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19.2 Diffusive Initial Value Problems

Recall the model parabolic equation, the diffusion equation in one space
dimension,

∂u

∂t
=

∂

∂x

(
D

∂u

∂x

)
(19.2.1)

where D is the diffusion coefficient. Actually, this equation is a flux-conservative
equation of the form considered in the previous section, with

F = −D
∂u

∂x
(19.2.2)

the flux in the x-direction. We will assume D ≥ 0, otherwise equation (19.2.1) has
physically unstable solutions: A small disturbance evolves to become more and more
concentrated instead of dispersing. (Don’t make the mistake of trying to find a stable
differencing scheme for a problem whose underlying PDEs are themselves unstable!)

Even though (19.2.1) is of the form already considered, it is useful to consider
it as a model in its own right. The particular form of flux (19.2.2), and its direct
generalizations, occur quite frequently in practice. Moreover, we have already seen
that numerical viscosity and artificial viscosity can introduce diffusive pieces like
the right-hand side of (19.2.1) in many other situations.

Consider first the case when D is a constant. Then the equation

∂u

∂t
= D

∂2u

∂x2
(19.2.3)

can be differenced in the obvious way:

un+1
j − un

j

∆t
= D

[
un

j+1 − 2un
j + un

j−1

(∆x)2

]
(19.2.4)

This is the FTCS scheme again, except that it is a second derivative that has been
differenced on the right-hand side. But this makes a world of difference! The FTCS
scheme was unstable for the hyperbolic equation; however, a quick calculation shows
that the amplification factor for equation (19.2.4) is

ξ = 1 − 4D∆t

(∆x)2
sin2

(
k∆x

2

)
(19.2.5)

The requirement |ξ| ≤ 1 leads to the stability criterion

2D∆t

(∆x)2
≤ 1 (19.2.6)
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The physical interpretation of the restriction (19.2.6) is that the maximum
allowed timestep is, up to a numerical factor, the diffusion time across a cell of
width ∆x.

More generally, the diffusion time τ across a spatial scale of size λ is of order

τ ∼ λ2

D
(19.2.7)

Usually we are interested in modeling accurately the evolution of features with
spatial scales λ � ∆x. If we are limited to timesteps satisfying (19.2.6), we will
need to evolve through of order λ2/(∆x)2 steps before things start to happen on the
scale of interest. This number of steps is usually prohibitive. We must therefore
find a stable way of taking timesteps comparable to, or perhaps — for accuracy —
somewhat smaller than, the time scale of (19.2.7).

This goal poses an immediate “philosophical” question. Obviously the large
timesteps that we propose to take are going to be woefully inaccurate for the small
scales that we have decided not to be interested in. We want those scales to do
something stable, “innocuous,” and perhaps not too physically unreasonable. We
want to build this innocuous behavior into our differencing scheme. What should
it be?

There are two different answers, each of which has its pros and cons. The
first answer is to seek a differencing scheme that drives small-scale features to their
equilibrium forms, e.g., satisfying equation (19.2.3) with the left-hand side set to
zero. This answer generally makes the best physical sense; but, as we will see, it leads
to a differencing scheme (“fully implicit”) that is only first-order accurate in time for
the scales that we are interested in. The second answer is to let small-scale features
maintain their initial amplitudes, so that the evolution of the larger-scale features
of interest takes place superposed with a kind of “frozen in” (though fluctuating)
background of small-scale stuff. This answer gives a differencing scheme (“Crank-
Nicolson”) that is second-order accurate in time. Toward the end of an evolution
calculation, however, one might want to switch over to some steps of the other kind,
to drive the small-scale stuff into equilibrium. Let us now see where these distinct
differencing schemes come from:

Consider the following differencing of (19.2.3),

un+1
j − un

j

∆t
= D

[
un+1

j+1 − 2un+1
j + un+1

j−1

(∆x)2

]
(19.2.8)

This is exactly like the FTCS scheme (19.2.4), except that the spatial derivatives on
the right-hand side are evaluated at timestep n+ 1. Schemes with this character are
called fully implicit or backward time, by contrast with FTCS (which is called fully
explicit). To solve equation (19.2.8) one has to solve a set of simultaneous linear
equations at each timestep for theun+1

j . Fortunately, this is a simple problem because
the system is tridiagonal: Just group the terms in equation (19.2.8) appropriately:

−αun+1
j−1 + (1 + 2α)un+1

j − αun+1
j+1 = un

j , j = 1, 2...J − 1 (19.2.9)

where

α ≡ D∆t
(∆x)2

(19.2.10)
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Supplemented by Dirichlet or Neumann boundary conditions at j = 0 and j = J ,
equation (19.2.9) is clearly a tridiagonal system, which can easily be solved at each
timestep by the method of §2.4.

