to 0 or 1 modulo 4. We consider binary quadratic forms of the form Q(x, y) =
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Ax2 + Bxy + Cy2 with A, B, C ∈ Z and B2 − 4AC = D. Such a form is
definite (i.e., Q(x, y) �= 0 for non-zero (x, y) ∈ R2) and hence has a fixed sign,
which we take to be positive. (This is equivalent to A > 0.) We also assume
that Q is primitive, i.e., that gcd(A,B,C) = 1. Denote by QD the set of
these forms. The group Γ1 (or indeed Γ 1) acts on QD by Q �→ Q ◦ γ, where
(Q ◦ γ)(x, y) = Q(ax + by, cx + dy) for γ = ±

(
a b
c d

)
∈ Γ1. We claim that the

number of equivalence classes under this action is finite. This number, called
the class number of D and denoted h(D), also has an interpretation as the
number of ideal classes (either for the ring of integers or, if D is a non-trivial
square multiple of some other discriminant, for a non-maximal order) in the
imaginary quadratic field Q(

√
D), so this claim is a special case – historically

the first one, treated in detail in Gauss’s Disquisitiones Arithmeticae – of
the general theorem that the number of ideal classes in any number field is
finite. To prove it, we observe that we can associate to any Q ∈ QD the
unique root zQ = (−B+

√
D)/2A of Q(z, 1) = 0 in the upper half-plane (here√

D = +i
√
|D| by definition and A > 0 by assumption). One checks easily

that zQ◦γ = γ−1(zQ) for any γ ∈ Γ 1, so each Γ 1-equivalence class of forms
Q ∈ QD has a unique representative belonging to the set

Qred
D =

{
[A,B,C] ∈ QD | −A < B ≤ A < C or 0 ≤ B ≤ A = C

}

(5)
of Q ∈ QD for which zQ ∈ F̃1 (the so-called reduced quadratic forms of
discriminant D), and this set is finite because C ≥ A ≥ |B| implies |D| =
4AC − B2 ≥ 3A2, so that both A and B are bounded in absolute value by√
|D|/3, after which C is fixed by C = (B2−D)/4A. This even gives us a way

to compute h(D) effectively, e.g., Qred
−47 = {[1, 1, 12], [2,±1, 6], [3,±1, 4]}

and hence h(−47) = 5. We remark that the class numbers h(D), or a small
modification of them, are themselves the coefficients of a modular form (of
weight 3/2), but this will not be discussed further in these notes. ♥

1.3 The Finite Dimensionality of Mk(Γ )

We end this section by applying the description of the fundamental domain
to show that Mk(Γ1) is finite-dimensional for every k and to get an upper
bound for its dimension. In §2 we will see that this upper bound is in fact the
correct value.

If f is a modular form of weight k on Γ1 or any other discrete group Γ ,
then f is not a well-defined function on the quotient space Γ\H, but the
transformation formula (2) implies that the order of vanishing ordz(f) at
a point z ∈ H depends only on the orbit Γz. We can therefore define a local
order of vanishing, ordP (f), for each P ∈ Γ\H. The key assertion is that the
total number of zeros of f , i.e., the sum of all of these local orders, depends
only on Γ and k. But to make this true, we have to look more carefully at
the geometry of the quotient space Γ\H, taking into account the fact that
some points (the so-called elliptic fixed points, corresponding to the points



Elliptic Modular Forms and Their Applications 9

z ∈ H which have a non-trivial stabilizer for the image of Γ in PSL(2,R)) are
singular and also that Γ\H is not compact, but has to be compactified by the
addition of one or more further points called cusps. We explain this for the
case Γ = Γ1.

In §1.2 we identified the quotient space Γ1\H as a set with the semi-
closure F̃1 of F1 and as a topological space with the quotient of F1 obtained
by identifying the opposite sides (lines (z) = ± 1

2 or halves of the arc |z| = 1)
of the boundary ∂F1. For a generic point of F̃1 the stabilizer subgroup of Γ 1

is trivial. But the two points ω = 1
2 (−1 + i

√
3) = e2πi/3 and i are stabilized

by the cyclic subgroups of order 3 and 2 generated by ST and S respectively.
This means that in the quotient manifold Γ1\H, ω and i are singular. (From
a metric point of view, they have neighborhoods which are not discs, but
quotients of a disc by these cyclic subgroups, with total angle 120◦ or 180◦

instead of 360◦.) If we define an integer nP for every P ∈ Γ1\H as the order
of the stabilizer in Γ 1 of any point in H representing P , then nP equals 2
or 3 if P is Γ1-equivalent to i or ω and nP = 1 otherwise. We also have to
consider the compactified quotient Γ1\H obtained by adding a point at infinity
(“cusp”) to Γ1\H. More precisely, for Y > 1 the image in Γ1\H of the part of H
above the line I(z) = Y can be identified via q = e2πiz with the punctured
disc 0 < q < e−2πY . Equation (3) tells us that a holomorphic modular form
of any weight k on Γ1 is not only a well-defined function on this punctured
disc, but extends holomorphically to the point q = 0. We therefore define
Γ1\H = Γ1\H ∪ {∞}, where the point “∞” corresponds to q = 0, with q as
a local parameter. One can also think of Γ1\H as the quotient of H by Γ1, where
H = H∪Q∪{∞} is the space obtained by adding the full Γ1-orbit Q∪{∞} of
∞ to H. We define the order of vanishing at infinity of f , denoted ord∞(f),
as the smallest integer n such that an �= 0 in the Fourier expansion (3).

Proposition 2. Let f be a non-zero modular form of weight k on Γ1. Then

∑

P∈Γ1\H

1
nP

ordP (f) + ord∞(f) =
k

12
. (6)

Proof. Let D be the closed set obtained from F1 by deleting ε-neighborhoods
of all zeros of f and also the “neighborhood of infinity” I(z) > Y = ε−1, where
ε is chosen sufficiently small that all of these neighborhoods are disjoint (see
Fig. 2.) Since f has no zeros in D, Cauchy’s theorem implies that the integral

of d
(
log f(z)

)
=
f ′(z)
f(z)

dz over the boundary of D is 0. This boundary consists

of several parts: the horizontal line from − 1
2 + iY to 1

2 + iY , the two vertical
lines from ω to − 1

2 + iY and from ω+1 to 1
2 + iY (with some ε-neighborhoods

removed), the arc of the circle |z| = 1 from ω to ω + 1 (again with some
ε-neighborhoods deleted), and the boundaries of the ε-neighborhoods of the
zeros P of f . These latter have total angle 2π if P is not an elliptic fixed point
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Fig. 2. The zeros of a modular form

(they consist of a full circle if P is an interior point of F1 and of two half-circles
if P corresponds to a boundary point of F1 different from ω, ω+ 1 or i), and
total angle π or 2π/3 if P ∼ i or ω. The corresponding contributions to the
integral are as follows. The two vertical lines together give 0, because f takes
on the same value on both and the orientations are opposite. The horizontal
line from − 1

2 +iY to 1
2 +iY gives a contribution 2πi ord∞(f), because d(log f)

is the sum of ord∞(f) dq/q and a function of q which is holomorphic at 0,
and this integral corresponds to an integral around a small circle |q| = e−2πY

around q = 0. The integral on the boundary of the deleted ε-neighborhood of
a zero P of f contributes 2πi ordP (f) if nP = 1 by Cauchy’s theorem, because
ordP (f) is the residue of d(log f(z)) at z = P , while for nP > 1 we must
divide by nP because we are only integrating over one-half or one-third of the
full circle around P . Finally, the integral along the bottom arc contributes
πik/6, as we see by breaking up this arc into its left and right halves and
applying the formula d log f(Sz) = d log f(z)+kdz/z, which is a consequence
of the transformation equation (4). Combining all of these terms with the
appropriate signs dictated by the orientation, we obtain (6). The details are
left to the reader.

Corollary 1. The dimension of Mk(Γ1) is 0 for k < 0 or k odd, while for
even k ≥ 0 we have

dimMk(Γ1) ≤
{

[k/12] + 1 if k �≡ 2 (mod 12)
[k/12] if k ≡ 2 (mod 12) .

(7)

Proof. Let m = [k/12] + 1 and choose m distinct non-elliptic points Pi ∈
Γ1\H. Given any modular forms f1, . . . , fm+1 ∈Mk(Γ1), we can find a linear
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combination f of them which vanishes in all Pi, by linear algebra. But then
f ≡ 0 by the proposition, since m > k/12, so the fi are linearly dependent.
Hence dimMk(Γ1) ≤ m. If k ≡ 2 (mod 12) we can improve the estimate by 1
by noticing that the only way to satisfy (6) is to have (at least) a simple
zero at i and a double zero at ω (contributing a total of 1/2 + 2/3 = 7/6 to∑

ordP (f)/nP ) together with k/12 − 7/6 = m− 1 further zeros, so that the
same argument now gives dimMk(Γ1) ≤ m− 1.

Corollary 2. The space M12(Γ1) has dimension ≤ 2, and if f, g ∈ M12(Γ1)
are linearly independent, then the map z �→ f(z)/g(z) gives an isomorphism
from Γ1\H ∪ {∞} to P1(C).

Proof. The first statement is a special case of Corollary 1. Suppose that f
and g are linearly independent elements of M12(Γ1). For any (0, 0) �= (λ, μ) ∈
C2 the modular form λf−μg of weight 12 has exactly one zero in Γ1\H∪{∞}
by Proposition 2, so the modular function ψ = f/g takes on every value
(μ : λ) ∈ P1(C) exactly once, as claimed.

We will make an explicit choice of f , g and ψ in §2.4, after we have introduced
the “discriminant function” Δ(z) ∈M12(Γ1).

The true interpretation of the factor 1/12 multiplying k in equation (6)
is as 1/4π times the volume of Γ1\H, taken with respect to the hyperbolic
metric. We say only a few words about this, since these ideas will not be
used again. To give a metric on a manifold is to specify the distance be-
tween any two sufficiently near points. The hyperbolic metric in H is defined
by saying that the hyperbolic distance between two points in a small neigh-
borhood of a point z = x + iy ∈ H is very nearly 1/y times the Euclidean
distance between them, so the volume element, which in Euclidean geometry is
given by the 2-form dx dy, is given in hyperbolic geometry by dμ = y−2dx dy.
Thus

Vol
(
Γ1\H) =

∫

F1

dμ =
∫ 1/2

−1/2

(∫ ∞
√

1−x2

dy

y2

)
dx

=
∫ 1/2

−1/2

dx√
1 − x2

= arcsin(x)
∣
∣∣
∣

1/2

−1/2

=
π

3
.

Now we can consider other discrete subgroups of SL(2,R) which have a fun-
damental domain of finite volume. (Such groups are usually called Fuchsian
groups of the first kind, and sometimes “lattices”, but we will reserve this lat-
ter term for discrete cocompact subgroups of Euclidean spaces.) Examples
are the subgroups Γ ⊂ Γ1 of finite index, for which the volume of Γ\H is π/3
times the index of Γ in Γ1 (or more precisely, of the image of Γ in PSL(2,R)
in Γ 1). If Γ is any such group, then essentially the same proof as for Pro-
position 2 shows that the number of Γ -inequivalent zeros of any non-zero
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modular form f ∈ Mk(Γ ) equals kVol(Γ\H)/4π, where just as in the case
of Γ1 we must count the zeros at elliptic fixed points or cusps of Γ with
appropriate multiplicities. The same argument as for Corollary 1 of Propos-
ition 2 then tells us Mk(Γ ) is finite dimensional and gives an explicit upper
bound:

Proposition 3. Let Γ be a discrete subgroup of SL(2,R) for which Γ\H has

finite volume V . Then dimMk(Γ ) ≤ kV

4π
+ 1 for all k ∈ Z.

In particular, we have Mk(Γ ) = {0} for k < 0 and M0(Γ ) = C, i.e., there
are no holomorphic modular forms of negative weight on any group Γ , and
the only modular forms of weight 0 are the constants. A further consequence
is that any three modular forms on Γ are algebraically dependent. (If f, g, h
were algebraically independent modular forms of positive weights, then for
large k the dimension of Mk(Γ ) would be at least the number of monomials
in f , g, h of total weight k, which is bigger than some positive multiple of k2,
contradicting the dimension estimate given in the proposition.) Equivalent-
ly, any two modular functions on Γ are algebraically dependent, since every
modular function is a quotient of two modular forms. This is a special case
of the general fact that there cannot be more than n algebraically indepen-
dent algebraic functions on an algebraic variety of dimension n. But the most
important consequence of Proposition 3 from our point of view is that it is
the origin of the (unreasonable?) effectiveness of modular forms in number
theory: if we have two interesting arithmetic sequences {an}n≥0 and {bn}n≥0

and conjecture that they are identical (and clearly many results of number
theory can be formulated in this way), then if we can show that both

∑
anq

n

and
∑
bnq

n are modular forms of the same weight and group, we need only
verify the equality an = bn for a finite number of n in order to know that it
is true in general. There will be many applications of this principle in these
notes.

2 First Examples: Eisenstein Series
and the Discriminant Function

In this section we construct our first examples of modular forms: the Eisenstein
series Ek(z) of weight k > 2 and the discriminant function Δ(z) of weight 12,
whose definition is closely connected to the non-modular Eisenstein series
E2(z).

2.1 Eisenstein Series and the Ring Structure of M∗(Γ1)

There are two natural ways to introduce the Eisenstein series. For the first,
we observe that the characteristic transformation equation (2) of a modular
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form can be written in the form f |kγ = f for γ ∈ Γ , where f |kγ : H → C is
defined by

(
f
∣
∣
k
g
)
(z) = (cz+d)−k f

(
az + b

cz + d

)
(
z ∈ C, g =

(
a b
c d

)
∈ SL(2,R)

)
.

(8)
One checks easily that for fixed k ∈ Z, the map f �→ f |kg defines an operation
of the group SL(2,R) (i.e., f |k(g1g2) = (f |kg1)|kg2 for all g1, g2 ∈ SL(2,R))
on the vector space of holomorphic functions in H having subexponential
or polynomial growth. The space Mk(Γ ) of holomorphic modular forms of
weight k on a group Γ ⊂ SL(2,R) is then simply the subspace of this vector
space fixed by Γ .

If we have a linear action v �→ v|g of a finite group G on a vector space V ,
then an obvious way to construct a G-invariant vector in V is to start with
an arbitrary vector v0 ∈ V and form the sum v =

∑
g∈G v0|g (and to hope

that the result is non-zero). If the vector v0 is invariant under some sub-
group G0 ⊂ G, then the vector v0|g depends only on the coset G0g ∈ G0\G
and we can form instead the smaller sum v =

∑
g∈G0\G v0|g, which again is

G-invariant. If G is infinite, the same method sometimes applies, but we now
have to be careful about convergence. If the vector v0 is fixed by an infinite
subgroup G0 of G, then this improves our chances because the sum over G0\G
is much smaller than a sum over all of G (and in any case

∑
g∈G v|g has no

chance of converging since every term occurs infinitely often). In the context
when G = Γ ⊂ SL(2,R) is a Fuchsian group (acting by |k) and v0 a ra-
tional function, the modular forms obtained in this way are called Poincaré
series. An especially easy case is that when v0 is the constant function “1”
and Γ0 = Γ∞, the stabilizer of the cusp at infinity. In this case the series∑

Γ∞\Γ 1|kγ is called an Eisenstein series.
Let us look at this series more carefully when Γ = Γ1. A matrix

(
a b
c d

)
∈

SL(2,R) sends ∞ to a/c, and hence belongs to the stabilizer of ∞ if and only
if c = 0. In Γ1 these are the matrices ±

(
1 n
0 1

)
with n ∈ Z, i.e., up to sign the

matrices T n. We can assume that k is even (since there are no modular forms
of odd weight on Γ1) and hence work with Γ1 = PSL(2,Z), in which case the
stabilizer Γ∞ is the infinite cyclic group generated by T . If we multiply an
arbitrary matrix γ =

(
a b
c d

)
on the left by

(
1 n
0 1

)
, then the resulting matrix γ′ =(

a+nc b+nd
c d

)
has the same bottom row as γ. Conversely, if γ′ =

(
a′ b′
c d

)
∈ Γ1 has

the same bottom row as γ, then from (a′−a)d−(b′−b)c = det(γ)−det(γ′) = 0
and (c, d) = 1 (the elements of any row or column of a matrix in SL(2,Z) are
coprime!) we see that a′ − a = nc, b′ − b = nd for some n ∈ Z, i.e., γ′ = T nγ.
Since every coprime pair of integers occurs as the bottom row of a matrix in
SL(2,Z), these considerations give the formula

Ek(z) =
∑

γ∈Γ∞\Γ1

1
∣∣
k
γ =

∑

γ∈Γ∞\Γ 1

1
∣∣
k
γ =

1
2

∑

c, d∈Z

(c,d) = 1

1
(cz + d)k

(9)
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for the Eisenstein series (the factor 1
2 arises because (c d) and (−c − d) give

the same element of Γ1\Γ 1). It is easy to see that this sum is absolutely
convergent for k > 2 (the number of pairs (c, d) with N ≤ |cz + d| < N + 1
is the number of lattice points in an annulus of area π(N + 1)2 − πN2 and
hence is O(N), so the series is majorized by

∑∞
N=1N

1−k), and this absolute
convergence guarantees the modularity (and, since it is locally uniform in z,
also the holomorphy) of the sum. The function Ek(z) is therefore a modular
form of weight k for all even k ≥ 4. It is also clear that it is non-zero, since for
I(z) → ∞ all the terms in (9) except (c d) = (±1 0) tend to 0, the convergence
of the series being sufficiently uniform that their sum also goes to 0 (left to
the reader), so Ek(z) = 1 + o(1) �= 0.

The second natural way of introducing the Eisenstein series comes from
the interpretation of modular forms given in the beginning of §1.1, where we
identified solutions of the transformation equation (2) with functions on lat-
tices Λ ⊂ C satisfying the homogeneity condition F (λΛ) = λ−kF (Λ) under
homotheties Λ �→ λΛ. An obvious way to produce such a homogeneous func-
tion – if the series converges – is to form the sum Gk(Λ) = 1

2

∑
λ∈Λ�0 λ

−k of
the (−k)th powers of the non-zero elements of Λ. (The factor “ 1

2 ” has again
been introduce to avoid counting the vectors λ and −λ doubly when k is
even; if k is odd then the series vanishes anyway.) In terms of z ∈ H and its
associated lattice Λz = Z.z + Z.1, this becomes

Gk(z) =
1
2

∑

m,n∈Z

(m,n) 	=(0,0)

1
(mz + n)k

(k > 2, z ∈ H) , (10)

where the sum is again absolutely and locally uniformly convergent for k > 2,
guaranteeing that Gk ∈Mk(Γ1). The modularity can also be seen directly by
noting that (Gk|kγ)(z) =

∑
m,n(m

′z + n′)−k where (m′, n′) = (m,n)γ runs
over the non-zero vectors of Z2 � {(0, 0)} as (m,n) does.

In fact, the two functions (9) and (10) are proportional, as is easily seen:
any non-zero vector (m,n) ∈ Z2 can be written uniquely as r(c, d) with r (the
greatest common divisor of m and n) a positive integer and c and d coprime
integers, so

Gk(z) = ζ(k)Ek(z) , (11)

where ζ(k) =
∑

r≥1 1/rk is the value at k of the Riemann zeta function. It
may therefore seem pointless to have introduced both definitions. But in fact,
this is not the case. First of all, each definition gives a distinct point of view
and has advantages in certain settings which are encountered at later points
in the theory: the Ek definition is better in contexts like the famous Rankin-
Selberg method where one integrates the product of the Eisenstein series with
another modular form over a fundamental domain, while the Gk definition is
better for analytic calculations and for the Fourier development given in §2.2.
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Moreover, if one passes to other groups, then there are σ Eisenstein series of
each type, where σ is the number of cusps, and, although they span the same
vector space, they are not individually proportional. In fact, we will actually
want to introduce a third normalization

Gk(z) =
(k − 1)!
(2πi)k

Gk(z) (12)

because, as we will see below, it has Fourier coefficients which are rational
numbers (and even, with one exception, integers) and because it is a normal-
ized eigenfunction for the Hecke operators discussed in §4.

As a first application, we can now determine the ring structure of M∗(Γ1)

Proposition 4. The ring M∗(Γ1) is freely generated by the modular forms E4

and E6.

Corollary. The inequality (7) for the dimension of Mk(Γ1) is an equality for
all even k ≥ 0.

Proof. The essential point is to show that the modular forms E4(z) and
E6(z) are algebraically independent. To see this, we first note that the forms
E4(z)3 and E6(z)2 of weight 12 cannot be proportional. Indeed, if we had
E6(z)2 = λE4(z)3 for some (necessarily non-zero) constant λ, then the
meromorphic modular form f(z) = E6(z)/E4(z) of weight 2 would satisfy
f2 = λE4 (and also f3 = λ−1E6) and would hence be holomorphic (a function
whose square is holomorphic cannot have poles), contradicting the inequal-
ity dimM2(Γ1) ≤ 0 of Corollary 1 of Proposition 2. But any two modular
forms f1 and f2 of the same weight which are not proportional are necessarily
algebraically independent. Indeed, if P (X,Y ) is any polynomial in C[X,Y ]
such that P (f1(z), f2(z)) ≡ 0, then by considering the weights we see that
Pd(f1, f2) has to vanish identically for each homogeneous component Pd of P .
But Pd(f1, f2)/fd2 = p(f1/f2) for some polynomial p(t) in one variable, and
since p has only finitely many roots we can only have Pd(f1, f2) ≡ 0 if f1/f2
is a constant. It follows that E3

4 and E2
6 , and hence also E4 and E6, are alge-

braically independent. But then an easy calculation shows that the dimension
of the weight k part of the subring of M∗(Γ1) which they generate equals the
right-hand side of the inequality (7), so that the proposition and corollary
follow from this inequality.

2.2 Fourier Expansions of Eisenstein Series

Recall from (3) that any modular form on Γ1 has a Fourier expansion of the
form

∑∞
n=0 anq

n, where q = e2πiz. The coefficients an often contain interesting
arithmetic information, and it is this that makes modular forms important
for classical number theory. For the Eisenstein series, normalized by (12), the
coefficients are given by:
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Proposition 5. The Fourier expansion of the Eisenstein series Gk(z) (k even,
k > 2) is

Gk(z) = − Bk
2k

+
∞∑

n=1

σk−1(n) qn , (13)

where Bk is the kth Bernoulli number and where σk−1(n) for n ∈ N denotes
the sum of the (k − 1)st powers of the positive divisors of n.

We recall that the Bernoulli numbers are defined by the generating function∑∞
k=0 Bkx

k/k! = x/(ex − 1) and that the first values of Bk (k > 0 even) are
given by B2 = 1

6 , B4 = − 1
30 , B6 = 1

42 , B8 = − 1
30 , B10 = 5

66 , B12 = − 691
2730 ,

and B14 = 7
6 .

Proof. A well known and easily proved identity of Euler states that
∑

n∈Z

1
z + n

=
π

tanπz
(
z ∈ C \ Z

)
, (14)

where the sum on the left, which is not absolutely convergent, is to be inter-
preted as a Cauchy principal value ( = lim

∑N
−M where M, N tend to infinity

with M −N bounded). The function on the right is periodic of period 1 and
its Fourier expansion for z ∈ H is given by

π

tanπz
= π

cosπz
sinπz

= πi
eπiz + e−πiz

eπiz − e−πiz
= −πi 1 + q

1 − q
= −2πi

(
1
2

+
∞∑

r=1

qr
)
,

where q = e2πiz. Substitute this into (14), differentiate k− 1 times and divide
by (−1)k−1(k − 1)! to get

∑

n∈Z

1
(z + n)k

=
(−1)k−1

(k − 1)!
dk−1

dzk−1

(
π

tanπz

)
=

(−2πi)k

(k − 1)!

∞∑

r=1

rk−1 qr

(k ≥ 2, z ∈ H) ,

an identity known as Lipschitz’s formula. Now the Fourier expansion of Gk
(k > 2 even) is obtained immediately by splitting up the sum in (10) into the
terms with m = 0 and those with m �= 0:

Gk(z) =
1
2

∑

n∈Z

n	=0

1
nk

+
1
2

∑

m,n∈Z

m 	=0

1
(mz + n)k

=
∞∑

n=1

1
nk

+
∞∑

m=1

∞∑

n=−∞

1
(mz + n)k

= ζ(k) +
(2πi)k

(k − 1)!

∞∑

m=1

∞∑

r=1

rk−1 qmr

=
(2πi)k

(k − 1)!

(
− Bk

2k
+

∞∑

n=1

σk−1(n) qn
)
,

where in the last line we have used Euler’s evaluation of ζ(k) (k > 0 even) in
terms of Bernoulli numbers. The result follows.
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The first three examples of Proposition 5 are the expansions

G4(z) =
1

240
+ q + 9q2 + 28q3 + 73q4 + 126q5 + 252q6 + · · · ,

G6(z) = − 1
504

+ q + 33q2 + 244q3 + 1057q4 + · · · ,

G8(z) =
1

480
+ q + 129q2 + 2188q3 + · · · .

The other two normalizations of these functions are given by

G4(z) =
16 π4

3!
G4(z) =

π4

90
E4(z) , E4(z) = 1 + 240q + 2160q2 + · · · ,

G6(z) = −64 π6

5!
G6(z) =

π6

945
E6(z) , E6(z) = 1 − 504q − 16632q2 − · · · ,

G8(z) =
256 π8

7!
G8(z) =

π8

9450
E8(z) , E8(z) = 1 + 480q + 61920q2 + · · · .

Remark. We have discussed only Eisenstein series on the full modular group
in detail, but there are also various kinds of Eisenstein series for subgroups
Γ ⊂ Γ1 . We give one example. Recall that a Dirichlet character modulo
N ∈ N is a homomorphism χ : (Z/NZ)∗ → C∗, extended to a map χ : Z → C

(traditionally denoted by the same letter) by setting χ(n) equal to χ(n modN)
if (n,N) = 1 and to 0 otherwise. If χ is a non-trivial Dirichlet character and
k a positive integer with χ(−1) = (−1)k, then there is an Eisenstein series
having the Fourier expansion

Gk,χ(z) = ck(χ) +
∞∑

n=1

(∑

d|n
χ(d) dk−1

)
qn

which is a “modular form of weight k and character χ on Γ0(N).” (This means
that Gk,χ(az+bcz+d ) = χ(a)(cz + d)kGk,χ(z) for any z ∈ H and any

(
a b
c d

)
∈

SL(2,Z) with c ≡ 0 (mod N).) Here ck(χ) ∈ Q is a suitable constant, given
explicitly by ck(χ) = 1

2L(1 − k, χ), where L(s, χ) is the analytic continuation
of the Dirichlet series

∑∞
n=1 χ(n)n−s .

The simplest example, for N = 4 and χ = χ−4 the Dirichlet character
modulo 4 given by

χ−4(n) =

⎧
⎪⎨

⎪⎩

+1 if n ≡ 1 (mod 4) ,
−1 if n ≡ 3 (mod 4) ,
0 if n is even

(15)

and k = 1, is the series

G1,χ−4(z) = c1(χ−4)+
∞∑

n=1

⎛

⎝
∑

d|n
χ−4(d)

⎞

⎠ qn =
1
4

+ q+ q2 + q4 +2q5 + q8 + · · · .

(16)



18 D. Zagier

(The fact that L(0, χ−4) = 2c1(χ−4) =
1
2

is equivalent via the functional

equation of L(s, χ−4) to Leibnitz’s famous formula L(1, χ−4) = 1 − 1
3

+
1
5
−

· · · =
π

4
.) We will see this function again in §3.1.

♠ Identities Involving Sums of Powers of Divisors

We now have our first explicit examples of modular forms and their Fourier
expansions and can immediately deduce non-trivial number-theoretic identi-
ties. For instance, each of the spaces M4(Γ1), M6(Γ1), M8(Γ1), M10(Γ1) and
M14(Γ1) has dimension exactly 1 by the corollary to Proposition 2, and is
therefore spanned by the Eisenstein series Ek(z) with leading coefficient 1, so
we immediately get the identities

E4(z)2 = E8(z) , E4(z)E6(z) = E10(z) ,
E6(z)E8(z) = E4(z)E10(z) = E14(z) .

Each of these can be combined with the Fourier expansion given in Proposit-
ion 5 to give an identity involving the sums-of-powers-of-divisors functions
σk−1(n), the first and the last of these being

n−1∑

m=1

σ3(m)σ3(n−m) =
σ7(n) − σ3(n)

120
,

n−1∑

m=1

σ3(m)σ9(n−m) =
σ13(n) − 11σ9(n) + 10σ3(n)

2640
.

Of course similar identities can be obtained from modular forms in higher
weights, even though the dimension of Mk(Γ1) is no longer equal to 1. For
instance, the fact that M12(Γ1) is 2-dimensional and contains the three modu-
lar forms E4E8, E2

6 and E12 implies that the three functions are linearly
dependent, and by looking at the first two terms of the Fourier expansions we
find that the relation between them is given by 441E4E8 + 250E2

6 = 691E12,
a formula which the reader can write out explicitly as an identity among sums-
of-powers-of-divisors functions if he or she is so inclined. It is not easy to obtain
any of these identities by direct number-theoretical reasoning (although in fact
it can be done). ♥

2.3 The Eisenstein Series of Weight 2

In §2.1 and §2.2 we restricted ourselves to the case when k > 2, since then
the series (9) and (10) are absolutely convergent and therefore define modular
forms of weight k. But the final formula (13) for the Fourier expansion of Gk(z)
converges rapidly and defines a holomorphic function of z also for k = 2, so
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in this weight we can simply define the Eisenstein series G2, G2 and E2 by
equations (13), (12), and (11), respectively, i.e.,

G2(z) = − 1
24

+
∞∑

n=1

σ1(n) qn = − 1
24

+ q + 3q2 + 4q3 + 7q4 + 6q5 + · · · ,

G2(z) = −4π2 G2(z) , E2(z) =
6
π2

G2(z) = 1 − 24q − 72q2 − · · · .
(17)

Moreover, the same proof as for Proposition 5 still shows that G2(z) is given
by the expression (10), if we agree to carry out the summation over n first
and then over m :

G2(z) =
1
2

∑

n	=0

1
n2

+
1
2

∑

m 	=0

∑

n∈Z

1
(mz + n)2

. (18)

The only difference is that, because of the non-absolute convergence of the
double series, we can no longer interchange the order of summation to get
the modular transformation equation G2(−1/z) = z2G2(z). (The equation
G2(z + 1) = G2(z), of course, still holds just as for higher weights.) Never-
theless, the function G2(z) and its multiples E2(z) and G2(z) do have some
modular properties and, as we will see later, these are important for many
applications.

Proposition 6. For z ∈ H and
(
a b
c d

)
∈ SL(2,Z) we have

G2

(
az + b

cz + d

)
= (cz + d)2G2(z) − πic(cz + d) . (19)

Proof. There are many ways to prove this. We sketch one, due to Hecke, since
the method is useful in many other situations. The series (10) for k = 2
does not converge absolutely, but it is just at the edge of convergence, since∑

m,n |mz + n|−λ converges for any real number λ > 2. We therefore modify
the sum slightly by introducing

G2,ε(z) =
1
2

∑

m,n

′ 1
(mz + n)2 |mz + n|2ε (z ∈ H, ε > 0) . (20)

(Here
∑′ means that the value (m,n) = (0, 0) is to be omitted from

the summation.) The new series converges absolutely and transforms by
G2,ε

(
az+b
cz+d

)
= (cz + d)2|cz + d|2εG2,ε(z). We claim that lim

ε→0
G2,ε(z) exists

and equals G2(z) − π/2y, where y = I(z). It follows that each of the three
non-holomorphic functions

G∗
2(z) = G2(z) − π

2y
, E∗

2 (z) = E2(z) − 3
πy

, G∗
2(z) = G2(z) +

1
8πy
(21)

transforms like a modular form of weight 2, and from this one easily deduces
the transformation equation (19) and its analogues for E2 and G2. To prove
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the claim, we define a function Iε by

Iε(z) =
∫ ∞

−∞

dt

(z + t)2 |z + t|2ε
(
z ∈ H, ε > − 1

2

)
.

Then for ε > 0 we can write

G2,ε−
∞∑

m=1

Iε(mz) =
∞∑

n=1

1
n2+2ε

+
∞∑

m=1

∞∑

n=−∞

[
1

(mz + n)2 |mz + n|2ε −
∫ n+1

n

dt

(mz + t)2|mz + t|2ε

]
.

Both sums on the right converge absolutely and locally uniformly for ε > − 1
2

(the second one because the expression in square brackets is O
(
|mz+n|−3−2ε

)

by the mean-value theorem, which tells us that f(t) − f(n) for any differen-
tiable function f is bounded in n ≤ t ≤ n + 1 by maxn≤u≤n+1 |f ′(u)|), so
the limit of the expression on the right as ε → 0 exists and can be obtained
simply by putting ε = 0 in each term, where it reduces to G2(z) by (18). On
the other hand, for ε > − 1

2 we have

Iε(x+ iy) =
∫ ∞

−∞

dt

(x + t+ iy)2 ((x+ t)2 + y2)ε

=
∫ ∞

−∞

dt

(t+ iy)2 (t2 + y2)ε
=

I(ε)
y1+2ε

,

where I(ε) =
∫∞
−∞(t+i)−2(t2+1)−εdt , so

∑∞
m=1 Iε(mz) = I(ε)ζ(1+2ε)/y1+2ε

for ε > 0. Finally, we have I(0) = 0 (obvious),

I ′(0) = −
∫ ∞

−∞

log(t2 + 1)
(t+ i)2

dt =
(

1 + log(t2 + 1)
t+ i

− tan−1 t

)∣∣
∣
∣

∞

−∞
= − π ,

and ζ(1+2ε) =
1
2ε

+O(1), so the product I(ε)ζ(1+2ε)/y1+2ε tends to −π/2y
as ε→ 0. The claim follows.

Remark. The transformation equation (18) says that G2 is an example of what
is called a quasimodular form, while the functions G∗

2, E∗
2 and G∗

2 defined in
(21) are so-called almost holomorphic modular forms of weight 2. We will
return to this topic in Section 5.

2.4 The Discriminant Function and Cusp Forms

For z ∈ H we define the discriminant function Δ(z) by the formula

Δ(z) = e2πiz
∞∏

n=1

(
1 − e2πinz

)24
. (22)
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(The name comes from the connection with the discriminant of the elliptic
curve Ez = C/(Z.z+Z.1), but we will not discuss this here.) Since |e2πiz| < 1
for z ∈ H, the terms of the infinite product are all non-zero and tend exponen-
tially rapidly to 1, so the product converges everywhere and defines a holomor-
phic and everywhere non-zero function in the upper half-plane. This function
turns out to be a modular form and plays a special role in the entire theory.

Proposition 7. The function Δ(z) is a modular form of weight 12 on SL(2,Z).

Proof. Since Δ(z) �= 0, we can consider its logarithmic derivative. We find

1
2πi

d

dz
log Δ(z) = 1−24

∞∑

n=1

n e2πinz

1 − e2πinz
= 1−24

∞∑

m=1

σ1(m) e2πimz = E2(z) ,

where the second equality follows by expanding
e2πinz

1 − e2πinz
as a geometric

series
∑∞
r=1 e

2πirnz and interchanging the order of summation, and the third
equality from the definition of E2(z) in (17). Now from the transformation
equation for E2 (obtained by comparing (19) and(11)) we find

1
2πi

d

dz
log

( Δ
(
az+b
cz+d

)

(cz + d)12Δ(z)

)
=

1
(cz + d)2

E2

(
az + b

cz + d

)
− 12

2πi
c

cz + d
− E2(z)

= 0 .

In other words, (Δ|12γ)(z) = C(γ)Δ(z) for all z ∈ H and all γ ∈ Γ1, where
C(γ) is a non-zero complex number depending only on γ, and where Δ|12γ is
defined as in (8). It remains to show that C(γ) = 1 for all γ. But C : Γ1 → C∗

is a homomorphism because Δ �→ Δ|12γ is a group action, so it suffices to
check this for the generators T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
of Γ1. The first is

obvious since Δ(z) is a power series in e2πiz and hence periodic of period 1,
while the second follows by substituting z = i into the equation Δ(−1/z) =
C(S) z12Δ(z) and noting that Δ(i) �= 0.

Let us look at this function Δ(z) more carefully. We know from Corollary 1
to Proposition 2 that the space M12(Γ1) has dimension at most 2, so Δ(z)
must be a linear combination of the two functions E4(z)3 and E6(z)2. From
the Fourier expansions E3

4 = 1 + 720q + · · · , E6(z)2 = 1 − 1008q + · · · and
Δ(z) = q + · · · we see that this relation is given by

Δ(z) =
1

1728
(
E4(z)3 − E6(z)2

)
. (23)

This identity permits us to give another, more explicit, version of the fact that
every modular form on Γ1 is a polynomial in E4 and E6 (Proposition 4). In-
deed, let f(z) be a modular form of arbitrary even weight k ≥ 4, with Fourier
expansion as in (3). Choose integers a, b ≥ 0 with 4a+ 6b = k (this is always
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possible) and set h(z) =
(
f(z)−a0E4(z)aE6(z)b

)
/Δ(z). This function is holo-

morphic in H (because Δ(z) �= 0) and also at infinity (because f − a0E
a
4E

b
6

has a Fourier expansion with no constant term and the Fourier expansion of
Δ begins with q), so it is a modular form of weight k − 12. By induction on
the weight, h is a polynomial in E4 and E6, and then from f = a0E

a
4E

b
6 +Δh

and (23) we see that f also is.
In the above argument we used that Δ(z) has a Fourier expansion begin-

ning q+O(q2) and that Δ(z) is never zero in the upper half-plane. We deduced
both facts from the product expansion (22), but it is perhaps worth noting
that this is not necessary: if we were simply to define Δ(z) by equation (23),
then the fact that its Fourier expansion begins with q would follow from the
knowledge of the first two Fourier coefficients of E4 and E6, and the fact that
it never vanishes in H would then follow from Proposition 2 because the total
number k/12 = 1 of Γ1-inequivalent zeros of Δ is completely accounted for
by the first-order zero at infinity.

We can now make the concrete normalization of the isomorphism between
Γ1\H and P1(C) mentioned after Corollary 2 of Proposition 2. In the notation
of that proposition, choose f(z) = E4(z)3 and g(z) = Δ(z). Their quotient is
then the modular function

j(z) =
E4(z)3

Δ(z)
= q−1 + 744 + 196884 q + 21493760 q2 + · · · ,

called the modular invariant. Since Δ(z) �= 0 for z ∈ H, this function is finite
in H and defines an isomorphism from Γ1\H to C as well as from Γ1\H to
P1(C).

The next (and most interesting) remarks about Δ(z) concern its Fourier
expansion. By multiplying out the product in (22) we obtain the expansion

Δ(z) = q

∞∏

n=1

(
1 − qn)24 =

∞∑

n=1

τ(n) qn (24)

where q = e2πiz as usual (this is the last time we will repeat this!) and the
coefficients τ(n) are certain integers, the first values being given by the table

n 1 2 3 4 5 6 7 8 9 10
τ(n) 1 −24 252 −1472 4830 −6048 −16744 84480 −113643 −115920

Ramanujan calculated the first 30 values of τ(n) in 1915 and observed several
remarkable properties, notably the multiplicativity property that τ(pq) =
τ(p)τ(q) if p and q are distinct primes (e.g., −6048 = −24 · 252 for p = 2,
q = 3) and τ(p2) = τ(p)2 − p11 if p is prime (e.g., −1472 = (−24)2 − 2048 for
p = 2). This was proved by Mordell the next year and later generalized by
Hecke to the theory of Hecke operators, which we will discuss in §4.

Ramanujan also observed that |τ(p)| was bounded by 2p5√p for primes
p < 30, and conjectured that this holds for all p. This property turned out
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to be immeasurably deeper than the assertion about multiplicativity and was
only proved in 1974 by Deligne as a consequence of his proof of the famous Weil
conjectures (and of his previous, also very deep, proof that these conjectures
implied Ramanujan’s). However, the weaker inequality |τ(p)| ≤ Cp6 with some
effective constant C > 0 is much easier and was proved in the 1930’s by Hecke.
We reproduce Hecke’s proof, since it is simple. In fact, the proof applies to
a much more general class of modular forms. Let us call a modular form on Γ1

a cusp form if the constant term a0 in the Fourier expansion (3) is zero. Since
the constant term of the Eisenstein series Gk(z) is non-zero, any modular form
can be written uniquely as a linear combination of an Eisenstein series and
a cusp form of the same weight. For the former the Fourier coefficients are
given by (13) and grow like nk−1 (since nk−1 ≤ σk−1(n) < ζ(k−1)nk−1 ). For
the latter, we have:

Proposition 8. Let f(z) be a cusp form of weight k on Γ1 with Fourier expan-
sion

∑∞
n=1 anq

n. Then |an| ≤ Cnk/2 for all n, for some constant C depending
only on f .

Proof. From equations (1) and (2) we see that the function z �→ yk/2|f(z)|
on H is Γ1-invariant. This function tends rapidly to 0 as y = I(z) → ∞
(because f(z) = O(q) by assumption and |q| = e−2πy), so from the form of
the fundamental domain of Γ1 as given in Proposition 1 it is clearly bounded.
Thus we have the estimate

|f(z)| ≤ c y−k/2 (z = x+ iy ∈ H) (25)

for some c > 0 depending only on f . Now the integral representation

an = e2πny
∫ 1

0

f(x+ iy) e−2πinx dx

for an, valid for any y > 0, show that |an| ≤ cy−k/2e2πny. Taking y = 1/n (or,
optimally, y = k/4πn) gives the estimate of the proposition with C = c e2π

(or, optimally, C = c (4πe/k)k/2 ).

Remark. The definition of cusp forms given above is actually valid only for
the full modular group Γ1 or for other groups having only one cusp. In general
one must require the vanishing of the constant term of the Fourier expansion
of f , suitably defined, at every cusp of the group Γ , in which case it again
follows that f can be estimated as in (25). Actually, it is easier to simply define
cusp forms of weight k as modular forms for which yk/2f(x+ iy) is bounded,
a definition which is equivalent but does not require the explicit knowledge of
the Fourier expansion of the form at every cusp.

♠ Congruences for τ(n)

As a mini-application of the calculations of this and the preceding sections
we prove two simple congruences for the Ramanujan tau-function defined by
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equation (24). First of all, let us check directly that the coefficient τ(n) of qn
of the function defined by (23) is integral for all n. (This fact is, of course,
obvious from equation (22).) We have

Δ =
(1 + 240A)3 − (1 − 504B)2

1728
= 5

A−B

12
+B+100A2−147B2+8000A3

(26)
with A =

∑∞
n=1 σ3(n)qn and B =

∑∞
n=1 σ5(n)qn. But σ5(n)−σ3(n) is divisib-

le by 12 for every n (because 12 divides d5 − d3 for every d), so (A − B)/12
has integral coefficients. This gives the integrality of τ(n), and even a congru-
ence modulo 2. Indeed, we actually have σ5(n) ≡ σ3(n) (mod 24), because
d3(d2 − 1) is divisible by 24 for every d, so (A − B)/12 has even coeffi-
cients and (26) gives Δ ≡ B + B2 (mod 2) or, recalling that (

∑
anq

n)2 ≡∑
anq

2n (mod 2) for every power series
∑
anq

n with integral coefficients,
τ(n) ≡ σ5(n) + σ5(n/2) (mod 2), where σ5(n/2) is defined as 0 if 2 � n. But
σ5(n), for any integer n, is congruent modulo 2 to the sum of the odd divisors
of n, and this is odd if and only if n is a square or twice a square, as one
sees by writing n = 2sn0 with n0 odd and pairing the complementary divisors
of n0. It follows that σ5(n) + σ5(n/2) is odd if and only if n is an odd square,
so we get the congruence:

τ(n) ≡
{

1 (mod 2) if n is an odd square ,
0 (mod 2) otherwise .

(27)

In a different direction, from dimM12(Γ1) = 2 we immediately deduce the
linear relation

G12(z) = Δ(z) +
691
156

(
E4(z)3

720
+
E6(z)3

1008

)

and from this a famous congruence of Ramanujan,

τ(n) ≡ σ11(n) (mod 691)
(
∀n ≥ 1

)
, (28)

where the “691” comes from the numerator of the constant term −B12/24 of
G12. ♥

3 Theta Series

If Q is a positive definite integer-valued quadratic form in m variables, then
there is an associated modular form of weight m/2, called the theta series
of Q, whose nth Fourier coefficient for every integer n ≥ 0 is the number of
representations of n by Q. This provides at the same time one of the main
constructions of modular forms and one of the most important sources of
applications of the theory. In 3.1 we consider unary theta series (m = 1), while
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the general case is discussed in 3.2. The unary case is the most classical, going
back to Jacobi, and already has many applications. It is also the basis of the
general theory, because any quadratic form can be diagonalized over Q (i.e.,
by passing to a suitable sublattice it becomes the direct sum of m quadratic
forms in one variable).

3.1 Jacobi’s Theta Series

The simplest theta series, corresponding to the unary (one-variable) quadratic
form x �→ x2, is Jacobi’s theta function

θ(z) =
∑

n∈Z

qn
2

= 1 + 2q + 2q4 + 2q9 + · · · , (29)

where z ∈ H and q = e2πiz as usual. Its modular transformation properties
are given as follows.

Proposition 9. The function θ(z) satisfies the two functional equations

θ(z + 1) = θ(z) , θ

(
−1
4z

)
=

√
2z
i
θ(z) (z ∈ H) . (30)

Proof. The first equation in (30) is obvious since θ(z) depends only on q.
For the second, we use the Poisson transformation formula. Recall that this
formula says that for any function f : R → C which is smooth and small at
infinity, we have

∑
n∈Z

f(n) =
∑

n∈Z
f̃(n), where f̃(y) =

∫∞
−∞ e2πixy f(x) dx is

the Fourier transform of f . (Proof : the sum
∑
n∈Z

f(n+x) is convergent and
defines a function g(x) which is periodic of period 1 and hence has a Fourier
expansion g(x) =

∑
n∈Z

cne
2πinx with cn =

∫ 1

0
g(x)e−2πinxdx = f̃(−n),

so
∑

n f(n) = g(0) =
∑

n cn =
∑

n f̃(−n) =
∑

n f̃(n).) Applying this to
the function f(x) = e−πtx

2
, where t is a positive real number, and noting

that

f̃(y) =
∫ ∞

−∞
e−πtx

2+2πixy dx =
e−πy

2/t

√
t

∫ ∞

−∞
e−πu

2
du =

e−πy
2/t

√
t

(substitution u =
√
t (x− iy/t) followed by a shift of the path of integration),

we obtain ∞∑

n=−∞
e−πn

2t =
1√
t

∞∑

n=−∞
e−πn

2/t (t > 0) .

This proves the second equation in (30) for z = it/2 lying on the posi-
tive imaginary axis, and the general case then follows by analytic continu-
ation.
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The point is now that the two transformations z �→ z + 1 and z �→ −1/4z
generate a subgroup of SL(2,R) which is commensurable with SL(2,Z), so
(30) implies that the function θ(z) is a modular form of weight 1/2. (We
have not defined modular forms of half-integral weight and will not discuss
their theory in these notes, but the reader can simply interpret this statement
as saying that θ(z)2 is a modular form of weight 1.) More specifically, for
every N ∈ N we have the “congruence subgroup” Γ0(N) ⊆ Γ1 = SL(2,Z),
consisting of matrices

(
a b
c d

)
∈ Γ1 with c divisible by N , and the larger group

Γ+
0 (N) = 〈Γ0(N),WN 〉 = Γ0(N) ∪ Γ0(N)WN , where WN = 1√

N

(
0 −1
N 0

)

(“Fricke involution”) is an element of SL(2,R) of order 2 which normalizes
Γ0(N). The group Γ+

0 (N) contains the elements T =
(

1 1
0 1

)
and WN for any

N . In general they generate a subgroup of infinite index, so that to check the
modularity of a given function it does not suffice to verify its behavior just
for z �→ z+ 1 and z �→ −1/Nz, but for N = 4 (like for N = 1 !) they generate
the full group and this is sufficient. The proof is simple. Since W 2

N = −1, it is
sufficient to show that the two matrices T and T̃ = W4TW

−1
4 =

(
1 0
4 1

)
generate

the image of Γ0(4) in PSL(2,R), i.e., that any element γ =
(
a b
c d

)
∈ Γ0(4) is,

up to sign, a word in T and T̃ . Now a is odd, so |a| �= 2|b|. If |a| < 2|b|, then
either b+a or b−a is smaller than b in absolute value, so replacing γ by γ ·T±1

decreases a2 + b2. If |a| > 2|b| �= 0, then either a+4b or a− 4b is smaller than
a in absolute value, so replacing γ by γ · T̃±1 decreases a2 + b2. Thus we can
keep multiplying γ on the right by powers of T and T̃ until b = 0, at which
point ±γ is a power of T̃ .

Now, by the principle “a finite number of q-coefficients suffice” formu-
lated at the end of Section 1, the mere fact that θ(z) is a modular form is
already enough to let one prove non-trivial identities. (We enunciated the
principle only in the case of forms of integral weight, but even without know-
ing the details of the theory it is clear that it then also applies to half-
integral weight, since a space of modular forms of half-integral weight can
be mapped injectively into a space of modular forms of the next higher in-
tegral weight by multiplying by θ(z).) And indeed, with almost no effort we
obtain proofs of two of the most famous results of number theory of the
17th and 18th centuries, the theorems of Fermat and Lagrange about sums of
squares.

♠ Sums of Two and Four Squares

Let r2(n) = #
{
(a, b) ∈ Z2 | a2 + b2 = n

}
be the number of repre-

sentations of an integer n ≥ 0 as a sum of two squares. Since θ(z)2 =(∑
a∈Z

qa
2)(∑

b∈Z
qb

2)
, we see that r2(n) is simply the coefficient of qn in

θ(z)2. From Proposition 9 and the just-proved fact that Γ0(4) is generated by
−Id2, T and T̃ , we find that the function θ(z)2 is a “modular form of weight 1
and character χ−4 on Γ0(4)” in the sense explained in the paragraph preceding
equation (15), where χ−4 is the Dirichlet character modulo 4 defined by (15).
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Since the Eisenstein series G1,χ−4 in (16) is also such a modular form, and
since the space of all such forms has dimension at most 1 by Proposition 3
(because Γ0(4) has index 6 in SL(2,Z) and hence volume 2π), these two func-
tions must be proportional. The proportionality factor is obviously 4, and we
obtain:

Proposition 10. Let n be a positive integer. Then the number of represen-
tations of n as a sum of two squares is 4 times the sum of (−1)(d−1)/2, where
d runs over the positive odd divisors of n .

Corollary (Theorem of Fermat). Every prime number p ≡ 1 (mod 4) is
a sum of two squares.

Proof of Corollary. We have r2(p) = 4
(
1 + (−1)(p−1)/4

)
= 8 �= 0.

The same reasoning applies to other powers of θ. In particular, the number
r4(n) of representations of an integer n as a sum of four squares is the coef-
ficient of qn in the modular form θ(z)4 of weight 2 on Γ0(4), and the space
of all such modular forms is at most two-dimensional by Proposition 3. To
find a basis for it, we use the functions G2(z) and G∗

2(z) defined in equa-
tions (17) and (21). We showed in §2.3 that the latter function transforms
with respect to SL(2,Z) like a modular form of weight 2, and it follows easily
that the three functions G∗

2(z), G∗
2(2z) and G∗

2(4z) transform like modular
forms of weight 2 on Γ0(4) (exercise!). Of course these three functions are not
holomorphic, but since G∗

2(z) differs from the holomorphic function G2(z) by
1/8πy, we see that the linear combinations G∗

2(z)−2G∗
2(2z) = G2(z)−2G2(2z)

and G∗
2(2z) − 2G∗

2(4z) = G2(2z) − 2G2(4z) are holomorphic, and since they
are also linearly independent, they provide the desired basis for M2(Γ0(4)).
Looking at the first two Fourier coefficients of θ(z)4 = 1 + 8q + · · · , we find
that θ(z)4 equals 8 (G2(z)−2G2(2z))+16 (G2(2z)−2G2(4z)). Now comparing
coefficients of qn gives:

Proposition 11. Let n be a positive integer. Then the number of representa-
tions of n as a sum of four squares is 8 times the sum of the positive divisors
of n which are not multiples of 4.

Corollary (Theorem of Lagrange). Every positive integer is a sum of four
squares. ♥

For another simple application of the q-expansion principle, we introduce
two variants θM (z) and θF (z) (“M” and “F” for “male” and “female” or “minus
sign” and “fermionic”) of the function θ(z) by inserting signs or by shifting the
indices by 1/2 in its definition:

θM (z) =
∑

n∈Z

(−1)n qn
2

= 1 − 2q + 2q4 − 2q9 + · · · ,

θF (z) =
∑

n∈Z+1/2

qn
2

= 2q1/4 + 2q9/4 + 2q25/4 + · · · .
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These are again modular forms of weight 1/2 on Γ0(4). With a little experi-
mentation, we discover the identity

θ(z)4 = θM (z)4 + θF (z)4 (31)

due to Jacobi, and by the q-expansion principle all we have to do to prove it
is to verify the equality of a finite number of coefficients (here just one). In
this particular example, though, there is also an easy combinatorial proof, left
as an exercise to the reader.

The three theta series θ, θM and θF , in a slightly different guise and
slightly different notation, play a role in many contexts, so we say a little more
about them. As well as the subgroup Γ0(N) of Γ1, one also has the principal
congruence subgroup Γ (N) = {γ ∈ Γ1 | γ ≡ Id2 (mod N)} for every integer
N ∈ N, which is more basic than Γ0(N) because it is a normal subgroup
(the kernel of the map Γ1 → SL(2,Z/NZ) given by reduction modulo N).
Exceptionally, the group Γ0(4) is isomorphic to Γ (2), simply by conjugation
by

(
2 0
0 1

)
∈ GL(2,R), so that there is a bijection between modular forms on

Γ0(4) of any weight and modular forms on Γ (2) of the same weight given by
f(z) → f(z/2). In particular, our three theta functions correspond to three
new theta functions

θ3(z) = θ(z/2) , θ4(z) = θM (z/2) , θ2(z) = θF (z/2) (32)

on Γ (2), and the relation (31) becomes θ42 + θ44 = θ43 . (Here the index “1” is
missing because the fourth member of the quartet, θ1(z) =

∑
(−1)nq(n+1/2)2/2

is identically zero, as one sees by sending n to −n− 1. It may look odd that
one keeps a whole notation for the zero function. But in fact the functions
θi(z) for 1 ≤ i ≤ 4 are just the “Thetanullwerte” or “theta zero-values” of the
two-variable series θi(z, u) =

∑
εn q

n2/2 e2πinu, where the sum is over Z or
Z + 1

2 and εn is either 1 or (−1)n, none of which vanishes identically. The
functions θi(z, u) play a basic role in the theory of elliptic functions and are
also the simplest example of Jacobi forms, a theory which is related to many
of the themes treated in these notes and is also important in connection with
Siegel modular forms of degree 2 as discussed in Part III of this book.) The
quotient group Γ1/Γ (2) ∼= SL(2,Z/2Z), which has order 6 and is isomorphic
to the symmetric group S3 on three symbols, acts as the latter on the modular
forms θi(z)8, while the fourth powers transform by

Θ(z) :=

⎛

⎝
θ2(z)4

− θ3(z)4

θ4(z)4

⎞

⎠ ⇒ Θ(z + 1) = −

⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠Θ(z),

z−2Θ

(
−1
z

)
= −

⎛

⎝
0 0 1
0 1 0
1 0 0

⎞

⎠Θ(z) .
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This illustrates the general principle that a modular form on a subgroup of
finite index of the modular group Γ1 can also be seen as a component of
a vector-valued modular form on Γ1 itself. The full ring M∗(Γ (2)) of modu-
lar forms on Γ (2) is generated by the three components of Θ(z) (or by any
two of them, since their sum is zero), while the subring M∗(Γ (2))S3 =
M∗(Γ1) is generated by the modular forms θ2(z)8 + θ3(z)8 + θ4(z)8 and(
θ2(z)4 + θ3(z)4

)(
θ3(z)4 + θ4(z)4

)(
θ4(z)4 − θ2(z)4

)
of weights 4 and 6 (which

are then equal to 2E4(z) and 2E6(z), respectively). Finally, we see that
1

256θ2(z)
8θ3(z)8θ4(z)8 is a cusp form of weight 12 on Γ1 and is, in fact, equal

to Δ(z).
This last identity has an interesting consequence. Since Δ(z) is non-zero

for all z ∈ H, it follows that each of the three theta-functions θi(z) has the
same property. (One can also see this by noting that the “visible” zero of θ2(z)
at infinity accounts for all the zeros allowed by the formula discussed in §1.3,
so that this function has no zeros at finite points, and then the same holds for
θ3(z) and θ4(z) because they are related to θ2 by a modular transformation.)
This suggests that these three functions, or equivalently their Γ0(4)-versions
θ, θM and θF , might have a product expansion similar to that of the function
Δ(z), and indeed this is the case: we have the three identities

θ(z) =
η(2z)5

η(z)2η(4z)2
, θM (z) =

η(z)2

η(2z)
, θF (z) = 2

η(4z)2

η(2z)
, (33)

where η(z) is the “Dedekind eta-function”

η(z) = Δ(z)1/24 = q1/24
∞∏

n=1

(
1 − qn

)
. (34)

The proof of (33) is immediate by the usual q-expansion principle: we multiply
the identities out (writing, e.g., the first as θ(z)η(z)2η(4z)2 = η(2z)5) and then
verify the equality of enough coefficients to account for all possible zeros of
a modular form of the corresponding weight. More efficiently, we can use our
knowledge of the transformation behavior of Δ(z) and hence of η(z) under Γ1

to see that the quotients on the right in (33) are finite at every cusp and
hence, since they also have no poles in the upper half-plane, are holomorphic
modular forms of weight 1/2, after which the equality with the theta-functions
on the left follows directly.

More generally, one can ask when a quotient of products of eta-functions
is a holomorphic modular form. Since η(z) is non-zero in H, such a quotient
never has finite zeros, and the only issue is whether the numerator vanishes to
at least the same order as the denominator at each cusp. Based on extensive
numerical calculations, I formulated a general conjecture saying that there
are essentially only finitely many such products of any given weight, and
a second explicit conjecture giving the complete list for weight 1/2 (i.e., when
the number of η’s in the numerator is one bigger than in the denominator).
Both conjectures were proved by Gerd Mersmann in a brilliant Master’s thesis.
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For the weight 1/2 result, the meaning of “essentially” is that the product
should be primitive, i.e., it should have the form

∏
η(niz)ai where the ni

are positive integers with no common factor. (Otherwise one would obtain
infinitely many examples by rescaling, e.g., one would have both θM (z) =
η(z)2/η(2z) and θM (2z) = η(2z)2/η(4z) on the list.) The classification is then
as follows:

Theorem (Mersmann). There are precisely 14 primitive eta-products which
are holomorphic modular forms of weight 1/2 :

η(z) ,
η(z)2

η(2z)
,

η(2z)2

η(z)
,

η(z) η(4z)
η(2z)

,
η(2z)3

η(z) η(4z)
,

η(2z)5

η(z)2η(4z)2
,

η(z)2η(6z)
η(2z) η(3z)

,
η(2z)2η(3z)
η(z) η(6z)

,
η(2z) η(3z)2

η(z) η(6z)
,

η(z) η(6z)2

η(2z) η(3z)
,

η(z) η(4z) η(6z)2

η(2z) η(3z) η(12z)
,

η(2z)2η(3z) η(12z)
η(z) η(4z) η(6z)

,
η(2z)5η(3z) η(12z)
η(z)2η(4z)2η(6z)2

,

η(z) η(4z) η(6z)5

η(2z)2η(3z)2η(12z)2
.

Finally, we mention that η(z) itself has the theta-series representation

η(z) =
∞∑

n=1

χ12(n) qn
2/24 = q1/24 − q25/24 − q49/24 + q121/24 + · · ·

where χ12(12m± 1) = 1, χ12(12m± 5) = −1, and χ12(n) = 0 if n is divisible
by 2 or 3. This identity was discovered numerically by Euler (in the simpler-
looking but less enlightening version

∏∞
n=1(1− qn) =

∑∞
n=1(−1)n q(3n

2+n)/2)
and proved by him only after several years of effort. From a modern point of
view, his theorem is no longer surprising because one now knows the following
beautiful general result, proved by J-P. Serre and H. Stark in 1976:

Theorem (Serre–Stark). Every modular form of weight 1/2 is a linear
combination of unary theta series.

Explicitly, this means that every modular form of weight 1/2 with respect
to any subgroup of finite index of SL(2,Z) is a linear combination of sums of
the form

∑
n∈Z

qa(n+c)2 with a ∈ Q>0 and c ∈ Q. Euler’s formula for η(z) is
a typical case of this, and of course each of the other products given in Mers-
mann’s theorem must also have a representation as a theta series. For instance,
the last function on the list, η(z)η(4z)η(6z)5/η(2z)2η(3z)2η(12z)2, has the ex-
pansion

∑
n>0, (n,6)=1 χ8(n)qn

2/24, where χ8(n) equals +1 for n ≡ ±1 (mod 8)
and −1 for n ≡ ±3 (mod 8).

We end this subsection by mentioning one more application of the Jacobi
theta series.



Elliptic Modular Forms and Their Applications 31

♠ The Kac–Wakimoto Conjecture

For any two natural numbers m and n, denote by Δm(n) the number of
representations of n as a sum of m triangular numbers (numbers of the form
a(a− 1)/2 with a integral). Since 8a(a− 1)/2+1 = (2a− 1)2, this can also be
written as the number rodd

m (8n+m) of representations of 8n+m as a sum of m
odd squares. As part of an investigation in the theory of affine superalgebras,
Kac and Wakimoto were led to conjecture the formula

Δ4s2(n) =
∑

r1, a1, ..., rs, as ∈Nodd
r1a1+···+rsas = 2n+s2

Ps(a1, . . . , as) (35)

for m of the form 4s2 (and a similar formula for m of the form 4s(s + 1) ),
where Nodd = {1, 3, 5, . . .} and Ps is the polynomial

Ps(a1, . . . , as) =

∏
i ai ·

∏
i<j

(
a2
i − a2

j

)2

4s(s−1) s!
∏2s−1
j=1 j!

.

Two proofs of this were subsequently given, one by S. Milne using elliptic func-
tions and one by myself using modular forms. Milne’s proof is very ingenious,
with a number of other interesting identities appearing along the way, but is
quite involved. The modular proof is much simpler. One first notes that, Ps
being a homogeneous polynomial of degree 2s2−s and odd in each argument,
the right-hand side of (35) is the coefficient of q2n+s2 in a function F (z) which
is a linear combination of products gh1(z) · · · ghs(z) with h1 + · · · + hs = s2,
where gh(z) =

∑
r, a∈Nodd

a2h−1qra (h ≥ 1). Since gh is a modular form (Eisen-
stein series) of weight 2h on Γ0(4), this function F is a modular form of weight
2s2 on the same group. Moreover, its Fourier expansion belongs to qs

2
Q[[q2]]

(because Ps(a1, . . . , as) vanishes if any two ai are equal, and the smallest
value of r1a1 + · · · + rsas with all ri and ai in Nodd and all ai distinct is
1 + 3 + · · ·+ 2s− 1 = s2), and from the formula given in §1 for the number of
zeros of a modular form we find that this property characterizes F (z) uniquely
in M2s2(Γ0(4)) up to a scalar factor. But θF (z)4s

2
has the same property, so

the two functions must be proportional. This proves (35) up to a scalar factor,
easily determined by setting n = 0. ♥

3.2 Theta Series in Many Variables

We now consider quadratic forms in an arbitrary number m of variables. Let
Q : Zm → Z be a positive definite quadratic form which takes integral values
on Zm. We associate to Q the theta series

ΘQ(z) =
∑

x1,...,xm∈Z

qQ(x1,...,xm) =
∞∑

n=0

RQ(n) qn , (36)
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where of course q = e2πiz as usual and RQ(n) ∈ Z≥0 denotes the number of
representations of n by Q, i.e., the number of vectors x ∈ Zm with Q(x) = n.
The basic statement is that ΘQ is always a modular form of weight m/2.
In the case of even m we can be more precise about the modular transfor-
mation behavior, since then we are in the realm of modular forms of in-
tegral weight where we have given complete definitions of what modularity
means. The quadratic form Q(x) is a linear combination of products xixj with
1 ≤ i, j ≤ m. Since xixj = xjxi, we can write Q(x) uniquely as

Q(x) =
1
2
xtAx =

1
2

m∑

i,j=1

aijxixj , (37)

where A = (aij)1≤i,j≤m is a symmetric m×m matrix and the factor 1/2 has
been inserted to avoid counting each term twice. The integrality of Q on Zm

is then equivalent to the statement that the symmetric matrix A has integral
elements and that its diagonal elements aii are even. Such an A is called an
even integral matrix. Since we want Q(x) > 0 for x �= 0, the matrix A must
be positive definite. This implies that detA > 0. Hence A is non-singular
and A−1 exists and belongs to Mm(Q). The level of Q is then defined as the
smallest positive integer N = NQ such that NA−1 is again an even integral
matrix. We also have the discriminant Δ = ΔQ of A, defined as (−1)m detA.
It is always congruent to 0 or 1 modulo 4, so there is an associated character
(Kronecker symbol) χΔ, which is the unique Dirichlet character modulo N

satisyfing χΔ(p) =
(

Δ
p

)
(Legendre symbol) for any odd prime p � N . (The

character χΔ in the special cases Δ = −4, 12 and 8 already occurred in §2.2
(eq. (15)) and §3.1.) The precise description of the modular behavior of ΘQ
for m ∈ 2Z is then:

Theorem (Hecke, Schoenberg). Let Q : Z2k → Z be a positive definite
integer-valued form in 2k variables of level N and discriminant Δ. Then ΘQ
is a modular form on Γ0(N) of weight k and character χΔ, i.e., we have
ΘQ

(
az+b
cz+d

)
= χΔ(a) (cz + d)k ΘQ(z) for all z ∈ H and

(
a b
c d

)
∈ Γ0(N).

The proof, as in the unary case, relies essentially on the Poisson sum-
mation formula, which gives the identity ΘQ(−1/Nz) = Nk/2(z/i)kΘQ∗(z),
where Q∗(x) is the quadratic form associated to NA−1, but finding the pre-
cise modular behavior requires quite a lot of work. One can also in principle
reduce the higher rank case to the one-variable case by using the fact that
every quadratic form is diagonalizable over Q, so that the sum in (36) can
be broken up into finitely many sub-sums over sublattices or translated sub-
lattices of Zm on which Q(x1, . . . , xm) can be written as a linear combination
of m squares.

There is another language for quadratic forms which is often more conve-
nient, the language of lattices. From this point of view, a quadratic form is no
longer a homogeneous quadratic polynomial in m variables, but a function Q
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from a free Z-module Λ of rank m to Z such that the associated scalar prod-
uct (x, y) = Q(x + y) −Q(x) −Q(y) (x, y ∈ Λ) is bilinear. Of course we can
always choose a Z-basis of Λ, in which case Λ is identified with Zm and Q
is described in terms of a symmetric matrix A as in (37), the scalar product
being given by (x, y) = xtAy, but often the basis-free language is more conve-
nient. In terms of the scalar product, we have a length function ‖x‖2 = (x, x)
(actually this is the square of the length, but one often says simply “length”
for convenience) and Q(x) = 1

2‖x‖2, so that the integer-valued case we are
considering corresponds to lattices in which all vectors have even length. One
often chooses the lattice Λ inside the euclidean space Rm with its standard
length function (x, x) = ‖x‖2 = x2

1 + · · · + x2
m; in this case the square root

of detA is equal to the volume of the quotient Rm/Λ, i.e., to the volume of
a fundamental domain for the action by translation of the lattice Λ on Rm. In
the case when this volume is 1, i.e., when Λ ∈ Rm has the same covolume as
Zm, the lattice is called unimodular. Let us look at this case in more detail.

♠ Invariants of Even Unimodular Lattices

If the matrix A in (37) is even and unimodular, then the above theorem tells
us that the theta series ΘQ associated to Q is a modular form on the full
modular group. This has many consequences.

Proposition 12. Let Q : Zm → Z be a positive definite even unimodular
quadratic form in m variables. Then

(i) the rank m is divisible by 8, and
(ii)the number of representations of n ∈ N by Q is given for large n by the

formula

RQ(n) = − 2k
Bk

σk−1(n) + O
(
nk/2

)
(n→ ∞) , (38)

where m = 2k and Bk denotes the kth Bernoulli number.

Proof. For the first part it is enough to show thatm cannot be an odd multiple
of 4, since if m is either odd or twice an odd number then 4m or 2m is an
odd multiple of 4 and we can apply this special case to the quadratic form
Q⊕Q⊕Q⊕Q or Q⊕Q, respectively. So we can assume that m = 2k with
k even and must show that k is divisible by 4 and that (38) holds. By the
theorem above, the theta series ΘQ is a modular form of weight k on the full
modular group Γ1 = SL(2,Z) (necessarily with trivial character, since there
are no non-trivial Dirichlet characters modulo 1). By the results of Section 2,
this modular form is a linear combination of Gk(z) and a cusp form of weight k,
and from the Fourier expansion (13) we see that the coefficient of Gk in this
decomposition equals −2k/Bk, since the constant term RQ(0) of ΘQ equals 1.
(The only vector of length 0 is the zero vector.) Now Proposition 8 implies the
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asymptotic formula (38), and the fact that k must be divisible by 4 also follows
because if k ≡ 2 (mod 4) then Bk is positive and therefore the right-hand side
of (38) tends to −∞ as k → ∞, contradicting RQ(n) ≥ 0.

The first statement of Proposition 12 is purely algebraic, and purely alge-
braic proofs are known, but they are not as simple or as elegant as the modu-
lar proof just given. No non-modular proof of the asymptotic formula (38) is
known.

Before continuing with the theory, we look at some examples, starting in
rank 8. Define the lattice Λ8 ⊂ R8 to be the set of vectors belonging to either
Z8 or (Z+ 1

2 )8 for which the sum of the coordinates is even. This is unimodular
because the lattice Z8 ∪ (Z + 1

2 )8 contains both it and Z8 with the same
index 2, and is even because x2

i ≡ xi (mod 2) for xi ∈ Z and x2
i ≡ 1

4 (mod 2)
for xi ∈ Z + 1

2 . The lattice Λ8 is sometimes denoted E8 because, if we choose
the Z-basis ui = ei− ei+1 (1 ≤ i ≤ 6), u7 = e6 + e7, u8 = − 1

2 (e1 + · · ·+ e8) of
Λ8, then every ui has length 2 and (ui, uj) for i �= j equals −1 or 0 according
whether the ith and jth vertices (in a standard numbering) of the “E8” Dynkin
diagram in the theory of Lie algebras are adjacent or not. The theta series of
Λ8 is a modular form of weight 4 on SL(2,Z) whose Fourier expansion begins
with 1, so it is necessarily equal to E4(z), and we get “for free” the information
that for every integer n ≥ 1 there are exactly 240 σ3(n) vectors x in the E8

lattice with (x, x) = 2n.
From the uniqueness of the modular form E4 ∈M4(Γ1) we in fact get that

rQ(n) = 240σ3(n) for any even unimodular quadratic form or lattice of rank 8,
but here this is not so interesting because the known classification in this rank
says that Λ8 is, in fact, the only such lattice up to isomorphism. However, in
rank 16 one knows that there are two non-equivalent lattices: the direct sum
Λ8 ⊕ Λ8 and a second lattice Λ16 which is not decomposable. Since the theta
series of both lattices are modular forms of weight 8 on the full modular group
with Fourier expansions beginning with 1, they are both equal to the Eisen-
stein series E8(z), so we have rΛ8⊕Λ8(n) = rΛ16(n) = 480 σ7(n) for all n ≥ 1,
even though the two lattices in question are distinct. (Their distinctness, and
a great deal of further information about the relative positions of vectors of
various lengths in these or in any other lattices, can be obtained by using the
theory of Jacobi forms which was mentioned briefly in §3.1 rather than just
the theory of modular forms.)

In rank 24, things become more interesting, because now dimM12(Γ1) = 2
and we no longer have uniqueness. The even unimodular lattices of this rank
were classified completely by Niemeyer in 1973. There are exactly 24 of them
up to isomorphism. Some of them have the same theta series and hence the
same number of vectors of any given length (an obvious such pair of lattices
being Λ8⊕Λ8⊕Λ8 and Λ8⊕Λ16), but not all of them do. In particular, exactly
one of the 24 lattices has the property that it has no vectors of length 2.
This is the famous Leech lattice (famous among other reasons because it has
a huge group of automorphisms, closely related to the monster group and
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other sporadic simple groups). Its theta series is the unique modular form of
weight 12 on Γ1 with Fourier expansion starting 1+0q+ · · · , so it must equal
E12(z) − 21736

691 Δ(z), i.e., the number rLeech(n) of vectors of length 2n in the
Leech lattice equals 21736

691

(
σ11(n) − τ(n)

)
for every positive integer n. This

gives another proof and an interpretation of Ramanujan’s congruence (28).
In rank 32, things become even more interesting: here the complete clas-

sification is not known, and we know that we cannot expect it very soon,
because there are more than 80 million isomorphism classes! This, too, is
a consequence of the theory of modular forms, but of a much more sophisti-
cated part than we are presenting here. Specifically, there is a fundamental
theorem of Siegel saying that the average value of the theta series associated
to the quadratic forms in a single genus (we omit the definition) is always an
Eisenstein series. Specialized to the particular case of even unimodular forms
of rank m = 2k ≡ 0 (mod 8), which form a single genus, this theorem says
that there are only finitely many such forms up to equivalence for each k and
that, if we number them Q1, . . . , QI , then we have the relation

I∑

i=1

1
wi

ΘQi(z) = mk Ek(z) , (39)

where wi is the number of automorphisms of the form Qi (i.e., the number of
matrices γ ∈ SL(m,Z) such that Qi(γx) = Qi(x) for all x ∈ Zm) and mk is
the positive rational number given by the formula

mk =
Bk
2k

B2

4
B4

8
· · · B2k−2

4k − 4
,

where Bi denotes the ith Bernoulli number. In particular, by comparing
the constant terms on the left- and right-hand sides of (39), we see that∑I

i=1 1/wi = mk, the Minkowski-Siegel mass formula. The numbers m4 ≈
1.44 × 10−9, m8 ≈ 2.49 × 10−18 and m12 ≈ 7, 94 × 10−15 are small, but
m16 ≈ 4, 03 × 107 (the next two values are m20 ≈ 4.39 × 1051 and m24 ≈
1.53 × 10121), and since wi ≥ 2 for every i (one has at the very least the
automorphisms ± Idm ), this shows that I > 80000000 for m = 32 as as-
serted.

A further consequence of the fact that ΘQ ∈ Mk(Γ1) for Q even and
unimodular of rank m = 2k is that the minimal value of Q(x) for non-zero
x ∈ Λ is bounded by r = dimMk(Γ1) = [k/12] + 1. The lattice L is called
extremal if this bound is attained. The three lattices of rank 8 and 16 are
extremal for trivial reasons. (Here r = 1.) For m = 24 we have r = 2 and the
only extremal lattice is the Leech lattice. Extremal unimodular lattices are
also known to exist for m = 32, 40, 48, 56, 64 and 80, while the case m = 72
is open. Surprisingly, however, there are no examples of large rank:

Theorem (Mallows–Odlyzko–Sloane). There are only finitely many non-
isomorphic extremal even unimodular lattices.
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We sketch the proof, which, not surprisingly, is completely modular. Since
there are only finitely many non-isomorphic even unimodular lattices of any
given rank, the theorem is equivalent to saying that there is an absolute bound
on the value of the rank m for extremal lattices. For simplicity, let us suppose
that m = 24n. (The cases m = 24n+ 8 and m = 24n+ 16 are similar.) The
theta series of any extremal unimodular lattice of this rank must be equal to
the unique modular form fn ∈ M12n(SL(2,Z)) whose q-development has the
form 1 + O(qn+1). By an elementary argument which we omit but which the
reader may want to look for, we find that this q-development has the form

fn(z) = 1 + n an q
n+1 +

(
nbn
2

− 24n (n+ 31) an

)
qn+2 + · · ·

where an and bn are the coefficients of Δ(z)n in the modular functions j(z)
and j(z)2, respectively, when these are expressed (locally, for small q) as Lau-
rent series in the modular form Δ(z) = q − 24q2 + 252q3 − · · · . It is not
hard to show that an has the asymptotic behavior an ∼ An−3/2Cn for some
constants A = 225153.793389 · · · and C = 1/Δ(z0) = 69.1164201716 · · · ,
where z0 = 0.52352170017992 · · ·i is the unique zero on the imaginary axis
of the function E2(z) defined in (17) (this is because E2(z) is the logarithmic
derivative of Δ(z)), while bn has a similar expansion but with A replaced by
2λA with λ = j(z0) − 720 = 163067.793145 · · · . It follows that the coefficient
1
2nbn−24n(n+31)an of qn+2 in fn is negative for n larger than roughly 6800,
corresponding to m ≈ 163000, and that therefore extremal lattices of rank
larger than this cannot exist. ♥

♠ Drums Whose Shape One Cannot Hear

Marc Kac asked a famous question, “Can one hear the shape of a drum?” Ex-
pressed more mathematically, this means: can there be two riemannian mani-
folds (in the case of real “drums” these would presumably be two-dimensional
manifolds with boundary) which are not isometric but have the same spectra
of eigenvalues of their Laplace operators? The first example of such a pair
of manifolds to be found was given by Milnor, and involved 16-dimensional
closed “drums.” More drum-like examples consisting of domains in R2 with
polygonal boundary are now also known, but they are difficult to construct,
whereas Milnor’s example is very easy. It goes as follows. As we already men-
tioned, there are two non-isomorphic even unimodular lattices Λ1 = Γ8 ⊕ Γ8

and Λ2 = Γ16 in dimension 16. The fact that they are non-isomorphic means
that the two Riemannian manifolds M1 = R16/Λ1 and M2 = R16/Λ2, which
are topologically both just tori (S1)16, are not isometric to each other. But
the spectrum of the Laplace operator on any torus Rn/Λ is just the set of
norms ‖λ‖2 (λ ∈ Λ), counted with multiplicities, and these spectra agree for
M1 and M2 because the theta series

∑
λ∈Λ1

q‖λ‖
2

and
∑

λ∈Λ2
q‖λ‖

2
coincide.

