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1 The semi characteristic

Our aim is to realize the semi characteristic with Z/2-coefficients

s(M) := dimH0(M ;Z/2− dimH1(M ;Z/2) mod 2

of a closed 3-manifold M as partition function of a topological field theory
with only 1-dimensional vector spaces associated to closed surfaces. It is
easy to show that this is not possible on oriented 3-manifolds, but we can
do it on Spin-manifolds. This sounds strange since all 3-manifolds have a
Spin-structure and the semi characteristic does not depend on the choice of
a Spin structure. But working in the category of Spin-manifolds restricts the
way one can cut up manifolds and one also the diffeomorphisms on surfaces,
to which a field theory attaches a representation. We explain now more pre-
cisely what we mean by this.

If Σ is a closed Spin-surface, a Spin-structure preserving diffeomorphism
(in short, a Spin diffeomorphism) is a pair (f, h), where f is a diffeomorphism
on Σ and h a homotopy between the original Spin structure and the Spin
structure pulled back via f . If we consider a Spin structure as a lift of the
normal Gauss map to BSpin, then a homotopy of Spin strutures is a fibre
homotopy between these lifts. In particular, if W = W1 ∪W2 is a decom-
position of W into two manifolds with same boundary Σ and f : Σ → Σ is
a Spin diffeomorphism, then there is a (unique up to fibre homotopy) Spin
structure on the twisted manifold W1 ∪f W2 obtained by considering this
manifold as W1 ∪Σ× [0, 1/2]∪f Σ× [1/2, 1]∪W2 and using the homotopy to
extend the given Spin structures on Wi. In particular we obtain a well defined

1



(up to fibre homotopy) Spin structure on the mapping torus Σf extending
the given Spin-structure on the fibre. There are two such Spin strctures on
the mapping torus of a connected surface, which resemble the two choices
for a homotopy corresponding to H1(Σ × [0, 1/2] ∪f Σ × [1/2, 1], ∂;Z/2). A
Spin structure on a surface Σ is equivalent to a quadratic refinement of the
intersection form on H1(Σ) and thus a diffeomorphism preserves the Spin
structure, if and only if it commutes with the quadratic refinement, but the
homotopy is an additional choice.

For the construction of our field theory and the proof of the axioms we
need a few properties of the semi characteristic.

Lemma 1. Let W be a compact Spin 4-manifold with boundary M . Then
for the mod 2 semi-characteristic s(M) the following formula holds:

s(M) = e(W ) mod 2,

where e(W ) is the Euler characteristic.

Proof. Consider the pair sequence with Z/2-coefficients:

0→ H2(W )/imH2(M) → H2(W,M)→ H1(M)→ H1(W )→ · · · → H0(W,M)

Since w2(W ) = 0 the intersection form on H2(M) fulfills

x ◦ x = 0

for all x ∈ H2(W ). Thus the non-degenerate intersection form onH2(W )/imH2(M)

has even rank. The statement follows from Poincaré Lefschetz duality.

Lemma 2. Let M = W ∪W ′ be be the union of two Spin manifolds with
the same boundary and f : Σ := ∂W → ∂W be a Spin structure preserving
diffeomorphism. Then

s(W ∪W ′)− s(W ∪f W ′) = rank(f∗ − 1) mod 2.

In particular we obtain a formula for the semi characteristic of the mapping
tours Σf :

s(Σf ) = rank(f∗ − 1) mod 2

Furthermore it implies that surgery on a 0-sphere changes the semi charac-
teristic by 1.
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Proof. There is a well known bordism between W ∪W ′, W ∪f W ′ and the
mapping torus ∂Wf obtained by taking W ×I+W ′×I and identifying along
∂W × [0, 1/3] via id, and along ∂W × [2/3, 1] via f × id. Applying Lemma
1 to this bordism we see that

s(W ∪W ′)− s(W ∪f W ′) = s(Σf ) + e(W )− e(W ′) mod 2.

Since 0 = e(W ∪ W ′) = e(W ) + e(W ′) − e(Σ) and e(Σ) is even, the last
expression vanishes mod 2. Using the Wang sequence one gets the formula

s(Σf ) = rank(f∗ − id).

For the last statement consider the disjoint union with S3, which changes the
semi-characteristic by 1 and apply the gluing formula to the decomposition
of M + S3 into M − (B3 + B3) + S3 − S2 × (0, 1), where B3 is the open
3-ball, and (D3 + D3) + S2 × [0, 1], which after regluing gives the result of
the surgery plus two copies of S3.

This Lemma implies

Corollary 3. The map f 7→ rank(f∗ − id) on Spin-diffeomorphism is a
homomorphism, where f∗ is the induced map with Z/2-coefficients.

Proof. Using that rank(f∗ − id) = s(Σf ) and the standard bordism W be-
tween Σf , Σg and Σfg we know from Lemma 1, that

s(Σf ) + s(Σg)− s(Σfg) = e(W ) mod 2,

if the diffeomorphisms preserve the Spin structure. But the standard bordism
is homotopy equivalent to the union of Σf and Σg glued via the fibre Σ and
so its Euler characteristic vanishes mod 2.