What is the behavior of (19.2.8) for very large timesteps? The answer is seen
most clearly in (19.2.9), in the limit α→ ∞ (∆t→ ∞). Dividing by α, we see that
the difference equations are just the finite-difference form of the equilibrium equation

∂2u

∂x2
= 0 (19.2.11)

What about stability? The amplification factor for equation (19.2.8) is

ξ =
1

1 + 4α sin2

(
k∆x

2

) (19.2.12)

Clearly |ξ| < 1 for any stepsize ∆t. The scheme is unconditionally stable. The details
of the small-scale evolution from the initial conditions are obviously inaccurate for
large ∆t. But, as advertised, the correct equilibrium solution is obtained. This is
the characteristic feature of implicit methods.

Here, on the other hand, is how one gets to the second of our above philosophical
answers, combining the stability of an implicit method with the accuracy of a method
that is second-order in both space and time. Simply form the average of the explicit
and implicit FTCS schemes:

un+1
j − un

j

∆t
=
D

2

[
(un+1

j+1 − 2un+1
j + un+1

j−1 ) + (un
j+1 − 2un

j + un
j−1)

(∆x)2

]

(19.2.13)

Here both the left- and right-hand sides are centered at timestep n+ 1
2 , so the method

is second-order accurate in time as claimed. The amplification factor is

ξ =
1 − 2α sin2

(
k∆x

2

)

1 + 2α sin2

(
k∆x

2

) (19.2.14)

so the method is stable for any size ∆t. This scheme is called the Crank-Nicolson
scheme, and is our recommended method for any simple diffusion problem (perhaps
supplemented by a few fully implicit steps at the end). (See Figure 19.2.1.)

Now turn to some generalizations of the simple diffusion equation (19.2.3).
Suppose first that the diffusion coefficientD is not constant, say D = D(x). We can
adopt either of two strategies. First, we can make an analytic change of variable

y =
∫

dx

D(x)
(19.2.15)
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t or n

x or j

FTCS

(a)

Fully Implicit(b) Crank-Nicolson(c)

Figure 19.2.1. Three differencing schemes for diffusive problems (shown as in Figure 19.1.2). (a)
Forward Time Center Space is first-order accurate, but stable only for sufficiently small timesteps. (b) Fully
Implicit is stable for arbitrarily large timesteps, but is still only first-order accurate. (c) Crank-Nicolson
is second-order accurate, and is usually stable for large timesteps.

Then
∂u

∂t
=

∂

∂x
D(x)

∂u

∂x
(19.2.16)

becomes
∂u

∂t
=

1
D(y)

∂2u

∂y2
(19.2.17)

and we evaluateD at the appropriate yj . Heuristically, the stability criterion (19.2.6)
in an explicit scheme becomes

∆t ≤ min
j

[
(∆y)2

2D−1
j

]
(19.2.18)

Note that constant spacing ∆y in y does not imply constant spacing in x.
An alternative method that does not require analytically tractable forms for

D is simply to difference equation (19.2.16) as it stands, centering everything
appropriately. Thus the FTCS method becomes

un+1
j − un

j

∆t
=
Dj+1/2(un

j+1 − un
j ) −Dj−1/2(un

j − un
j−1)

(∆x)2
(19.2.19)

where

Dj+1/2 ≡ D(xj+1/2) (19.2.20)
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and the heuristic stability criterion is

∆t ≤ min
j

[
(∆x)2

2Dj+1/2

]
(19.2.21)

The Crank-Nicolson method can be generalized similarly.
The second complication one can consider is a nonlinear diffusion problem,

for example where D = D(u). Explicit schemes can be generalized in the obvious
way. For example, in equation (19.2.19) write

Dj+1/2 =
1
2

[
D(un

j+1) +D(un
j )

]
(19.2.22)

Implicit schemes are not as easy. The replacement (19.2.22) with n→ n+ 1 leaves
us with a nasty set of coupled nonlinear equations to solve at each timestep. Often
there is an easier way: If the form of D(u) allows us to integrate

dz = D(u)du (19.2.23)

analytically for z(u), then the right-hand side of (19.2.1) becomes ∂ 2z/∂x2, which
we difference implicitly as

zn+1
j+1 − 2zn+1

j + zn+1
j−1

(∆x)2
(19.2.24)

Now linearize each term on the right-hand side of equation (19.2.24), for example

zn+1
j ≡ z(un+1

j ) = z(un
j ) + (un+1

j − un
j )

∂z

∂u

∣∣∣∣
j,n

= z(un
j ) + (un+1

j − un
j )D(un

j )
(19.2.25)

This reduces the problem to tridiagonal form again and in practice usually retains
the stability advantages of fully implicit differencing.