♥
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We should not leave this section without mentioning at least briefly that
there is an important generalization of the theta series (36) in which each term
qQ(x1,...,xm) is weighted by a polynomial P (x1, . . . , xm). If this polynomial
is homogeneous of degree d and is spherical with respect to Q (this means
that ΔP = 0, where Δ is the Laplace operator with respect to a system of
coordinates in which Q(x1, . . . , xm) is simply x2

1 + · · · + x2
m), then the theta

series ΘQ,P (z) =
∑
x P (x)qQ(x) is a modular form of weight m/2 + d (on the

same group and with respect to the same character as in the case P = 1),
and is a cusp form if d is strictly positive. The possibility of putting non-
trivial weights into theta series in this way considerably enlarges their range
of applications, both in coding theory and elsewhere.

4 Hecke Eigenforms and L-series

In this section we give a brief sketch of Hecke’s fundamental discoveries that
the space of modular forms is spanned by modular forms with multiplicative
Fourier coefficients and that one can associate to these forms Dirichlet series
which have Euler products and functional equations. These facts are at the
basis of most of the higher developments of the theory: the relations of modular
forms to arithmetic algebraic geometry and to the theory of motives, and the
adelic theory of automorphic forms. The last two subsections describe some
basic examples of these higher connections.

4.1 Hecke Theory

For each integer m ≥ 1 there is a linear operator Tm, the mth Hecke operator,
acting on modular forms of any given weight k. In terms of the description
of modular forms as homogeneous functions on lattices which was given in
§1.1, the definition of Tm is very simple: it sends a homogeneous function F
of degree −k on lattices Λ ⊂ C to the function TmF defined (up to a suitable
normalizing constant) by TmF (Λ) =

∑
F (Λ′), where the sum runs over all

sublattices Λ′ ⊂ Λ of index m. The sum is finite and obviously still homoge-
neous in Λ of the same degree −k. Translating from the language of lattices to
that of functions in the upper half-plane by the usual formula f(z) = F (Λz),
we find that the action of Tm is given by

Tmf(z) = mk−1
∑

(
a b
c d

)
∈Γ1\Mm

(cz + d)−k f
(
az + b

cz + d

)
(z ∈ H) , (40)

where Mm denotes the set of 2 × 2 integral matrices of determinant m and
where the normalizing constant mk−1 has been introduced for later conve-
nience (Tm normalized in this way will send forms with integral Fourier co-
efficients to forms with integral Fourier coefficients). The sum makes sense
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because the transformation law (2) of f implies that the summand associated
to a matrix M =

(
a b
c d

)
∈ Mm is indeed unchanged if M is replaced by γM

with γ ∈ Γ1, and from (40) one also easily sees that Tmf is holomorphic
in H and satisfies the same transformation law and growth properties as f ,
so Tm indeed maps Mk(Γ1) to Mk(Γ1). Finally, to calculate the effect of Tm
on Fourier developments, we note that a set of representatives of Γ1\Mm is
given by the upper triangular matrices

(
a b
0 d

)
with ad = m and 0 ≤ b < d

(this is an easy exercise), so

Tmf(z) = mk−1
∑

ad=m
a, d>0

1
dk

∑

b (mod d)

f

(
az + b

d

)
. (41)

If f(z) has the Fourier development (3), then a further calculation with (41),
again left to the reader, shows that the function Tmf(z) has the Fourier ex-
pansion

Tmf(z) =
∑

d|m
d>0

(m/d)k−1
∑

n≥0
d|n

an q
mn/d2 =

∑

n≥0

( ∑

r|(m,n)
r>0

rk−1 amn/r2

)
qn .

(42)
An easy but important consequence of this formula is that the operators Tm
(m ∈ N) all commute.

Let us consider some examples. The expansion (42) begins σk−1(m)a0 +
amq + · · · , so if f is a cusp form (i.e., a0 = 0), then so is Tmf . In particular,
since the space S12(Γ1) of cusp forms of weight 12 is 1-dimensional, spanned
by Δ(z), it follows that TmΔ is a multiple of Δ for every m ≥ 1. Since the
Fourier expansion of Δ begins q + · · · and that of TmΔ begins τ(m)q + · · · ,
the eigenvalue is necessarily τ(m), so TmΔ = τ(m)Δ and (42) gives

τ(m) τ(n) =
∑

r|(m,n)

r11 τ
(mn
r2

)
for all m, n ≥ 1 ,

proving Ramanujan’s multiplicativity observations mentioned in §2.4. By the
same argument, if f ∈ Mk(Γ1) is any simultaneous eigenfunction of all of
the Tm, with eigenvalues λm, then am = λma1 for all m. We therefore have
a1 �= 0 if f is not identically 0, and if we normalize f by a1 = 1 (such an
f is called a normalized Hecke eigenform, or Hecke form for short) then we
have

Tmf = am f , am an =
∑

r|(m,n)

rk−1 amn/r2 (m, n ≥ 1) . (43)

Examples of this besides Δ(z) are the unique normalized cusp forms f(z) =
Δ(z)Ek−12(z) in the five further weights where dimSk(Γ1) = 1 (viz. k = 16,
18, 20, 22 and 26) and the function Gk(z) for all k ≥ 4, for which we have
TmGk = σk−1(m)Gk, σk−1(m)σk−1(n) =

∑
r|(m,n) r

k−1σk−1(mn/r2). (This
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was the reason for the normalization of Gk chosen in §2.2.) In fact, a theorem
of Hecke asserts that Mk(Γ1) has a basis of normalized simultaneous eigen-
forms for all k, and that this basis is unique. We omit the proof, though it
is not difficult (one introduces a scalar product on the space of cusp forms
of weight k, shows that the Tm are self-adjoint with respect to this scalar
product, and appeals to a general result of linear algebra saying that com-
muting self-adjoint operators can always be simultaneously diagonalized), and
content ourselves instead with one further example, also due to Hecke. Con-
sider k = 24, the first weight where dimSk(Γ1) is greater than 1. Here Sk is
2-dimensional, spanned by ΔE3

4 = q+ 696q2 + · · · and Δ2 = q2 − 48q3 + . . . .
Computing the first two Fourier expansions of the images under T2 of these
two functions by (42), we find that T2(ΔE3

4 ) = 696 ΔE3
4 + 20736000 Δ2

and T2(Δ2) = ΔE3
4 + 384 Δ2. The matrix

(
696 20736000
1 384

)
has distinct eigen-

values λ1 = 540 + 12
√

144169 and λ2 = 540 − 12
√

144169, so there are
precisely two normalized eigenfunctions of T2 in S24(Γ1), namely the func-
tions f1 = ΔE3

4 − (156 − 12
√

144169)Δ2 = q + λ1q
2 + · · · and f2 =

ΔE3
4 − (156 + 12

√
144169)Δ2 = q + λ2q

2 + · · · , with T2fi = λifi for i = 1, 2.
The uniqueness of these eigenfunctions and the fact that Tm commutes with
T2 for allm ≥ 1 then implies that Tmfi is a multiple of fi for allm ≥ 1, so G24,
f1 and f2 give the desired unique basis of M24(Γ1) consisting of normalized
Hecke eigenforms.

Finally, we mention without giving any details that Hecke’s theory gen-
eralizes to congruence groups of SL(2,Z) like the group Γ0(N) of matrices(
a b
c d

)
∈ Γ1 with c ≡ 0 (mod N), the main differences being that the defi-

nition of Tm must be modified somewhat if m and N are not coprime and
that the statement about the existence of a unique base of Hecke forms be-
comes more complicated: the space Mk(Γ0(N)) is the direct sum of the space
spanned by all functions f(dz) where f ∈ Mk(Γ0(N ′)) for some proper di-
visor N ′ of N and d divides N/N ′ (the so-called “old forms”) and a space
of “new forms” which is again uniquely spanned by normalized eigenforms of
all Hecke operators Tm with (m,N) = 1. The details can be found in any
standard textbook.

4.2 L-series of Eigenforms

Let us return to the full modular group. We have seen that Mk(Γ1) contains,
and is in fact spanned by, normalized Hecke eigenforms f =

∑
amq

m satisfy-
ing (43). Specializing this equation to the two cases when m and n are coprime
and when m = pν and n = p for some prime p gives the two equations (which
together are equivalent to (43))

amn = am an if (m,n) = 1 , apν+1 = ap apν − pk−1 apν−1 (p prime, ν ≥ 1) .

The first says that the coefficients an are multiplicative and hence that the

Dirichlet series L(f, s) =
∞∑

n=1

an
ns

, called the Hecke L-series of f , has an Eu-
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ler product L(f, s) =
∏

p prime

(
1 +

ap
ps

+
ap2

p2s
+ · · ·

)
, and the second tells us

that the power series
∑∞
ν=0 apνxν for p prime equals 1/(1 − apx + pk−1x2).

Combining these two statements gives Hecke’s fundamental Euler product
development

L(f, s) =
∏

p prime

1
1 − ap p−s + pk−1−2s

(44)

for the L-series of a normalized Hecke eigenform f ∈ Mk(Γ1), a simple ex-
ample being given by

L(Gk, s) =
∏

p

1
1 − (pk−1 + 1)p−s + pk−1−2s

= ζ(s) ζ(s − k + 1) .

For eigenforms on Γ0(N) there is a similar result except that the Euler factors
for p|N have to be modified suitably.

The L-series have another fundamental property, also discovered by Hecke,
which is that they can be analytically continued in s and then satisfy func-
tional equations. We again restrict to Γ = Γ1 and also, for convenience, to
cusp forms, though not any more just to eigenforms. (The method of proof ex-
tends to non-cusp forms but is messier there since L(f, s) then has poles, and
since Mk is spanned by cusp forms and by Gk, whose L-series is completely
known, there is no loss in making the latter restriction.) From the estimate
an = O(nk/2) proved in §2.4 we know that L(f, s) converges absolutely in the
half-plane (s) > 1 + k/2. Take s in that half-plane and consider the Euler
gamma function

Γ (s) =
∫ ∞

0

ts−1 e−t dt .

Replacing t by λt in this integral gives Γ (s) = λs
∫∞
0
ts−1 e−λt dt or λ−s =

Γ (s)−1
∫∞
0
ts−1 e−λt dt for any λ > 0. Applying this to λ = 2πn, multiplying

by an, and summing over n, we obtain

(2π)−s Γ (s)L(f, s) =
∞∑

n=1

an

∫ ∞

0

ts−1 e−2πnt dt =
∫ ∞

0

ts−1 f(it) dt

(
(s) >

k

2
+ 1

)
,

where the interchange of integration and summation is justified by the abso-
lute convergence. Now the fact that f(it) is exponentially small for t → ∞
(because f is a cusp form) and for t → 0 (because f(−1/z) = zkf(z) ) im-
plies that the integral converges absolutely for all s ∈ C and hence that the
function

L∗(f, s) := (2π)−s Γ (s)L(f, s) = (2π)−s Γ (s)
∞∑

n=1

an
ns

(45)
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extends holomorphically from the half-plane (s) > 1 + k/2 to the entire
complex plane. The substitution t → 1/t together with the transformation
equation f(i/t) = (it)kf(it) of f then gives the functional equation

L∗(f, k − s) = (−1)k/2 L∗(f, s) (46)

of L∗(f, s). We have proved:

Proposition 13. Let f =
∑∞
n=1 anq

n be a cusp form of weight k on the
full modular group. Then the L-series L(f, s) extends to an entire function
of s and satisfies the functional equation (46), where L∗(f, s) is defined by
equation (45).

It is perhaps worth mentioning that, as Hecke also proved, the converse of
Proposition 13 holds as well: if an (n ≥ 1) are complex numbers of polynomial
growth and the function L∗(f, s) defined by (45) continues analytically to the
whole complex plane and satisfies the functional equation (46), then f(z) =∑∞

n=1 ane
2πinz is a cusp form of weight k on Γ1 .

4.3 Modular Forms and Algebraic Number Theory

In §3, we used the theta series θ(z)2 to determine the number of represen-
tations of any integer n as a sum of two squares. More generally, we can
study the number r(Q,n) of representations of n by a positive definite binary
quadratic Q(x, y) = ax2 + bxy + cy2 with integer coefficients by considering
the weight 1 theta series ΘQ(z) =

∑
x,y∈Z

qQ(x,y) =
∑∞

n=0 r(Q,n)qn. This
theta series depends only on the class [Q] of Q up to equivalences Q ∼ Q ◦ γ
with γ ∈ Γ1. We showed in §1.2 that for any D < 0 the number h(D) of Γ1-
equivalence classes [Q] of binary quadratic forms of discriminant b2−4ac = D
is finite. If D is a fundamental discriminant (i.e., not representable as D′r2

with D′ congruent to 0 or 1 mod 4 and r > 1), then h(D) equals the class
number of the imaginary quadratic field K = Q(

√
D) of discriminant D and

there is a well-known bijection between the Γ1-equivalence classes of binary
quadratic forms of discriminant D and the ideal classes of K such that r(Q,n)
for any form Q equals w times the number r(A, n) of integral ideals a of K
of norm n belonging to the corresponding ideal class A, where w is the num-
ber of roots of unity in K (= 6 or 4 if D = −3 or D = −4 and 2 oth-
erwise). The L-series L(ΘQ, s) of ΘQ is therefore w times the “partial zeta-
function” ζK,A(s) =

∑
a∈AN(a)−s. The ideal classes of K form an abelian

group. If χ is a homomorphism from this group to C∗, then the L-series
LK(s, χ) =

∑
a χ(a)/N(a)s (sum over all integral ideals of K) can be writ-

ten as
∑

A χ(A) ζK,A(s) (sum over all ideal classes of K) and hence is the
L-series of the weight 1 modular form fχ(z) = w−1

∑
A χ(A)ΘA(z). On the

other hand, from the unique prime decomposition of ideals in K it follows
that LK(s, χ) has an Euler product. Hence fχ is a Hecke eigenform. If χ = χ0

is the trivial character, then LK(s, χ) = ζK(s), the Dedekind zeta function
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of K, which factors as ζ(s)L(s, εD), the product of the Riemann zeta-function

and the Dirichlet L-series of the character εD(n) =
(
D

n

)
(Kronecker sym-

bol). Therefore in this case we get
∑

[Q] r(Q,n) = w
∑

d|n εD(d) (an identity
known to Gauss) and correspondingly

fχ0(z) =
1
w

∑

[Q]

ΘQ(z) =
h(D)

2
+

∞∑

n=1

(∑

d|n

(
D

d

))
qn ,

an Eisenstein series of weight 1. If the character χ has order 2, then it
is a so-called genus character and one knows that LK(s, χ) factors as
L(s, εD1)L(s, εD2) where D1 and D2 are two other discriminants with prod-
uct D. In this case, too, fχ(z) is an Eisenstein series. But in all other cases, fχ
is a cusp form and the theory of modular forms gives us non-trivial information
about representations of numbers by quadratic forms.

♠ Binary Quadratic Forms of Discriminant −23

We discuss an explicit example, taken from a short and pretty article written
by van der Blij in 1952. The class number of the discriminant D = −23
is 3, with the SL(2,Z)-equivalence classes of binary quadratic forms of this
discriminant being represented by the three forms

Q0(x, y) = x2 + xy + 6y2 ,

Q1(x, y) = 2x2 + xy + 3y2 ,

Q2(x, y) = 2x2 − xy + 3y2 .

Since Q1 and Q2 represent the same integers, we get only two distinct theta
series

ΘQ0(z) = 1 + 2q + 2q4 + 4q6 + 4q8 + · · · ,
ΘQ1(z) = 1 + 2q2 + 2q3 + 2q4 + 2q6 + · · · .

The linear combination corresponding to the trivial character is the Eisenstein
series

fχ0 =
1
2
(
ΘQ0 + 2ΘQ1

)
=

3
2

+
∞∑

n=1

(∑

d|n

(
−23
d

))
qn

=
3
2

+ q + 2q2 + 2q3 + 3q4 + · · · ,

in accordance with the general identity w−1
∑

[Q] r(Q,n) =
∑

d|n εD(d) men-
tioned above. If χ is one of the two non-trivial characters, with values
e±2πi/3 = 1

2 (−1 ± i
√

3) on Q1 and Q2, we have
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fχ =
1
2
(
ΘQ0 − ΘQ1

)
= q − q2 − q3 + q6 + · · · .

This is a Hecke eigenform in the space S1(Γ0(23), ε−23). Its L-series has the
form

L(fχ, s) =
∏

p

1
1 − ap p−s + ε−23(p) p−2s

where ε−23(p) equals the Legendre symbol (p/23) by quadratic reciprocity
and

ap =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if p = 23 ,
0 if (p/23) = −1 ,
2 if (p/23) = 1 and p is representable as x2 + xy + 6y2 ,

−1 if (p/23) = 1 and p is representable as 2x2 + xy + 3y2 .

(47)

On the other hand, the space S1(Γ0(23), ε−23) is one-dimensional, spanned by
the function

η(z) η(23z) = q

∞∏

n=1

(
1 − qn

)(
1 − q23n

)
. (48)

We therefore obtain the explicit “reciprocity law”

Proposition 14 (van der Blij). Let p be a prime. Then the number ap
defined in (47) is equal to the coefficient of qp in the product (48).

As an application of this, we observe that the q-expansion on the right-
hand side of (48) is congruent modulo 23 to Δ(z) = q

∏
(1 − qn)24 and hence

that τ(p) is congruent modulo 23 to the number ap defined in (47) for every
prime number p, a congruence for the Ramanujan function τ(n) of a somewhat
different type than those already given in (27) and (28). ♥

Proposition 14 gives a concrete example showing how the coefficients of
a modular form – here η(z)η(23z) – can answer a question of number theory –
here, the question whether a given prime number which splits in Q(

√
−23)

splits into principal or non-principal ideals. But actually the connection goes
much deeper. By elementary algebraic number theory we have that the L-
series L(s) = LK(s, χ) is the quotient ζF (s)/ζ(s) of the Dedekind function
of F by the Riemann zeta function, where F = Q(α) (α3 − α− 1 = 0) is the
cubic field of discriminant −23. (The composite K ·F is the Hilbert class field
of K.) Hence the four cases in (47) also describe the splitting of p in F : 23 is
ramified, quadratic non-residues of 23 split as p = p1p2 with N(pi) = pi, and
quadratic residues of 23 are either split completely (as products of three prime
ideals of norm p) or are inert (remain prime) in F , according whether they
are represented by Q0 or Q1. Thus the modular form η(z)η(23z) describes
not only the algebraic number theory of the quadratic field K, but also the
splitting of primes in the higher degree field F . This is the first non-trivial
example of the connection found by Weil–Langlands and Deligne–Serre which
relates modular forms of weight one to the arithmetic of number fields whose
Galois groups admit non-trivial two-dimensional representations.
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4.4 Modular Forms Associated to Elliptic Curves
and Other Varieties

If X is a smooth projective algebraic variety defined over Q, then for al-
most all primes p the equations defining X can be reduced modulo p to
define a smooth variety Xp over the field Z/pZ = Fp. We can then count
the number of points in Xp over the finite field Fpr for all r ≥ 1 and,
putting all this information together, define a “local zeta function” Z(Xp, s) =
exp

(∑∞
r=1 |Xp(Fpr )| p−rs/r

)
((s) � 0) and a “global zeta function” (Hasse–

Weil zeta function) Z(X/Q, s) =
∏
p Z(Xp, s), where the product is over all

primes. (The factors Zp(X, s) for the “bad” primes p, where the equations
defining X yield a singular variety over Fp, are defined in a more complicated
but completely explicit way and are again power series in p−s.) Thanks to
the work of Weil, Grothendieck, Dwork, Deligne and others, a great deal is
known about the local zeta functions – in particular, that they are rational
functions of p−s and have all of their zeros and poles on the vertical lines
(s) = 0, 1

2 , . . . , n − 1
2 , n where n is the dimension of X – but the global

zeta function remains mysterious. In particular, the general conjecture that
Z(X/Q, s) can be meromorphically continued to all s is known only for very
special classes of varieties.

In the case where X = E is an elliptic curve, given, say, by a Weierstrass
equation

y2 = x3 + Ax + B (A, B ∈ Z, Δ := −4A3 − 27B2 �= 0) , (49)

the local factors can be made completely explicit and we find that Z(E/Q, s) =
ζ(s)ζ(s − 1)
L(E/Q, s)

where the L-series L(E/Q, s) is given for (s) � 0 by an Euler

product of the form

L(E/Q, s) =
∏

p�Δ

1
1−ap(E) p−s+p1−2s

·
∏

p|Δ

1
(polynomial of degree ≤ 2 in p−s)

(50)
with ap(E) defined for p � Δ as p−

∣∣{(x, y) ∈ (Z/pZ)2 | y2 = x3 +Ax+B
}∣∣ .

In the mid-1950’s, Taniyama noticed the striking formal similarity between
this Euler product expansion and the one in (44) when k = 2 and asked
whether there might be cases of overlap between the two, i.e., cases where
the L-function of an elliptic curve agrees with that of a Hecke eigenform of
weight 2 having eigenvalues ap ∈ Z (a necessary condition if they are to agree
with the integers ap(E)).

Numerical examples show that this at least sometimes happens. The sim-
plest elliptic curve (if we order elliptic curves by their “conductor,” an invariant
in N which is divisible only by primes dividing the discriminant Δ in (49))
is the curve Y 2 − Y = X3 − X2 of conductor 11. (This can be put into the
form (49) by setting y = 216Y − 108, x = 36X − 12, giving A = −432,
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B = 8208, Δ = −28 ·312 ·11, but the equation in X and Y , the so-called “min-
imal model,” has much smaller coefficients.) We can compute the numbers ap
by counting solutions of Y 2 − Y = X3 − X2 in (Z/pZ)2. (For p > 3 this is
equivalent to the recipe given above because the equations relating (x, y) and
(X,Y ) are invertible in characteristic p, and for p = 2 or 3 the minimal model
gives the correct answer.) For example, we have a5 = 5 − 4 = 1 because the
equation Y 2 − Y = X3 −X2 has the 4 solutions (0,0), (0,1), (1,0) and (1,1)
in (Z/5Z)2. Then we have

L(E/Q, s) =
(

1 +
2
2s

+
2

22s

)−1(
1 +

1
3s

+
3

32s

)−1(
1 − 1

5s
+

5
52s

)−1

· · ·

=
1
1s

− 2
2s

− 1
3s

+
2
4s

+
1
5s

+ · · · = L(f, s) ,

where f ∈ S2(Γ0(11)) is the modular form

f(z) = η(z)2η(11z)2 = q

∞∏

n=1

(
1−qn

)2(1−q11n
)2 = x−2q2−q3+2q4+q5+ · · · .

In the 1960’s, one direction of the connection suggested by Taniyama was
proved by M. Eichler and G. Shimura, whose work establishes the following
theorem.

Theorem (Eichler–Shimura). Let f(z) be a Hecke eigenform in S2(Γ0(N))
for some N ∈ N with integral Fourier coefficients. Then there exists an elliptic
curve E/Q such that L(E/Q, s) = L(f, s).

Explicitly, this means that ap(E) = ap(f) for all primes p, where an(f) is
the coefficient of qn in the Fourier expansion of f . The proof of the theorem
is in a sense quite explicit. The quotient of the upper half-plane by Γ0(N),
compactified appropriately by adding a finite number of points (cusps), is
a complex curve (Riemann surface), traditionally denoted by X0(N), such
that the space of holomorphic 1-forms on X0(N) can be identified canoni-
cally (via f(z) �→ f(z)dz) with the space of cusp forms S2(Γ0(N)). One can
also associate to X0(N) an abelian variety, called its Jacobian, whose tangent
space at any point can be identified canonically with S2(Γ0(N)). The Hecke
operators Tp introduced in 4.1 act not only on S2(Γ0(N)), but on the Jaco-
bian variety itself, and if the Fourier coefficients ap = ap(f) are in Z, then so
do the differences Tp − ap · Id . The subvariety of the Jacobian annihilated by
all of these differences (i.e., the set of points x in the Jacobian whose image
under Tp equals ap times x; this makes sense because an abelian variety has
the structure of a group, so that we can multiply points by integers) is then
precisely the sought-for elliptic curve E. Moreover, this construction shows
that we have an even more intimate relationship between the curve E and the
form f than the L-series equality L(E/Q, s) = L(f, s), namely, that there is
an actual map from the modular curve X0(N) to the elliptic curve E which
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is induced by f . Specifically, if we define φ(z) =
∞∑

n=1

an(f)
n

e2πinz, so that

φ′(z) = 2πif(z)dz, then the fact that f is modular of weight 2 implies that
the difference φ(γ(z)) − φ(z) has zero derivative and hence is constant for all
γ ∈ Γ0(N), say φ(γ(z)) − φ(z) = C(γ). It is then easy to see that the map
C : Γ0(N) → C is a homomorphism, and in our case (f an eigenform, eigenval-
ues in Z), it turns out that its image is a lattice Λ ⊂ C, and the quotient map
C/Λ is isomorphic to the elliptic curve E. The fact that φ(γ(z)) − φ(z) ∈ Λ

then implies that the composite map H
φ−→ C

pr−→ C/Λ factors through the
projection H → Γ0(N)\H, i.e., φ induces a map (over C) from X0(N) to E.
This map is in fact defined over Q, i.e., there are modular functions X(z) and
Y (z) with rational Fourier coefficients which are invariant under Γ0(N) and
which identically satisfy the equation Y (z)2 = X(z)3+AX(z)+B (so that the
map from X0(N) to E in its Weierstrass form is simply z �→ (X(z), Y (z) ) )
as well as the equation X ′(z)/2Y (z) = 2πif(z). (Here we are simplifying
a little.)

Gradually the idea arose that perhaps the answer to Taniyama’s orig-
inal question might be yes in all cases, not just sometimes. The results
of Eichler and Shimura showed this in one direction, and strong evidence
in the other direction was provided by a theorem proved by A. Weil in
1967 which said that if the L-series of an elliptic curve E/Q and certain
“twists” of it satisfied the conjectured analytic properties (holomorphic con-
tinuation and functional equation), then E really did correspond to a modu-
lar form in the above way. The conjecture that every E over Q is modu-
lar became famous (and was called according to taste by various subsets
of the names Taniyama, Weil and Shimura, although none of these three
people had ever stated the conjecture explicitly in print). It was finally
proved at the end of the 1990’s by Andrew Wiles and his collaborators and
followers:

Theorem (Wiles–Taylor, Breuil–Conrad–Diamond–Taylor). Every el-
liptic curve over Q can be parametrized by modular functions.

The proof, which is extremely difficult and builds on almost the entire
apparatus built up during the previous decades in algebraic geometry, repre-
sentation theory and the theory of automorphic forms, is one of the pinnacles
of mathematical achievement in the 20th century.

♠ Fermat’s Last Theorem

In the 1970’s, Y. Hellegouarch was led to consider the elliptic curve (49) in
the special case when the roots of the cubic polynomial on the right were
nth powers of rational integers for some prime number n > 2, i.e., if this
cubic factors as (x − an)(x − bn)(x − cn) where a, b, c satisfy the Fermat
equation an + bn + cn = 0. A decade later, G. Frey studied the same el-
liptic curve and discovered that the associated Galois representation (we
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do not explain this here) had properties which contradicted the properties
which Galois representations of elliptic curves were expected to satisfy. Pre-
cise conjectures about the modularity of certain Galois representations were
then made by Serre which would fail for the representations attached to the
Hellegouarch-Frey curve, so that the correctness of these conjectures would
imply the insolubility of Fermat’s equation. (Very roughly, the conjectures
imply that, if the Galois representation associated to the above curve E is
modular at all, then the corresponding cusp form would have to be congru-
ent modulo n to a cusp form of weight 2 and level 1 or 2, and there aren’t
any.) In 1990, K. Ribet proved a special case of Serre’s conjectures (the gen-
eral case is now also known, thanks to recent work of Khare, Wintenberger,
Dieulefait and Kisin) which was sufficient to yield the same implication. The
proof by Wiles and Taylor of the Taniyama-Weil conjecture (still with some
minor restrictions on E which were later lifted by the other authors cited
above, but in sufficient generality to make Ribet’s result applicable) thus suf-
ficed to give the proof of the following theorem, first claimed by Fermat in
1637:

Theorem (Ribet, Wiles–Taylor). If n > 2, there are no positive integers
with an + bn = cn. ♥

Finally, we should mention that the connection between modularity and
algebraic geometry does not apply only to elliptic curves. Without going
into detail, we mention only that the Hasse–Weil zeta function Z(X/Q, s)
of an arbitrary smooth projective variety X over Q splits into factors corre-
sponding to the various cohomology groups of X , and that if any of these
cohomology groups (or any piece of them under some canonical decompo-
sition, say with respect to the action of a finite group of automorphisms
of X) is two-dimensional, then the corresponding piece of the zeta func-
tion is conjectured to be the L-series of a Hecke eigenform of weight i + 1,
where the cohomology group in question is in degree i. This of course in-
cludes the case when X = E and i = 1, since the first cohomology group
of a curve of genus 1 is 2-dimensional, but it also applies to many higher-
dimensional varieties. Many examples are now known, an early one, due to
R. Livné, being given by the cubic hypersurface x3

1 + · · · + x3
10 = 0 in the

projective space {x ∈ P9 | x1 + · · · + x10 = 0}, whose zeta-function equals∏7
j=0 ζ(s − i)mi · L(s − 2, f)−1 where (m0, . . .m7) = (1, 1, 1,−83, 43, 1, 1, 1)

and f = q + 2q2 − 8q3 + 4q4 + 5q5 + · · · is the unique new form of weight 4
on Γ0(10). Other examples arise from so-called “rigid Calabi-Yau 3-folds,”
which have been studied intensively in recent years in connection with the
phenomenon, first discovered by mathematical physicists, called “mirror sym-
metry.” We skip all further discussion, referring to the survey paper and book
cited in the references at the end of these notes.
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5 Modular Forms and Differential Operators

The starting point for this section is the observation that the derivative of
a modular form is not modular, but nearly is. Specifically, if f is a modular
form of weight k with the Fourier expansion (3), then by differentiating (2)
we see that the derivative

Df = f ′ :=
1

2πi
df

dz
= q

df

dq
=

∞∑

n=1

n an q
n (51)

(where the factor 2πi has been included in order to preserve the rationality
properties of the Fourier coefficients) satisfies

f ′
(
az + b

cz + d

)
= (cz + d)k+2 f ′(z) +

k

2πi
c (cz + d)k+1f(z) . (52)

If we had only the first term, then f ′ would be a modular form of weight k+2.
The presence of the second term, far from being a problem, makes the theory
much richer. To deal with it, we will:

• modify the differentiation operator so that it preserves modularity;
• make combinations of derivatives of modular forms which are again modu-

lar;
• relax the notion of modularity to include functions satisfying equations

like (52);
• differentiate with respect to t(z) rather than z itself, where t(z) is a modu-

lar function.

These four approaches will be discussed in the four subsections 5.1–5.4, re-
spectively.

5.1 Derivatives of Modular Forms

As already stated, the first approach is to introduce modifications of the op-
erator D which do preserve modularity. There are two ways to do this, one
holomorphic and one not. We begin with the holomorphic one. Comparing
the transformation equation (52) with equations (19) and (17), we find that
for any modular form f ∈Mk(Γ1) the function

ϑkf := f ′ − k

12
E2 f , (53)

sometimes called the Serre derivative, belongs to Mk+2(Γ1). (We will often
drop the subscript k, since it must always be the weight of the form to which
the operator is applied.) A first consequence of this basic fact is the following.
We introduce the ring M̃∗(Γ1) := M∗(Γ1)[E2] = C[E2, E4, E6], called the ring
of quasimodular forms on SL(2,Z). (An intrinsic definition of the elements of
this ring, and a definition for other groups Γ ⊂ G, will be given in the next
subsection.) Then we have:
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Proposition 15. The ring M̃∗(Γ1) is closed under differentiation. Specifi-
cally, we have

E′
2 =

E2
2 − E4

12
, E′

4 =
E2E4 − E6

3
, E′

6 =
E2E6 − E2

4

2
. (54)

Proof. Clearly ϑE4 and ϑE6, being holomorphic modular forms of weight 6
and 8 on Γ1, respectively, must be proportional to E6 and E2

4 , and by looking
at the first terms in their Fourier expansion we find that the factors are −1/3
and −1/2. Similarly, by differentiating (19) we find the analogue of (53) for
E2, namely that the function E′

2 − 1
12 E

2
2 belongs to M4(Γ ). It must therefore

be a multiple of E4, and by looking at the first term in the Fourier expansion
one sees that the factor is −1/12 .

Proposition 15, first discovered by Ramanujan, has many applications. We de-
scribe two of them here. Another, in transcendence theory, will be mentioned
in Section 6.

♠ Modular Forms Satisfy Non-Linear Differential Equations

An immediate consequence of Proposition 15 is the following:

Proposition 16. Any modular form or quasi-modular form on Γ1 satisfies
a non-linear third order differential equation with constant coefficients.

Proof. Since the ring M̃∗(Γ1) has transcendence degree 3 and is closed under
differentiation, the four functions f , f ′, f ′′ and f ′′′ are algebraically dependent
for any f ∈ M̃∗(Γ1).

As an example, by applying (54) several times we find that the function
E2 satisfies the non-linear differential equation f ′′′− ff ′′ + 3

2 f
′2 = 0 . This is

called the Chazy equation and plays a role in the theory of Painlevé equations.
We can now use modular/quasimodular ideas to describe a full set of solu-
tions of this equation. First, define a “modified slash operator” f �→ f‖2 g by
(f‖2 g)(z) = (cz+d)−2f

(
az+b
cz+d

)
+ π

12
c

cz+d for g =
(
a b
c d

)
. This is not linear in f

(it is only affine), but it is nevertheless a group operation, as one checks easily,
and, at least locally, it makes sense for any matrix

(
a b
c d

)
∈ SL(2,C). Now one

checks by a direct, though tedious, computation that Ch
[
f‖2 g

]
= Ch[f ]|8 g

(where defined) for any g ∈ SL(2,C), where Ch[f ] = f ′′′−ff ′′+ 3
2 f

′2. (Again
this is surprising, because the operator Ch is not linear.) Since E2 is a so-
lution of Ch[f ] = 0, it follows that E2‖2 g is a solution of the same equation
(in g−1H ⊂ P1(C)) for every g ∈ SL(2,C), and since E2‖2 γ = E2 for γ ∈ Γ1

and ‖2 is a group operation, it follows that this function depends only on
the class of g in Γ1\SL(2,C). But Γ1\SL(2,C) is 3-dimensional and a third-
order differential equation generically has a 3-dimensional solution space (the
values of f , f ′ and f ′′ at a point determine all higher derivatives recursively
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and hence fix the function uniquely in a neighborhood of any point where it
is holomorphic), so that, at least generically, this describes all solutions of the
non-linear differential equation Ch[f ] = 0 in modular terms. ♥

Our second “application” of the ring M̃∗(Γ1) describes an unexpected ap-
pearance of this ring in an elementary and apparently unrelated context.

♠ Moments of Periodic Functions

This very pretty application of the modular forms E2, E4, E6 is due to
P. Gallagher. Denote by P the space of periodic real-valued functions on R,
i.e., functions f : R → R satisfying f(x + 2π) = f(x). For each ∞-tuple
n = (n0, n1, . . . ) of non-negative integers (all but finitely many equal to 0)
we define a “coordinate” In on the infinite-dimensional space P by In[f ] =∫ 2π

0 f(x)n0f ′(x)n1 · · · dx (higher moments). Apart from the relations among
these coming from integration by parts, like

∫
f ′′(x)dx = 0 or

∫
f ′(x)2dx =

−
∫
f(x)f ′′(x)dx, we also have various inequalities. The general problem, cer-

tainly too hard to be solved completely, would be to describe all equalities and
inequalities among the In[f ]. As a special case we can ask for the complete
list of inequalities satisfied by the four moments

(
A[f ], B[f ], C[f ], D[f ]

)
:=

(∫ 2π

0
f,
∫ 2π

0
f2,

∫ 2π

0
f3,

∫ 2π

0
f ′2) as f ranges over P. Surprisingly enough, the

answer involves quasimodular forms on SL(2,Z). First, by making a lin-
ear shift f �→ λf + μ with λ, μ ∈ R we can suppose that A[f ] = 0 and
D[f ] = 1. The problem is then to describe the subset X ⊂ R2 of pairs(
B[f ], C[f ]

)
=
(∫ 2π

0 f(x)2dx,
∫ 2π

0 f(x)3dx
)

where f ranges over functions in
P satisfying

∫ 2π

0
f(x)dx = 0 and

∫ 2π

0
f ′(x)2 dx = 1.

Theorem (Gallagher). We have X =
{

(B,C) ∈ R2 | 0 < B ≤ 1, C2 ≤
Φ(B)

}
where the function Φ : (0, 1] → R≥0 is given parametrically by

Φ

(
G′

2(it)
G′

4(it)

)
=

(G′
4(it) − G′′

2(it))2

2 G′
4(it)3

(
0 < t ≤ ∞

)
.

The idea of the proof is as follows. First, from A = 0 and D = 1 we deduce
0 < B[f ] ≤ 1 by an inequality of Wirtinger (just look at the Fourier expansion
of f). Now let f ∈ P be a function – but one must prove that it exists! – which
maximizes C = C[f ] for given values of A, B and D. By a standard calculus-
of-variations-type argument (replace f by f + εg where g ∈ P is orthogonal
to 1, f and f ′′, so that A, B and D do not change to first order, and then
use that C also cannot change to first order since otherwise its value could
not be extremal, so that g must also be orthogonal to f2), we show that the
four functions 1, f , f2 and f ′′ are linearly dependent. From this it follows by
integrating once that the five functions 1, f , f2, f3 and f ′2 are also linearly
dependent. After a rescaling f �→ λf + μ, we can write this dependency as
f ′(x)2 = 4f(x)3 − g2f(x) − g3 for some constants g2 and g3. But this is the
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famous differential equation of the Weierstrass ℘-function, so f(2πx) is the
restriction to R of the function ℘(x,Zτ + Z) for some τ ∈ H, necessarily of
the form τ = it with t > 0 because everything is real. Now the coefficients g2
and g3, by the classical Weierstrass theory, are simple multiples of G4(it) and
G6(it), and for this function f the value of A(f) =

∫ 2π

0 f(x)dx is known to be
a multiple of G2(it). Working out all the details, and then rescaling f again
to get A = 0 and D = 1, one finds the result stated in the theorem. ♥

We now turn to the second modification of the differentiation operator
which preserves modularity, this time, however, at the expense of sacrificing
holomorphy. For f ∈ Mk(Γ ) (we now no longer require that Γ be the full
modular group Γ1) we define

∂kf(z) = f ′(z) − k

4πy
f(z) , (55)

where y denotes the imaginary part of z. Clearly this is no longer holomorphic,
but from the calculation

1
I(γz)

=
|cz + d|2

y
=

(cz + d)2

y
− 2ic(cz+d)

(
γ =

(
a b
c d

)
∈ SL(2,R)

)

and (52) one easily sees that it transforms like a modular form of weight k+2,
i.e., that (∂kf)|k+2γ = ∂kf for all γ ∈ Γ . Moreover, this remains true even if f

is modular but not holomorphic, if we interpret f ′ as
1

2πi
∂f

∂z
. This means that

we can apply ∂ = ∂k repeatedly to get non-holomorphic modular forms ∂nf
of weight k+ 2n for all n ≥ 0. (Here, as with ϑk, we can drop the subscript k
because ∂k will only be applied to forms of weight k; this is convenient because
we can then write ∂nf instead of the more correct ∂k+2n−2 · · · ∂k+2∂kf .) For
example, for f ∈Mk(Γ ) we find

∂2f =
(

1
2πi

∂

∂z
− k + 2

4πy

)(
f ′ − k

4πy
f

)

= f ′′ − k

4πy
f ′ − k

16π2y2
f − k + 2

4πy
f ′ +

k(k + 2)
16π2y2

f

= f ′′ − k + 1
2πy

f ′ +
k(k + 1)
16π2y2

f

and more generally, as one sees by an easy induction,

∂nf =
n∑

r=0

(−1)n−r
(
n

r

)
(k + r)n−r
(4πy)n−r

Drf , (56)

where (a)m = a(a+1) · · · (a+m−1) is the Pochhammer symbol. The inversion
of (56) is
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Dnf =
n∑

r=0

(
n

r

)
(k + r)n−r
(4πy)n−r

∂rf , (57)

and describes the decomposition of the holomorphic but non-modular form
f (n) = Dnf into non-holomorphic but modular pieces: the function yr−n∂rf
is multiplied by (cz + d)k+n+r(cz̄ + d)n−r when z is replaced by az+b

cz+d with(
a b
c d

)
∈ Γ .

Formula (56) has a consequence which will be important in §6. The usual
way to write down modular forms is via their Fourier expansions, i.e., as
power series in the quantity q = e2πiz which is a local coordinate at infin-
ity for the modular curve Γ\H. But since modular forms are holomorphic
functions in the upper half-plane, they also have Taylor series expansions in
the neighborhood of any point z = x + iy ∈ H. The “straight” Taylor se-
ries expansion, giving f(z + w) as a power series in w, converges only in
the disk |w| < y centered at z and tangent to the real line, which is un-
natural since the domain of holomorphy of f is the whole upper half-plane,
not just this disk. Instead, we should remember that we can map H iso-
morphically to the unit disk, with z mapping to 0, by sending z′ ∈ H to
w = z′−z

z′−z̄ . The inverse of this map is given by z′ = z−z̄w
1−w , and then if f is

a modular form of weight k we should also include the automorphy factor
(1−w)−k corresponding to this fractional linear transformation (even though
it belongs to PSL(2,C) and not Γ ). The most natural way to study f near
z is therefore to expand (1 − w)−kf

(
z−z̄w
1−w

)
in powers of w. The following

proposition describes the coefficients of this expansion in terms of the opera-
tor (55).

Proposition 17. Let f be a modular form of weight k and z = x+ iy a point
of H. Then

(
1 − w

)−k
f

(
z − z̄w

1 − w

)
=

∞∑

n=0

∂nf(z)
(4πyw)n

n!
(|w| < 1) . (58)

Proof. From the usual Taylor expansion, we find

(
1 − w

)−k
f

(
z − z̄w

1 − w

)
=

(
1 − w

)−k
f

(
z +

2iyw
1 − w

)

=
(
1 − w

)−k
∞∑

r=0

Drf(z)
r!

(
−4πyw
1 − w

)r
,

and now expanding (1 − w)−k−r by the binomial theorem and using (56) we
obtain (58).

Proposition 17 is useful because, as we will see in §6, the expansion (58), after
some renormalizing, often has algebraic coefficients that contain interesting
arithmetic information.
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5.2 Rankin–Cohen Brackets and Cohen–Kuznetsov Series

Let us return to equation (52) describing the near-modularity of the deriva-
tive of a modular form f ∈ Mk(Γ ). If g ∈ M�(Γ ) is a second modu-
lar form on the same group, of weight �, then this formula shows that
the non-modularity of f ′(z)g(z) is given by an additive correction term
(2πi)−1kc (cz + d)k+�+1f(z) g(z). This correction term, multiplied by �, is
symmetric in f and g, so the difference [f, g] = kfg′ − �f ′g is a modular form
of weight k + � + 2 on Γ . One checks easily that the bracket [ · , · ] defined
in this way is anti-symmetric and satisfies the Jacobi identity, making M∗(Γ )
into a graded Lie algebra (with grading given by the weight + 2). Further-
more, the bracket g �→ [f, g] with a fixed modular form f is a derivation with
respect to the usual multiplication, so that M∗(Γ ) even acquires the structure
of a so-called Poisson algebra.

We can continue this construction to find combinations of higher deriva-
tives of f and g which are modular, setting [f, g]0 = fg, [f, g]1 = [f, g] =
kfg′ − �f ′g,

[f, g]2 =
k(k + 1)

2
fg′′ − (k + 1)(�+ 1)f ′g′ +

�(�+ 1)
2

f ′′g ,

and in general

[f, g]n =
∑

r, s≥0
r+s=n

(−1)r
(
k + n− 1

s

)(
�+ n− 1

r

)
Drf Dsg (n ≥ 0) , (59)

the nth Rankin–Cohen bracket of f and g.

Proposition 18. For f ∈ Mk(Γ ) and g ∈ M�(Γ ) and for every n ≥ 0, the
function [f, g]n defined by (59) belongs to Mk+�+2n(Γ ).

There are several ways to prove this. We will do it using Cohen–Kuznetsov
series. If f ∈Mk(Γ ), then the Cohen–Kuznetsov series of f is defined by

f̃D(z,X) =
∞∑

n=0

Dnf(z)
n! (k)n

Xn ∈ Hol0(H)[[X ]] , (60)

where (k)n = (k+n−1)!/(k−1)! = k(k+1) · · · (k+n−1) is the Pochhammer
symbol already used above and Hol0(H) denotes the space of holomorphic
functions in the upper half-plane of subexponential growth (see §1.1). This
series converges for all X ∈ C (although for our purposes only its properties
as a formal power series in X will be needed). Its key property is given by:

Proposition 19. If f ∈Mk(Γ ), then the Cohen–Kuznetsov series defined by
(60) satisfies the modular transformation equation

f̃D

(
az + b

cz + d
,

X

(cz + d)2

)
= (cz + d)k exp

(
c

cz + d

X

2πi

)
f̃D(z,X) . (61)

for all z ∈ H, X ∈ C, and γ =
(
a b
c d

)
∈ Γ .
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Proof. This can be proved in several different ways. One way is direct: one
shows by induction on n that the derivative Dnf(z) transforms under Γ
by

Dnf

(
az + b

cz + d

)
=

n∑

r=0

(
n

r

)
(k + r)n−r
(2πi)n−r

cn−r(cz + d)k+n+r Drf(z)

for all n ≥ 0 (equation (52) is the case n = 1 of this), from which the claim
follows easily. Another, more elegant, method is to use formula (56) or (57)
to establish the relationship

f̃D(z,X) = eX/4πy f̃∂(z,X) (z = x+ iy ∈ H, X ∈ C) (62)

between f̃D(z,X) and the modified Cohen–Kuznetsov series

f̃∂(z,X) =
∞∑

n=0

∂nf(z)
n! (k)n

Xn ∈ Hol0(H)[[X ]] . (63)

The fact that each function ∂nf(z) transforms like a modular form of weight
k + 2n on Γ implies that f̃∂(z,X) is multiplied by (cz + d)k when z
and X are replaced by az+b

cz+d and X
(cz+d)2 , and using (62) one easily de-

duces from this the transformation formula (61). Yet a third way is to
observe that f̃D(z,X) is the unique solution of the differential equation(
X ∂2

∂X2 + k ∂
∂X − D

)
f̃D = 0 with the initial condition f̃D(z, 0) = f(z) and

that (cz + d)−ke−cX/2πi(cz+d)f̃D
(
az+b
cz+d ,

X
(cz+d)2

)
satisfies the same differential

equation with the same initial condition.
Now to deduce Proposition 18 we simply look at the product of f̃D(z,−X)

with g̃D(z,X). Proposition 19 implies that this product is multiplied by
(cz + d)k+� when z and X are replaced by az+b

cz+d and X
(cz+d)2 (the factors

involving an exponential in X cancel), and this means that the coefficient of
Xn in the product, which is equal to [f,g]n

(k)n(�)n
, is modular of weight k+ �+ 2n

for every n ≥ 0.

Rankin–Cohen brackets have many applications in the theory of modu-
lar forms. We will describe two – one very straightforward and one more
subtle – at the end of this subsection, and another one in §5.4. First, how-
ever, we make a further comment about the Cohen–Kuznetsov series at-
tached to a modular form. We have already introduced two such series: the
series f̃D(z,X) defined by (60), with coefficients proportional to Dnf(z),
and the series f̃∂(z,X) defined by (63), with coefficients proportional to
∂nf(z). But, at least when Γ is the full modular group Γ1, we had de-
fined a third differentiation operator besides D and ∂, namely the opera-
tor ϑ defined in (53), and it is natural to ask whether there is a correspond-
ing Cohen–Kuznetsov series f̃ϑ here also. The answer is yes, but this series
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is not simply given by
∑
n≥0 ϑ

nf(z)Xn/n! (k)n . Instead, for f ∈ Mk(Γ1),
we define a sequence of modified derivatives ϑ[n]f ∈ Mk+2n(Γ1) for n ≥ 0
by

ϑ[0]f = f, ϑ[1]f = ϑf, ϑ[r+1]f = ϑ
(
ϑ[r]f

)
−r(k+r−1)

E4

144
ϑ[r−1]f for r ≥ 1

(64)
(the last formula also holds for r = 0 with f [−1] defined as 0 or in any other
way), and set

f̃ϑ(z,X) =
∞∑

n=0

ϑ[n]f(z)
n! (k)n

Xn .

Using the first equation in (54) we find by induction on n that

Dnf =
n∑

r=0

(
n

r

)
(k + r)n−r

(
E2

12

)n−r
ϑ[r]f (n = 0, 1, . . . ) , (65)

(together with similar formulas for ∂nf in terms of ϑ[n]f and for ϑ[n]f in
terms of Dnf or ∂nf), the explicit version of the expansion of Dnf as
a polynomial in E2 with modular coefficients whose existence is guaran-
teed by Proposition 15. This formula together with (62) gives us the rela-
tions

f̃ϑ(z,X) = e−XE2(z)/12 f̃D(z,X) = e−XE
∗
2 (z)/12 f̃∂(z,X) (66)

between the new series and the old ones, where E∗
2 (z) is the non-holomorphic

Eisenstein series defined in (21), which transforms like a modular form of
weight 2 on Γ1. More generally, if we are on any discrete subgroup Γ of
SL(2,R), we choose a holomorphic or meromorphic function φ in H such that
the function φ∗(z) = φ(z) − 1

4πy transforms like a modular form of weight 2
on Γ , or equivalently such that φ

(
az+b
cz+d

)
= (cz + d)2φ(z) + 1

2πic(cz + d)
for all

(
a b
c d

)
∈ Γ . (Such a φ always exists, and if Γ is commensurable

with Γ1 is simply the sum of 1
12E2(z) and a holomorphic or meromorphic

modular form of weight 2 on Γ ∩ Γ1.) Then, just as in the special case
φ = E2/12, the operator ϑφ defined by ϑφf := Df − kφf for f ∈ Mk(Γ )
sends Mk(Γ ) to Mk+2(Γ ), the function ω := φ′ − φ2 belongs to M4(Γ ) (gen-
eralizing the first equation in (54)), and if we generalize the above defini-
tion by introducing operators ϑ[n]

φ : Mk(Γ ) → Mk+2n(Γ ) (n = 0, 1, . . . )
by

ϑ
[0]
φ f = f , ϑ

[r+1]
φ f = ϑ

[r]
φ f + r(k + r − 1)ω ϑ[r−1]

φ f for r ≥ 0 , (67)

then (65) holds with 1
12E2 replaced by φ, and (66) is replaced by

f̃ϑφ
(z,X) :=

∞∑

n=0

ϑ
[n]
φ f(z)Xn

n! (k)n
= e−φ(z)X f̃D(z,X) = e−φ

∗(z)X f̃∂(z,X) .

(68)
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These formulas will be used again in §§6.3–6.4.
We now give the two promised applications of Rankin–Cohen brackets.

♠ Further Identities for Sums of Powers of Divisors

In §2.2 we gave identities among the divisor power sums σν(n) as one of
our first applications of modular forms and of identities like E2

4 = E8.
By including the quasimodular form E2 we get many more identities of
the same type, e.g., the relationship E2

2 = E4 + 12E′
2 gives the identity∑n−1

m=1 σ1(m)σ1(n − m) = 1
12

(
5σ3(n) − (6n − 1)σ1(n)

)
and similarly for the

other two formulas in (54). Using the Rankin–Cohen brackets we get yet more.
For instance, the first Rankin–Cohen bracket of E4(z) and E6(z) is a cusp form
of weight 12 on Γ1, so it must be a multiple of Δ(z), and this leads to the for-
mula τ(n) = n( 7

12σ5(n) + 5
12σ3(n)) − 70

∑n−1
m=1(5m− 2n)σ3(m)σ5(n−m) for

the coefficient τ(n) of qn in Δ. (This can also be expressed completely in terms
of elementary functions, without mentioning Δ(z) or τ(n), by writing Δ as
a linear combination of any two of the three functions E12, E4E8 and E2

6 .) As
in the case of the identities mentioned in §2.2, all of these identities also have
combinatorial proofs, but these involve much more work and more thought
than the (quasi)modular ones. ♥

♠ Exotic Multiplications of Modular Forms

A construction which is familiar both in symplectic geometrys and in quantum
theory (Moyal brackets) is that of the deformation of the multiplication in an
algebra. If A is an algebra over some field k, say with a commutative and asso-
ciative multiplication μ : A⊗A→ A, then we can look at deformations με of
μ given by formal power series με(x, y) = μ0(x, y)+μ1(x, y)ε+μ2(x, y)ε2+ · · ·
with μ0 = μ which are still associative but are no longer necessarily commu-
tative. (To be more precise, με is a multiplication on A if there is a topol-
ogy and the series above is convergent and otherwise, after being extended
k[[ε]]-linearly, a multiplication on A[[ε]].) The linear term μ1(x, y) in the ex-
pansion of με is then anti-symmetric and satisfies the Jacobi identity, making
A (or A[[ε]]) into a Lie algebra, and the μ1-product with a fixed element
of A is a derivation with respect to the original multiplication μ, giving the
structure of a Poisson algebra. All of this is very reminiscent of the zeroth
and first Rankin–Cohen brackets, so one can ask whether these two brack-
ets arise as the beginning of the expansion of some deformation of the or-
dinary multiplication of modular forms. Surprisingly, this is not only true,
but there is in fact a two-parameter family of such deformed multiplica-
tions:
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Theorem. Let u and v be two formal variables and Γ any subgroup of

SL(2,R). Then the multiplication μu,v on
∞∏

k=0

Mk(Γ ) defined by

μu,v(f, g) =
∞∑

n=0

tn(k, �;u, v) [f, g]n (f ∈Mk(Γ ), g ∈M�(Γ )) , (69)

where the coefficients tn(k, �;u, v) ∈ Q(k, l)[u, v] are given by

tn(k, �;u, v) = vn
∑

0≤j≤n/2

(
n

2j

)
(
− 1

2

j

)(u
v − 1
j

)(
−u
v

j

)

(
−k − 1

2

j

)(
−�− 1

2

j

)(
n+ k + l − 3

2

j

) ,

(70)
is associative.

Of course the multiplication given by (u, v) = (0, 0) is just the usual mul-
tiplication of modular forms, and the multiplications associated to (u, v) and
(λu, λv) are isomorphic by rescaling f �→ λkf for f ∈ Mk, so the set of
new multiplications obtained this way is parametrized by a projective line.
Two of the multiplications obtained are noteworthy: the one corresponding to
(u : v) = (1 : 0) because it is the only commutative one, and the one cor-
responding to (u, v) = (0, 1) because it is so simple, being given just by
f ∗ g =

∑
n[f, g]n.

These deformed multiplications were found, at approximately the same
time, in two independent investigations and as consequences of two quite
different theories. On the one hand, Y. Manin, P. Cohen and I studied
Γ -invariant and twisted Γ -invariant pseudodifferential operators in the up-
per half-plane. These are formal power series Ψ(z) =

∑
n≥h fn(z)D

−n, with
D as in (52), transforming under Γ by Ψ

(
az+b
cz+d

)
= Ψ(z) or by Ψ

(
az+b
cz+d

)
=

(cz + d)κΨ(z)(cz + d)−κ, respectively, where κ is some complex parameter.
(Notice that the second formula is different from the first because multiplica-
tion by a non-constant function of z does not commute with the differentiation
operator D, and is well-defined even for non-integral κ because the ambiguity
of argument involved in choosing a branch of (cz + d)κ cancels out when one
divides by (cz + d)κ on the other side.) Using that D transforms under the
action of

(
a b
c d

)
to (cz+ d)2D, one finds that the leading coefficient fh of F is

then a modular form on Γ of weight 2h and that the higher coefficients fh+j

(j ≥ 0) are specific linear combinations (depending on h, j and κ) of Djg0,
Dj−1g1, . . . , gj for some modular forms gi ∈ M2h+2i(G), so that (assuming
that Γ contains −1 and hence has only modular forms of even weight) we
can canonically identify the space of invariant or twisted invariant pseudodif-
ferential operators with

∏∞
k=0Mk(Γ ). On the other hand, pseudo-differential

operators can be multiplied just by multiplying out the formal series defining
them using Leibnitz’s rule, this multiplication clearly being associative, and
this then leads to the family of non-trivial multiplications of modular forms
given in the theorem, with u/v = κ−1/2. The other paper in which the same
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multiplications arise is one by A. and J. Untenberger which is based on a cer-
tain realization of modular forms as Hilbert-Schmidt operators on L2(R). In
both constructions, the coefficients tn(k, �;u, v) come out in a different and
less symmetric form than (70); the equivalence with the form given above is
a very complicated combinatorial identity. ♥

5.3 Quasimodular Forms

We now turn to the definition of the ring M̃∗(Γ ) of quasimodular forms on Γ .
In §5.1 we defined this ring for the case Γ = Γ1 as C[E2, E4, E6]. We now give
an intrinsic definition which applies also to other discrete groups Γ .

We start by defining the ring of almost holomorphic modular forms on Γ .
By definition, such a form is a function in H which transforms like a modular
form but, instead of being holomorphic, is a polynomial in 1/y (with y = I(z)
as usual) with holomorphic coefficients, the motivating examples being the
non-holomorphic Eisenstein series E∗

2 (z) and the non-holomorphic derivative
∂f(z) of a holomorphic modular form as defined in equations (21) and (55),
respectively. More precisely, an almost holomorphic modular form of weight k
and depth ≤ p on Γ is a function of the form F (z) =

∑p
r=0 fr(z)(−4πy)−r

with each fr ∈ Hol0(H) (holomorphic functions of moderate growth) satisfying
F |kγ = F for all γ ∈ Γ . We denote by M̂ (≤p)

k = M̂
(≤p)
k (Γ ) the space of such

forms and by M̂∗ =
⊕

k M̂k, M̂k = ∪pM̂ (≤p)
k the graded and filtered ring of all

almost holomorphic modular forms, usually omitting Γ from the notations.
For the two basic examples E∗

2 ∈ M̂
(≤1)
2 (Γ1) and ∂kf ∈ M̂

(≤1)
k+2 (Γ ) (where

f ∈Mk(Γ )) we have f0 = E2, f1 = 12 and f0 = Df , f1 = kf , respectively.
We now define the space M̃ (≤p)

k = M̃
(≤p)
k (Γ ) of quasimodular forms of

weight k and depth ≤ p on Γ as the space of “constant terms” f0(z) of F (z)
as F runs over M̂ (≤p)

k . It is not hard to see that the almost holomorphic
modular form F is uniquely determined by its constant term f0, so the ring
M̃∗ =

⊕
k M̃k (M̃k = ∪pM̃ (≤p)

k ) of quasimodular forms on Γ is canonically
isomorphic to the ring M̂∗ of almost holomorphic modular forms on Γ . One can
also define quasimodular forms directly, as was pointed out to me by W. Nahm:
a quasimodular form of weight k and depth ≤ p on Γ is a function f ∈ Hol0(H)
such that, for fixed z ∈ H and variable γ =

(
a b
c d

)
∈ Γ , the function

(
f |kγ

)
(z) is

a polynomial of degree ≤ p in c
cz+d . Indeed, if f(z) = f0(z) ∈ M̃k corresponds

to F (z) =
∑

r fr(z) (−4πy)−r ∈ M̂k, then the modularity of F implies the
identity

(
f |kγ

)
(z) =

∑
r fr(z)

(
c

cz+d

)r with the same coefficients fr(z), and
conversely.

The basic facts about quasimodular forms are summarized in the following
proposition, in which Γ is a non-cocompact discrete subgroup of SL(2,R) and
φ ∈ M̃2(Γ ) is a quasimodular form of weight 2 on Γ which is not modular,
e.g., φ = E2 if Γ is a subgroup of Γ1. For Γ = Γ1 part (i) of the proposition
reduces to Proposition 15 above, while part (ii) shows that the general defi-
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nition of quasimodular forms given here agrees with the ad hoc one given in
§5.1 in this case.

Proposition 20. (i) The space of quasimodular forms on Γ is closed un-
der differentiation. More precisely, we have D

(
M̃

(≤p)
k

)
⊆ M̃

(≤p+1)
k+2 for all

k, p ≥ 0.
(ii) Every quasimodular form on Γ is a polynomial in φ with modular co-
efficients. More precisely, we have M̃ (≤p)

k (Γ ) =
⊕p

r=0Mk−2r(Γ ) · φr for all
k, p ≥ 0.
(iii) Every quasimodular form on Γ can be written uniquely as a linear com-
bination of derivatives of modular forms and of φ. More precisely, for all
k, p ≥ 0 we have

M̃
(≤p)
k (Γ ) =

⎧
⎨

⎩

⊕p
r=0D

r
(
Mk−2r(Γ )

)
if p < k/2 ,

⊕k/2−1
r=0 Dr

(
Mk−2r(Γ )

)
⊕ C ·Dk/2−1φ if p ≥ k/2 .

Proof. Let F =
∑
fr(−4πy)−r ∈ M̂k correspond to f = f0 ∈ M̃k. The

almost holomorphic form ∂kF ∈ M̂k+2 then has the expansion ∂kF =∑[
D(fr) + (k − r + 1)fr−1

]
(−4πy)−r, with constant term Df . This proves

the first statement. (One can also prove it in terms of the direct definition
of quasimodular forms by differentiating the formula expressing the transfor-
mation behavior of f under Γ .) Next, one checks easily that if F belongs to
M̂

(≤p)
k , then the last coefficient fp(z) in its expansion is a modular form of

weight k−2p. It follows that p ≤ k/2 (if fp �= 0, i.e., if F has depth exactly p)
and also, since the almost holomorphic modular form φ∗ corresponding to φ
is the sum of φ and a non-zero multiple of 1/y, that F is a linear combi-
nation of fpφ∗p and an almost holomorphic modular form of depth strictly
smaller than p, from which statement (ii) for almost holomorphic modular
forms (and therefore also for quasimodular forms) follows by induction on p.
Statement (iii) is proved exactly the same way, by subtracting from F a mul-
tiple of ∂pfp if p < k/2 and a multiple of ∂k/2−1φ if p = k/2 to prove by
induction on p the corresponding statement with “quasimodular” and D re-
placed by “almost holomorphic modular” and ∂, and then again using the
isomorphism between M̂∗ and M̃∗.

There is one more important element of the structure of the ring of quasi-
modular (or almost holomorphic modular) forms. Let F =

∑
fr(−4πy)−r and

f = f0 be an almost holomorphic modular form of weight k and depth ≤ p
and the quasimodular form which corresponds to it. One sees easily using the
properties above that each coefficient fr is quasimodular (of weight k−2r and
depth ≤ p− r) and that, if δ : M̃∗ → M̃∗ is the map which sends f to f1, then
fr = δrf/r! for all r ≥ 0 (and δrf = 0 for r > p), so that the expansion of F (z)
in powers of −1/4πy is a kind of Taylor expansion formula. This gives us three
operators from M̃∗ to itself: the differentiation operator D, the operator E
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which multiplies a quasimodular form of weight k by k, and the operator δ.
Each of these operators is a derivation on the ring of quasimodular forms, and
they satisfy the three commutation relations

[E,D] = 2D , [D, δ] = −2 δ , [D, δ] = E

(of which the first two just say that D and δ raise and lower the weight
of a quasimodular form by 2, respectively), giving to M̃∗ the structure of
an sl2C)-module. Of course the ring M̂∗, being isomorphic to M̃∗, also be-
comes an sl2C)-module, the corresponding operators being ϑ (= ϑk on M̃k),
E (= multiplication by k on M̂k) and δ∗ (= “derivation with respect to
−1/4πy”). From this point of view, the subspaceM∗ of M̃∗ or M̂∗ appears sim-
ply as the kernel of the lowering operator δ (or δ∗). Using this sl2C)-module
structure makes many calculations with quasimodular or almost holomorphic
modular forms simpler and more transparent.

♠ Counting Ramified Coverings of the Torns

We end this subsection by describing very briefly a beautiful and unexpected
context in which quasimodular forms occur. Define

Θ(X, z, ζ) =
∏

n>0

(1 − qn)
∏

n>0
n odd

(
1 − en

2X/8 qn/2 ζ
)(

1 − e−n
2X/8 qn/2 ζ−1

)
,

expand Θ(X, z, ζ) as a Laurent series
∑

n∈Z
Θn(X, z) ζn, and expand Θ0(X, z)

as a Taylor series
∑∞

r=0Ar(z)X
2r. Then a somewhat intricate calculation

involving Eisenstein series, theta series and quasimodular forms on Γ (2) shows
that each Ar is a quasimodular form of weight 6r on SL(2,Z), i.e., a weighted
homogeneous polynomial in E2, E4, and E6. In particular, A0(z) = 1 (this is
a consequence of the Jacobi triple product identity, which says that Θn(0, z) =
(−1)nqn

2/2), so we can also expand logΘ0(X, z) as
∑∞

r=1 Fr(z)X
2r and Fr(z)

is again quasimodular of weight 6r. These functions arose in the study of the
“one-dimensional analogue of mirror symmetry”: the coefficient of qm in Fr
counts the generically ramified coverings of degree m of a curve of genus 1
by a curve of genus r + 1. (“Generic” means that each point has ≥ m − 1
preimages.) We thus obtain:

Theorem. The generating function of generically ramified coverings of a torus
by a surface of genus g > 1 is a quasimodular form of weight 6g−6 on SL(2,Z).
As an example, we have F1 = A1 = 1

103680 (10E3
2 − 6E2E4 − 4E6) = q2 +

8q3 + 30q4 + 80q5 + 180q6 + · · · . In this case (but for no higher genus), the
function F1 = 1

1440 (E′
4 + 10E′′

2 ) is also a linear combination of derivatives of
Eisenstein series and we get a simple explicit formula n(σ3(n)−nσ1(n))/6 for
the (correctly counted) number of degree n coverings of a torus by a surface
of genus 2. ♥
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5.4 Linear Differential Equations and Modular Forms

The statement of Proposition 16 is very simple, but not terribly useful, because
it is difficult to derive properties of a function from a non-linear differential
equation. We now prove a much more useful fact: if we express a modular form
as a function, not of z, but of a modular function of z (i.e., a meromorphic
modular form of weight zero), then it always satisfies a linear differentiable
equation of finite order with algebraic coefficients. Of course, a modular form
cannot be written as a single-valued function of a modular function, since the
latter is invariant under modular transformations and the former transforms
with a non-trivial automorphy factor, but in can be expressed locally as such
a function, and the global non-uniqueness then simply corresponds to the
monodromy of the differential equation.

The fact that we have mentioned is by no means new – it is at the heart
of the original discovery of modular forms by Gauss and of the later work of
Fricke and Klein and others, and appears in modern literature as the theory of
Picard–Fuchs differential equations or of the Gauss–Manin connection – but
it is not nearly as well known as it ought to be. Here is a precise statement.

Proposition 21. Let f(z) be a (holomorphic or meromorphic) modular form
of positive weight k on some group Γ and t(z) a modular function with re-
spect to Γ . Express f(z) (locally) as Φ(t(z)). Then the function Φ(t) satisfies
a linear differential equation of order k+ 1 with algebraic coefficients, or with
polynomial coefficients if Γ\H has genus 0 and t(z) generates the field of
modular functions on Γ .

This proposition is perhaps the single most important source of applications
of modular forms in other branches of mathematics, so with no apology we
sketch three different proofs, each one giving us different information about
the differential equation in question.

Proof 1: We want to find a linear relation among the derivatives of f with
respect to t. Since f(z) is not defined in Γ\H, we must replace d/dt by the
operator Dt = t′(z)−1d/dz, which makes sense in H. We wish to show that
the functions Dn

t f (n = 0, 1, . . . , k + 1) are linearly dependent over the field
of modular functions on Γ , since such functions are algebraic functions of t(z)
in general and rational functions in the special cases when Γ\H has genus 0
and t(z) is a “Hauptmodul” (i.e., t : Γ\H → P1(C) is an isomorphism). The
difficulty is that, as seen in §5.1, differentiating the transformation equation
(2) produces undesired extra terms as in (52). This is because the automorphy
factor (cz+d)k in (2) is non-constant and hence contributes non-trivially when
we differentiate. To get around this, we replace f(z) by the vector-valued
function F : H → Ck+1 whose mth component (0 ≤ m ≤ k) is Fm(z) =
zk−mf(z). Then

Fm

(
az + b

cz + d

)
= (az + b)k−m (cz + d)m f(z) =

m∑

n=0

Mmn Fn(z) , (71)
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for all γ =
(
a b
c d

)
∈ Γ , where M = Sk(γ) ∈ SL(k + 1,Z) denotes the kth

symmetric power of γ. In other words, we have F (γz) = MF (z) where the new
“automorphy factor” M , although it is more complicated than the automorphy
factor in (2) because it is a matrix rather than a scalar, is now independent of
z, so that when we differentiate we get simply (cz+d)−2F ′(γz) = MF ′(z). Of
course, this equation contains (cz+d)−2, so differentiating again with respect
to z would again produce unwanted terms. But the Γ -invariance of t implies
that t′

(
az+b
cz+d

)
= (cz+d)2t′(z), so the factor (cz+d)−2 is cancelled if we replace

d/dz byDt = d/dt. Thus (71) implies DtF (γz) = MDtF (z), and by induction
Dr
tF (γz) = MDr

tF (z) for all r ≥ 0. Now consider the (k+2)× (k+2) matrix
(
f Dtf · · · Dk+1

t f

F DtF · · · Dk+1
t F

)
.

The top and bottom rows of this matrix are identical, so its determinant
is 0. Expanding by the top row, we find 0 =

∑k+1
n=0(−1)n det(An(z))Dn

t f(z),
where An(z) is the (k + 1) × (k + 1) matrix

(
F DtF · · · D̂n

t F · · · Dk+1
t F

)
.

From Dr
tF (γz) = MDr

tF (z) (∀r) we get An(γz) = MAn(z) and hence, since
det(M) = 1, that An(z) is a Γ -invariant function. Since An(z) is also mero-
morphic (including at the cusps), it is a modular function on Γ and hence an
algebraic or rational function of t(z), as desired. The advantage of this proof is
that it gives us all k+1 linearly independent solutions of the differential equa-
tion satisfied by f(z): they are simply the functions f(z), zf(z), . . . , zkf(z).

Proof 2 (following a suggestion of Ouled Azaiez): We again use the differ-
entiation operator Dt, but this time work with quasimodular rather than
vector-valued modular forms. As in §5.2, choose a quasimodular form φ(z) of
weight 2 on Γ with δ(φ) = 1 (e.g., 1

12E2 if Γ = Γ1), and write each Dn
t f(z)

(n = 0, 1, 2, . . . ) as a polynomial in φ(z) with (meromorphic) modular coeffi-

cients. For instance, for n = 1 we find Dtf = k
f

t′
φ +

ϑφf

t′
where ϑφ denotes

the Serre derivative with respect to φ. Using that φ′ − φ2 ∈ M4, one finds
by induction that each Dn

t f is the sum of k(k − 1) · · · (k − n + 1) (φ/t′)n f
and a polynomial of degree < n in φ. It follows that the k + 2 func-
tions

{
Dn
t (f)/f

}
0≤n≤k+1

are linear combinations of the k + 1 functions
{(φ/t′)n}0≤n≤k with modular functions as coefficients, and hence that they
are linearly dependent over the field of modular functions on Γ .

Proof 3: The third proof will give an explicit differential equation satisfied
by f . Consider first the case when f has weight 1. The funcion t′ = D(t) is
a (meromorphic) modular form of weight 2, so we can form the Rankin–Cohen
brackets [f, t′]1 and [f, f ]2 of weights 5 and 6, respectively, and the quotients
A = [f,t′]1

ft′2 and B = − [f,f ]2
2f2t′2 of weight 0. Then

D2
t f + ADtf + Bf =

1
t′

(
f ′

t′

)′
+
ft′′ − 2f ′t′

ft′2
f ′

t′
− ff ′′ − 2f ′2

t′2f2
f = 0 .
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Since A and B are modular functions, they are rational (if t is a Hauptmodul)
or algebraic (in any case) functions of t, say A(z) = a(t(z)) and B(z) =
b(t(z)), and then the function Φ(t) defined locally by f(z) = Φ(t(z)) satisfies
Φ′′(t) + a(t)Φ′(t) + b(t)Φ(t) = 0.

Now let f have arbitrary (integral) weight k > 0 and apply the above
construction to the function h = f1/k, which is formally a modular form of
weight 1. Of course h is not really a modular form, since in general it is not
even a well-defined function in the upper half-plane (it changes by a kth root
of unity when we go around a zero of f). But it is defined locally, and the
functions A = [h,t′]1

ht′2 and B = − [h,h]2
2h2t′2 are well-defined, because they are

both homogeneous of degree 0 in h, so that the kth roots of unity occur-
ring when we go around a zero of f cancel out. (In fact, a short calculation
shows that they can be written directly in terms of Rankin–Cohen brack-
ets of f and t′ , namely A = [f,t′]1

kft′2 and B = − [f,f ]2
k2(k+1)f2t′2 .) Now just as

before A(z) = a(t(z)), B(z) = b(t(z)) for some rational or algebraic func-
tions a(t) and b(t). Then Φ(t)1/k is annihilated by the second order differ-
ential operator L = d2/dt2 + a(t)d/dt + b(t) and Φ(t) itself is annihilated
by the (k + 1)st order differential operator Symk(L) whose solutions are
the kth powers or k-fold products of solutions of the differential equation
LΨ = 0. The coefficients of this operator can be given by explicit expres-
sions in terms of a and b and their derivatives (for instance, for k = 2 we
find Sym2(L) = d3/dt3 + 3a d2/dt2 + (a′ + 2a2 + 4b) d/dt+ 2(b′ + 2ab) ), and
these in turn can be written as weight 0 quotients of appropriate Rankin–
Cohen brackets.

Here are two classical examples of Proposition 21. For the first, we take
Γ = Γ (2), f(z) = θ3(z)2 (with θ3(z) =

∑
qn

2/2 as in (32)) and t(z) = λ(z),
where λ(z) is the Legendre modular function

λ(z) = 16
η(z/2)8 η(2z)16

η(z)24
= 1 − η(z/2)16 η(2z)8

η(z)24
=

(
θ2(z)
θ3(z)

)4

, (72)

which is known to be a Hauptmodul for the group Γ (2). Then

θ3(z)2 =
∞∑

n=0

(
2n
n

) (
λ(z)
16

)n
= F

(
1
2
,
1
2
; 1; λ(z)

)
, (73)

where F (a, b; c;x) =
∑∞

n=0
(a)n(b)n

n! (c)n
xn with (a)n as in eq. (56) denotes the

Gauss hypergeometric function, which satisfies the second order differential
equation x(x− 1) y′′ +

(
(a+ b+ 1)x− c

)
y′ + aby = 0. For the second example

we take Γ = Γ1, t(z) = 1728/j(z), and f(z) = E4(z). Since f is a modular
form of weight 4, it should satisfy a fifth order linear differential equation with
respect to t(z), but by the third proof above one should even have that the
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fourth root of f satisfies a second order differential equation, and indeed one
finds

4
√
E4(z) = F

(
1
12 ,

5
12 ; 1; t(z)

)
= 1 +

1 · 5
1 · 1

12
j(z)

+
1 · 5 · 13 · 17
1 · 1 · 2 · 2

122

j(z)2
+ · · · ,

(74)
a classical identity which can be found in the works of Fricke and Klein.

♠ The Irrationality of ζ(3)

In 1978, Roger Apéry created a sensation by proving:

Theorem. The number ζ(3) =
∑

n≥1 n
−3 is irrational.

What he actually showed was that, if we define two sequences {an} =
{1, 5, 73, 1445, . . . } and {bn} = {0, 6, 351/4, 62531/36, . . . } as the solutions
of the recursion

(n+ 1)3 un+1 = (34n3 + 51n2 + 27n+ 5)un − n3 un−1 (n ≥ 1) (75)

with initial conditions a0 = 1, a1 = 5, b0 = 0, b1 = 6, then we have

an ∈ Z (∀n ≥ 0) , D3
n bn ∈ Z (∀n ≥ 0) , lim

n→∞
bn
an

= ζ(3) , (76)

where Dn denotes the least common multiple of 1, 2, . . . , n. These three as-
sertions together imply the theorem. Indeed, both an and bn grow like Cn by
the recursion, where C = 33.97 . . . is the larger root of C2 − 34C + 1 = 0. On
the other hand, an−1bn − anbn−1 = 6/n3 by the recursion and induction, so
the difference between bn/an and its limiting value ζ(3) decreases like C−2n.
Hence the quantity xn = D3

n(bn−anζ(3)) grows like by D3
n/(C+o(1))n, which

tends to 0 as n→ ∞ since C > e3 and D3
n = (e3 + o(1))n by the prime num-

ber theorem. (Chebyshev’s weaker elementary estimate of Dn would suffice
here.) But if ζ(3) were rational then the first two statements in (76) would
imply that the xn are rational numbers with bounded denominators, and this
is a contradiction.