Thus we obtain a representation of the Spin self diffeomorphism on R
mapping fto rank(f∗−id). Although we don’t need this, the following Lemma
might be of some interest since it sheds light on this representation. Namely
we investigate those Spin self-diffeomorphisms f of a connected surface Σ
which preserve a fixed lagrangian L. We write H1 = L ⊕ L∗, the hyper-
bolic form, then f∗ is in the subgroup TU(L⊕ L∗) /as defined by [?])of the
isometries U(L⊕L∗) of the hyperbolic form given by the ismometries which
preserve the Lagrangian L. Now we stabilize these isometries by adding the
identity on hyperbolic planes to obtain the stable subgroup TU ⊂ U . By [?]
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the subgroup TU is contained in the commutator subgroup [U,U ]. Since the
group of Spin structure preserving diffeomorphisms maps surjectively to the
isometries of the intersection form preserving the quadratic refinement, and
the map f 7→ rank(f∗ − 1)⊗ Z/2 mod 2 is a homomorphism by the Corol-
lary above, the map U → Z/2 mapping g to rank(g − 1) ⊗ Z/2 mod 2 is a
homomorphism. Since TU is contained in the commutator subgroup [U,U ],
the map f 7→ rank(f∗ − 1) mod 2 vanishes on those diffeomorphsims which
preserve the Spin structure and the Lagrangian. Thus we have proved:

Proposition 4. Let L be a lagrangian in a skew symmetric unimodular bi-
linear form λ with quadratic refinement q . Then for those isometries g of λ
and q which preserve L

rank(g − 1)⊗ Z/2 = 0 mod 2.

Proof. Realize g by a Spin-diffeomorphism on a surface and apply the argu-
ment above.

2 Three spin field theories in dimension 3

For a topological field theory we follow Atiyah’s definition [?]. This means
that we associate to each closed Spin surface a vector space. Here we work
with the real numbers and associate V (F ) := R to each connected Spin
surface F . As required by the axioms we associate to the disjoint union the
tensor product, which in our situation we identify with R via the canonical
isomorphism R ⊗ R → R mapping x ⊗ y to xy. A second axiom is that to
−F the dual vector space is associated. Since we decided to associate R to
F we have to say how we identify the vector spaces associated to −F with
the dual of that ossociated to R. This is equivalent to giving a non-singular
pairing < ..., ... > , and our definition for a connected surface F is:

V (F )⊗ V (−F )→ R

< x, y >F := (−1)e(F )/2+Arf(F )xy,

where Arf is the Arf invariant of Spin surface. By the tensor product axiom
this extends to a pairing on non-connected surfaces, which is again given by
the same formula.
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The next data required by Atiyah is a functor from the category of sur-
faces and Spin-diffeomorphisms to the category of vector spaces extending
our definition of V (F ). Thus we want to define V (f) for a diffeemorphism
f . For this we first chose a standard model for our surfaces denoted by
Σ0
k for surfaces with Arf-invariant 0 and genus k and Σ1

k for surfaces with
Arf-invariant 1 and genus k. We will do this as follows we take S2 := ∂X0,
where X0 = D3, for Σ0

0 and S1 × S1 = ∂X1, where X1 = S1 × D2, for Σ0
1.

The surfaces of higher genus are given by the boundary connected sum of
k copies: Xk := \X1\...\X1, where we choose once and for ever discs in the
boundary along which we perform the boundary connected sum. We define
Σ1

1 as the torus with the Lie group framing and Σ1
k := Σ1

1]Σ
0
k−1. For self

diffeomorphisms f of Σi
k the induced map on V (Σi

k) is defined as

V (f) := rank(f∗ − 1),

where f∗ is the induced map on H1(...;Z/2) as considered in the first section.
To define it for maps on other surfaces we make a choice. For each connected
surface F choose a Spin-diffeomorphism f(F ) to Σi

k for some k and i, with
the restriction, that if F = Σi

k we choose the identity map (more generally
for Σi

k × {x} we take the projection) and we define

V (f) := id .

For a Spin-diffeomorphism g : F → F ′ we define

V (g) := V (f ′)gV (f)−1.

This obviously gives a functor. To avoid confusion I would like to stress that
−Σi

k is a different surface from Σi
k and we also there have to choose a diffeo-

morphism which here we denote by r(Σi
k), since we can take an appropriate

refection preserving the Spin-structure, such that r2 = id. Even more we can
choose r such that it extends to Xk (and Yk,l as we will define below with
the help of Xk) and do so.