Schrödinger Equation

Sometimes the physical problem being solved imposes constraints on the
differencing scheme that we have not yet taken into account. For example, consider
the time-dependent Schrödinger equation of quantum mechanics. This is basically a
parabolic equation for the evolution of a complex quantity ψ. For the scattering of a
wavepacket by a one-dimensional potential V (x), the equation has the form

i
∂ψ

∂t
= −∂

2ψ

∂x2
+ V (x)ψ (19.2.26)

(Here we have chosen units so that Planck’s constant h̄ = 1 and the particle mass
m = 1/2.) One is given the initial wavepacket, ψ(x, t = 0), together with boundary
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conditions that ψ → 0 at x → ±∞. Suppose we content ourselves with first-
order accuracy in time, but want to use an implicit scheme, for stability. A slight
generalization of (19.2.8) leads to

i

[
ψn+1

j − ψn
j

∆t

]
= −

[
ψn+1

j+1 − 2ψn+1
j + ψn+1

j−1

(∆x)2

]
+ Vjψ

n+1
j (19.2.27)

for which

ξ =
1

1 + i

[
4∆t

(∆x)2
sin2

(
k∆x

2

)
+ Vj∆t

] (19.2.28)

This is unconditionally stable, but unfortunately is not unitary. The underlying
physical problem requires that the total probability of finding the particle somewhere
remains unity. This is represented formally by the modulus-square norm of ψ
remaining unity:

∫ ∞

−∞
|ψ|2dx = 1 (19.2.29)

The initial wave functionψ(x, 0) is normalized to satisfy (19.2.29). The Schr ödinger
equation (19.2.26) then guarantees that this condition is satisfied at all later times.

Let us write equation (19.2.26) in the form

i
∂ψ

∂t
= Hψ (19.2.30)

where the operator H is

H = − ∂2

∂x2
+ V (x) (19.2.31)

The formal solution of equation (19.2.30) is

ψ(x, t) = e−iHtψ(x, 0) (19.2.32)

where the exponential of the operator is defined by its power series expansion.
The unstable explicit FTCS scheme approximates (19.2.32) as

ψn+1
j = (1 − iH∆t)ψn

j (19.2.33)

where H is represented by a centered finite-difference approximation in x. The
stable implicit scheme (19.2.27) is, by contrast,

ψn+1
j = (1 + iH∆t)−1ψn

j (19.2.34)

These are both first-order accurate in time, as can be seen by expanding equation
(19.2.32). However, neither operator in (19.2.33) or (19.2.34) is unitary.
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The correct way to difference Schrödinger’s equation [1,2] is to use Cayley’s
form for the finite-difference representation of e−iHt, which is second-order accurate
and unitary:

e−iHt � 1 − 1
2 iH∆t

1 + 1
2 iH∆t

(19.2.35)

In other words,

(
1 + 1

2 iH∆t
)
ψn+1

j =
(
1 − 1

2 iH∆t
)
ψn

j (19.2.36)

On replacing H by its finite-difference approximation in x, we have a complex
tridiagonal system to solve. The method is stable, unitary, and second-order accurate
in space and time. In fact, it is simply the Crank-Nicolson method once again!
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19.3 Initial Value Problems in Multidimensions

The methods described in §19.1 and §19.2 for problems in 1 + 1 dimension
(one space and one time dimension) can easily be generalized to N + 1 dimensions.
However, the computing power necessary to solve the resulting equations is enor-
mous. If you have solved a one-dimensional problem with 100 spatial grid points,
solving the two-dimensional version with 100 × 100 mesh points requires at least
100 times as much computing. You generally have to be content with very modest
spatial resolution in multidimensional problems.

Indulge us in offering a bit of advice about the development and testing of
multidimensional PDE codes: You should always first run your programs on very
small grids, e.g., 8 × 8, even though the resulting accuracy is so poor as to be
useless. When your program is all debugged and demonstrably stable, then you can
increase the grid size to a reasonable one and start looking at the results. We have
actually heard someone protest, “my program would be unstable for a crude grid,
but I am sure the instability will go away on a larger grid.” That is nonsense of a
most pernicious sort, evidencing total confusion between accuracy and stability. In
fact, new instabilities sometimes do show up on larger grids; but old instabilities
never (in our experience) just go away.

Forced to live with modest grid sizes, some people recommend going to higher-
order methods in an attempt to improve accuracy. This is very dangerous. Unless the
solution you are looking for is known to be smooth, and the high-order method you