Apéry’s own proof of the three properties (76), which involved complicated
explicit formulas for the numbers an and bn as sums of binomial coefficients,
was very ingenious but did not give any feeling for why any of these three
properties hold. Subsequently, two more enlightening proofs were found by
Frits Beukers, one using representations of an and bn as multiple integrals
involving Legendre polynomials and the other based on modularity. We give
a brief sketch of the latter one. Let Γ = Γ+

0 (6) as in §3.1 be the group
Γ0(6)∪Γ0(6)W , where W = W6 = 1√

6

(
0 −1
6 0

)
. This group has genus 0 and the

Hauptmodul

t(z) =
(
η(z) η(6z)
η(2z) η(3z)

)12

= q − 12 q2 + 66 q3 − 220 q4 + . . . ,
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where η(z) is the Dedekind eta-function defined in (34). For f(z) we take the
function

f(z) =

(
η(2z) η(3z)

)7
(
η(z) η(6z)

)5 = 1 + 5 q + 13 q2 + 23 q3 + 29 q4 + . . . ,

which is a modular form of weight 2 on Γ (and in fact an Eisenstein series,
namely 5G2(z)−2G2(2z)+3G2(3z)−30G2(6z) ). Proposition 21 then implies
that if we expand f(z) as a power series 1+5 t(z)+73 t(z)2+1445 t(z)3 + · · ·
in t(z), then the coefficients of the expansion satisfy a linear recursion with
polynomial coefficients (this is equivalent to the statement that the power
series itself satisfies a differential equation with polynomial coefficients), and
if we go through the proof of the proposition to calculate the differential
equation explicitly, we find that the recursion is exactly the one defining an.
Hence f(z) =

∑∞
n=0 an t(z)

n, and the integrality of the coefficients an follows
immediately since f(z) and t(z) have integral coefficients and t has leading
coefficient 1.

To get the properties of the second sequence {bn} is a little harder. Define

g(z) = G4(z) − 28 G4(2z) + 63 G4(3z) − 36 G4(6z)

= q − 14 q2 + 91 q3 − 179 q4 + · · · ,

an Eisenstein series of weight 4 on Γ . Write the Fourier expansion as g(z) =∑∞
n=1 cn q

n and define g̃(z) =
∑∞

n=1 n
−3cn q

n, so that g̃′′′ = g. This is the so-
called Eichler integral associated to g and inherits certain modular properties
from the modularity of g. (Specifically, the difference g̃|−2 γ−g̃ is a polynomial
of degree ≤ 2 for every γ ∈ Γ , where |−2 is the slash operator defined in (8).)
Using this (we skip the details), one finds by an argument analogous to the
proof of Proposition 21 that if we expand the product f(z)g̃(z) as a power
series t(z) + 117

8 t(z)2 + 62531
216 t(z)3 + · · · in t(z), then this power series again

satisfies a differential equation. This equation turns out to be the same one
as the one satisfied by f (but with right-hand side 1 instead of 0), so the
coefficients of the new expansion satisfy the same recursion and hence (since
they begin 0, 1) must be one-sixth of Apéry’s coefficients bn, i.e., we have
6f(z)g̃(z) =

∑∞
n=0 bn t(z)

n. The integrality of D3
nbn (indeed, even of D3

nbn/6)
follows immediately: the coefficients cn are integral, so D3

n is a common de-
nominator for the first n terms of f g̃ as a power series in q and hence also as
a power series in t(z). Finally, from the definition (13) of G4(z) we find that
the Fourier coefficients of g are given by the Dirichlet series identity

∞∑

n=1

cn
ns

=
(

1 − 28
2s

+
63
3s

− 36
6s

)
ζ(s) ζ(s − 3) ,

so the limiting value of bn/an (which must exist because {an} and {bn} satisfy
the same recursion) is given by
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1
6

lim
n→∞

bn
an

= g̃(z)
∣∣
∣
∣
t(z)=1/C

=
∞∑

n=1

cn
n3

qn
∣∣
∣
∣
q=1

=
∞∑

n=1

cn
ns

∣∣
∣
∣
s=3

=
1
6
ζ(3) ,

proving also the last assertion in (76). ♥

♠ An Example Coming from Percolation Theory

Imagine a rectangle R of width r > 0 and height 1 on which has been drawn
a fine square grid (of size roughly rN × N for some integer N going to in-
finity). Each edge of the grid is colored black or white with probability 1/2
(the critical probability for this problem). The (horizontal) crossing probability
Π(r) is then defined as the limiting value, as N → ∞, of the probability that
there exists a path of black edges connecting the left and right sides of the
rectangle. A simple combinatorial argument shows that there is always either
a vertex-to-vertex path from left to right passing only through black edges or
else a square-to-square path from top to bottom passing only through white
edges, but never both. This implies that Π(r) +Π(1/r) = 1. The hypothesis
of conformality which, though not proved, is universally believed and is at the
basis of the modern theory of percolation, says that the corresponding prob-
lem, with R replaced by any (nice) open domain in the plane, is unchanged
under conformal (biholomorphic) mappings, and this can be used to compute
the crossing probability as the solution of a differential equation. The result,
due to J. Cardy, is the formula Π(r) = 2π

√
3Γ (1

3 )−3 t1/3 F
(

1
3 ,

2
3 ; 4

3 ; t), where
t is the cross-ratio of the images of the four vertices of the rectangle R when it
is mapped biholomorphically onto the unit disk by the Riemann uniformiza-
tion theorem. This cross-ratio is known to be given by t = λ(ir) with λ(z) as
in (72). In modular terms, using Proposition 21, we find that this translates
to the formula Π(r) = −27/3 3−1/2 π2 Γ (1

3 )−3
∫∞
r η(iy)4dy ; i.e., the deriva-

tive of Π(r) is essentially the restriction to the imaginary axis of the modular
form η(z)4 of weight 2. Conversely, an easy argument using modular forms
on SL(2,Z) shows that Cardy’s function is the unique function satisfying the
functional equation Π(r) +Π(1/r) = 1 and having an expansion of the form
e−2παr times a power series in e−2πr for some α ∈ R (which is then given by
α = 1/6). Unfortunately, there seems to be no physical argument implying
a priori that the crossing probability has the latter property, so one cannot
(yet?) use this very simple modular characterization to obtain a new proof of
Cardy’s famous formula. ♥

6 Singular Moduli and Complex Multiplication

The theory of complex multiplication, the last topic which we will treat in
detail in these notes, is by any standards one of the most beautiful chapters
in all of number theory. To describe it fully one needs to combine themes
relating to elliptic curves, modular forms, and algebraic number theory. Given
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the emphasis of these notes, we will discuss mostly the modular forms side, but
in this introduction we briefly explain the notion of complex multiplication in
the language of elliptic curves.

An elliptic curve over C, as discussed in §1, can be represented by a quo-
tient E = C/Λ, where Λ is a lattice in C. If E′ = C/Λ′ is another curve
and λ a complex number with λΛ ⊆ Λ′, then multiplication by λ induces an
algebraic map from E to E′. In particular, if λΛ ⊆ Λ, then we get a map
from E to itself. Of course, we can always achieve this with λ ∈ Z, since Λ
is a Z-module. These are the only possible real values of λ, and for generic
lattices also the only possible complex values. Elliptic curves E = C/Λ where
λΛ ⊆ Λ for some non-real value of λ are said to admit complex multiplication.

As we have seen in these notes, there are two completely different ways
in which elliptic curves are related to modular forms. On the one hand, the
moduli space of elliptic curves is precisely the domain of definition Γ1\H of
modular functions on the full modular group, via the map Γ1z ↔

[
C/Λz

]
,

where Λz = Zz + Z ⊂ C. On the other hand, elliptic curves over Q are sup-
posed (and now finally known) to have parametrizations by modular functions
and to have Hasse-Weil L-functions that coincide with the Hecke L-series of
certain cusp forms of weight 2. The elliptic curves with complex multiplication
are of special interest from both points of view. If we think of H as parametriz-
ing elliptic curves, then the points in H corresponding to elliptic curves with
complex multiplication (usually called CM points for short) are simply the
numbers z ∈ H which satisfy a quadratic equation over Z. The basic fact is
that the value of j(z) (or of any other modular function with algebraic coef-
ficients evaluated at z) is then an algebraic number; this says that an elliptic
curve with complex multiplication is always defined over Q (i.e., has a Weier-
strass equation with algebraic coefficients). Moreover, these special algebraic
numbers j(z), classically called singular moduli, have remarkable properties:
they give explicit generators of the class fields of imaginary quadratic fields,
the differences between them factor into small prime factors, their traces are
themselves the coefficients of modular forms, etc. This will be the theme of the
first two subsections. If on the other hand we consider the L-function of a CM
elliptic curve and the associated cusp form, then again both have very special
properties: the former belongs to two important classes of number-theoretical
Dirichlet series (Epstein zeta functions and L-series of grossencharacters) and
the latter is a theta series with spherical coefficients associated to a binary
quadratic form. This will lead to several applications which are treated in the
final two subsections.

6.1 Algebraicity of Singular Moduli

In this subsection we will discuss the proof, refinements, and applications of
the following basic statement:

Proposition 22. Let z ∈ H be a CM point. Then j(z) is an algebraic number.
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Proof. By definition, z satisfies a quadratic equation over Z, say Az2 + Bz +
C = 0. There is then always a matrix M ∈ M(2,Z), not proportional to
the identity, which fixes z. (For instance, we can take M =

(
B C
−A 0

)
.) This

matrix has a positive determinant, so it acts on the upper half-plane in the
usual way. The two functions j(z) and j(Mz) are both modular functions on
the subgroup Γ1 ∩M−1Γ1M of finite index in Γ1, so they are algebraically
dependent, i.e., there is a non-zero polynomial P (X,Y ) in two variables such
that P (j(Mz), j(z)) vanishes identically. By looking at the Fourier expansion
at ∞ we can see that the polynomial P can be chosen to have coefficients
in Q. (We omit the details, since we will prove a more precise statement
below.) We can also assume that the polynomial P (X,X) is not identically
zero. (If some power of X − Y divides P then we can remove it without
affecting the validity of the relation P (j(Mz), j(z)) ≡ 0, since j(Mz) is not
identically equal to j(z).) The number j(z) is then a root of the non-trivial
polynomial P (X,X) ∈ Q[X ], so it is an algebraic number.

More generally, if f(z) is any modular function (say, with respect to a sub-
group of finite index of SL(2,Z)) with algebraic Fourier coefficients in its q-
expansion at infinity, then f(z) ∈ Q, as one can see either by showing that
f(Mz) and f(z) are algebraically dependent over Q for any M ∈ M(2,Z)
with detM > 0 or by showing that f(z) and j(z) are algebraically dependent
over Q and using Proposition 22. The full theory of complex multiplication
describes precisely the number field in which these numbers f(z) lie and the
way that Gal(Q/Q) acts on them. (Roughly speaking, any Galois conjugate
of any f(z) has the form f∗(z∗) for some other modular form with algebraic
coefficients and CM point z∗, and there is a recipe to compute both.) We
will not explain anything about this in these notes, except for a few words
in the third application below, but refer the reader to the texts listed in the
references.

We now return to the j-function and the proof above. The key point was
the algebraic relation between j(z) and j(Mz), where M was a matrix in
M(2,Z) of positive determinant m fixing the point z. We claim that the poly-
nomial P relating j(Mz) and j(z) can be chosen to depend only on m. More
precisely, we have:

Proposition 23. For each m ∈ N there is a polynomial Ψm(X,Y ) ∈ Z[X,Y ],
symmetric up to sign in its two arguments and of degree σ1(m) with respect
to either one, such that Ψm(j(Mz), j(z)) ≡ 0 for every matrix M ∈ M(2,Z)
of determinant m.

Proof. Denote by Mm the set of matrices in M(2,Z) of determinant m. The
group Γ1 acts on Mm by right and left multiplication, with finitely many
orbits. More precisely, an easy and standard argument shows that the finite
set

M∗
m =

{(
a b
0 d

) ∣
∣ a, b, d ∈ Z, ad = m, 0 ≤ b < d

}
⊂ Mm (77)
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is a full set of representatives for Γ1\Mm; in particular, we have
∣∣Γ1\Mm

∣∣ =
∣∣M∗

m

∣∣ =
∑

ad=m

d = σ1(m) . (78)

We claim that we have an identity
∏

M∈Γ1\Mm

(
X − j(Mz)

)
= Ψm(X, j(z)) (z ∈ H, X ∈ C) (79)

for some polynomial Ψm(X,Y ). Indeed, the left-hand side of (79) is well-
defined because j(Mz) depends only on the class of M in Γ1\Mm, and it is
Γ1-invariant because Mm is invariant under right multiplication by elements
of Γ1. Furthermore, it is a polynomial in X (of degree σ1(m), by (78)) each of
whose coefficients is a holomorphic function of z and of at most exponential
growth at infinity, since each j(Mz) has these properties and each coefficient
of the product is a polynomial in the j(Mz). But a Γ1-invariant holomorphic
function in the upper half-plane with at most exponential growth at infinity
is a polynomial in j(z), so that we indeed have (79) for some polynomial
Ψm(X,Y ) ∈ C[X,Y ]. To see that the coefficients of Ψm are in Z, we use the
set of representatives (77) and the Fourier expansion of j, which has the form
j(z) =

∑∞
n=−1 cnq

n with cn ∈ Z (c−1 = 1, c0 = 744, c1 = 196884 etc.).
Thus

Ψm(X, j(z)) =
∏

ad=m
d>0

d−1∏

b=0

(
X − j

(
az + b

d

))

=
∏

ad=m
d>0

∏

b (mod d)

(
X −

∞∑

n=−1

cn ζ
bn
d qan/d

)
,

where qα for α ∈ Q denotes e2πiαz and ζd = e2πi/d. The expression in
parentheses belongs to the ring Z[ζd][X ][q−1/d, q1/d]] of Laurent series in q1/d
with coefficients in Z[ζd], but applying a Galois conjugation ζd �→ ζrd with
r ∈ (Z/dZ)∗ just replaces b in the inner product by br, which runs over the
same set Z/dZ, so the inner product has coefficients in Z. The fractional pow-
ers of q go away at the same time (because the product over b is invariant
under z �→ z+1), so each inner product, and hence Ψm(X, j(z)) itself, belongs
to Z[X ][q−1, q]]. Now the fact that it is a polynomial in j(z) and that j(z)
has a Fourier expansion with integral coefficients and leading coefficient q−1

imlies that Ψm(X, j(z)) ∈ Z[X, j(z)]. Finally, the symmetry of Ψm(X,Y ) up
to sign follows because z′ = Mz with M =

(
a b
c d

)
∈ Mm is equivalent to

z = M ′z′ with M ′ =
(
d −b
−c a

)
∈ Mm.
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An example will make all of this clearer. For m = 2 we have

∏

M∈Γ1\Mm

(
X − j(z)

)
=

(
X − j

(z
2

))(
X − j

(
z + 1

2

))(
X − j

(
2z
))

by (77). Write this as X3 −A(z)X2 +B(z)X − C(z). Then

A(z) = j
(z

2

)
+ j

(
z + 1

2

)
+ j

(
2z
)

=
(
q−1/2 + 744 + o(q)

)
+
(
−q−1/2 + 744 + o(q)

)
+
(
q−2 + 744 + o(q)

)

= q−2 + 0 q−1 + 2232 + o(1)

= j(z)2 − 1488 j(z) + 16200 + o(1)

as z → i∞, and since A(z) is holomorphic and Γ1-invariant this implies that
A = j2−1488j+16200. A similar calculation gives B = 1488j2+40773375j+
8748000000 and C = −j3 + 162000j2 − 8748000000j+ 157464000000000, so

Ψ2(X,Y ) = −X2Y 2 + X3 + 1488X2Y + 1488XY 2 + Y 3 − 162000X2

+ 40773375XY − 162000Y 2 + 8748000000X + 8748000000Y

− 157464000000000 . (80)

Remark. The polynomial Ψm(X,Y ) is not in general irreducible: if m is not
square-free, then it factors into the product of all Φm/r2(X,Y ) with r ∈ N

such that r2|m, where Φm(X,Y ) is defined exactly like Ψm(X,Y ) but with
Mm replaced by the set M0

m of primitive matrices of determinant m. The
polynomial Φm(X,Y ) is always irreducible.

To obtain the algebraicity of j(z), we used that this value was a root
of P (X,X). We therefore should look at the restriction of the polynomial
Ψm(X,Y ) to the diagonal X = Y . In the example (80) just considered, two
properties of this restriction are noteworthy. First, it is (up to sign) monic, of
degree 4. Second, it has a striking factorization:

Ψ2(X,X) = −(X − 8000) · (X + 3375)2 · (X − 1728) . (81)

We consider each of these properties in turn. We assume thatm is not a square,
since otherwise Ψm(X,X) is identically zero because Ψm(X,Y ) contains the
factor Ψ1(X,Y ) = X − Y .

Proposition 24. For m not a perfect square, the polynomial Ψm(X,X) is, up
to sign, monic of degree σ+

1 (m) :=
∑
d|mmax(d,m/d).
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Proof. Using the identity
∏
b (mod d)(x− ζbdy) = xd − yd we find

Ψm(j(z), j(z)) =
∏

ad=m

∏

b (mod d)

(
j(z) − j

(
az + b

d

))

=
∏

ad=m

∏

b (mod d)

(
q−1 − ζ−bd q−a/d + o(1)

)

=
∏

ad=m

(
q−d − q−a + (lower order terms)

)
∼ ± q−σ

+
1 (m)

as I(z) → ∞, and this proves the proposition since j(z) ∼ q−1.

Corollary. Singular moduli are algebraic integers. �
Now we consider the factors of Ψm(X,X). First let us identify the three

roots in the factorization for m = 2 just given. The three CM points i,
(1 + i

√
7)/2 and i

√
2 are fixed, respectively, by the three matrices

(
0 −1
1 0

)
,(

1 1−1 1

)
and

(
0 −1
2 0

)
of determinant 2, so each of the corresponding j-values

must be a root of the polynomial (81). Computing these values numerically
to low accuracy to see which is which, we find

j(i) = 1728 , j
(1 + i

√
7

2
)

= −3375 , j(i
√

2) = 8000 .

(Another way to distinguish the roots, without doing any transcendental cal-
culations, would be to observe, for instance, that i and i

√
2 are fixed by

matrices of determinant 3 but (1+ i
√

7)/2 is not, and that X+3375 does not
occur as a factor of Ψ3(X,X) but both X − 1728 and X − 8000 do.)

The same method can be used for any other CM point. Here is a table of
the first few values of j(zD), where zD equals 1

2

√
D for D even and 1

2 (1+
√
D)

for D odd:
D −3 −4 −7 −8 −11 −12 −15 −16 −19
j(zD) 0 1728 −3375 8000 −32768 54000 − 191025+85995

√
5

2 287496 −884736

We can make this more precise. For each discriminant (integer congruent
to 0 or 1 mod 4) D < 0 we consider, as at the end of §1.2, the set QD of prim-
itive positive definite binary quadratic forms of discriminant D, i.e., functions
Q(x, y) = Ax2 + Bxy + Cy2 with A, B, C ∈ Z, A > 0, gcd(A,B,C) = 1 and
B2 − 4AC = D. To each Q ∈ QD we associate the root zQ of Q(z, 1) = 0
in H. This gives a Γ1-equivariant bijection between QD and the set ZD ⊂ H
of CM points of discriminant D. (The discriminant of a CM point is the
smallest discriminant of a quadratic polynomial over Z of which it is a root.)
In particular, the cardinality of Γ1\ZD is h(D), the class number of D. We
choose a set of representatives {zD,i}1≤i≤h(D) for Γ1\ZD (e.g., the points of
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ZD ∩ F̃1, where F̃1 is the fundamental domain constructed in §1.2, corre-
sponding to the set Qred

D in (5)), with zD,1 = zD. We now form the class
polynomial

HD(X) =
∏

z∈Γ1\ZD

(
X − j(z)

)
=

∏

1≤i≤h(D)

(
X − j(zD,i)

)
. (82)

Proposition 25. The polynomial HD(X) belongs to Z[X ] and is irreducible.
In particular, the number j(zD) is algebraic of degree exactly h(D) over Q,
with conjugates j(zD,i) (1 ≤ i ≤ h(D)).

Proof. We indicate only the main ideas of the proof. We have already proved
that j(z) for any CM point z is a root of the equation Ψm(X,X) = 0 whenever
m is the determinant of a matrix M ∈M(2,Z) fixing z. The main point is that
the set of these m’s depends only on the discriminant D of z, not on z itself, so
that the different numbers j(zD,i) are roots of the same equations and hence
are conjugates. Let Az2 + Bz + C = 0 (A > 0) be the minimal equation of z
and suppose that M =

(
a b
c d

)
∈ Mm fixes z. Then since cz2 + (d− a)z− b = 0

we must have (c, d− a,−b) = u(A,B,C) for some u ∈ Z. This gives

M =
(

1
2 (t−Bu) −Cu

Au 1
2 (t+Bu)

)
, detM =

t2 −Du2

4
, (83)

where t = tr M . Convesely, if t and u are any integers with t2 −Du2 = 4m,
then (83) gives a matrixM ∈ Mm fixing z. Thus the set of integersm = detM
with Mz = z is the set of numbers 1

4 (t2−Du2) with t ≡ Du (mod 2) or, more
invariantly, the set of norms of elements of the quadratic order

OD = Z[zD] =
{
t+ u

√
D

2

∣
∣∣
∣ t, u ∈ Z, t ≡ Du (mod 2)

}
(84)

of discriminant D, and this indeed depends only on D, not on z. We can
then obtain HD(X), or at least its square, as the g.c.d. of finitely many
polymials Ψm(X,X), just as we obtained H−7(X)2 = (X + 3375)2 as the
g.c.d. of Ψ2(X,X) and Ψ3(X,X) in the example above. (Start, for example,
with a prime m1 which is the norm of an element of OD – there are known to
be infinitely many – and then choose finitely many further m’s which are also
norms of elements in OD but not any of the finitely many other quadratic
orders in which m1 is a norm.)

This argument only shows that HD(X) has rational coefficients, not that
it is irreducible. The latter fact is proved most naturally by studying the
arithmetic of the corresponding elliptic curves with complex multiplication
(roughly speaking, the condition of having complex multiplication by a given
order OD is purely algebraic and hence is preserved by Galois conjugation),
but since the emphasis in these notes is on modular methods and their appli-
cations, we omit the details.
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The proof just given actually yields the formula

Ψm(X,X) = ±
∏

D<0

HD(X)rD(m)/w(D) (m ∈ N, m �= square) , (85)

due to Kronecker. Here rD(m) =
∣
∣ { ( t, u ) ∈ Z2 | t2 − Du2 = 4m }

∣
∣ =∣

∣{λ ∈ OD | N(λ) = m}
∣
∣ and w(D) is the number of units in OD, which

is equal to 6 or 4 for D = −3 or −4, respectively, and to 2 otherwise. The
product in (85) is finite since rD(m) �= 0 ⇒ 4m = t2 − u2D ≥ |D| because u
can’t be equal to 0 if m is not a square.

There is another form of formula (85) which will be used in the second ap-
plication below. As well as the usual class number h(D), one has the Hurwitz
class number h∗(D) (the traditional notation is H(|D|)), defined as the num-
ber of all Γ1-equivalence classes of positive definite binary quadratic forms of
discriminant D, not just the primitive ones, counted with multiplicity equal to
one over the order of their stabilizer in Γ1 (which is 2 or 3 if the corresponding
point in the fundamental domain for Γ1\H is at i or ρ and is 1 otherwise). In
formulas, h∗(D) =

∑
r2|D h

′(D/r2), where the sum is over all r ∈ N for which
r2|D (and for which D/r2 is still congruent to 0 or 1 mod 4, since otherwise
h′(D/r2) will be 0) and h′(D) = h(D)/ 1

2w(D) with w(D) as above. Simi-
larly, we can define a modified class “polynomial” H∗

D(X), of “degree” h∗(D),
by

H∗
D(X) =

∏

r2|D
HD/r2(X)2/w(D) ,

e.g., H∗
−12(X) = X1/3(X − 54000). (These are actual polynomials unless |D|

or 3|D| is a square.) Then (85) can be written in the following considerably
simpler form:

Ψm(X,X) = ±
∏

t2<4m

H∗
t2−4m(X) (m ∈ N, m �= square) . (86)

This completes our long discussion of the algebraicity of singular moduli.
We now describe some of the many applications.

♠ Strange Approximations to π

We start with an application that is more fun than serious. The discriminant
D = −163 has class number one (and is in fact known to be the smallest
such discriminant), so Proposition 25 implies that j(zD) is a rational integer.
Moreover, it is large (in absolute value) because j(z) ≈ q−1 and the q = e2πiz

corresponding to z = z163 is roughly −4 × 10−18. But then from j(z) =
q−1 + 744 + O(q) we find that q−1 is extremely close to an integer, giving the
formula

eπ
√

163 = 262537412640768743.999999999999250072597 · · ·
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which would be very startling if one did not know about complex multiplica-
tion. By taking logarithms, one gets an extremely good approximation to π:

π =
1√
163

log(262537412640768744) − (2.237 · · · × 10−31) .

(A poorer but simpler approximation, based on the fact that j(z163) is a perfect
cube, is π ≈ 3√

163
log(640320), with an error of about 10−16.) Many further

identities of this type were found, still using the theory of complex multipli-
cation, by Ramanujan and later by Dan Shanks, the most spectactular one
being

π − 6√
3502

log
[
2 ε(x1) ε(x2) ε(x3) ε(x4)

]
≈ 7.4 × 10−82

where x1 = 429 + 304
√

2, x2 = 627
2 + 221

√
2, x3 = 1071

2 + 92
√

34, x4 =
1553

2 + 133
√

34, and ε(x) = x +
√
x2 − 1. Of course these formulas are more

curiosities than useful ways to compute π, since the logarithms are no easier to
compute numerically than π is and in any case, if we allow complex numbers,
then Euler’s formula π = 1√−1

log(−1) is an exact formula of the same kind!
♥

♠ Computing Class Numbers

By comparing the degrees on both sides of (85) or (86) and using Proposit-
ion 24, we obtain the famous Hurwitz-Kronecker class number relations

σ+
1 (m) =

∑

D<0

h(D)
w(D)

rD(m) =
∑

t2<4m

h∗(t2 − 4m) (m ∈ N, m �= square) .

(87)
(In fact the equality of the first and last terms is true also for m square if
we replace the summation condition by t2 ≤ 4m and define h∗(0) = − 1

12 , as
one shows by a small modification of the proof given here.) We mention that
this formula has a geometric interpretation in terms of intersection numbers.
Let X denote the modular curve Γ1\H. For each m ≥ 1 there is a curve
Tm ⊂ X × X , the Hecke correspondence, corresponding to the mth Hecke
operator Tm introduced in §4.1. (The preimage of this curve in H×H consists
of all pairs (z,Mz) with z ∈ H and M ∈ Mm.) For m = 1, this curve is just
the diagonal. Now the middle or right-hand term of (87) counts the “physical”
intersection points of Tm and T1 in X × X (with appropriate multiplicities
if the intersections are not transversal), while the left-hand term computes
the same number homologically, by first compactifying X to X̄ = X ∪ {∞}
(which is isomorphic to P1(C) via z �→ j(z)) and Tm and T1 to their closures
T̄m and T̄1 in X̄ × X̄ and then computing the intersection number of the
homology classes of T̄m and T̄1 in H2(X̄× X̄) ∼= Z2 and correcting this by the
contribution coming from intersections at infinity of the compactified curves.
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Equation (87) gives a formula for h∗(−4m) in terms of h∗(D) with
|D| < 4m. This does not quite suffice to calculate class numbers recursively
since only half of all discriminants are multiples of 4. But by a quite similar
type of argument (cf. the discussion in §6.2 below) one can prove a second
class number relation, namely

∑

t2≤4m

(m− t2)h∗(t2 − 4m) =
∑

d|m
min(d,m/d)3 (m ∈ N) (88)

(again with the convention that h∗(0) = − 1
12 ), and this together with (87)

does suffice to determine h∗(D) for all D recursively, since together they ex-
press h∗(−4m) + 2h∗(1 − 4m) and mh∗(1 − 4m) + 2(m − 1)h∗(1 − 4m) as
linear combinations of h∗(D) with |D| < 4m− 1, and every negative discrim-
inant has the form −4m or 1 − 4m for some m ∈ N. This method is quite
reasonable computationally if one wants to compute a table of class numbers
h∗(D) for −X < D < 0, with about the same running time (viz., O(X3/2)
operations) as the more direct method of counting all reduced quadratic forms
with discriminant in this range. ♥

♠ Explicit Class Field Theory for Imaginary Quadratic Fields

Class field theory, which is the pinnacle of classical algebraic number theory,
gives a complete classification of all abelian extensions of a given number
field K. In particular, it says that the unramified abelian extensions (we omit
all definitions) are the subfields of a certain finite extension H/K, the Hilbert
class field, whose degree over K is equal to the class number of K and whose
Galois group over K is canonically isomorphic to the class group of K, while
the ramified abelian extensions have a similar description in terms of more
complicated partititons of the ideals of OK into finitely many classes. However,
this theory, beautiful though it is, gives no method to actually construct the
abelian extensions, and in fact it is only known how to do this explicitly in two
cases: Q and imaginary quadratic fields. If K = Q then the Hilbert class field
is trivial, since the class number is 1, and the ramified abelian extensions are
just the subfields of Q(e2πi/N ) (N ∈ N) by the Kronecker-Weber theorem. For
imaginary quadratic fields, the result (in the unramified case) is as follows.

Theorem. Let K be an imaginary quadratic field, with discriminant D and
Hilbert class field H. Then the h(D) singular moduli j(zD,i) are conjugate to
one another over K (not just over Q), any one of them generates H over K,
and the Galois group of H over K permutes them transitively. More precisely,
if we label the CM points of discriminant D by the ideal classes of K and
identify Gal(H/K) with the class group of K by the fundamental isomorphism
of class field theory, then for any two ideal classes A, B of K the element σA
of Gal(H/K) sends j(zB) to j(zAB).

The ramified abelian extensions can also be described completely by com-
plex multiplication theory, but then one has to use the values of other modu-
lar functions (not just of j(z)) evaluated at all points of K ∩ H (not just
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those of discriminant D). Actually, even for the Hilbert class fields it can
be advantageous to use modular functions other than j(z). For instance, for
D = −23, the first discriminant with class number not a power of 2 (and
therefore the first non-trivial example, since Gauss’s theory of genera de-
scribes the Hilbert class field of D when the class group has exponent 2 as
a composite quadratic extension, e.g., H for K = Q(

√
−15) is Q(

√
−3,

√
5) ),

the Hilbert class field is generated over K by the real root α of the polynomial
X3 − X − 1. The singular modulus j(zD), which also generates this field, is
equal to −53α12(2α− 1)3(3α+ 2)3 and is a root of the much more compli-
cated irreducible polynomial H−23(X) = X3 + 3491750X2 − 5151296875X+
12771880859375, but using more detailed results from the theory of com-
plex multiplication one can show that the number 2−1/2eπi/24η(zD)/η(2zD)
also generates H , and this number turns out to be α itself! The improve-
ment is even more dramatic for larger values of |D| and is important in
situations where one actually wants to compute a class field explicitly, as
in the applications to factorization and primality testing mentioned in §6.4
below. ♥

♠ Solutions of Diophantine Equations

In §4.4 we discussed that one can parametrize an elliptic curve E over Q

by modular functions X(z), Y (z), i.e., functions which are invariant under
Γ0(N) for some N (the conductor of E) and identically satisfy the Weier-
strass equation Y 2 = X3+AX+B defining E. If K is an imaginary quadratic
field with discriminant D prime to N and congruent to a square modulo 4N
(this is equivalent to requiring that OK = OD contains an ideal n with
OD/n ∼= Z/NZ), then there is a canonical way to lift the h(D) points of
Γ1\H of discriminant D to h(D) points in the covering Γ0(N)\H, the so-
called Heegner points. (The way is quite simple: if D ≡ r2 (mod 4N), then
one looks at points zQ with Q(x, y) = Ax2 + Bxy + Cy2 ∈ QD satisfying
A ≡ 0 (mod N) and B ≡ r (mod 2N); there is exactly one Γ0(N)-equivalence
class of such points in each Γ1-equivalence class of points of ZD.) One can
then show that the values of X(z) and Y (z) at the Heegner points be-
have exactly like the values of j(z) at the points of ZD, viz., these values
all lie in the Hilbert class field H of K and are permuted simply transi-
tively by the Galois group of H over K. It follows that we get h(D) points
Pi = (X(zi), Y (zi)) in E with coordinates in H which are permuted by
Gal(H/K), and therefore that the sum PK = P1 + · · · + Ph(D) has coor-
dinates in K (and in many cases even in Q). This method of constructing
potentially non-trivial rational solutions of Diophantine equations of genus 1
(the question of their actual non-triviality will be discussed briefly in §6.2)
was invented by Heegner as part of his proof of the fact, mentioned above,
that −163 is the smallest quadratic discriminant with class number 1 (his
proof, which was rather sketchy at many points, was not accepted at the
time by the mathematical community, but was later shown by Stark to
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be correct in all essentials) and has been used to construct non-trivial so-
lutions of several classical Diophantine equations, e.g., to show that every
prime number congruent to 5 or 7 (mod 8) is a “congruent number” (= the
area of a right triangle with rational sides) and that every prime number
congruent to 4 or 7 (mod 9) is a sum of two rational cubes (Sylvester’s
problem). ♥

6.2 Norms and Traces of Singular Moduli

A striking property of singular moduli is that they always are highly factoriz-
able numbers. For instance, the value of j(z−163) used in the first application
in §6.1 is −6403203 = −2183353233293, and the value of j(z−11) = −32768
is the 15th power of −2. As part of our investigation about the heights of
Heegner points (see below), B. Gross and I were led to a formula which ex-
plains and generalizes this phenomenon. It turns out, in fact, that the right
numbers to look at are not the values of the singular moduli themselves, but
their differences. This is actually quite natural, since the definition of the
modular function j(z) involves an arbitrary choice of additive constant: any
function j(z) + C with C ∈ Z would have the same analytic and arithmetic
properties as j(z). The factorization of j(z), however, would obviously change
completely if we replaced j(z) by, say, j(z) + 1 or j(z) − 744 = q−1 + O(q)
(the so-called “normalized Hauptmodul” of Γ1), but this replacement would
have no effect on the difference j(z1)− j(z2) of two singular moduli. That the
original singular moduli j(z) do nevertheless have nice factorizations is then
due to the accidental fact that 0 itself is a singular modulus, namely j(z−3),
so that we can write them as differences j(z)− j(z−3). (And the fact that the
values of j(z) tend to be perfect cubes is then related to the fact that z−3 is
a fixed-point of order 3 of the action of Γ1 on H.) Secondly, since the singu-
lar moduli are in general algebraic rather than rational integers, we should
not speak only of their differences, but of the norms of their differences, and
these norms will then also be highly factored. (For instance, the norms of
the singular moduli j(z−15) and j(z−23), which are algebraic integers of de-
gree 2 and 3 whose values were given in §6.1, are −3653113 and −59113173,
respectively.)

If we restrict ourselves for simplicity to the case that the discriminants D1

and D2 of z1 and z2 are coprime, then the norm of j(z1)− j(z2) depends only
on D1 and D2 and is given by

J(D1, D2) =
∏

z1∈Γ1\ZD1

∏

z2∈Γ1\ZD2

(
j(z1) − j(z2)

)
. (89)

(If h(D1) = 1 then this formula reduces simply to HD2(zD1), while in general
J(D1, D2) is equal, up to sign, to the resultant of the two irreducible polyno-
mials HD1(X) and HD2(X).) These are therefore the numbers which we want
to study. We then have:
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Theorem. Let D1 and D2 be coprime negative discriminants. Then all prime
factors of J(D1, D2) are ≤ 1

4D1D2. More precisely, any prime factors of
J(D1, D2) must divide 1

4 (D1D2 − x2) for some x ∈ Z with |x| <
√
D1D2

and x2 ≡ D1D2 (mod 4).
There are in fact two proofs of this theorem, one analytic and one arith-

metic. We give some brief indications of what their ingredients are, without
defining all the terms occurring. In the analytic proof, one looks at the Hilbert
modular group SL(2,OF ) (see the notes by J. Bruinier in this volume) asso-
ciated to the real quadratic field F = Q(

√
D1D2) and constructs a certain

Eisenstein series for this group, of weight 1 and with respect to the “genus
character” associated to the decomposition of the discriminant of F asD1 ·D2.
Then one restricts this form to the diagonal z1 = z2 (the story here is actually
more complicated: the Eisenstein series in question is non-holomorphic and
one has to take the holomorphic projection of its restriction) and makes use
of the fact that there are no holomorphic modular forms of weight 2 on Γ1 .
In the arithmetic proof, one uses that p|J(D1, D2) if and only the CM ellip-
tic curves with j-invariants j(zD1) and j(zD2) become isomorphic over Fp .
Now it is known that the ring of endomorphisms of any elliptic curve over
Fp is isomorphic either to an order in a quadratic field or to an order in the
(unique) quaternion algebra Bp,∞ over Q ramified at p and at infinity. For
the elliptic curve E which is the common reduction of the curves with com-
plex multiplication by OD1 and OD2 the first alternative cannot occur, since
a quadratic order cannot contain two quadratic orders coming from differ-
ent quadratic fields, so there must be an order in Bp,∞ which contains two
elements α1 and α2 with square D1 and D2, respectively. Then the element
α = α1α2 also belongs to this order, and if x is its trace then x ∈ Z (because
α is in an order and hence integral), x2 < N(α) = D1D2 (because Bp,∞ is
ramified at infinity), and x2 ≡ D1D2 (mod p) (because Bp,∞ is ramified at p).
This proves the theorem, except that we have lost a factor “4” because the
elements αi actually belong to the smaller orders O4Di and we should have
worked with the elements αi/2 or (1 + αi)/2 (depending on the parity of Di)
in ODi instead.

The theorem stated above is actually only the qualitative version of the
full result, which gives a complete formula for the prime factorization of
J(D1, D2). Assume for simplicity that D1 and D2 are fundamental. For
each positive integer n of the form 1

4 (D1D2 − x2), we define a function ε
from the set of divisors of n to {±1} by the requirement that ε is com-
pletely multiplicative (i.e., ε

(
pr11 · · · prs

s

)
= ε

(
p1

)r1 · · · ε
(
ps
)rs for any divisor

pr11 · · · prs
s of n) and is given on primes p|n by ε(p) = χD1(p) if p � D1 and

by ε(p) = χD2(p) if p � D2, where χD is the Dirichlet character modulo D
introduced at the beginning of §3.2. Notice that this makes sense: at least one
of the two alternatives must hold, since (D1, D2) = 1 and p is prime, and if
they both hold then the two definitions agree because D1D2 is then congruent
to a non-zero square modulo p if p is odd and to an odd square modulo 8 if
p = 2, so χD1(p)χD2 (p) = 1. We then define F (n) (still for n of the form
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1
4 (D1D2 − x2)) by

F (n) =
∏

d|n
dε(n/d) .

This number, which is a priori only rational since ε(n/d) can be positive
or negative, is actually integral and in fact is always a power of a sin-
gle prime number : one can show easily that ε(n) = −1, so n contains
an odd number of primes p with ε(p) = −1 and 2 � ordp(n), and if we
write

n = p2α1+1
1 · · · p2αr+1

r p2β1
r+1 · · · p

2βs

r+sq
γ1
1 · · · qγt

t

with r odd and ε(pi) = −1, ε(qj) = +1, αi, βi, γj ≥ 0, then

F (n) =

{
p(α1+1)(γ1+1)···(γt+1) if r = 1, p1 = p ,

1 if r ≥ 3 .
(90)

The complete formula for J(D1, D2) is then

J(D1, D2)8/w(D1)w(D2) =
∏

x2<D1D2
x2≡D1D2 (mod 4)

F

(
D1D2 − x2

4

)
. (91)

As an example, for D1 = −7, D2 = −43 (both with class number one) this
formula gives

J(−7,−43) =
∏

1≤x≤17
x odd

F

(
301 − x2

4

)

= F (75)F (73)F (69)F (63)F (55)F (45)F (33)F (19)F (3)

= 3 · 73 · 32 · 7 · 52 · 5 · 32 · 19 · 3 ,

and indeed j(z−7) − j(z−43) = −3375 + 884736000 = 36 · 53 · 7 · 19 · 73. This
is the only instance I know of in mathematics where the prime factorization
of a number (other than numbers like n! which are defined as products) can
be described in closed form.

♠ Heights of Heegner Points

This “application” is actually not an application of the result just described,
but of the methods used to prove it. As already mentioned, the above theorem
about differences of singular moduli was found in connection with the study
of the height of Heegner points on elliptic curves. In the last “application”
in §6.1 we explained what Heegner points are, first as points on the modular
curve X0(N) = Γ0(N)\H∪{cusps} and then via the modular parametrization
as points on an elliptic curve E of conductor N . In fact we do not have to
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pass to an elliptic curve; the h(D) Heegner points on X0(N) corresponding
to complex multiplication by the order OD are defined over the Hilbert class
field H of K = Q(

√
D) and we can add these points on the Jacobian J0(N)

of X0(N) (rather than adding their images in E as before). The fact that
they are permuted by Gal(H/K) means that this sum is a point PK ∈ J0(N)
defined over K (and sometimes even over Q). The main question is whether
this is a torsion point or not; if it is not, then we have an interesting solution of
a Diophantine equation (e.g., a non-trivial point on an elliptic curve over Q).
In general, whether a point P on an elliptic curve or on an abelian variety
(like J0(N)) is torsion or not is measured by an invariant called the (global)
height of P , which is always ≥ 0 and which vanishes if and only if P has
finite order. This height is defined as the sum of local heights, some of which
are “archimedean” (i.e., associated to the complex geometry of the variety
and the point) and can be calculated as transcendental expressions involving
Green’s functions, and some of which are “non-archimedean” (i.e., associated
to the geometry of the variety and the point over the p-adic numbers for some
prime number p) and can be calculated arithmetically as the product of log p
with an integer which measures certain geometric intersection numbers in
characteristic p. Actually, the height of a point is the value of a certain positive
definite quadratic form on the Mordell-Weil group of the variety, and we can
also consider the associated bilinear form (the “height pairing”), which must
then be evaluated for a pair of Heegner points. If N = 1, then the Jacobian
J0(N) is trivial and therefore all global heights are automatically zero. It
turns out that the archimedean heights are essentially the logarithms of the
absolute values of the individual terms in the right-hand side of (89), while
the p-adic heights are the logarithms of the various factors F (n) on the right-
hand side of (91) which are given by formula (90) as powers of the given prime
number p. The fact that the global height vanishes is therefore equivalent to
formula (91) in this case. If N > 1, then in general (namely, whenever X0(N)
has positive genus) the Jacobian is non-trivial and the heights do not have to
vanish identically. The famous conjecture of Birch and Swinnerton-Dyer, one
of the seven million-dollar Clay Millennium Problems, says that the heights
of points on an abelian variety are related to the values or derivatives of
a certain L-function; more concretely, in the case of an elliptic curve E/Q,
the conjecture predicts that the order to which the L-series L(E, s) vanishes
at s = 1 is equal to the rank of the Mordell-Weil group E(Q) and that the
value of the first non-zero derivative of L(E, s) at s = 1 is equal to a certain
explicit expression involving the height pairings of a system of generators
of E(Q) with one another. The same kind of calculations as in the case N = 1
permitted a verification of this prediction in the case of Heegner points, the
relevant derivative of the L-series being the first one:

Theorem. Let E be an elliptic curve defined over Q whose L-series vanishes
at s = 1. Then the height of any Heegner point is an explicit (and in general
non-zero) multiple of the derivative L′(E/Q, 1).
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The phrase “in general non-zero” in this theorem means that for any
given elliptic curve E with L(E, 1) = 0 but L′(E, 1) �= 0 there are Heegner
points whose height is non-zero and which therefore have infinite order in the
Mordell-Weil group E(Q). We thus get the following (very) partial statement
in the direction of the full BSD conjecture:

Corollary. If E/Q is an elliptic curve over Q whose L-series has a simple
zero at s = 1, then the rank of E(Q) is at least one.
(Thanks to subsequent work of Kolyvagin using his method of “Euler systems”
we in fact know that the rank is exactly equal to one in this case.) In the
opposite direction, there are elliptic curvesE/Q and Heegner points P in E(Q)
for which we know that the multiple occurring in the theorem is non-zero but
where P can be checked directly to be a torsion point. In that case the theorem
says that L′(E/Q, 1) must vanish and hence, if the L-series is known to have
a functional equation with a minus sign (the sign of the functional equation
can be checked algorithmically), that L(E/Q, s) has a zero of order at least 3
at s = 1. This is important because it is exactly the hypothesis needed to
apply an earlier theorem of Goldfeld which, assuming that such a curve is
known, proves that the class numbers of h(D) go to infinity in an effective
way as D → −∞. Thus modular methods and the theory of Heegner points
suffice to solve the nearly 200-year problem, due to Gauss, of showing that
the set of discriminants D < 0 with a given class number is finite and can be
determined explicitly, just as in Heegner’s hands they had already sufficed to
solve the special case when the given value of the class number was one. ♥

So far in this subsection we have discussed the norms of singular moduli
(or more generally, the norms of their differences), but algebraic numbers also
have traces, and we can consider these too. Now the normalization of j does
matter; it turns out to be best to choose the normalized Hauptmodul j0(z) =
j(z)− 744. For every discriminant D < 0 we therefore define T (D) ∈ Z to be
the trace of j0(zD). This is the sum of the h(D) singular moduli j0(zD,i), but
just as in the case of the Hurwitz class numbers it is better to use the modified
trace T ∗(d) which is defined as the sum of the values of j0(z) at all points z ∈
Γ1\H satisfying a quadratic equation, primitive or not, of discriminant D (and
with the points i and ρ, if they occur at all, being counted with multiplicity
1/2 or 1/3 as usual), i.e., T ∗(D) =

∑
r2|D T (D/r2)/(1

2w(D/r2)) with the
same conventions as in the definition of h∗(D). The result, quite different
from (and much easier to prove than) the formula for the norms, is that
these numbers T ∗(D) are the coefficients of a modular form. Specifically, if we
denote by g(z) the meromorphic modular form θM (z)E4(4z)/η(4z)6 of weight
3/2, where θM (z) is the Jacobi theta function

∑
n∈Z

(−1)nqn
2

as in §3.1, then
we have:

Theorem. The Fourier expansion of g(z) is given by

g(z) = q−1 − 2 −
∑

d>0

T ∗(−d) qd . (92)
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We can check the first few coefficients of this by hand: the Fourier ex-
pansion of g begins q−1 − 2 + 248 q3 − 492 q4 + 4119 q7 − · · · and indeed we
have T ∗(−3) = 1

3 (0 − 744) = −248, T ∗(−4) = 1
2 (1728 − 744) = 492, and

T ∗(−7) = −3375− 744 = −4119.
The proof of this theorem, though somewhat too long to be given here,

is fairly elementary and is essentially a refinement of the method used to
prove the Hurwitz-Kronecker class number relations (87) and (88). More pre-
cisely, (87) was proved by comparing the degrees on both sides of (86), and
these in turn were computed by looking at the most negative exponent oc-
curring in the q-expansion of the two sides when X is replaced by j(z); in
particular, the number σ+

1 (m) came from the calculation in Proposition 24
of the most negative power of q in Ψm(j(z), j(z)). If we look instead at the
next coefficient (i.e., that of q−σ

+
1 (m)+1), then we find −

∑
t2<4m T

∗(t2 − 4m)
for the right-hand side of (86), because the modular functions HD(j(z)) and
H∗
D(j(z)) have Fourier expansions beginning q−h(D)(1− T (D)q + O(q2)) and

q−h
∗(D)(1 − T ∗(D)q + O(q2)), respectively, while by looking carefully at the

“lower order terms” in the proof of Proposition 24 we find that the corre-
sponding coefficient for the left-hand side of (86) vanishes for all m unless m
or 4m+1 is a square, when it equals +4 or −2 instead. The resulting identity
can then be stated uniformly for all m as

∑

t∈Z

T ∗(t2 − 4m) = 0 (m ≥ 0) , (93)

where we have artificially defined T ∗(0) = 2, T ∗(1) = −1, and T ∗(D) = 0 for
D > 1 ( a definition made plausible by the result in the theorem we want to
prove). By a somewhat more complicated argument involving modular forms
of higher weight, we prove a second relation, analogous to (88):

∑

t∈Z

(m− t2)T ∗(t2 − 4m) =

{
1 if m = 0 ,

240σ3(n) if m ≥ 1 .
(94)

(Of course, the factor m − t2 here could be replaced simply by −t2, in
view of (93), but (94) is more natural, both from the proof and by anal-
ogy with (88).) Now, just as in the discussion of the Hurwitz-Kronecker class
number relations, the two formulas (93) and (94) suffice to determine all
T ∗(D) by recursion. But in fact we can solve these equations directly, rather
than recursively (though this was not done in the original paper). Write the
right-hand side of (92) as t0(z) + t1(z) where t0(z) =

∑∞
m=0 T

∗(−4m) q4m

and t1(z) =
∑∞
m=0 T

∗(1− 4m) q4m−1, and define two unary theta series θ0(z)
and θ1(z) (= θ(4z) and θF (4z) in the notation of §3.1) as the sums

∑
qt

2

with t ranging over the even or odd integers, respectively. Then (93) says
that t0θ0 + t1θ1 = 0 and (94) says that [t0, θ0] + [t1, θ1] = 4E4(4z), where
[ti, θi] = 3

2 tiθ
′
i − 1

2 t
′
iθi is the first Rankin–Cohen bracket of ti (in weight 3/2)

and θi. By taking a linear combination of the second equation with the deriva-
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tive of the first, we deduce that
(
θ0(z) θ1(z)
θ′0(z) θ′1(z)

)(
t0(z)
t1(z)

)
= 2

(
0

E4(4z)

)
, and

from this we can immediately solve for t0(z) and t1(z) and hence for their
sum, proving the theorem.

♠ The Borcherds Product Formula

This is certainly not an “application” of the above theorem in any reasonable
sense, since Borcherds’s product formula is much deeper and more general
and was proved earlier, but it turns out that there is a very close link and
that one can even use this to give an elementary proof of Borcherds’s formula
in a special case. This special case is the beautiful product expansion

H∗
D(j(z)) = q−h

∗(D)
∞∏

n=1

(
1 − qn

)AD(n2)
, (95)

where AD(m) denotes the mth Fourier coefficient of a certain meromor-
phic modular form fD(z) (with Fourier expansion beginning qD + O(q)) of
weight 1/2. The link is that one can prove in an elementary way a “duality
formula” AD(m) = −Bm(|D|), where Bm(n) is the coefficient of qn in the
Fourier expansion of a certain other meromorphic modular form gm(z) (with
Fourier expansion beginning q−m + O(1)) of weight 3/2. For m = 1 the func-
tion gm coincides with the g of the theorem above, and since (95) immediately
implies that T ∗(D) = AD(1) this and the duality imply (92). Conversely, by
applying Hecke operators (in half-integral weight) in a suitable way, one can
give a generalization of (92) to all functions gn2 , and this together with the
duality formula gives the complete formula (95), not just its subleading coef-
ficient. ♥

6.3 Periods and Taylor Expansions of Modular Forms

In §6.1 we showed that the value of any modular function (with rational or
algebraic Fourier coefficients; we will not always repeat this) at a CM point z
is algebraic. This is equivalent to saying that for any modular form f(z), of
weight k, the value of f(z) is an algebraic multiple of Ωkz , where Ωz depends
on z only, not on f or on k. Indeed, the second statement implies the first
by specializing to k = 0, and the first implies the second by observing that if
f ∈ Mk and g ∈ M� then f �/gk has weight 0 and is therefore algebraic at z,
so that f(z)1/k and g(z)1/� are algebraically proportional. Furthermore, the
number Ωz is unchanged (at least up to an algebraic number, but it is only
defined up to an algebraic number) if we replace z by Mz for any M ∈M(2,Z)
with positive determinant, because f(Mz)/f(z) is a modular function, and
since any two CM points which generate the same imaginary quadratic field
are related in this way, this proves:
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Proposition 26. For each imaginary quadratic field K there is a number
ΩK ∈ C∗ such that f(z) ∈ Q · ΩkK for all z ∈ K ∩ H, all k ∈ Z, and all
modular forms f of weight k with algebraic Fourier coefficients. �

To find ΩK , we should compute f(z) for some special modular form f (of
non-zero weight!) and some point or points z ∈ K∩H. A natural choice for the
modular form is Δ(z), since it never vanishes. Even better, to achieve weight 1,
is its 12th root η(z)2, and better yet is the function Φ(z) = I(z)| η(z)|4 (which
at z ∈ K∩H is an algebraic multiple of Ω2

K), since it is Γ1-invariant. As for the
choice of z, we can look at the CM points of discriminant D (= discriminant
of K), but since there are h(D) of them and none should be preferred over
the others (their j-invariants are conjugate algebraic numbers), the only rea-
sonable choice is to multiply them all together and take the h(D)-th root – or
rather the h′(D)-th root (where h′(D) as previously denotes h(D)/ 1

2w(D),
i.e., h′(D) = 1

3 , 1
2 or h(K) for D = −3, D = −4, or D < −4), because the

elliptic fixed points ρ and i of Γ1\H are always to be counted with multiplic-
ity 1

3 and 1
2 , respectively. Surprisingly enough, the product of the invariants

Φ(zD,i) (i = 1, . . . , h(D)) can be evaluated in closed form:

Theorem. Let K be an imaginary quadratic field of discriminant D. Then

∏

z∈Γ1\ZD

(
4π
√
|D|Φ(z)

)2/w(D) =
|D|−1∏

j=1

Γ
(
j/|D|

)χD(j)
, (96)

where χD is the quadratic character associated to K and Γ (x) is the Euler
gamma function.

Corollary. The number ΩK in Proposition 26 can be chosen to be

ΩK =
1

√
2π|D|

⎛

⎝
|D|−1∏

j=1

Γ

(
j

|D|

)χD(j)
⎞

⎠

1/2h′(D)

. (97)

Formula (96), usually called the Chowla–Selberg formula, is contained in
a paper published by S. Chowla and A. Selberg in 1949, but it was later no-
ticed that it already appears in a paper of Lerch from 1897. We cannot give
the complete proof here, but we describe the main idea, which is quite sim-
ple. The Dedekind zeta function ζK(s) =

∑
N(a)−s (sum over all non-zero

integral ideals of K) has two decompositions: an additive one as
∑

A ζK,A(s),
where A runs over the ideal classes of K and ζK,A(s) is the associated “par-
tial zeta function” (=

∑
N(a)−s with a running over the ideals in A), and

a multiplicative one as ζ(s)L(s, χD), where ζ(s) denotes the Riemann zeta
function and L(s, χD) =

∑∞
n=1 χD(n)n−s. Using these two decompositions,

one can compute in two different ways the two leading terms of the Laurent
expansion ζK(s) = A

s−1 + B + O(s − 1) as s → 1. The residue at s = 1 of
ζK,A(s) is independent of A and equals π/ 1

2w(D)
√

|D|, leading to Dirichlet’s
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class number formula L(1, χD) = π h′(D)/
√
|D|. (This is, of course, precisely

the method Dirichlet used.) The constant term in the Laurent expansion of
ζK,A(s) at s = 1 is given by the famous Kronecker limit formula and is (up to
some normalizing constants) simply the value of log(Φ(z)), where z ∈ K ∩H is
the CM point corresponding to the ideal class A. The Riemann zeta function
has the expansion (s− 1)−1 − γ+O(s− 1) near s = 1 (γ = Euler’s constant),
and L′(1, χD) can be computed by a relatively elementary analytic argument
and turns out to be a simple multiple of

∑
j χD(j) logΓ (j/|D|). Combining

everything, one obtains (96).
As our first “application,” we mention two famous problems of transcend-

ence theory which were solved by modular methods, one using the Chowla–
Selberg formula and one using quasimodular forms.

♠ Two Transcendence Results

In 1976, G.V. Chudnovsky proved that for any z ∈ H, at least two of the three
numbers E2(z), E4(z) and E6(z) are algebraically independent. (Equivalently,
the field generated by all f(z) with f ∈ M̃∗(Γ1)Q = Q[E2, E4, E6] has tran-
scendence degree at least 2.) Applying this to z = i, for which E2(z) = 3/π,
E4(z) = 3Γ (1

4 )8/(2π)6 and E6(z) = 0, one deduces immediately that Γ (1
4 )

is transcendental (and in fact algebraically independent of π). Twenty years
later, Nesterenko, building on earlier work of Barré-Sirieix, Diaz, Gramain and
Philibert, improved this result dramatically by showing that for any z ∈ H at
least three of the four numbers e2πiz , E2(z), E4(z) and E6(z) are algebraically
independent. His proof used crucially the basic properties of the ring M̃∗(Γ1)Q

discussed in §5, namely, that it is closed under differentiation and that each of
its elements is a power series in q = e2πiz with rational coefficients of bounded
denominator and polynomial growth. Specialized to z = i, Nesterenko’s result
implies that the three numbers π, eπ and Γ (1

4 ) are algebraically indepen-
dent. The algebraic independence of π and eπ (even without Γ (1

4 )) had been
a famous open problem. ♥

♠ Hurwitz Numbers

Euler’s famous result of 1734 that ζ(2r)/π2r is rational for every r ≥ 1 can
be restated in the form

∑

n∈Z

n	=0

1
nk

= (rational number) · πk for all k ≥ 2 , (98)

where the “rational number” of course vanishes for k odd since then the con-
tributions of n and −n cancel. This result can be obtained, for instance, by
looking at the Laurent expansion of cotx near the origin. Hurwitz asked the
corresponding question if one replaces Z in (98) by the ring Z[i] of Gaussian
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integers and, by using an elliptic function instead of a trigonometric one, was
able to prove the corresponding assertion

∑

λ∈Z[i]
λ	=0

1
λk

=
Hk

k!
ωk for all k ≥ 3 , (99)

for certain rational numbers H4 = 1
10 , H8 = 3

10 , H12 = 567
130 , . . . (here Hk = 0

for 4 � k since then the contributions of λ and −λ or of λ and iλ cancel),
where

ω = 4
∫ 1

0

dx√
1 − x4

=
Γ (1

4 )2√
2π

= 5.24411 · · · .

Instead of using the theory of elliptic functions, we can see this result as a spe-
cial case of Proposition 26, since the sum on the left of (99) is just the special
value of the modular form 2Gk(z) defined in (10), which is related by (12)
to the modular form Gk(z) with rational Fourier coefficients, at z = i and
ω is 2π

√
2 times the Chowla–Selberg period ΩQ(i). Similar considerations, of

course, apply to the sum
∑
λ−k with λ running over the non-zero elements of

the ring of integers (or of any other ideal) in any imaginary quadratic field, and
more generally to the special values of L-series of Hecke “grossencharacters”
which we will consider shortly. ♥

We now turn to the second topic of this subsection: the Taylor expansions
(as opposed to simply the values) of modular forms at CM points. As we al-
ready explained in the paragraph preceding equation (58), the “right” Taylor
expansion for a modular form f at a point z ∈ H is the one occurring on
the left-hand side of that equation, rather than the straight Taylor expansion
of f . The beautiful fact is that, if z is a CM point, then after a renormal-
ization by dividing by suitable powers of the period Ωz , each coefficient of
this expansion is an algebraic number (and in many cases even rational). This
follows from the following proposition, which was apparently first observed by
Ramanujan.

Proposition 27. The value of E∗
2 (z) at a CM point z ∈ K ∩H is an algebraic

multiple of Ω2
K .

Corollary. The value of ∂nf(z), for any modular form f with algebraic Fourier
coefficients, any integer n ≥ 0 and any CM point z ∈ K ∩ H, is an algebraic
multiple of Ωk+2n

K , where k is the weight of f .

Proof. We will give only a sketch, since the proof is similar to that al-
ready given for j(z). For M =

(
a b
c d

)
∈ Mm we define (E∗

2 |2M)(z) =
m(cz + d)−2E∗

2 (Mz) (= the usual slash operator for the matrix m−1/2M ∈
SL(2,R)). From formula (1) and the fact that E∗

2 (z) is a linear combination
of 1/y and a holomorphic function, we deduce immediately that the difference
E∗

2 − E∗
2 |2M is a holomorphic modular form of weight 2 (on the subgroup of
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finite index M−1Γ1M ∩ Γ1 of Γ1). It then follows by an argument similar to
that in the proof of Proposition 23 that the function

Pm(z,X) :=
∏

M∈Γ1\Mm

(
X + E∗

2 (z) − (E∗
2 |2M)(z)

)
(z ∈ H, X ∈ C)

is a polynomial in X (of degree σ1(m)) whose coefficients are modular
forms of appropriate weights on Γ1 with rational coefficients. (For example,
P2(z,X) = X3 − 3

4 E4(z)X + 1
4 E6(z).) The algebraicity of E∗

2 (z)/Ω2
K for

a CM point z now follows from Proposition 26, since if M �∈ Z · Id2 fixes z then
E∗

2 (z) − (E∗
2 |2M)(z) is a non-zero algebraic multiple of E∗

2 (z). The corollary
follows from (58) and the fact that each non-holomorphic derivative ∂nf(z) is
a polynomial in E∗

2 (z) with coefficients that are holomorphic modular forms
with algebraic Fourier coefficients, as one sees from equation (66).
Propositions 26 and 27 are illustrated for z = zD and f = E∗

2 , E4, E6 and Δ
in the following table, in which α in the penultimate row is the real root of
α3 − α − 1 = 0. Observe that the numbers in the final column of this table
are all units; this is part of the general theory.

D
|D|1/2E∗

2 (zD)
Ω2
D

E4(zD)
Ω4
D

E6(zD)
|D|1/2Ω6

D

Δ(zD)
Ω12
D

−3 0 0 24 −1
−4 0 12 0 1
−7 3 15 27 −1
−8 4 20 28 1

−11 8 32 56 −1
−15 6 + 3

√
5 15 + 12

√
5 42 + 63√

5
3−√

5
2

−19 24 96 216 −1
−20 12 + 4

√
5 40 + 12

√
5 72 + 112√

5

√
5 − 2

−23 7+11α+12α2

a1/3 5α1/3(6 + 4α+ α2) 469+1176α+504α2

23 −α−8

−24 12 + 12
√

2 60 + 24
√

2 84 + 72
√

2 3 − 2
√

2

In the paragraph preceding Proposition 17 we explained that the non-
holomorphic derivatives ∂nf of a holomorphic modular form f(z) are more
natural and more fundamental than the holomorphic derivativesDnf , because
the Taylor series

∑
Dnf(z) tn/n! represents f only in the disk |z′ − z| < I(z)

whereas the series (58) represents f everywhere. The above corollary gives
a second reason to prefer the ∂nf : at a CM point z they are monomials in
the period Ωz with algebraic coefficients, whereas the derivatives Dnf(z) are
polynomials in Ωz by equation (57) (in which there can be no cancellation
since Ωz is known to be transcendental). If we set

cn = cn(f, z, Ω) =
∂nf(z)
Ωk+2n

(n = 0, 1, 2, . . . ) , (100)

where Ω is a suitably chosen algebraic multiple of ΩK , then the cn (up to
a possible common denominator which can be removed by multiplying f by
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a suitable integer) are even algebraic integers, and they still can be considered
to be “Taylor coefficients of f at z” since by (58) the series

∑∞
n=0 cnt

n/n! equals
(Ct + D)−kf

(
At+B
Ct+D

)
where

(
A B
C D

)
=

(−z̄ z
−1 1

)(
1/4πyΩ 0

0 Ω

)
∈ GL(2,C). These

normalized Taylor coefficients have several interesting number-theoretical ap-
plications, as we will see below, and from many points of view are actually
better number-theoretic invariants than the more familiar coefficients an of
the Fourier expansion f =

∑
anq

n. Surprisingly enough, they are also much
easier to calculate: unlike the an, which are mysterious numbers (think of the
Ramanujan function τ(n)) and have to be calculated anew for each modular
form, the Taylor coefficients ∂nf or cn are always given by a simple recursive
procedure. We illustrate the procedure by calculating the numbers ∂nE4(i),
but the method is completely general and works the same way for all modular
forms (even of half-integral weight, as we will see in §6.4).

Proposition 28. We have ∂nE4(i) = pn(0)E4(i)1+n/2, with pn(t) ∈ Z[16 ][t]
defined recursively by

p0(t) = 1, pn+1(t) =
t2 − 1

2
p′n(t)−

n+ 2
6

tpn(t)−
n(n+ 3)

144
pn−1(t) (n ≥ 0) .

Proof. Since E∗
2 (i) = 0, equation (66) implies that f̃∂(i,X) = f̃ϑ(i,X) for any

f ∈Mk(Γ1), i.e., we have ∂nf(i) = ϑ[n]f(i) for all n ≥ 0, where {ϑ[n]f}n=0,1,2,...

is defined by (64). We use Ramanujan’s notations Q and R for the modular
forms E4(z) and E6(z). By (54), the derivation ϑ sends Q and R to − 1

3R and
− 1

2Q
2, respectively, so ϑ acts on M∗(Γ1) = C[Q,R] as −R

3
∂
∂Q − Q2

2
∂
∂R . Hence

ϑ[n]Q = Pn(Q,R) for all n, where the polynomials Pn(Q,R) ∈ Q[Q,R] are
given recursively by

P0 = Q , Pn+1 = − R

3
∂Pn
∂Q

− Q2

2
∂Pn
∂R

− n(n+ 3)
QPn−1

144
.

Since Pn(Q,R) is weighted homogeneous of weight 2n + 4, where Q and R
have weight 4 and 6, we can write Pn(Q,R) as Q1+n/2pn(R/Q3/2) where pn
is a polynomial in one variable. The recursion for Pn then translates into the
recursion for pn given in the proposition.

The first few polynomials pn are p1 = − 1
3 t, p2 = 5

36 , p3 = − 5
72 t, p4 = 5

216 t
2 +

5
288 , . . . , giving ∂2E4(i) = 5

36E4(i)2, ∂4E4(i) = 5
288E4(i)3, etc. (The values for

n odd vanish because i is a fixed point of the element S ∈ Γ1 of order 2.) With
the same method we find ∂nf(i) = qn(0)E4(i)(k+2n)/4 for any modular form
f ∈Mk(Γ1), with polynomials qn satisfying the same recursion as pn but with
n(n+ 3) replaced by n(n+ k− 1) (and of course with a different initial value
q0(t)). If we consider a CM point z other than i, then the method and result
are similar but we have to use (68) instead of (66), where φ is a quasimodular
form differing from E2 by a (meromorphic) modular form of weight 2 and
chosen so that φ∗(z) vanishes. If we replace Γ1 by some other group Γ , then
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the same method works in principle but we need an explicit description of the
ring M∗(Γ ) to replace the description of M∗(Γ1) as C[Q,R] used above, and if
the genus of the group is larger than 0 then the polynomials pn(t) have to be
replaced by elements qn of some fixed finite algebraic extension of Q(t), again
satisfying a recursion of the form qn+1 = Aq′n+(nB+C)qn+n(n+k−1)Dqn−1

with A, B, C and D independent of n. The general result says that the values
of the non-holomorphic derivatives ∂nf(z0) of any modular form at any point
z0 ∈ H are given “quasi-recursively” as special values of a sequence of algebraic
functions in one variable which satisfy a differential recursion.

♠ Generalized Hurwitz Numbers

In our last “application” we studied the numbers Gk(i) whose values, up to
a factor of 2, are given by the Hurwitz formula (99). We now discuss the
meaning of the non-holomorphic derivatives ∂nGk(i). From (55) we find

∂k

(
1

(mz + n)k

)
=

k

2πi(z − z̄)
· mz̄ + n

(mz + n)k+1

and more generally

∂rk

(
1

(mz + n)k

)
=

(k)r
(2πi(z − z̄))r

· (mz̄ + n)r

(mz + n)k+r

for all r ≥ 0, where ∂rk = ∂k+2r−2◦· · ·◦∂k+2◦∂k and (k)r = k(k+1) · · · (k+r−1)
as in §5. Thus

∂nGk(i) =
(k)n

2 (−4π)n
∑

λ∈Z[i]
λ	=0

λ̄n

λk+n
(n = 0, 1, 2, . . . )

(and similarly for ∂nGk(z) for any CM point z, with Z[i] replaced by Zz+Z and
−4π by −4πI(z)). If we observe that the class number of the field K = Q(i)
is 1 and that any integral ideal of K can be written as a principal ideal (λ)
for exactly four numbers λ ∈ Z[i], then we can write

∑

λ∈Z[i]
λ	=0

λ̄n

λk+n
=

∑

λ∈Z[i]
λ	=0

λ̄k+2n

(λλ̄)k+n
= 4

∑

a

ψk+2n(a)
N(a)k+n

where the sum runs over the integral ideals a of Z[i] and ψk+2n(a) is defined as
λ̄k+2n, where λ is any generator of a. (This is independent of λ if k+2n is divis-
ible by 4, and in the contrary case the sum vanishes.) The functions ψk+2n are
called Hecke “grossencharacters” (the German original of this semi-anglicized
word is “Größencharaktere”, with five differences of spelling, and means liter-
ally “characters of size,” referring to the fact that these characters, unlike the
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usual ideal class characters of finite order, depend on the size of the generator
of a principal ideal) and their L-series LK(s, ψk+2n) =

∑
a ψk+2n(a)N(a)−s

are an important class of L-functions with known analytic continuation and
functional equations. The above calculation shows that ∂nGk(i) (or more gen-
erally the non-holomorphic derivatives of any holomorphic Eisenstein series
at any CM point) are simple multiples of special values of these L-series at
integral arguments, and Proposition 28 and its generalizations give us an al-
gorithmic way to compute these values in closed form. ♥

6.4 CM Elliptic Curves and CM Modular Forms

In the introduction to §6, we defined elliptic curves with complex multiplica-
tion as quotients E = C/Λ where λΛ ⊆ Λ for some non-real complex num-
ber λ. In that case, as we have seen, the lattice Λ is homothetic to Zz + Z for
some CM point z ∈ H and the singular modulus j(E) = j(z) is algebraic, so
E has a model over Q. The map from E to E induced by multiplication by λ
is also algebraic and defined over Q. For simplicity, we concentrate on those z
whose discriminant is one of the 13 values −3, −4, −7, . . . , − 163 with class
number 1, so that j(z) ∈ Q and E (but not the complex multiplication) can
be defined over Q. For instance, the three elliptic curves

y2 = x3 + x , y2 = x3 + 1 , y2 = x3 − 35x− 98 (101)

have j-invariants 1728, 0 and −3375, corresponding to multiplication by the
orders Z[i], Z

[
1+

√−3
2

]
, and Z

[
1+

√−7
2

]
, respectively. For the first curve (or

more generally any curve of the form y2 = x3 + Ax with A ∈ Z) the mul-
tiplication by i corresponds to the obvious endomorphism (x, y) �→ (−x, iy)
of the curve, and similarly for the second curve (or any curve of the form
y2 = x3 + B) we have the equally obvious endomorphism (x, y) �→ (ωx, y)
of order 3, where ω is a non-trivial cube root of 1. For the third curve (or
any of its “twists” E : Cy2 = x3 − 35x − 98) the existence of a non-trivial
endomorphism is less obvious. One checks that the map

φ : (x, y) �→
(
γ2

(
x +

β2

x+ α

)
, γ3 y

(
1 − β2

(x+ α)2

))
,

where α = (7 +
√
−7)/2, β = (7 + 3

√
−7)/2, and γ = (1 +

√
−7)/4, maps E

to itself and satisfies φ(φ(P )) − φ(P ) + 2P = 0 for any point P on E, where
the addition is with respect to the group law on the curve, so that we have
a map from O−7 to the endomorphisms of E sending λ = m 1+

√−7
2 +n to the

endomorphism P �→ mφ(P ) + nP .
The key point about elliptic curves with complex multiplication is that

the number of their points over finite fields is given by a simple formula.
For the three curves above this looks as follows. Recall that the number
of points over Fp of an elliptic curve E/Q given by a Weierstrass equation
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y2 = F (x) = x3 +Ax+B equals p+ 1 − ap where ap (for p odd and not di-
viding the discriminant of F ) is given by −

∑
x (mod p)

(F (x)
p

)
. For the three

curves in (101) we have

∑

x (mod p)

(
x3 + x

p

)
=

{
0 if p ≡ 3 (mod 4) ,
−2a if p = a2 + 4b2 , a ≡ 1 (mod 4)

(102a)

∑

x (mod p)

(
x3 + 1
p

)
=

{
0 if p ≡ 2 (mod 3) ,
−2a if p = a2 + 3b2 , a ≡ 1 (mod 3)

(102b)

∑

x (mod p)

(
x3 − 35x− 98

p

)
=

{
0 if (p/7) = −1 ,
−2a if p = a2 + 7b2 , (a/7) = 1 .

(102c)

(For other D with h(D) = 1 we would get a formula for ap(E) as ±A where
4p = A2 + |D|B2.) The proofs of these assertions, and of the more general
statements needed when h(D) > 1, will be omitted since they would take us
too far afield, but we give the proof of the first (due to Gauss), since it is
elementary and quite pretty. We prove a slightly more general but less precise
statement.
Proposition 29. Let p be an odd prime and A an integer not divisible by p.
Then

∑

x (mod p)

(
x3 +Ax

p

)
=

⎧
⎪⎨

⎪⎩

0 if p ≡ 3 (mod 4) ,
±2a if p ≡ 1 (mod 4) and (A/p) = 1 ,
±4b if p ≡ 1 (mod 4) and (A/p) = −1 ,

(103)

where |a| and |b| in the second and third lines are defined by p = a2 + 4b2.

Proof. The first statement is trivial since if p ≡ 3 (mod 4) then (−1/p) = −1
and the terms for x and −x in the sum cancel, so we can suppose that p ≡ 1
(mod 4). Denote the sum on the left-hand side of (103) by sp(A). Replacing
x by rx with r �≡ 0 (mod p) shows that sp(r2A) =

(
r
p

)
sp(A), so the number

sp(A) takes on only four values, say ±2α for A = g4i or A = g4i+2 and ±2β
for A = g4i+1 or A = g4i+3, where g is a primitive root modulo p. (That
sp(A) is always even is obvious by replacing x by −x.) Now we take the sum
of the squares of sp(A) as A ranges over all integers modulo p, noting that
sp(0) = 0. This gives

2(p− 1)(α2 + β2) =
∑

A, x, y∈ Fp

(
x3 +Ax

p

)(
y3 +Ay

p

)

=
∑

x, y∈ Fp

(
xy

p

) ∑

A∈ Fp

(
(x2 +A)(y2 +A)

p

)

=
∑

x, y∈ Fp

(
xy

p

)
(
−1 + p δx2,y2

)
= 2p(p− 1) ,
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where in the last line we have used the easy fact that
∑

z∈Fp

( z(z+r)
p

)
equals

p − 1 for r ≡ 0 (mod p) and −1 otherwise. (Proof: the first statement is
obvious; the substitution z �→ rz shows that the sum is independent of r if
r �≡ 0; and the sum of the values for all integers r mod p clearly vanishes.)
Hence α2 + β2 = p. It is also obvious that α is odd (for (A/p) = +1 there
are p−1

2 − 1 values of x between 0 and p/2 with
(
x3+Ax
p

)
non-zero and hence

odd) and that β is even (for (A/p) = −1 all p−1
2 values of

(
x3+Ax
p

)
with

0 < x < p/2 are odd), so α = ±a, β = ±2b as asserted.

An almost exactly similar proof works for equation (102b): here one defines
sp(B) =

∑
x

(
x3+B
p

)
and observes that sp(r3B) =

(
r
p

)
sp(B), so that sp(B)

takes on six values ±α, ±β and ±γ depending on the class of i (mod 6), where
p ≡ 1 (mod 6) (otherwise all sp(B) vanish) and B = gi with g a primitive root
modulo p. Summing sp(B) over all quadratic residues B (mod p) shows that
α+β+γ = 0, and summing sp(B)2 over allB gives α2+β2+γ2 = 6p. These two
equations imply that α ≡ β ≡ γ �≡ 0 (mod 3) and that 4p = α2+3((β−γ)/3)2,
which gives (102b) since it is easily seen that α is even and β and γ are odd.
I do not know of any elementary proof of this sort for equation (102c) or for
the similar identities corresponding to the other imaginary quadratic fields of
class number 1. The reader is urged to try to find such a proof.

♠ Factorization, Primality Testing, and Cryptography

We mention briefly one “practical” application of complex multiplication the-
ory. Many methods of modern cryptography depend on being able to identify
very large prime numbers quickly or on being able to factor (or being relatively
sure that no one else will be able to factor) very large composite numbers. Sev-
eral methods involve the arithmetic of elliptic curves over finite fields, which
yield finite groups in which certain operations are easily performed but not
easily inverted. The difficulty of the calculations, and hence the security of the
method, depends on the structure of the group of points of the curve over the
finite fields, so one would like to be able to construct, say, examples of elliptic
curves E over Q whose reduction modulo p for some very large prime p has an
order which itself contains a very large prime factor. Since counting the points
on E(Fp) directly is impractical when p is very large, it is essential here to
know curves E for which the number ap, and hence the cardinality of E(Fp),
is known a priori, and the existence of closed formulas like the ones in (102)
implies that the curves with complex multiplication are suitable. In practice
one wants the complex multiplication to be by an order in a quadratic field
which is not too big but also not too small. For this purpose one needs effective
ways to construct the Hilbert class fields (which is where the needed singular
moduli will lie) efficiently, and here again the methods mentioned in 6.1, and
in particular the simplifications arising by replacing the modular function j(z)
by better modular functions, become relevant. For more information, see the
bibliography. ♥
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We now turn from elliptic curves with complex multiplication to an impor-
tant and related topic, the so-called CM modular forms. Formula (102a) says
that the coefficient ap of the L-series L(E, s) =

∑
ann

−s of the elliptic curve
E : y2 = x3 + x for a prime p is given by ap = Tr(λ) = λ+ λ̄, where λ is one
of the two numbers of norm p in Z[i] of the form a + bi with a ≡ 1 (mod 4),
b ≡ 0 (mod 2) (or is zero if there is no such λ). Now using the multiplicative
properties of the an we find that the full L-series is given by

L(E, s) = LK(s, ψ1) , (104)

where LK(s, ψ1) =
∑

0	=a⊆Z[i] ψ1(a)N(a)−s is the L-series attached as in §6.3
to the field K = Q(i) and the grossencharacter ψ1 defined by

ψ1(a) =

{
0 if 2 | N(a) ,
λ if 2 � N(a) , a = (λ), λ ∈ 4Z + 1 + 2Z i .