Before we come to the next data for our field theory we would like to
describe what we call the canonical manifolds with boundary Σ0

k and Σ1
k+Σ1

l .
For Σ0

k we take Xk and for Σ1
k + Σ1

l we take

Yk,l := Σ1
1 × [0, 1/2] ∪r Σ1

1 × [1/2, 1]\Xk−1\Xl−1.
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Using the canonical boundaries we will define the next data required by
Atiyah, namely an attachment of an element of ϕ(W ) ∈ V (∂W ) for each
Spin diffeomorphism class rel. boundary (meaning that the restriction to
the boundary is the identity map). We reduce this to the case where the
boundary of W is a disjoint union of the canonical surfaces Σi

k. Namely for
each boundary component F of ∂W , which is not equal to Σi

k, we replace W
by the union of W with the cylinder over Σi

k, glued via f(F ). We denote the
result of these gluings by W ′ and define ϕ(W ) := ϕ(W ′), which we still have
to define. Thus from now on we only consider manifolds W with boundary
a disjoint union of Σi

k and define ϕ(W ) for such manifolds. We have to do
it such that Atiyah’2 axioms are fulfilled, in particular the gluing axiom,
which means that if ∂W1 = A+B and ∂W2 = A+ C, then

ϕ(W1 ∪r(A) W2) = ϕ(W ) · ϕ(W2),

where r(A) is the reflection we have chosen to identify A with −A and where
· means: we consider ϕ(W1) ⊗ ϕ(W2) ∈ V (A) ⊗ V (B) ⊗ V (A) ⊗ V (C) and
map to V (B)⊗ V (C) under the evaluation given by the pairing

< ..., ... >M (id×V (r)) : V (A)⊗ V (A)→ V (A)⊗ V (−A)→ K.

Now we are ready to define ϕ(W ), which we only have to do for Spin-
manifolds with boundary a disjoint union of Σi

k. This is done in terms of a
construction which is almost canonical. For each component of ∂W equal to
Σ0
k we glue −Xk to W . Since the Arf invariant of the boundary is zero, all

other components come in pairs (but up to a choice of the pairs) Σ1
k + Σ1

l .
For each such pair we glue in −Yk,l. We denote the resulting manifold by Ŵ
and define:

Definition 5.
ϕ(W ) := s(Ŵ ).

To obtain a first feeling for this definition we compute the invariant for
our canonical manifolds:

ϕ(Xk) = s(Xk ∪ (−Xk)) = (−1)e(Xk) = (−1)e(∂Xk)/2 = (−1)1−k,

where we apply Lemma 1.

ϕ(−Xk) = s(−Xk ∪r (−Xk)) = (−1)e(Xk) = (−1)e(∂Xk)/2 = (−1)1−k.
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We check the gluing axiom:

(−1)e(Σ
0
k)/2 = s(Xk ∪ (−Xk)) = ϕ(Xk ∪ (−Xk)),

and
< ϕ(Xk), ϕ(−Xk) >Σ0

k
= (−1)e(Σ

0
k)/2ϕ(Xk)

2 = (−1)e(Σ
0
k)/2,

so it is okay. Using Lemma 1 again we obtain:

ϕ(Yk,l) = s(Yk,l ∪ (−Yk,l)) = (−1)e(Yk,l) = (−1)∂e(Yk,l)/2 = (−1)k+l,

and

ϕ(−Yk,l) = s(−Yk,l ∪r (−Yk,l) = (−1)e(Yk,l) = (−1)∂e(Yk,l)/2 = (−1)k+l.

Again we check the gluing formula

(−1)e(Σk)/2+e(Σl)/2) = (−1)e(∂(Yk,l)/2 = s(Yk,l ∪ (−Yk,l),

and

< ϕ(Yk,l), ϕ−Yk,l) >∂Yk,l= (−1)e(Σk)+1(−1)e(Σl)+1ϕ(Yk,l)
2 = (−1)e(Σk)/2+e(Σl)/2,

and the gluing formula holds.

We have to verify that ϕ is well defined:

Proposition 6. ϕ(W ) is well defined

Proof. We have to show that it does not depend on the order we pair the
components of ∂W with Arf invariant 1. It is enough to show that for four
components Σ1

a, Σ1
b , Σ1

b , Σ1
d, if we on the one hand pair Σ1

a + Σ1
b = ∂Ya,b

and Σ1
c + Σ1

d = ∂Yc,d and on the other hand pair Σ1
a + Σ1

c = ∂Ya,c and
Σ1
b + Σ1

d = ∂Yb,d and glue these manifolds in, the value of the semi character-
istic is the same.

To show this we use the definition of Ya,b and to simplify notation we
call the mapping cylinder of a diffeomorphism f : M → N by Z(M, f) :=
M × [0, 1/2] ∪f N × [1/2, 1]. Then

Ya,b + Yc,d = Z(Σ1
1, r)\Xa−1\Xb−1 + Z(Σ1

1, r)\Xc−1\d−1
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and
Ya,c + Yb,d = Z(Σ1

1, r)\Xa−1\Xc−1 + Z(Σ1
1, r)\Xb−1\d−1.

Now we note that if in the first expression we cut up in the two copies of
Z(Σ1

1, r) along Σ1
1 and reglue by interchanging the copies, we obtain the

second expression (draw a picture). By the gluing formula for the semi
characteristic (Lemma 2) the value of the semi characteristic does not change.