(105)

In fact, the L-series of the elliptic curve E belongs to three important classes
of L-series: it is an L-function coming from algebraic geometry (by definition),
the L-series of a generalized character of an algebraic number field (by (104)),
and also the L-series of a modular form, namely L(E, s) = L(fE , s) where

fE(z) =
∑

0	=a⊆Z[i]

ψ1(a) qN(a) =
∑

a≡1 (mod 4)
b≡0 (mod 2)

a qa
2+b2 (106)

which is a theta series of the type mentioned in the final paragraph of §3,
associated to the binary quadratic form Q(a, b) = a2 + b2 and the spherical
polynomial P (a, b) = a (or a+ ib) of degree 1. The same applies, with suitable
modifications, for any elliptic curve with complex multiplication, so that the
Taniyama-Weil conjecture, which says that the L-series of an elliptic curve
over Q should coincide with the L-series of a modular form of weight 2, can
be seen explicitly for this class of curves (and hence was known for them long
before the general case was proved).

The modular form fE defined in (106) can also be denoted θψ1 , where ψ1 is
the grossencharacter (105). More generally, the L-series of the powers ψd = ψ d1
of ψ1 are the L-series of modular forms, namely LK(ψd, s) = L(θψd

, s) where

θψd
(z) =

∑

0	=a⊆Z[i]

ψd(a) qN(a) =
∑

a≡1 (mod 4)
b≡0 (mod 2)

(a+ ib)d qa
2+b2 , (107)

which is a modular form of weight d + 1. Modular forms constructed in this
way – i.e., theta series associated to a binary quadratic form Q(a, b) and
a spherical polynomial P (a, b) of arbitrary degree d – are called CM modular
forms, and have several remarkable properties. First of all, they are always
linear combinations of the theta series θψ(z) =

∑
a ψ(α) qN(a) associated to

some grossencharacter ψ of an imaginary quadratic field. (This is because any



94 D. Zagier

positive definite binary quadratic form over Q is equivalent to the norm form
λ �→ λλ̄ on an ideal in an imaginary quadratic field, and since the Laplace
operator associated to this form is ∂2

∂λ ∂λ
, the only spherical polynomials of

degree d are linear combinations of λd and λ̄d.) Secondly, since the L-series
L(θψ, s) = LK(ψ, s) has an Euler product, the modular forms θψ attached to
grossencharacters are always Hecke eigenforms, and this is the only infinite
family of Hecke eigenforms, apart from Eisenstein series, which are known
explicitly. (Other eigenforms do not appear to have any systematic rule of
construction, and even the number fields in which their Fourier coefficients
lie are totally mysterious, an example being the field Q(

√
144169) of coeffi-

cients of the cusp form of level 1 and weight 24 mentioned in §4.1.) Thirdly,
sometimes modular forms constructed by other methods turn out to be of
CM type, leading to new identities. For instance, in four cases the modular
form defined in (107) is a product of eta-functions: θψ0(z) = η(8z)4/η(4z)2,
θψ1(z) = η(8z)8/η(4z)2η(16z)2, θψ2(z) = η(4z)6, θψ4(z) = η(4z)14/η(8z)4.
More generally, we can ask which eta-products are of CM type. Here I
do not know the answer, but for pure powers there is a complete result,
due to Serre. The fact that both η(z) =

∑

n≡1 (mod 6)

(−1)(n−1)/6qn
2/24 and

η(z)3 =
∑

n≡1 (mod 4)

n qn
2/8 are unary theta series implies that each of the

functions η2, η4 and η6 is a binary theta series and hence a modular form
of CM type (the function η(z)6 equals θψ2(z/4), as we just saw, and η(z)4

equals fE(z/6), where E is the second curve in (101)), but there are other,
less obvious, examples, and these can be completely classified:

Theorem (Serre). The function η(z)n (n even) is a CM modular form for
n = 2, 4, 6, 8, 10, 14 or 26 and for no other value of n.

Finally, the CM forms have another property called “lacunarity” which is
not shared by any other modular forms. If we look at (106) or (107), then
we see that the only exponents which occur are sums of two squares. By
the theorem of Fermat proved in §3.1, only half of all primes (namely, those
congruent to 1 modulo 4) have this property, and by a famous theorem of
Landau, only O(x/(log x)1/2) of the integers ≤ x do. The same applies to
any other CM form and shows that 50% of the coefficients ap (p prime) vanish
if the form is a Hecke eigenform and that 100% of the coefficients an (n ∈ N)
vanish for any CM form, eigenform or not. Another difficult theorem, again
due to Serre, gives the converse statements:

Theorem (Serre). Let f =
∑
anq

n be a modular form of integral weight
≥ 2. Then:

1. If f is a Hecke eigenform, then the density of primes p for which ap �= 0
is equal to 1/2 if f corresponds to a grossencharacter of an imaginary
quadratic field, and to 1 otherwise.

2. The number of integers n ≤ x for which an �= 0 is O(x/
√

log x) as x→ ∞
if f is of CM type and is larger than a positive multiple of x otherwise.
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♠ Central Values of Hecke L-Series

We just saw above that the Hecke L-series associated to grossencharacters
of degree d are at the same time the Hecke L-series of CM modular forms
of weight d + 1, and also, if d = 1, sometimes the L-series of elliptic curves
over Q. On the other hand, the Birch–Swinnerton-Dyer conjecture predicts
that the value of L(E, 1) for any elliptic curve E over Q (not just one
with CM) is related as follows to the arithmetic of E : it vanishes if and
only if E has a rational point of infinite order, and otherwise is (essentially)
a certain period of E multiplied by the order of a mysterious group Ш, the
Tate–Shafarevich group of E. Thanks to the work of Kolyvagin, one knows
that this group is indeed finite when L(E, 1) �= 0, and it is then a stan-
dard fact (because Ш admits a skew-symmetric non-degenerate pairing with
values in Q/Z) that the order of Ш is a perfect square. In summary, the
value of L(E, 1), normalized by dividing by an appropriate period, is al-
ways a perfect square. This suggests looking at the central point ( = point
of symmetry with respect to the functional equation) of other types of L-
series, and in particular of L-series attached to grossencharacters of higher
weights, since these can be normalized in a nice way using the Chowla–
Selberg period (97), to see whether these numbers are perhaps also always
squares.

An experiment to test this idea was carried out over 25 years ago by
B. Gross and myself and confirmed this expectation. Let K be the field
Q(

√
−7) and for each d ≥ 1 let ψd = ψ d1 be the grossencharacter of K

which sends an ideal a ⊆ OK to λd if a is prime to p7 = (
√
−7) and to

0 otherwise, where λ in the former case is the generator of a which is con-
gruent to a square modulo p7. For d = 1, the L-series of ψd coincides with
the L-series of the third elliptic curve in (101), while for general odd values
of d it is the L-series of a modular form of weight d + 1 and trivial charac-
ter on Γ0(49). The L-series L(ψ2m−1, s) has a functional equation sending s
to 2m − s, so the point of symmetry is s = m. The central value has the
form

L(ψ2m−1,m) =
2Am

(m− 1)!
( 2π√

7

)m
Ω2m−1
K (108)

where

ΩK = 4
√

7
∣
∣
∣
∣η
(

1 +
√
−7

2

)∣∣
∣
∣

2

=
Γ (1

7 )Γ (2
7 )Γ (4

7 )
4π2

is the Chowla–Selberg period attached to K and (it turns out) Am ∈ Z for all
m > 1. (We have A1 = 1

4 .) The numbers Am vanish for m even because the
functional equation of L(ψ2m−1, s) has a minus sign in that case, but the nu-
merical computation suggested that the others were indeed all perfect squares:
A3 = A5 = 12, A7 = 32, A9 = 72, . . . , A33 = 447622863272552. Many years
later, in a paper with Fernando Rodriguez Villegas, we were able to confirm
this prediction:
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Theorem. The integer Am is a square for all m > 1. More precisely, we have
A2n+1 = bn(0)2 for all n ≥ 0, where the polynomials bn(x) ∈ Q[x] are defined
recursively by b0(x) = 1

2 , b1(x) = 1 and 21 bn+1(x) = −(x−7)(64x−7)b′n(x)+
(32nx− 56n+ 42)bn(x) − 2n(2n− 1)(11x+ 7)bn−1(x) for n ≥ 1.

The proof is too complicated to give here, but we can indicate the main
idea. The first point is that the numbers Am themselves can be computed
by the method explained in §6.3. There we saw (for the full modular group,
but the method works for higher level) that the value at s = k + n of the
L-series of a grossencharacter of degree d = k + 2n is essentially equal to the
nth non-holomorphic derivative of an Eisenstein series of weight k at a CM
point. Here we want d = 2m − 1 and s = m, so k = 1, n = m − 1. More
precisely, one finds that L(ψ2m−1,m) = (2π/

√
7)m

(m−1)! ∂
m−1G1,ε(z7), where G1,ε is

the Eisenstein series

G1,ε =
1
2

+
∞∑

n=1

(∑

d|n
ε(n)

)
qn =

1
2

+ q + 2q2 + 3q4 + q7 + · · ·

of weight 1 associated to the character ε(n) =
(n

7

)
and z7 is the CM point

1
2

(
1 +

i√
7

)
. These coefficients can be obtained by a quasi-recursion like

the one in Proposition 28 (though it is more complicated here because the
analogues of the polynomials pn(t) are now elements in a quadratic extension
of Q[t]), and therefore are very easy to compute, but this does not explain why
they are squares. To see this, we first observe that the Eisenstein series G1,ε is
one-half of the binary theta series Θ(z) =

∑
m,n∈Z

qm
2+mn+2n2

. In his thesis,
Villegas proved a beautiful formula expressing certain linear combinations of
values of binary theta series at CM points as the squares of linear combinations
of values of unary theta series at other CM points. The same turns out to be
true for the higher non-holomorphic derivatives, and in the case at hand we
find the remarkable formula

∂2nΘ(z7) = 22n72n+1/4
∣
∣∂nθ2(z∗7)

∣
∣2 for all n ≥ 0 , (109)

where θ2(z) =
∑
n∈Z

q(n+1/2)2/2 is the Jacobi theta-series defined in (32) and
z∗7 = 1

2 (1 + i
√

7). Now the values of the non-holomorphic derivatives ∂nθ2(z∗7)
can be computed quasi-recursively by the method explained in 6.3. The result
is the formula given in the theorem.

Remarks 1. By the same method, using that every Eisenstein series of
weight 1 can be written as a linear combination of binary theta series, one
can show that the correctly normalized central values of all L-series of grossen-
characters of odd degree are perfect squares.

2. Identities like (109) seem very surprising. I do not know of any other
case in mathematics where the Taylor coefficients of an analytic function at
some point are in a non-trivial way the squares of the Taylor coefficients of
another analytic function at another point.
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3. Equation (109) is a special case of a yet more general identity, proved in
the same paper, which expresses the non-holomorphic derivative ∂2nθψ(z0) of
the CM modular form associated to a grossencharacter ψ of degree d = 2r as
a simple multiple of ∂nθ2(z1) ∂n+rθ2(z2), where z0, z1 and z2 are CM points
belonging to the quadratic field associated to ψ. ♥

We end with an application of these ideas to a classical Diophantine equa-
tion.

♠ Which Primes are Sums of Two Cubes?

In §3 we gave a modular proof of Fermat’s theorem that a prime number can be
written as a sum of two squares if and only if it is congruent to 1 modulo 4.
The corresponding question for cubes was studied by Sylvester in the 19th
century. For squares the answer is the same whether one considers integer or
rational squares (though in the former case the representation, when it exists,
is unique and in the latter case there are infinitely many), but for cubes one
only considers the problem over the rational numbers because there seems
to be no rule for deciding which numbers have a decomposition into integral
cubes. The question therefore is equivalent to asking whether the Mordell-
Weil group Ep(Q) of the elliptic curve Ep : x3 + y3 = p is non-trivial. Except
for p = 2, which has the unique decomposition 13 + 13, the group Ep(Q) is
torsion-free, so that if there is even one rational solution there are infinitely
many. An equivalent question is therefore: for which primes p is the rank rp
of Ep(Q) greater than 0 ?

Sylvester’s problem was already mentioned at the end of §6.1 in connection
with Heegner points, which can be used to construct non-trivial solutions if
p ≡ 4 or 7 mod 9. Here we consider instead an approach based on the Birch–
Swinnerton-Dyer conjecture, according to which rp > 0 if and only if the L-
series of Ep vanishes at s = 1. By a famous theorem of Coates and Wiles, one
direction of this conjecture is known: if L(Ep, 1) �= 0 then Ep(Q) has rank 0.
The question we want to study is therefore: when does L(Ep, 1) vanish? For
five of the six possible congruence classes for p (mod 9) (we assume that p > 3,
since r2 = r3 = 0) the answer is known. If p ≡ 4, 7 or 8 (mod 9), then the
functional equation of L(Ep, s) has a minus sign, so L(Ep, 1) = 0 and rp is
expected (and, in the first two cases, known) to be ≥ 1; it is also known
by an “infinite descent” argument to be ≤ 1 in these cases. If p ≡ 2 or 5
(mod 9), then the functional equation has a plus sign and L(Ep, 1) divided
by a suitable period is ≡ 1 (mod 3) and hence �= 0, so by the Coates-Wiles
theorem these primes can never be sums of two cubes, a result which can
also be proved in an elementary way by descent. In the remaining case p ≡ 1
(mod 9), however, the answer can vary: here the functional equation has a plus
sign, so ords=1L(Ep, s) is even and rp is also expected to be even, and descent
gives rp ≤ 2, but both cases rp = 0 and rp = 2 occur. The following result,
again proved jointly with F. Villegas, gives a criterion for these primes.
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Theorem. Define a sequence of numbers c0 = 1, c1 = 2, c2 = −152,
c3 = 6848, . . . by cn = sn(0) where s0(x) = 1, s1(x) = 3x2 and sn+1(x) =
(1−8x3)s′n(x)+(16n+3)x2sn(x)−4n(2n−1)xsn−1(x) for n ≥ 1. If p = 9k+1
is prime, then L(Ep, 1) = 0 if and only if p|ck.

For instance, the numbers c2 = −152 and c4 = −8103296 are divis-
ible by p = 19 and p = 37, respectively, so L(Ep, 1) vanishes for these
two primes (and indeed 19 = 33 + (−2)3, 37 = 43 + (−3)3), whereas
c8 = 532650564250569441280 is not divisible by 73, which is therefore not
a sum of two rational cubes. Note that the numbers cn grow very quickly
(roughly like n3n), but to apply the criterion for a given prime number
p = 9k + 1 one need only compute the polynomials sn(x) modulo p for
0 ≤ n ≤ k, so that no large numbers are required.

We again do not give the proof of this theorem, but only indicate the
main ingredients. The central value of L(Ep, s) for p ≡ 1 (mod 9) is given by

L(Ep, 1) =
3Ω
3
√
p
Sp where Ω =

Γ (1
3 )3

2π
√

3
and Sp is an integer which is supposed

to be a perfect square (namely the order of the Tate-Shafarevich group of Ep
if rp = 0 and 0 if rp > 0). Using the methods from Villegas’s thesis, one can
show that this is true and that both Sp and its square root can be expressed
as the traces of certain algebraic numbers defined as special values of modu-

lar functions at CM points: Sp = Tr(αp) = Tr(βp)2, where αp =
3
√
p

54
Θ(pz0)
Θ(z0)

and βp =
6
√
p√

±12
η(pz1)
η(z1/p)

with Θ(z) =
∑

m,n
qm

2+mn+n2
, z0 =

1
2

+
i

6
√

3
and

z1 =
r +

√
−3

2
(r ∈ Z, r2 ≡−3 (mod 4p)). This gives an explicit formula for

L(Ep, 1), but it is not very easy to compute since the numbers αp and βp have
large degree (18k and 6k, respectively if p = 9k + 1) and lie in a different
number field for each prime p. To obtain a formula in which everything takes
place over Q, one observes that the L-series of Ep is the L-series of a cubic
twist of a grossencharacterψ1 ofK = Q(

√
−3) which is independent of p. More

precisely, L(Ep, s) = L(χpψ1, s) where ψ1 is defined (just like the grossenchar-
acters for Q(i) and Q(

√
−7) defined in (105) and in the previous “application”)

by ψ1(a) = λ if a = (λ) with λ ≡ 1 (mod 3) and ψ1(α) = 0 if 3|N(a), and χp
is the cubic character which sends a = (λ) to the unique cube root of unity
in K which is congruent to (λ̄/λ)(p−1)/3 modulo p. This means that formally
the L-value L(Ep, 1) for p = 9k + 1 is congruent modulo p to the central
value L(ψ12k+1, 6k+ 1). Of course both of these numbers are transcendental,
but the theory of p-adic L-functions shows that their “algebraic parts” are in

fact congruent modulo p: we have L(ψ12k+1
1 , 6k + 1) =

39k−1Ω12k+1

(2π)6k
Ck

(6k)!
for some integer Ck ∈ Z, and Sp ≡ Ck (mod p). Now the calculation of Ck
proceeds exactly like that of the number Am defined in (108): Ck is, up to nor-
malizing constants, equal to the value at z = z0 of the 6k-th non-holomorphic
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derivative of Θ(z), and can be computed quasi-recursively, and Ck is also
equal to c2k where ck is, again up to normalizing constants, the value of the
3k-th non-holomorphic derivative of η(z) at z = 1

2 (−1+
√
−3) and is given by

the formula in the theorem. Finally, an estimate of the size of L(Ep, 1) shows
that |Sp| < p, so that Sp vanishes if and only if ck ≡ 0 (mod p), as claimed.
The numbers ck can also be described by a generating function rather than
a quasi-recursion, using the relations between modular forms and differential
equations discussed in §5, namely

(
1 − x)1/24 F

(
1
3
,
1
3
;
2
3
;x
)1/2

=
∞∑

n=0

cn
(3n)!

(
xF (2

3 ,
2
3 ; 4

3 ;x)3

8F (1
3 ,

1
3 ; 2

3 ;x)3

)n
,

where F (a, b; c;x) denotes Gauss’s hypergeometric function. ♥

References and Further Reading

There are several other elementary texts on the theory of modular forms
which the reader can consult for a more detailed introduction to the field.
Four fairly short introductions are the classical book by Gunning (Lectures
on Modular Forms, Annals of Math. Studies 48, Princeton, 1962), the last
chapter of Serre’s Cours d’Arithmétique (Presses Universitaires de France,
1970; English translation A Course in Arithmetic, Graduate Texts in Math-
ematics 7, Springer 1973), Ogg’s book Modular Forms and Dirichlet Series
(Benjamin, 1969; especially for the material covered in §§3–4 of these notes),
and my own chapter in the book From Number Theory to Physics (Springer
1992). The chapter on elliptic curves by Henri Cohen in the last-named book
is also a highly recommended and compact introduction to a field which is
intimately related to modular forms and which is touched on many times in
these notes. Here one can also recommend N. Koblitz’s Introduction to Elliptic
Curves and Modular forms (Springer Graduate Texts 97, 1984). An excellent
book-length Introduction to Modular Forms is Serge Lang’s book of that
title (Springer Grundlehren 222, 1976). Three books of a more classical na-
ture are B. Schoeneberg’s Elliptic Modular Functions (Springer Grundlehren
203, 1974), R.A. Rankin’s Modular Forms and Modular Functions (Cam-
bridge, 1977) and (in German) Elliptische Funktionen und Modulformen by
M. Koecher and A. Krieg (Springer, 1998).

The point of view in these notes leans towards the analytic, with as many
results as possible (like the algebraicity of j(z) when z is a CM point) be-
ing derived purely in terms of the theory of modular forms over the complex
numbers, an approach which was sufficient – and usually simpler – for the
type of applications which I had in mind. The books listed above also belong
to this category. But for many other applications, including the deepest ones
in Diophantine equations and arithmetic algebraic geometry, a more arith-
metic and more advanced approach is required. Here the basic reference is
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Shimura’s classic Introduction to the Arithmetic Theory of Automorphic Func-
tions (Princeton 1971), while two later books that can also be recommended
are Miyake’s Modular Forms (Springer 1989) and the very recent book A First
Course in Modular Forms by Diamond and Shurman (Springer 2005).

We now give, section by section, some references (not intended to be in
any sense complete) for various of the specific topics and examples treated in
these notes.

1–2. The material here is all standard and can be found in the books listed
above, except for the statement in the final section of §1.2 that the class
numbers of negative discriminants are the Fourier coefficients of some kind of
modular form of weight 3/2, which was proved in my paper in CRAS Paris
(1975), 883–886.

3.1. Proposition 11 on the number of representations of integers as sums of
four squares was proved by Jacobi in the Fundamenta Nova Theoriae Ellip-
ticorum, 1829. We do not give references for the earlier theorems of Fermat
and Lagrange. For more information about sums of squares, one can consult
the book Representations of Integers as Sums of Squares (Springer, 1985) by
E. Grosswald. The theory of Jacobi forms mentioned in connection with the
two-variable theta functions θi(z, u) was developed in the book The Theory
of Jacobi Forms (Birkhäuser, 1985) by M. Eichler and myself. Mersmann’s
theorem is proved in his Bonn Diplomarbeit, “Holomorphe η-Produkte und
nichtverschwindende ganze Modulformen für Γ0(N)” (Bonn, 1991), unfortu-
nately never published in a journal. The theorem of Serre and Stark is given
in their paper “Modular forms of weight 1/2 ” in Modular Forms of One Vari-
able VI (Springer Lecture Notes 627, 1977, editors J-P. Serre and myself; this
is the sixth volume of the proceedings of two big international conferences on
modular forms, held in Antwerp in 1972 and in Bonn in 1976, which con-
tain a wealth of further material on the theory). The conjecture of Kac and
Wakimoto appeared in their article in Lie Theory and Geometry in Honor of
Bertram Kostant (Birkhäuser, 1994) and the solutions by Milne and myself
in the Ramanujan Journal and Mathematical Research Letters, respectively,
in 2000.
3.2. The detailed proof and references for the theorem of Hecke and Schoen-
berg can be found in Ogg’s book cited above. Niemeier’s classification of
unimodular lattices of rank 24 is given in his paper “Definite quadratische
Formen der Dimension 24 und Diskriminante 1” (J. Number Theory 5, 1973).
Siegel’s mass formula was presented in his paper “Über die analytische Theo-
rie der quadratischen Formen” in the Annals of Mathematics, 1935 (No. 20 of
his Gesammelte Abhandlungen, Springer, 1966). A recent paper by M. King
(Math. Comp., 2003) improves by a factor of more than 14 the lower bound
on the number of inequivalent unimodular even lattices of dimension 32. The
paper of Mallows-Odlyzko-Sloane on extremal theta series appeared in J. Al-
gebra in 1975. The standard general reference for the theory of lattices, which
contains an immense amount of further material, is the book by Conway and
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Sloane (Sphere Packings, Lattices and Groups, Springer 1998). Milnor’s ex-
ample of 16-dimensional tori as non-isometric isospectral manifolds was given
in 1964, and 2-dimensional examples (using modular groups!) were found by
Vignéras in 1980. Examples of pairs of truly drum-like manifolds – i.e., do-
mains in the flat plane – with different spectra were finally constructed by
Gordon, Webb and Wolpert in 1992. For references and more on the history
of this problem, we refer to the survey paper in the book What’s Happening
in the Mathematical Sciences (AMS, 1993).

4.1–4.3. For a general introduction to Hecke theory we refer the reader to
the books of Ogg and Lang mentioned above or, of course, to the beautifully
written papers of Hecke himself (if you can read German). Van der Blij’s
example is given in his paper “Binary quadratic forms of discriminant −23” in
Indagationes Math., 1952. A good exposition of the connection between Galois
representations and modular forms of weight one can be found in Serre’s article
in Algebraic Number Fields: L-Functions and Galois Properties (Academic
Press 1977).
4.4. Book-length expositions of the Taniyama–Weil conjecture and its proof
using modular forms are given in Modular Forms and Fermat’s Last The-
orem (G. Cornell, G. Stevens and J. Silverman, eds., Springer 1997) and,
at a much more elementary level, Invitation to the Mathematics of Fermat-
Wiles (Y. Hellegouarch, Academic Press 2001), which the reader can con-
sult for more details concerning the history of the problem and its solution
and for further references. An excellent survey of the content and status
of Serre’s conjecture can be found in the book Lectures on Serre’s Conjec-
tures by Ribet and Stein (http://modular.fas.harvard.edu/papers/serre/ribet-
stein.ps). For the final proof of the conjecture and references to all earlier
work, see “Modularity of 2-adic Barsotti-Tate representations” by M. Kisin
(http://www.math.uchicago.edu/∼kisin/preprints.html). Livné’s example ap-
peared in his paper “Cubic exponential sums and Galois representations”
(Contemp. Math. 67, 1987). For an exposition of the conjectural and known
examples of higher-dimensional varieties with modular zeta functions, in par-
ticular of those coming from mirror symmetry, we refer to the recent paper
“Modularity of Calabi-Yau varieties” by Hulek, Kloosterman and Schütt in
Global Aspects of Complex Geometry (Springer, 2006) and to the monograph
Modular Calabi-Yau Threefolds by C. Meyer (Fields Institute, 2005). However,
the proof of Serre’s conjectures means that the modularity is now known in
many more cases than indicated in these surveys.

5.1. Proposition 15, as mentioned in the text, is due to Ramanujan (eq. (30)
in “On certain Arithmetical Functions,” Trans. Cambridge Phil. Soc., 1916).
For a good discussion of the Chazy equation and its relation to the “Painlevé
property” and to SL(2,C), see the article “Symmetry and the Chazy equation”
by P. Clarkson and P. Olver (J. Diff. Eq. 124, 1996). The result by Gallagher
on means of periodic functions which we describe as our second application is
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described in his very nice paper “Arithmetic of means of squares and cubes”
in Internat. Math. Res. Notices, 1994.

5.2. Rankin–Cohen brackets were defined in two stages: the general conditions
needed for a polynomial in the derivatives of a modular form to itself be
modular were described by R. Rankin in “The construction of automorphic
forms from the derivatives of a modular form” (J. Indian Math. Soc., 1956),
and then the specific bilinear operators [ · , · ]n satisfying these conditions were
given by H. Cohen as a lemma in “Sums involving the values at negative
integers of L functions of quadratic characters” (Math. Annalen, 1977). The
Cohen–Kuznetsov series were defined in the latter paper and in the paper
“A new class of identities for the Fourier coefficients of a modular form” (in
Russian) by N.V. Kuznetsov in Acta Arith., 1975. The algebraic theory of
“Rankin–Cohen algebras” was developed in my paper “Modular forms and
differential operators” in Proc. Ind. Acad. Sciences, 1994, while the papers
by Manin, P. Cohen and myself and by the Untenbergers discussed in the
second application in this subsection appeared in the book Algebraic Aspects
of Integrable Systems: In Memory of Irene Dorfman (Birkhäuser 1997) and
in the J. Anal. Math., 1996, respectively.

5.3. The name and general definition of quasimodular forms were given in
the paper “A generalized Jacobi theta function and quasimodular forms” by
M. Kaneko and myself in the book The Moduli Space of Curves (Birkhäuser
1995), immediately following R. Dijkgraaf’s article “Mirror symmetry and el-
liptic curves” in which the problem of counting ramified coverings of the torus
is presented and solved.

5.4. The relation between modular forms and linear differential equations was
at the center of research on automorphic forms at the turn of the (previous)
century and is treated in detail in the classical works of Fricke, Klein and
Poincaré and in Weber’s Lehrbuch der Algebra. A discussion in a modern lan-
guage can be found in §5 of P. Stiller’s paper in the Memoirs of the AMS 299,
1984. Beukers’s modular proof of the Apéry identities implying the irrational-
ity of ζ(2) and ζ(3) can be found in his article in Astérisque 147–148 (1987),
which also contains references to Apéry’s original paper and other related
work. My paper with Kleban on a connection between percolation theory and
modular forms appeared in J. Statist. Phys. 113 (2003).

6.1. There are several references for the theory of complex multiplication.
A nice book giving an introduction to the theory at an accessible level is
Primes of the form x2 + ny2 by David Cox (Wiley, 1989), while a more ad-
vanced account is given in the Springer Lecture Notes Volume 21 by Borel,
Chowla, Herz, Iwasawa and Serre. Shanks’s approximation to π is given in
a paper in J. Number Theory in 1982. Heegner’s original paper attacking the
class number one problem by complex multiplication methods appeared in
Math. Zeitschrift in 1952. The result quoted about congruent numbers was
proved by Paul Monsky in “Mock Heegner points and congruent numbers”
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(Math. Zeitschrift 1990) and the result about Sylvester’s problem was an-
nounced by Noam Elkies, in “Heegner point computations” (Springer Lecture
Notes in Computing Science, 1994). See also the recent preprint “Some Dio-
phantine applications of Heegner points” by S. Dasgupta and J. Voight.

6.2. The formula for the norms of differences of singular moduli was proved
in my joint paper “Singular moduli” (J. reine Angew. Math. 355, 1985) with
B. Gross, while our more general result concerning heights of Heegner points
appeared in “Heegner points and derivatives of L-series” (Invent. Math. 85,
1986). The formula describing traces of singular moduli is proved in my pa-
per of the same name in the book Motives, Polylogarithms and Hodge Theory
(International Press, 2002). Borcherds’s result on product expansions of auto-
morphic forms was published in a celebrated paper in Invent. Math. in 1995.

6.3. The Chowla–Selberg formula is discussed, among many other places, in
the last chapter of Weil’s book Elliptic Functions According to Eisenstein and
Kronecker (Springer Ergebnisse 88, 1976), which contains much other beauti-
ful historical and mathematical material. Chudnovsky’s result about the tran-
scendence of Γ (1

4 ) is given in his paper for the 1978 (Helskinki) International
Congress of Mathematicians, while Nesterenko’s generalization giving the al-
gebraic independence of π and eπ is proved in his paper “Modular functions
and transcendence questions” (in Russian) in Mat. Sbornik, 1996. A good
summary of this work, with further references, can be found in the “featured
review” of the latter paper in the 1997 Mathematical Reviews. The algorith-
mic way of computing Taylor expansions of modular forms at CM points is
described in the first of the two joint papers with Villegas cited below, in
connection with the calculation of central values of L-series.

6.4. A discussion of formulas like (102) can be found in any of the general ref-
erences for the theory of complex multiplication listed above. The applications
of such formulas to questions of primality testing, factorization and cryptogra-
phy is treated in a number of papers. See for instance “Efficient construction
of cryptographically strong elliptic curves” by H. Baier and J. Buchmann
(Springer Lecture Notes in Computer Science 1977, 2001) and its bibliogra-
phy. Serre’s results on powers of the eta-function and on lacunarity of modu-
lar forms are contained in his papers “Sur la lacunarité des puissances de η”
(Glasgow Math. J., 1985) and “Quelques applications du théorème de densité
de Chebotarev” (Publ. IHES, 1981), respectively. The numerical experiments
concerning the numbers defined in (108) were given in a note by B. Gross
and myself in the memoires of the French mathematical society (1980), and
the two papers with F. Villegas on central values of Hecke L-series and their
applications to Sylvester’s problems appeared in the proceedings of the third
and fourth conferences of the Canadian Number Theory Association in 1993
and 1995, respectively.
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Introduction

The present notes contain the material of the lectures given by the author at
the summer school on “Modular Forms and their Applications” at the Sophus
Lie Conference Center in the summer of 2004.

We give an introduction to the theory of Hilbert modular forms and some
geometric and arithmetic applications. We tried to keep the informal style of
the lectures. In particular, we often do not work in greatest possible generality,
but rather consider a reasonable special case, in which the main ideas of the
theory become clear.

For a more comprehensive account to Hilbert modular varieties, we refer to
the books by Freitag [Fr], Garrett [Ga], van der Geer [Ge1], and Goren [Go].
We hope that the present text will be a useful addition to these references.

Hilbert modular surfaces can also be realized as modular varieties corre-
sponding to the orthogonal group of a rational quadratic space of type (2, 2).
This viewpoint leads to several interesting features of these surfaces. For in-
stance, they come with a natural family of divisors arising from embeddings of
“smaller” orthogonal groups, the so-called Hirzebruch–Zagier divisors. Their
study led to important discoveries and triggered generalizations in various di-
rections. Moreover, the theta correspondence provides a source of automorphic
forms related to the geometry of Hirzebruch–Zagier divisors.

A more recent development is the regularized theta lifting due to Borcherds,
Harvey and Moore, which yields to automorphic products and automorphic
Green functions. The focus of the present text is on these topics, highlight-
ing the role of the orthogonal group. We added some background material on
quadratic spaces and orthogonal groups, to make the connection explicit.

I thank G. van der Geer and D. Zagier for several interesting conversations
during the summer school at the Sophus Lie Conference Center. Moreover, I
thank J. Funke and T. Yang for their helpful comments on earlier versions of
this manuscript.
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1 Hilbert Modular Surfaces

In this section we give a brief introduction to Hilbert modular surfaces asso-
ciated to real quadratic fields. For details we refer to [Fr], [Ga], [Ge1], [Go].

1.1 The Hilbert Modular Group

Let d > 1 be a squarefree integer. Then F = Q(
√
d) is a real quadratic field,

which we view as a subfield of R. The discriminant of F is

D =

{
d, if d ≡ 1 (mod 4) ,
4d, if d ≡ 2, 3 (mod 4) .

(1.1)

We write OF for the ring of integers in F , so

OF =

{
Z + 1+

√
d

2 Z, if d ≡ 1 (mod 4) ,
Z +

√
dZ, if d ≡ 2, 3 (mod 4) .

(1.2)

The ring OF is a Dedekind domain, that is, it is a noetherian integrally closed
integral domain in which every non-zero prime ideal is maximal.

We denote by O∗
F the group of units in OF . By the Dirichlet unit theorem

there is a unique unit ε0 > 1 such that O∗
F = {±1}×{εn0 ; n ∈ Z}. It is called

the fundamental unit of F . We write x �→ x′ for the conjugation, N(x) = xx′

for the norm in F , and tr(x) = x + x′ for the trace in F . The different of F
is denoted by dF . Note that dF = (

√
D).

Recall that an (integral) ideal of OF is a OF -submodule of OF . A fractional
ideal of F is a finitely generated OF -submodule of F . Fractional ideals form
a group together with the ideal multiplication. The neutral element is OF and
the inverse of a fractional ideal a ⊂ F is

a−1 = {x ∈ F ; xa ⊂ OF } .

Since F is a quadratic extension of Q, we have the useful formula a−1 = 1
N(a)a

′,
where a′ is the conjugate of a. Two fractional ideals a, b are called equivalent,
if there is a r ∈ F such that a = rb. The group of equivalence classes Cl(F ) is
called the ideal class group of F . It is a finite abelian group. Two fractional
ideals a, b are called equivalent in the narrow sense, if there is a totally positive
r ∈ F such that a = rb. The group of equivalence classes Cl+(F ) is called
the narrow ideal class group of F . It is equal to Cl(F ), if and only if ε0 has
norm −1. Otherwise it is an extension of degree 2 of Cl(F ). The (narrow)
class number of F is the order of the (narrow) ideal class group. It measures
how far OF is from being a principal ideal domain.

If the class number of F is greater than 1, there are ideals which cannot
be generated by a single element. However, we have the following fact, which
holds in any Dedekind ring.
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Remark 1.1. If a ⊂ F is a fractional ideal, then there exist α, β ∈ F such that
a = αOF + βOF . �

The group SL2(F ) is embedded into SL2(R) × SL2(R) by the two real
embeddings of F . It acts on H × H, where H = {τ ∈ C; I(τ) > 0} is the
complex upper half plane, via fractional linear transformations,

(
a b
c d

)
z =

(
az1 + b

cz1 + d
,
a′z2 + b′

c′z2 + d′

)
. (1.3)

Here and throughout we use z = (z1, z2) as a standard variable on H2. If
z ∈ H2 and

(
a b
c d

)
∈ SL2(F ), we write

N(cz + d) = (cz1 + d)(c′z2 + d′) . (1.4)

Lemma 1.2. For z ∈ H2 and γ =
(
a b
c d

)
∈ SL2(F ) we have

�(γz) =
�(z)

|N(cz + d)|2 .

Proof. This follows immediately from the analogous assertion in the one-
dimensional case. �

If a is a fractional ideal of F , we write

Γ (OF ⊕ a) =
{(

a b
c d

)
∈ SL2(F ); a, d ∈ OF , b ∈ a−1, c ∈ a

}
(1.5)

for the Hilbert modular group corresponding to a. Moreover, we write

ΓF = Γ (OF ⊕OF ) = SL2(OF ) . (1.6)

Let Γ ⊂ SL2(F ) be a subgroup which is commensurable with ΓF , i.e., Γ ∩ΓF
has finite index in both, Γ and ΓF . Then Γ acts properly discontinuously on
H2, i.e., if W ⊂ H2 is compact, then {γ ∈ Γ ; γW∩W �= ∅} is finite (see Corol-
lary 1.17). In particular, for any a ∈ H2, the stabilizer Γa = {γ ∈ Γ ; γa = a} is
a finite subgroup of Γ . Let Γ̄a be the image of Γa in PSL2(F ) = SL2(F )/{±1}.
If #Γ̄a > 1 then a is called an elliptic fixed point for Γ and #Γ̄a is called the
order of a. The order of a only depends of the Γ -class. Moreover, there are
only finitely many Γ -classes of elliptic fixed points. It can be shown that Γ
always has a finite index subgroup which has no elliptic fixed points.

The quotient

Y (Γ ) = Γ\H2 (1.7)

is a normal complex surface. The singularities are given by the elliptic fixed
points. They are finite quotient singularities.
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The surface Y (Γ ) is non-compact. It can be compactified by adding a finite
number of points, the cusps of Γ . They can be described as follows. The group
SL2(F ) also acts on P1(F ) = F ∪ {∞} by

(
a b
c d

)
α

β
=
aαβ + b

cαβ + d
=
aα+ bβ

cα+ dβ
.

Notice that, since
(
a b
c d

)
∞ = a

c , the action of SL2(F ) is transitive. The
Γ -classes of P1(F ) are called the cusps of Γ .

Lemma 1.3. The map

ϕ : ΓF \P1(F ) �� Cl(F ),
(α : β) � �� αOF + βOF ,

is bijective.

Proof. We begin by showing that ϕ is well-defined: It is clear that ϕ(α : β) =
ϕ(rα : rβ). Now let

(
a b
c d

)
∈ ΓF , and let γ

δ =
(
a b
c d

)
α
β . We need to show that

ϕ(γ : δ) = ϕ(α : β). We have

ϕ (γ : δ) = γOF + δOF

= (aα+ bβ)OF + (cα+ dβ)OF

⊂ ϕ (α : β) .

Interchanging the roles of (γ : δ) and (α : β), we see

ϕ (α : β) = (dγ − bδ)OF + (−cγ + aδ)OF

⊂ ϕ (γ : δ) .

Consequently, ϕ(γ : δ) = ϕ(α : β).
The surjectivity of ϕ follows from Remark 1.1.
Finally, we show that ϕ is injective. Let a = ϕ(α : β) = ϕ(γ : δ). Then 1 ∈

OF = aa−1 = αa−1 + βa−1. So there exist α̃, β̃ ∈ a−1 such that 1 = αβ̃ − βα̃.
We find that

M1 :=
(
α α̃

β β̃

)
∈
(

a a−1

a a−1

)
∩ SL2(F ) ,

and M1∞ = (α : β). In the same way we find

M2 :=
(
γ γ̃

δ δ̃

)
∈
(

a a−1

a a−1

)
∩ SL2(F )

such that M2∞ = (γ : δ). Therefore we have

M2M
−1
1 ∈

(
a a−1

a a−1

)(
a−1 a−1

a a

)
=
(
OF OF

OF OF

)
.

Hence, M2M
−1
1 ∈ ΓF and M2M

−1
1 (α : β) = (γ : δ). This concludes the proof

of the Lemma. �
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Corollary 1.4. The number of cusps of ΓF is equal to the class number h(F )
of F . A subgroup Γ ⊂ SL2(F ) which is commensurable with ΓF has finitely
many cusps.

Remark 1.5. Let Γ∞ ⊂ Γ be the stabilizer of ∞. Then there is a Z-module
M ⊂ F of rank 2 and a finite index subgroup V ⊂ O∗

F acting on M such that
the group

G(M,V ) =
{(

ε μ
0 ε−1

)
; μ ∈M and ε ∈ V

}
(1.8)

is contained in Γ∞ with finite index.

Example 1.6. If a ⊂ F is a fractional ideal, then

Γ (OF ⊕ a)∞ =
{(

ε μ
0 ε−1

)
; μ ∈ a−1, ε ∈ O∗

F

}
.

1.2 The Baily–Borel Compactification

We embed P1(F ) into P1(R)×P1(R) via the two real embeddings of F . Then
we may view P1(F ) as the set of rational boundary points of H2 in the same
way as P1(Q) is viewed as the set of rational boundary points of H. Here we
consider

(H2)∗ = H2 ∪ P1(F ) . (1.9)

By introducing a suitable topology on (H2)∗, the quotient Γ\(H2)∗ can be
made into a compact Hausdorff space. This leads to the Baily–Borel com-
pactification of Y (Γ ).

Proposition 1.7. On (H2)∗ there is a unique topology with the following
properties:

(i) The induced topology on H2 agrees with the usual one.
(ii) H2 is open and dense in (H2)∗.
(iii) The sets UC ∪∞, where

UC =
{
(z1, z2) ∈ H2; I(z1)I(z2) > C

}

for C > 0, form a base of open neighborhoods of the cusp ∞.
(iv) If κ ∈ P1(F ) and ρ ∈ SL2(F ) with ρ∞ = κ, then the sets

ρ(UC ∪∞) (C > 0)

form a base of open neighborhoods of the cusp κ. �
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Remark 1.8. The system of open neighborhoods of κ defined by (iv) does not
depend on the choice of ρ. The stabilizer Γ∞ of ∞ acts on UC . If γ =

( ε μ

0 ε−1

)
∈

Γ∞, then
γz =

(
ε2z1 + εμ, ε′2z2 + ε′μ′) .

We consider the quotient

X(Γ ) = Γ\(H2)∗ . (1.10)

Theorem 1.9. The quotient space X(Γ ), together with the quotient topology,
is a compact Hausdorff space. �

Proposition 1.10. For C > 0 sufficiently large, the canonical map

Γ∞\UC ∪∞ �� Γ\(H2)∗

is an open embedding. �

The group SL2(F ) acts by topological automorphisms on (H2)∗. Hence,
for ρ ∈ SL2(F ), the natural map

X(Γ ) −→ X(ρ−1Γρ), z �→ ρ−1z

is topological. If ρ∞ = κ, it takes the cusp κ of Γ to the cusp ∞ of ρ−1Γρ.
In that way, local considerations near the cusps can often be reduced to con-
siderations at the cusp ∞ (for a conjugate group), for which one can use
Proposition 1.10.

We define a complex structure onX(Γ ) as follows. For an open subset V ⊂
X(Γ ) we let U ⊂ (H2)∗ be the inverse image under the canonical projection
pr : (H2)∗ → X(Γ ), and let U ′ be the inverse image in H2. We have the
diagram

H2 �� (H2)∗
pr �� X(Γ )

U ′

��

�� U

��

�� V

��
.

We define OX(Γ )(V ) to be the ring of continuous functions f : V → C such
that pr∗(f) is holomorphic on U ′. This defines a sheaf OX(Γ ) of rings onX(Γ ),
and the pair (X(Γ ),OX(Γ )) is a locally ringed space.

Theorem 1.11 (Baily–Borel). The space (X(Γ ),OX(Γ )) is a normal com-
plex space. �

The proof is based on a criterion of Baily and Cartan for the continuation
of complex structures, see [Fr] p. 112.

In contrast to the case of modular curves the resulting normal complex
space X(Γ ) is not regular. There are finite quotient singularities at the elliptic
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fixed points, and more seriously, the cusps are highly singular points. By the
theory of Hironaka the singularities can be resolved [Hi]. A weak form of
Hironaka’s result states that there exists a desingularization

π : X̃(Γ ) −→ X(Γ ) , (1.11)

where X̃(Γ ) is a non-singular connected projective variety such that π induces
a biholomorphic map π−1(X(Γ )reg) → X(Γ )reg. Here X(Γ )reg is the regular
locus of X(Γ ). One can further require that the complement of π−1(X(Γ )reg)
is a divisor with normal crossings. The minimal resolution of singularities was
constructed by Hirzebruch [Hz].

It can be shown that there is an ample line bundle on X(Γ ), the line
bundle of modular forms (in sufficiently divisible weight). Consequently, the
space X(Γ ) carries the structure of a projective algebraic variety over C. The
surface Y (Γ ) is a Zariski-open subvariety and therefore quasi-projective.

Remark 1.12. The Hilbert modular surfaces Y (Γ ) often have a moduli inter-
pretation, analogously to the fact that SL2(Z)\H parametrizes isomorphism
classes of elliptic curves over C. It can be used to construct integral models
of Hilbert modular surfaces. For instance, Y (Γ (OF ⊕ a)) is the coarse moduli
space for isomorphism classes of triples (A, ı,m), where A is an abelian surface
over C, and ı : OF → End(A) is an embedding of rings (real multiplication),
and m is an isomorphism from the polarization module of A to (adF )−1 re-
specting the positivities, cf. [Go] Theorem 2.17. The variety Y (Γ (OF ⊕ a))
can be interpreted as the complex points of a moduli stack over Z. One can
also construct toroidal compactifications and Baily–Borel compactifications
over Z, cf. [Rap], [DePa], [Ch].

Siegel Domains

Here we recall the properties of Siegel domains for Hilbert modular surfaces.
They are nice substitutes for fundamental domains.

We write (x1, x2) for the real part and (y1, y2) for the imaginary part of
(z1, z2). The top degree differential form

dμ =
dx1 dy1
y2
1

dx2 dy2
y2
2

(1.12)

on H2 is invariant under the action of SL2(R)2. It defines an invariant measure
on H2, which is induced by the Haar measure on SL2(R).

Definition 1.13. A subset S ⊂ H2 is called a fundamental set for Γ , if

H2 =
⋃

γ∈Γ
γ(S) .
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Definition 1.14. A fundamental set S for Γ is called a fundamental domain
for Γ , if

(i) S is measurable.
(ii) There is a subset N ⊂ S of measure zero, such that for all z, w ∈ S\N we

have

z ∼Γ w ⇒ z = w .

Remark 1.15. It can be shown that every measurable fundamental set contains
a fundamental domain.

Nice fundamental sets for the action of Γ on H2 are given by Siegel do-
mains : For a positive real number t we put

St =
{
z ∈ H2; |xi| < t and yi > 1

t for i = 1, 2
}
. (1.13)

Proposition 1.16. For any fixed t ∈ R>0 there exist only finitely many γ ∈ Γ
such that

γSt ∩ St �= ∅ . (1.14)

Proof. It is clear that there are only finitely many γ =
(
a b
c d

)
∈ Γ with c = 0

satisfying condition (1.14).
On the other hand, assume that γ ∈ Γ with c �= 0, and assume that there

is a z ∈ γSt ∩ St. Then we have

y1
|cz1 + d|2 >

1
t
, (1.15)

y2
|c′z2 + d′|2 >

1
t
. (1.16)

The first inequality implies that

y1 >
1
t

(
(cx1 + d)2 + c2y2

1

)
≥ 1
t
c2y2

1 >
1
t2
c2y1 , (1.17)

and therefore |c| < t. In the same way, inequality (1.16) implies that |c′| < t.
Hence there are only finitely many possibilities for c. For these, by (1.17) and
its analogue for y2, the imaginary part (y1, y2) is bounded, and there are also
just finitely many possibilities for d.

Moreover, replacing γ by γ−1 in the above argument, we find that there
are only finitely many possibilities for a. But a, c, d determine γ. �

Corollary 1.17. The action of Γ on H2 is properly discontinuous, that is, if
W ⊂ H2 is compact, then {γ ∈ Γ ; γW ∩W �= ∅} is finite.

Proof. This follows from Proposition 1.16 and the fact that
⋃
t∈R>0

St = H2.
�
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Theorem 1.18. Let κ1, . . . , κr ∈ P1(F ) be a set of representatives for the
cusps of Γ , and let ρ1, . . . , ρr ∈ SL2(F ) such that ρj ∞ = κj. There is a t > 0
such that

S =
r⋃

j=1

ρjSt

is a measurable fundamental set for Γ .

Proof. See [Ga], Chapter 1.6. �

1.3 Hilbert Modular Forms

Let Γ ⊂ SL2(F ) be a subgroup which is commensurable with ΓF , and let
(k1, k2) ∈ Z2.

Definition 1.19. A meromorphic function f : H2 → C is called a meromor-
phic Hilbert modular form of weight (k1, k2) for Γ , if

f(γz) = (cz1 + d)k1 (c′z2 + d′)k2f(z) (1.18)

for all γ =
(
a b
c d

)
∈ Γ . If k1 = k2 =: k, then f is said to have parallel weight,

and is simply called a meromorphic Hilbert modular form of weight k. If f
is holomorphic on H2, then it is called a holomorphic Hilbert modular form.
Finally, a Hilbert modular form f is called symmetric, if f(z1, z2) = f(z2, z1) .

For a function f : H2 → C and γ =
(
a b
c d

)
∈ SL2(F ) we define the Petersson

slash operator by

(f |k1,k2 γ)(z) = (cz1 + d)−k1(c′z2 + d′)−k2f(γz) .

The assignment f �→ f |k1,k2 γ defines a right action of SL2(F ) on complex
valued functions on H2. Using it, we may rewrite condition (1.18) as

f |k1,k2 γ = f, γ ∈ Γ .

If k1 = k2 =: k, we simply write f |k γ instead of f |k1,k2 γ.
If f is a holomorphic Hilbert modular form for Γ , it has a Fourier expansion

at the cusp ∞ of the following form. Let M ⊂ F be a Z-module of rank 2 and
let V ⊂ O∗

F be a finite index subgroup acting on M such that the group

G(M,V ) =
{(

ε μ
0 ε−1

)
; μ ∈M and ε ∈ V

}
(1.19)

is contained in Γ∞ with finite index. The transformation law (1.18) for γ ∈
G(M,V ) implies that

f(z + μ) = f(z)
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for all μ ∈M . Therefore, f has a normally convergent Fourier expansion

f =
∑

ν∈M∨
aν e(tr(νz)) , (1.20)

where e(w) = e2πiw, tr(νz) = νz1 + ν′z2, and

M∨ = {λ ∈ F ; tr(μλ) ∈ Z for all μ ∈M} (1.21)

is the dual lattice of M with respect to the trace form on F . The Fourier
coefficients aν are given by

aν =
1

vol(R2/M)

∫

R2/M

f(z)e(− tr(νz)) dx1 dx2 . (1.22)

More generally, if κ ∈ P1(F ) is any cusp of Γ , we take ρ ∈ SL2(F ) such that
ρ∞ = κ, and consider f |k1,k2 ρ at ∞. The Fourier expansion of f at κ is the
expansion of f |k1,k2 ρ at ∞ (it depends on the choice of ρ).

It is a striking fact that, in contrast to the one-dimensional situation,
a holomorphic Hilbert modular form is automatically holomorphic at the cusps
by the Götzky–Koecher principle.

Theorem 1.20 (Götzky–Koecher principle). Let f : H2 → C be a holo-
morphic function satisfying f |k1,k2 γ = f for all γ ∈ G(M,V ) as in (1.19).
Then

(i) aε2ν = εk1ε′k2aν for all ν ∈M∨ and ε ∈ V ,
(ii) aν �= 0 ⇒ ν = 0 or ν � 0.

Proof. (i) For ε ∈ V we have
(
ε−1 0
0 ε

)
∈ G(M,V ). The transformation law

implies that

ε−k1ε′−k2
∑

ν∈M∨
aν e(tr(νε−2z)) =

∑

ν∈M∨
aν e(tr(νz)) .

Comparing Fourier coefficients, we obtain the first assertion.
(ii) Suppose that there is a ν ∈M∨ such that aν �= 0 and such that ν < 0

or ν′ < 0. Without loss of generality we assume ν < 0. There is an ε ∈ V with
ε > 1 and 0 < ε′ < 1 such that tr(εν) < 0. Then tr(ε2nν) goes to −∞ for
n→ ∞.

The series
∑

n≥1

aνε2n e(i tr(νε2n))

is a subseries of the Fourier expansion of f(z) at z = (i, i) and therefore
converges absolutely. But by (i) we have

∑

n≥1

|aνε2n e(i tr(νε2n))| = |aν |
∑

n≥1

εk1nε′k2ne−2π tr(νε2n) → ∞ ,

contradicting the convergence. �
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Corollary 1.21. A holomorphic Hilbert modular form for the group Γ has
a Fourier expansion at the cusp ∞ of the form

f(z) = a0 +
∑

ν∈M∨
ν�0

aν e(tr(νz)) . (1.23)

The constant term a0 is called the value of f at ∞. We write f(∞) = a0.
More generally, if κ ∈ P1(F ) is any cusp of Γ , we take ρ ∈ SL2(F ) such that
ρ∞ = κ. We put f(κ) = (f |k1,k2 ρ)(∞). If (k1, k2) �= (0, 0), the value f(κ) of
f at κ depends on the choice of ρ (by a non-zero factor).

Definition 1.22. A holomorphic Hilbert modular form f is called a cusp
form, if it vanishes at all cusps of Γ .

Proposition 1.23. Let f be a holomorphic modular form of weight (k1, k2)
for Γ . If k1 �= k2, then f is a cusp form.

Proof. This follows from Theorem 1.20 (i), applied to the constant terms at
the cusps. �

Proposition 1.24. Let f be a modular form of weight (k1, k2) for Γ . Then
the function h(z) = |f(z)yk1/21 y

k2/2
2 | is Γ -invariant.

Proof. This follows from Lemma 1.2. �

Proposition 1.25. Let f be a holomorphic modular form of weight (k1, k2)
for Γ , and let h(z) = |f(z)yk1/21 y

k2/2
2 | be the Γ -invariant function of Proposit-

ion 1.24.

(i) If f has parallel negative weight k = k1 = k2, then h attains a maximum
on H2.

(ii) If f is a cusp form, then h vanishes at the cusps and attains a maximum
on H2.

Proof. We only prove the first statement, the second is similar. By Proposit-
ion 1.24, it suffices to consider h on a fundamental set for Γ . In view of The-
orem 1.18, it suffices to show that for any ρ ∈ SL2(F ) and any t ∈ R>0, the
function h(ρz) is bounded and attains its maximum on the Siegel domain St.
Using the Fourier expansion of f at the cusp ρ∞, we see that

h(ρz) = (y1y2)k/2a0 + (y1y2)k/2
∑

ν∈M∨
ν�0

aν e(tr(νz))

for a suitable rank 2 lattice M ⊂ F . Since the weight k is negative, we find
that limy1y2→∞ h(ρz) = 0 on St. Consequently, h(ρz) is bounded and attains
a maximum on St. �
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Proposition 1.26. Let f be a holomorphic modular form of weight (k1, k2)
for Γ . Then f vanishes identically unless k1, k2 are both positive or k1 =
k2 = 0. In the latter case f is constant.

Proof. Let us first consider the case that k1 = 0 and k2 �= 0. By Proposit-
ion 1.23, f is a cusp form. The function h(z) = y

k2/2
2 f(z) is holomorphic in

z1, and, by Proposition 1.25, |h| attains a maximum on H2. According to the
maximum principle, h must be constant as a function of z1. Hence,

h(z1, z2) = h(z1, γ′z2)

for all γ ∈ Γ . Since {γz2; γ ∈ Γ} is dense in H, the function h must be
constant on H2. Because h vanishes at the cusps, it must vanish identically.
In the same way we see that f = 0, if k2 = 0 and k1 �= 0.

Let us now consider the case that k1 = k2 = 0. If f is a cusp form, then
Proposition 1.25 implies that |f | attains a maximum on H2. Hence, by the
maximum principle, f must be constant. Since f vanishes at ∞, we obtain
that f ≡ 0. If f is holomorphic (but not necessarily cuspidal), we consider the
cusp form

g(z) :=
∏

κ∈Γ\P1(F )

(f(z) − f(κ)) .

We find that g ≡ 0, and therefore f is constant.
Finally, assume that some ki, say k1, is negative. If k1 �= k2, then, by

Proposition 1.23, f is a cusp form. If k1 = k2, then f has parallel negative
weight. In both cases, Proposition 1.25 implies that h(z) = |f(z)yk1/21 y

k2/2
2 |

is bounded by a constant C > 0 on H2. We consider the Fourier expansion of
f at the cusp ∞ as in (1.20). The coefficients aν are given by (1.22). We find
that

|aν | ≤
1

vol(R2/M)

∫

R2/M

|f(z)e(− tr(νz))| dx1 dx2

≤ Cy
−k1/2
1 y

−k2/2
2 e−2π tr(νy) .

Taking the limit y1 → 0, we see that aν vanishes for all ν ∈M∨, and therefore
f ≡ 0. �

Corollary 1.27. Let X̃(Γ ) → X(Γ ) be a desingularization as in (1.11). Then
any holomorphic 1-form on X̃(Γ ) vanishes identically.

Proof. Let ω be a holomorphic 1-form on X̃(Γ ) and denote by η its pullback
to the regular locus of X(Γ ). Viewing η as a Γ -invariant holomorphic 1-form
on H2, we may write

η = f1(z) dz1 + f2(z) dz2 ,

where f1 and f2 are holomorphic Hilbert modular forms of weights (2, 0) and
(0, 2), respectively. Hence, by Proposition 1.26, η vanishes identically. �



Hilbert Modular Forms 117

In the same way one sees that any antiholomorphic 1-form on X̃(Γ ) van-
ishes identically. Consequently,

H1(X̃(Γ ),O
eX(Γ )) = 0 ,

that is, the surface X̃(Γ ) is regular. Using Hodge theory we see that the first
cohomolgy group H1(X̃(Γ ),C) vanishes. In particular, the interesting part of
the cohomology of a Hilbert modular surface is in degree 2.

It can be shown that the Hilbert modular surfaces X̃(Γ (OF ⊕ a)) corres-
ponding to the groups Γ (OF ⊕ a) are simply connected. This also implies
the vanishing of the first Betti number. However, there are also examples of
Hilbert modular surfaces which are not simply connected. See [Ge1], Chapter
IV.6. (Recall that the fundamental group of a complex surface is a birational
invariant.)

For the rest of these notes we will only be considering Hilbert modular
forms of parallel weight k.

Notation 1.28. Let k ∈ Z. We write Mk(Γ ) for the C-vector space of holo-
morphic Hilbert modular forms of weight k for the group Γ , and denote by
Sk(Γ ) the subspace of cusp forms.

The codimension of Sk(Γ ) in Mk(Γ ) is clearly bounded by the number of
cusps of Γ .

Proposition 1.29. Let X̃(Γ ) → X(Γ ) be a desingularization.

(i) Meromorphic Hilbert modular forms of weight 0 for Γ , can be identified
with meromorphic functions on X̃(Γ ).

(ii) Meromorphic Hilbert modular forms of weight 2 for Γ , can be identified
with meromorphic 2-forms on X̃(Γ ).

(iii) Hilbert cusp forms of weight 2 for Γ , can be identified with holomorphic
2-forms on X̃(Γ ).

Proof. The first two assertions are easy. For the third assertion we refer to [Fr],
Chapter II.4. �

In particular, the arithmetic genus of the surface X̃(Γ ), that is, the Euler
characteristic of the structure sheaf, is given by

χ(O
eX(Γ )) =

2∑

p=0

(−1)p dimHp(X̃(Γ ),O
eX(Γ )) = 1 + dim(S2(Γ )) .

Holomorphic Hilbert modular forms can be interpreted as sections of the
sheaf Mk(Γ ) of modular forms, which can be defined as follows: If we write
pr : H2 → Y (Γ ) for the canonical projection, then the sections over an open
subset U ⊂ Γ\H2 are holomorphic functions on pr−1(U), satisfying the trans-
formation law (1.18). By the Koecher principle, this sheaf on Y (Γ ) extends
to X(Γ ). It is a coherent OX(Γ )-module.
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Let n(Γ ) denote the least common multiple of the orders of all elliptic
fixed points for Γ . When n(Γ ) | k, then Mk(Γ ) is a line bundle. One can
show that this line bundle is ample and thereby prove that X(Γ ) is algebraic.
Notice that Mnk(Γ ) = Mk(Γ )⊗n for any positive integer n.

1.4 Mk(Γ ) is Finite Dimensional

In this section we show that Mk(Γ ) is finite dimensional. The argument is
based on the comparison of two different norms on the space of cusp forms. It
is a rather general principle and works in a much more general setting (cf. [Fr],
Chapter I.6).

We begin by defining the Petersson scalar product on Mk(Γ ). The top
degree differential form dμ = dx1 dy1

y2
1

dx2 dy2
y2
2

on H2 is invariant under the action
of SL2(R)2.

Definition 1.30. Let f, g ∈ Mk(Γ ) such that the product fg is a cusp form.
We define the Petersson scalar product of f and g by

〈f, g〉 =
∫

F
f(z)g(z)(y1y2)k dμ ,

where F is a fundamental domain for Γ .

Lemma 1.31. For f, g as above the Petersson scalar product converges abso-
lutely and is independent of the choice of the fundamental domain.

Proof. Arguing as in Proposition 1.25, we see that f(z)g(z) (y1y2)k is invari-
ant under Γ and bounded on H2. Hence, that the integral does not depend
on the choice of F follows from the absolute convergence using the theorem
on dominated convergence for the Lebesgue integral. To prove the absolute
convergence, it suffices to show that

∫

F
dμ <∞ .

In view of Proposition 1.18, it suffices to show that
∫

St

dμ <∞

for all t > 0. This follows from the fact that
∫∞
1/t

dy
y2 <∞. �

In particular, the Petersson scalar product defines a hermitian scalar prod-
uct on Sk(Γ ). We denote the corresponding L2-norm on Sk(Γ ) by

‖f‖2 :=
√
〈f, f〉 . (1.24)

On the other hand we have the maximum norm on Sk(Γ ) which is defined by

‖f‖∞ = max
z∈F

(
|f(z)|(y1y2)k/2

)
. (1.25)
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Lemma 1.32. There is a constant A = A(Γ, k) > 0 such that

‖f‖∞ ≤ A · ‖f‖2

for all f ∈ Sk(Γ ).

Proof. The L2-norm can be estimated by considering the Fourier expansions
of f at the cusps of Γ and using Siegel domains (Proposition 1.18). See [Fr],
Lemma 6.2 for details. �

Theorem 1.33. The vector space Mk(Γ ) is finite dimensional.

Proof. It suffices to show that dimSk(Γ ) <∞. Let f1, . . . , fm be an orthonor-
mal set with respect to the Petersson scalar product, that is, 〈fi, fj〉 = δij .
For an arbitrary linear combination

f =
m∑

j=1

cjfj

with coefficients cj ∈ C, we have ‖f‖∞ ≤ A‖f‖2 by Lemma 1.32. Hence, for
all z ∈ H2 we have

∣
∣
∣
∣
∣∣

m∑

j=1

cjfj(z)(y1y2)k/2

∣
∣
∣
∣
∣∣
≤ A

⎛

⎝
m∑

j=1

|cj |2
⎞

⎠

1/2

.

We consider the inequality for cj = fj(z). We find

m∑

j=1

|fj(z)|2(y1y2)k/2 ≤ A

⎛

⎝
m∑

j=1

|fj(z)|2
⎞

⎠

1/2

.

Dividing by the sum on the right hand side and taking the square we obtain

m∑

j=1

| fj(z)|2(y1 y2)k ≤ A2 .

Integrating over F we find that

m ≤ A2 vol(Γ\H2) .

This concludes the proof of the theorem. �

1.5 Eisenstein Series

Here we define Eisenstein series for Hilbert modular groups. For simplicity
we only consider the full Hilbert modular group ΓF = SL2(OF ) of the real
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quadratic field F . We write N(x) for the norm of x ∈ F , and N(a) for the
norm of a fractional ideal a ⊂ F .

Let B ∈ Cl(F ) be an ideal class of F . There is a zeta function associated
with B which is defined by

ζB(s) =
∑

c∈B
c⊂OF

N(c)−s . (1.26)

Here s is a complex variable, and the sum runs through all integral ideals in
the ideal class B. The series converges for (s) > 1. It has a meromorphic
continuation to the full complex plane and the completed zeta function

ΛB(s) = Ds/2π−sΓ (s/2)2ζB(s) (1.27)

satisfies the functional equation

ΛB(s) = ΛdB−1(1 − s) (1.28)

(see e.g. [Ne], Chapter VII.5). Here, d = dF =
√
DOF is the different of F .

The Dedekind zeta function ζF (s) of F is given by

ζF (s) =
∑

B∈Cl(F )

ζB(s) =
∑

c⊂OF
integral ideal

N(c)−s . (1.29)

Let b be a fractional ideal in the ideal class B. The group of units O∗
F acts

on b × b by (c, d) �→ (εc, εd) for ε ∈ O∗
F . Recall that for

(
a b
c d

)
∈ SL2(F ) and

z = (z1, z2) ∈ H2, we write N(cz + d) = (cz1 + d)(c′z2 + d′).

Definition 1.34. Let k > 2 be an even integer. We define the Eisenstein
series of weight k associated to B by1

Gk,B(z) = N(b)k
∑′

(c,d)∈O∗
F\b×b

N(cz + d)−k .

The Eisenstein series Gk,B does not depend on the choice of the representative
b of the ideal class B and converges uniformly absolutely in every Siegel
domain St (t > 0). Consequently, it defines an element of Mk(ΓF ). The value
at the cusp ∞ is given by

Gk,B(∞) = lim
z∈St

y1y2→∞
Gk,B(z)

= N(b)k
∑′

d∈O∗
F\b

N(d)−k

=
∑′

d∈O∗
F\b

N(db−1)−k

= ζB−1(k) .
1 The superscript at the summation sign means that the zero summand is omitted.



Hilbert Modular Forms 121

If κ ∈ P1(F ) is any cusp and ρ =
(
α β
γ δ

)
∈ SL2(F ) with ρ∞ = κ, then

Gk,B(κ) = lim
z∈St

y1y2→∞
(Gk,B |k ρ)(z)

= N(a)kζ[a]B−1(k) ,

where a = OFα+ OFγ.

Theorem 1.35. Let k > 2 be an even integer. The Eisenstein series Gk,B ∈
Mk(ΓF ), where B ∈ Cl(F ), are linearly independent. The space Mk(ΓF ) can
be decomposed as a direct sum

Mk(ΓF ) = Sk(ΓF ) ⊕
⊕

B∈Cl(F )

CGk,B .

Proof. See [Ge1], p. 21. �
Remark 1.36. One can define Gk,B for k > 2 odd in the same way. In this
case it is easily seen that Gk,B ≡ 0 if OF contains a unit of negative norm.
Moreover, the theorem also holds for k = 2. In this case one can define G2,B by
analytic continuation using the “Hecke-trick”. In turns out that all Eisenstein
series of weight 2 are holomorphic (in contrast to the case of elliptic modular
forms, where the constant term is sometimes non-holomorphic).

The Fourier expansion of the Eisenstein series can be computed in the
same way as in the case of elliptic modular forms.

Theorem 1.37. Let k ≥ 2 even. The Eisenstein series Gk,B has the Fourier
expansion

Gk,B(z) = ζB−1(k) +
(2πi)2k

(k − 1)!2
D1/2−k ∑

ν∈d−1

ν�0

σk−1,dB(dν) e(tr(νz)) .

Here, for A ∈ Cl(F ) and an integral ideal l ⊂ OF , σs,A(l) denotes the divisor
sum

σs,A(l) =
∑

c ∈ A integral
c|l

N(c)s .

�
Using the functional equation of ζB(s), we may write

Gk,B(z) =
(2πi)2k

(k − 1)!2
D1/2−k

[
1
4
ζdB(1 − k) +

∑

ν∈d−1

ν�0

σk−1,dB(dν) e(tr(νz))
]
.

(1.30)

Recall that a Hilbert modular form f of weight k is called symmetric, if
f(z1, z2) = f(z2, z1). It is easily seen that the Eisenstein series Gk,B are
symmetric.
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Restriction to the Diagonal

If f ∈ Mk(ΓF ) is a Hilbert modular form, we consider its restriction to the
diagonal g(τ) = f(τ, τ). Since the elliptic modular group SL2(Z) is embed-
ded diagonally into ΓF = SL2(OF ), the function g has the transformation
behavior

g(γτ) = f(γτ, γτ) = (cτ + d)2kf(τ, τ)

for γ =
(
a b
c d

)
∈ SL2(Z). Therefore g(τ) is an elliptic modular form for SL2(Z)

of weight 2k. If f has the Fourier expansion

f(z) = a0 +
∑

ν∈d−1

ν�0

aν e(tr(νz))

at the cusp ∞, then g has the expansion

g(τ) = a0 +
∑

n≥1

∑

ν∈d−1

ν�0
tr(ν)=n

aν e(nτ) . (1.31)

The geometric interpretation is the following. The diagonal embedding H →
H2, τ �→ (τ, τ) induces a morphism ϕ : SL2(Z)\H → Y (ΓF ), which is
birational onto its image. If we view f as a section of the line bundle
of modular forms of weight k over Y (ΓF ), then g = ϕ∗(f) is the pull-
back.

We now consider the restriction of the Eisenstein series Gk,B. Using the
Fourier expansion (1.30), we see that

1
4
ζdB(1 − k) +

∑

n≥1

∑

ν∈d−1

ν�0
tr(ν)=n

σk−1,dB(dν) e(nτ) (1.32)

is a modular form for SL2(Z) of weight 2k. As a first consequence we see that
the special values ζdB(1− k) must be rational numbers. This follows from the
fact that the divisor sums σk−1,dB(dν) are rational (integers), and the fact
that the spaces of elliptic modular forms for SL2(Z) have bases with rational
Fourier coefficients. If k = 2, 4, then (1.32) must be a multiple of the elliptic
Eisenstein series

E2k(τ) = −B2k

4k
+
∑

n≥1

σ2k−1(n) e(nτ) .

Here B2k is the usual Bernoulli number and σs(n) =
∑
d|n d

s. Comparing the
first Fourier coefficients we obtain a formula for ζdB(1 − k) due to Siegel.
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Theorem 1.38 (Siegel). If k = 2, 4, then

ζB(1 − k) = −B2k

k

∑

ν∈d−1

ν�0
tr(ν)=1

σk−1,B(dν) .

�

By means of (1.29), and using B4 = B8 = −1/30, we obtain:

Corollary 1.39. The special values of the Dedekind zeta function of F at the
arguments −1,−3 are given by

ζF (−1) =
1
60

∑

x∈Z

x2<D
x2≡D (4)

σ1

(
D − x2

4

)
,

ζF (−3) =
1

120

∑

x∈Z

x2<D
x2≡D (4)

σ3

(
D − x2

4

)
.

�

We end this section with a table for these special values.

Table 1. Special values of ζF (s)

D 5 8 12 13 17 21 24 28 29 33 37 40 41 44

ζF (−1) 1
30

1
12

1
6

1
6

1
3

1
3

1
2

2
3

1
2

1 5
6

7
6

4
3

7
6

ζF (−3) 1
60

11
120

23
60

29
60

41
30

77
30

87
20

113
15

157
20

141
10

1129
60

1577
60

448
15

2153
60

The Example Q(
√

5)

Eisenstein series and restriction to the diagonal can be used to determine the
graded algebra of holomorphic Hilbert modular forms in some cases where the
discriminant of F is small. Here we illustrate this for F = Q(

√
5). The class

number of F is 1, and the fundamental unit of OF is given by ε0 = 1+
√

5
2 .

The graded algebra of modular forms for the group ΓF was determined by
Gundlach [Gu], see also [Mü]. For further examples see [Ge1], Chapter 8.

We denote by gk the Eisenstein series for ΓF of weight k normalized such
that the constant term is 1 (so gk = 1

ζF (k)Gk,OF ).
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Theorem 1.40 (Gundlach). The graded algebra M sym
2∗ (ΓF ) of holomorphic

symmetric Hilbert modular forms of even weight for ΓF is the (weighted) poly-
nomial ring C[g2, g6, g10].

Often it is more convenient to replace the generators g6 and g10 by the
cusp forms

s6 = 67 · (25 · 33 · 52)−1 · (g3
2 − g6),

s10 = (210 · 35 · 55 · 7)−1 · (22 · 3 · 7 · 4231 g5
2 − 5 · 67 · 2293 g2

2g6 + 412751 g10) .

Then Gundlach’s result can be restated as

M sym
2∗ (ΓF ) = C[g2, s6, s10] . (1.33)

Notice that g2, s6, s10 all have rational integral and coprime Fourier coeffi-
cients.

The key idea for the proof is to show that there is a “square root” for
s10. Gundlach constructed a cusp form s5 of weight 5 for ΓF as a prod-
uct of 10 theta constants. (Later, in Section 3.2, we will construct it as
the Borcherds lift Ψ1.) One can show that s5 is anti-symmetric, that is,
s5(z1, z2) = −s5(z2, z1). Hence it has to vanish on the diagonal. It turns
out that the divisor of s5 is given by the image of the diagonal in Y (ΓF ).
Moreover, s25 = s10.

Proof of Theorem 1.40. It is clear that the restriction of g2 to the diagonal is
the Eisenstein series of weight 4 for SL2(Z), normalized such that the constant
term is 1. A quick computation shows that the restriction of s6 is the delta
function, the unique normalized cusp form of weight 12 for SL2(Z). Conse-
quently the restrictions of g2 and s6 generate the algebra of modular forms
for SL2(Z) of weight divisible by 4.

Suppose that f is a symmetric Hilbert modular form of even weight k
for ΓF . Then the restriction to the diagonal of f is a modular form for SL2(Z)
of weight divisible by 4 and therefore a polynomial in the restrictions of g2
and s6. Hence there is a polynomial P ∈ C[X,Y ] such that

f1 = f − P (g2, s6)

vanishes on the diagonal. Therefore f1/s5 is a holomorphic Hilbert modular
form for ΓF . It is anti-symmetric and therefore vanishes on the diagonal.
Consequently, f1/s25 ∈Mk−10(ΓF ) is symmetric. Now the assertion follows by
induction on the weight. �

To get the full algebra M∗(ΓF ) of Hilbert modular forms for ΓF one needs
in addition the existence of a symmetric Hilbert cusp form s15 of weight 15.
Gundlach constructed it as a product of differences of Eisenstein series of
weight 1 for a principal congruence subgroup of ΓF . (In Section 3.2 we will
construct it as the Borcherds lift Ψ5.)
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Theorem 1.41 (Gundlach). The graded algebra M∗(ΓF ) of Hilbert modu-
lar forms for ΓF is generated by g2, s5, s6, s15. The anti-symmetric cusp
form s5 and the symmetric cusp form s15 satisfy the following relations over
M sym

2∗ (ΓF ) = C[g2, s6, s10]:

s25 = s10,

s215 = 55 · s310 − 2−1 · 53 · g2
2s6s

2
10 + 2−4 · g5

2s
2
10 + 2−1 · 32 · 52 · g2s36s10

− 2−3 · g4
2s

2
6s10 − 2 · 33 · s56 + 2−4 · g3

2s
4
6 .

�

1.6 The L-function of a Hilbert Modular Form

In this section we briefly discuss how one can attach an L-function to a Hilbert
modular form. First, one needs to know that the coefficients have polynomial
growth.

Proposition 1.42 (Hecke estimate). Let f =
∑

ν aν e(tr(νz)) ∈Mk(Γ ).

(i) Then aν = O(N(ν)k) for N(ν) → ∞.
(ii) If f is a cusp form, we have the stronger estimate aν = O(N(ν)k/2) for

N(ν) → ∞.

Proof. Here we only carry out the proof for cusp forms. For non-cuspidal
modular forms one has to slightly modify the argument. (For the group ΓF
one can also use Theorems 1.35 and 1.37.) According to (1.22) we have

aν =
1

vol(R2/M)

∫

R2/M

f(z)e(− tr(νz)) dx1 dx2 .

By Proposition 1.25 we know that |f(z)(y1y2)k/2| is bounded on H2. Hence
there is a constant C > 0 such that

|aν | ≤ C

∫

R2/M

(y1y2)−k/2e−2π tr(νy) dx1 dx2

for all y ∈ (R>0)2. Choosing y = ( 1
ν ,

1
ν′ ), we see that

|aν | ≤ C vol(R2/M)N(ν)k/2 .

This proves the proposition. �
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For the rest of this section we only consider the full Hilbert modular
group ΓF . Let f ∈Mk(ΓF ), and denote the Fourier expansion by

f = a0 +
∑

ν∈d−1

ν�0

aν e(tr(νz)) .

Let O∗,+
F be the group of totally positive units of OF , and let U = {ε2; ε ∈

O∗,+
F }. Then U has index 2 in the cyclic group O∗,+

F . We have aν = aεν for
all ν ∈ d−1 and all ε ∈ U .

Definition 1.43. We define an L-series associated to f by

L(f, s) =
∑

ν∈d−1/U
ν�0

aν N(νd)−s .

Example 1.44. For the Eisenstein series Gk,B (see Definition 1.34) one easily
checks that

L(Gk,B , s) = 2
(2πi)2k

(k − 1)!2
D1/2−kζd−1B−1(s) ζdB(s+ 1 − k) .

The functional equation (1.28) of the partial Dedekind zeta function ζB(s)
implies that L(Gk,B, s) has a meromorphic continuation and satisfies a func-
tional equation relating s and k−s. Therefore it is reasonable to expect similar
properties for the L-functions of cusp forms as well.

Theorem 1.45. Let f ∈ Sk(ΓF ). The completed L-function

Λ(f, s) = Ds(2π)−2sΓ (s)2L(f, s)

has a holomorphic continuation to C, is entire and bounded in vertical strips,
and satisfies the functional equation

Λ(f, s) = (−1)kΛ(f, k − s) .

Proof. Using the Euler integral for the Gamma function, we see that

(2π)−2sΓ (s)2 N(ν)−s =

∞∫

0

∞∫

0

e−2π tr(νy)(y1y2)s
dy1
y1

dy2
y2

.

Hence, by unfolding we find that

Λ(f, s) =
∫

(R>0)2/U

f(iy)(y1y2)s
dy1
y1

dy2
y2

.

We split up the integral into an integral over y1y2 > 1 and a second in-
tegral over y1y2 < 1. The modularity of f implies that f

(
i
(

1
y1
, 1
y2

))
=
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(−1)k(y1y2)kf(iy). Hence the second integral can be transformed into an in-
tegral over y1y2 > 1 as well. We find that

Λ(f, s) =
∫

(R>0)
2/U

y1y2>1

f(iy)(y1y2)s
dy1
y1

dy2
y2

+ (−1)k
∫

(R>0)
2/U

y1y2>1

f(iy)(y1y2)k−s
dy1
y1

dy2
y2

.

This integral representation converges for all s ∈ C and defines the holomor-
phic continuation of Λ(f, s). Moreover, the functional equation is obvious now.

�

We now suppose that OF contains a unit of negative norm. Then Mk(ΓF )
contains no non-zero element for k odd. So we further suppose that k is even.
Then the Fourier coefficients of f ∈ Mk(ΓF ) satisfy aν = aεν for all ν ∈ d−1

and all ε ∈ O∗,+
F . Thus, aν only depends on the ideal (νd) ⊂ OF , and we write

a((νd)) = aν . Then we may rewrite the L-function of f in the form

L(f, s) =
∑

a⊂OF
principal ideal

a(a)N(a)−s .

So this L-function is analogous to the zeta function ζB(s) associated to an
ideal class B of F (here the unit class). It is natural to associate more general
L-functions to f , for instance, an L-function where one sums over all integral
ideals of F analogous to the full Dedekind zeta function of F . To this end it is
more convenient to view Hilbert modular forms as automorphic functions on
(ResF/Q SL2)(A), where ResF/Q denotes the Weil restriction of scalars, and A

denotes the ring of adeles of Q (cf. [Ga]).

2 The Orthogonal Group O(2, n)

An important property of Hilbert modular surfaces is that they can also be
regarded as modular varieties associated to the orthogonal group of a suitable
rational quadratic space V of type (2, 2). There is an accidental isomorphism
ResF/Q SL2

∼= SpinV of algebraic groups over Q. Modular varieties for orthog-
onal groups O(2, n) come with natural families of special algebraic cycles on
them arising from embeddings of “smaller” orthogonal groups. They provide
a rich source of extra structure and can be used to study geometric questions.
In the O(2, 2)-case of Hilbert modular surfaces these special cycles lead to
Hirzebruch–Zagier divisors (codimension 1) and certain CM-points (codimen-
sion 2).

To put things in the right context, in this section we study quadratic spaces
and modular forms for orthogonal groups in slightly greater generality than
needed for the application to Hilbert modular surfaces. However, we hope that
this will rather clarify things than complicate them. For a detailed account of
the theory of quadratic forms and orthogonal groups we refer to [Ki], [Scha].
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2.1 Quadratic Forms

Let R be a commutative ring with unity 1. We write R∗ for the group of units
in R. Let M be a finitely generated R-module. A quadratic form on M is
a mapping Q : M → R such that

(i) Q(rx) = r2Q(x) for all r ∈ R and all x ∈M ,
(ii) B(x, y) := Q(x+ y) −Q(x) −Q(y) is a bilinear form.

The first condition follows from the second if 2 is invertible in R. Then we have
Q(x) = 1

2B(x, x). The pair (M,Q) is called a quadratic module over R. If R
is a field, we frequently say space instead of module. Two elements x, y ∈ M
are called orthogonal if B(x, y) = 0. If A ⊂ M is a subset, we denote the
orthogonal complement by

A⊥ = {x ∈M ; B(x, y) = 0 for all y ∈ A} . (2.1)

It is a submodule of M . For x ∈ M we briefly write x⊥ instead of {x}⊥.
The quadratic module M is called non-degenerate, if M⊥ = {0}. A non-zero
vector x ∈ M is called isotropic if Q(x) = 0, and anisotropic, if Q(x) �= 0,
respectively.

Let (M,Q) and (M ′, Q′) be quadratic modules over R. An R-linear map
σ : M →M ′ is called an isometry, if σ is injective and

Q′(σ(x)) = Q(x)

for all x ∈ M . If σ is also surjective then M and N are called isometric. The
orthogonal group of M ,

OM = {σ ∈ Aut(M); σ isometry} , (2.2)

is the group of all isometries from M onto itself. The special orthogonal group
is the subgroup

SOM = {σ ∈ OM ; det(σ) = 1} . (2.3)

Important examples of isometries are given by reflections. For an element
x ∈M with Q(x) ∈ R∗ we define τx : M →M by

τx(y) = y −B(y, x)Q(x)−1x, y ∈M . (2.4)

Then τx is an isometry and satisfies

τx(x) = −x
τx(y) = y , for y ∈ x⊥ ,

τ2
x = id .

So τx is the reflection in the hyperplane x⊥.
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Further examples of isometries are given by Eichler elements. Let u ∈ M
be isotropic and v ∈M with B(u, v) = 0. We define Eu,v : M → M by

Eu,v(y) = y +B(y, u)v −B(y, v)u−B(y, u)Q(v)u, y ∈M . (2.5)

One easily checks that Eu,v is an isometry and

Eu,v(u) = u,

Eu,v(v) = v − 2Q(v)u,

Eu,v1Eu,v2 = Eu,v1+v2 for v1, v2 ∈ u⊥ .

If M is free, and v1, . . . , vn is a basis of M , we have the corresponding Gram
matrix S = (B(vi, vj))i,j . The class of det(S) in R∗/(R∗)2 is independent of
the choice of the basis. It is called the discriminant of M and is denoted by
d(M). Note that if v1, . . . , vn is an orthogonal basis of M , we have

d(M) = 2nQ(v1) · · ·Q(vn) . (2.6)

For the rest of this subsection, let M be a quadratic space of dimension n
over a field k of characteristic �= 2. The space is non-degenerate, if and only
if d(M) �= 0. If M is non-degenerate and v1 ∈ M is an anisotropic vector,
there exist anisotropic vectors v2, . . . , vn ∈ M such that v1, . . . , vn is an or-
thogonal basis of M . Consequently, the reflection corresponding to v1 satisfies
det(τv1) = −1.

Theorem 2.1. Let M be a regular quadratic space over a field k of character-
istic �= 2. Then OM is generated by reflections. Moreover, SOM is the subgroup
of elements of OM which can be written as a product of an even number of
reflections. �

Example 2.2. Let p, q be non-negative integers. We denote by Rp,q the quadratic
space over R given by Rp+q with the quadratic form

Q(x) = x2
1 + · · · + x2

p − x2
p+1 · · · − x2

p+q .

If V is a finite dimensional quadratic space over R, then there exist non-
negative integers p, q such that V is isometric to Rp,q. The pair (p, q) is
uniquely determined by V and is called the type of V . Moreover, p − q is
called the signature of V . The orthogonal group of Rp,q is also denoted by
O(p, q).

2.2 The Clifford Algebra

As before, let R be a commutative ring with unity 1, and let (V,Q) be a finitely
generated quadratic module over R. If A is any R-algebra, we write Z(A) for
the center of A.



130 J. H. Bruinier

We consider the tensor algebra

TV =
∞⊕

m=0

V ⊗m = R⊕ V ⊕ (V ⊗R V ) ⊕ . . .

of V . Let IV ⊂ TV be the two-sided ideal generated by v⊗v−Q(v) for v ∈ V .
The Clifford algebra of V is defined by

CV = TV /IV . (2.7)

Observe that R and V are embedded into CV via the canonical maps. For
simplicity, the element of CV represented by v1 ⊗ · · · ⊗ vm (where vi ∈ V ) is
denoted by v1 · · · vm. By definition, we have for u, v ∈ V ⊂ CV :

v2 = Q(v),
uv + vu = B(u, v) .

In particular, uv = −vu if and only if u and v are orthogonal. The Clifford
algebra has the following universal property.

Proposition 2.3. Let f : V → A be an R-linear map to an R-algebra A with
unity 1A such that f(v)2 = Q(v)1A for all v ∈ V . Then there exists a unique
R-algebra homomorphism CV → A such that the following diagram commutes:

V

���
��

��
��

�
�� CV

��
A

.

The universal property implies that an isometry ϕ : V → V ′ of quadratic
spaces over R induces a unique R-algebra homomorphism ϕ̃ : CV → CV ′

compatible with the natural inclusions. Therefore, the assignment V �→ CV
defines a functor from the category of quadratic spaces over R with isometries
as morphisms to the category of associative R-algebras with unity.

Moreover, if we fix a quadratic space (V,Q) over R, for any commutative
R-algebra S with unity we can consider the extension of scalars V (S) =
V ⊗R S, which is a quadratic module over S in a natural way (the quadratic
form being defined by Q(v ⊗ s) = s2Q(v)). In the same way, we consider
CV (S) = CV ⊗R S. One easily checks that CV (S) = CV (S). So taking the
Clifford algebra commutes with extension of scalars.

Example 2.4. We denote by Cp,q the Clifford algebra of the real quadratic
space Rp,q of Example 2.2. For small p, q we have

C0,0 = R, C1,0 = R ⊕ R, C0,1 = C,

C2,0 = M2(R), C1,1 = M2(R), C0,2 = H .

Here H denotes the Hamilton quaternion algebra. (This follows from Ex-
amples 2.7 and 2.8 below).
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Now assume that V is free. If v1, . . . , vn is a basis of V , then these vectors
generate CV as an R-algebra. The elements

vi1 · · · vir (1 ≤ i1 < · · · < ir ≤ n and 0 ≤ r ≤ n)

form a basis of CV . In particular, CV is a free R-module of rank 2n. Observe
that for the trivial quadratic form Q ≡ 0 the Clifford algebra CV is simply
the Grassmann algebra of V .

We write C0
V for the R-subalgebra of CV generated by products of an even

number of basis vectors of V , and C1
V for the R-submodule of CV generated by

products of an odd number of basis vectors of V . This definition is meaningful,
since the defining relations of CV only involve products of an even number of
basis vectors. We obtain a decomposition

CV = C0
V ⊕ C1

V ,

which is a Z/2Z-grading on CV . The subalgebra C0
V is called the even Clifford

algebra of V (or the second Clifford algebra of V ).
Multiplication by −1 defines an isometry of V . By Proposition 2.3 it in-

duces an algebra automorphism

J : CV −→ CV , (2.8)

called the canonical automorphism. If 2 is invertible in R, then the even Clif-
ford algebra can be characterized by

C0
V = {v ∈ CV ; J(v) = v} .

There is a second involution on CV , which is an anti-automorphism. It is
called the canonical involution on CV and is defined by

t : CV −→ CV , (x1 ⊗ · · · ⊗ xm)t = xm ⊗ · · · ⊗ x1 . (2.9)

It reduces to the identity on R ⊕ V . It is used to define the Clifford norm
on CV by

N : CV −→ CV , N(x) = xtx . (2.10)

For x ∈ V we have N(x) = Q(x). So the norm map extends the quadratic
form on V . Note that the Clifford norm is in general not multiplicative
on CV .

For the rest of this subsection, let k be a field of characteristic �=2, and let
(V,Q) be a non-degenerate quadratic space over k of dimension n. Moreover,
let v1, . . . , vn be an orthogonal basis of V . We put

δ = v1 · · · vn ∈ CV .
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Remark 2.5. When n is even, we have

δvi = −viδ, δ2 = (−1)n/22−nd(V ) ∈ k∗/(k∗)2 .

When n is odd, we have

δvi = viδ, δ2 = (−1)(n−1)/22−nd(V ) ∈ k∗/(k∗)2 .

�

Theorem 2.6. The center of CV is given by

Z(CV ) =

{
k if n is even ,
k + kδ if n is odd .

The center of C0
V is given by

Z(C0
V ) =

{
k + kδ if n is even ,
k if n is odd .

�

Let A be a ring with unity such that k ⊂ Z(A). Recall that A is called
a quaternion algebra over k, if it has a basis {1, x1, x2, x3} as a k-vector space
such that

x2
1 = α, x2

2 = β, x3 = x1x2 = −x2x1

for some α, β ∈ k∗. Then it is denoted by (α, β). The parameters α, β deter-
mine A up to k-algebra isomorphism. It is easily seen that k = Z(A). The
conjugation in A is defined by

x = a0 + a1x1 + a2x2 + a3x3 �→ x̄ = a0 − a1x1 − a2x2 − a3x3

for x ∈ A. The norm is defined by N(x) = xx̄ ∈ k. A quaternion algebra over
k is either isomorphic to M2(k) or it is a division algebra. For more details
we refer to [Ki] Chapter 1.5. We end this section by giving some examples
of Clifford algebras associated to low dimensional quadratic spaces (see [Ki],
p. 28).

Example 2.7. If n = 1 then CV = k+ kδ and δ2 = d(V )/2. As a k-algebra, we
have

CV ∼= k[X ]/(X2 − d(V )/2) .

When d(V )/2 is not a square in k, this is a quadratic field extension of k.
When d(V )/2 is a square in k, then CV ∼= k ⊕ k.

Example 2.8. Suppose that n = 2 and that V has the orthogonal basis v1, v2
with Q(vi) = qi ∈ k∗. Then CV = k ⊕ kv1 ⊕ kv2 ⊕ kv1v2 is isomorphic to the
quaternion algebra (q1, q2) over k. Moreover, C0

V
∼= k[X ]/(X2 + d(V )).
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Example 2.9. Suppose that n = 3 and that V has the orthogonal basis
v1, v2, v3 with Q(vi) = qi ∈ k∗. Then C0

V = k ⊕ kv1v2 ⊕ kv2v3 ⊕ kv1v3 is
isomorphic to the quaternion algebra (−q1q2,−q2q3) over k. The conjugation
in the quaternion algebra is identified with the main involution of the Clifford
algebra, and the norm with the Clifford norm.

Example 2.10. Suppose that n = 4 and that the space V has the orthogonal
basis v1, v2, v3, v4 with Q(vi) = qi ∈ k∗. Then the center Z of the even Clifford
algebra C0

V is k + kδ, and we have

C0
V = Z + Zv1v2 + Zv2v3 + Zv1v3 .

Since (v1v2)2 = −q1q2, (v2v3)2 = −q2q3, and (v1v2)(v2v3) = q2(v1v3), the
algebra C0

V is isomorphic to the quaternion algebra (−q1q2,−q2q3) over Z. The
conjugation in the quaternion algebra is identified with the main involution
of the Clifford algebra, and the norm with the Clifford norm.

2.3 The Spin Group

As before, let R be a commutative ring with unity 1, and let (V,Q) be a finitely
generated quadratic module over R. The Clifford group CGV of V is defined
by

CGV = {x ∈ CV ; x invertible and xV J(x)−1 = V } . (2.11)

By definition, every x ∈ CGV defines an automorphism αx of V by

αx(v) = xvJ(x)−1 .

We obtain a linear representation α : CGV → AutR(V ), x �→ αx, called the
vector representation. It is easily seen that the involution x �→ xt takes CGV

to itself. Consequently, if x ∈ CGV , then the Clifford norm N(x) belongs to
CGV as well.

Lemma 2.11. Assume that R = k is a field of characteristic �= 2. The kernel
of the vector representation α : CGV → Autk(V ) is equal to k∗. The Clifford
norm induces a homomorphism CGV → k∗.

Proof. It is clear that k∗ is contained in ker(α). We now show that ker(α) ⊂ k∗.
Let x ∈ ker(α) ⊂ CGV . We write x = x0 + x1 with x0 ∈ C0

V and x1 ∈ C1
V .

Then we have xvJ(x)−1 = v for all v ∈ V . Hence

x0v = vx0 ,

x1v = −vx1 .

Since V generates CV as an algebra, we see that x0 ∈ Z(CV )∗ ∩ C0
V = k∗.

Moreover, one can check that the second condition implies that x1 = 0.
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We know that N(x) acts trivially on V via α for x ∈ CGV . Let v ∈ V .
Since w := αx(v) ∈ V , we have w = −J(w)t. This implies

xvJ(x)−1 = (xt)−1vJ(xt) ,

and therefore N(x)vJ(N(x))−1 = v. Hence N(x) ∈ k∗. The multiplicativity of
the norm is a direct consequence.

Lemma 2.12. For x ∈ CGV the automorphism αx ∈ AutR(V ) is an isome-
try.

Proof. Let v ∈ V . Since w = αx(v) ∈ V , we have

Q(w) = N(w)

= J(x−1)tvtxtxvJ(x−1)
= Q(v) .

This shows that αx is an isometry. �

Consequently, the vector representation defines a homomorphism

α : CGV → OV . (2.12)

Moreover, if x ∈ CGV ∩V , then Q(x) ∈ R∗ and αx is equal to the reflection τx
in the hyperplane x⊥.

Definition 2.13. We define the general Spin group GSpinV and the Spin
group SpinV of V by

GSpinV = CGV ∩C0
V ,

SpinV = {x ∈ GSpinV ; N(x) = 1} .

For the rest of this section we assume that R = k is a field of characteristic
�=2. We briefly discuss the structure of the Clifford and the Spin group.

In this case, by Theorem 2.1, the vector representation (2.12) is surjective
onto OV . Moreover, the kernel is given by k∗ (see Lemma 2.11). Hence CGV

and GSpinV are central extensions of OV and SOV , respectively,

1 �� k∗ �� CGV
�� OV

�� 1 ,

1 �� k∗ �� GSpinV �� SOV
�� 1 .

According to Lemma 2.11 and Theorem 2.6, the Clifford norm defines
a homomorphism CGV → k∗. It induces a homomorphism

θ : OV −→ k∗/(k∗)2 , (2.13)

called the spinor norm. It is characterized by the property that for the reflec-
tion τv corresponding to an anisotropic vector v ∈ V we have
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θ(τv) = Q(v) ∈ k∗/(k∗)2 .

We obtain the exact sequence

1 �� {±1} �� SpinV
α �� SOV

θ �� k∗/(k∗)2 .

The groups CGV , GSpin, and SpinV can be viewed as the groups of k-valued
points of an affine algebraic group over k. If A is a commutative k-algebra
with unity, then the group of A-valued points of CGV is CGV (A) = CGV (A),
and analogously for the other groups.

The following lemma will be useful in Section 2.7.

Lemma 2.14. Assume that dim(V ) ≤ 4. Then

GSpinV = {x ∈ C0
V ; N(x) ∈ k∗} ,

SpinV = {x ∈ C0
V ; N(x) = 1} .

Proof. It is clear that the left hand sides are contained in the right hand sides.
Conversely, let x ∈ C0

V with N(x) ∈ k∗. Then x is invertible, because
y = xt N(x)−1 ∈ C0

V is inverse to x. Hence, it suffices to show that xV x−1 ⊂ V .
Let v ∈ V . It is clear that w := xvx−1 ∈ C1

V . The assumption dim(V ) ≤ 4
implies that

V = {g ∈ C1
V ; gt = g} .

Therefore it suffices to show that w = wt. Since N(x) ∈ k∗, we have
N(x)v N(x)−1 = v. This implies that

xvx−1 = (xt)−1vxt

and therefore w = wt. �

Quadratic Spaces in Dimension Four

We now consider the special cases that (V,Q) is a rational quadratic space
of dimension 4 over the field k. Let v1, v2, v3, v4 be an orthogonal basis of V
and put qi = Q(vi) ∈ k∗. By means of Example 2.10 and Lemma 2.14, we
see that SpinV is the group of norm 1 elements in the quaternion algebra
(−q1q2,−q2q3) over Z := Z(C0

V ) = k + kδ, where δ = v1v2v3v4.
We would like to describe the vector representation of SpinV intrinsically

in terms of C0
V . This can be done by identifying V with an isometric copy Ṽ

in C0
V . (Note that by definition V �⊂ C0

V .) The vector representation on V
translates to a “twisted” vector representation on Ṽ . We partly follow [KR] §0.

Lemma 2.15. Let v0 ∈ V with q0 = Q(v0) �= 0, and denote by σ = Ad(v0) the
adjoint automorphism of C0

V associated to v0, i.e., xσ = v0xv
−1
0 for x ∈ C0

V .
Then δσ = −δ and the fixed algebra of σ in C0

V is a quaternion algebra B0

over k such that C0
V = B0 ⊗k Z.
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Proof. See [KR] Lemma 0.2. �
In particular, on the center Z of C0

V , the automorphism σ agrees with the
conjugation in Z/k. Let

Ṽ = {x ∈ C0
V ; xt = xσ} . (2.14)

This is a quadratic space over k together with the quadratic form

Q̃(x) = q0 · xσx = q0 · N(x) . (2.15)

The group SpinV acts on Ṽ by

x �→ α̃g(x) := gxg−σ , (2.16)

for x ∈ Ṽ and g ∈ SpinV . The quadratic form Q̃ is preserved under this action:

Q̃(gxg−σ) = q0 · (gxg−σ)t(gxg−σ) = q0 · xtx = Q̃(x) . (2.17)

Lemma 2.16. The assignment x �→ x · v0 defines an isometry of quadratic
spaces

(Ṽ , Q̃) −→ (V,Q) ,

which is compatible with the actions of SpinV .

Proof. See [KR] Lemma 0.3. �

2.4 Rational Quadratic Spaces of Type (2, n)

Let (V,Q) be a non-degenerate quadratic space over Q. Then V (R) = V ⊗Q R

is isometric to Rp,q for a unique pair of non-negative integers (p, q), called the
type of V . If K ⊂ OV (R) is a maximal compact subgroup, then OV (R)/K is
a symmetric space. It is hermitian, i.e., has a complex structure, if and only
if p = 2 or q = 2. Since this is the case of interest to us, throughout this
subsection we assume that V has type (2, n). We discuss several realizations
of the corresponding hermitian symmetric domain. We frequently write (·, ·)
for the bilinear form B(·, ·).

The Grassmannian Model

We consider the Grassmannian of 2-dimensional subspaces of V (R) on which
the quadratic form is positive definite,

Gr(V ) = {v ⊂ V (R); dim v = 2 and Q|v > 0} .

By Witt’s theorem, OV (R) acts transitively on Gr(V ). If v0 ∈ Gr(V ) is fixed,
then the stabilizer K of v0 is a maximal compact subgroup of OV (R), and
K ∼= O(2) × O(n). Thus Gr(V ) ∼= OV (R)/K is a realization of the hermitian
symmetric space. The Grassmannian model has the advantage that it provides
an easy description of OV (R)/K, but unfortunately we do not see the complex
structure.
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The Projective Model

We consider the complexification V (C) of V and the corresponding projective
space

P (V (C)) = (V (C)\{0})/C∗ . (2.18)

The zero quadric

N = {[Z] ∈ P (V (C)); (Z,Z) = 0} (2.19)

is a closed algebraic subvariety. The subset

K = {[Z] ∈ P (V (C)); (Z,Z) = 0 , (Z, Z̄) > 0} (2.20)

of the zero quadric is a complex manifold of dimension n consisting of two
connected components. The orthogonal group OV (R) acts transitively on K.
The subgroup O+

V (R) of elements whose spinor norm equals the determinant
preserves the components of K, whereas OV (R)\O+

V (R) interchanges them.
We choose one fixed component of K and denote it by K+. If Z ∈ V (C) we
write Z = X + iY with X,Y ∈ V (R) for the decomposition into real and
imaginary part.

Lemma 2.17. The assignment [Z] �→ v(Z) := RX + RY defines a real ana-
lytic isomorphism K+ → Gr(V ).

Proof. If Z ∈ V (C), then the condition [Z] ∈ K is equivalent to

X ⊥ Y, and (X,X) = (Y, Y ) > 0 . (2.21)

But this means that X and Y span a two dimensional positive definite sub-
space of V (R) and thereby define an element of Gr(V ). Conversely for a given
v ∈ Gr(V ) we may choose a (suitably oriented) orthogonal basis X , Y as in
(2.21) and obtain a unique [Z] = [X + iY ] ∈ K+. (Then [Z̄] ∈ K corresponds
to the same v ∈ Gr(V ).) We get a real analytic isomorphism between K+ and
Gr(V ). �

The advantage of the projective model is that it comes with a natural
complex structure. However, it is not the direct analogue of the upper half
plane, the standard model for the hermitian symmetric space for SL2(R).

The Tube Domain Model

We may realize K+ as a tube domain in the following way. Suppose that
e1 ∈ V is a non-zero isotropic vector and e2 ∈ V with (e1, e2) = 1. We define
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a rational quadratic subspace W ⊂ V by W = V ∩ e⊥1 ∩ e⊥2 . Then W is
Lorentzian, that is, has type (1, n− 1) and

V = W ⊕ Qe2 ⊕ Qe1 .

If Z ∈ V (C) and Z = z + ae2 + be1 with z ∈ W (C) and a, b ∈ C, we briefly
write Z = (z, a, b). We consider the tube domain

H = {z ∈W (C); Q(I(z)) > 0} . (2.22)

Lemma 2.18. The assignment

z �→ ψ(z) := [(z, 1,−Q(z)−Q(e2))] (2.23)

defines a biholomorphic map ψ : H → K.

Proof. One easily checks that if z ∈ H then ψ(z) ∈ K. Conversely assume that
[Z] ∈ K with Z = X + iY . From the fact that X , Y span a two dimensional
positive definite subspace of V (R) it follows that (Z, e1) �= 0. Thus [Z] has
a unique representative of the form (z, 1, b). The condition Q(Z) = 0 implies
that b = −Q(z)−Q(e2), and thereby [Z] = [(z, 1,−Q(z)−Q(e2))]. Moreover,
from (Z, Z̄) > 0 one easily deduces Q(I(z)) > 0. We may infer that the map
ψ is biholomorphic. �

The domain H ⊂ W (C) ∼= Cn has two components corresponding to the
two cones of positive norm vectors in the Lorentzian space W (R). We denote
by H+ the component which is mapped to K+ under the above isomorphism.
It can be viewed as a generalized upper half plane. The group O+

V (R) acts
transitively on it. In the O(2, 1) case the domain H+ can be identified with
the usual upper half plane H. For O(2, 2) it can be identified with H2 as we
shall see below. However, a disadvantage of the tube domain model is that
the action of O+

V (R) is not linear anymore.

Lattices

As before, let (V,Q) be a non-degenerate quadratic space over Q of type (2, n).

Definition 2.19. A lattice in V is a Z-module L ⊂ V such that V = L⊗Z Q.

A lattice L ⊂ V is called integral if the bilinear form is integral valued
on L, that is, (x, y) ∈ Z for all x, y ∈ L. A lattice is called even if the quadratic
form is integral valued on L, that is, Q(x) ∈ Z for all x ∈ L. So an even lattice
is a free quadratic module over Z of finite rank. Clearly every even lattice is
integral.

The dual lattice L∨ is defined by

L∨ = {x ∈ V ; (x, y) ∈ Z for all y ∈ L} .
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The lattice L is integral if and only if L ⊂ L∨. In this case the quotient L∨/L is
a finite abelian group, called the discriminant group. If S is the Gram matrix
corresponding to a lattice basis of L, we have

|L∨/L| = | det(S)| .

For the rest of this section we assume that L ⊂ V is an even lattice. The
orthogonal group OL is a discrete subgroup of OV (R) ∼= O(2, n). Let

Γ ⊂ OL ∩O+
V (R) (2.24)

be a subgroup of finite index. Then Γ acts properly discontinuously on Gr(V ),
K+, and H+. We consider the quotient

Y (Γ ) = Γ\H+ (2.25)

similarly as in the construction of Hilbert modular surfaces in Section 1.1. It
is a normal complex space, which is compact if and only if V is anisotropic.

If Y (Γ ) is non-compact, it can be compactified by adding rational bound-
ary components (see e.g. [BrFr]). These boundary components are most easily
described in the projective model K+. The boundary points of K+ in the zero
quadric N correspond to non-trivial isotropic subspaces of V (R).

Let F ⊂ V (R) be an isotropic line. Then F represents a boundary point of
K+. A boundary point of this type is called special, otherwise generic. A set
consisting of one special boundary point is called a zero-dimensional boundary
component.

Let F ⊂ V (R) be a two-dimensional isotropic subspace. The set of all
generic boundary points of K+ which can be represented by an element of
F (C) is called the one-dimensional boundary component attached to F .

By a boundary component we understand a one- or two-dimensional
boundary component. One can show (see [BrFr], Section 2):

Lemma 2.20. There is a bijective correspondence between boundary compo-
nents of K+ in the zero quadric N and non-zero isotropic subspaces F ⊂ V (R)
of the corresponding dimension. The boundary of K+ is the disjoint union of
the boundary components. �

A boundary component is called rational if the corresponding isotropic
space F is defined over Q. The union of K+ with all rational boundary com-
ponents is denoted by (K+)∗. The rational orthogonal group OV (Q)∩O+

V (R)
acts on (K+)∗. By the theory of Baily–Borel, the quotient

X(Γ ) = (K+)∗/Γ

together with the Baily–Borel topology is a compact Hausdorff space. There
is a natural complex structure on X(Γ ) as a normal complex space. More-
over, using modular forms, one can construct an ample line bundle on X(Γ ).
Therefore, X(Γ ) is projective algebraic. It is called the modular variety asso-
ciated to Γ . Using the theory of canonical models, one can show that X(Γ )
is actually defined over a number field (see [Ku2]).
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Heegner Divisors

Let Γ be as above, see (2.24). In order to understand the geometry of X(Γ ),
we study special divisors on this variety, obtained from embeddings of modular
varieties corresponding to quadratic subspaces of V .

Let λ ∈ L∨ with Q(λ) < 0. Then the orthogonal complement Vλ = λ⊥ ⊂ V
is a rational quadratic space of type (2, n − 1). Moreover, the orthogonal
complement of λ in K+,

Hλ = {[Z] ∈ K+; (Z, λ) = 0} ,

is an analytic divisor. It is the hermitian symmetric domain corresponding to
(Vλ, Q|Vλ

). Let us briefly look at the description of Hλ in the tube domain
model H+ using the above notation. We write λ = λW + ae2 + be1 with
λW ∈W and a, b ∈ Q. Then

Hλ
∼= {z ∈ H+; aQ(z) − (z, λW ) − aq(e2) − b = 0}

is given by a quadratic equation in the coordinates of H+. (Therefore it is
sometimes called a rational quadratic divisor.)

If β ∈ L∨/L is fixed and m is a fixed negative rational number, then

H(β,m) =
∑

λ∈β+L
Q(λ)=m

Hλ (2.26)

defines an analytic divisor on K+ called the Heegner divisor of discriminant
(β,m). If Γ acts trivially on L∨/L, then, by Chow’s lemma, this divisor de-
scends to an algebraic divisor on Y (Γ ) (denoted in the same way). By [Ku2], it
is defined over a number field. Here we mainly consider the composite Heegner
divisor

H(m) =
1
2

∑

β∈L∨/L

H(β,m) =
∑

λ∈L∨/{±1}
Q(λ)=m

Hλ . (2.27)

It is Γ -invariant and descends to an algebraic divisor on Y (Γ ). Hence, Y (Γ )
comes with a natural family of algebraic divisors indexed by negative rational
numbers (with denominators bounded by the level of L). The existence of
such a family is special for orthogonal and unitary groups.

2.5 Modular Forms for O(2, n)

Let V , L, Γ be as above. We write

K̃+ = {Z ∈ V (C)\{0}; [Z] ∈ K+}

for the cone over K+.
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Definition 2.21. Let k ∈ Z, and let χ be character of Γ . A meromorphic
function F on K̃+ is called a meromorphic modular form of weight k and
character χ for the group Γ , if

(i) F is homogeneous of degree −k, i.e., F (cZ) = c−kF (Z) for any c ∈ C\{0};
(ii) F is invariant under Γ , i.e., F (gZ) = χ(g)F (Z) for any g ∈ Γ ;
(iii) F is meromorphic at the boundary.

If f is actually holomorphic on K̃+ and at the boundary, it is called a holo-
morphic modular form.

By the Koecher principle the boundary condition is automatically fulfilled
if the Witt rank of V , that is, the dimension of a maximal isotropic subspace,
is smaller than n. (Note that because of the signature the Witt rank of L is
always ≤2.)

2.6 The Siegel Theta Function

Examples of modular forms on orthogonal groups can be constructed using
Eisenstein series similarly as in Section 1.5. However, we do not discuss this.
Here we consider a rather different source of modular forms, the so called
theta lifting. The groups SL2(R) and O(2, n) form a dual reductive pair in
the sense of Howe [Ho]. Hence, Howe duality gives rise to a correspondence
between automorphic representations for the two groups. Often one can re-
alize this correspondence as a lifting from automorphic forms on one group
to the other, by integrating against certain kernel functions given by theta
functions.

Let V , L, Γ be as above and assume that n is even so that dim(V ) is even.
Let

N = min{a ∈ Z>0 ; aQ(λ) ∈ Z for all λ ∈ L∨}

be the level of L. We modify the discriminant of L by a sign and consider

Δ = (−1)
n+2
2 detS ,

where S is the Gram matrix for a lattice basis of L. One can show thatΔ ≡ 1, 0
(mod 4). Therefore χΔ =

(
Δ
·
)

is a quadratic Dirichlet character modulo N .
For λ ∈ V (R) and v ∈ Gr(V ) we have a unique decomposition λ = λv +

λv⊥ , where λv and λv⊥ are the orthogonal projections of λ to v and v⊥,
respectively. The positive definite quadratic form

Qv(λ) = Q(λv) −Q(λv⊥)

on V is called the majorant associated to v. If Z ∈ K̃+, we briefly write λZ
and QZ instead of λv(Z) and Qv(Z), where v(Z) is the positive definite plane
corresponding to Z via Lemma 2.17.
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Definition 2.22. Let r ∈ Z≥0. The Siegel theta function of weight r of the
lattice L is defined by

Θr(τ, Z) = vn/2
∑

λ∈L∨

(λ, Z)r

(Z, Z̄)r
e
(
Q(λZ)Nτ +Q(λZ⊥)Nτ̄

)

= vn/2
∑

λ∈L∨

(λ, Z)r

(Z, Z̄)r
e
(
Q(λ)Nu+QZ(λ)Niv

)
,

for τ = u+ iv ∈ H and Z ∈ K̃+ (see e.g. [Bo4], [Od1], [RS]). Here we denote
e(w) = e2πiw as usual.

Because of the rapid decay of the exponential term e(QZ(λ)Niv), the series
converges normally on H×K̃+. It defines a real analytic function, which is non-
holomorphic in both variables, τ and Z. Using the Poisson summation formula,
or the theory of the Weil representation, one can show that as a function in τ ,
the Siegel theta function satisfies

Θr(γτ, Z) = χΔ(d)(cτ + d)r+
2−n

2 Θr(τ, Z) (2.28)

for all γ =
(
a b
c d

)
∈ Γ0(N), where

Γ0(N) =
{(

a b
c d

)
∈ SL2(Z); c ≡ 0 (mod N)

}
. (2.29)

Moreover, in the variable Z, the function Θr(τ, Z) transforms as a modular
form of weight r for Γ . This follows by direct inspection.

We may use the Siegel theta function as an integral kernel to lift elliptic
modular forms for Γ0(N) to modular forms on the orthogonal group. More
precisely, let f ∈ Sk(Γ0(N), χΔ) be a cusp form for Γ0(N) with character χΔ
of weight k = r + 2−n

2 . We define the theta lift Φ0(Z, f) of f by the integral

Φ0(Z, f) =
∫

F
f(τ)Θr(τ, Z)vk

du dv

v2
, (2.30)

where F denotes a fundamental domain for Γ0(N).

Theorem 2.23. The theta lift Φ0(Z, f) of f is a holomorphic modular form
of weight r = k − 2−n

2 for the orthogonal group Γ .

Proof. The transformation properties of the Siegel theta function immediately
imply that Φ0(Z, f) transforms as a modular form of weight r for the group Γ .
However, it is not clear at all, that Φ0(Z, f) is holomorphic. This can be proved
by computing the Fourier expansion. For details we refer to e.g. [Bo4] Theorem
14.3, [Od1] Section 5, Theorem 2, or [RS]. �
Remark 2.24. The linear map f �→ Φ0(Z, f) often has a non-trivial kernel. The
question when it vanishes is related to the vanishing of a special value of the
standard L-function of f [Ral]. Therefore it can be rather difficult. However,
in many cases it is also possible to obtain non-vanishing results by computing
the Fourier expansion of the lift.
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2.7 The Hilbert Modular Group as an Orthogonal Group

In this section we discuss the accidental isomorphism relating the Hilbert
modular group to an orthogonal group of type (2, 2) in detail. The Heegner
divisors of the previous section give rise to certain algebraic divisors on Hilbert
modular surfaces, known as Hirzebruch–Zagier divisors [HZ].

Let d ∈ Q∗ be not a square, and put F = Q(
√
d). We consider the four

dimensional Q-vector space

V = Q ⊕ Q ⊕ F

together with the quadratic form Q(a, b, ν) = νν′ − ab, where ν �→ ν′ denotes
the conjugation in F . So (V,Q) is a rational quadratic space of type (2, 2) if
d > 0 and of type (3, 1) if d < 0. We consider the orthogonal basis

v1 = (1, 1, 0), v3 = (0, 0, 1),

v2 = (1,−1, 0), v4 = (0, 0,
√
d) .

Then δ = v1v2v3v4 satisfies δ2 = d. According to Remark 2.5 and Theorem 2.6,
the center Z(C0

V ) of the even Clifford algebra of V is given by Z(C0
V ) =

Q + Qδ ∼= F . Moreover, in view of Example 2.10,

C0
V = Z + Zv1v2 + Zv2v3 + Zv1v3

is isomorphic to the split quaternion algebra M2(F ) over F . This isomorphism
can be realized by the assignment

1 �→
(

1 0
0 1

)
, v2v3 �→

(
0 1
−1 0

)
,

v1v2 �→
(

1 0
0 −1

)
, v1v3 �→

(
0 1
1 0

)
.

The canonical involution on C0
V corresponds to the conjugation

(
a b
c d

)∗
=
(
d −b
−c a

)

in M2(F ). The Clifford norm corresponds to the determinant. Hence, by
Lemma 2.14, SpinV can be identified with SL2(F ). As algebraic groups over Q

we have SpinV ∼= ResF/Q SL2. Consequently, the group ΓF = SL2(OF ) and
commensurable groups can be viewed as arithmetic subgroups of SpinV . For
instance, using (2.32) below, it is easily seen that ΓF = SpinL, where L de-
notes the lattice Z ⊕ Z ⊕OF ⊂ V .

We now describe the vector representation explicitly using Lemmas 2.15
and 2.16. Let σ = Ad(v1) be the adjoint automorphism of C0

V associated to
the basis vector v1, i.e., xσ = v1xv

−1
1 for x ∈ C0

V . Then δσ = −δ, and on the
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center F of C0
V , the automorphism σ agrees with the conjugation in F/Q. On

M2(F ) the action of σ is given by
(
a b
c d

)
�→

(
a b
c d

)σ
=
(
d′ −c′
−b′ a′

)
.

As in (2.14) let

Ṽ = {X ∈ M2(F ); X∗ = Xσ}
=
{
X ∈ M2(F ); Xt = X ′}

=
{(

a ν′

ν b

)
; a, b ∈ Q and ν ∈ F

}
.

This is a rational quadratic space together with the quadratic form

Q̃(X) = −Xσ ·X = − det(X) .

The corresponding bilinear form is

B̃(X1, X2) = − tr(X1 ·X∗
2 ) ,

for X1, X2 ∈ Ṽ . The group SL2(F ) ∼= SpinV acts isometrically on Ṽ by

x �→ g.X := gXg−σ = gXg′t , (2.31)

for X ∈ Ṽ and g ∈ SL2(F ). A computation shows that in the present case the
isometry of quadratic spaces Ṽ → V , X �→ X · v1, of Lemma 2.16 is given by

(
a ν′

ν b

)
�→ (a, b, ν) . (2.32)

Throughout the rest of this section we work with Ṽ and the twisted vector
representation (2.31). We assume that d is positive so that F is real quadratic.
We now describe the hermitian symmetric space corresponding to OṼ as in
Section 2.4.

The two real embeddings x �→ (x, x′) ∈ R2 induce an embedding Ṽ →
M2(R). Hence we have Ṽ (C) = M2(C) and

K = {[Z] ∈ P (M2(C)); det(Z) = 0, − tr(ZZ̄∗) > 0} .

We consider the isotropic vectors e1 =
(−1 0

0 0

)
and e2 = ( 0 0

0 1 ) in Ṽ , and the
orthogonal complement W = Ṽ ∩ e⊥1 ∩ e⊥2 . For z = (z1, z2) ∈ C2 ∼= W (C) we
put

M(z) =
(
z1z2 z1
z2 1

)
∈ M2(C) .
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Then [M(z)] lies in the zero quadric in P (M2(C)), and [M(z)] ∈ K if and only
if I(z1)I(z2) > 0. Consequently, we may identify H2 with H+. If we denote
by K+ the corresponding component of K, we obtain a biholomorphic map

H2 −→ K+, z �→ [M(z)] . (2.33)

It commutes with the actions of SL2(F ), where the action on K+ is given by
(2.31). More precisely, in the cone K̃+ we have

γ.M(z) = N(cz + d)M(γz) (2.34)

for γ =
(
a b
c d

)
∈ SL2(F ). This implies that modular forms of weight k in

the sense of Definition 2.21 can be identified with Hilbert modular forms of
parallel weight k in the sense of Definition 1.19.

We consider in V the lattice

L = Z ⊕ Z ⊕OF
∼=
{(

a ν′

ν b

)
∈ Ṽ ; a, b ∈ Z and ν ∈ OF

}
. (2.35)

The dual lattice of L is

L∨ = Z ⊕ Z ⊕ d−1
F

∼=
{(

a ν′

ν b

)
∈ Ṽ ; a, b ∈ Z and ν ∈ d−1

F

}
. (2.36)

The discriminant group is given by L∨/L ∼= OF /dF .

Proposition 2.25. Under the isomorphism SpinV ∼= SL2(F ), the subgroup
SpinL is identified with ΓF . �

The map (2.33) induces an isomorphism of modular varieties Y (ΓF ) →
Y (SpinL).

Remark 2.26. More generally, let a be a fractional ideal of F and put A =
N(a). We may consider the lattices

L(a) =
{(

a ν′

ν Ab

)
∈ Ṽ ; a, b ∈ Z and ν ∈ a

}
,

L∨(a) =
{(

a ν′

ν Ab

)
∈ Ṽ ; a, b ∈ Z and ν ∈ ad−1

F

}
.

Observe that L(a) is A-integral (that is, the bilinear form has values in AZ),
and L∨(a) is the AZ-dual of L(a). The group Γ (OF ⊕ a) ⊂ SL2(F ) defined in
(1.5) preserves these lattices.

Hirzebruch–Zagier Divisors

In view of the above discussion, the construction of Heegner divisors provides
a natural family of algebraic divisors on a Hilbert modular surface, in this
case known as Hirzebruch–Zagier divisors [HZ].
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If A =
(
a λ′
λ b

)
∈ Ṽ and z = (z1, z2) ∈ H2, then

(M(z), A) = − tr(M(z) · A∗) = −bz1z2 + λz1 + λ′z2 − a .

The zero locus of the right hand side defines an analytic divisor on H2.

Definition 2.27. Let m be a positive integer. The Hirzebruch–Zagier divisor
Tm of discriminant m is defined as the Heegner divisor H(−m/D) for the
lattice L ⊂ V , i.e.,

Tm =
∑

(a,b,λ)∈L∨/{±1}
ab−λλ′=m/D

{
(z1, z2) ∈ H2; az1z2 + λz1 + λ′z2 + b = 0

}
.

It defines an algebraic divisor on the Hilbert modular surface Y (ΓF ). Here the
multiplicities of all irreducible components are 1. (There is no ramification in
codimension 1.) By taking the closure, we also obtain a divisor on X(ΓF ). We
will denote these divisors by Tm as well, since it will be clear from the context
where they are considered. It is well known that Tm is defined over Q.

Remark 2.28. When m is not a square modulo D, then Tm = ∅.

Example 2.29. The divisor T1 onX(ΓF ) can be identified with the image of the
modular curve X(1) = SL2(Z)\H under the diagonal embedding considered
in Section 1.5.

3 Additive and Multiplicative Liftings

Let F ⊂ R be the real quadratic field of discriminant D. Let (V,Q) be the
corresponding rational quadratic space of type (2, 2) as in Section 2.7, and
let L ⊂ V be the even lattice (2.35). The corresponding Siegel theta function
Θk(τ, z) in weight k is modular in both variables τ and z: As a function of τ ,
Θk(τ, z) is a non-holomorphic modular form of weight k for the group Γ0(D)
with character χD =

(
D
·
)
. As a function in z, Θk(τ, z) is a non-holomorphic

modular form of weight k for the Hilbert modular group ΓF . For a cusp form
f ∈ Sk(D,χD) of weight k for Γ0(D) with character χD, we may consider the
theta integral Φ0(z, f) as in (2.30). By means of Theorem 2.23 we find that
Φ0(z, f) defines a Hilbert cusp form of weight k for the group ΓF (which may
vanish identically). Similar constructions can be done for the Hilbert modular
groups Γ (OF ⊕ a) and for their congruence subgroups.

3.1 The Doi–Naganuma Lift

In the following we discuss the theta lift in more detail. To keep the exposition
simple, we assume that D = p is a prime and F = Q(

√
p). We consider the

full Hilbert modular group ΓF .
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For explicit computations it is convenient to modify the theta lifting a bit.
Let Mk(p, χp) denote the space of holomorphic modular forms of weight k for
Γ0(p) and χp. Since this space is trivial when k is odd, we assume that k is
even. A function f ∈Mk(p, χp) has a Fourier expansion

f(τ) =
∑

n≥0

c(n)qn ,

where q = e2πiτ as usual. We define the “plus” and “minus” subspace of
Mk(p, χp) by

M±
k (p, χp) = {f ∈Mk(p, χp); χp(n) = ∓1 ⇒ c(n) = 0} , (3.1)

and write S±
k (p, χp) for the subspace of cusp forms.

Examples of modular forms in M±
k (p, χp) can be constructed by means of

Eisenstein series. Recall that there are the two Eisenstein series

Gk(τ) = 1 +
2

L(1 − k, χp)

∞∑

n=1

∑

d|n
dk−1χp(d)qn, (3.2)

Hk(τ) =
∞∑

n=1

∑

d|n
dk−1χp(n/d)qn (3.3)

in Mk(p, χp) (cf. [He] Werke p. 818), the former corresponding to the cusp ∞,
the latter corresponding to the cusp 0. The linear combination

E±
k = 1 +

∑

n≥1

B±
k (n)qn = 1 +

2
L(1 − k, χp)

∑

n≥1

∑

d|n
dk−1 (χp(d) ± χp(n/d)) qn

(3.4)
belongs to M±

k (p, χp).

Proposition 3.30 (Hecke). The space Mk(p, χp) decomposes into the direct
sum

Mk(p, χp) = M+
k (p, χp) ⊕M−

k (p, χp) .

Moreover,

M±
k (p, χp) = CE±

k ⊕ S±
k (p, χp) .

�

Modular forms in the plus space behave in many ways similarly as modular
forms on the full elliptic modular group SL2(Z). In fact, Theorem 5 of [BB]
states that M±

k (p, χp) is isomorphic to the space of vector-valued modular
forms of weight k for SL2(Z) transforming with the Weil representation of
L∨/L.
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Notation 3.31. For a formal Laurent series
∑
c(n)qn ∈ C((q)) we put

c̃(n) =

{
c(n), if p � n,

2c(n), if p | n .
(3.5)

Proposition 3.32. Let f =
∑
c(n)qn ∈ M±

k (p, χp) and g =
∑
b(n)qn ∈

M±
k′ (p, χp). Then

〈f, g〉 =
∑

n∈Z

∑

m∈Z

c̃(m)b(pn−m)qn

is a modular form of weight k+k′ for SL2(Z). The assignment (f, g) �→ 〈f, g〉
defines a bilinear pairing.

Proof. This can be proved by interpreting modular forms in the plus space as
vector valued modular forms for SL2(Z), see [BB]. �

Remark 3.33. Proposition 3.32 implies some amusing identities of divisor sums
arising from the equalities 〈E+

k , E
+
k 〉 = E2k for k = 2, 4. Here E2k denotes the

Eisenstein series of weight 2k for SL2(Z) normalized such that the constant
term is 1.

Note that the statement of Proposition 3.32 does not depend on the
holomorphicity of f . An analogous result holds for non-holomorphic modu-
lar forms. For instance, the complex conjugate of the Siegel theta function
Θk(τ, z) of the lattice L satisfies the plus space condition. This follows from
Definition 2.22, since for (a, b, λ) ∈ L∨ we have

−pQ(a, b, λ) = p(ab− λλ′) ≡ � (mod p) .

Definition 3.34. For f ∈M+
k (p, χp) we define the (modified) theta lift by the

integral

Φ(z, f) =
∫

SL2(Z)\H

〈f(τ), Θk(τ, z)〉vk
du dv

v2
.

The integral converges absolutely if f is a cusp form. If f is not cuspidal, the
integral has to be regularized (see [Bo4]). By computing the Fourier expan-
sion of Φ(z, f), the following theorem can be proved (cf. [Za1], [Bo4] Theo-
rem 14.3).

Theorem 3.35. Let f =
∑

n c(n)qn ∈ M+
k (p, χp). The theta lift Φ(z, f) has

the following properties.

(i) Φ(z, f) is a Hilbert modular form of weight k for ΓF .
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(ii) It has the Fourier expansion

Φ(z, f) = −Bk
2k
c̃(0) +

∑

ν∈d−1
F

ν�0

∑

d|ν
dk−1c̃

(
pνν′

d2

)
qν1q

ν′
2 ,

where Bk denotes the k-th Bernoulli number, and qj = e2πizj .
(iii) The lift takes cusp forms to cusp forms.

�
If we define in addition Φ(z, f) to be identically zero on M−

k (p, χp), we
obtain the Doi–Naganuma lift (see [DN], [Na]),

DN : Mk(p, χp) −→Mk(ΓF ) .

It is a fundamental fact that the Doi–Naganuma lift (and theta lifts in general)
behave well with respect to the actions of the Hecke algebras.

Theorem 3.36 (Doi–Naganuma, Zagier). The Doi–Naganuma lifting
takes Hecke eigenforms to Hecke eigenforms. For a normalized Hecke eigen-
form f =

∑
n c(n)qn ∈Mk(p, χp) we have

L(DN(f), s) = L(f, s) · L(fρ, s) ,

where L(f, s) denotes the Hecke L-function of f and fρ =
∑
c(n)qn. �

Let Λ(f, s) = ps/2(2π)−sΓ (s)L(f, s) be the completed Hecke L-function of
the eigenform f . It has the functional equation

Λ(f, s) = C · Λ(fρ, k − s)

with a non-zero constant C ∈ C. Therefore

R(s) = ps (2π)−2s
Γ (s)2L(f, s)L(fρ, s)

has the functional equation

R(s) = R(k − s) ,

which looks as the functional equation of the L-function of a Hilbert modular
form of weight k, see Theorem 1.45 in Section 1.6. Moreover, all further an-
alytic properties of R(s) agree with those of L-functions of Hilbert modular
forms. Hence, using a converse theorem (similar to Hecke’s converse theorem),
one can infer that R(s) really comes from a Hilbert modular form.

Originally, this argument led Doi and Naganuma to the discovery of the
lifting. Using the converse theorem argument they were able to prove the
existence of the lifting in the few cases where OF is euclidian. Employing
a later result of Vaserstein (see [Ge1] Chapter IV.6) on generators of Hilbert
modular groups, the proof can be generalized.

The theta lifting approach came up later, and was suggested by Eichler
and Shintani and worked out by Kudla, Oda, Vignerás, and others.
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3.2 Borcherds Products

Here we consider the Borcherds lift for Hilbert modular surfaces. It can be
viewed as a multiplicative analogue of the Doi–Naganuma lift. It takes cer-
tain weakly holomorphic elliptic modular forms of weight 0 to meromorphic
Hilbert modular forms which have an infinite product expansion resembling
the Dedekind eta function. The zeros and poles of such Borcherds products
are supported on Hirzebruch–Zagier divisors.

Local Borcherds Products

As a warm up, we study a local analogue of Borcherds products at the cusps
of Hilbert modular surfaces. This is a special case of the more general results
for O(2, n) of [BrFr].

We return to the setup of Section 1.1. In particular, F ⊂ R is a real
quadratic field of discriminant D and ΓF = SL2(OF ) denotes the Hilbert
modular group. We ask whether the Hirzebruch–Zagier divisors Tm on X(ΓF )
are Q-Cartier. Since the non-compact Hilbert modular surface Y (ΓF ) is non-
singular except for the finite quotient singularities corresponding to the elliptic
fixed points, it is clear that Tm is Q-Cartier on Y (ΓF ). We only have to
investigate the behavior at the cusps.

Lemma 3.37. Let A = (a, b, λ) ∈ L∨ with ab − λλ′ > 0. The closure of the
image in YF of

{
(z1, z2) ∈ H2; az1z2 + λz1 + λ′z2 + b = 0

}

goes through the cusp ∞ if and only if a = 0.

Proof. This is an immediate consequence of Proposition 1.7 (iii). �

Let m be a positive integer. We define the local Hirzebruch–Zagier divisor
at ∞ of discriminant m by

T∞
m =

∑

λ∈d−1
F /{±1}

−λλ′=m/D
b∈Z

{
(z1, z2) ∈ H2; λz1 + λ′z2 + b = 0

}
⊂ H2 .

This divisor is invariant under the stabilizer ΓF,∞ of ∞.

Theorem 3.38. The Hirzebruch–Zagier divisor Tm on X(ΓF ) is Q-Cartier.

Proof. We have to investigate the behavior at the cusps. Here we only consider
the cusp ∞, the other cusps can be treated in the same way.

We have to show that there is a small open neighborhood U ⊂ X(ΓF )
of ∞ and a holomorphic function f on U such that

div(f) = r · Tm|U ∈ Div(U)
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for some positive integer r. Here Tm|U denotes the restriction of Tm to U . In
view of Proposition 1.10 and Lemma 3.37 it suffices to show that there exists
a ΓF,∞-invariant holomorphic function f̃ : H2 → C such that div(f̃) = r ·T∞

m .
This follows from Proposition 3.40 below. �

Remark 3.39. The statement of Theorem 3.38 does not generalize to Heegner
divisors on O(2, n). For instance, for n > 3 there are obstructions to the
Q-Cartier property at generic boundary points, which are related to theta
series of even definite lattices of rank n − 2 with harmonic polynomials of
degree 2. (See [BrFr], [Lo].)

The local Hirzebruch–Zagier divisor T∞
m decomposes as a sum

T∞
m =

∑

λ∈d−1
F /O∗,2

F

−λλ′=m/D
λ>0

T∞
λ , (3.6)

where O∗,2
F denotes the subgroup of squares in the unit group O∗

F , and

T∞
λ =

∑

u∈O∗,2
F

b∈Z

{
(z1, z2) ∈ H2; λuz1 + λ′u′z2 + b = 0

}
. (3.7)

The divisor Tλ is invariant under ΓF,∞. In the following, we construct a holo-
morphic function on H2/ΓF,∞ whose divisor is T∞

λ , using local Borcherds
products [BrFr]. We start by introducing some notation.

The subset

S(m) =
⋃

λ∈d−1
F

−λλ′=m/D

{y ∈ (R>0)2; λy1 + λ′y2 = 0} (3.8)

of (R>0)2 is a union of hyperplanes. It is invariant under ΓF,∞. The comple-
ment (R>0)2 \ S(m) is not connected. The connected components are called
the Weyl chambers (of d−1

F ) of index m.
Let W be a subset of a Weyl chamber of index m and λ ∈ d−1

F with
−λλ′ = m/D. Then λ is called positive with respect to W , if tr(λw) > 0 for
all w ∈ W (which is equivalent to requiring tr(λw0) > 0 for some w0 ∈ W ).
In this case we write

(λ,W ) > 0 .

Moreover, λ is called reduced with respect to W , if

(uλ,W ) < 0, and (λ,W ) > 0 ,

for all u ∈ O∗,2
F with u < 1. This condition is equivalent to

(ε−2
0 λ,W ) < 0, and (λ,W ) > 0 .
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It implies that λ > 0. We denote by R(m,W ) the set of all λ ∈ d−1
F with

−λλ′ = m/D which are reduced with respect to W . (Note that this definition
slightly differs from the one in [BB].) It is a finite set and

{λ ∈ d−1
F ; −λλ′ = m/D} = {±λu; λ ∈ R(m,W ) and u ∈ O∗,2

F } . (3.9)

Let W be a subset of a Weyl chamber of index m and λ ∈ d−1
F with

−λλ′ = m/D. We define a holomorphic function ψ∞
λ : H2 → C by

ψ∞
λ (z) =

∏

u∈O∗,2
F

[
1 − e(σu tr(uλz))

]
,

where

σu =

{
+1, if (uλ,W ) > 0 ,
−1, if (uλ,W ) < 0 .

The sign σu has to be inserted to obtain a convergent infinite product. By
construction we have ψ∞

λ = ψ∞
−λ and

div(ψ∞
λ ) = T∞

λ .

Moreover, the product is invariant under translations
(

1 μ
0 1

)
∈ ΓF,∞. However,

ψ∞
λ is not invariant under the full stabilizer of ∞. It defines an automorphy

factor

J(γ, z) = ψ∞
λ (γz)/ψ∞

λ (z) (3.10)

of ΓF,∞ acting on H2, that is, an element of H1(ΓF,∞,O(H2)∗). We need to
show that this automorphy factor is trivial up to torsion. It suffices to con-
sider what happens under the generator

(
ε0 0

0 ε−1
0

)
of the subgroup of diagonal

matrices in ΓF,∞. We have

ψ∞
λ (ε20z)
ψ∞
λ (z)

=
∏

u∈O∗,2
F

1 − e(σu/ε20 tr(uλz))
1 − e(σu tr(uλz))

.

In this product only one factor is not equal to 1. If we assume that λ is reduced
with respect to W , we obtain

ψ∞
λ (ε20z)
ψ∞
λ (z)

=
1 − e(− tr(λz))
1 − e(tr(λz))

= e(1/2 − tr(λz)) .

On the other hand, we consider the invertible holomorphic function

Iλ(z) = e

(
tr
(

λ

ε20 − 1
z

))
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on H2. It satisfies
Iλ(ε20z)
Iλ(z)

= e(tr(λz)) .

Moreover, Iλ(z + μ) = Iλ(z) for all μ ∈ (ε20 − 1)OF . Therefore, up to torsion,
the automorphy factor J(γ, z) in (3.10) can be trivialized with Iλ(z). The
function

Ψ∞
λ (z) = Iλ(z) · ψ∞

λ (z) = e

(
tr
(

λ

ε20 − 1
z

)) ∏

u∈O∗,2
F

[
1 − e(σu tr(uλz))

]

(3.11)

is holomorphic on H2, has divisor T∞
λ , and a power of it is invariant un-

der ΓF,∞. Observe that Ψ∞
λ does not depend on the choice of the Weyl

chamber W , although the factors Iλ and ψ∞
λ do.

Now it is easy to construct an analogous function for T∞
m . We define the

Weyl vector of index m for the Weyl chamber W by

ρm,W =
∑

λ∈R(m,W )

λ

ε20 − 1
. (3.12)

Moreover, we define the local Borcherds product for T∞
m by

Ψ∞
m (z) =

∏

λ∈d−1
F /O∗,2

F

−λλ′=m/D
λ>0

Ψ∞
λ (z) = e

(
tr(ρm,W z)

) ∏

λ∈d−1
F

−λλ′=m/D
(λ,W )>0

[
1 − e(tr(λz))

]
.

(3.13)

Proposition 3.40. The divisor of Ψ∞
m is equal to T∞

m . A power of Ψ∞
m is

invariant under ΓF,∞. �

Example 3.41. We compute Ψ∞
1 more explicitly. The point (1, ε0) ∈ (R>0)2

does not belong to S(1). Hence it lies in a unique Weyl chamber W of index 1.
The set of λ ∈ d−1

F with −λλ′ = 1/D which are reduced with respect to W is
given by

R(1,W ) =

{
{ε20/

√
D}, if ε0ε′0 = −1 ,

{ε0/
√
D, ε20/

√
D}, if ε0ε′0 = +1 .

The corresponding Weyl vector is equal to

ρ1,W =

⎧
⎨

⎩

ε0√
D

1
tr(ε0) , if εε′0 = −1 ,

1+ε0
tr(

√
Dε0)

, if εε′0 = +1 .
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In the case εε′0 = −1, the point (ε−1
0 , ε0) lies in the same Weyl chamber W .

It is often more convenient to work with this base point. If εε′0 = 1, then
(ε−1

0 , ε0) ∈ S(1).

The Borcherds Lift

For the material of the next two sections we also refer to [Br3]. The Doi–
Naganuma lift of the Section 3.1 only defines a non-trivial map when k > 0.
(For k = 0 we have Mk(D,χD) = 0.) It is natural to ask if one can also do
something meaningful in the border case k = 0 where the Siegel theta func-
tion (2.22) reduces to the theta function Θ0(τ, z) associated to the standard
Gaussian on V (R). To get a feeling for this question, one can pretend that
there is a non-trivial element f =

∑
n c(n)qn ∈M+

0 (p, χp) and formally write
down its lifting according to Theorem 3.35. We find that it has the Fourier
expansion

Φ(z, f) = −B0

2k
c̃(0) +

∑

ν∈d−1
F

ν�0

∑

d|ν

1
d
c̃

(
pνν′

d2

)
qν1 q

ν′
2 .

Reordering the summation, this can be written as

Φ(z, f) = −B0

2k
c̃(0) −

∑

ν∈d−1
F

ν�0

log
(
1 − qν1q

ν′
2

)c̃(pνν′)
.

Hence, the lifting looks as the logarithm of a “modular” infinite product, resem-
bling the Dedekind eta function. The idea of Borcherds, Harvey and Moore
was to drop the assumption on f being holomorphic and to replace it by
something weaker [Bo1], [Bo2], [Bo4], [HM]. They consider a regularized theta
lift for weakly holomorphic modular forms. It leads to meromorphic modular
forms with infinite product expansions (roughly of the above type).

This construction works in greater generality for O(2, n). It yields a lift
from weakly holomorphic modular forms of weight 1 − n/2 to meromorphic
modular forms on O(2, n) with zeros and poles supported on Heegner divisors.
Here we only consider the O(2, 2)-case of Hilbert modular surfaces. Moreover,
to simplify the exposition, we assume that the real quadratic field F has prime
discriminant p.

Let Γ be a subgroup of SL2(Q) which is commensurable with SL2(Z).
Recall that a meromorphic modular form of weight k with respect to Γ is
called weakly holomorphic if it is holomorphic outside the cusps. At the cusp ∞
such a modular form f has a Fourier expansion of the form

f(τ) =
∑

n∈Z

n≥N

c(n)qn/h ,
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where N ∈ Z, and h ∈ Z>0 is the width of the cusp ∞. By an elementary
argument it can be proved that the Fourier coefficients of f are bounded by

c(n) = O
(
eC

√
n
)
, n→ ∞ , (3.14)

for some positive constant C > 0 depending on the order of the poles at the
various cusps of Γ (see [BrFu1] Section 3). This estimate is also a consequence
of the (much more precise) Hardy–Rademacher–Ramanujan asymptotic for
the coefficients of weakly holomorphic modular forms.

Let Wk(p, χp) be the space of weakly holomorphic modular forms of
weight k for the group Γ0(p) with character χp. Any modular form f in this
space has a Fourier expansion of the form f =

∑
n�−∞ c(n)qn. Similarly as

in (3.1) we denote by W+
k (p, χp) the subspace of those f ∈ Wk(p, χp), whose

coefficients c(n) satisfy the plus space condition, that is, c(n) = 0 whenever
χp(n) = −1.

Lemma 3.42. Let k ≤ 0. A weakly holomorphic modular form f =
∑

n c(n) ·
qn ∈ W+

k (p, χp) is uniquely determined by its principal part
∑

n<0

c(n)qn ∈ C[q−1] .

Proof. The difference of two elements of W+
k (p, χp) with the same principal

part is holomorphic at the cups ∞. Using the plus space condition (Lemma 3
of [BB]), one infers that the difference is also holomorphic at the cusp 0.
Hence, it is a holomorphic modular form of weight k ≤ 0 with Nebentypus,
and therefore vanishes identically. �
Corollary 3.43. Let k ≤ 0. Assume that f ∈W+

k (p, χp) has principal part in
Q[q−1]. Then all Fourier coefficients of f are rational with bounded denomi-
nators.

Proof. This follows from Lemma 3.42 and the properties of the Galois action
on Wk(p, χp). �

Let f =
∑
n c(n)qn ∈W+

k (p, χp). Then

(R>0)2 \
⋃

m>0
c(−m) 	=0

S(m)

is not connected. The connected components are called the Weyl chambers
associated to f . If W ⊂ (R>0)2 is such a Weyl chamber, then the Weyl vector
corresponding to f and W is defined by

ρf,W =
∑

m>0

c̃(−m)ρm,W ∈ F . (3.15)

Here ρm,W is given by (3.12) and we have used the notation (3.5).
We are now ready to state Borcherds’ theorem in a formulation that fits

nicely our setting (see [Bo4] Theorem 13.3 and [BB] Theorem 9).
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Theorem 3.44 (Borcherds). Let f =
∑

n�−∞ c(n)qn be a weakly holo-
morphic modular form in W+

0 (p, χp) and assume that c̃(n) ∈ Z for all n < 0.
Then there exists a meromorphic Hilbert modular form Ψ(z, f) for ΓF (with
some multiplier system of finite order) such that:

(i) The weight of Ψ is equal to the constant term c(0) of f .
(ii) The divisor Z(f) of Ψ is determined by the principal part of f at the

cusp ∞. It equals
Z(f) =

∑

n<0

c̃(n)T−n .

(iii) Let W be a Weyl chamber associated to f and put N = min{n; c(n) �= 0}.
The function Ψ has the Borcherds product expansion

Ψ(z, f) = qρ1q
ρ′
2

∏

ν∈d−1
F

(ν,W )>0

(
1 − qν1q

ν′
2

)c̃(pνν′)
,

which converges normally for all z with y1y2 > |N |/p outside the set of
poles. Here ρ = ρf,W is the Weyl vector corresponding to f and W , and
qνj = e2πiνzj for ν ∈ F .

Proof. We indicate the idea of the proof. We consider the theta lift (Sec-
tion 2.6) for the lattice L in the quadratic space V = Q⊕Q⊕F (Section 2.7)
and use the accidental isomorphism ΓF ∼= SpinV . The corresponding Siegel
theta function Θ0(τ, z) in weight 0 transforms as an element of M+

0 (p, χp)
in the variable τ . As a function of z it is invariant under ΓF . The pairing
〈f(τ), Θ0(τ, z)〉 (see Proposition 3.32) is a SL2(Z)-invariant function in τ .

We consider the theta integral
∫

F
〈f(τ), Θ0(τ, z)〉

du dv

v2
, (3.16)

where F = {τ ∈ H; |τ | ≥ 1, |u| ≤ 1/2} denotes the standard fundamental
domain for SL2(Z). Formally it defines a ΓF -invariant function on H2. Un-
fortunately, because of the exponential growth of f at the cusps, the integral
diverges. However, Harvey and Moore discovered that it can be regularized
as follows [HM], [Bo4], [Kon]: If the constant term c(0) of f vanishes, one can
regularize (3.16) by taking

lim
t→∞

∫

Ft

〈f(τ), Θ0(τ, z)〉
du dv

v2
, (3.17)

where Ft = {τ ∈ F ; |v| ≤ t} denotes the truncated standard fundamental
domain. So the regularization consists in prescribing the order of integration.
We first integrate over u and then over v. If the constant term of f does not
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vanish, the limit in (3.17) still diverges. It can be regularized by considering

Φ(z, f, s) = lim
t→∞

∫

Ft

〈f(τ), Θ0(τ, z)〉v−s
du dv

v2
(3.18)

for s ∈ C. The limit exists for (s) large enough and has a meromorphic
continuation to the whole complex plane. We define the regularized theta
integral Φ(z, f) to be the constant term in the Laurent expansion of Φ(z, f, s)
at s = 0.

One can show that Φ(z, f) defines a ΓF -invariant real analytic function on
H2\Z(f) with a logarithmic singularity2 along the divisor −4Z(f) ([Bo4] §6).
The Fourier expansion of Φ(z, f) can be computed explicitly by applying some
partial Poisson summation on the theta kernel. It turns out that

Φ(z, f) = −4 log
∣
∣
∣Ψ(z, f)(y1y2)c(0)/2

∣
∣
∣− 2c(0) (log(2π) + Γ ′(1)) ,

in the domain of convergence of the infinite product for Ψ(z, f). Using this
identity and the properties of Φ(z, f), one can prove that the infinite prod-
uct has a meromorphic continuation to H2 satisfying the hypotheses of the
theorem. �
Remark 3.45. The fact that Ψ(f, z) only converges in a sufficiently small neigh-
borhood of the cusp ∞ is due to the rapid growth of the Fourier coefficients
of weakly holomorphic modular forms, see (3.14).

Meromorphic Hilbert modular forms that arise as liftings of weakly holo-
morphic modular forms by Theorem 3.44 are called Borcherds products.

The following two propositions highlight the arithmetic nature of Borcherds
products. Via the q-expansion principle (see [Rap], [Ch]) they imply that
a suitable power of a Borcherds product defines a rational section of the line
bundle of Hilbert modular forms over Z.

Proposition 3.46. Any meromorphic Borcherds product is the quotient of
two holomorphic Borcherds products.

Proof. See [BBK] Proposition 4.5. �
Proposition 3.47. For any holomorphic Borcherds product Ψ there exists
a positive integer n such that:

(i) Ψn is a Hilbert modular form for ΓF with trivial multiplier system.
(ii) All Fourier coefficients of Ψn are contained in Z.
(iii) The greatest common divisor of the Fourier coefficients of Ψn equals 1.

Proof. The first assertion is clear. The second and the third follow by Corol-
lary 3.43 from the infinite product expansion given in Theorem 3.44(iii). �
2 If X is a normal complex space, D ⊂ X a Cartier divisor, and f a smooth function

on X \ supp(D), then f has a logarithmic singularity along D, if for any local
equation g for D on an open subset U ⊂ X, the function f − log |g| is smooth
on U .
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Obstructions

The Borcherds lift provides explicit relations among Hirzebruch–Zagier divi-
sors on a Hilbert modular surface. It is natural to seek for a precise description
of those linear combinations of Hirzebruch–Zagier divisors, which are divisors
of Borcherds products. Since the divisor of a Borcherds product Ψ(z, f) is de-
termined by the principal part of the weakly holomorphic modular form f , it
suffices to understand which Fourier polynomials

∑
n<0 c(n)qn ∈ C[q−1] can

occur as principal parts of elements of W+
0 (p, χp).

A necessary condition is easily obtained. If f ∈ W+
k (p, χp) with Fourier

coefficients c(n), and g ∈M+
2−k(p, χp) with Fourier coefficients b(n), then the

pairing 〈f, g〉 is a weakly holomorphic modular form of weight 2 for SL2(Z).
Thus

〈f, g〉dτ
is a meromorphic differential on the Riemann sphere whose only pole is at the
cusp ∞. By the residue theorem its residue has to vanish. But the residue is
just the constant term in the Fourier expansion of 〈f, g〉. We find that

∑

n≤0

c̃(n)b(−n) = 0 . (3.19)

Applying this condition to the Eisenstein series E+
2−k(τ), see (3.4), one

gets a formula for the constant term of f .

Proposition 3.48. Let k be a non-positive integer. Let f =
∑
n c(n)qn ∈

W+
k (p, χp). Then

c(0) = −1
2

∑

n<0

c̃(n)B+
2−k(−n) .

�
Using Serre duality for vector bundles on Riemann surfaces, Borcherds

showed that the necessary condition is also sufficient (see [Bo6] and [BB]
Theorem 6).

Theorem 3.49. There exists an f ∈ W+
k (p, χp) with prescribed principal part∑

n<0 c(n)qn (where c(n) = 0 if χp(n) = −1), if and only if
∑

n<0

c̃(n)b(−n) = 0

for every cusp form g =
∑

m>0 b(m)qm in S+
2−k(p, χp). �

Corollary 3.50. A formal power series
∑

m≥0 b(m)qm ∈ C[[q]]+ is the Fourier
expansion of a modular form in M+

2−k(p, χp), if and only if
∑

n≤0

c̃(n)b(−n) = 0

for every f =
∑

n c(n)qn in W+
k (p, χp).
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Proof. This follows immediately from Theorem 3.49, see [Br3], Corollary 4.2.
�

If X is a regular projective algebraic variety, we write Div(X) for the group
of divisors of X , and Rat(X) for the subgroup of divisors of rational functions
on X . The first Chow group of X is the quotient

CH1(X) = Div(X)/Rat(X) .

Furthermore, we put CH1(X)Q = CH1(X) ⊗Z Q. Recall that CH1(X) is iso-
morphic to the Picard group of X , the group of isomorphism classes of alge-
braic line bundles on X . The isomorphism is given by mapping a line bundle L
to the class c1(L) of the divisor of a rational section of L. The Chow group
CH1(X) is an important invariant of X . It is finitely generated.

Let π : X̃ → X(ΓF ) be a desingularization. If k is a positive integer
divisible by the order of all elliptic fixed points of ΓF , then Mk := π∗Mk(ΓF ),
the pullback of the line bundle of modular forms of weight k, defines an element
of Pic(X̃). We consider its class in CH1(X̃). More generally, if k is any rational
number, we chose an integer n such that nk is a positive integer divisible by
n(ΓF ) and put c1(Mk) = 1

n c1(Mnk) ∈ CH1(X̃)Q.
The Hirzebruch–Zagier divisors are Q-Cartier on X(ΓF ). Their pullbacks

define elements in CH1(X̃)Q. We want to describe their positions in this Chow
group. To this end we consider the generating series

A(τ) = c1(M−1/2) +
∑

m>0

π∗(Tm)qm ∈ Q[[q]] ⊗Q CH1(X̃)Q . (3.20)

Combining Theorem 3.44 and Corollary 3.50 one obtains the following striking
application.

Theorem 3.51. The divisors π∗(Tm) generate a subspace of CH1(X̃)Q of di-
mension ≤ dim(M+

2 (p, χp)). The generating series A(τ) is a modular form
in M+

2 (p, χp) with values in CH1(X̃)Q, i.e., an element of M+
2 (p, χp) ⊗Q

CH1(X̃)Q.

In other words, if λ is a linear functional on CH1(X̃)Q, then

λ
(
c1(M−1/2)

)
+
∑

m>0

λ(π∗Tm)qm ∈M+
2 (p, χp) .

A typical linear functional, one can take for λ, is given by the intersection
pairing with a fixed divisor on X̃ . Theorem 3.51 was first proved by Hirze-
bruch and Zagier by computing intersection numbers of Hirzebruch–Zagier
divisors with other such divisors and with the exceptional divisors coming
from Hirzebruch’s resolution of the cusp singularities [HZ]. Their discovery
triggered important investigations by several people, showing that more gen-
erally periods of certain special cycles in arithmetic quotients of orthogonal
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or unitary type can be viewed as the coefficients of Siegel modular forms. For
instance, Oda considered cycles on quotients of O(2, n) given by embedded
quotients of O(1, n) [Od1], and Kudla–Millson studied more general cycles on
quotients of O(p, q) and U(p, q) using the Weil representation and theta func-
tions with values in closed differential forms [KM1,KM2,KM3], see also [Fu]
for the case of non-compact quotients. The relationship of the Kudla–Millson
lift and the regularized theta lift is clarified in [BrFu1].

Proof of Theorem 3.51. Using Borcherds products, Theorem 3.51 can be
proved as follows (see [Bo6]). In view of Corollary 3.50 it suffices to show
that

c̃(0) c1(M−1/2) +
∑

n<0

c̃(n)π∗(T−n) = 0 ∈ CH1(X̃)Q

for every f =
∑

n c(n)qn in W+
0 (p, χp) with integral Fourier coefficients.

But this is an immediate consequence of Theorem 3.44: Up to torsion, the
Borcherds lift of f is a rational section of Mc(0) with divisor

∑
n<0 c̃(n) ·

π∗(T−n). �

Notice that we have only used (i) and (ii) of Theorem 3.44. Using the
product expansion (iii) in addition, one can prove an arithmetic version of
Theorem 3.51, saying that certain arithmetic Hirzebruch–Zagier divisors are
the coefficients of a modular form in M+

2 (p, χp) with values in an arithmetic
Chow group, see [BBK], [Br3]. Finally, we mention that this argument gener-
alizes to Heegner divisors on quotients of O(2, n).

Remark 3.52. With some further work it can be proved that the dimension of
the subspace of CH(X̃)Q generated by the Hirzebruch–Zagier divisors is equal
to dimM+

2 (p, χp), see Corollary 3.62.

Examples

Recall that p is a prime congruent to 1 modulo 4. By a result due to Hecke [He]
the dimension of S+

2 (p, χp) is equal to [p−5
24 ]. In particular there exist three

such primes for which S+
2 (p, χp) is trivial, namely p = 5, 13, 17. In these cases

W+
0 (p, χp) is a free module of rank p+1

2 over the ring C[j(pτ)]. Therefore it is
not hard to compute explicit bases. For any m ∈ Z>0 with χp(m) �= −1 there
is a unique fm =

∑
n≥−m cm(n)qn ∈ W+

0 (p, χp) whose Fourier expansion
starts with

fm =

{
q−m + cm(0) +O(q), if p � m,
1
2q

−m + cm(0) +O(q), if p | m.