This finishes the definition of our field theory. Finally we have to prove
the axioms and begin with the gluing axiom:

Theorem 7. ϕ(W ) fulfils the gluing axiom: If ∂W = F1 + F2 and ∂W ′ =
−F2 + F3, then

ϕ(W ∪F2 W
′) =< ϕ(W ), ϕ(W ′) >F2= ϕ(W )ϕ(W ′)(−1)e(F2)/2+Arf(F ),

Proof. We only have to consider the case where ∂W and ∂W ′ is the sum of
standard surfaces Σi

k. It is enough to consider two cases, where ∂W = F+Σ0
k

and ∂W ′ = Σ0
k + F ′ or when ∂W = F + Σ1

k and ∂W ′ = Σ1
k + F ′. Since here

F2 has the same orientation we have to glued via r in both cases.

First case: ∂W = F + Σ0
k and ∂W ′ = Σ0

k + F ′. We denote the manifold
obtained from W by gluing in all Xk and Ya,b whose boundary is Y and
denote the result by T , so that ∂T = Σ0

k and do the same for W ′ to obtain
T ′ with boundary Σ0

k. Then

ϕ(W +W ′) = ϕ(W )ϕ(W ′) = s(T ∪ (−Xk))s(T
′ ∪ (−Xk)).

And
ϕ(W ∪r W ′) = s(T ∪r T ′).

Recall that
< ..., ... >Σk

= (−1)e(Σ
0
k)/2.

Thus we are finished with the first case, if

s(T ∪ (−Xk))s(T
′ ∪ (−Xk)) = (−1)e(Σ

0
k)/2s(T ∪r T ′).

To see this we cut T ∪ (−Xk)+T ′∪ (−Xk) along Σk in each of the pieces and
glue after interchanging the copies appropriately to obtain T ∪rT ′+(−Xk)∪r
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(−Xk). Since by the gluing formula for the semi characteristic (Lemma 2)
we don’t change its value and s((−Xk)∪r (−Xk)) = (−1)e(Σ

0
k)/2, we are done.

Second case: ∂W = F+Σ1
k and ∂W ′ = Σ1

k+F ′. In this case we know that
there must be Σ1

a ⊂ ∂W and Σ1
b ⊂ ∂W ′ which we use as ”partner” for Σ1

k.
Again we glue into all other boundary components our canonical manifolds
Xr resp. Ys,t to obtain in the first case T with boundary Σ1

a + Σk and in the
second case T ′ with boundary Σ1

k + Σ1
b . Using this we compute

ϕ(W )ϕ(W ′) = s(T ∪ (−Ya,k))s(T ′ ∪ (−Yk,b)).

We have to show that this is equal to

(−1)e(Σ
1
k)/2+1ϕ(W ∪r W ′) = s(T1 ∪r T ′ ∪ Ya,b).

But
ϕ(W )ϕ(W ′) = ϕ(W +W ′) = s(T + T ′ ∪ (−Yk,k ∪ −Ya,b)),

using the fact that the definition of ϕ does not depend on how we group
the boundary components (Proposition 6). Then as before we can cut this
up, here along Σk + Σk and reglue after interchanging the copies. The result
is the disjoint union of T ∪ T ′ ∪ (−Ya,b) and the manifold obtained from
−Ya,a by identifying the two boundary components via r. This manifold is
diffeomorphic to a manifold Σ1

1 × S1 and the double of Yk−1 by making a
connected sum twice (on each side two discs are cut out and the boundaries
are identified). Since the connected sum changes (−1)s by the gluing formula
by the factor (−1), and this appears twice, and the semi characteristic of
Σ1
k−1 × S1 is 0 and ϕ of the double is (−1)e(Σk−1)/2 = (−1)e(Σk)/2+1, we are

done.

The other axioms are fulfilled by construction or obvious or easy to prove.
By construction V (∅) = K, ϕ(∅) = 1, and V (M+N) = V (M)⊗V (N). If we
have a Spin-diffeomorphism rel. boundary (meaning that it is the identity
on the boundary) from W to W ′ the vectors ϕ(W ) and ϕ(W ′) agree by
construction. Again by construction this implies that if f : W → W ′ is
a Spin-diffeomorphism, then V (f)ϕ(W ) = ϕ(W ′). We have to show a last
axioms:

ϕ(M × I) = id,
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where we interpret V (−M)×V (M) via our pairing with Hom(V (M), V (M)).
If we glue two cylinders over M the result is diffeomorphic rel. boundary to
the cylinder and so by the invariance under diffeomorphisms rel. boundary
and the gluing axiom, ϕ(M × I) is an idempotent, the composition of the
corresponding homomorphism is the corresponding homomorphism. Since
ϕ(W ) is always non-trivial, this implies that the homomorphism is the iden-
tity.

We finish this section with another invertible field theory, which is much
simpler. It is a field theory whose partition function is trivial, but the field
theory is not isomorphic to the trivial theory. The definition is straightfor-
ward. We define as before V (F ) := R and the functor as the trivial map, i.e.
for a Spin-diffeomorphism f : F → F ′ we define V (f) = id. Furthermore, for
a connected Spin surface F we define the pairing between V (F ) and V (−F )
to be

< x, y >F := (−1)Arf(F )xy.