The fm (m ∈ Z>0) form a base of the space W+
0 (p, χp). The Borcherds lift

Ψm of fm is a Hilbert modular form for ΓF of weight cm(0) = −B+
2 (m)/2

with divisor Tm. Here B+
2 (m) denotes the m-th coefficient of the Eisenstein

series E+
2 (τ) as before.
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The case p = 5. We consider the real quadratic field F = Q(
√

5). The
fundamental unit is given by ε0 = 1

2 (1 +
√

5). Here the first few fm were
computed in [BB]. One obtains:

f1 = q−1 + 5 + 11 q − 54 q4 + 55 q5 + 44 q6 − 395 q9 + 340 q10 + . . . ,

f4 = q−4 + 15 − 216 q + 4959 q4 + 22040 q5 − 90984 q6 + 409944 q9 + . . . ,

f5 = 1
2 q

−5 + 15 + 275 q + 27550 q4 + 43893 q5 + 255300 q6 + . . . ,

f6 = q−6 + 10 + 264 q − 136476 q4 + 306360 q5 + 616220 q6 + . . . ,

f9 = q−9 + 35 − 3555 q + 922374 q4 + 7512885 q5 − 53113164 q6 + . . . ,

f10 = 1
2 q

−10 + 10 + 3400 q + 3471300 q4 + 9614200 q5 + 91620925 q6 + . . . .

The Eisenstein series E+
2 (τ) ∈M+

2 (5, χ5) has the Fourier expansion

E+
2 (τ, 0) = 1−10q−30q4−30q5−20q6−70q9−20q10−120q11−60q14− . . . .

One easily shows that the weight of any Borcherds product is divisible by 5. By
a little estimate one concludes that there is just one holomorphic Borcherds
product of weight 5, namely Ψ1. There exist precisely 3 holomorphic Borcherds
products in weight 10, namely Ψ2

1 , Ψ6, and Ψ10. In weight 15 there are the
holomorphic Borcherds products Ψ4, Ψ5, Ψ3

1 , Ψ1Ψ6, and Ψ1Ψ10.
It follows from Lemma 3.37 that Tm does not go through the cusp ∞ when

m is not the norm of some λ ∈ OF . In particular, T6 and T10 do not meet ∞.
This also implies that S(6) = S(10) = ∅. There is just one Weyl chamber
of index 6 and 10 (namely (R>0)2) and the corresponding Weyl vector is 0.
The divisor T1 does meet ∞. As in Example 3.41, let W be the unique Weyl
chamber of index 1 containing (ε−1

0 , ε0). The corresponding Weyl vector is
ρ1 = ε0√

D
1

tr(ε0) . We obtain the Borcherds product expansions

Ψ1 = qρ11 q
ρ′1
2

∏

ν∈d−1
F

ε0ν
′−ε′0ν>0

(
1 − qν1q

ν′
2

)c̃1(5νν′)
,

Ψ6 =
∏

ν∈d−1
F

ν�0

(
1 − qν1q

ν′
2

)c̃6(5νν′)
,

Ψ10 =
∏

ν∈d−1
F

ν�0

(
1 − qν1q

ν′
2

)c̃10(5νν′)
.

Gundlach [Gu] constructed a Hilbert modular form s5 for ΓF with divisor T1

as a product of 10 theta functions of weight 1/2, see Section 1.5. We have
s5 = Ψ1. Moreover, s15, the symmetric cusp form of weight 15, is equal to Ψ5.
For further examples we refer to [Ma].
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3.3 Automorphic Green Functions

By Theorem 3.49 of the previous section we know precisely which linear com-
binations of Hirzebruch–Zagier divisors occur as divisors of Borcherds prod-
ucts on Y (ΓF ). It is natural to ask, whether every Hilbert modular form on
Y (ΓF ) whose divisor is a linear combination of Hirzebruch–Zagier divisors is
a Borcherds product, i.e., in the image of the lift of Theorem 3.44. In this
section we discuss this question in some detail. To answer it, we first simplify
the problem. We extend the Borcherds lift to a larger space of “input modular
forms” and answer the question for this extended lift. In that way we are led
to automorphic Green functions associated with Hirzebruch–Zagier divisors.

Let k be an integer, let Γ be a subgroup of SL2(Q) which is commensur-
able with SL2(Z), and χ a character of Γ . A twice continuously differentiable
function f : H → C is called a weak Maass form (of weight k and eigenvalue λ
with respect to Γ and χ), if

(i) f
(
aτ+b
cτ+d

)
= χ(γ)(cτ + d)kf(τ) for all

(
a b
c d

)
∈ Γ ;

(ii) there is a C > 0 such that for any cusp s ∈ Q∪{∞} of Γ and δ ∈ SL2(Z)
with δ∞ = s the function fs(τ) = j(δ, τ)−kf(δτ) satisfies fs(τ) = O(eCv)
as v → ∞;

(iii) Δkf = λΔ for some λ ∈ C.

Here

Δk = −v2

(
∂2

∂u2
+

∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

)
(3.21)

denotes the usual hyperbolic Laplace operator in weight k and τ = u+ iv. In
the special case where the eigenvalue λ is zero, f is called a harmonic weak
Maass form. This is the case we are interested in here.

If we compare the definition of a harmonic weak Maass form with the defi-
nition of a weakly holomorphic modular form, we see that we simply replaced
the condition that f be holomorphic on H by the weaker condition that f be
annihilated by Δk, and the meromorphicity at the cusps by the correspond-
ing growth condition. In particular, any weakly holomorphic modular form
is a harmonic weak Maass form. The third condition implies that f is actu-
ally real analytic. Because of the transformation behavior, it has a Fourier
expansion, which involves besides the exponential function a second type of
Whittaker function. (See [BrFu1] Section 3 for more details.)

There are two fundamental differential operators on modular forms for Γ ,
the Maass raising and lowering operators

Rk = 2i
∂

∂τ
+ kv−1 and Lk = −2iv2 ∂

∂τ̄
.

If f is a differentiable function on H satisfying the transformation law (i) in
weight k, then Lkf transforms in weight k − 2, and Rkf in weight k + 2. It
can be shown that the assignment
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f(τ) �→ ξk(f)(τ) := vk−2Lkf(τ) = R−kvkf(τ)

defines an antilinear map ξk from harmonic weak Maass forms of weight k to
weakly holomorphic modular forms of weight 2− k. Its kernel is precisely the
space of weakly holomorphic modular forms in weight k.

We write Nk(p, χp) for the space of harmonic weak Maass forms of
weight k with respect to Γ0(p) and χp. Let us have a closer look at the
map ξk : Nk(p, χp) →W2−k(p, χp). We denote by Nk(p, χp) the inverse image
of S2−k(p, χp) under ξk, and its plus subspace by N+

k (p, χp). (Note that our
notation differs from the notation of [BrFu1].)

Theorem 3.53. We have the following exact sequence:

0 �� W+
k (p, χp) �� N+

k (p, χp)
ξk �� S+

2−k(p, χp) �� 0 .

Proof. This can be proved using Serre duality for the Dolbeault resolution
of the structure sheaf on a modular curve (see [BrFu1] Theorem 3.7) or by
means of Hejhal–Poincaré series (see [Br2] Chapter 1). �

Let k ≤ 0. For every harmonic weak Maass form f ∈ N+
k (p, χp) there is

a unique Fourier polynomial P (f) =
∑

n<0 c(n)qn ∈ C[q−1] (with c(n) = 0
if χp(n) = −1) such that f(τ) − P (f)(τ) is bounded as v → ∞. It is called
the principal part of f . This generalizes the notion of the principal part of
a weakly holomorphic modular form.

Proposition 3.54. Let Q =
∑
n<0 c(n)qn ∈ C[q−1] be a Fourier polynomial

satisfying c(n) = 0 if χp(n) = −1. There exists a unique f ∈ N+
k (p, χp) whose

principal part is equal to Q.

Proof. See [BrFu1] Proposition 3.11. �
This Proposition is a key fact, which suggests to study the regularized

theta lift of harmonic weak Maass forms. If f ∈ N+
0 (p, χp), then we define

its regularized theta lift Φ(z, f) by (3.18), in the same way as for weakly
holomorphic modular forms.

Theorem 3.55. Let f ∈ N+
0 (p, χp) be a harmonic weak Maass form with

principal part P (f) =
∑

n<0 c(n)qn and constant term c(0).

(i) The regularized theta integral Φ(z, f) defines a ΓF -invariant function on
H2 with a logarithmic singularity along −4Z(f), where

Z(f) =
∑

n<0

c̃(n)T−n .

(ii) It is a Green function for the divisor 2Z(f) on Y (ΓF ) in the sense
of [SABK], that is, it satisfies the identity of currents

ddc[Φ(z, f)] + δ2Z(f) = [ω(z, f)]

on Y (ΓF ). Here δD denotes the Dirac current associated with a divisor D
on Y (ΓF ) and ω(z, f) is a smooth (1, 1)-form.
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(iii) If Δ(j) = −y2
j

(
∂2

∂x2
j

+ ∂2

∂y2
j

)
denotes the SL2(R)-invariant Laplace opera-

tor on H2 in the variable zj, then

Δ(j)Φ(z, f) = −2c(0) .

Proof. See [Br1] and [BBK]. �

In view of Proposition 3.54, for every positive integer m with χp(m) �= −1,
there exists a unique harmonic weak Maass form fm ∈ N+

0 (p, χp), whose
principal part is given by

P (fm) =

{
q−m, if p � m,
1
2q

−m, if p | m.

Its theta lift
Φm(z) =

1
2
Φ(z, fm)

can be regarded as an automorphic Green function for Tm.
Let π : X̃ → X(ΓF ) be a desingularization. The Fourier expansion of

Φ(z, f) can be computed explicitly. It can be used to determine the growth
behavior at the boundary of Y (ΓF ) in X̃ . It turns out that the boundary
singularities are of log and log-log type. More precisely, one can view π∗Φ(z, f)
as a pre-log-log Green function for the divisor 2π∗(Z(f)) on X̃ in the sense
of [BKK] (see [BBK] Proposition 2.16). So the current equation in (ii) does
not only hold for test forms with compact support on Y (ΓF ), but also for test
forms which are smooth on X̃ .

Moreover, one finds that Φ(z, f) can be split into a sum

Φ(z, f) = −2 log |Ψ(z, f)|2 + ξ(z, f) , (3.22)

where ξ(z, f) is real analytic on the whole domain H2 and Ψ(z, f) is a mero-
morphic function on H2 whose divisor equals Z(f). If f is weakly holomorphic,
the function ξ(z, f) is simply equal to −2c(0) (log(y1y2) + log(2π) + Γ ′(1)),
and we are back in the case of Borcherds’ original lift. However, if f is an
honest harmonic weak Maass form, then ξ is a complicated function and Ψ
far from being modular.

The splitting (3.22) implies that the smooth form ω(z, f) in Theorem 3.55
is given by

ω(z, f) = ddcξ(z, f) .

By the usual Poincaré–Lelong argument, 1
2ω(z, f) represents the Chern class of

the divisor Z(f) in the second cohomology H2(Y (ΓF )). One can further show
that it is a square integrable harmonic representative. Moreover, 1

2π
∗ω(z, f)

is a pre-log-log form on X̃, representing the class of π∗Z(f) in H2(X̃,C).
We now discuss the relationship between the Borcherds lift (Theorem 3.44)

and its generalization in the present section. For simplicity, we write Nk,
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Wk, Mk, Sk for the spaces N+
k (p, χp), W+

k (p, χp), M+
k (p, χp), S+

k (p, χp), res-
pectively. We denote by Wk0 the subspace of elements of Wk with vanishing
constant term. Moreover, we denote by M∨

k the dual of the vector space Mk.

Theorem 3.56. We have the following commutative diagram with exact rows:

0 �� W00
��

��

N0
��

��

M∨
2

��

��

0

0 �� Rat(X̃)C
�� Div(X̃)C

�� CH1(X̃)C
�� 0

.

Here the map N0 → M∨
2 is given by fm �→ am, where am denotes the func-

tional taking a modular form in M2 to its m-th Fourier coefficient. The map
M∨

2 → CH1(X̃)C is defined by am �→ π∗Tm for m > 0 and a0 �→ c1(M−1/2).
The map N0 → Div(X̃)C is defined by f �→ π∗Z(f).

Proof. The exactness of the first row is an immediate consequence of The-
orem 3.53. Moreover, by Theorem 3.44, if f ∈ W00, then Z(f) ∈ Rat(X̃)C.

�

Remark 3.57. The map N0 → Div(X̃)C does not really depend on the analytic
properties of the harmonic weak Maass forms. In particular the Green func-
tion Φ(z, f) associated to f ∈ N0 does not play a role. However, there is an
analogue of the above diagram in Arakelov geometry. If X̃ is a regular model
of X̃ over an arithmetic ring and Tm denotes the Zariski closure of π∗Tm in
X̃ , then the pair

T̂m = (Tm, π∗Φm)

defines an arithmetic divisor in the sense of [BKK]. The map N0 → D̂iv(X̃ ),
defined by fm �→ T̂m, gives rise to a diagram as above for the first arithmetic
Chow group of X̃ . So the generalized Borcherds lift can be viewed as a map
to the group of arithmetic divisors on X̃ (see [BBK], [Br3]).

Theorem 3.58. Let h be a meromorphic Hilbert modular form of weight r
for ΓF , whose divisor div(h) =

∑
n<0 c̃(n)T−n is a linear combination of

Hirzebruch–Zagier divisors. Then

−2 log |h(z)2(y1y2)r| = Φ(z, f) + constant ,

where f is the unique harmonic weak Maass form in N0 with principal part∑
n<0 c(n)qn.

Proof. (See [Br2] Chapter 5.) Let f be the unique harmonic weak Maass
form in N0 with principal part

∑
n<0 c(n)qn. Then Φ(z, f) is real analytic on

H2 \ Z(f) and has a logarithmic singularity along −4Z(f). Hence

d(z) := Φ(z, f) + 2 log |h(z)2(y1y2)r|

is a smooth function on Y (ΓF ). By Theorem 3.55 (iii), it is subharmonic.
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One can show that d(z) is in L1+ε(Y (ΓF )) for some ε > 0 (with re-
spect to the invariant measure coming from the Haar measure). By results
of Andreotti–Vesentini and Yau (see e.g. [Yau]) on sub-harmonic functions
on complete Riemann manifolds that satisfy such integrability conditions it
follows that d(z) is constant. �

The question regarding the surjectivity of the Borcherds lift raised at the
beginning of this section is therefore reduced to the question whether the
harmonic weak Maass form f in the Theorem is actually weakly holomorphic.
It is answered affirmatively in Theorem 3.61 below.

Corollary 3.59. The assignment π∗Tm �→ 1
2dd

cξ(z, fm) defines a linear map

CH1
HZ(X̃)C −→ H1,1(Y (ΓF ))

from the subspace of CH1(X̃)C generated by the Hirzebruch–Zagier divisors to
the space of square integrable harmonic (1, 1)-forms on Y (ΓF ). �

Composing the map M∨
2 → CH1(X̃)C with the map CH1

HZ(X̃)C →
H1,1(Y (ΓF )) from Corollary 3.59, we obtain a linear map

M∨
2 −→ H1,1(Y (ΓF )) .

On the other hand, we have the Doi–Naganuma lift S2 → S2(ΓF ), and there is
a natural map from Hilbert cusp forms of weight 2 to harmonic (1, 1)-forms on
Y (ΓF ) (see e.g. [Br1] Section 5). Summing up, we get the following diagram:

M∨
2

�� CH1
HZ (X̃)C

�� H1,1(Y (ΓF ))

S2

f �→(·,f)

��

�� S2(ΓF )

��
. (3.23)

Theorem 3.60. The above diagram (3.23) commutes.

Proof. See [Br1] Theorem 8. �

So the above construction can be viewed as a different approach to the
Doi–Naganuma lift, making its geometric properties quite transparent.

Using, for instance, the description of the Doi–Naganuma lifting in terms
of Fourier expansions, it can be proved that S2 → S2(ΓF ) is injective. As
a consequence, we obtain the following converse theorem for the Borcherds
lift (see [Br1], [Br2] Chapter 5).

Theorem 3.61. Let h be a meromorphic Hilbert modular form for ΓF , whose
divisor div(F ) =

∑
n<0 c̃(n)T−n is given by Hirzebruch–Zagier divisors. Then

there is a weakly holomorphic modular form f ∈ W0 with principal part∑
n<0 c(n)qn, and, up to a constant multiple, h is equal to the Borcherds

lift of f in the sense of Theorem 3.44. �
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Corollary 3.62. The dimension of CH1
HZ(X̃)C is equal to dim(M2). �

Notice that the analogue of Theorem 3.58 holds for arbitrary congruence
subgroups of ΓF (more generally also for O(2, n)), whereas the analogue of
Theorem 3.61 is related to the injectivity of a theta lift and therefore more
complicated. So far it is only known for particular arithmetic subgroups of
O(2, n), see [Br2], [Br3]. For example, if we go to congruence subgroups of the
Hilbert modular group ΓF , it is not clear whether the analogue of Theorem
3.61 holds or not. See also [BrFu2] for this question.

A Second Approach

The regularized theta lift Φm(z) = 1
2Φ(z, fm) of the weak Maass form fm ∈ N0

is real analytic on H2 \ Tm and has a logarithmic singularity along −2Tm.
Here we present a different, more naive, construction of Φm(z). For details

see [Br1]. The idea is to construct Φm(z) directly as a Poincaré series by
summing over the logarithms of the defining equations of Tm. We consider
the sum

∑

(a,b,λ)∈Z
2⊕d−1

F

ab−λλ′=m/D

log
∣
∣∣
∣
az1z̄2 + λz1 + λ′z̄2 + b

az1z2 + λz1 + λ′z2 + b

∣
∣∣
∣ . (3.24)

The denominators of the summands ensure that this function has a logarith-
mic singularity along −2Tm in the same way as Φm(z). The enumerators are
smooth on the whole H2. They are included to make the sum formally ΓF -
invariant. Unfortunately, the sum diverges. However, it can be regularized in
the following way. If we put Q0(z) = 1

2 log
(
z+1
z−1

)
, we may rewrite the sum-

mands as

log
∣
∣
∣
∣
az1z̄2 + λz1 + λ′z̄2 + b

az1z2 + λz1 + λ′z2 + b

∣
∣
∣
∣ = Q0

(
1 +

|az1z2 + λz1 + λ′z2 + b|2
2y1y2m/D

)
.

Now we replace Q0 by the 1-parameter family Qs−1 of Legendre functions of
the second kind (cf. [AbSt] §8), defined by

Qs−1(z) =

∞∫

0

(z +
√
z2 − 1 coshu)−sdu . (3.25)

Here z > 1 and s ∈ C with (s) > 0. If we insert s = 1, we get back the above
Q0. Hence we consider

φm(z, s) =
∑

a,b∈Z

λ∈d−1
F

ab−λλ′=m/D

Qs−1

(
1 +

|az1z2 + λz1 + λ′z2 + b|2
2y1y2m/D

)
. (3.26)
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It is easily seen that this series converges normally for z ∈ H2 \ Tm and
(s) > 1 and therefore defines a ΓF -invariant function, which has logarith-
mic growth along −2Tm. It is an eigenfunction of the hyperbolic Laplacians
Δ(j) with eigenvalue s(s − 1), because of the differential equation satisfied
by Qs−1. Notice that for D = m = 1 the function Φm(z, s) is simply the
classical resolvent kernel for SL2(Z) (cf. [Hej], [Ni]). One can compute the
Fourier expansion of φm(z, s) explicitly and use it to obtain a meromor-
phic continuation to s ∈ C. At s = 1 there is a simple pole, reflecting
the divergence of the formal sum (3.24). We define the regularization φm(z)
of (3.24) to be the constant term in the Laurent expansion of φm(z, s) at
s = 1.

It turns out that φm is up to an additive constant equal to Φm. The Green
functions φm can be used to give different proofs of the results of the previous
section and of Theorem 3.44. Similar Green functions on O(2, n) are investi-
gated in the context of the theory of spherical functions on real Lie groups
in [OT].

3.4 CM Values of Hilbert Modular Functions

In this section we consider the values of Borcherds products on Hilbert modu-
lar surfaces at certain CM cycles. We report on some results obtained in joint
work with T. Yang, see [BY]. This generalizes work of Gross and Zagier on
CM values of the j-function [GZ].

Singular Moduli

We review some of the results of Gross and Zagier on the j-function. We begin
by recalling some background material (see also pp. 77–79).

Let k be a field and E/k an elliptic curve, that is, a non-singular projective
curve over k of genus 1 together with a k-rational point. If char k �= 2, 3, then
by the Riemann–Roch theorem one finds that E has a Weierstrass equation
of the form

y2 = 4x3 − g2x− g3 ,

with g2, g3 ∈ k and g3
2 − 27g2

3 �= 0. The j-invariant of E is defined by

j(E) = 1728
g3
2

g3
2 − 27g2

3

.

A basic result of the theory of elliptic curves says that if k is algebraically
closed then two elliptic curves over k are isomorphic if and only if they have
the same j-invariant. Moreover, for every given a ∈ k there is an elliptic curve
with j-invariant a. So the assignment E �→ j(E) defines a bijection

{elliptic curves over k}/ ∼ −→ k .
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Over C, the theory of the elliptic functions implies that any elliptic curve
is complex analytically isomorphic to a complex torus C/L, where L ⊂ C

is a lattice. (Here g2 = 60G4(L) and g3 = 140G6(L) where G4, G6 are the
usual Eisenstein series of weight 4 and 6.) Two elliptic curves E,E′ over C are
isomorphic if and only if the corresponding lattices L, L′ satisfy

L = a L′

for some a ∈ C∗. On the other hand it is easily seen that we have a bijection

SL2(Z)\H −→ {lattices in C}/C∗, [τ ] �→ [Zτ + Z] .

Summing up, we obtain a bijection

SL2(Z)\H −→ {elliptic curves over C}/ ∼, [τ ] �→ [C/(Zτ + Z)] . (3.27)

Hence, the j-invariant induces a function on Y (1) := SL2(Z)\H. A more
detailed examination of the map in (3.27) shows that j is a holomorphic
function on Y (1) with the Fourier expansion j(τ) = q−1 +744+196884q+ . . .
at the cusp ∞.

So we may view the j-function as a function on the coarse moduli space
of isomorphism classes of elliptic curves over C. There are special points on
Y (1) which correspond to special elliptic curves, namely to elliptic curves with
complex multiplication.

Let K/Q be an imaginary quadratic field with ring of integers OK . A point
τ ∈ H is called a CM point of type OK if the corresponding elliptic curve
Eτ = C/(Zτ + Z) has complex multiplication OK ↪→ End(Eτ ), or equiv-
alently if Zτ + Z ⊂ K is a fractional ideal. We may consider the 0-cycle
CM(K) ⊂ Y (1) given by the points τ for which Eτ has complex multiplica-
tion by OK .

The values of the j-function at CM points are classically known as singular
moduli. If τ0 is a CM point of type OK , then, by the theory of complex
multiplication, j(τ0) is an algebraic integer generating the Hilbert class field
of K. Moreover, the Galois group Gal(H/K) acts transitively on CM(K) ⊂
Y (1). This implies that

j(CM(K)) =
∏

[τ ]∈CM(K)

j(τ)

is an integer. It is a natural question to ask for the shape of this number.
At the beginning of the 20-th century, Berwick made extensive computations
of these numbers and conjectured various congruences [Be]. We listed some
values in Table 2.

In [GZ], Gross and Zagier found an explicit formula for the prime factor-
ization of j(CM(K)) and proved Berwick’s conjectures. More precisely, they
considered the function j(z1) − j(z2) on Y (1) × Y (1).
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Table 2. Some CM values of the j-function

|disc(K)| h(K) (j(CM(K)))1/3

3 1 0
4 1 22 · 3
7 1 3 · 5
8 1 22 · 5
11 1 25

19 1 25 · 3
23 3 53 · 11 · 17
31 3 33 · 11 · 17 · 23
43 1 26 · 3 · 5
47 5 55 · 112 · 23 · 29
59 3 216 · 11
67 1 25 · 3 · 5 · 11
71 7 113 · 172 · 23 · 41 · 47 · 53

Let K1 and K2 be two imaginary quadratic fields of discriminants d1

and d2, respectively. Assume (d1, d2) = 1, and put D = d1d2. We consider
the CM cycle CM(K1) × CM(K2) on Y (1) × Y (1) and put

J(d1, d2) =
∏

[τ1]∈CM(K1)
[τ2]∈CM(K2)

(j(τ1) − j(τ2))
4

w1w2 ,

where wi is the number of units in Ki.

Theorem 3.63 (Gross, Zagier). We have

J(d1, d2)2 = ±
∏

x,n,n′∈Z,
n,n′>0

x2+4nn′=D

nε(n
′) . (3.28)

Here ε is the genus character defined as follows: ε(n) =
∏
ε(li)ai if n has the

prime factorization n =
∏
lai

i , and

ε(l) =

⎧
⎨

⎩

(d1l ) if l � d1,

(d2l ) if l � d2,

for primes l with (Dl ) �= −1.

In particular, this result implies that the prime factors of J(d1, d2) are
bounded by D/4. Since j(CM(Q(

√
−3))) = j(e2πi/3) = 0, we obtain an ex-

plicit formula for the CM values of j as a special case. It leads to the values
in Table 2.
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The surface Y (1) × Y (1) can be viewed as the Hilbert modular surface
corresponding to the real quadratic “field” Q⊕Q of discriminant 1. Moreover,
j(z1) − j(z2) is a Borcherds product on this surface given by

j(z1) − j(z2) = q−1
1

∏

m>0
n∈Z

(1 − qm1 q
n
2 )c(mn) . (3.29)

Here qj = e2πizj , and c(n) is the n-th Fourier coefficient of j(τ)−744. In fact,
this is the celebrated denominator identity of the monster Lie algebra, which is
crucial in Borcherds’ proof of the moonshine conjecture. From this viewpoint
it is natural to ask if the formula of Gross and Zagier has a generalization to
Hilbert modular surfaces. In the rest of this section we report on joint work
with T. Yang on this problem [BY]. See also [Ya] for further motivation and
background information.

CM Extensions

As before, let F ⊂ R be a real quadratic field. Let K be a CM extension of F ,
that is, K = F (

√
Δ), where Δ ∈ F is totally negative. We view both K and

F (
√
Δ′) as subfields of C with

√
Δ,

√
Δ′ ∈ H . The field M = F (

√
Δ,

√
Δ′) is

Galois over Q. There are three possibilities for the Galois group Gal(M/Q) of
M over Q:

Gal(M/Q) =

⎧
⎪⎨

⎪⎩

Z/2Z × Z/2Z, if K/Q is biquadratic ,
Z/4Z, if K/Q is cyclic ,
D4, if K/Q is non Galois .

Lemma 3.64. Let the notation be as above, and let F̃ = Q(
√
ΔΔ′).

(i) K/Q is biquadratic if and only if F̃ = Q.
(ii) K/Q is cyclic if and only if F̃ = F .
(iii) K/Q is non-Galois if and only if F̃ �= F is a real quadratic field. �

Gross and Zagier considered a biquadratic case. Here we assume that K
is non-biquadratic, i.e., F̃ is a real quadratic field. Then M/Q has an auto-
morphism σ of order 4 such that

σ(
√
Δ) =

√
Δ′, σ(

√
Δ′) = −

√
Δ. (3.30)

Notice that K has four CM types, i.e., pairs of non complex conjugate com-
plex embeddings: Φ = {1, σ}, σΦ = {σ, σ2}, σ2Φ, and σ3Φ. Since K is not
biquadratic, these CM types are primitive. We write (K̃, Φ̃) for the reflex of
(K,Φ). Then K̃ = Q(

√
Δ +

√
Δ′) and F̃ is the real quadratic subfield of K̃.

We refer to [Sh2] for details about CM types and reflex fields.
For the rest of this section we assume that the discriminant of F is a prime

p ≡ 1 (mod 4). Moreover, we suppose that the discriminant dK of K is given
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Table 3. CM extensions of Q(
√

5)

q K = F (
√

Δ) hK Cl(K)

5 Δ = − 5+
√

5
2

1 OK = OF +
√

ΔOF

41 Δ = − 13+
√

5
2

1 OK = OF
1
2

“√
Δ + 3+

√
5

2

”
OF

61 Δ = −(9 + 2
√

5) 1 OK = OF
1
2

“√
Δ + 1

”
OF

109 Δ = − 21+
√

5
2

1 OK = OF
1
2

“√
Δ + 3+

√
5

2

”
OF

241 Δ = − 33+5
√

5
2

3 OK = OF
1
2

“√
Δ + 3+

√
5

2

”
OF ,

A = 2OF
1
2

“√
Δ + 9+3

√
5

2

”
OF ,

B = 4OF
1
2

“√
Δ + 9+3

√
5

2

”
OF

281 Δ = − 37+7
√

5
2

3 OK = OF
1
2

“√
Δ + 1+

√
5

2

”
OF ,

A = 2OF
1
2

“√
Δ + 1+

√
5

2

”
OF ,

B = 4OF
1
2

“√
Δ + 9+

√
5

2

”
OF

409 Δ = − 41+3
√

5
2

3 OK = OF
1
2

“√
Δ + 1+

√
5

2

”
OF ,

A = 2OF
1
2

“√
Δ + 7+3

√
5

2

”
OF ,

B = 4OF
1
2

“√
Δ + −1+3

√
5

2

”
OF

by dK = p2q for a prime q ≡ 1 (mod 4). This assumption guarantees that the
class number of K is odd, which is crucial in the argument of [BY]. It implies
that F̃ = Q(

√
q) and dK̃ = q2p. In Table 3 we listed a few CM extensions of

F = Q(
√

5) satisfying the assumption, including the class number hK , and
a system of representatives for the ideal class group of K.

CM Cycles

We now define CM points on Hilbert modular surfaces analogously to the
CM points on the modular curve Y (1) above. Recall that the Hilbert modular
surface Y (ΓF ) corresponding to ΓF = SL2(OF ) parameterizes isomorphism
classes of triples (A, ı,m), where

(i) A is an abelian surface over C,
(ii) ı : OF → End(A) is a real multiplication by OF ,
(iii) and m : (PA, P+

A ) →
(
d−1
F , d−1,+

F

)
is an OF -linear isomorphism between

the polarization module PA = Homsym
OF

(A,A∨) of A and d−1
F , taking the

subset of polarizations to totally positive elements of d−1
F .
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(See e.g. [Go], Theorem 2.17 and [BY] Section 3.) The moduli interpretation
can be used to construct a model of the Hilbert modular surface Y (ΓF ) over Q,
see [Rap], [DePa], [Ch].

Let Φ = (σ1, σ2) be a CM type of K. A point z = (A, ı,m) ∈ Y (ΓF ) is said
to be a CM point of type (K,Φ) if one of the following equivalent conditions
holds (see [BY] Section 3 for details):

(i) As a point z ∈ H2, there is τ ∈ K such that Φ(τ) = (σ1(τ), σ2(τ)) = z
and such that Λτ = OF τ +OF is a fractional ideal of K.

(ii) (A, ı) is a CM abelian variety of type (K,Φ) with complex multiplication
ı′ : OK ↪→ End(A) such that ı = ı′|OF .

We consider the CM type Φ = {1, σ} of K, where σ is defined by (3.30).
Let CM(K,Φ,OF ) be the CM 0-cycle in Y (ΓF ) of CM abelian surfaces of type
(K,Φ). By the theory of complex multiplication [Sh2], the field of moduli for
CM(K,Φ,OF ) is the reflex field K̃ of (K,Φ). In fact, one can show that the
field of moduli for

CM(K) = CM(K,Φ,OF ) + CM(K,σ3Φ,OF )

is Q (see [BY], Remark 3.5). Therefore, if Ψ is a rational function on Y (ΓF ),
i.e., a Hilbert modular function for ΓF over Q, then Ψ(CM(K)) is a rational
number. The purpose of the following section is to find a formula for this
number, when Ψ is given by a Borcherds product.

CM Values of Borcherds Products

We keep the above assumptions on F and K. We denote by WK the number
of roots of unity in K. For an ideal a of F̃ we consider the representation
number

ρ(a) = #{A ⊂ OK̃ ; NK̃/F̃A = a}

of a by integral ideals of K̃. We briefly write |a| for the norm of a. For a non-
zero element t ∈ d−1

K̃/F̃
and a prime ideal l of F̃ , we put

Bt(l) =

{
(ordl t+ 1)ρ(tdK̃/F̃ l−1) log |l| if l is non-split in K̃,
0 if l is split in K̃ ,

and

Bt =
∑

l

Bt(l) .

We remark that ρ(a) = 0 for a non-integral ideal a, and that for every t �= 0,
there are at most finitely many prime ideals l such that Bt(l) �= 0. In fact,
when t > 0 > t′, then Bt = 0 unless there is exactly one prime ideal l such
that χl(t) = −1, in which case Bt = Bt(l) (see [BY], Remark 7.3). Here
χ =

∏
l χl is the quadratic Hecke character of F̃ associated to K̃/F̃ . The

following formula for the CM values of Borcherds products is proved in [BY].
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Theorem 3.65. Let f =
∑

n�−∞ c(n)qn ∈ W+
0 (p, χp), and assume that

c̃(n) ∈ Z for all n < 0, and c(0) = 0. Then the Borcherds lift Ψ = Ψ(z, f) (see
Theorem 3.44) is a rational function on Y (ΓF ), whose value at the CM cycle
CM(K) satisfies

log |Ψ(CM(K))| =
WK̃

4

∑

m>0

c̃(−m)bm,

where
bm =

∑

t=
n+m

√
q

2p ∈d−1
K̃/F̃

|n|<m√
q

Bt .

Observe that the number of roots of unity WK̃ equals 2 unless p = q = 5,
in which case WK̃ = 10. The theorem shows that the prime factorization of
Ψ(CM(K)) is determined by the arithmetic of the reflex field K̃.

Corollary 3.66. Let the notation be as in Theorem 3.65. Then

Ψ(CM(K)) = ±
∏

l rational prime

lel , (3.31)

where
el =

WK̃

4

∑

m>0

c̃(−m)bm(l) ,

and
bm(l) log l =

∑

l|l

∑

t=
n+m

√
q

2p
∈d−1

K̃/F̃

|n|<m√
q

Bt(l) .

Moreover, when K/Q is cyclic, the sign in (3.31) is positive.

As in the case that Gross and Zagier considered, see Theorem 3.63, we
find that the prime factors of the CM value are small.

Corollary 3.67. Let the notation and assumption be as in Corollary 3.66.
Then el = 0 unless 4pl|m2q− n2 for some m ∈M := {m ∈ Z>0; c̃(−m) �= 0}
and some integer |n| < m

√
q.

Corollary 3.68. Let the notation and assumption be as in Corollary 3.66.
Every prime factor of Ψ(CM(K)) is less than or equal to N2q

4p , where N =
max(M).

We now indicate the idea of the proof of Theorem 3.65. It roughly follows
the analytic proof of Theorem 3.63 given in [GZ], although each step requires
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some new ideas. By the construction of the Borcherds lift and by the results
of Section 3.3, we have

−4 log |Ψ(z, f)| = Φ(z, f) =
∑

m>0

c̃(−m)φm(z) ,

where φm(z) denotes the automorphic Green function for Tm. Consequently,
it suffices to compute φm(CM(K)). Using a CM point, the lattice Z2 ⊕ d−1

F

defining the automorphic Green function can be related to some ideal of the
reflex field K̃ of (K,Φ). In that way, one derives an expression for φm(CM(K))
as an infinite sum involving arithmetic data of K̃/F̃ .

To come up with a finite sum for the CM value φm(CM(K)), we consider
an auxiliary function. It is constructed using an incoherent Eisenstein series
(see e.g. [Ku1]) of weight 1 on F̃ associated to K̃/F̃ . We consider the central
derivative of this Eisenstein series, take its restriction to Q, and compute its
holomorphic projection.

In that way we obtain a holomorphic cusp form h ∈ S+
2 (p, χp) of weight 2.

Its m-th Fourier coefficient is the sum of two parts. One part is the infinite
sum for φm(CM(K)), the other part is a linear combination of the quantity
bm (what we want) and the logarithmic derivative of the Hecke L-series of
K̃/F̃ . Finally, the duality between W+

0 (p, χp) and S+
2 (p, χp) of Theorem 3.49,

applied to f and h, implies a relation for the Fourier coefficients of h, which
leads to the claimed formula.

Notice that the assumption in Theorem 3.65 that the constant term of
f vanishes can be dropped. Then the Borcherds lift of f is a meromor-
phic modular form of non-zero weight, and one can prove a formula for
log ‖Ψ(CM(K), f)‖Pet, where ‖ · ‖Pet denotes the Petersson metric on the
line bundle of modular forms (see [BY] Theorem 1.4).

In a recent preprint [Scho], Schofer obtained a formula for the evalua-
tion of Borcherds products on O(2, n) at CM 0-cycles associated with bi-
quadratic CM fields by means of a different method. It would be interest-
ing to use his results to derive explicit formulas as in Theorem 3.65 for the
values of Hilbert modular functions at CM cycles associated to biquadratic
CM fields. Finally, notice that Goren and Lauter have recently proved re-
sults on the CM values of Igusa genus two invariants using arithmetic meth-
ods [GL].

Examples

We first consider the real quadratic field F = Q(
√

5) and the cyclic CM
extension K = Q(ζ5), where ζ5 = e2πi/5. So p = q = 5. If σ denotes the
complex embedding of K taking ζ5 to ζ2

5 then Φ = {1, σ} is a CM type of K.
We have OK = OF + OF ζ5, and the corresponding CM cycle CM(K,Φ) is
represented by the point (ζ5, ζ2

5 ) ∈ H2.
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In Section 3.2 we constructed some Borcherds products for ΓF . Using the
basis (fm) of W+

0 (p, χp) we see that the Borcherds products

R1(z) = Ψ(z, f6 − 2f1) =
Ψ6

Ψ2
1

,

R2(z) = Ψ(z, f10 − 2f1) =
Ψ10

Ψ2
1

are rational functions on Y (ΓF ) with divisors T6 − 2T1 and T10 − 2T1, re-
spectively. Let us see what the above results say about R1(CM(K)). We have
M = {1, 6} and N = 6. According to Corollary 3.68, the prime divisors of
R1(CM(K)) are bounded by 9. Consequently, only the primes 2, 3, 5, 7 can
occur in the factorization. The divisibility criterion given in Corollary 3.67
actually shows that only 2, 3, 5 can occur. The exact value is given by Corol-
lary 3.66. It is equal to R1(CM(K)) = 220 · 310.

In Table 4 we listed some further CM values of R1 and R2.

Table 4. The case F = Q(
√

5)

q R1(CM(K)) R2(CM(K))

5 (cyclic) 220 · 310 220 · 510

41 214 · 310 · 61 · 73 214 · 59 · 37 · 41
61 220 · 36 · 13 · 97 · 109 220 · 59 · 61
109 220 · 38 · 61 · 157 · 193 220 · 512 · 73
149 220 · 310 · 312 · 37 · 229 220 · 512 · 17 · 113
269 220 · 310 · 13−2 · 372 · 61 · 97 · 349 · 433 220 · 514 · 13−1 · 53 · 73 · 233
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Summary. These are the lecture notes of the lectures on Siegel modular forms at
the Nordfjordeid Summer School on Modular Forms and their Applications. We give
a survey of Siegel modular forms and explain the joint work with Carel Faber on
vector-valued Siegel modular forms of genus 2 and present evidence for a conjecture
of Harder on congruences between Siegel modular forms of genus 1 and 2.

1 Introduction

Siegel modular forms generalize the usual modular forms on SL(2,Z) in that
the group SL(2,Z) is replaced by the automorphism group Sp(2g,Z) of a uni-
modular symplectic form on Z2g and the upper half plane is replaced by the
Siegel upper half plane Hg. The integer g ≥ 1 is called the degree or genus.

Siegel pioneered the generalization of the theory of elliptic modular forms
to the modular forms in more variables now named after him. He was moti-
vated by his work on the Minkowski–Hasse principle for quadratic forms over
the rationals, cf., [96]. He investigated the geometry of the Siegel upper half
plane, determined a fundamental domain and its volume and proved a central
result equating an Eisenstein series with a weighted sum of theta functions.

No doubt, Siegel modular forms are of fundamental importance in number
theory and algebraic geometry, but unfortunately, their reputation does not
match their importance. And although vector-valued rather than scalar-valued
Siegel modular forms are the natural generalization of elliptic modular forms,
their reputation amounts to even less. A tradition of ill-chosen notations may
have contributed to this, but the lack of attractive examples that can be han-
dled decently seems to be the main responsible. Part of the beauty of elliptic
modular forms is derived from the ubiquity of easily accessible examples. The
accessible examples that we have of Siegel modular forms are scalar-valued
Siegel modular forms given by Fourier series and for g > 1 it is difficult to
extract the arithmetic information (e.g., eigenvalues of Hecke operators) from
the Fourier coefficients.
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The general theory of automorphic representations provides a generaliza-
tion of the theory of elliptic modular forms. But despite the obvious merits of
this approach some of the attractive explicit features of the g = 1 theory are
lost in the generalization.

The elementary theory of elliptic modular forms (g = 1) requires little
more than basic function theory, while a good grasp of the elementary the-
ory of Siegel modular forms requires a better understanding of the geom-
etry involved, in particular of the compactifications of the quotient space
Sp(2g,Z)\Hg. A singular compactification was provided by Satake and Baily-
Borel and a smooth compactification by Igusa in special cases and by Mumford
c.s. by an intricate machinery in the general case.

The fact that Sp(2g,Z)\Hg is the moduli space of principally polar-
ized abelian varieties plays an important role in the arithmetic theory of
modular forms. Even for g = 1 one needs the understanding of the ge-
ometry of moduli space as a scheme (stack) over the integers and its co-
homology as Deligne’s proof of the estimate |a(p)| ≤ 2p(k−1)/2 (the Ra-
manujan conjecture) for the Fourier coefficients of a Hecke eigenform of
weight k showed. For quite some time the lack of a well-developed the-
ory of moduli spaces of principally polarized abelian varieties over the in-
tegers formed a serious hurdle for the development of the arithmetic the-
ory. Fortunately, Faltings’ work on the moduli spaces of abelian varieties
has provided us with the first necessary ingredients of the arithmetic the-
ory, both the smooth compactification over Z as well as the Satake compact-
ification over Z. It also gives the analogue of the Eichler–Shimura theorem
which expresses Siegel modular forms in terms of the cohomology of local
systems on Sp(2g,Z)\Hg. The fact that the vector-valued Siegel modular
forms are the natural generalization of the classical elliptic modular forms
becomes apparent if one studies the cohomology of the universal abelian
variety.

Examples of modular forms for SL(2,Z) are easily constructed using Eisen-
stein series or theta series. These methods are much less effective when deal-
ing with the case g ≥ 2, especially if one is interested in vector-valued Siegel
modular forms. Some examples can be constructed using theta series, but it
is not always easy to calculate the Fourier coefficients and more difficult to
extract the eigenvalues of the Hecke operators.

We show that there is an alternative approach that uses the analogue of
the classical Eichler–Shimura theorem. Since cohomology of a variety over
a finite field can be calculated by determining the number of rational points
over extension fields one can count curves over finite fields to calculate traces
of Hecke operators on spaces of vector-valued cusp forms for g = 2. This is
joint work with Carel Faber. It has the pleasant additional feature that our
forms all live in level 1, i.e. on the full Siegel modular group.

We illustrate this by providing convincing evidence for a conjecture of
Harder on congruences between the eigenvalues of Siegel modular forms of
genus 2 and elliptic modular forms.
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In these lectures we concentrate on modular forms for the full Siegel modu-
lar group Sp(2g,Z) and leave modular forms on congruence subgroups aside.
We start with the elementary theory and try to give an overview of the vari-
ous interesting aspects of Siegel modular forms. An obvious omission are the
Galois representations associated to Siegel modular forms.

A good introduction to the Siegel modular group and Siegel modular forms
is Freitag’s book [30]. The reader may also consult the introductory book by
Klingen [61]. Two other references to the literature are the two books [94,95]
by Shimura. Vector-valued Siegel modular forms are also discussed in a paper
by Harris, [46].

Acknowledgements. I would like to thank Carel Faber, Alex Ghitza, Chris-
tian Grundh, Robin de Jong, Winfried Kohnen, Sam Grushevsky, Martin
Weissman and Don Zagier for reading the manuscript and/or providing help-
ful comments. Finally I would like to thank Kristian Ranestad for inviting me
to lecture in Nordfjordeid in 2004.

2 The Siegel Modular Group

The ingredients of the definition of ‘elliptic modular form’ are the group
SL(2,Z), the upper half plane H, the action of SL(2,Z) on H, the concept
of a holomorphic function and the factor of automorphy (cz + d)k. So if we
want to generalize the concept ‘modular form’ we need to generalize these
notions. But the upper half plane can be expressed in terms of the group as
SL(2,Z)/SO(2), where SO(2) = U(1), a maximal compact subgroup, is the
stabilizer of the point i =

√
−1. Therefore, the group is the central object and

we start by generalizing the group. The group SL(2,Z) is the automorphism
group of the lattice Z2 with the standard alternating form 〈 , 〉 with

〈(a, b), (c, d)〉 = ad− bc .

This admits an obvious generalization by taking for g ∈ Z≥1 the lattice Z2g

of rank 2g with basis e1, . . . , eg, f1, . . . , fg provided with the symplectic form
〈 , 〉 with

〈ei, ej〉 = 0, 〈fi, fj〉 = 0 and 〈ei, fj〉 = δij ,

where δij is Kronecker’s delta. The symplectic group Sp(2g,Z) is by definition
the automorphism group of this symplectic lattice

Sp(2g,Z) := Aut(Z2g , 〈 , 〉) .

By using the basis of the e’s and the f ’s we can write the elements of this
group as matrices (

A B
C D

)
,

where A, B, C and D are g × g integral matrices satisfying ABt = BAt,
CDt = DCt and ADt − BCt = 1g. Here we write 1g for the g × g identity
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matrix. For g = 1 we get back the group SL(2,Z). The group Sp(2g,Z) is
called the Siegel modular group (of degree g) and often denoted Γg.

Exercise 1. Show that the conditions on A,B,C and D are equivalent to
Ct ·A−At · C = 0, Dt · B −Bt ·D = 0 and Dt ·A−Bt · C = 1g.

The upper half plane H can be given as a coset space SL(2,R)/K
with K = U(1) a maximal compact subgroup, and this admits a general-
ization, but the desired generalization also admits a description as a half
plane and with this we start: the Siegel upper half plane Hg is defined
as

Hg = {τ ∈ Mat(g × g,C) : τ t = τ, Im(τ) > 0} ,

consisting of g × g complex symmetric matrices which have positive definite
imaginary part (obtained by taking the imaginary part of every matrix entry).
Clearly, we have H1 = H.

An element γ =
(
A B
C D

)
of the group Sp(2g,Z), sometimes denoted by

(A,B;C,D), acts on the Siegel upper half plane by

τ �→ γ(τ) = (Aτ +B)(Cτ +D)−1 . (1)

Of course, we must check that this is well-defined, in particular that Cτ +D
is invertible. For this we use the identity

(Cτ̄ +D)t(Aτ +B) − (Aτ̄ +B)t(Cτ +D) = τ − τ̄ = 2iy , (2)

where we write τ = x + iy with x and y symmetric real g × g matrices. We
claim that det(Cτ + D) �= 0. Indeed, if the equation (Cτ + D)ξ = 0 has
a solution ξ ∈ Cg then equation (2) implies ξ̄tyξ = 0 and by the assumed
positive definiteness of y that ξ = 0.

One can also check directly the identity

(Cτ +D)t(γ(τ) − γ(τ)t)(Cτ +D)

= (Cτ +D)t(Aτ +B) − (Aτ +B)t(Cτ +D) = τ − τ t = 0

that shows that γ(τ) is symmetric. Moreover, again by (2) and this last iden-
tity we find the relation between y′ = Im(γ(τ)) and y

(Cτ̄ +D)ty′(Cτ +D) =
1
2i

(Cτ̄ +D)t(γ(τ) − (γ(τ))t)(Cτ +D) = y

and this shows that y′ = Im(γ(τ)) is positive definite. Using these details
one easily checks that (1) defines indeed an action of Sp(2g,Z), and even of
Sp(2g,R) on Hg.
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The group Sp(2g,R)/{±1} acts effectively on Hg and it is the biholomor-
phic automorphism group of Hg. The action is transitive and the stabilizer of
i 1g is

U(g) :=
{(

A B
−B A

)
∈ Sp(2g,R) : A ·At +B ·Bt = 1g

}
,

the unitary group. We may thus view Hg as the coset space Sp(2g,R)/U(g)
of a simple Lie group by a maximal compact subgroup (which is unique up to
conjugation).

The disguise of H1 as the unit disc {z ∈ C : |z| < 1} also has an ana-
logue for Hg. The space Hg is analytically equivalent to a bounded symmetric
domain

Dg := {Z ∈ Mat(g × g,C) : Zt = Z, Zt · Z < 1g}

and the generalized Cayley transform

τ �→ z = (τ − i1g)(τ + i1g)−1, z �→ τ = i · (1g + z)(1g − z)−1

makes the correspondence explicit. The ‘symmetric’ in the name refers to the
existence of an involution on Hg (or Dg)

τ �→ −τ−1 (z �→ −z)

having exactly one isolated fixed point. Note that we can write Hg also as
Sg+ iS+

g with Sg (resp. S+
g ) the R-vector space (resp. cone) of real symmetric

(resp. real positive definite symmetric) matrices of size g × g.
The group Sp(2g,Z) is a discrete subgroup of Sp(2g,R) and acts properly

discontinuously on Hg, i.e., for every τ ∈ Hg there is an open neighborhood U
of τ such that {γ ∈ Sp(2g,Z) : γ(U) ∩ U �= ∅} is finite. In fact, this follows
immediately from the properness of the map Sp(2g,R) → Sp(2g,R)/U(g).

For g = 1 usually one proceeds after these introductory remarks on the
action to the construction of a fundamental domain for the action of SL(2,Z)
and all the texts display the following archetypical figure.

Siegel (see [97]) constructed also a fundamental domain for g ≥ 2, namely
the set of τ = x+ iy ∈ Hg satisfying the following three conditions:
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1. We have | det(Cτ +D)| ≥ 1 for all (A,B;C,D) ∈ Γg;
2. the matrix y is reduced in the sense of Minkowski;
3. the entries xij of x satisfy |xij | ≤ 1/2.

Here Minkowski reduced means that y satisfies the two properties 1) htyh ≥
ykk (k = 1, . . . , g) for all primitive vectors h in Zg and 2) yk,k+1 ≥ 0 for
0 ≤ k ≤ g− 1. Already for g = 2 the boundary of this fundamental domain is
complicated; Gottschling found that it posesses 28 boundary pieces, cf., [39],
and the whole thing does not help much to understand the nature of the
quotient space Sp(2g,Z)\Hg.

The group Sp(2g,Z) does not act freely on Hg, but the subgroup

Γg(n) := {γ ∈ Sp(2g,Z) : γ ≡ 12g (mod n)}

acts freely if n ≥ 3 as is easy to check, cf. [89]. The quotient space (orbit
space)

Yg(n) := Γg(n)\Hg

is then for n ≥ 3 a complex manifold of dimension g(g + 1)/2. Note that the
finite group Sp(2g,Z/nZ) acts on Yg(n) as a group of biholomorphic auto-
morphisms and we can thus view

Sp(2g,Z)\Hg

as an orbifold (quotient of a manifold by a finite group).
The Poincaré metric on the upper half plane also generalizes to the Siegel

upper half plane. The corresponding volume form is given by

(det y)−(g+1)
∏

i≤j
dxij dyij

which is ∂∂ log det Im(τ)g . The volume of the fundamental domain was calcu-
lated by Siegel, [98]. If we normalize the volume such that it gives the orbifold
Euler characteristic the result is (cf. Harder [44])

vol(Sp(2g,Z)\Hg) = ζ(−1)ζ(−3) · · · ζ(1 − 2g)

with ζ(s) the Riemann zeta function. In particular, for n ≥ 3 the Euler number
of the manifold Γg(n)\Hg equals [Γg(1) : Γg(n)]ζ(−1) · · · ζ(1 − 2g).

We first present two exercises for the solution of which we refer to [30].

Exercise 2. Show that the Siegel modular group Γg is generated by the elem-

ents
(

1g s
0 1g

)
with s = st symmetric and the element

(
0 1g

−1g 0

)
.

Exercise 3. Show that Sp(2g,Z) is contained in SL(2g,Z).
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We close with another model of the domain Hg that can be obtained as
follows. Extend scalars of our symplectic lattice (Z2g , 〈 , 〉) to C and let Yg be
the Lagrangian Grassmann variety parametrizing totally isotropic subspaces
of dimension g:

Yg := {L ⊂ C2g : dim(L) = g, 〈x, y〉 = 0 for all x, y ∈ L} .

Since the group Sp(2g,C) acts transitively on the set of totally isotropic sub-
spaces we may identify Yg with the compact manifold Sp(2g,C)/Q, where Q
is the parabolic subgroup that fixes the first summand Cg. Consider now in
Yg the open set Y +

g of Lagrangian subspaces L such that −i〈x, x̄〉 > 0 for
all non-zero x in L. Then Y +

g is stable under the action of Sp(2g,R) and the
stabilizer of a point is isomorphic to the unitary group U(g). A basis of such

an L is given by the columns of a unique 2g × g matrix
(
−1g
τ

)
with τ ∈ Hg

and this embeds Hg in Yg as the open subset Y +
g ; for g = 1 we get the upper

half plane in P1. The manifold Yg is called the compact dual of Hg.

Remark 1. Just as for g = 1 we could consider congruence subgroups of
Sp(2g,Z), like for example Γg(n), the kernel of the natural homomorphism
Sp(2g,Z) → Sp(2g,Z/nZ) for natural numbers n. We shall stick to the full
symplectic group Sp(2g,Z) here.

3 Modular Forms

To generalize the notion of modular form as we know it for g = 1 we still
have to generalize the ‘automorphy factor’ (cz + d)k. To do this we consider
a representation

ρ : GL(g,C) → GL(V )

with V a finite-dimensional C-vector space.
For reasons that become clear later, it is useful to provide V with a her-

mitian metric ( , ) such that (ρ(g)v1, v2) = (v1, ρ(gt)v2) and we shall put
‖v‖ = (v, v)1/2. Such a hermitian metric can always be found and is unique
up to a scalar for irreducible representations.

Definition 1. A holomorphic map f : Hg → V is called a Siegel modular
form of weight ρ if

f(γ(τ)) = ρ(Cτ +D)f(τ)

for all γ =
(
A B
C D

)
∈ Sp(2g,Z) and all τ ∈ Hg, plus for g = 1 the requirement

that f is holomorphic at ∞.

Before we proceed, a word about notations. The subject has been plagued with
unfortunate choices of notations, and the tradition of using capital letters
for the matrix blocks of elements of the symplectic group is one of them.
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I propose to use lower case letters, so I will write f(γ(τ)) = ρ(cτ + d)f(τ) for
all γ = (a, b; c, d) ∈ Γg for our condition.

The modular forms we consider here are vector-valued modular forms. As
it turns out, the holomorphicity condition is not necessary for g > 1, see the
Koecher principle hereafter.

Modular forms of weight ρ form a C-vector space Mρ = Mρ(Γg) and we
shall see later (in Section 13) that all the Mρ are finite-dimensional. If ρ is
a direct sum of two representations ρ = ρ1 ⊕ ρ2 then Mρ is isomorphic to the
direct sum Mρ1 ⊕Mρ2 and this allows us to restrict ourselves to studying Mρ

for the irreducible representations of GL(g,C).
As is well-known (see [34], but see also the later Section 12), the irreducible

finite-dimensional representations of GL(g,C) correspond bijectively to the g-
tuples (λ1, . . . , λg) of integers with λ1 ≥ λ2 ≥ · · · ≥ λg, the highest weight
of the representation ρ. That is, for each irreducible V there exists a unique
1-dimensional subspace 〈vρ〉 of V such that ρ(diag(a1, . . . , ag)) acts on vρ by
multiplication by

∏g
i=1 a

λi

i . For example, the g-tuple (1, 0, . . . , 0) corresponds
to the tautological representation ρ(x) = x for x ∈ GL(g,C), while the deter-
minant representation corresponds to λ1 = . . . = λg = 1. Tensoring a given
irreducible representation with the k-th power of the determinant changes the
λi to λi + k. We thus can arrange that λg = 0 or that λg ≥ 0 (i.e. that the
representation is ‘polynomial’). Let R be the set of isomorphism classes of
representations of GL(g,C). This set forms a ring with ⊕ as addition and ⊗
as multiplication. It is called the representation ring of GL(g,C).

For g = 1 one usually forms a graded ring of modular forms by taking
M∗(Γ1) = ⊕Mk(Γ1). We can try do something similar for g > 1 and try to
make the direct sum ⊕ρ∈RMρ(Γg) into a graded ring. But of course, this is
a huge ring, even for g = 1 much larger than M∗(Γ1) since it involves also the
reducible representations and it is not really what we want.

The classes of the irreducible representations of GL(g,C) form a subset of
all classes of representations. For g = 1 and g = 2 the fact is that the tensor
product of two irreducible representations is a direct sum of irreducible repre-
sentations with multiplicity 1. In fact, for g = 1 the tensor product of the irre-
ducible representations ρk1 and ρk2 of degree k1+1 and k2+1 is the irreducible
representation ρk1+k2 . For g = 2, a case that will play a prominent role in these
lecture notes, we let ρj,k denote the irreducible representation of GL(2,C) that
is Symj(W )⊗ det(W )k with W the standard 2-dimensional representation; it
corresponds to highest weight (λ1, λ2) = (j + k, k). Then there is the formula

ρj1,k1 ⊗ ρj2,k2
∼=

min(j1,j2)∑

r=0

ρj1+j2−2r,k1+k2+r .

So we can decompose Mρj1,k1
as a direct sum

∑min(j1,j2)
r=0 Mρj1+j2−2r,k1+k2+r

,
but this is not canonical as it depends upon a choice of isomorphism in the
above formula. Nevertheless, this decomposition is useful to construct modular
forms in new weights by multiplying modular forms.
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To make ⊕ρ∈IrrMρ(Γ2) into a ring requires a consistent choice for all
these identifications. We can avoid this by viewing the symmetric power
Symj(W ) as a space of polynomials of degree j in two variables and then
by remarking that multiplication of polynomials defines a canonical map
Symj1(W ) ⊗ Symj2(W ) → Symj1+j2(W ). Using this and the obvious map
det(W )k1 ⊗ det(W )k2 → det(W )k1+k2 the direct sum ⊕ρ∈IrrMρ(Γ2) be-
comes a ring; we just ‘forgot’ the terms in the above sum with r > 0. For
g ≥ 3 the tensor products come in general with multiplicities, given by
Littlewood–Richardson numbers. Nevertheless, one can define a ring struc-
ture on ⊕ρ∈IrrMρ(Γg) that extends the multiplication of modular forms for
g = 1 and the one given here for g = 2 as Weissman shows. We refer to his
interesting paper, [105].

For every g one obtains a subring of the representation ring by taking
the powers of the determinant det : GL(g,C) → C∗. This leads to a ring of
‘classical’ modular forms.

Definition 2. A classical Siegel modular form of weight k (and degree g) is
a holomorphic function f : Hg → C such that

f(γ(τ)) = det(cτ + d)kf(τ)

for all γ = (a, b; c, d) ∈ Sp(2g,Z) (with for g = 1 the usual holomorphicity
requirement at ∞).

Classical Siegel modular forms are also known as scalar-valued Siegel
modular forms.

Let Mk = Mk(Γg) be the vector space of classical Siegel modular forms
of weight k. Together these spaces form a graded ring M cl := ⊕Mk of M of
classical Siegel modular forms. Of course, for g = 1 the notion of classical
modular form reduces to the usual notion of modular form on SL(2,Z).

4 The Fourier Expansion of a Modular Form

The classical Fourier expansion of a modular form on SL(2,Z) has an analogue.
To define it we need the following definition.

Definition 3. A symmetric g × g-matrix n ∈ GL(g,Q) is called half-integral
if 2n is an integral matrix the diagonal entries of which are even.

Every half-integral g × g-matrix n defines a linear form with integral co-
efficients in the coordinates τij with 1 ≤ i ≤ j ≤ g of Hg, namely

Tr(nτ) =
g∑

i=1

niiτii + 2
∑

1≤i<j≤g
nijτij

and every linear integral combination of the coordinates is of this form.



190 G. van der Geer

Let us write τ = x+ iy with x and y symmetric g× g matrices. A function
f : Hg → C that is periodic in the sense that f(τ + s) = f(τ) for all integral
symmetric g × g-matrices s admits a Fourier expansion

f(τ) =
∑

nhalf-integral

a(n)e2πiTr(nτ)

with a(n) ∈ C given by

a(n) =
∫

x mod 1

f(τ)e−2πiTr(nτ)dx

with dx the Euclidean volume of the space of x-coordinates and the integral
runs over −1/2 ≤ xij ≤ 1/2. This is a series which is uniformly convergent on
compact subsets. If f is a vector-valued modular form in Mρ we have a similar
Fourier series

f(τ) =
∑

nhalf-integral

a(n)e2πiTr(nτ)

with a(n) ∈ V . One could also use the suggestive notation

f(τ) =
∑

nhalf-integral

a(n) qn,

where we write qn for e2πiTr(nτ). Moreover, we have the property

a(utnu) = ρ(ut) a(n) for all u ∈ GL(g,Z) . (3)

Indeed, we have

a(utnu) =
∫

x mod 1

f(τ)e−2πiTr(utnuτ)dx

= ρ(ut)
∫

x mod 1

f(uτut)e−2πiTr(nuτut)dx

= ρ(ut)a(n) .

A direct corollary of formula (3) (proof left to the reader) restricts the weight
of non-zero forms.

Corollary 1. A classical Siegel modular form of weight k with kg ≡ 1( mod 2)
vanishes.

A basic result is the following theorem.

Theorem 1. Let f ∈Mρ(Γg). Then f is bounded on any subset of Hg of the
form {τ ∈ Hg : Im(τ) > c · 1g} with c > 0.

Proof. For g = 1 the boundedness comes from the requirement in the def-
inition that the Fourier expansion f =

∑
n a(n)qn has no negative terms.

So suppose that g ≥ 2 and let f =
∑

n a(n)e2πiTrnτ ∈ Mρ(Γg). Since f
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converges absolutely on Hg we see by substitution of τ = i · 1g that there
exists a constant c > 0 such that for all half-integral matrices we have
|a(n)| ≤ ce2πTrnτ . We first will show that a(n) vanishes for n that are not
positive semi-definite.

Suppose that n is not positive semi-definite. Then there exists a primitive
integral (column) vector ξ such that ξtnξ < 0. We can complete ξ to a uni-
modular matrix u. Using the relation a(utnu) = ρ(ut)a(n) and replacing n by
utnu we may assume that entry n11 of n is negative. Consider now for m ∈ Z

the matrix

v =

⎛

⎝
1 m
0 1

1g−2

⎞

⎠ ∈ GL(g,Z) ,

where the omitted entries are zero. We have

|a(n)| = |ρ(vt)−1| |a(vtnv)| ≤ ce2πTrvtnv .

But Tr(vtnv) = Tr(v) + n11m
2 + 2n12m and if m → ∞ then this expression

goes to −∞, so |a(n)| = 0.
We conclude that f =

∑
n≥0 a(n)e2πiTrnτ . We can now majorize by the

value at c i · 1g of f , viz.
∑

n≥0 |a(n)|e−2πTrnc, uniformly in τ on {τ ∈
Hg : Im(τ) > c · 1g}.
The proof of this theorem shows the validity of the so-called Koecher principle
announced above.

Theorem 2. (Koecher Principle) Let f =
∑
n a(n)qn ∈ Mρ(Γg) with qn =

e2πiTr(nτ) be a modular form of weight ρ. Then a(n) = 0 if the half-integral
matrix n is not positive semi-definite.

The Koecher principle was first observed in 1928 by Götzky for Hilbert modu-
lar forms and in general by Koecher in 1954, see [63] and Bruinier’s lectures.

Corollary 2. A classical Siegel modular form of negative weight vanishes.

Proof. Let f ∈ Mk(Γg) with k < 0. Then the function h = det(y)k/2|f(τ)|
is invariant under Γg since Im(γ(τ)) = (cτ + d)−t(Im(τ))(cτ + d)

−1
. It is not

difficult to see that a fundamental domain is contained in {τ ∈ Hg : Tr(x2) <
1/c, y > c · 1g} for some suitable c. This implies that for negative k the
expression det(y)k/2 is bounded on a fundamental domain, and by the Koecher
principle f is bounded on {τ ∈ Hg : det y ≥ c}. It follows that h is bounded
on Hg, say h ≤ c′ and with

a(n)e−2πTrny =
∫

x mod 1

f(τ)e−2πTrnxdx

we get
|a(n)|e−2πTrny ≤ sup

x mod 1
|f(x+ iy)| ≤ c′ det y−k/2 .

If we let y → 0 then for k < 0 we see |a(n)| = 0 for all n ≥ 0.
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This corollary admits a generalization for vector-valued Siegel modular forms,
cf., [32]:

Proposition 1. Let ρ be a non-trivial irreducible representation of GL(g,C)
with highest weight λ1 ≥ . . . ≥ λg. If Mρ �= {0} then we have λg ≥ 1.

One proves this by taking a totally real field K of degree g over Q and by
identifying the symplectic space OK ⊕ O∨

K (with O∨
K the dual of OK with

respect to the trace) with our standard symplectic space (Z2g , 〈 , 〉). This
induces an embedding SL(2, OK) → Sp(2g,Z) and a map SL(2, OK)\Hg

1 →
Sp(2g,Z)\Hg. Pulling back Siegel modular forms yields Hilbert modular forms
on SL(2, OK). Now use that a Hilbert modular form of weight (k1, . . . , kg)
vanishes if one of the ki ≤ 0, cf., [35]. By varying K one sees that if λg ≤ 0
then a non-constant f vanishes on a dense subset of Hg.

5 The Siegel Operator and Eisenstein Series

Since modular forms f ∈ Mρ(Γg) are bounded in the sets of the form {τ ∈
Hg : Im(τ) > c · 1g} we can take the limit.

Definition 4. We define an operator Φ on Mρ(Γg) by

Φf = lim
t→∞ f

(
τ ′ 0
0 it

)
with τ ′ ∈ Hg−1, t ∈ R.

In view of the convergence we can also apply this limit to all terms in the
Fourier series and get

(Φf)(τ ′) =
∑

n′≥0

a

(
n′ 0
0 0

)
e2πiTr(n′τ ′) .

The values of Φf generate a subspace V ′ ⊆ V that is invariant under the
action of the subgroup of matrices {(a, 0; 0, 1): a ∈ GL(g − 1,C)} and that
defines a representation ρ′ of GL(g − 1,C). The operator Φ defined on Siegel
modular forms of degree g is called the Siegel operator and defines a linear
map Mρ(Γg) →Mρ′(Γg−1). If ρ is the irreducible representation with highest
weight (λ1, . . . , λg) then Φ maps Mρ(Γg) to Mρ′(Γg−1) with ρ′ the irreducible
representation of GL(g − 1,C) with highest weight (λ1, . . . , λg−1).

Definition 5. A modular form f ∈ Mρ is called a cusp form if Φf = 0. The
subspace of Mρ of cusp forms is denoted by Sρ = Sρ(Γg).

Exercise 4. Show that a modular f =
∑
a(n)e2πiTr(nτ) ∈Mρ is a cusp form

if and only if a(n) = 0 for all semi-definite n that are not definite.
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We can apply the Siegel operator repeatedly (say r ≤ g times) to a Siegel
modular form on Γg and one thus obtains a Siegel modular form on Γg−r. If
ρ is irreducible with highest weight (λ1, . . . , λg) and ΦF = f �= 0 for some
F ∈ Mρ(Γg) then necessarily λg ≡ 0(mod2) because with γ also −γ lies
in Γg.

Let now f1 and f2 be modular forms of weight ρ, one of them a cusp form.
Then we define the Petersson product of f1 and f2 by

〈f1, f2〉 =
∫

F

(ρ(Im(τ))f1(τ), f2(τ))dτ ,

where dτ = det(y)−(g+1)
∏
i≤j dxijdyij is an invariant measure on Hg, F is

a fundamental domain for the action of Γg on Hg and the brackets ( , ) refer
to the Hermitian product defined in Section 3. One checks that it converges
exactly because at least one of the two forms is a cusp form. Furthermore, we
define

Nρ = S⊥
ρ ,

for the orthogonal complement of Sρ and then have an orthogonal decompo-
sition Mρ = Sρ ⊕Nρ.

Just as in the case g = 1 one can construct modular forms explicitly using
Eisenstein series. We first deal with the case of classical Siegel modular forms.
Let g ≥ 1 be the degree and let r be a natural number with 0 ≤ r ≤ g. Suppose
that f ∈ Sk(Γr) is a (classical Siegel modular) cusp form of even weight k.

For a matrix
(
τ1 z
z τ2

)
with τ1 ∈ Hr and τ2 ∈ Hg−r we write τ∗ = τ1 ∈ Hr.

(For r = 0 we let τ∗ be the unique point of H0.) If k is positive and even we
define the Klingen Eisenstein series, a formal series,

Eg,r,k(f) :=
∑

A=(a,b;c,d)∈Pr\Γg

f((aτ + b)(cτ + d)−1)∗) det(cτ + d)−k ,

where Pr is the subgroup

Pr :=

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

a′ 0 b′ ∗
∗ u ∗ ∗
c′ 0 d′ ∗
0 0 0 u−t

⎞

⎟
⎟
⎠ ∈ Γg :

(
a′ b′

c′ d′

)
∈ Γr, u ∈ GL(g − r,Z)

⎫
⎪⎪⎬

⎪⎪⎭
.

For an interpretation of this subgroup we refer to Section 11. In case r = 0, f
constant, say f = 1, we get the old Eisenstein series

Eg,0,k =
∑

(a,b;c,d)

det(cτ + d)−k ,

where the summation is over a full set of representatives for the cosets
GL(g,Z)\Γg.
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Theorem 3. Let g ≥ 1 and 0 ≤ r ≤ g and k > g + r + 1 be integers with k
even. Then for every cusp form f ∈ Sk(Γr) the series Eg,r,k(f) converges to
a classical Siegel modular form of weight k in Mk(Γg) and Φg−rEg,r,k(f) = f .

This theorem was proved by Hel Braun1 in 1938 for r = 0 and k > g + 1.
The Fourier coefficients of these Eisenstein series were determined by

Maass, see [70]. Often we shall restrict the summation over co-prime (c, d)
in order to avoid an unnecessary factor.

Corollary 3. The Siegel operator Φ : Mk(Γg) → Mk(Γg−1) is surjective for
even k > 2g.

Weissauer improved the above result and proved that Φr is surjective if
k > (g+ r+3)/2, see [107]. He also treated the case of vector-valued modular
forms and showed that the image Φ(Mρ(Γg)) contains the space of cusp forms
Sρ′(Γg−1) if k = λg ≥ g + 2, see loc. cit. p. 87.

If k is odd we have no good Eisenstein series; for example look at
the Siegel operator Mk(Γg) → Mk(Γg−1) for k ≡ g ≡ 1 (mod2). Then
Mk(Γg) = (0) while the target space Mk(Γg−1) is non-zero for sufficiently
large k (e.g. M35(Γ2) �= (0) as we shall see later).

Just as for g = 1 one can construct Poincaré series and use these to
generate the spaces of cusp forms if the weight is sufficiently high. These
Poincaré series behave well with respect to the Petersson product. We refer
to [61], Ch. 6, or [8] for the general setting.

6 Singular Forms

A particularity of g > 1 are the so-called singular modular forms.

Definition 6. A modular form f =
∑

n a(n)e2πiTrnτ ∈ Mk(Γg) is called sin-
gular if a(n) �= 0 implies that n is a singular matrix (det(n) = 0).

Modular forms of small weight are singular as the following theorem shows,
see [106].

Theorem 4. (Freitag, Saldaña, Weissauer) Let ρ be irreducible with highest
weight (λ1, . . . , λg). A non-zero modular form f ∈ Mρ(Γg) is singular if and
only if 2λg < g.

In particular, there are no cusp forms of weight 2λg < g. One defines the
co-rank of an irreducible representation as #{1 ≤ i ≤ g : λi = λg}. For
a modular form f =

∑
n a(n) exp(2πiTrnτ) ∈ Mρ(Γg), Weissauer introduced

the rank and co-rank of f by
1 Hel Braun was a student of Carl Ludwig Siegel (1896–1981), the mathematician

after whom our modular forms are named. She sketches an interesting portrait of
Siegel in [16]
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rank(f) = max{rank(n) : a(n) �= 0}

and
co-rank(f) = g − min{rank(n) : a(n) �= 0} .

In particular, modular forms of rank <g are singular while cusp forms have
co-rank 0 and Siegel–Eisenstein forms Eg,0,k have co-rank g; Φ applied k+ 1
times to forms of co-rank k should be zero. Weissauer proved (see [106]) for
irreducible ρ that co-rank(f) ≤ co-rank(ρ) and also that Mρ(Γg) = (0) if
λg ≤ g/2 − co-rank(ρ). More precisely, he proved

Theorem 5. Let ρ = (λ1, . . . , λg) be an irreducible representation of co-rank
< g − λg. If #{i : 1 ≤ i ≤ g, λi = λg + 1} < 2(g − λg − co-rank (ρ)) then
Mρ = (0).

Finally, Duke and Imamoǧlu prove in [24] that there are no cusp forms of
small weights; for example, S6(Γg) = (0) for all g.

7 Theta Series

Besides Eisenstein series one can construct Siegel modular forms using theta

series. We begin with the so-called theta-constants. Let ε =
(
ε′

ε′′

)
with ε′, ε′′ ∈

{0, 1}g and consider the rapidly converging series

θ[ε] =
∑

m∈Zg

exp 2πi

{(
m+

1
2
ε′
)t
τ

(
m+

1
2
ε′
)

+
1
2

(
m+

1
2
ε′
)t

(ε′′)

}

.

This vanishes identically if ε is odd, that is, if ε′(ε′′)t is odd. The other
2g−1(2g +1) cases (the ‘even’ ones) yield the so-called even theta characteris-
tics. These are modular forms on a level 2 congruence subgroup of Sp(2g,Z)
of weight 1/2, cf. [56]. These can be used to construct classical Siegel modular
forms on Sp(2g,Z). For example, for g = 1 one has

(
θ[

0
0]θ[

0
1]θ[

1
0]
)8

= 28Δ ∈ S12(Γ1) .

For g = 2 the product −2−14
∏
θ[ε]2 of the squares of the ten even theta

characteristics gives a cusp form χ10 of weight 10 on Sp(4,Z), cf. [52–54].
Similarly, an expression

(∏
θ[ε])

∑
±(θ[ε1]θ[ε2]θ[ε3]

)20

,

where the product is over the even theta characteristics and the sum is over so-
called azygous triples of theta characteristics (i.e., triples such that ε1+ε2+ε3
is odd) defines (up to a normalization −2−395−3i) a cusp form χ35 of weight 35
on Sp(4,Z). Similarly, for g = 3 the product of the 36 even theta characteristics
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defines a cusp form of weight 18 on Sp(6,Z). The reason why one needs such
a complicated expression is that the theta characteristics are modular forms
on a subgroup Γg(4, 8) of Sp(2g,Z) and the quotient group Sp(2g,Z)/Γg(4, 8)
permutes them and creates signs in addition so that we need a sort of sym-
metrization to get something invariant.

Another source of Siegel modular forms are theta series associated to even
unimodular lattices. Let B be a positive definite symmetric even unimodular
matrix of size r ≡ 0(mod 8). We denote by Hk(r, g) the space of harmonic
polynomials P : Cr×g → C satisfying for M ∈ GL(g,C) the identity P (zM) =
det(M)kP (z). Recall that harmonic means that

∑
i,j ∂

2/∂z2
ij P (z) = 0 if zij

are the coordinates on Cr×g. For a pair (B,P ) with P ∈ Hk(r, g) we set

θB,P (τ) =
∑

A∈Zr×g

P (
√
BA)eπiTr(AtBAτ) ,

where
√
B is a positive matrix with square B. Then θB,P is a classical Siegel

modular form in Mk+r/2(Γg), see [30]. Such theta series for P ∈ Hk−r/2,g and
B as above span a subspace of Mk(Γg) that is invariant under the Hecke-
operators that will be introduced later, cf. Section 16. There are analogues
of these that give vector-valued Siegel modular forms if we require that P is
a vector-valued polynomial satisfying the relation P (zM) = ρ(M)P (z). See
also Section 25 and [48, 49] for an example.

Finally, we would like to make a reference to Siegel’s Hauptsatz [96]
(or [30], p. 285) on representations of quadratic forms by quadratic forms
which can be viewed as an identity between an Eisenstein series and a weighted
sum of theta series, and to its far-reaching generalizations, cf. [68].

8 The Fourier–Jacobi Development
of a Siegel Modular Form

As we saw above, just as for g = 1 we have a Fourier expansion of a Siegel
modular form f =

∑
n≥0 a(n)e2πiTr(nτ). But for g > 1 there are other de-

velopments that provide more information, like the so-called Fourier–Jacobi
development, a concept due to Piatetski–Shapiro.

We consider classical Siegel modular forms of weight k on Γg. We write
τ ∈ Hg as

τ =
(
τ ′ z
zt τ ′′

)
with τ ′ ∈ H1 , z ∈ Cg−1and τ ′′ ∈ Hg−1 . (4)

From the definition of modular form it is clear that f is invariant under
τ ′ �→ τ ′ + b for b ∈ Z (given by an element of Sp(2g,Z)), hence we have
a Fourier series

f =
∞∑

m=0

φm(τ ′′, z)e2πimτ
′
.
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Here the function φm is a holomorphic function on Hg−1 × Cg−1 satisfying
certain transformation rules. More generally, if we split τ as in (4) but with
τ ′ ∈ Hr, z ∈ Cr(g−r) and τ ′′ ∈ Hg−r we find a development

∑

m

φm(τ ′′, z)e2πiTr(mτ ′) ,

where the sum is over positive semi-definite half-integral matrices r× r matri-
ces m and the functions φm are holomorphic on Hr × Cr(g−r). For r = g
we get back the Fourier expansion and for r = 1 we get what is called the
Fourier–Jacobi development.

For ease of explanation and to simplify matters we start with g = 2. Then
the function φm(τ ′, z) turns out to be a Jacobi form of weight k and index m,
i.e., φm ∈ Jk,m which amounts to saying that it satisfies

1. φm((aτ ′ + b)/(τ ′ + d), z/(cτ ′ + d)) = (cτ ′ + d)ke2πimcz
2/(cτ ′+d)φm(τ ′, z),

2. φm(τ ′, z + λτ ′ + μ) = e−2πim(λ2τ ′+2λz)φm(τ ′, z),
3. φm has a Fourier expansion of the form

φm =
∞∑

n=0

∑

r∈Z, r2≤4mn

c(n, r)e2π(nτ ′+rz) .

This gives a relation between Siegel modular forms for genus 2 and Jacobi
forms (see [26]) that we shall exploit later. In the general case, if we split τ as

τ =
(
τ ′ z
zt τ ′′

)
with τ ′ ∈ Hr, z ∈ Cr(g−r) and τ ′′ ∈ Hg−r

and a symmetric matrix n as
(
n′ ν
νt n′′

)
and if we use the fact that Tr(nτ) =

Tr(n′τ ′) + 2Tr(νz) + Tr(n′′τ ′′) then we can decompose the Fourier series of
f ∈Mρ(Γg) as ∑

n′′≥0

φn′′ (τ ′, z)e2πiTr(n′′τ ′′)

with V -valued holomorphic functions φn′′ (τ ′, z) that satisfy the rules

1. For λ, μ ∈ Zg we have

φn′′ (τ ′, z + τ ′λ+ μ) = ρ

((
1r −λ
0 1g−r

))
e−2πiTr(2λtz+λtτ ′λ)φn′′(τ ′, z) .

2. For γ′ = (a′, b; c′, d′) ∈ Γg−1 we have

φn′′ (γ′(τ ′), (c′τ ′ + d′)−tz) =

e2πiTr(n′′zt(c′τ ′+d′)−1c′z)ρ

((
c′τ ′ + d′ c′z

0 1g−r

))
φn′′(τ ′, z) .

3. φn′′ (τ ′, z) is regular at infinity.
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The last condition means that φn′′(τ ′, z) has a Fourier expansion φn′′(τ ′, z) =
∑
c(m, r) exp(2πiTr(mτ ′ +2rtz)) for which c(m, r) �= 0 implies that

(
m r
rt n′′

)

is positive semi-definite. A holomorphic V -valued function φ(τ ′, z) satisfying
1), 2) and 3) is called a Jacobi form of weight (ρ′, n′′). The sceptical reader
may frown upon this unattractive set of transformation formulas, but there
is a natural geometric explanation for this transformation behavior that we
shall see in Section 11.

9 The Ring of Classical Siegel Modular Forms
for Genus Two

So far we have not met any striking examples of Siegel modular forms. To
convince the reader that the subject is worthy of his attention we turn to the
first non-trivial case: classical Siegel modular forms of genus 2.

For g = 1 we know the structure of the graded ring M∗(Γ1) = ⊕kMk(Γ1).
It is a polynomial ring generated by the Eisenstein series e4 = E

(1)
4 and

e6 = E
(1)
6 and the ideal of cusp forms is generated by the famous cusp form

Δ = (e34 − e26)/1728 of weight 12.
In comparison to this our knowledge of the graded ring ⊕ρ∈IrrMρ of Siegel

modular forms for g = 2 is rather restricted and most of what we know con-
cerns classical Siegel modular forms. A first basic result was the determination
by Igusa [52] of the ring of classical Siegel modular forms for g = 2. We now
know also the structure of the ring of classical Siegel modular forms for g = 3,
a result of Tsuyumine, [102].

Recall that we have the Eisenstein Series E(g)
k ∈Mk(Γg) for k > g + 1. In

particular, for g = 2 we have E4 = E
(2)
4 ∈ M4(Γ2) and E6 = E

(2)
6 ∈ M6(Γ2).

Let us normalize them here so that

Ek =
∑

(c,d)

det(cτ + d)−k ,

where the sum is over non-associated pairs of co-prime symmetric integral
matrices (non-associated w.r.t. to the multiplication on the left by GL(g,Z)).
The Fourier expansion of these modular forms is known. If we write τ =(
τ1 z
z τ2

)
then

Ek =
∑

N

a(N)e2πiTr(Nτ) ,

with constant term 1 and for non-zero N =
(
n r/2
r/2 m

)
the coefficient a(N)

given as

a(N) =
∑

d|(n,r,m)

dk−1H

(
k − 1,

4mn− r2

d2

)
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with H(k − 1, D) Cohen’s function, i.e., H(k − 1, D) = L−D(2 − k), where
LD(s) = L(s,

(
D
)
) is the Dirichlet L-series associated to D if D is 1 or

a discriminant of a real quadratic field, cf., [26], p. 21. (This H(k − 1, D) is
essentially a class number.) Explicitly we have with qj = e2πiτj and ζ = e2πiz

the developments (cf., [26])

E4 = 1 + 240(q1 + q2)+2160
(
q21 + q22

)

(240 ζ−2+13440 ζ−1 + 30240 + 13440 ζ + 240 ζ2)q1q2 + . . .

and

E6 = 1 − 504(q1 + q2) − 16632
(
q21 + q22

)
+

+(−504 ζ−2 + 44352 ζ−1 + 166320 + 44352 ζ − 504 ζ2)q1q2 + . . . .

Under Siegel’s operator Φ : Mk(Γ2) →Mk(Γ1) the Eisenstein series Ek on Γ2

maps to the Eisenstein series ek on Γ1 for k ≥ 4. In particular, the modular
form E10 − E4E6 maps to e10 − e4e6, and this is zero since dimM10(Γ1) = 1
and the ek are normalized so that their Fourier expansions have constant
term 1. We thus find a cusp form. Similarly, E12 − E2

6 defines a cusp form of
weight 12 on Γ2. To see that these are not zero we restrict to the ‘diagonal’
locus as follows.

Consider the map δ : H1 × H1 → H2 given by (τ1, τ2) �→
(
τ1 0
0 τ2

)
.

There is a corresponding map SL(2,Z) × SL(2,Z) → Sp(4,Z) by sending(
a b
c d

)
,

(
a′ b′

c′ d′

)
to (A,B;C,D) (difficult to avoid capital letters here) with

A =
(
a 0
0 a′

)
, etc. that induces δ (on (SL(2,R)/U(1))2 → Sp(4,R)/U(2)). If

we use the coordinates
τ =

(
τ1 z
z τ2

)
∈ H2

then the image of the map δ is given by z = 0 and it is the fixed point locus of
the involution on H2 given by (τ1, z, τ2) �→ (τ1,−z, τ2) induced by the element
(A,B;C,D) with A = (1, 0; 0,−1) = D and B = C = 0.

An element F ∈Mk(Γ2) can be developed around this locus z = 0

F = f(τ1, τ2)zn +O(zn+1) for some n ∈ Z≥0 . (5)

It is now easy to check that

1. f(τ1, τ2) ∈Mk+n(Γ1) ⊗Mk+n(Γ1);
2. f(τ2, τ1) = (−1)kf(τ1, τ2);
3. f(τ1,−z, τ2) = (−1)kf(τ1, z, τ2).

the first by looking at the action of SL(2,Z) × SL(2,Z) and the second by
applying the involution (A,B;C,D) with A = D = (0, 1; 1, 0) and B = C = 0
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which interchanges τ1 and τ2 and the last by using the involution z �→ −z.
The idea of developing along the diagonal locus was first used by Witt, [108].

Developing E10 − E4E6 along z = 0 and writing qj = e2πiτj one finds
cq1q2z

2 + O(z3), with c �= 0, so we normalize to get a cusp form χ10 =
E

(1)
10 (τ1) ⊗ E

(1)
10 (τ2)z2 + O(z3). Similarly, the form E

(2)
12 − (E(2)

6 )2 gives after
normalization a non-zero cusp form χ12 = Δ(τ1) ⊗Δ(τ2)z2 +O(z3).

As we saw above in Section 7 we also know the existence of a cusp form
χ35 of odd weight 35.

We now describe the structure of the ring of classical Siegel modular forms
for g = 2. The theorem is due to Igusa and various proofs have been recorded
in the literature, cf. [5, 33, 43, 52–54]. Here is another variant.

Theorem 6. (Igusa) The graded ring M = ⊕kMk(Γ2) of classical Siegel
modular forms of genus 2 is generated by E4, E6, χ10, χ12 and χ35 and

M ∼= C[E4, E6, χ10, χ12, χ35]/(χ2
35 = R) ,

where R is an explicit (isobaric) polynomial in E4, E6, χ10 and χ12 (given
on [53], p. 849).

Proof. (Isobaric means that every monomial has the same weight (here 70) if
E4, E6, χ10 and χ12 are given weights 4, 6, 10 and 12.) We start by introducing
the vector spaces of modular forms:

M≥n
k (Γ1) = {f ∈Mk(Γ1) : f = O(qn) at ∞} = ΔnMk−12n(Γ1)

and
M≥n
k (Γ2) = {F ∈Mk(Γ2) : F = O(zn) near δ(H1 ×H1) }

We distinguish two cases depending on the parity of k.
k even. As we saw above (use properties (1), (2), (5)) any element

F ∈ M≥2n
k (Γ2) can be written as F (τ1, z, τ2) = f(τ1, τ2)z2n + O(z2n+2)

with f ∈ Mk+2n(Γ1) ⊗Mk+2n(Γ1) symmetric (i.e. f(τ1, τ2) = f(τ2, τ1)) and
f = O(qn1 , q

n
2 ). This last fact follows from the observation that each Fourier–

Jacobi coefficient φm(τ1, z) of F is also O(z2n), so is zero if 2n > 2m. We find
an exact sequence

0 →M≥2n+2
k (Γ2) → M≥2n

k (Γ2)
r−→Sym2

(
M≥n
k+2n(Γ1)

)
→ 0 ,

where the surjectivity of r is a consequence of the fact that

Sym2
(
M≥n
k+2n(Γ1)

)
= C[e4 ⊗ e4, e6 ⊗ e6, Δ⊗Δ]

and χ10 = Δ(τ1)Δ(τ2)z2 + O(z4) so that a modular form χn10P (E4, E6, χ12)
with P an isobaric polynomial maps to P (e4 ⊗ e4, e6 ⊗ e6, Δ⊗Δ). It follows
that
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dimMk(Γ2) =
∞∑

n=0

dim Sym2(M≥n
k+2n(Γ1)) =

∑

0≤n≤k/10
dim Sym2(Mk−10n(Γ1)) ,

i.e., we get

∑

k even

dimMk(Γ2)tk =
1

1 − t10

∑

k≥0

dim Sym2(Mk(Γ1))tk

=
1

1 − t10
Hilbert series of C[e4 ⊗ e4, e6 ⊗ e6, Δ⊗Δ]

=
1

(1 − t4)(1 − t6)(1 − t10)(1 − t12)
.

k odd. For F ∈ M≥2n+1
k (Γ2) we find f = O(qn+2

1 , qn+2
2 ). Since our

Fourier–Jacobi coefficients φm(τ1, z) have a zero of order 2n + 1 at z = 0
and another three at the 2-torsion points we see 2m ≥ (2n + 1) + 3 for
non-zero φm. Also we know that f is anti-symmetric now, so dimMk(Γ2) ≤∑

n≥0 dim∧2(M≥n+2
k+2n+1(Γ1)) and this shows that for odd k < 35 dimMk(Γ2) =

0. Since we have a non-trivial form of weight 35 we see that

∑

k odd

dimMk(Γ2)tk =
t35

(1 − t4)(1 − t6)(1 − t10)(1 − t12)
.

The square χ2
35 is a modular form of even weight, hence can be expressed as

an polynomial R in E4, E6, χ10 and χ12. This was done by Igusa in [53]. This
completes the proof.

10 Moduli of Principally Polarized Complex
Abelian Varieties

For g = 1 the quotient space Γ1\H1 has an interpretation as the moduli
space of elliptic curves over the complex numbers (complex tori of dimen-
sion 1). To a point τ ∈ H1 we associate the complex torus C/Z + Zτ .
Then to a point (aτ + b)/(cτ + d) in the Γ1-orbit of τ we associate the
torus C/Z + Z(aτ + b)/(cτ + d), and the homothety z �→ (cτ + d)z defines
an isomorphism of this torus with C/Z(cτ + d) + Z(aτ + b) = C/Z + Zτ
since (cτ + d, aτ + b) is a basis of Z + Zτ as well. Conversely, every 1-
dimensional complex torus can be represented as C/Z + Zτ . This can be
generalized to g > 1 as follows. A point τ ∈ Hg determines a complex torus
Cg/Zg + Zgτ , but we do not get all complex g-dimensional tori. The fol-
lowing lemma, usually ascribed to Lefschetz, tells us what conditions this
imposes.
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Lemma 1. The following conditions on a complex torus X = V/Λ are equiva-
lent:

1. X admits an embedding into a complex projective space;
2. X is the complex manifold associated to an algebraic variety;
3. There is a positive definite Hermitian form H on V such that Im(H) takes

integral values on Λ× Λ.

A complex torus satisfying these requirements is called a complex abelian
variety. For g = 1 we could take H(z, w) = zw̄/Im(τ) on Λ = Z + Zτ and
indeed, the map C/Λ → P2 given by z �→ (℘(z) : ℘′(z) : 1) for z /∈ Λ with ℘
the Weierstrass ℘-function defines the embedding. For g > 1 we can take
H(z, w) = zt(Im(τ))−1w. An H as in the lemma is called a polarization. It is
called a principal polarization if the map Im(H) : Λ × Λ → Z is unimodular.
We shall write E = Im(H) for the alternating form that is the imaginary part
of H . Given a complex torus X = V/Λ and a principal polarization on Λ
we can normalize things as follows. We choose an isomorphism V ∼= Cg and
choose a symplectic basis e1, . . . , e2g of the lattice Λ such that E takes the
standard form

J =
(

0g 1g
−1g 0g

)

with respect to this basis. These two bases yield us a period matrix Ω ∈
Mat(g × 2g,C) expressing the ei in terms of the chosen C-basis of V . A nat-
ural question is which period matrices occur. For this we note that E is the
imaginary part of a Hermitian form H(x, y) = E(ix, y) +

√
−1E(x, y) if and

only if E satisfies the condition E(iz, iw) = E(z, w) for all z, w ∈ V and this
translates into (Exercise!)

Ω J−1Ωt = 0

while the positive definiteness of H translates into the condition

2i(Ω̄J−1Ωt)−1is positive definite .

These conditions were found by Riemann in his brilliant 1857 paper [81].
If we now associate to Ω = (Ω1Ω2) with Ωi complex g × g matrices we

see that the two conditions just found say that if we put τ = Ω−1
2 Ω1 we

have τ = τ t, Im(τ) > 0 i.e., τ lies in Hg. A change of basis of Λ changes
(τ 1g) into (τa+ c, τb+ d) with (a, b; c, d) ∈ Sp(2g,Z), but the corresponding
torus is isomorphic to Cg/Zg(τb+ d)−1(τa+ c) + Zg. In this way we see that
the isomorphism classes of complex tori with a principal polarization are in
1–1 correspondence with the points of the orbit space Hg/Sp(2g,Z). If we
transpose we can identify this orbit space with the orbit space Sp(2g,Z)\Hg

for the usual action τ �→ (aτ + b)(cτ + d)−1.

Proposition 2. There is a canonical bijection between the set of isomorphism
classes of principally polarized abelian varieties of dimension g and the orbit
space Γg\Hg.
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If we try to construct the whole family of abelian varieties we encounter
a difficulty. The action of the semi-direct product Γg�Z2g on Hg×Cg given by
the usual action of Γg on Hg and the action of (λ, μ) ∈ Z2g on a fibre {τ}×C2g

by z �→ z + τλ + μ forces −12g ∈ Γg to act by −1 on a fibre, so instead of
finding the complex torus Cg/Zg + τZg we get its quotient by the action
z �→ −z. However, if we replace Γg by the congruence subgroup Γg(n) with
n ≥ 3 (see [89]) then we get an honest family Xg(n) = Γg(n) � Z2g\Hg × Cg

of abelian varieties over Γg(n)\Hg. If we insist on using Γg then we have
to work with orbifolds or stacks to have a universal family available; the
orbifold in question is the quotient of Xg(n) under the action of the finite
group Sp(2g,Z/nZ).

The cotangent bundle of the family of abelian varieties over Ag(n) =
Γg(n)\Hg along the zero section defines a vector bundle of rank g on
Ag(n). It can be constructed explicitly as a quotient Γg(n)\Hg × Cg un-
der the action of γ ∈ Γg(n) by (τ, z) �→ (γ(τ), (cτ + d)−tz). The bun-
dle is called the Hodge bundle and denoted by E = Eg. The finite group
Sp(2g,Z/nZ) acts on the bundle E on Ag(n). A section of det(E)⊗k that
is Sp(2g,Z/nZ)-invariant comes from a holomorphic function on Hg that is
a classical Siegel modular form of weight k. Classical modular forms thus
get a geometric interpretation. In particular, the determinant of the cotan-
gent bundle of Ag(n), i.e., the canonical bundle, is isomorphic to det(E)⊗g+1;
so to a modular form f of weight g + 1 we can associate a top differen-
tial form on Hg that is Γg-invariant via f �→ f(τ)

∏
i≤j dτij . In a sim-

ilar way one can construct for each ρ a vectorbundle over Ag(n) whose
Sp(2g,Z/nZ)-invariant sections are the Siegel modular forms of weight ρ by
taking the quotient Hg × V by Γg under (τ, z) �→ (γ(τ), ρ(cτ + d)z), see Sec-
tion 13.

The Hermitian form H on the lattice Λ ⊂ Cg can be viewed as the first
Chern class (in H2(X,Z) ∼= ∧2(H1(X,Z)∨) ∼= (∧2Λ)∨) of a line bundle L
on X = Cg/Λ with dimC H

0(X,L) = 1. A non-zero section determines an
effective divisor Θ on X . The line bundle L and the corresponding divisor Θ
are determined byH up to translation overX . If we require thatΘ be invariant
under z �→ −z then Θ is unique up to translation over a point of order 2 on
X and then 2Θ is unique.

If we pull a non-zero section s of L back to the universal cover Cg then we
obtain a holomorphic function with a certain transformation behavior under
translations by elements of Λ. An example of such a function is provided by
Riemann’s theta function

θ(τ, z) =
∑

n∈Zg

eπi(n
tτn+2ntz), (τ ∈ Hg, z ∈ Cg)

a series that converges very rapidly and defines a holomorphic function that
satisfies for all λ, μ ∈ Zg

θ(τ, z + τλ + μ) = e−πi(λ
tτλ+2λtz)θ(τ, z) .
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Conversely, a holomorphic function f on Cg that satisfies for all λ, μ ∈ Zg

f(z + τλ + μ) = e−πi(λ
tτλ+2λtz)f(z)

is up to a multiplicative constant precisely θ(τ, z) as one sees by developing
f in a Fourier series f =

∑
n c(n) exp (2πintz) and observing that addition of

a column τk of τ to z produces

f(z + τk) =
∑

n

c(n) exp (2πint(z + τk)) =
∑

n

c(n) exp (2πintτk) exp (2πintz)

from which one obtains c(n+ ek) = c(n) exp (2πintτk + πiτkk) and gets that
f is completely determined by c(0).

If S is a compact Riemann surface of genus g it determines a Jacobian
variety Jac(S) which is a principally polarized complex abelian variety of
dimension g. Sending S to Jac(S) provides us with a map Mg(C) → Γg\Hg

from the moduli space of compact Riemann surfaces of genus g to the moduli
of complex principally polarized abelian varieties of dimension g which is
injective by a theorem of Torelli. The geometric interpretation given for Siegel
modular forms thus pulls back to the moduli of compact Riemann surfaces.

11 Compactifications

It is well known that Γ1\H1 is not compact, but can be compactified by
adding the cusp, that is, the orbit of Γ1 acting on Q ⊂ H̄1. Or if we use the
equivalence of H1 with the unit disc D1 given by τ �→ (τ − i)/(τ + i) then we
add to D1 the rational points of the boundary of the unit disc and take the
orbit space of this enlarged space. We can do something similar for g > 1 by
considering the bounded symmetric domain

Dg = {z ∈ Mat(g × g,C) : zt = z, zt · z̄ < 1g}

which is analytically equivalent to Hg. We now enlarge this space by adding
not the whole boundary but only part of it as follows. Let

Dr =
{(

z′ 0
0 1g−r

)
: z′ ∈ Dr

}
⊂ D̄g

and define now D∗
g to be the union of all Γg-orbits of these Dr for 0 ≤ r ≤ g.

Note that Γg acts on Dg and on its closure D̄g. Then Γg acts in a natural way
on D∗

g and the orbit space decomposes naturally as a disjoint union

Γg\D∗
g = $gi=0Γi\Di .

Going back to the upper half plane model this means that we consider

Γg\H∗
g = $gi=0Γi\Hi
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Satake has shown how to make this space into a normal analytic space, the
Satake compactification. One first defines a topology on H∗

g and then a sheaf of
holomorphic functions. The quotient Γg\H∗

g then becomes a normal analytic
space. By using explicitly constructed modular forms one then shows that
classical modular forms of a suitably high weight separate points and tangent
vectors and thus define an embedding of Γg\H∗

g into projective space. By
Chow’s lemma it is then a projective variety. The following theorem is a special
case of a general theorem due to Baily and Borel, [8].

Theorem 7. Scalar Siegel modular forms of an appropriately high weight de-
fine an embedding of Γg\H∗

g into projective space and the image of Γg\Hg

(resp. Γg\H∗
g) is a quasi-projective (resp. a projective) variety.

The resulting Satake or Baily–Borel compactification is for g > 1 very
singular. As a first attempt at constructing a smooth compactification we
reconsider the case g = 1. In H1,c = {τ ∈ H1 : Im(τ) ≥ c} with c > 1 the
action of Γ1 reduces to the action of Z by translations τ �→ τ + b. So consider
the map H1,c → C∗, τ �→ q = exp 2πiτ . It is clear how to compactify H1,c/Z:
just add the origin q = 0 to the image in C∗ ⊂ C. In other words, glue Γ1\H1

with Z\H∗
1,c over Z\H1,c. To do something similar for g > 1 we consider the

subset (for a suitable real symmetric g × g-matrix c� 0 which is sufficiently
positive definite)

Hg,c =
{
τ =

(
τ1 z
zt τ2

)
∈ Hg : Im(τ2) − Im(zt)Im(τ1)−1Im(z) ≥ c

}

The action of Γg in Hg,c reduces to the action of the subgroup P
⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜
⎝

a 0 b ∗
∗ ±1 ∗ ∗
c 0 d ∗
0 0 0 ±1

⎞

⎟⎟
⎠ ∈ Γg,

(
a b
c d

)
∈ Γg−1

⎫
⎪⎪⎬

⎪⎪⎭
,

the normalizer of the ‘boundary component’ Hg−1. We now make a map

Hg,c → Hg−1 × Cg−1 × C∗, τ �→ (τ1, z, q2 = exp(2πiτ2)) .

The associated parabolic subgroup P acts on Hg−1 × Cg−1 × C∗ and this
action can be extended to an action on Hg−1 × Cg−1 × C, where

⎛

⎜⎜
⎝

1g−1 0 0 0
0 1 0 b
0 0 1g−1 0
0 0 0 1

⎞

⎟⎟
⎠

acts now by (τ1, z, q2) �→ (τ1, z, e2πibq2) while the matrix
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⎛

⎜
⎜
⎝

1g−1 0 0 l
m 1 l 0
0 0 1g−1 −m
0 0 0 1

⎞

⎟
⎟
⎠

acts by (τ1, z, q2) �→ (τ1, z + τ1m+ l, e2πi(mτ1m+2mz+lm)q2), and the diagonal
matrix with entries (1, . . . ,−1, 1, . . . , 1,−1) acts by (τ1, z, ζ) �→ (τ1,−z, ζ) and
finally (a, b; c, d) ∈ Γg−1 acts on Hg−1 × Cg−1 × C by

(τ1, z, q2) �→ (γ(τ1), (a− (γ(τ1)c) z, τ2 − zt(cτ1 + d)−1cz)

and this action can be extended similarly.
We now have an embedding Γg\Hg,c −→ P\Hg−1 × Cg−1 × C and by

taking the closure of the image we obtain a ‘partial compactification’. The
quotient of Hg−1 × Cg−1 × {0} by this action is the ‘dual universal abelian
variety X̂g−1 = Γg−1 � Z2g−2\Hg−1 × Cg−1 over Γg−1\Hg−1 (in the orbifold
sense). Note that a principally polarized abelian variety is isomorphic to its
dual, so we can enlarge our orbifold Γg\Hg by adding this orbifold quotient
Xg−1 = Γg−1 ×Z2g−2\Hg−1 ×C2g−2. The result is a partial compactification

A(1)
g = Ag $ X ′

g−1 ,

where the prime refers to the fact that we are dealing with orbifolds and
have to divide by (at least) an extra involution since a semi-abelian variety
generically has Z/2×Z/2 as its automorphism group, while a generic abelian
variety has only Z/2.

This space parametrizes principally polarized complex abelian varieties of
dimension g or degenerations of such (so-called semi-abelian varieties of torus
rank 1) that are extensions

1 → Gm → X̃ → X → 0

of a g−1-dimensional principally polarized complex abelian variety by a rank 1
torus Gm = C∗. Such extension classes are classified by the dual abelian varie-
ty X̂ ∼= X (associate to a line bundle onX the Gm-bundle obtained by deleting
the zero section) which explains why we find the universal abelian variety of
dimension g − 1 in the ‘boundary’ of Ag. (There is the subtlety whether one
allows isomorphisms to be −1 on Gm or not.) This partial compactification
is canonical. If we wish to construct a full smooth compactification one can
use Mumford’s theory of toroidal compactifications, but unfortunately there
is (for g ≥ 4) no unique such compactification. We refer e.g. to [77].

This partial compactification enables us to reinterpret the Fourier–Jacobi
series of a Siegel modular form. In particular, the formulas in Section 8 tell
us that the pull back of f to a fibre of Xg−1 → Ag−1 is an abelian function
and that f restricted to the zero-section of Xg−1 → Ag−1 is a Siegel modular
form of weight k − 1 on Γg−1.
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We can be more precise. We work with a group Γg(n) with n ≥ 3 or
interpret everything in the orbifold sense. The normal bundle of Xg−1 is the
line bundle O(−2Θ), as one can deduce from the action given above.

We can also extend the Hodge bundle E = Eg to a vector bundle on A(1)
g .

On the boundary divisor X ′
g−1 it is the extension of the pull back π∗Eg−1

from Ag−1 to Xg−1 by a line bundle.
So if we are given a classical Siegel modular form of weight k we can

interpret it as a section of det(E)⊗k and develop (the pull back of) f along
the boundary Xg−1 where the m-th term in the development is a section of

(det(E)|Xg−1 )
⊗k ⊗O(−2mΘ)

on Xg−1. This gives us a geometric interpretation of the Fourier–Jacobi de-
velopment.

Of course, it is useful to have not only a partial compactification, but
a smooth compactification. The theory of toroidal compactifications devel-
oped by Mumford and his co-workers Ash, Rapoport and Tai provides such
compactifications Ãg. They depend on the choice of a certain cone decompo-
sition of the cone of positive definite bilinear forms in g variables, cf. [7]. The
‘boundary’ Ãg−Ag is a divisor with normal crossings and one has a universal
semi-abelian variety over Ãg in the orbifold sense.

12 Intermezzo: Roots and Representations

Here we record a few concepts and notations that we shall need in the later
sections. The reader may want to skip this on a first reading.

Recall that we started out in Section 2 with a symplectic lattice (Z2g, 〈 , 〉)
with a basis e1, . . . , eg, f1, . . . , fg with 〈ei, fj〉 = δij and 〈e1, . . . , eg〉 and
〈f1, . . . , fg〉 isotropic subspaces. We let G := GSp(2g,Q) be the group of
rational symplectic similitudes (transformations that preserve the form up to
a scalar), viz.,

G := GSp(2g,Q) = {γ ∈ GL(Q2g) : γtJγ = η(γ)J}

and G+ = {γ ∈ G : η(γ) > 0}. Note that det(γ) = η(γ)g for γ ∈ G and that
G0 = Sp(2g,Z) is the kernel of the map that sends γ to η(γ) on G+(Z). For
γ ∈ G the element η(γ) is called the multiplier. Note that we view elements
of Z2g as column vectors and G acts from the left.

There are several important subgroups that play a role in the sequel. Given
our choice of basis there is a natural Borel subgroup B respecting the symplec-
tic flag 〈e1〉 ⊂ 〈e1, e2〉 ⊂ . . . ⊂ 〈e1, e2〉⊥ ⊂ 〈e1〉⊥. It consists of the matrices
(a, b; 0, d) with a upper triangular and d lower triangular.

Other natural subgroups are: the subgroup M of elements respecting the
decomposition Zg⊕Zg of our symplectic space. It is isomorphic to GL(g)×Gm
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and consists of the matrices γ = (a, 0; 0, d) with adt = η(γ)1g. Furthermore, we
have the Siegel (maximal) parabolic subgroup Q of elements that stabilize the
first summand Zg = 〈e1, . . . , eg〉; it consists of the matrices (a, b; 0, d). It con-
tains the subgroup U (unipotent radical) of matrices of the form (1g, b; 0, 1g)
with b symmetric that act as the identity of the first summand Zg.

Another important subgroup of G is the diagonal torus T isomorphic to
Gg+1
m of matrices γ = diag(a1, . . . , ag, d1, . . . , dg) with aidi = η(γ). Let X

be the character group of T; it is generated by the characters εi : γ �→ ai
for i = 1, . . . , g and ε0(γ) = η(γ). Let Y be the co-character group of
Tm, i.e., Y = Hom(Gm,T). This group is isomorphic to the group Zg+1

of g + 1-tuples with (α1, . . . , αg, c) corresponding to the co-character t �→
diag(tα1 , . . . , tαg , tc−α1 , . . . , tc−αg ). We fix a basis of Y by letting χi for
i = 1, . . . , g correspond to αj = δij and c = 0 and χ0 to αj = 0 and c = 1.
Then the characters and co-characters pair via 〈εi, χj〉 = δij .

The adjoint action of T on the Lie algebras ofM andG defines root systems
ΦM and ΦG in X . Concretely, we may take as simple roots αi = εi − εi+1 for
i = 1, . . . , g−1 and αg = 2εg−ε0 and coroots α∨

i = χi−χi+1 for i = 1, . . . , g−1
and α∨

g = χg.
The set Φ+

G of positive roots (those occuring in the Lie algebra of the
nilpotent radical of B) consists of the so-called compact roots Φ+

M = {εi −
εj : 1 ≤ i < j ≤ g} and the non-compact roots Φ+

nc = {εi+εj−ε0 : 1 ≤ i, j ≤ g}.
We let 2% = 2%G (resp. 2%M ) be the sum of the positive roots in Φ+

G (res. Φ+
M ).

When viewed as characters 2%M corresponds to γ �→
∏g
i=1 a

g+1−2i
i and 2%G

to γ �→ η(γ)−g(g+1)/2
∏g
i=1 a

2g+2−2i
i .

There is a symmetry group acting on our situation, the Weyl group
WG = N(T)/T, with N(T) the normalizer of T in G. This group WG is iso-
morphic to Sg � (Z/2Z)g, where the generator of the i-th factor Z/2Z acts on
a matrix of the form diag(a1, . . . , ag, d1, . . . , dg) by interchanging ai and di and
the symmetric group Sg acts by permuting the a’s and d’s. The Weyl group
of M (normalizer this time in M) is isomorphic to the symmetric group Sg.
We have positive Weyl chambers P+

G = {χ ∈ Y : 〈χ, α〉 ≥ 0 for all α ∈ Φ+
G }

and similarly for M : P+
M = {χ ∈ Y : 〈χ, α〉 ≥ 0 for all α ∈ Φ+

M } giving the
dominant weights.

Lemma 2. The irreducible complex representations of G (resp. M) corres-
pond to integral weights in the chamber P+

G (res. P+
M ) that come from char-

acters of T.

Sometimes we just work with G0 and M0 = M ∩G0. This means that we
forget about the action of the multiplier η.

We can give a set W0 of 2g canonical coset representatives of WM\WG,
the Kostant representatives, which are characterized by the conditions

W0 =
{
w ∈WG : Φ+

M ⊂ w
(
Φ+
G

)}
=
{
w ∈ WG : w(%) − % ∈ P+

M

}
.

With our normalizations we have % = (g, g − 1, . . . , 1, 0) and 2%M = (g +
1, . . . , g+1,−g(g+1)/2). If we restrict to G0 and M0 then dominant weights
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for M0 ∼= GL(g) are given by g-tuples (λ1, . . . , λg) with λi ≥ λi+1 for
i = 1, . . . , g − 1. A coset in WM\WG is given by a vector s (in {±1}g)
of g signs. The Kostant representative of s is the element σ s such that
(sσ(1)λσ(1), . . . , sσ(g)λσ(g)) is in P+

M , i.e., sσ(i)λσ(i) ≥ sσ(i+1)λσ(i+1) for i =
1, . . . , g − 1 for all (λ1 ≥ . . . ≥ λg).

13 Vector Bundles Defined by Representations

Let π : Xg → Ag be the universal family of abelian varieties over Ag. The
Hodge bundle E = π∗ΩXg/Ag

, a holomorphic bundle of rank g, and the de
Rham bundle R1π∗C on Ag, a locally constant sheaf of rank 2g, are examples
of vector bundles associated to representations of GL(g) and GSp(2g). Their
fibres at a point [X ] ∈ Ag are H0(X,Ω1

X) and H1(X,C). The first is a holo-
morphic vector bundle, the second a local system. Both are important for
understanding Siegel modular forms.

To define these bundles recall the description of Hg as an open part Y +
g

of the symplectic Grassmann variety Yg given in Section 2. We can identify
Yg with G(C)/Q(C) with Q the subgroup fixing the totally isotropic first
summand Cg of our complexified symplectic lattice (Zg , 〈 , 〉)⊗C. If ρ : Q0 →
End(V ) is a complex representation (with Q0 = Q ∩ G0) then we can define
a G0(C)-equivariant vector bundle Vρ on Yg by Vρ = G0(C) ×Q0(C) V as the
quotient of G0(C) × V under the equivalence relation (g, v) ∼ (g q, ρ(q)−1v)
for all g ∈ G0(C) and q ∈ Q0(C). Then Γg (or any finite index subgroup Γ ′)
acts on Vρ and the quotient is a vector bundle Vρ on Ag in the orbifold sense
(or a true one if Γ ′ acts freely on Hg).

Recall that M is the subgroup of GSp(2g,Q) respecting the decomposition
Qg ⊕ Qg of our symplectic space and M0 = M ∩ Sp(2g,Q). If we are given
a complex representation of M0(C) ∼= GL(g) (or of M ∼= GL(g)×Gm) we can
obtain a vector bundle by extending the representation to a representation
on Q0(C) by letting it be trivial on the unipotent radical U of Q. (Note that
Q = M · U .) If we do this with the tautological representation of M0 we get
the Hodge bundle E. But there is a subtle point here. If we work with M
instead of M0 then the Hodge bundle is given by the representation of M
that acts by η(γ)−1a on Cg for γ = (a, 0; 0, d).

In any case we thus get a holomorphic vector bundle W(λ) associated to
each dominant weight (λ1 ≥ . . . ≥ λg) of GL(g). Another way of getting
these vector bundles thus associated to the irreducible representations of M0

(or M) is by starting from the Hodge bundle and applying Schur operators
(idempotents) to the symmetric powers of E analogously to the way one gets
the corresponding representations from the standard one. Since the Hodge
bundle E extends over a toroidal compactification Ãg this makes it clear that
these vector bundles W(λ) can be extended over any toroidal compactification
as constructed by Mumford (or Faltings–Chai). The space of sections can be
identified with a space of modular forms Mρ and it thus follows from general
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theorems in algebraic geometry that these spaces of Siegel modular forms Mρ

are finite dimensional.
Another important vector bundle is the bundle associated to the first co-

homology of the universal abelian variety Xg with fibre H1(X,C); more pre-
cisely, it is given by V := R1π∗C with π : Xg → Ag the universal abelian
variety. It can be gotten from the construction just given by taking the dual
or contragredient of the standard or tautological representation of Sp(2g,C)
and restricting it toQ0(C). (Again, if one takes the multiplier into account – as
one should – then R1π∗C corresponds to η−1 times the standard representa-
tion.) In this case we find a flat bundle: all the bundles Vρ on Yg come with
a trivialization given by [(g, v)] �→ ρ(g)v. So the quotient bundle carries a nat-
ural integrable connection. The resulting V is a local system (locally constant
sheaf). We thus find for each dominant weight λ = (λ1 ≥ . . . ≥ λg, c) of G
a local system Vλ(c) on Ag. The multiplier representation defines a local sys-
tem of rank 1 denoted by C(1) and we can twist Vλ(c) by the nth power of
C(1) to change c, cf. Section 12.

14 Holomorphic Differential Forms

Let Γ ′ ⊂ Γg be a subgroup of finite index which acts freely on Hg, e.g., Γ ′ =
ker{Sp(2g,Z) → Sp(2g,Z/nZ} for n ≥ 3. Let Ωi be the sheaf of holomorphic
i-forms on Hg. A section of Ω1 can be written as

ω = Tr(f(τ)dτ) ,

where dτ = (dτij) and f is a symmetric matrix of holomorphic functions
on Hg. Then ω is invariant under the action of Γ ′ if and only if f(γ(τ)) =
(cτ + d)f(τ)(cτ + d)t for all γ = (a, b; c, d) ∈ Γ ′. Note that if r is the standard
representation of GL(g,C) on V = Cg then the action on symmetric bilinear
forms Sym2(V ) is given by b �→ r(g) b r(g)t. So the space of holomorphic
1-forms on Γ ′\Hg can be identified with Mρ(Γ ′), with ρ the second symmetric
power of the standard representation and the space of holomorphic i-forms
with Mρ′(Γ ′) with ρ′ equal to the ith exterior power of Sym2V . So we find
an isomorphism Ω1

Γ ′\Hg

∼= Sym2
E and this can be extended over a toroidal

compactification Ã to an isomorphism

Ω1
Ã(logD) ∼= Sym2(E)

with D the divisor at infinity. (But again, one should be aware of the action
of the multiplier: if one looks at the action of GSp(2g,R)+ one has d((aτ +
b)(cτ + d)−1) = η(γ)(cτ + d)−1 dτ (cτ + d)−1.)

The question arises which representations occur in ∧iSym2(V ).
The answer is given in terms of roots. A theorem of Kostant [66] tells

that the irreducible representations ρ of GL(g,C) that occur in the exterior
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algebra ∧∗Sym2(V ) with V the standard representation of GL(g,C) are those
ρ for which the dual ρ̂ is of the form wδ − δ with δ = (g, g − 1, . . . , 1) the
half-sum of the positive roots and w in the set W0 of Kostant representatives.
Now if ρ̂ = (λ1 ≥ λ2 . . . ≥ λg) occurs in this exterior algebra then wδ is of
the form (g − λg, g − 1 − λg−1, . . . , 1 − λ1). If α is the largest integer that
occurs among the entries of wδ then either α = −1 or 1 ≤ α ≤ g. In the latter
case wδ is of the form (α, ∗, . . . , ∗,−α− 1,−α− 2, . . . ,−g) and it follows that
λg−α = g + 1. This implies that the number of λj with λj = λg (the co-rank
of ρ̂, cf., Section 5) plus the number of those with λj = λg + 1 is at most
α. The vanishing theorem of Weissauer (Thm. 5) now implies that non-zero
differentials can only come from representations that are of the form

ρ = (g + 1, g + 1, . . . , g + 1)

which corresponds to top differentials (∧g(g+1)/2Ω1) and classical Siegel modu-
lar forms of weight g + 1, or of the form

ρ = (g + 1, g + 1, . . . , g + 1, g − α, . . . , g − α) ,

with 1 ≤ α ≤ g and these occur in ∧pΩ1 with p = g(g + 1)/2 − α(α + 1)/2.
For the following theorem of Weissauer we refer to [106].

Theorem 8. Let Ãg be a smooth compactification of Ag. If p is an integer
0 ≤ p < g(g + 1)/2 then the space of holomorphic p-forms on Ãg is zero
unless p is of the form g(g + 1)/2 − α(α + 1)/2 with 1 ≤ α ≤ g and then
H0(Ãg, Ω

p

Ãg
) ∼= Mρ(Γg) with ρ = (g+1, . . . , g+1, g−α, . . . , g−α) with g−α

occuring α times.

If f is a classical Siegel modular form of weight k = g+ 1 on the group Γg
then f(τ)

∏
i≤j dτij is a top differential on the smooth part of quotient space

Γg\Hg = Ag. It can be extended over the smooth part of the rank-1 com-
pactification A(1)

g if and only if f is a cusp form. It is not difficult to see
that this form can be extended as a holomorphic form to the whole smooth
compactification Ãg.

Proposition 3. The map that associates to a classical cusp form f ∈Sg+1(Γg)
of weight g+1 the top differential ω = f(τ)

∏
i≤j dτij gives an isomorphism be-

tween Sg+1(Γg) and the space of holomorphic top differentials H0(Ãg, Ω
g(g+1)

2 )
on any smooth compactification Ãg.

For this and an analysis of when the other forms extend over the singular-
ities in these cases we refer to [30, 106].

Finally we refer to two papers of Salvati–Manni where he proves the exis-
tence of differential forms of some weights, [83,84] and a paper of Igusa, [57],
where Igusa discusses the question whether certain Nullwerte of jacobians of
odd thetafunctions can be expressed as polynomials or rational functions in
theta Nullwerte.
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15 Cusp Forms and Geometry

The very first cusp forms that one encounters often have a beautiful geometric
interpretation. We give some examples.

For g = 1 the first cusp form is Δ =
∑
τ(n)qn ∈ S12(Γ1). It is up to

a normalization the discriminant g2(τ)3 − 27g2
3 of the equation y2 = 4x3 −

g2x − g3 for the Riemann surface C/Zτ + Z and does not vanish on H1.
Here g2 = (4π4/3)E4(τ) and g3 = (8π6/27)E6(τ) are the suitably normalized
Eisenstein series.

For g = 2 there is a similar cusp form χ10 of weight 10 with development

χ10

(
τ1 z
z τ2

)
= (exp(2πiτ1) exp(2πiτ2) + . . .)(πz)2 + . . .

which vanishes (with multiplicity 2) along the ‘diagonal’ z = 0. So its zero
divisor in A2 is the divisor of abelian surfaces that are products of elliptic
curves with multiplicity 2. There is the Torelli map M2 → A2 that associates
to a hyperelliptic complex curve of genus 2 given by y2 = f(x) its Jacobian.
Then the pull back of χ10 to M2 is related to the discriminant of f , cf. Igusa’s
paper [53] or [60], Prop. 2.2.

For g = 3 the ring of classical modular forms is generated by 34 elements,
cf. [102]. As we saw above, there is a cusp form of weight 18, namely the
product of the 36 even theta constants θ[ε] and its zero divisor is the closure
of the hyperelliptic locus. This expresses the fact that a genus 3 Riemann
surface with a vanishing theta characteristic is hyperelliptic.

For g = 4 there is the following beautiful example. There is up to isometry
only one isomorphism class of even unimodular positive definite quadratic
forms in 8 variables, namely E8. In 16 variables there are exactly two such
classes, E8 ⊕E8 and E16. To each of these quadratic forms in 16 variables we
can associate a Siegel modular form on Γ4 by means of a theta series: θE8⊕E8

and θE16 . The difference θE8⊕E8 − θE16 is a cusp form of weight 8. Its zero
divisor is the closure of the locus of Jacobians of Riemann surfaces of genus 4
in A4 as shown by Igusa, cf., [55]. Here we also refer to [80] for a proof. We
shall encounter this form again in Section 21.

Similarly, the theta series associated to the 24 different Niemeier lat-
tices (even, positive definite) of rank 24 produce in genus 12 a linear sub-
space of M12(Γ12) of dimension 12. It intersects the space of cusp forms in
a 1-dimensional subspace, as was proved in [14]. We thus find a cusp form of
weight 12. As we shall see later, it is an Ikeda lift of the cusp form Δ for g = 1
(proven in [15]).
Question 1. What is the geometric meaning of this cusp form?

The paper [78] contains explicit results on Siegel modular forms of weight
12 obtained from lattices in dimension 24. For example, it gives a non-zero
cusp form of weight 12 on Γ11, hence one has a top differential on Ã11, cf.,
Prop. 3, implying that this modular variety is not rational or unirational. It
is a well-known result of Mumford ([75]) that Ãg is of general type for g > 6.
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16 The Classical Hecke Algebra

In the arithmetic theory of elliptic modular forms Hecke operators play a piv-
otal role. They enable one to extract arithmetic information from the Fourier
coefficients of a modular form: if f =

∑
n a(n)qn is a common eigenform of

the Hecke operators which is normalized (a(1) = 1) then the eigenvalue λ(p)
of f under the Hecke operator T (p) equals the Fourier coefficient a(p).

The classical theory of Hecke operators as for example exposed in Shimura’s
book ( [92]) can be generalized to the setting of g > 1 as Shimura showed
in [93], though the larger size of the matrices involved is a discouraging as-
pect of it. It is worked out in the books [1,4,30], of which the last, by Freitag,
is certainly the most accessible. In this section we sketch this approach, in the
next section we give another approach. We refer to loc. cit. for details.

Recall the groupG := GSp(2g,Q) = {γ ∈ GL(Q2g) : γtJγ = η(γ)J, η(γ) ∈
Q∗} of symplectic similitudes of the symplectic vector space (Q2g, 〈 , 〉) and
G+ = {γ ∈ G : η(γ) > 0}.

We start by defining the abstract Hecke algebra H(Γ,G) for the pair (Γ,G)
with Γ = Γg and G = GSp(2g,Q). Its elements are finite formal sums (with
Q-coefficients) of double cosets ΓγΓ with γ ∈ G+. Each such double coset
ΓγΓ can be written as a finite disjoint union of right cosets Li = Γγi by
virtue of the following lemma.

Lemma 3. Let m be a natural number. The set Og(m) = {γ ∈ Mat(2g ×
2g,Z) : γtJγ = mJ} can be written as a finite disjoint union of right cosets.
Every right coset has a representative of the form (a, b; 0, d) with at d = m 1g
and such that a has zeros below the diagonal

So to each double coset ΓγΓ we can associate a finite formal sum of right
cosets. Let L be the Q-vector space of finite formal expressions

∑
i ciLi with

Li = Γγi a right coset and ci ∈ Q. The map H(Γ,G) → L is injective
and induces an isomorphism H(Γ,G) ∼= LΓ , where the action of Γ on L is
Γγ1 �→ Γγ1γ.

We now make this into an algebra by specifying the product of ΓγΓ =∑
i Γγi and ΓδΓ =

∑
j Γδj by

(ΓγΓ ) · (ΓδΓ ) =
∑

i,j

Γγiδj .

To deal with these double cosets the following proposition is very helpful.

Proposition 4. (Elementary divisors) Let γ ∈ GSp+(2g,Q) be an element
with integral entries. Then double coset ΓγΓ has a unique representative of
the form

α = diag(a1, . . . , ag, d1, . . . , dg)

with integers aj , dj satisfying aj > 0, ajdj = η(γ) for all j, and furthermore
ag|dg, aj |aj+1 for j = 1, . . . , g − 1.
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On G we have the anti-involution

γ =
(
a b
c d

)
�→ γ∨ =

(
dt −bt
−ct at

)
= η(γ) γ−1 .

(Note that η(γ∨) = η(γ).) Another involution is given by

γ �→ J γ J−1 =
(
d −c
−b a

)
= η(γ)γ−t .

Because of the proposition we have ΓγΓ = Γγ∨Γ since we may choose γ di-
agonal and then γ∨ = JγJ−1 and J ∈ Γ . This implies that for a sum of
right cosets ΓγΓ =

∑
Γγi we have ΓγΓ =

∑
γ∨i Γ . And it is easy to see that

γ �→ γ∨ defines an anti-involution of H(Γ,G) which acts trivially so that the
Hecke algebra is commutative.

We can decompose these diagonal matrices as a product of matrices so
that in each of the factors only powers of one prime occur as non-zero entries.
This leads to a decomposition

H(Γ,G) = ⊗pHp

as a product of local Hecke algebras

Hp = H(Γ,G ∩ GL(2g,Z[1/p])) ,

where we allow in the denominators only powers of p. Now Hp has a subring
H0
p generated by integral matrices. We haveHp = H0

p [1/T ] with T the element
defined by T = Γg(p 12g)Γg. By induction one proves the following theorem,
cf., [4, 30].

Theorem 9. The local Hecke algebra H0
p is generated by the element T (p)

given by Γg
(

1g 0g
0g p 1g

)
Γg and the elements Ti(p2) for i = 1, . . . , g given by

Γg

⎛

⎜
⎜
⎝

1g−i
p1i

p21g−i
p1i

⎞

⎟
⎟
⎠Γg

For completeness sake we also introduce the element T0(p2) given by the

double coset Γp
(

1g 0
0g p21g

)
Γg. Note that Tg(p2) equals the T = Γg(p 12g)Γg

given above.

Definition 7. Let T (m) be the element of H(Γ,G) defined by the set M =
Og(m) which is a finite disjoint union of double cosets.
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If m = p is prime then M = Og(m) is one double coset and T (m) coincides
with T (p), introduced above. For m = p2 the set Og(p2) is a union of g + 1
double cosets and the element T (p2) is a sum

∑g
i=0 Ti(p

2).
The Hecke algebra can be made to act on the space of Siegel modular

forms Mρ(Γg). We first define the ‘slash operator’.

Definition 8. Let ρ : GL(g,C) → End(V ) be a finite-dimensional irreducible
complex representation corresponding to (λ1 ≥ . . . ≥ λg). For a function
f : Hg → V and an element γ ∈ GSp+(2g,Q) we set

f |γ,ρ(τ) = ρ(cτ + d)−1f(γ(τ)) γ =
(
∗ ∗
c d

)
.

(For a good action on integral cohomology one might wish to add a factor
η(γ)

P

λi−g(g+1)/2.) Note that f |γ1,ρ|γ2,ρ = f |γ1γ2,ρ. So if g > 1 then f is
a modular form of weight ρ if and only if f is holomorphic and f |γ,ρ = f for
every γ ∈ Γg.

Let now M ⊂ GSp(2g,Q) be a subset satisfying the two properties

1. M = $hi=1Γg γi is a finite disjoint union of right cosets Γgγi;
2. M Γg ⊂M .

The first condition implies that if for a modular form f ∈Mρ we set

TMf :=
h∑

i=1

f |γi,ρ

then this is independent of the choice of the representatives γi, while the
second condition implies that (TMf)|γ = TMf for all γ ∈ Γg. Together these
conditions imply that TM is a linear operator on the space Mρ.

Double cosets ΓγΓ satisfy condition 2) if Γ = Γg and γ ∈ Sp(2g,Q) and
also condition 1) by what was said above.

An important observation is that 〈Tf, g〉 = 〈f, T∨g〉, where 〈 , 〉 gives the
Petersson product and thus the Hecke operators define Hermitian operators
on the space of cusp forms Sρ.

Just as in the classical case g = 1 we can associate correspondences (i.e.
divisors on Ag × Ag) to Hecke operators. The correspondence associated to
T (p) sends a principally polarized abelian variety X to the sum

∑
X ′ of

principally polarized X ′ which admit an isogeny X → X ′ with kernel an
isotropic (for the Weil pairing) subgroup H ⊂ X [p] of order pg. Similarly, the
correspondence associated to Ti(p2) sends X to the sum

∑
X ′ with the X ′

quotients X/H , where H ⊂ X [p2] is an isotropic subgroup of order p2g with
H ∩X [p] of order pg+i.

17 The Satake Isomorphism

We can identify the local Hecke algebra Hp with the Q-algebra of Q-valued
locally constant functions on GSp(2g,Qp) with compact support and which
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are invariant under the (so-called hyperspecial maximal compact) subgroup
K = GSp(2g,Zp) acting both from the left and right. The multiplication
in this algebra is convolution f1 · f2 =

∫
GSp(2g,Qp))

f1(g)f2(g−1h)dg, where
dg denotes the unique Haar measure normalized such that the volume of K
is 1. The correspondence is obtained by sending the double coset KγK to
the characteristic function of KγK. A compactly supported function in Hp

is constant on double cosets and its support is a finite linear combination of
characteristic functions of double cosets.

Note that Theorem 9 tells us that Hp is generated by the double cosets of
diagonal matrices. In order to describe this algebra conveniently we compare
it with the p-adic Hecke algebras of two subgroups, the diagonal torus and
the Levi subgroup of the standard parabolic subgroup.

To be precise, recall the diagonal torus T of GSp(2g,Q) isomorphic to
Gg+1
m and the Levi subgroup

M =
{(

a 0
0 d

)
∈ GSp(2g,Q)

}

of the standard parabolic Q = {(a, b; 0, d) ∈ GSp(2g,Z)} that stabilizes the
first summand Zg of Zg ⊕Zg. In particular for an element (a, 0; 0, d) ∈M we
have adt = η and the group M is isomorphic to GL(g) × Gm. Let Y ∼= Zg+1

be the co-character group of Tm, i.e., Y = Hom(Gm,T), cf. Section 12.
We can construct a local Hecke algebraHp(T) = Hp(T,TQ) for the group T

too as the Q-algebra of Q-valued, bi-T(Zp)-invariant, locally constant func-
tions with compact support on T(Qp). This local Hecke-algebra is easy to de-
scribe:Hp(T) ∼= Q[Y ], the group algebra over Q of Y where λ ∈ Y corresponds
to the characteristic function of the double coset Dλ = Kλ(p)K. Concretely,
Hp(T) is isomorphic to the ring Q[(u1/v1)±, . . . , (ug/vg)±, (v1 · · · vg)±] under
a map that sends (a1, . . . , ag, c) to the element

(u1/v1)a1 · · · (ug/vg)ag (v1 · · · vg)c .

Similarly, we have a p-adic Hecke algebra Hp(M) = Hp(M,MQ) for M .
Recall that the Weyl group WG = N(T)/T, with G = GSp(2g,Q) and

N(T) the normalizer of T in G, acts. This group WG is isomorphic to Sg �

(Z/2Z)g, where the generator of the i-th factor Z/2Z acts on a matrix of the
form diag(α1, . . . , αg, δ1, . . . , δg) by interchanging αi and δi and the symmetric
group Sg acts by permuting the α’s and δ’s. The Weyl group of M (normalizer
this time in M) is isomorphic to the symmetric group Sg. The algebra of
invariants Hp(T)WG is of the form Q[y±0 , y1, . . . , yg], cf. [30].

We now give Satake’s so-called spherical map of the Hecke algebraHp(Γ,G)
to the Hecke algebras Hp(M) and Hp(T), cf., [17, 29, 40, 85]. The images will
land in the WM -invariant (resp. the WG-invariant) part.

We first need the following characters. The Borel subgroup B of matrices
(a, b; 0, d) with a upper triangular and d lower triangular determines a set Φ+
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of positive roots in the set of all roots Φ (= characters that occur in the adjoint
representation of G on Lie(B)). We let 2ρ =

∑
Φ+ α.

Define e2ρn : M → Gm by γ = (a, 0; 0, d) �→ det(a)g+1η(γ)−g(g+1)/2,
where the multiplier η(γ) is defined by a · dt = η(γ)1g. (This corresponds
to the adjoint action of T on the Lie algebra of the unipotent radical of P .)
Secondly, we have the character e2ρM : T → Gm given by

diag(α1, . . . , αg, δ1, . . . , δg) �→
g∏

i=1

αg+1−2i
i =

g∏

i=1

δ2i−(g+1) .

and 2ρM is the sum of the positive roots in Φ+
M = {ai/aj : 1 ≤ i < j ≤ g}.

Together they give a character e2ρ : T → Gm given by e2ρ(t) = e2ρn(t)e2ρM (t)

for t ∈ T; explicitly,

diag(α1, . . . , αg, δ1, . . . , δg) �→ η−g(g+1)/2

g∏

i=1

α2g+2−2i
i .

Satake’s spherical map SG,M : Hp(Γ,G) → Hp(M) is defined by integrating

SG,M (φ)(m) = |eρn(m)|
∫

U(Qp)

φ(mu)du ,

where |p| = 1/p. Similarly, we have a map

SM,T : Hp(M) → Hp(T)

given by

ST (φ)(t) = |eρM (t)|
∫

M∩N
φ(tn)dn .

In [29] the authors define a ‘twisted’ version of these spherical maps where
they put |e2ρn(m)| and |e2ρM (t)| instead of the multipliers above. In this way
one avoids square roots of p. If one uses this twisted version one should also
twist the action of the Weyl group on the co-character group Y of T by eρ

too: in the usual action Sg permutes the ai and di and the i-th generator τi
of (Z/2Z)g interchanges ai and di. Under the twisted action τi sends (ui, vi)
to (pg+1−ivi, pi−g−1ui), while the permutation (i i+ 1) ∈ Sg sends (ui/vi) to
pui+1/vi+1. The formula is w · φ(t) = |eρ(w−1t)−ρ(t)|φ(w−1t) for w ∈ W and
t ∈ T, cf., [29].

The basic result is the following theorem.

Theorem 10. Satake’s spherical maps SG,M and SM,T define isomorphisms
of Q-algebras Hp(G) ∼−→Hp(T)WG and Hp(M) ∼−→Hp(T)WM .

For the untwisted version there is a similar result but one needs to tensor
with Q(

√
p). One can calculate these maps explicitly. A right cosetKλ(p) with
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λ ∈ Y is mapped under SGT to p〈λ,ρ〉λ. Concretely, if γ = diag(pα1 , . . . , pc−αg)
then SG,T (Kγ) equals

pcg(g+1)/4(v1 · · · vg)c
g∏

i=1

(ui/pivi)αi .

If we write a double coset Kλ(p)K as a finite sum of right cosets Kγ then
we may take γ = λ(p) as one of these coset representatives. Then the image
of the double coset Kλ(p)K is a sum p〈λ,ρ〉λ+

∑
μ nλ,μμ where the μ satisfy

μ < λ (i.e. λ − μ is positive on Φ+) and the nλ,μ are non-negative integers,
cf., [17, 40].

18 Relations in the Hecke Algebra

We derive some relations in the Hecke algebras. We first define elements φi in
the Hecke algebra Hp(M) by

pi(i+1)/2φi = M(Zp)

⎛

⎝
1g−i

p1g
1i

⎞

⎠M(Zp) i = 0, . . . , g

From [4], p. 142–145 one can derive the following result.

Proposition 5. We have SG,M (T (p)) =
∑g

i=0 φi and for i = 1, . . . , g

SG,M (Ti(p2)) =
g∑

j,k≥0,j+i≤k
mk−j(i)p−(k−j+1

2 )φjφk ,

where mh(i) = #{A ∈ Mat(h × h,Fp) : At = A, corank (A) = i}. Moreover,
for i = 0, . . . , g we have

SM,T (φi) = (v1 · · · vg)σi(u1/v1, . . . , ug/vg) ,

where σi denotes the elementary symmetric function of degree i.

Example 1. g = 1. We have T (p) �→ φ0+φ1, T0(p2) �→ φ2
0+((p−1)/p)φ0φ1+φ2

1

and T1(p2) �→ φ0φ1/p. We derive that T (p2) = T0(p2) + T1(p2) satisfies the
well-known relation T (p2) = T (p)2 − pT1(p2).

g = 2. We find T (p) �→ φ0 + φ1 + φ2 and T1(p2) �→ 1
pφ0φ1 + p2−1

p3 φ0φ2 +
1
pφ1φ2 and similarly T2(p2) �→ 1

p3φ0φ2.

We denote the element φ0 corresponding to (1g, 0; 0, p1g) by Frob. This elem-
ent of Hp(M) generates the fraction field of Hp(M) over the fraction field
of Hp(Γ,G) as we can see from the calculation above. Indeed, we have that
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ST (φ0) = v1 · · · vg and this element of Hp(T) is fixed by Sg, but not by any
other element of WG. In particular, it is a root of the polynomial

∏

w∈(Z/2Z)g

(X − w(φ0)) =
∏

I⊂{1,...,g}

(

X −
∏

i∈I
ui
∏

i/∈I
vi

)

.

For example, for g = 1 we find by elimination that φ0 is a root of

X2 − T (p)X + pT1(p2),

while for g = 2 we have that φ0 is a root of

X4 −T (p)X3 + (p T1(p2)+ (p3 + p)T2(p2))X2 − p3 T (p)T2(p2)X + p6 T2(p2)2 .

Using the relation

T (p)2 = T0(p2) + (p+ 1)T1(p2) + (p3 + p2 + p+ 1)T2(p2)

this can be rewritten as a polynomial F (X) given by

X4−T (p)X3 +(T (p)2−T (p2)−p2T2(p2))X2−p3 T (p)T2(p2)X+p6 T2(p2)2 .

Moreover, in the power series ring over the Hecke ring of Sp(4,Q) one has the
formal relation (cf., [93], [4], p. 152)

∞∑

i=0

T (pi) zi =
1 − p2 T2(p2) z2

z4F (1/z)
.

For a slightly different approach we refer to a paper [67] by Krieg and
a preprint by Ryan with an algorithm to calculate the images, cf., [82].

19 Satake Parameters

The usual argument that uses the Petersson product shows that the spaces
Sρ possess a basis of common eigenforms for the action of the Hecke algebra.

If F is a Siegel modular form in Mρ(Γg) for an irreducible representation
ρ = (λ1, . . . , λg) of GL(g,C) which is an eigenform of the Hecke algebraH then
we get for each Hecke operator T an eigenvalue λF (T ) ∈ C, a real algebraic
number. Now the determination of the local Hecke algebra Hp⊗C ∼= C[Y ]WG

says that
HomC(Hp,C) ∼= (C∗)g+1/WG .

In particular, for a fixed eigenform F the map Hp → C given by T �→ λF (T )
is determined by (the WG-orbit of) a (g + 1)-tuple (α0, α1, . . . , αg) of non-
zero complex numbers, the p-Satake parameters of F . So for i = 1, . . . , g the
parameter αi is the image of ui/vi and α0 that of v1 · · · vg and τi ∈ WG acts
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by τi(α0) = α0αi, τi(αi) = 1/αi and τi(αj) = αj if j �= 0, i. These Satake
parameters satisfy the relation

α2
0α1 · · ·αg = p

Pg
i=1 λi−(g+1)g/2 .

This follows from the fact that Tg(p2), which corresponds to the double
coset of p · 12g, is mapped to p−g(g+1)/2(v1 · · · vg)2

∏g
i=1(ui/vi) as we saw

above.
For example, if f =

∑
n a(n)qn ∈ Sk(Γ1) is a normalized eigenform and if

we write a(p) = β + β̄ with ββ̄ = pk−1 then (α0, α1) = (β, β̄/β) or (α0, α1) =
(β̄, β/β̄). Or if f ∈Mk(Γg) is the Siegel Eisenstein series of weight k then the
Satake parameters at p are: α0 = 1, αi = pk−i for i = 1, . . . , g.

The formulas from Proposition 5 give now formulas for the eigenvalues of
the Hecke operators T (p) and Ti(p2) in terms of these Satake parameters:

λ(p) = α0(1 + σ1 + . . .+ σg)

and similarly

λi(p2) =
g∑

j,k≥0,j+i≤k
mk−j(i)p−(k−j+1

2 )α2
0σiσj ,

where σj is the jth elementary symmetric function in the αi with i = 1, . . . , αg
and the mh(i) are defined as in Proposition 5.

20 L-functions

It is customary to associate to an eigenform f =
∑
a(n)qn ∈ Mk(Γ1) of

the Hecke algebra a Dirichlet series
∑
n≥1 a(n)n−s with s a complex pa-

rameter whose real part is > k/2 + 1. It is well-known that for a cusp
form this L-function admits a holomorphic continuation to the whole s-
plane and satisfies a functional equation. The multiplicativity properties
of the coefficients a(n) ensure that we can write it formally as an Euler
product ∑

n>0

a(n)n−s =
∏

p

(1 − a(p)p−s + pk−1−2s)−1 .

In defining L-series for Siegel modular forms one uses Euler products.
Suppose now that f ∈ Mρ(Γg) is an eigenform of the Hecke algebra with

eigenvalues λf (T ) for T ∈ H0
p . Then the assignment T �→ λf (T ) defines an

element of HomC(H0
p ,C). We called the corresponding (g+1)-tuple of α’s the

p-Satake parameters of f . The fact that Z[Y ]WG is also the representation
ring of the complex dual group Ĝ of G = GSP(2g,Q) (determined by the dual
‘root datum’) is responsible for a connection with L-functions. In our case
we can use the Satake parameters to define the following formal L-functions.



Siegel Modular Forms and Their Applications 221

Firstly, there is the spinor zeta function Zf (s) with as Euler factor at p the
expression Zf,p(p−s)−1 with Zf,p(t) given by

(1 − α0t)
g∏

r=1

∏

1≤i1<···<ir≤g
(1 − α0αi1 . . . αir t) = (1 − α0t)

∏

I

(1 − α0αI t) ,

where the product has 2g factors corresponding to the 2g subsets I ⊆
{1, . . . , g}. Secondly, there is the standard zeta function with as Euler fac-
tor Df,p(p−s)−1 at p the expression

Df,p(t) = (1 − t)
g∏

i=1

(1 − αit)(1 − α−1
i t) .

For example, for g = 1 the spinor zeta function is Zf (s) =
∑
a(n)n−s,

the usual L-series and the standard zeta function Df(s − k + 1) =
∏

(1 +
p−s+k−1)−1

∑
a(n2)n−s, that is related to the Rankin zeta function. For

g = 2 and eigenform f ∈ Mj,k(Γ2) with T (m)f = λf (m)f we have
Zf (s) = ζ(2s− j − 2k + 4)

∑
m∈Z>0

λf (m)m−s.
We set

Δ(f, s) = (2π)−gsπ−s/2Γ
(
s+ ε

2

) g∏

j=1

Γ (s+ k − j)D(f, s) ,

where ε = 0 for g even and ε = 1 for g odd. Then the function Δ(f, s) can be
extended meromorphically to the whole s-plane and satisfies a functional equa-
tion Δ(f, s) = Δ(f, 1−s), cf. papers by Böcherer [13], Andrianov–Kalinin [3],
Piatetski–Shapiro and Rallis [79]. If f ∈ Sk(Γg) is a cusp form and k ≥ g then
Δ(f, s) is holomorphic except for simple poles at s = 0 and s = 1. It is even
holomorphic if the eigenform does not lie in the space generated by theta series
coming from unimodular lattices of rank 2g. Also for k < g we have informa-
tion about the poles, cf., [73]. Andrianov proved that for g = 2 the function
Φf (s) = Γ (s)Γ (s−k+2)(2π)−2sZf(s) is meromorphic with only finitely many
poles and satisfies a functional equation Φf (2k − 2 − s) = (−1)kΦf (s).

One instance where spinor zeta functions associated to Siegel classi-
cal modular forms of weight 2 occur is as L-functions associated to the
1-dimensional cohomology of simple abelian surfaces.

We end by giving two additional references: the lectures notes by Courtieu
and Panchishkin [19] and a paper [104] by Yoshida on motives associated to
Siegel modular forms.

21 Liftings

It is well-known that for a normalized cusp form which is an eigenform f =∑
n≥1 a(n)qn of weight k on Γ1 we have the inequality |a(p)| ≤ 2p(k−1)/2 for
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every prime p, or equivalently, the roots of the Euler factor 1−a(p)X+pk−1X2

at p have absolute value p−(k−1)/2. This was shown by Eichler for cusp forms
of weight k = 2 on the congruence subgroups Γ0(N) ⊂ SL(2,Z) and by
Deligne for general k in two steps, by first reducing it to the Weil conjectures
in 1968 ([20]) and then by proving the Weil conjectures in 1974.

For g = 2 the analogous Euler factor at p for an eigenform F of the Hecke
algebra is the expression

Fp = 1 − λ(p)X + (λ(p)2 − λ(p2) − p2k−4)X2 − λ(p)p2k−3X3 + p4k−6X4 ,

with λ(p) the eigenvalue of the cusp form F ∈ Sk(Γ2); cf., the polynomial at
the end of Section 18. The tacit assumption of many mathematicians in the
1970’s was that the absolute values of the roots of Fp were equal to p−(2k−3)/2.
For example, for k = 3 a classical cusp form F of weight 3 on a congruence
subgroup Γ2(n) with n ≥ 3 determines a holomorphic 3-form F (τ)

∏
i≤j dτij

on the complex 3-dimensional manifold Γ2(n)\H2 that can be extended to
a compactification and we thus find an element of the cohomology group H3,
so we expect to find absolute value p−3/2. But then in 1978 Kurokawa and
independently H. Saito ( [69]) found examples of Siegel modular forms of
genus 2 contradicting this expectation. Their examples are the very first ex-
amples that one encounters, like the cusp form χ10 ∈ S10(Γ2). On the basis
of explicit calculations Kurokawa guessed that

L(χ10, s) = ζ(s− 9)ζ(s− 8)L(f18, s) ,

with f18 = Δe6 ∈ S18(Γ1) the normalized cusp form of weight 18 on SL(2,Z)
and L(χ10, s) =

∏
pF(p−s)−1 the spinor L-function. For example, he found

for p = 2
F2 = (1 − 28X)(1 − 29X)(1 + 528X + 217X2)

giving the absolute values p8, p9 and p17/2 for the inverse roots. The examples
he worked out suggested that in these cases L(Fk, s) = ζ(s − k + 1)ζ(s −
k + 2)L(f2k−2, s) with f2k−2 ∈ S2k−2(Γ1) a normalized cusp form and Fk
a corresponding Siegel modular form of weight k which is an eigenform of the
Hecke algebra. On the basis of this he conjectured the existence of a ‘lift’

S2k−2(Γ1) −→ Sk(Γ2), f �→ F

with L(F, s) = ζ(s− k+ 1)ζ(s− k+ 2)L(f, s). A little later, Maass identified
in Mk(Γ2) a subspace (‘Spezialschar’, nowadays called the Maass subspace,
cf., [71]) consisting of modular forms F with a Fourier development F =∑
N≥0 a(N)e2πiTrNτ satisfying the property that a(N) depends only on the

discriminant d(N) and the content e(N), i.e., if we write

N =
(
n r/2
r/2 m

)
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then N corresponds to the positive definite quadratic form [n, r,m] := nx2 +
rxy+my2 with discriminant d = 4mn−r2 and content e = g.c.d.(n, r,m). We
shall write a([n, r,m]) for a(N). The condition that F belongs to the Maass
space can be formulated alternatively as

a([n, r,m]) =
∑

d>0, d|(n,r,m)

dk−1a([1, r/d,mn/d2])

We shall write M∗
k (Γ2) or S∗

k(Γ2) for the Maass subspace of Mk(Γ2) or Sk(Γ2).
It was then conjectured (‘Saito–Kurokawa Conjecture’) that there is a 1-1
correspondence between eigenforms in S2k−2(Γ1) and eigenforms in the Maass
space S∗

k(Γ2) given by an identity between their L-functions. More precisely,
we now have the following theorem.

Theorem 11. The Maass subspace S∗
k(Γ2) is invariant under the action of

the Hecke algebra and there is a 1-1 correspondence between eigenspaces in
S2k−2(Γ1) and Hecke eigenspaces in S∗

k(Γ2) given by

f ↔ F ⇐⇒ L(F, s) = ζ(s− k + 1)ζ(s− k + 2)L(f, s)

with L(F, s) the spinor L-function of F .

The lion’s share of the theorem is due to Maass, but it was completed by
Andrianov and Zagier, see [2, 71, 109].

We can make an extended picture as follows. The map F �→ φk,1 that
sends a Siegel modular form to its first Fourier–Jacobi coefficient induces
an isomorphism M∗

k (Γ2) ∼= Jk,1, the space of Jacobi forms, and the map
h =

∑
c(n)qn �→

∑
n≡−r2 (mod 4) c(n)q(n+r2)/4ζr gives an isomorphism of the

Kohnen plus space M+
k−1/2 with Jk,1 fitting in a diagram

M∗
k (Γ2)

∼−→ Jk,1
∼←− M+

k−1/2

↓ ∼=
M2k−2(Γ1)

where the vertical map is the Kohnen isomorphism. Note that the vertical map
is quite different from the horizontal two maps. The vertical isomorphism is
not canonical at all, but depends on the choice of a discriminant D.

We now sketch a proof of Theorem 11. A classical Siegel modular form
F ∈ Mk(Γ2) has a Fourier–Jacobi series F (τ, z, τ ′) =

∑
φm(τ, z)e2πimτ

′
with

φm(τ, z) ∈ Jk,m, the space of Jacobi forms of weight k and index m. The
reader may check this by himself. We have on the Jacobi forms a sort of
Hecke operators Vm : Jk,m → Jk,ml with φ|k,mVl(τ, z) given explicitly by

lk−1
∑

Γ1\O(l)

(cτ + d)−ke2πiml(−cz
2/(cτ+d))φ((aτ + b)/(cτ + d), lz/(cτ + d)) .
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On coefficients, if φ =
∑

n,r c(n, r)q
nζr then

φ|k,mVl =
∑

n,r

∑

a|(n,r,l)
ak−1c(nl/a2, r/a)qnζr .

One now checks using generators of Γ2 that for φ ∈ Jk,1 the expression

v(φ) :=
∑

m≥0

(φ|Vm)(τ, z)e2πimτ
′

is a Siegel modular form in Mk(Γ2).
We then have a map Mk(Γ2) → ⊕∞

m=0Jk,m by associating to a modular
form its Fourier–Jacobi coefficients; we also have a map in the other direction
Jk,1 →Mk(Γ2) given by φ→ v(φ) and the composition

Jk,1 →Mk(Γ2) → ⊕mJk,m
pr−→Jk,1

is the identity. So v : Jk,1 → Mk(Γ2) is injective and the image consists of
those modular forms F with the property that πm = φ1|Vm. This implies the
following relation for the Fourier coefficients for [n, r,m] �= [0, 0, 0]

a([n, r,m]) =
∑

d|(n,r,m)

dk−1c((4mn− r2)/d2) ,

where c(N) is given by

c(N) =

⎧
⎨

⎩

a([n, 0, 1]) N = 4n

a([n, 1, 1]) N = 4n− 1 .

In particular, we see that the image is the Maass subspace because

a([n, r,m]) =
∑

d|(n,r,m)

dk−1a([nm/d2, r/d, 1]) .

On the other hand, it is known that Jk,1 ∼= M+
k−1/2. Combination of the two

isomorphisms yields what we want.
Duke and Imamoǧlu conjectured in [23] a generalization of this and some

evidence was given by Breulmann and Kuss [15]. Then Ikeda generalized the
Saito–Kurokawa lift of modular forms from one variable to Siegel modular
forms of degree 2 in [58] in 1999 under the condition that g ≡ k (mod 2) to
a lifting from an eigenform f ∈ S2k(Γ1) to an eigenform F ∈ Sg+k(Γ2g) such
that the standard zeta function of F is given in terms of the usual L-function
of f by

ζ(s)
2g∏

j=1

L(f, s+ k + g − j) .
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The Satake parameters of F are β0, β1, . . . , β2g with

β0 = pgk−g(g+1)/2, βi = αpi−1/2, βg+i = α−1pi−1/2 for i = 1, . . . , g

with f =
∑
a(n)qn and

(1 − αpk−1/2X)(1 − α−1pk−1/2X) = 1 − a(p)X + p2k−1X2 ,

cf., [74]. (In particular, such lifts do not satisfy the Ramanujan inequal-
ity.) Kohnen ( [62]) has interpreted it as an explicit linear map S+

k+1/2 −→
Sk+g(Γ2g) given by

f =
∑

(−1)kn≡0,1( mod 4)

c(n)qnF �→
∑

N

a(N)e2πTriNτ ,

with a(N) given by an expression
∑

a|fN
ak−1φ(a,N)c(|DN |/a2) and φ(a,N)

an explicitly given integer-valued numbertheoretic function.
One defines also a Maass space with M∗

k (Γg) consisting of F such that
a(N) = a(N ′) if the discriminants of N and N ′ are the same and in addit-
ion φ(a,N) = φ(a,N ′) for all divisors a of fN = fN ′ . Under the additional
assumption that g ≡ 0, 1 (mod 4) Kohnen and Kojima prove in [64] that the
image of the lifting is the Maass space.

Example 2. Let k = 6 and g = 2. Then the Ikeda lift is a map from S12(Γ1) →
S8(Γ4) and the image of Δ is a cusp form that vanishes on the closure of
the Jacobian locus (i.e., the abelian 4-folds that are Jacobians of curves of
genus 4), [15]. Or take k = g = 6 and get a lift S12(Γ1) → S12(Γ12). This
lifted form occurs in the paper [14].

Miyawaki observed in [72] that the standard L-function of a non-zero cusp
form F of weight 12 on Γ3 is a product DΔ(F, s)L(φ20, s + 10)L(φ20, s+ 9),
with Δ ∈ S12(Γ1) and φ20 ∈ S20(Γ1) the normalized Hecke eigenforms of
weight 12 and 20. He conjectured a lifting and his idea was refined by Ikeda
to the following conjecture.