Finally we define for a compact Spin 3-manifold W with boundary α(W ) to
be the number of components with Arf invariant 1 and set

ϕ(W ) := (−1)α(W ))/2.

Now, if ∂W = F1 + F2 and ∂W ′ = F2 + F3, and F2 is connected, we com-
pute ϕ(W ∪F2 W

′). If Arf(F2) = 0, this is ϕ(W ∪F2 W
′) = ϕ(W )ϕ(W ′) =<

ϕ(W )ϕ(W ′) >F2 . If Arf(F2) = 1, we have ϕ(W ∪F2 W
′ = −ϕ(W )ϕ(W ′) =<

ϕ(W ), ϕ(W ′) >F2 . Thus our field theory fulfills the gluing axiom. As before
the other axioms are easy.

Also this field theory has order 2. We obtain a third non-trivial field
theory by taking the tensor product of these two theories. We will see in the
next sections that these are all isomorphism classes of Spin filed theories in
dimension 3. If we pass from the real numbers to the complex numbers, the
field theory constructed above is trivia. Namely, for a conncted surface we we
map V (Σ) to V (Σ) by the identity, if Arf(Σ) = 0 and by i, if Arf(Σ) = 1.
It is easy to see that this is an isomorphism to the trivial field theory. Thus
over the complex number there is only one non-trivial field theory whose
partition function is the semi-characteristic.
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3 Invertible topological field theories

We summarize in this section the methods developed in [1] that allow us to
classify invertible topological field theories. To fix notation for the various
flavors of d-dimensional field theories, fix a fibration u : X → BO(d). For
k ≤ d, an X-structure on a smooth manifold Mk (possibly with corners) is a
lift over u of the classifying map of TM ⊕Rd−k. Another way to think about
this, is a d-dimensional “open collar” around M with an X-structure on its
tangent bundle. Below we shall take d = 3 and X = BSpin(3) to obtain
bordism categories of spin manifolds.

There is a symmetric monoidal d-category X-Cob with k-morphisms the
X-manifolds (with corners) of dimension k for k < d and diffeomorphism
classes of d-manifolds for k = d. To make the k-morphisms into sets, we
should actually take submanifolds of R∞. This allows a nice extension to
a symmetric monoidal (∞, d)-category X-Bord where the k-morphisms are
changed only for k ≥ d: Instead of the discrete set of diffeomorphism classes
of compact X-manifolds of dimension d, we take the space of submanifolds.
The component of W d is then homotopy equivalent to BDiff(W ). Here we are
using topological d-categories as a model for (∞, d)-categories which requires
some thought to make the composition of d-morphisms strictly associative.

The symmetric monoidal structure allows us to show that the classify-
ing space of X-Bord is an infinite loop space. In fact, there is a canonical
connective spectrum |X-Bord| whose n-the space is the classifying space of
the (∞, d + n)-category obtained from X-Bord by introducing a single k-
morphism for k = 0, . . . , n−1 and turning the actual k-morphisms of X-Bord
into k + n-morphisms for k = 0, . . . d. This is a categorical version of Segal’s
Γ-construction.

The following strong version of the main result in [1] was claimed (and
used) in [2].

Theorem 8. The connective spectrum |X-Bord| is homotopy equivalent to
the Thom spectrum MTX.

Here we use the version of the Madsen-Tillmann-Weiss spectrum MTX
which has a Thom class in dimension zero (which conflicts with the two
versions used in [1] respectively [2]). More precisely, the n-th space of MTX
is the Thom space of the n-dimensional bundle u∗n(U⊥d,n) over Xn, where Ud,n
is the universal bundle over the Graßmannian Gr(d, d+ n) and the map

un : Xn → Gr(d, d+ n)
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is pulled back from u via the inclusion Gr(d, d+ n) ⊂ Gr(d,∞) = BO(d).

Remark 9. The above construction of a connective spectrum can be re-
versed. Given a space Y there is an ∞-groupoid CY (for any d ≥ 0, this
is a (∞, d)-category with all k-morphisms invertible for k > 0) whose k-
morphisms are continuous maps Dk → Y . Its classifying space is homotopy
equivalent to Y and hence classical homotopy theory coincides with the ho-
motopy theory of ∞-groupoids or (∞, 0)-categories.

If Y is an infinite loop space then all mapping spaces into Y , up to
homotopy, form abelian groups. It turns out that CY inherits the structure
of a symmetric monoidal ∞-groupoid with the additional property that all
objects are invertible (with respect to the monoidal structure). Such gadgets
are called Picard∞-groupoids and their homotopy theory is exactly classical
stable homotopy theory.

If Y is an infinite loop space, the direct limit of all orthogonal groups O(d)
acts on Y up to homotopy. The O(d)-action extends to the fully dualizable
objects in an (∞, d)-category by Luries cobordism hypothesis. We note that
if 1-morphisms are invertible, an object is invertible if and only if it admits
left and right duals (which both give an inverse) but in an (∞, d)-category
for d > 0 it is much harder to have an inverse than duals.