Conjecture 1. (Miyawaki–Ikeda) Let k and n be natural numbers with k−n
even. Furthermore, let f ∈ S2k(Γ1) be a normalized Hecke eigenform. Then
there exists for every eigenform g ∈ Sk+n+r(Γr) with n, r ≥ 1 a Siegel modular
eigenform Ff,g ∈ Sk+n+r(Γ2n+r) such that

DFf,g
(s) = Zg(s)

2n∏

j=1

Lf (s+ k + n− j) ,

with Lf = Zf the usual L-function.

In [59] Ikeda constructs a lifting from Siegel modular cusp forms of degree r
to Siegel cusp forms of degree r + 2n. This is a partial confirmation of this
conjecture.
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Finally, I would like to mention a conjectured lifting from vector-valued
Siegel modular forms of half-integral weight to vector-valued Siegel modular
forms of integral weight due to Ibukiyama. He predicts in the case of genus
g = 2 for even j ≥ 0 and k ≥ 3 an isomorphism

S+
j,k−1/2(Γ0(4), ψ) ∼−→S2k−6,j+3(Γ2)

which should generalize the Shimura–Kohnen lifting S+
k−1/2(Γ0(4)) ∼=

S2k−2(Γ1), see [51]. Here ψ(γ) =
(

−4
det(d)

)
.

22 The Moduli Space of Principally Polarized
Abelian Varieties

It is a fundamental fact, due to Mumford, that the moduli space of principally
polarized abelian varieties exists as an algebraic stack Ag over the integers.
The orbifold Γg\Hg is the complex fibre Ag(C) of this algebraic stack. This
fact has very deep consequences for the arithmetic theory of Siegel modular
forms, but an exposition of this exceeds the framework of these lectures. Also
the various compactifications, the Baily–Borel or Satake compactification and
the toroidal compactifications constructed by Igusa and Mumford et. al. exist
over Z as was shown by Faltings. We refer to an extensive, but very con-
densed survey of this theory in [29]. In particular, Faltings constructed the
Satake compactification over Z as the image of a toroidal compactification Ãg

by the sections of a sufficiently big power of det(E), the determinant of the
Hodge bundle. A corollary of Faltings’ results is that the ring of classical
Siegel modular forms with integral Fourier coefficients is finitely generated
over Z.

In the following sections we shall sketch how one can use some of these
facts to extract information on the Hecke eigenvalues of Siegel modular
forms.

The action of the Galois group of Q on the points of Ag(Q̄) that correspond
to abelian varieties with complex multiplication is described in Shimura’s
theory of canonical models. This theory can also explain the integrality of the
eigenvalues of Hecke operators. For this we refer to two papers by Deligne,
see [21, 22].

23 Elliptic Curves over Finite Fields

Suppose we did not have the elementary approach to g = 1 modular forms
using holomorphic functions on the upper half plane like the Eisenstein series
and Δ. How would we get the arithmetic information hidden in the Fourier
coefficients of Hecke eigenforms? Would we encounter Δ?
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We claim that one would by playing with elliptic curves over finite fields.
Let Fq with q = pm be a finite field of characteristic p and cardinality q.
An elliptic curve E defined over Fq can be given as an affine curve by an
equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 ,

with ai ∈ Fq and with non-zero discriminant (a polynomial in the coefficients).
We can then count the number #E(Fq) of Fq-rational points of E. A result of
Hasse tells us that #E(Fq) is of the form q+ 1−α− ᾱ for some algebraic in-
teger α with |α| =

√
q. We can do this for all elliptic curves E defined over Fq

up to Fq-isomorphism and we could ask (as Birch did in [10]) for the average
of #E(Fq), or better for

∑

E

q + 1 − #E(Fq)
#AutFq(E)

,

where AutFq(E) is the group of Fq-automorphisms of E, or more generally we
could ask for the average of the expression

h(k,E) := αk + αk−1ᾱ+ . . .+ αᾱk−1 + ᾱk ,

i.e. we sum
σk(q) = −

∑

E

h(k,E)
#AutFq(E)

where the sum is over all elliptic curves E defined over Fq up to Fq-isomorph-
ism. (As a rule of thumb, whenever one counts mathematical objects one
should count them with weight 1/#Aut with Aut the group of automorphisms
of the object.) If we do this for F3 we get the following table, where we also
give the j-invariant of the curve y2 = f

f #E(k) 1/#Autk(E) j
x3 + x2 + 1 6 1/2 −1
x3 + x2 − 1 3 1/2 1
x3 − x2 + 1 5 1/2 1
x3 − x2 − 1 2 1/2 −1

x3 + x 4 1/2 0
x3 − x 4 1/6 0

x3 − x+ 1 7 1/6 0
x3 − x− 1 1 1/6 0

and obtain the following frequencies for the number of F3-rational points:

n 1 2 3 4 5 6 7
freq 1/6 1/2 1/2 2/3 1/2 1/2 1/6
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Note that
∑

1/AutFq(E) = q and
∑
E : j(E)=j 1/AutFq(E) = 1 (see [36]

for a proof); so a ‘physical point’ of the moduli space contributes 1.
If we work this out not only for p = 3, but for several primes (p = 2, 3, 5, 7

and 11) we get the following values:

p 2 3 5 7 11

σ10 −23 253 4831 −16743 534613

Anyone who remembers the cusp form of weight 12

Δ =
∑

n>0

τ(n)qn = q − 24 q2 + 252 q3 − 3520 q4 + 4830 q5 + . . .

will not fail to notice that σ10(p) = τ(p) + 1 for the primes listed in this
example. And in fact, the relation σ10(p) = τ(p)+1 holds for all primes p. The
reason behind this is that the cohomology of the nth power of the universal
elliptic curve E → A1 is expressed in terms of cusp forms on SL(2,Z). To
describe this we recall the local system W on A1 associated to η−1 times the
standard representation of GSp(2,Q) in Section 12. The fibre of this local
system over a point [E] given by the elliptic curve E can be identified with
the cohomology group H1(E,Q). Or consider the universal elliptic curve (in
the orbifold sense) π : E → A1 obtained as the quotient SL(2,Z)×Z2\H1×C,
where the action of (a, b; c, d) ∈ SL(2,C) on (τ, z) ∈ H1 × C is ((aτ + b)/
(cτ + d), (cτ + d)−1z). Associating to an elliptic curve its homology H1(E,Q)
defines a local system that can be obtained as a quotient SL(2,Z)\H1 × Q2.
Then the dual of this local system is W := R1π∗Q. We now put

Wk := Symk(W) ,

a local system with a k + 1-dimensional fibre for k ≥ 0. We now have the
following cohomological interpretation of cusp forms on SL(2,Z), cf. [20].

Theorem 12. (Eichler–Shimura) For even k ∈ Z≥2 we have an isomorphism
of the compactly supported cohomology of Wk

H1
c (A1,W

k ⊗ C) ∼= Sk+2 ⊕ S̄k+2 ⊕ C

with Sk+2 the space of cusp forms of weight k + 2 on SL(2,Z) and S̄k+2 the
complex conjugate of this space.

Replacing W by WR we have the exact sequence

0 → E → W ⊗R O → E∨ → 0

with O the structure sheaf and an induced map E⊗k → Wk ⊗R O. Now the
de Rham resolution

0 → Wk ⊗R C → Wk ⊗R O
d−→Wk ⊗Ω1 → 0
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defines a connecting homomorphism

H0(A1, Ω
1(Wk)) → H1(A1,W

k ⊗ C) .

The right hand space has a natural complex conjugation and we thus find also
a complex conjugate map

H0(A1, Ω1(Wk)) → H1(A1,W
k ⊗ C) .

A cusp form f ∈ Sk+2 defines a section of H0(A1, Ω
1(Wk)) by putting f(τ) �→

f(τ)dτdzk. We thus have a cohomological interpretation of the space of cusp
forms.

As observed above the moduli space A1 is defined over the integers Z.
This means that we also have the moduli space A1 ⊗ Fp of elliptic curves in
characteristic p > 0. It is well-known that one can obtain a lot of information
about cohomology by counting points over finite fields. (Here we work with
�-adic étale cohomology for � �= p.) And, indeed, there exists an analogue of
the Eichler–Shimura isomorphism in characteristic p and the relation σ10(p) =
τ(p) + 1 is a manifestation of this. In fact a good notation for writing this
relation is

H1
c (A1,W

10) = S[12] + 1 ,

where the formula

H1
c (A1,W

2k) ∼= S[2k + 2] + 1 for k ≥ 1

may be interpreted complex-analytically as the Eichler–Shimura isomorphism
and in characteristic p as the relation

σ2k(p) = 1 + Trace of T (p) on S2k+2.

(A better interpretation is as a relation in a suitable K-group and with
S[2k + 2] as the motive associated to S2k+2. This motive can be constructed
in the kth power of E as done by Scholl [87] or using moduli space of n-pointed
elliptic curves as done by Consani and Faber, [18].)

This 1 in the formula H1
c (A1,W

2k) ∼= S[2k + 2] + 1 is really a nuisance.
To get rid of it in a conceptual way we consider the natural map

H1
c (A1,W

k) → H1(A1,W
k)

the image of which is called the interior cohomology and denoted byH1
! (A1,W

k).
We thus have an elegant and sophisticated form of the Eichler–Shimura iso-
morphism

H1
c (A1,W

k) = S[k + 2] + 1, H1
! (A1,W

k) = S[k + 2] .

The 1 is the 1 in 1+pk+1, the eigenvalue of the action of T (p) on the Eisenstein
series Ek+2 of weight k + 2 on SL(2,Z).

The moral of this is that we can obtain information on the traces of Hecke
operators on the space Sk+2 by calculating σk(p), i.e., by counting points on
elliptic curves over Fp. Even from a purely computational point of view this
is not a bad approach to calculating the traces of Hecke operators.
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24 Counting Points on Curves of Genus 2

With the example of g = 1 in mind it is natural to ask whether also for g = 2
we could obtain information on modular forms using curves of genus 2 over
finite fields. In joint work with Carel Faber ([27]) we showed that we can.

For g = 2 the quotient space Γ2\H2 is the analytic space of the moduli
space A2 of principally polarized abelian surfaces. A principally polarized
abelian surface is the Jacobian of a smooth projective irreducible algebraic
curve or it is a product of two elliptic curves. If the characteristic is not 2
a curve of genus 2 can be given as an affine curve with equation y2 = f(x)
with f a polynomial of degree 5 or 6 without multiple zeros.

The moduli space A2 exists over Z and provides us with a moduli space
A2⊗Fp for every characteristic p > 0. Also here we have a local system which
is the analogue of the local system W that we saw for g = 1:

V := GSp(4,Z)\H2 × Q4 ,

where the action of γ = (a, b; c, d) ∈ GSp(4,Z) is given by η−1 times the stan-
dard representation. Or in more functorial terms, we consider the universal
family π : X2 → A2 and then V is the direct image R1π∗(Q). The fibre of this
local system over the point [X ] corresponding to the polarized abelian surface
X is H1(X,Q). The local system V comes equipped with a symplectic pairing
V × V → Q(−1). Just as for g = 1 where we made the local systems Wk out
of the basic one W we can construct more local systems out of V but now
parametrized by two indices l and m with l ≥ m ≥ 0. Namely, the irreducible
representations of Sp(4,Q) are parametrized by such pairs (l,m) and we thus
have local systems Vl,m with l ≥ m ≥ 0 such that Vl,0 = Syml(V) and V1,1 is
the ‘primitive part’ of ∧2V. A local system Vl,m is called regular if l > m > 0.

Just as in the case g = 1 we are now interested in the cohomology of the
local systems Vl,m. We put

ec(A2,Vl,m) =
∑

i

(−1)i[Hi
c(A2,Vl,m)] .

Here we consider the alternating sum of the cohomology groups with compact
support in the Grothendieck group of mixed Hodge structures.

We also have an �-adic analogue of this that can be used in positive char-
acteristic. It is obtained from R1π∗(Q�) and lives over A2⊗Z[1/�]; we consider
the étale cohomology of this sheaf. We simply use the same name Vl,m and
assume that � is different from the characteristic p.

Using a theorem of Getzler [37] (on M2) tells us what the Euler charac-
teristic

∑
i(−1)i dimHi

c(A2,Vl,m) over C is. This Euler characteristic equals
the Euler characteristic of the �-adic variant over a finite field, cf., [9].

The first observation is that because of the action of the hyperelliptic
involution these cohomology groups are zero for l +m odd.
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Our strategy is now to make a list of all Fq-isomorphism classes of curves
of genus 2 over Fq and to determine for each of them #AutFq(C) and the
characteristic polynomial of Frobenius. So for each curve C we determine
algebraic integers α1, ᾱ1, α2, ᾱ2 of absolute value √

q such that

#C(Fqi ) = qi + 1 − αi1 − ᾱi1 − αi2 − ᾱi2

for all i ≥ 1. These α’s can be calculated using this identity for i = 1 and
i = 2. We also must calculate the contribution from the degenerate curves of
genus 2, i.e., the contribution from the principally polarized abelian surfaces
that are products of elliptic curves.

Having done that we are able to calculate the trace of Frobenius on the
alternating sum of Hi

c(A2 ⊗ Fq,Vl,m), where by Vl,m we mean the �-adic
variant, a smooth �-adic sheaf on A2 ⊗ Fq. In practice, it means that we sum
a certain symmetric expression in the α’s divided by #AutFq(C), analoguous
to the σk(q) for genus 1.

What does this tell us about Siegel modular forms of degree g = 2?
To get the connection with modular forms we have to replace the com-
pactly supported cohomology by the interior cohomology, i.e., by the image
of Hi

c(A2,Vl,m) → Hi(A2,Vl,m) which is denoted by Hi
! (A2,Vl,m). So let us

define
eEis(A2,Vl,m) = ec(A2,Vl,m) − e!(A2,Vl,m) .

If we do the same thing for g = 1 we find eEis(A1,W
k) = −1 for even k > 0.

Let L be the 1-dimensional Tate Hodge structure of weight 2 . It corres-
ponds to the second cohomology of P1. In terms of counting points one reads
q for L. Our first result is (cf., [27])

Theorem 13. Let (l,m) be regular. Then eEis(A2,Vl,m) is given by

−S[l+ 3] − sl+m+4Lm+1 + S[m+ 2] + sl−m+2 · 1 +

{
1 l even
0 l odd ,

where sn = dimSn(Γ1).

Faltings has shown (see [29]) that H3
! (A2,Vl,m) possesses a Hodge filtra-

tion
0 ⊂ F l+m+3 ⊂ F l+2 ⊂ Fm+1 ⊂ F 0 = H3

! (A2,Vl,m) .

Moreover, if (l,m) is regular then Hi
! (A2,Vl,m) = (0) for i �= 3. Furthermore,

Faltings shows that
F l+m+3 ∼= Sl−m,m+3(Γ2) .

Here Sj,k(Γ2) is the space of Siegel modular forms for the representation
Symj ⊗detk of GL(2,C). This is the sought-for connection with vector valued
Siegel modular forms and the analogue of H1

! (A1,W
k) = F 0 ⊃ F k+1 ∼=

Sk+2(Γ1) for g = 1. Faltings gives an interpretation of all the steps in the
Hodge filtration in terms of the cohomology of the bundles W(λ).
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However, although for g = 1 the Eichler–Shimura isomorphism tells us that
we know H1

! (A1,W
k) once we know Sk+2(Γ1), for g = 2 there might be pieces

of cohomology hiding in F l+2 ⊂ Fm+1 that are not detectable in F l+m+3 or
in F 0/Fm+1 and indeed there is such cohomology. The contribution to this
part of the cohomology is called the contribution from endoscopic lifting from
N = GL(2) × GL(2)/Gm.

We conjecture on the basis of our numerical calculations that this endo-
scopic contribution is as follows.

Conjecture 2. Let (l,m) be regular. Then the endoscopic contribution is
given by

eendo(A2,Vl,m) = −sl+m+4S[l −m+ 2] Lm+1 .

There is a very extensive literature on endoscopic lifting (cf. [68]), but a pre-
cise result on the image in our case seems to be absent. Experts on endoscopic
lifting should be able to prove this conjecture. Actually, since we know the
Euler characteristics of the interior cohomology and have Tsushima’s dimen-
sion formula it suffices to construct a subspace of dimension 2sl+m+4sl−m+2

in the endoscopic part via endoscopic lifting for regular (l,m).
In terms of Galois representations a Siegel modular form (with rational

Fourier coefficients) should correspond to a rank 4 part of the cohomology
or a 4-dimensional irreducible Galois representation. A modular form in the
endoscopic part corresponds to a rank 2 part and a 2-dimensional Galois
representation. Modular forms coming from the Saito–Kurokawa lift give 4-
dimensional representations that split off two 1-dimensional pieces.

In analogy with the case of g = 1 we now set

S[l−m,m+ 3] := H3
! (A2,Vl,m) −H3

endo(A2,Vl,m) .

This should be a motive analogous to the motive S[k] we encountered for
g = 1 and lives in a power of the universal abelian surface over A2. The trace
of Frobenius on étale �-adic H3

! (A2,Vl,m) − H3
endo(A2,Vl,m) should be the

trace of the Hecke operator T (p) on the space of modular forms Sl−m,m+3.

25 The Ring of Vector-Valued Siegel Modular Forms
for Genus 2

The quest for vector-valued Siegel modular forms starts with genus 2. We
can consider the direct sum M = ⊕ρMρ(Γ2) (see Section 3), where ρ runs
through the set of irreducible polynomial representations of GL(2,C). Each
such ρ is given by a pair (j, k) such that ρ = Symj(W ) ⊗ det(W )k, with W
the standard representation of GL(2,C). (Note that in the earlier notation we
have (λ1 − λ2, λ2) = (j, k).) So we may write M = ⊕j,k≥0Mj,k(Γ2) and we
know that Mj,k(Γ2) = (0) if j is odd. If F and F ′ are Siegel modular forms
of weights (j, k) and (j′, k′) then the product is a modular forms of weight of
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weight (j + j′, k+ k′). The multiplication is obtained from the canonical map
Symj1(W )⊗det(W )k1⊗Symj2(W )⊗det(W )k2 → Symj1+j2(W )⊗det(W )k1+k2

obtained from multiplying polynomials in two variables.
There is the Siegel operator that goes from Mj,k(Γ2) to Mj+k(Γ1). For

j > 0 the Siegel operator gives a map to Sj+k(Γ1) and for j > 0, k > 4
the map Φ : Mj,k(Γ2) → Sj+k(Γ1) is surjective. For these facts on the Siegel
operator we refer to Arakawa’s paper [6]. The Siegel operator is multiplicative:
Φ(F · F ′) = Φ(F )Φ(F ′).

There is a dimension formula for dimMj,k(Γ2), due to Tsushima, [101].
But apart from this not much is known about vector-valued Siegel modular
forms. The direct sum ⊕kMj,k(Γ2) for fixed j is a module over the ring M cl =
⊕M0,k(Γ2) of classical Siegel modular forms and we know generators of this
module for j = 2 and j = 4 and even j = 6 due to Satoh and Ibukiyama,
cf. [48, 49, 86].

One way to construct vector-valued Siegel modular forms from classical
Siegel modular forms is differentiation, the simplest example being given by
a pair f ∈Ma(Γ2), g ∈Mb(Γ2) for which one sets

[f, g] :=
1
b
f∇g − 1

a
g∇f

with ∇f defined by

2πi∇f = a (2iy)−1f +
(
∂/∂τ11 ∂/∂τ12
∂/∂τ12 ∂/∂τ22

)
f .

The point is that [f, g] is then a modular form in M2,a+b(Γ2). Using this
operation (an instance of Cohen–Rankin operators) Satoh showed in [86] that
⊕k≡0(2)M2,k is generated over the ring ⊕kMk(Γ2) of classical Siegel modular
forms by such [f, g] with f and g classical Siegel modular forms.

We give a little table with dimensions for dimSj,k(Γ2) for 4 ≤ k ≤ 20,
0 ≤ j ≤ 18 with j even:

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

j\k 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 0 0 0 0 0 0 1 0 1 0 1 0 2 0 2 0 3

2 0 0 0 0 0 0 0 0 0 0 1 0 2 0 2 0 3

4 0 0 0 0 0 0 1 0 1 0 2 1 3 1 4 2 6

6 0 0 0 0 1 0 1 1 2 1 3 2 5 3 7 4 9

8 0 0 0 0 1 1 2 1 3 2 5 4 7 5 9 7 13

10 0 0 0 0 0 1 2 1 3 2 5 5 8 6 11 9 15

12 0 0 1 1 2 2 4 4 6 5 9 8 13 11 17 15 22

14 0 0 0 1 2 2 4 4 6 6 10 10 15 13 19 18 26

16 0 0 1 1 3 3 6 5 9 8 13 13 19 17 25 23 33

18 0 1 1 2 4 5 7 8 11 11 17 17 23 23 31 30 40

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦
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The ring ⊕j,kMj,k(Γ2) is not finitely generated as was explained to me by
Christian Grundh. Here is his argument.

Lemma 4. The ring ⊕j,kMj,k(Γ2) is not finitely generated.

Proof. Suppose that gn for n = 1, . . . , r are the generators with weights
(jn, kn). If we have a modular form g of weight (j, k) with j > max(jn, n =
1, . . . , r) then g is a sum of products of gn, two of which at least have jn > 0,
hence by the properties of Φ we see that then Φ(g) is a sum of products of cusp
forms, hence lies in the ideal generated by Δ2 of the ring of elliptic modular
forms. But for j > 0, k > 4 the map Φ : Mj,k(Γ2) → Sj+k(Γ1) is surjective, so
we have forms g in Mj,k(Γ2) that land in the ideal generated by Δ, but not
in the ideal generated by Δ2. Thus the ring cannot be generated by gn for
n = 1, . . . , r.

Just as Δ is the first cusp form for g = 1 that one encounters the first
vector-valued cusp form that one encounters for g = 2 is the generator of
S6,8(Γ2). The adjective ‘first’ refers to the fact that the weight of the local
system Vj+k−3,k−3 is j + 2k − 6. Our calculations (modulo the endoscopic
conjecture given in Section 24) allow the determination of the eigenvalues
λ(p) and λ(p2) for p = 2, 3, 5, 7. We then can calculate the characteristic
polynomial of Frobenius and even the slopes of it on S6,8(Γ2).

p λ(p) λ(p2) slopes
2 0 −57344 13/2, 25/2
3 −27000 143765361 3, 7, 12, 16
5 2843100 −7734928874375 2, 7, 12, 17
7 −107822000 4057621173384801 0, 6, 13, 19

At our request Ibukiyama ([48]) has constructed a vector-valued Siegel
modular form 0 �= F ∈ S6,8, using a theta series for the lattice

Γ = {x ∈ Q16 : 2xi ∈ Z, xi − xj ∈ Z,
16∑

i=1

xi ∈ 2Z} .

One puts a = (2, i, i, i, i, 0, . . . , 0) ∈ C16 and one denotes by ( , ) the usual
scalar product. If F = (F0, . . . , F6) is the vector of functions on H2 defined
by

Fν =
∑

x,y∈Γ
(x, a)6−ν(y, a)νeπi((x,x)τ11+2(x,y)τ12+(y,y)τ22) (ν = 0, . . . , 6)

with τ = (τ11, τ12; τ12, τ22) ∈ H2, then Ibukiyama’s result is that F �= 0 and
F ∈ S6,8. The vanishing of λ(2) in the table above agrees with this.

Here are two more examples of 1-dimensional spaces, the space S18,5 and
the last one, S28,4. In these examples and the other ones we assume the validity
of our conjecture on the endoscopic contribution. The eigenvalues λ(p) grow
approximately like p(j+2k−3)/2, i.e. p25/2 and p33/2.
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p λ(p) on S18,5 λ(p) on S28,4

2 −2880 35040
3 −538920 30776760
5 118939500 522308049900
7 1043249200 18814963644400

11 −9077287359096 132158356344353064
13 −133873858788740 −1710588414695522180
17 667196591802660 −17044541241181641180
19 2075242468196920 888213094972004807320
23 −8558834216776560 −43342643806617018857520
29 64653981488634780 −172663192093972503614820
31 −5977672283905752896 1826186223285615270299584
37 56922208975445092780 −29747516862655204839491540

In principle our database allows for the calculation of the traces of the Hecke
operators T (p) with p ≤ 37 on the spaces Sj,k for all values j, k. In the cases
at hand these numbers tend to be ‘smooth’, i.e., they are highly composite
numbers as we illustrate with the two 1-dimensional spaces Sj,k for (j, k) =
(8, 8) and (12, 6) (where the trace equals the eigenvalue of T (p)).

p λ(p) on S8,8 λ(p) on S12,6

2 26 · 3 · 7 −24 · 3 · 5
3 −23 · 32 · 89 23 · 35 · 5 · 7
5 −22 · 3 · 52 · 132 · 607 22 · 3 · 52 · 7 · 79 · 89
7 24 · 7 · 109 · 36973 −24 · 52 · 7 · 119633

11 23 · 3 · 4759 · 114089 23 · 3 · 23 · 2267 · 2861
13 −22 · 13 · 17 · 109 · 3404113 22 · 5 · 7 · 13 · 50083049
17 22 · 32 · 17 · 41 · 1307 · 168331 −22 · 32 · 5 · 7 · 13 · 47 · 14320807
19 −23 · 5 · 74707 · 9443867 −23 · 5 · 73 · 19 · 2377 · 35603

Satoh had calculated a few eigenvalues of Hecke operators T (m) acting on
S14,2(Γ2), (for m = 2, 3, 4, 5, 9 and 25) cf. [86], and our values agree with his.

26 Harder’s Conjecture

In his study of the contribution of the boundary of the moduli space to the
cohomology of local systems on the symplectic group, more precisely of the
Eisenstein cohomology, Harder arrived at a conjectural congruence between
modular forms for g = 1 and Siegel modular forms for g = 2, cf., [44,45]. The
second reference is his colloquium talk in Bonn (February 2003) which can be
found in this volume and where this conjectural relationship was formulated
in precise terms. One can view his conjectured congruences as a generalization
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of the famous congruence for the Fourier coefficients of the g = 1 cusp form
Δ =

∑
τ(n)qn of weight 12

τ(p) ≡ p11 + 1 (mod 691) .

To formulate it we start with a g = 1 cusp form f ∈ Sr(Γ1) of weight r that
is a normalized eigenform of the Hecke operators. We write f =

∑
n≥1 a(n)qn

with a(n) = 1. To f we can associate the L-series L(f, s) defined by L(f, s) =∑
n≥1 a(n)/ns for complex s with real part > k/2 + 1. If we define Λ(f, s) by

Λ(f, s) =
Γ (s)
(2π)s

L(f, s) =
∫ ∞

0

f(iy)ys−1dy

then Λ(f, s) admits a holomorphic continuation to the whole s-plane and
satisfies a functional equation Λ(f, s) = ikΛ(f, k − s). It is customary to call
the values Λ(f, t) for t = k − 1, k − 2, . . . , 0 the critical values. In view of the
functional equation we may restrict to the values t = k − 1, . . . , k/2.

A basic result due to Manin and Vishik is the following.

Theorem 14. There exist two real numbers (‘periods’) ω+, ω− such that the
ratios

Λ(f, k − 1)/ω−, Λ(f, k − 2)/ω+, . . . , Λ(f, k/2)/ω(−1)k/2

are in the field of Fourier coeffients Qf = Q(a(n) : n ∈ Z≥1).

If the Fourier coefficients are rational integers we may normalize these
ratios so that we get integers in a minimal way. In practice one observes that
one usually finds many small primes dividing these coordinates. By small
we mean here less than k (or something close to this). Occasionally, there is
a larger prime dividing these critical values of Λ(f, s).

Instead of calculating the integrals one may use a slightly different ap-
proach by employing the so-called period polynomials, [65], which are defined
for f ∈ Sk(Γ1) by r = i r+ + r− with

r+(f) =
∑

0≤n≤k−2,n even

(−1)n/2
((

k − 2
n

))
rn(f)Xk−2−n

and
r−(f) =

∑

0<n<k−2,n odd

(−1)(n−1)/2

((
k − 2
n

))
rn(f)Xk−2−n

with rn(f) =
∫∞
0 f(it)tndt for n = 0, . . . , k − 2. Then the coefficients of these

period polynomials give up to ‘small’ primes the critical L-values. These can
be calculated purely algebraically and these are the ones that I used. By
slight abuse of notation I denote these ratios again by the same symbols
(Λ(f, k − 1) : Λ(f, k − 3) : . . .). See also [25] for more on the critical val-
ues.
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For example, if we do this for f = Δ ∈ S12 then we get

(Λ(f, 10) : Λ(f, 8) : Λ(f, 6)) = (48 : 25 : 20)

and see only ‘small’ primes. The first example where we see larger primes
is the normalized eigenform f = Δe4e6 ∈ S22. We find for the even critical
values

(Λ(f, 20) : . . . : Λ(f, 12)) = (25 ·33 ·5 ·19 : 23 ·7 ·132 : 3 ·5 ·7 ·13 : 2 ·3 ·41 : 2 ·3 ·7)

where obviously 41 is the exception. We shall write for short 41|Λ(f, 14). What
is the meaning of these exceptional primes dividing the critical values?

Harder made the following conjecture.

Conjecture 3. (Harder’s Conjecture) Let f ∈ Sr(Γ1) be a normalized eigen-
form with field of Fourier coefficients Qf . If a ‘large’ prime � of Qf divides
a critical value Λ(f, t) then there exists a Siegel modular form F ∈ Sj,k(Γ2)
of genus 2 and weight (j, k) with j = 2t− r − 2 and k = r − t+ 2 that is an
eigenform for the Hecke algebra with eigenvalue λ(p) for T (p) with field QF

of eigenvalues λ(p) and such that for a suitable prime �′ of the compositum L
of Qf and QF dividing � one has

λ(p) ≡ pk−2 + a(p) + pj+k−1 (mod �′)

for all primes p.

(Here the λ(p) are algebraic integers lying in a totally real field QF . Harder
formulated the conjecture for the case L = Q.)

For example, if f = Δe4e6 ∈ S22(Γ1) is the unique normalized cusp
form of weight 22 then 41|Λ(f, 14), so Harder predicts that the space S4,10

should contain a non-zero eigenform F with eigenvalues λ(p) satisfying
λ(p) ≡ p8 + a(p) + p13 (mod41) for all p. A mimimum consistency is that
at least dimS4,10(Γ2) �= 0; as it turns out this dimension is 1.

27 Evidence for Harder’s Conjecture

Since we can calculate the trace of the Hecke operators T (p) on the spaces
Sj,k(Γ2) for all primes p ≤ 37 (modulo the conjecture on the endoscopic
contribution) we can try to check the conjecture by Harder (and gain evidence
for the conjecture on the endoscopic contribution at the same time). As we just
saw, the first case where we have a ‘large’ prime dividing a critical L-value is
the eigenform f = Δe10 ∈ S22(Γ1) of weight 22. Here the prime 41 divides the
critical values L(f, 14)/Ω+. The conjecture predicts a congruence between the
Fourier coefficients of f =

∑∞
n=1 a(n)qn and the eigenvalues λ(p) of a form F

in the 1-dimensional space S4,10(Γ2). We give the tables with the eigenvalues
a(p) of f and λ(p) of F ∈ S4,10(Γ2) for the primes p ≤ 37.
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p a(p) λ(p)

2 −288 −1680
3 −128844 55080
5 21640950 −7338900
7 −768078808 609422800

11 −94724929188 25358200824
13 −80621789794 −263384451140
17 3052282930002 −2146704955740
19 −7920788351740 43021727413960
23 −73845437470344 −233610984201360
29 −4253031736469010 −545371828324260
31 1900541176310432 830680103136064
37 22191429912035222 11555498201265580

Proposition 6. The congruence λ(p) ≡ p8 + a(p) + p13(mod41) for the
eigenvalues λ(p) and a(p) on S4,10(Γ2) and S22(Γ1) holds for all primes
p ≤ 37.

In this way we can check Harder’s conjecture for many cases given in the ta-
bles below in the following sense. If both dimSr(Γ1) = 1 and dimSj,k(Γ2) = 1
and if � is a prime > r dividing the critical L-value then we checked the con-
gruence λ(p) − a(p) − pj+k−1 − pk−2 ≡ 0(mod �) for all primes p ≤ 37. In
case dimSr(Γ1) = 2 and dimSj,k(Γ2) = 1 I checked that in the quadratic
field Q(a(p)) the expression λ(p)− a(p)− pj+k−1 − pk−2 has a norm divisible
by � for all primes p ≤ 37. With a bit of additional effort one can check the
congruence in the real quadratic field. For example, take r = 24 and let

f =
∑

a(n)qn = q − (54 − 12
√

144169) q2 + . . .

be a normalized eigenform in S24(Γ1). In the quadratic field Q(
√

144169) the
prime 73 splits as π · π′ with π = (73, 53 + 36

√
144169). Let λ(p) be the

eigenvalue under T (p) of the generator of S12,7(Γ2). Then we can check the
congruence

λ(p) ≡ p5 + a(p) + p18 (mod π)

for all p ≤ 37.
In case dimSj,k(Γ2) = 2 I can calculate the characteristic polynomial g of

T (2). In general this is an irreducible polynomial g of degree 8 over Q. The
corresponding number field L possesses just one subfield L of degree 2 over Q

and g decomposes in two polynomials of degree 4 that are irreducible over K.
I then checked that the expression λ(p)− a(p)− pj+k−1 − pk−2 has a norm in
the composite field (Q(a(2)),K) which is divisible by our congruence prime �.
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For example, we treat the case of the local system V18,6 with (�,m) =
(18, 6). The characteristic polynomial g of Frobenius at the prime 2 is:

1 + t1X + t2X
2 + t3X

3 + t4X
4 + 227 t3X

5 + 254t2X
6 + 281t1X

7 + 2108X8 .

with the coefficients t1 = 12432, t2 = 193574912, t3 = 3043199287296 and
t4 = 31380514975776768. The corresponding degree 8 field extension K of Q

has one quadratic subfield Q(
√

7 · 3607). Our polynomial g splits into the
product of a quartic polynomial h

18014398509481984X4 + (834297397248− 9663676416
√

25249)X3 +
(142913536− 110592

√
25249)X2 + (6216− 72

√
25249)X + 1

and its conjugate over this quadratic subfield Q(
√

25249) and we get λ(2) =
−6216 ± 72

√
25249. The normalized eigenform in S28 has Fourier coefficient

a(2) = −4140± 108
√

18209) and one checks that the norm of

6216 + 72
√

25249 + 27 + 220 − (4140 + 108
√

18209)

in the field Q(
√

25249,
√

18209) is divisible by 4057 as predicted by Harder.
But there are cases where the characteristic polynomial g decomposes.

These are the cases (j, k) = (18, 7) where we have two factors of degree 4 and
(j, k) = (8, 13) where g is a product of four quadratic factors. In the cases
(j, k) = (18, 7) there is a congruence modulo 3779. In fact, g decomposes as
the product of

288230376151711744X4 − 4252017623040X3 + 45752320X2 − 7920X + 1

and

288230376151711744X4 + 17575006175232X3 + 857571328X2 + 32736X + 1

and one calculates

Norm(4320 + 96
√

51349 + 224 + 25 + 32736) = 282720345772032

and this is divisible by 3779. In the cases (j, k, r) = (32, 4, 38) there are two
congruence primes and one finds indeed a congruence for both of them.

The following table lists the congruence primes in question. All of these
are checked in the sense explained above.

Let me finish by expressing the hope that these explicit examples will
convince the reader that Siegel modular forms are not less fascinating than
elliptic modular forms and moreover that in this corner of nature there are
many exciting secrets that await discovery.
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r dim(Sr) (j, k) dim(Sj,k) L-value primes
20 1 (6, 8) 1 22 · 3 · 112

22 1 (4, 10) 1 −2 · 3 · 17 · 41 41
22 1 (8, 8) 1 3 · 7 · 13 · 17
22 1 (12, 6) 1 −2 · 7 · 132

24 2 (12, 7) 1 24 · 5 · 72 · 11 · 73 73
24 2 (6, 10) 1 3 · 112 · 132 · 17
24 2 (8, 9) 1 3 · 72 · 11 · 19 · 179 179
26 1 (4, 12) 1 2 · 11 · 17 · 19
26 1 (6, 11) 1 3 · 5 · 11 · 19
26 1 (10, 9) 1 −2 · 7 · 11 · 29 29
26 1 (14, 7) 1 5 · 7 · 97 97
26 1 (16, 6) 1 −2 · 11 · 17 · 19
26 1 (8, 10) 2 −32 · 7 · 11 · 19
26 1 (12, 8) 2 3 · 52 · 11 · 17
28 2 (2, 14) 1 23 · 52 · 132 · 172 · 19 · 23
28 2 (16, 7) 1 25 · 34 · 5 · 7 · 13 · 367 367
28 1 (14, 8) 2 24 · 11 · 132 · 17 · 19 · 23 · 647 647
28 2 (12, 9) 2 23 · 7 · 11 · 13 · 23 · 4057 4057
28 2 (8, 11) 1 5 · 112 · 13 · 23 · 2027 2027
28 2 (18, 6) 1 24 · 32 · 52 · 11 · 132 · 172 · 19
28 1 (10, 10) 2 22 · 52 · 112 · 132 · 17 · 23 · 157 157
28 2 (6, 12) 2 5 · 112 · 132 · 19 · 23 · 823 823
28 2 (20, 5) 1 29 · 34 · 5 · 193 193
30 2 (14, 9) 2 28 · 3 · 5 · 13 · 1039 1039
30 2 (6, 13) 1 24 · 5 · 11 · 13 · 19 · 23
30 2 (10, 11) 1 34 · 11 · 13 · 23 · 97 97
30 2 (24, 4) 1 210 · 34 · 55 · 7 · 97 97
30 2 (20, 6) 2 26 · 33 · 7 · 11 · 13 · 17 · 19 · 23 · 593 593
30 2 (4, 14) 2 32 · 5 · 72 · 13 · 192 · 23 · 4289 4289
30 2 (18, 7) 2 24 · 32 · 5 · 11 · 3779 3779
32 2 (4, 15) 1 22 · 5 · 72 · 13 · 19 · 23 · 61 61
32 2 (2, 16) 2 33 · 52 · 72 · 192 · 23 · 211 211
32 2 (22, 6) 2 23 · 33 · 5 · 7 · 13 · 17 · 19 · 23 · 7687 7687
32 2 (24, 5) 2 29 · 35 · 5 · 3119 3119
32 2 (8, 13) 2 2 · 73 · 113 · 132 · 23
34 2 (10, 13) 2 23 · 32 · 5 · 7 · 132 · 232 · 292

34 2 (28, 4) 1 210 · 38 · 55 · 7 · 103 103
34 2 (26, 5) 2 211 · 33 · 53 · 15511 15511
34 2 (6, 15) 2 2 · 52 · 7 · 13 · 232 · 29 · 233 233
38 2 (32, 4) 2 28 · 38 · 54 · 72 · 67 · 83 67, 83
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A Congruence Between a Siegel
and an Elliptic Modular Form

Günter Harder

Mathematisches Institut, Universität Bonn, Beringstraße 1, 53115 Bonn, Germany
E-mail: harder@math.uni-bonn.de

Preface

The winter semester 2002/2003 was the last semester before my retirement
from the university. It also happened that I was the chairman of the Collo-
quium and the speaker foreseen for February 7 had to cancel his visit.

At about the same time I found some numerical support for a very ge-
neral conjecture relating divisibilities of certain special values of L-functions
to congruences between modular forms. I have been thinking about this kind
of relationship for many years, but I never had any idea how one could find
experimental evidence. But in the early 2003 C. Faber and G. van der Geer
had written a program that produced lists of eigenvalues of Hecke operators
on some special Siegel modular forms. After a few days of suspense we could
compare their list with my list of eigenvalues of elliptic modular forms and
verify the congruence in our examples.

I was very exited about this and spontaneously invited myself to give the
Colloquium lecture, which is documented in the text below. (Bonn Spring
2007)

1 Elliptic and Siegel Modular Forms

I have to recall some well known facts from the classical theory of modular
forms. We have the upper half plane

H = {z | x+ iy with y > 0} .

On this upper half plane we have an action of Sl2(R), which is given by

Sl2(R) × H −→ H
((

a b
c d

)
, z

)
�→ az + b

cz + d
.
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The stabilizer of i ∈ H is the maximal compact subgroup SO(2) and we can
identify H = Sl2(R)/SO(2). Let k be a positive (even) integer. A holomorphic
modular form of weight k with respect to Sl2(Z) is a holomorphic function
f : H → C, which satisfies

f

(
az + b

cz + d

)
= (cz + d)kf(z)

for all matrices (
a b
c d

)
∈ Sl2(Z) ,

and which satisfies a growth condition. To formulate this growth condition
we restrict f to a “neighborhood of infinity” H(c) = {z|�(z) > c}. On this

neighborhood the group Γ∞ =
(

1 n
0 1

)
with n ∈ Z acts and the map z �→ e2πiz

identifies Γ∞\H(c) to a punctured disk. Since f satisfies f(z) = f(z + 1) we
can view its restriction to Γ∞\H(c) as a function in the variable q. The growth
condition requires that f has a (Fourier or Laurent) expansion

f(q) = a0 + a1q + a2q
2 . . . ,

i.e. it extends to a holomorphic function on the disk. If a0 = 0, then f is called
a cusp form.

Remark: The quotient Sl2(Z)\H has the structure of a Riemann surface,
which can be compactified to a compact Riemann surface Sl2(Z)\H by adding
one point at ∞. We write the maximal compact subgroup

SO(2) = U(1) = K =
{
e(φ) | e(φ) =

(
cos(φ) sin(φ)
− sin(φ) cos(φ)

)}
.

Since H = Sl2(R)/SO(2), the representation ρk : SO(2) → C×, which is given
by e(φ) �→ e(φ)k defines a Sl2(R)-invariant holomorphic line bundle Lk on H,
this gives us a line bundle, also called Lk, on Sl2(Z)\H. This line bundle can
be extended in a specific way to a line bundle on the compactification. Then
the space of modular forms of weight k can be canonically identified with the
space of sections H0(Sl2(Z)\H,Lk).

We have the two modular forms of weight 4 and 6

E4(z) =
1
2

∑

(c,d)=1

1
(cz + d)4

,

E6(z) =
1
2

∑

(c,d)=1

1
(cz + d)6

,

and then we have the q-expansions

E4(q) = 1 + 240q + 2160q2 + 6720q3 + 17520q4 + 30240q5 . . .

E6(q) = 1 − 504q − 16632q2 − 122976q3 − 532728q4 − 1575504q5 + . . . .



A Congruence Between a Siegel and an Elliptic Modular Form 249

The space of cusp forms has dimension 1 for the values k = 12, 16, 18, 20, 22, 26.
The modular form

Δ(z) =
E4(q)3 − E6(q)2

123
= q − 24q2 + 252q3 − 1472q4 + 4830q5 + . . .

is the generator of the space of cusp forms of weight 12.
The space of cusp forms of weight 22 is generated by

f(q) =
E6(q)E4(q)4 − E6(q)3 ·E4(q)

123
= q − 288q2 − 128844q3 − 2014208q4

+ 21640950q5 + 37107072q6 − 768078808q7 + 1184071680q8

+ 6140423133q9 − 6232593600q10 − 94724929188q11 ± . . . .

Now I have to say a few words on Siegel modular forms. We start from
a lattice

L = Z4 = Ze1 ⊕ Ze2 ⊕ Zf2 ⊕ Zf1

on which we have an alternating pairing which on the basis vectors is given
by

〈e1, f1〉 = 〈e2, f2〉 = −〈f1, e1〉 = −〈f2, e2〉 = 1 ,

and all other values of the pairing are zero. The group of automorphisms of
this symplectic form is a semi-simple group scheme Sp2/ Spec(Z). This is the
symplectic group of genus 2.

Its group of real points

Sp2(R) = {g ∈ GL4(R) | 〈gx, gy〉 = 〈x, y〉}

contains U(2) as a maximal compact subgroup and we can form the quotient
space

H2 = Sp2(R)/U(2) .

This is the space of symmetric 2 × 2 matrices

Z = X + iY

with complex entries whose imaginary part Y is positive definite. Hence we
have a complex structure on this space. This complex structure can also
be seen in the following way: let P (C) in Sp2(C) be the stabilizer of the
isotropic plane {e1 − if1, e2 − if2} ⊂ C4, then we have an open embed-
ding

H2 = Sp2(R)/U(2)↪−→Sp2(C)/P (C) ,

the group SU(2) is the group of real points of P (C) intersected with its
complex conjugate P̄ (C). The object on the right is the Grassmann vari-
ety of isotropic complex planes in (C4, 〈 , 〉). It is projective and of di-
mension 3. The group Γ = Sp2(Z) acts upon H2 and the quotient Γ\H2

is a quasiprojective algebraic variety over C. We have a homomorphism
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P (C) → GL2(C). For any pair of integers i ≥ 0, j the holomorphic repre-
sentation

ρ : GL2(C) −→ Symi(C2) ⊗ detj

defines a holomorphic vector bundle Eij on the flag variety Sp2(C)/P (C)
which is Sp2(C)-equivariant. Hence its restriction – also called Eij – to H2

is a Sp2(R) equivariant holomorphic bundle on H2 and hence descends to
a holomorphic bundle on Γ\H2. We can consider the space of holomorphic
sections

H0(Γ\H2, Eij) ,

and define the subspace of modular forms Mij (which satisfy some growth
condition) and the subspace Sij of cusp forms; these are rapidly decreasing at
infinity. These spaces are called the spaces of modular forms (cusp forms) of
weight i, j. (See remark above.)

There are formulas by R. Tsushima for the dimensions of these spaces Sij
(Riemann–Roch–Hirzebruch or the trace formula), and for small values i, j
the dimensions are zero. We say that i, j is a regular pair if i > 0, j > 3. We
have 29 cases of regular pairs i, j where Sij is of dimension one.

2 The Hecke Algebra and a Congruence

Whenever we have such a space of modular forms we have an action of the
algebra of Hecke operators on it. This is an algebra generated by operators Tp
(for Sl2(Z)) and T (ν)

p , ν = 1, 2 (for Sp2(Z)), which are attached to a prime p
and which induce endomorphisms T (ν)

p : Sij → Sij , and which commute with
each other. If we pick a prime, then we can consider the matrix

⎛

⎜
⎜
⎝

p 0
p

1
0 1

⎞

⎟
⎟
⎠

which is in GSp2(Q), and if f(Z) ∈ H0(Γ\H2, Eij), then f

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

p 0
p

1
0 1

⎞

⎟
⎟
⎠Z

⎞

⎟
⎟
⎠

is not invariant under Γ ; it is only a section in

H0(Γ0(p)\H2, Eij) ,

where Γ0(p) ⊂ Γ is a subgroup of finite index. We can form a trace by summing
over Γ0(p)\Γ and up to a normalizing factor this will be our operator

T (1)
p : Sij −→ Sij .
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If now dimSij = 1, then the operator T (1)
p : Sij → Sij induces the multi-

plication by a number λ(p) on Sij and if j ≥ 3, then we get a sequence of
integers

{λ(p)}p∈Primes

which, of course, depends on i, j.
We also have the Hecke operators for classical modular forms, and our

cusp form f of weight 22 is also an eigenform for the operators Tp. In
this case the situation is simple. Because f is normalized, i.e. a1 = 1, we
have

Tpf = apf

where ap is the p-th Fourier coefficient. We have dimS4,10 = 1 and formulate
the conjecture
Conjecture: For S4,10 we have a congruence

λ(p) ≡ p8 + ap + p13 mod41 for all primes p .

Prop. The conjecture holds for 2 ≤ p ≤ 11.

One might say that this is really not so much evidence for the conjec-
ture. But here are certain numbers, namely, 4, 10, 22, 8, 13 and 41, which
seem to be somewhat arbitrary. I did not play with these numbers un-
til I found a congruence. I picked all these numbers in advance and only
then I checked the congruence, which I expected to be true for this specific
choice.

The congruence is a generalization of a classical congruence. If we write
the Δ-function

Δ(z) = q − 24q2 + 252q3 − 1472q4 + 4830q5 ± . . . =
∞∑

n=1

τ(n)qn ,

then we have the famous Ramanujan congruence

τ(p) ≡ p11 + 1 mod 691 for all primes p .

But there is a difference: Usually people interpret this last congruence as
a congruence between the q-expansions of two modular forms, namely the
Δ-function and the Eisenstein series E12(z). Since the Fourier coefficients
are the same as the eigenvalues of the Hecke operators we also get the
congruence between the eigenvalues. For the congruence between the Siegel
modular form and the elliptic modular form we only have a congruence be-
tween Hecke eigenvalues. I do not see a congruence between Fourier coeffi-
cients.

I want to say something about the numbers, how I get them and I want
to say a few words about the meaning of this congruence.
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3 The Special Values of the L-function

We start from our modular cusp form of weight 22

f(q) = q − 288q2 − 128844q3 − 2014208q4 + 21640950q5 + . . . =
∞∑

n=1

anq
n ,

we have its associated L-function L(f, s) =
∑∞

n=1
an

ns , and because f is an
eigenform for the Hecke algebra this L-function has an Euler product expan-
sion

L(f, s) =
∞∑

n=1

an
ns

=
∏

p

1
1 − app−s + p21−2s

.

Actually it is better to consider the Mellin transform
∫ ∞

0

f(iy)ys
dy

y
=

Γ (s)
(2π)s

· L(f, s) = Λ(f, s) .

From this integral representation we easily get the functional equation

Λ(f, 22 − s) = −Λ(f, s) .

Now we consider the “special” values Λ(f, 21), Λ(f, 20), . . . , Λ(f, 11). It follows
from the theory of modular symbols (Manin–Vishik) that there exist two real
numbers Ω−, Ω+ �= 0 (the periods) such that

Λ(f, 21)
Ω−

,
Λ(f, 20)
Ω+

,
Λ(f, 19)
Ω−

, . . . ∈ Q

These periods are only defined up to elements in Q×, but a closer look allows
us to pin them down up to a factor in Z× = {±1}. In this case we can simply
try to normalize them such that

{
Λ(f, 21)
Ω−

,
Λ(f, 19)
Ω−

, . . . ,
Λ(f, 11)
Ω−

}

and {
Λ(f, 20)
Ω+

, . . . ,
Λ(f, 14)
Ω+

,
Λ(f, 12)
Ω+

}

are sets of co-prime integers. Of course, it is not so difficult to produce these
lists of integers. (From this list we conclude that the normalization of Ω− was
not the right one. This is related to the fact that

131 · 593 | ζ(−21) ,

and this produces a congruence between f and an Eisenstein series

ap ≡ p21 + 1 mod 131 · 593 .



A Congruence Between a Siegel and an Elliptic Modular Form 253

This forces us to replace Ω− by 131 ·593 ·Ω−.) With this modification the list
for the odd case is

{25·33·56·7·13·17·19/(131·593), 25·3·52·13·17 , 2·3·53·7·13, 2·52·13·17, 537, 0}

and for the even case

{25 · 33 · 5 · 19, 23 · 7 · 132, 3 · 5 · 7 · 13, 2 · 3 · 41, 2 · 3 · 7} .

We have exactly one “large” prime dividing a value. This is

41 | Λ(f, 14)
Ω+

,

and this divisibility is the source for the congruence above.

4 Cohomology with Coefficients

To explain this connection I have to recall some other facts from the theory
of Siegel modular varieties. The space

Γ\H2

can be interpreted as the parameter space of principally polarized abelian
surface over C. Roughly, we can attach to a point in H2 a triple

〈L, 〈 , 〉 , I〉 = AI

where I is a complex structure on L⊗R, which is an isometry for the pairing
and s.t. the associated hermitian form is positive definite. (I personally prefer
to view H2 as the space of such complex structures on L⊗ R.) This AI is an
abelian surface and AI

∼= AI′ if there is a γ ∈ Γ such that γI = I ′, and this γ
provides an isomorphism γ∗ : AI

∼= AI′ . Here we encounter a minor difficulty,
because γ is not unique, and γ∗ depends on the choice of γ. Therefore we
can not attach an abelian variety to a point Ĩ ∈ Γ\H2. But if we pass to
a suitably small normal congruence subgroup Γ ′ ⊂ Γ then it is clear that
we have a family π : A → Γ ′\H2 of principally polarized abelian varieties
over Γ ′\H2. Then the family of cohomology groups H1(AĨ ,Z) defines a local
system of free Z-modules of rank 4 over Γ ′\H2. This local system descends to
a sheaf on Γ\H2.

This sheaf is also obtained from the standard representation

ρ10 : Γ −→ Gl(L) = Gl(M1,0) .

We define a representation ρ01 : Γ → Gl(M0,1) where the module M0,1 is
defined by

Λ2M1,0 = M0,1 ⊕ Z .
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We can form the modules Symm(M1,0) ⊗ Symn(M0,1) and these modules
have a unique submodule (or quotient)

ρm,n : Γ → Gl(Mm,n) ,

which is defined be the requirement that it has the largest dominant weight
amoung all highest weights of submodules.

(The representations ρ10 (resp. ρ01) have highest weight γβ (resp. γα),
which are the two fundamental dominant weights. Then Mm,n is the unique
irreducible submodule with highest weight λ = mγβ + nγα. At this point
is an ambiguity: Instead of taking the submodule we could take the unique
irreducible quotient having this fundamental weight (actually this ambiguity
already occurs when we form the symmetric products). Then the submodule
will map injectively into the quotient and the image is a submodule of finite
index. This index will be only divisible by “small” primes ≤ m,n, they do not
play a role in our considerations, in other words it does not matter whether
we take the submodule or the quotient.)

These representations yield sheaves M̃m,n of Z-modules. For an open set
U ⊂ Γ\H2 and its inverse image Ũ ⊂ H2 we have

M̃m,n(U) = {f : Ũ → Mm,n|f locally constant and
f(γu) = ρn,m(γ)f(u) for all γ ∈ Γ} .

For m even, these modules give us sheaves M̃m,n on the space Γ\H2 which
are almost local systems. We can consider the cohomology groups

Hi
c(Γ\H2,M̃m,n), Hi(Γ\H2,M̃m,n)

where H•
c denotes the cohomology with compact support. These cohomology

groups sit in an exact sequence

→ Hi−1(∂(Γ\H2),M̃m,n) → Hi
c(Γ\H2,M̃m,n) → Hi(Γ\H2,M̃m,n)

→ Hi(∂(Γ\H2),M̃m,n) → ,

where ∂(Γ\H2) is the boundary of the Borel–Serre compactification.
We denote byHi

! (Γ\H2,M̃m,n) the image of the cohomology with compact
supports in the cohomology. The coefficient system M̃m,n is called regular if
n,m > 0. In this case all cohomology groups Hi

! (Γ\H2,M̃m,n⊗Q) vanish for
i �= 3. We have a Hodge filtration on H3

! (Γ\H2,M̃m,n ⊗ C), and the lowest
step of this filtration is given by (Faltings)

Sm,n+3 ↪−→ H3
! (Γ\H2,M̃m,n ⊗ C) .

To get the connection to the conjecture we choose m = 4, n = 7.
Now I formulate a second conjecture. We invert some small primes (say

≤22), and we denote the resulting ring by R = Z[12 , . . . ,
1
19 ].
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Then we get an exact sequence (assumption)

0 → H3(Γ\H2,M̃4,7 ⊗R) → H3(Γ\H2,M̃4,7 ⊗R)

→ H3
(
∂(Γ\H2),M̃4,7 ⊗R

)
→ 0 ,

I know that this is true if I replace R by Q.
Now we can show that we have an action of the Hecke operators on these

modules and we have

H3(∂(Γ\H2),M̃4,7 ⊗R) = R

where T (1)
(p) acts on R with the eigenvalue

p8 + ap + p13 .

(For this assertion I refer to my lecture notes volume or [Modsym].)
Now we formulate another assumption

H3
! (Γ\H2,M̃4,7 ⊗R) ∼= R4 .

Then we know that T (1)
p acts as a scalar by multiplication by λ(p) on this

cohomology group. We have λ(2) �= 28 +a2+213 and hence we can decompose

H3(Γ\H2,M̃4,7 ⊗ Q) = H3
! (Γ\H2,M̃4,7 ⊗ Q) ⊕H3

Eis(Γ\H2,M̃4,7 ⊗ Q) .

Now the main assertion of the second conjecture is:

If we intersect this decomposition with the integral cohomology, then

H3(Γ\H2,M̃4,7 ⊗R) ⊃ H3
! (Γ\H2,M̃4,7 ⊗R) ⊕H3

Eis(Γ\H2,M̃4,7 ⊗R) .

and the index of the direct sum in H3(Γ\H2,M̃4,7 ⊗ R) is divisible by 41.
(The denominator of the Eisenstein class is divisible by 41.)

The point with this second conjecture is that it implies the first conjecture
and it can be verified on a computer. To do this we have to find a way to
compute the cohomology groups. This can be done by using a suitable acyclic
covering of Γ\H2, and then the cohomology is computed from the Čech com-
plex of this covering. We could also try to use a cell decomposition. This
method will allow us to check the two assumptions. I think the problem will
be that the number of cells will not be so big, but we have nontrivial coef-
ficient systems, its dimension in a general point is 1820. It will be still more
difficult to implement the action of the Hecke operator, because one has to
pass to a finer cell decomposition, which also computes the cohomology and
where the Hecke operators can be implemented as a homomorphism between
the two complexes.

Of course, we could also compute mod 41, then we find λ(2) ≡ 28+a2+213

mod 41, and our conjecture would say that T (1)
2 mod 41 is not diagonalizable.



256 G. Harder

Why didn’t I do this earlier? In my lecture notes volume (Chap III, 3.1)
I discuss the above conjecture in greater generality and I raise the question
whether computer experiments should be made. There I say that these com-
putations would “. . . einen beträchtlichen Aufwand erfordern, aber die Frage
entscheiden, ob es sich lohnt, das Problem zu behandeln”.

Recently I got some kind of unexpected help from C. Faber und G. van der
Geer. They produced some tables of eigenvalues λ(p) for certain local systems
Mm,n with some small values n,m.

They make use of the fact that Γ\H2 is actually the set of the complex
points of a quasiprojective scheme A2/ Spec(Z), and that our local systems
M̃m,n have an algebraic-geometric meaning. They are “motivic” sheaves, and
it is not quite clear what that means. But in any case we can pick a prime � and
then M̃m,n⊗Z� will be an �-adic sheaf on A2. Then we have the Grothendieck
fixed point formula

tr (Φp | H•
c (A2 ×Z F̄p,M̃m,n ⊗ Z�)) =

∑

x∈A2(Fp)

tr (Φp | M̃m,n,x) ,

where Φp is the Frobenius at p. The right hand side can be computed because
we have the modular interpretation.

The left hand side consists of several pieces (Eisenstein cohomology, endo-
scopic contributions, if m = 0 there may be some Saito–Kurokawa lifts), and
the trace of Φp on these pieces can be computed explicitly (for small n,m)
and can be expressed in terms of modular forms for Sl2(Z) and in terms of
algebraic Hecke characters. This can be brought to the right hand side, and
the resulting expression can be computed explicitly for small values n,m.

Then we are left with the “genuine” part in H3
c (A2 ×Z F̄p,M̃m,n ⊗ Z�),

and this part will be of rank 4 · dimSm,n+3. If now dimSm,n+3 = 1, then this
“genuine” part will be of rank 4 and we have

tr (Φp | H3
genuine(A2 ×Z F̄p,M̃m,n ⊗ Z�)) = λ(p) .

But now the λ(p) can be computed from the right hand side, if we take the
effort to compute the sum over A2(Fp) and the non “genuine” traces.

After I saw the preprint by C. Faber and G. van der Geer I realized that I
might be able to check the first conjecture in a special case. I had to go through
the values L(f,k)

Ωε(k)
for the modular cusp form f of weight ≤ 22. (For higher

weights except 26 the dimension of these space are ≥ 2. The eigenvalues of the
Hecke operators are algebraic integers and also the normalized L-values will
be algebraic integers, and the computations will be much more complicated.)
I had to find a “large” prime dividing one of the values, and I found for our
form of weight 22

41 | L(f, 14)
Ω+

.

I computed the numbers 4, 7 and 7 + 3 = 10 from these data and wrote an
e-mail to G. van der Geer inquiring the dimension of S4,10. Several answers
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were possible. The dimension could be zero. This would be devastating. The
dimension could be >1, this would mean a horrible additional computational
effort. But the answer was

Re: Kohomologie lokaler Systemen
Lieber Guenter,
die Dimension ist dann 1. Die ersten Eigenwerte sind wie folgt:

−24 · 3 · 5 · 7
23 · 34 · 5 · 17

−22 · 3 · 52 · 17 · 1439

24 · 52 · 72 · 17 · 31 · 59

23 · 3 · 11 · 17 · 5650223

d.h. fuer die Primzahlen 2, 3, 5, 7, 11.
Mit bestem Gruss, Gerard

I read this message in my office in the Beringstrasse and I had the values of
the ap at home on my laptop. After two oral examinations of computer science
students I went home and checked the numbers. I was extremely pleased when
I found that the congruences hold.

(Actually van der Geer was also pleased because he considered it as con-
firmation of his computations with Faber. (I have multiplied the values in his
table by −1, probably this has to be done because the trace occurs in odd
degree))

5 Why the Denominator?

We stick to the case M4,7, and f is still our modular cusp form of weight 22.
If we had a splitting under the Hecke-algebra

H3(Γ\H2,M̃4,7 ⊗R) = H3
! (Γ\H2,M̃4,7 ⊗R) ⊕H3(∂(Γ\H2),M̃4,7 ⊗R) ,

then we could construct a mixed Tate motive X (f) which sits in an exact
sequence

0 → R(−8) → X (f) → R(−13) → 0

and hence defines an element in the extension group

[X (f)] ∈ Ext1MM(R(−13), R(−8)) = Ext1MM(R(−5), R(0)) .

(For more details see [Mixmot].) This Ext1 group is some kind of undefined
object, but we can attach to our object X (f) elements in two other extension
groups, namely:
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(i) an extension class in the category of mixed Hodge structures

[X (f)]BdRh ∈ Ext1BdRh(R(−13), R(−8)) = Ext1BdRh(R(−5), R(0)) = R

(See MixMot 1.5.2). It is some kind of general belief that those elements in
the extension group of mixed Hodge structures, which come from mixed
motives X over Z, are in fact elements of the form

[XBdRh] = a(X )ζ′(−4) with a(X ) ∈ Q .

This last conjecture can be verified in our particular case we have the
formula

[XBdRh(f)] = c ·
Λ(f,13)
Ω−

Λ(f,14)
Ω+

ζ′(−4)

where c is a rational number containing only small primes.
(ii) For any prime � we can attach an �-adic extension class

[X (f)]� ∈ Ext1Gal(R�(−13), R�(−8)) = H1(Gal(Q̄/Q, )R�(5))

and this cohomology group contains certain specific elements c�(5), these
are the Soulé elements. These elements should also be generators of the
image of

Ext1MM(R�(−13), R�(−8)) → H1(Gal(Q̄/Q), R�(5))

if we tensor by Q. We write the Galois cohomology group multiplicatively
and now it is general belief that we must have

[X (f)]� = c�(5)
c·

Λ(f,13)
Ω−

Λ(f,14)
Ω+ .

From now on we choose � = 41 (of course we could replace � by 41 in the
following considerations but this causes some confusion), then the value of the
�-adic ζ-function ζ�(5) �≡ 0 mod � and this implies that c�(5) is a primitive
element in the Galois cohomology group. But the rational exponent has � in
its denominator, this contradicts the existence of our mixed motive and this
motive has been constructed under the assumption that � does not divide the
denominator of the Eisenstein class.

6 Arithmetic Implications

We get a diagram (still � = 41) of �-adic Galois modules

0 → H3
! (A2 ×Z Q̄,M̃4,7 ⊗R�) → H3(A2 ×Z Q̄,M̃4,7 ⊗R�) → R�(−13) → 0

∪ r ↗
H3

! (A2 ×Z Q̄,M̃4,7 ⊗R�) ⊕R�(−13)
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where the image of the homomorphism r is contained in �R�(−13). This gives
us an injective homomorphism

ψ : Z/(�)(−13) ↪−→ H3
! (A2 ×Z Q̄,M̃4,7 ⊗ Z/(�)) .

The module H3
! (A2×Z Q̄,M̃4,7⊗Z/(�)) is of dimension 4 over F� and the cup

product provides a non -degenerated pairing of this module with itself into
Z/(�)(−21). The orthogonal complement Y of the image ψ(Z/(�)(−13)) is of
dimension 3 over F� and we get two exact sequences

0 → Z/(�)(−13) → Y → X → 0

and

0 → X → H3
! (A2 ×Z Q̄,M̃4,7 ⊗ Z/(�))/ψ(Z/(�)(−13)) → Z/(�)(−8) → 0 .

The module X is actually the reduction of the �-adic representation attached
to f mod �. It also has a non degenerate pairing with itself with values in
Z/(�)(−21) and the two sequences are dual to each other. The sequences give
us two extension classes, the first one a class

[Y ] ∈ Ext1Gal(X,Z/(�)(−13)) =H1(Gal(Q̄/Q),Hom(X,Z/(�)(−13))) ∼−→
H1(Gal(Q̄/Q), X ⊗ Z/(�)(8))

and under the isomorphism [Y ] is mapped to the extension class of the second
sequence.

Now we can hope that this extension class is actually an element in the
Selmer group of the Scholl-Deligne motive M(f) attached to f , and that it is
in fact an element of order �. If this turns out to be the case, then we have
produced an element in the Selmer group whose existence is predicted by the
general philosophy of the Bloch–Kato–Birch–Swinnerton Dyer conjecture.
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Appendix

In the meanwhile C. Faber, G. van der Geer and I did some further compu-
tations. We have still another one dimensional space of modular cusp forms,
this is spanned by the modular form

g(q) = Δ(q)E6(q)E4(q)2 =

q − 48q2 − 195804q3 − 33552128q4 − 741989850q5 + 9398592q6 + . . .

of weight 26. We have the following divisibilities by “large” primes

43|L(g, 23)
Ω−

, 97|L(g, 21)
Ω−

, 29|L(g, 19)
Ω−

.

The corresponding spaces of modular forms S18,5, S14,7, S10,9 have dimen-
sion 1.

Now let � be one of the primes 41, 43, 97, 29. Let

f(q) = q + a2q
2 + a3q

3 . . .

be the corresponding modular form of weight 22 or 26. Let Si,j be the cor-
responding one dimensional space of Siegel modular forms and let M̃i,j−3 =
M̃m,n be the corresponding local system. The Hecke algebra acts on the co-
homology

H3
! (A2 ×Z Q̄,M̃m,n ⊗R�)

and we should find an isotypical submodule of rank 4 on which the Hecke
operators act by the scalar by which they acts on Si,j . The local Hecke algebra
at a prime p is generated by two Hecke operators Tp,α, Tp,β which correspond
to the double classes

Sp2(Zp)

⎛

⎜
⎜
⎝

p 0
p

1
0 1

⎞

⎟
⎟
⎠Sp2(Zp) and Sp2(Zp)

⎛

⎜
⎜
⎝

p2 0
p
p

0 1

⎞

⎟
⎟
⎠Sp2(Zp) .

(See [Ha-Eis] 3.1.2.1) So we get sequences of eigenvalues

{λα(p), λβ(p)}p∈Primes

Now we state the conjecture that in all four cases we have congruences

λα(p) ≡ pn+1 + ap + pn+m+2 mod �

and
λβ(p) ≡ ap(1 + pm+1) + (p2 − 1)pnα+nβ mod �

for all primes p.
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For our four primes � above and the corresponding modular forms the
conjecture for λα(p) has been checked for all p ≤ 37.

The general rule is: If k is even and f an eigenform of weight k. Let
K = Q(f) be its field of definition. Let us assume that a large prime l divides
L(f, ν)/Ωε(ν). Then we solve the equations

k = 2n+m+ 4, ν = n+m+ 3 .

Then we can construct an Eisenstein class in H3
! (Γ\H2,M̃m,n ⊗ K) whose

denominator is divisible by l.

Added on April 3, 2003 (the day when the first Abel-Prize was given to
J.-P. Serre):
I also checked congruences for the modular cusp forms of weight 24. In this
case we have two eigenforms

f(q) =
∞∑

n

anq
n = q − (540 − 12

√
144169)q2 + (169740 + 576

√
144169)q3 . . .

where we take the positive root-, and we have the conjugate eigenform

f ′(q) =
∞∑

n

a′nq
n .

We put ω = 1+
√

144169
2 . In this case we find periods Ω±, Ω′± such that

L(f, k)
Ωε(k)

∈ Z[ω],
L(f ′, k)
Ω′
ε(k)

∈ Z[ω] .

We normalize the periods such that these numbers for a fixed choice of the
sign ε(k) are coprime and such that L(f,k)

Ωε(k)
and L(f ′,k)

Ω′
ε(k)

are conjugate.

The primes 73 and 179 split in Q(
√

144169) and for 73 the decomposition
is

l = (73, 53 + 36
√

144169), l′ = (73, 53 − 36
√

144169)

(73) = ll′ .

We find L(f,19)
Ω− ∈ l. The corresponding space S12,7 has dimension 1, if λ(p) is

the sequence of eigenvalues the congruence

λ(p) ≡ p5 + ap + p18 mod l

has been checked for all primes p ≤ 19. Of course we get a second congruence
if we conjugate it.

For 179 we have a splitting

(179) = ll′ ,
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with l = (179, 54+61
√

144169), l′ = (179, 54−61
√

144169).We find L(f,17)
Ω− ∈ l,

again the corresponding space S8,9 has dimension 1. If λ(p) is the sequence of
eigenvalues the congruences

λ(p) ≡ p7 + ap + p16 mod l

and of course its conjugates have been checked for the same set of primes p.
(There is a slight risk that I mixed up the two primes l, l′.)

Added on March 25, 2005:
When lecturing on this subject, I had sometimes difficulties to get the numbers
right. Therefore I formulate the rules:

We start from an elliptic modular form f for Sl2(Z) which is of (even)
weight k, it should be an eigenform for the Hecke-algebra. Then its eigenvalues
generate a field Q(f).

Then we look at the values
{
Λ(f, k − 1)

Ω+
,
Λ(f, k − 3)

Ω+
, . . . ,

Λ(f, k − ν)
Ω+

, . . . ,
Λ(f, k − μ(k))

Ω+

}

and
{
Λ(f, k − 2)

Ω+
,
Λ(f, k − 4)

Ω+
, . . . ,

Λ(f, k − ν)
Ω+

, . . . ,
Λ(f, k − μ′(k))

Ω+

}
,

where in the first row the ν are odd and in the second row they are even. The
last value is the one which is nearest to the central point k

2 from above.
Then we look for large primes

�|Λ(f, k − ν)
Ωε(ν)

.

Now we choose the highest weight λ = mγβ + nγα. The numbers m,n must
satisfy

2n+m+ 3 = n+ 1 + n+m+ 2 = k − 1 and n+m+ 3 = k − ν

hence we get
n = ν − 1 and m = k − 2ν − 2



Index

abelian variety 202
anisotropic vector 128
automorphic Green function 164, 168

Baily–Borel compactification 109, 205,
226

Baily–Borel topology 109
Betti number 117
Birch–Swinnerton-Dyer conjecture 80,

95, 97
Borcherds product 83, 103, 156

CM values 173
local 153

boundary component 139
rational 139

boundary point 109
Braun 194

canonical automorphism 131
canonical involution 131
canonical model 226
Cayley transform 185
Chow group 159
Chowla–Selberg formula 84, 85, 103
class field theory 75
class numbers 106

Hurwitz 73–75, 81
of binary quadratic forms 8, 41, 74,

81, 100
of imaginary quadratic fields 8, 41

class polynomial 72, 73, 83
classical Siegel modular form 189
Clifford algebra 130

center 132

even 131
Clifford group 133
Clifford norm 131
CM cycle 169, 173
CM extension 171
co-rank of a modular form 195
Cohen–Kuznetsov series 53–55, 102
compact dual 187
compactifications 204
complex multiplication (CM) 67–99,

102, 103, 169
CM modular forms 93–99, 103
elliptic curves with CM 67, 90–92

converse theorem
strong 166
weak 165

critical value 236
cusp 107
cusp form 23, 115, 192

Dedekind zeta function 120
special value 123

desingularization 110
diagonal 122
different 106
Dirichlet character 17, 32, 78, 84
discriminant

of a quadratic field 106
of a quadratic space 129, 132

discriminant function Δ(z) 11, 20–22,
36, 212, 249

divisor sum 121
Doi–Naganuma lift 149



264 Index

dual lattice 138

Eichler element 128
Eichler–Shimura 228
Eisenstein series 13, 120, 193

for congruence subgroups 17, 96,
147

for the Hilbert modular group
119–123

for the Siegel modular group 193,
198, 199

non-holomorphic 19, 55, 58, 78, 89
of weight 2 18–20, 28, 49, 55, 86, 87
on the full modular group 12–20,

48, 49, 56
elliptic fixed point 107
endoscopic contribution 232
eta function η(z) 29, 30, 43, 45, 64, 65,

94, 98, 103
Euler characteristic 117, 186

Fourier expansion 5, 114, 190
Fourier–Jacobi development 197, 207
Fourier–Jacobi series 206
Frobenius 218
fundamental domain 3, 6–9, 11, 14, 23,

72, 73, 112, 185, 186
fundamental set 111

Götzky–Koecher principle 114
Gram matrix 129
Grassmann algebra 131
Grassmannian 136
grossencharacter 86, 89, 90, 93–95
Gundlach theta function 124, 161

half-integral 189
Hamilton quaternion algebra 130
Harder’s conjecture 237
harmonic weak Maass form 162
Hauptmodul 61, 77, 81
Hecke L-function 126
Hecke algebra 213
Hecke estimate 23, 125
Hecke operators 15, 22, 37, 38, 45, 74,

213–215, 250
eigenforms for 37, 39, 40, 45, 94,

220–225, 236, 237
Heegner divisor 140

Heegner points 76, 77, 79–81, 97, 102,
103

height 80
Hilbert modular group 106, 143
Hirzebruch–Zagier divisor 146

local 150
Hirzebruch–Zagier theorem 159
Hodge bundle 203
holomorphic differential form 210
Hurwitz numbers 85, 86, 89
Hurwitz–Kronecker class number

relations 74, 82

Ibukiyama lift 226
ideal 106
ideal class group 106
Ikeda lift 224
interior cohomology 229
isometry 128
isotropic subspace 139
isotropic vector 128

Jacobi forms 28, 34, 100, 197

Kac–Wakimoto conjecture 31
Klingen–Eisenstein series 193
Koecher principle 141, 191
Kohnen isomorphism 223
Kostant representatives 208
Kronecker limit formula 85

L-series (or L-function) 67, 95, 220
of a grossencharacter 86, 90, 93, 95,

96
of a modular form 39–41, 43–47, 93,

95
of an elliptic curve 44–46, 93, 95

Lagrangian Grassmann variety 187
lattices 32–36, 100, 138

even 32–36
extremal 35, 36
in C 4–6, 14, 67
unimodular 33–36

lifting 221, 222
local Hecke algebra 214
local system 230

Maass subspace 222
Manin–Vishik theorem 236
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Minkowski–Siegel mass formula 35
Miyawaki–Ikeda conjecture 225
modular form 4, 5, 113, 141

almost holomorphic 20, 58–60
Fourier expansion of 52
number of zeros of 9, 11, 12, 31
of half-integral weight 8, 26, 29, 30,

81, 82, 88, 96
on the full modular group 8–11
Taylor expansion of 52, 87–90, 96

modular function 3, 4, 11, 46, 61, 63, 68
modular group SL(2, Z) 3, 33

fundamental domain for 6–8
generators 6, 7

modular invariant j(z) 22, 36, 63, 67
motive 229
multiplier 207, 208

obstructions 158
orthogonal group 128

partial compactification 206
period matrix 202
periods 83, 84, 86
Petersson product 118, 193
plus space 147
Poincaré series 13, 194
polarization 202
principal part 155, 163
projective model 137
properly discontionuous 112

quadratic field 106
quadratic forms 31–33, 128

binary 7, 8, 41–43, 73
even unimodular 33

quadratic module 128
quasi-recursion 88, 89, 96
quasimodular forms 20, 48, 49, 58–60
quaternion algebra 132

rank of a modular form 195
Rankin–Cohen brackets 53, 54, 82
reflection 128
regular local system 230
Riemann 202
Riemann’s theta function 203
ring of classical modular forms 198
ring of integers 106

ring of modular forms 189, 232

Saito–Kurokawa Conjecture 223
Satake compactification 205, 226
Satake isomorphism 217
Satake parameter 219
Satake’s spherical map 217
semi-abelian variety 206
series 55
Serre derivative 48, 54, 55, 62
Serre duality 158
Shimura–Kohnen lifting 226
Siegel 181, 194
Siegel domain 111
Siegel modular form 3, 28, 187
Siegel modular group 184
Siegel operator 192
Siegel theta function 142
Siegel upper half plane 184
Siegel’s Hauptsatz 196
signature 129
singular modular form 194
singular moduli 66–71, 75, 168–170

norms of 77–79, 103
traces of 81–83, 103

singularity 110
slash operator 113, 215
slope 234
small weights 195
special orthogonal group 128
Spezialschar 222
Spin group 134
spinor norm 134
spinor zeta function 221
standard zeta function 221
Sylvester’s problem 77, 97, 98, 102, 103
symplectic group 183

Tate Hodge structure 231
theta constant 195
theta lift 142, 148

regularized 156
theta series 24, 25, 31, 195, 196

for binary quadratic forms 26, 27,
41, 42, 93, 94

for unary quadratic forms 25, 30
Jacobi’s theta functions 25–29, 63,

82, 96, 97
Siegel theta function 142
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with spherical coefficients 37, 67, 93,
94

Torelli’s theorem 204
tube domain model 137
type of a quadratic form 129

unit group 106

vector representation 133

weak Maass form 162
weakly holomorphic modular form 154
weight 113, 187
Weyl chamber 151, 155
Weyl group 208
Weyl vector 153, 155