Corollary 10. Let |C| be the connective spectrum corresponding to a Picard
∞-groupoid C. Then there is a bijection

Fun⊗(X-Bord,C)/' ←→ [MTX, |C|]

where the left hand side denotes isomorphism classes of TFTs and the right
hand side are homotopy classes of maps between connective spectra. Note
that by construction, all TFTs with values in C are invertible.

This result follows immediately from the above theorem after observing
the adjunction for any symmetric monoidal (∞, d)-category B and connective
spectrum Y

Fun⊗(B,CY )/' ←→ [|B|, Y ]

As an example, we take Y = Σd+1 HZ, the shifted Eilenberg-MacLane spec-
trum. This is a particular delooping of the usual target for invertible TFTs:
A d-manifold is associated a nonzero number, i.e. an element in C×. Up to
homotopy, this is a K(Z, 1) whose associated connective spectrum is Σ HZ.
In order to go down to points, we need to deloop this spectrum d times and
the easiest way is a further d-fold suspension.
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Corollary 11. Let C be the (∞, d) category with associated spectrum Σd+1 HZ.
Then there is a bijection

Fun⊗(X-Bord,C)/' ←→ Hd+1(MTX)

If u : X → BO(d) factors through BSO(d), i.e. if all manifolds are oriented,
then the right hand side is isomorphic to Hd+1(X) by the Thom isomorphism.

Taking X = BSpin(3) we can further compute that H4(X) = Z, gener-
ated by p1

2
. Take the generating local field theory and evaluate it on a closed

spin surface Σ. This gives a “characteristic” group homomorphism

Diffspin(Σ)→ C×

which homotopy class is classified by the Euler class e ∈ H2(BDiffspin(Σ))
of the corresponding line bundle. It is not hard to check that this class is
rationally non-trivial and hence only the trivial local field theory maps to
the torsion subgroup

Hom(H1(BDiffspin(Σ)),Q/Z) ∼= Hom(π0(Diffspin(Σ)),Q/Z)

This shows that no local field theory can have its characteristic homomor-
phism be a nontrivial element in the above torsion subgroup group. How-
ever, our semi-characteristic field theory has characteristic homomorphism
the canonical map onto {±1} ≤ Q/Z for all spin surfaces Σ. This shows that
it cannot be local.

Remark 12. What’s missing in this argument is the following result which
I believe is true: If the vector spaces for S2 and T 2 of a local field theory Z
are 1-dimensional then Z is invertible. By Freed-Teleman, it suffices to show
that Z(S1) is invertible. If we work with semi-simple categories then the
assumption on T 2 means that the category Z(S1) only has one simple object
since the number of simple objects is in general the dimension of Z(T 2). This
should imply invertability.

This argument may work for general target categories, however, it suffices
to show that semi-simple categories represent our particular target Σ4 HZ.

The other missing piece in the discussion is a comparison between discrete
and continuous field theories. Recall from the beginning of this section the
d-category X-Cob. We can consider it as a topological d-category which
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happens to have discrete spaces of d-morphisms. In the language of (∞, d)-
categories, this means that there are only identity k-morphisms for k > d.

Then there is a continuous functor X-Bord → X-Cob which forgets the
embedding into R∞ and only considers the diffeomorphism type of a d-
manifold, i.e. only considers the connected component of a d-morphism.

In fact this construction works for any topological d-cagetory B: The
space Bd(X, Y ) of d-morphisms maps to the discrete space of its connected
components π0(Bd(X, Y )). The latter gives rise to a new d-category π0(B)
(which can be considered a topological d-category with discrete spaces of d-
morphisms). By construction, it comes equipped with a functor B → π0(B)
and we see that X-Cob = π0(X-Bord).

In addition to the functor Y 7→ π0(Y ) from topological spaces to sets,
there is another functor, namely Y 7→ Yδ (same set as Y but with discrete
topology). In this case, the canonical map goes the other way, namely the
identity on Y is continuous as a map Yδ → Y .

Given a topological d-category C, we can hence construct a new (discrete)
d-category Cδ together with a continuous functor Cδ → C. Combining these
two constructions for topological d-categories B,C, we get a functor

Fun(π0(B),Cδ)→ Fun(B,C)

where the functors on the right hand side are assumed to be continuous
whereas the left hand side has no topological information. Adding symmetric
monoidal structures and restricting to B = X-Bord, we arrive at continuous
symmetric monoidal functors X-Bord → C which be call continuous topo-
logical field theories. Symmetric monoidal functors X-Cob → Cδ are called
discrete TFTs. Note that both versions are local since they go down to points
and that the above gives a canonical functor from discrete to continuous field
theories.

It is the invertible continuous field theories that are computed via [1].
This means that we actually show a stronger result, namely that the discrete
field theory coming from the semi-characteristic is not localizable, even when
considered as a continuous field theory. In fact, the above discussion can be
complemented by noting that our original construction gives a nontrivial
homomorphism

α : π0(Diffspin(Σ)) � {±1} ↪→ C×δ
which can be turned into a continuous homomorphism by the canonical maps

Diffspin(Σ) � π0(Diffspin(Σ))
α−→ C×δ −→ C×

14



When computing the Euler class e ∈ H2(BDiffspin(Σ)) of the corresponding
flat line bundle, we saw that e is a non-trivial torsion class. This is actually
true for any non-trivial homomorphism α : π0(Diffspin(Σ))→ Q/Z since Q/Z
is the torsion subgroup of C×δ , possibly leading to more non-localizable field
theories.

Remark 13. Recall Milnor’s examples of flat line bundles with non-torsion
Euler classes to see that the Q/Z is important in the above discussion.

It is possible to compute all “partially extended” field theories from the
above formalism as follows. If we consider the empty set ∅ as the only k-
manifold for k = 0, . . . , b − 1 for some 0 ≤ b ≤ d (b is then the bottom
dimension of possibly non-empty closed b-manifolds) then we obtain a topo-
logical d-subcategory of X-Bord, denoted by X-Borddb . This symbolizes that
there are interesting manifolds of dimensions b through d. Recall that the
X-structure is given by a fibration X → BO(d) so the top dimension d is
implicit in X, that’s why we haven’t added it explicitly into the notation.
Note that in the new notation X-Bord = X-Bordd0.

Taking the classifying space (respectively spectrum), we see that

|X-Borddb | ' |X-Bord|b := |X-Bord|〈b− 1〉

is the (b − 1)-connected cover of the connective spectrum |X-Bord|. We
remark that there seems to be a shift by one between Eilenberg, 1944, and
Whitehead, 1952 on how to denote connected covers. For reasons visible in
the above homotopy equivalence, we introduce Yb for Y 〈b − 1〉 (for spectra
or spaces Y ).

Corollary 14. Let C be the (∞, d) category with associated spectrum Σd+1 HZ.
Then there is a bijection

Fun⊗(X-Borddb ,C)/' ←→ Hd+1(MTXb)

where MTXb is the (b−1)-connected cover of the connective spectrum MTX.

Local field theories correspond to exactly those cohomology classes that
come from Hd+1(MTX) under the natural map MTXb → MTX. Let’s com-
pute this for d = 3 andX = BSpin(3) and start with the case b = 1. Denoting
MTX in this case by M , there is a fibration of spectra

M1 →M → HZ
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since M1 is connected whereas π0(M) = Ωspin
0
∼= Z. Since Hk(HZ) is torsion

for k > 0 and H5(M) = H5(BSpin(3)) = 0, we get a short exact sequence

0→ Z ∼= H4(M)→ H4(M1)→ H5(HZ)→ 0

Looking at tables, we see that H5(HZ) ∼= Z/6. The remaining question is
whether the above sequence splits, i.e. how divisible p1 becomes in H4(M1).

Now to the most interesting case, namely X-Bord3
2, classified by the 1-

connected cover M2 → M → S[1]. The latter is the first Postnikov section
of the sphere spectrum S which ends at π1(S) ∼= Z/2. A similar discussion
as for M1 leads to a short exact sequence

0→ Z ∼= H4(M)→ H4(M2)→ H5(S[1])→ 0

and known information about the Steenrod algebra gives H5(S[1]) ∼= Z/6.
What must happen is that our field theory gives a (2- or 4-) torsion element
in H4(M2) which maps non-trivially to H5(S[1]). Since the map S[1]→ HZ
induces multiplication by 2 on H5 (basically because Sq2Sq3 6= 0), it follows
that our field theory does not come from H4(M1), i.e. that it can’t even be
defined on the circle:

Theorem 15. The discrete field theory coming from the semi-characteristic
does not extend to a continuous functor on X-Bord3

1. In particular, it can’t
be extended to a discrete field theory on X-Cob3

1, either. (This still assumes
that any such extension would automatically be invertible).

4 Invertible field theory for other targets

It is very interesting to use other target categories then those corresponding
to Σ4 HZ, for example the Anderson dual A of the sphere spectrum. It is more
naturally associated to spin manifolds since it does involve Z/2-gradings. In
the above computation, the Thom isomorphism is not available because the
Anderson dual is not a ring spectrum, so the group of local field theories
could be much larger. Another possible target would be the 4-th stage ko[4]
of the Postnikov tower of the connective K-theory spectrum ko. Here the
Thom isomorphism is available for spin bundles because this is true for ko
and hence for ko[4] (check this!).

Let’s start again with the case of X-manifolds where X = BSpin(3) and
let’s stop distinguishing in notation between connective spectra and symmet-
ric monoidal (∞, 0)-categories.
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By the Thom isomorphism, we see that

Fun(X-Bord, ko[4])/' ∼= [MTX, ko[4]] ∼= [Σ∞ BSpin(3), ko[4]]

Even though BSpin(3) is 3-connected, its infinite suspension spectrum isn’t
because

π0(Σ∞ BSpin(3)) = lim
n
πn(Σn BSpin(3)) ∼= Z

In fact the Atiyah-Hirzebruch spectral sequence shows that the two maps
Σ4 HZ → ko[4] (3-connected cover) and p0 : ko[4] → HZ (projection to
bottom Postnikov section) give a short exact sequence of abelian groups

0→ H4(BSpin(3))→ [Σ∞ BSpin(3), ko[4]]
p∗0→ H0(BSpin(3))→ 0

and hence there are Z× Z many local field theories with target ko[4].

Example 16. The composition with the Atiyah orientation

MTX→ MSpin→ ko→ ko[4]

is a generators α ∈ [MTX, ko[4]] which maps onto a generator via p∗0. In
particular, the corresponding twist does not come from Σ4 HZ (the gradings
on lines and algebras are important!).

The following computes invertible local field theories with target A. Up
to homotopy, the characterizing property of A gives a unique map a : ko→ A
inducing an isomorphism on π4

∼= Z. We believe that it induces an isomor-
phism on π1

∼= π2
∼= Z/2 and an epimorphism Z � Z/24 on π0. Therefore,

there is a fibration HZ→ ko[4]→ A0 inducing an exact sequence

[MTX,HZ]→[MTX, ko[4]]→ [MTX, A]→ [MTX,Σ HZ] ∼= H1 BSpin(3) = 0

Since [MTX,HZ] ∼= Z we can figure out the left-most map after composition
with p0. By definition, this composition HZ→ ko[4]→ HZ is multiplication
by 24, implying the following result.

Corollary 17. There is an short exact sequence

0→ Fun(X-Bord,Σ4 HZ)/' → Fun(X-Bord, A)/' → Z/24→ 0

where the composition of α from Example 16 with a : ko[4]→ A maps to the
generator on the right hand side.
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Lemma 18. There is a group isomorphism Fun(X-Bord, A)/' ∼= Z× Z/2.

Proof. For any spectrum E, we have a short exact sequence

0→ Ext(π3(E),Z)→ [E,A]→ Hom(π4(E),Z)→ 0

and by our corollary above it suffices to show that π3(MTX) ∼= Z/2. Via
Pontrjagin-Thom, this group is isomorphic to closed spin 3-manifolds, mod-
ulo bordism by spin 4-manifolds with vanishing Euler characteristic. This
comes from the fact that the tangent bundle is classifies in BSpin(3).

Any spin 3-manifold is spin zero bordant and by adding copies of S2×S2

respectively T 4 we can assume that the Euler characteristic is either zero or
one. On the other hand, a closed 4-manifold has even Euler characteristic
if it spin since then the intersection form is even and non-degenerate. This
shows that the Euler characteristic of any bounding spin 4-manifold gives an
isomorphism π3(MTX) ∼= Z/2.

It is very surprising to observe that the above short exact sequence
seems to imply that the 2-connective cover E3 → E induces an isomor-
phism [E3, A] ∼= [E,A]. In particular, any field theory with target A can
be localized, even if it’s just defined on (the space of) all closed 3-manifolds
alone!

5 2-dimensional topological field theories

To related these twists with our 2|0-EFTs, we have to consider a different
case, namely X = BSpin(2). In this case, the rational homotopy groups of
MTX are concentrated in all even dimensions. For example, π2(MTX) =
Z × Z/2 via Euler characteristic and Arf invariant, the proof being similar
to that of Lemma 18 above.

Conjecture 19. The finite abelian group

Tors Fun(X-Bord, A)/' ∼= Tors[MTX, A] ∼= Ext(π3(MTX),Z) ∼= π3(MTX)

contains Z/24 as a subgroup.

Via Pontrjagin-Thom, this group is isomorphic to closed spin 3-manifolds
with a prefered oriented plane-bundle, modulo bordism by spin 4-manifolds
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with tangent bundles that split off a 2-dimensional trivial bundle (whose
complement extends the plane-bundles on the boundary). The hope is that
Rohlin’s theorem would somehow contribute to this 24.

There is another group Z/24 that contributes to 2|0-EFT twists: It comes
from the fact that only genus one surfaces are flat and hence the generating
field theory restricts to something of order 24 in that subcategory: this comes
from the fact that H2(MT 2) ∼= Z/24.

Let ET denote the group of 2|0-EFT twists with target A, then we can
evaluate on the moduli stack of (non-zero bordant) spin tori to get a homo-
morphism

ET −→ H2(MT 2) ∼= Z/24

whereas restriction to flat surfaces leads to a map the other way:

Z/24 ≤ Fun(X-Bord, A)/' −→ ET

This leaves the desired possibility that ET ∼= Z/242 if we can show that the
following composition is zero:

Tors Fun(X-Bord, A)/' −→ ET −→ H2(MT 2)

Identifying moduli of conformal spin tori with BDiffspin(T 2), this compo-
sition is the evaluation of a topological field theory on diffeomorphisms of
spin tori. It extends to all genera and hence it factors through the stable
group H2(BDiffspin(Σ)) where Σ has large genus. Extending a diffeomor-
phism (that’s the identity on a disk) by the identity from genus one to higher
genus induces a map BDiffspin(T 2) → BDiffspin(Σ). Hence our composition
factors as

Z/24 ≤ Fun(X-Bord, A)/' −→ H2(BDiffspin(Σ)) −→ H2(BDiffspin(T 2))

Since the group in the middle is torsionfree (or has a Z/2, check that!) the
Z/24 on the left must die . . .
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