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Knots, von Neumann Signatures,
and Grope Cobordism

Peter Teichner*

Abstract

We explain new developments in classical knot theory in 3 and 4 dimen-
sions, i.e. we study knots in 3-space, up to isotopy as well as up to concordance.
In dimension 3 we give a geometric interpretation of the Kontsevich integral
(joint with Jim Conant), and in dimension 4 we introduce new concordance
invariants using von Neumann signatures (joint with Tim Cochran and Kent
Orr). The common geometric feature of our results is the notion of a grope
cobordism.
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1. Introduction

A lot of fascinating mathematics has been created when successful tools are
transferred from one research area to another. We shall describe two instances
of such transfers, both into knot theory. The first transfer realizes commutator
calculus of group theory by embedded versions in 3- and 4-space, and produces
many interesting geometric equivalence relations on knots, called grope cobordism
in 3-space and grope concordance in 4-space. It turns out that in 3-space these
new equivalence relations give a geometric interpretation (Theorem 2) of Vassiliev’s
finite type invariants [21] and that the Kontsevich integral [17] calculates the new
theory over Q (Theorem 3).

In 4-space the new equivalence relations factor naturally through knot concor-
dance, and in fact they organize all known concordance invariants in a wonderful
manner (Theorem 5). They also point the way to new concordance invariants (The-
orem 6) and these are constructed using a second transfer, from the spectral theory
of self-adjoint operators and von Neumann’s continuous dimension [20].
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1.1. A geometric interpretation of group commutators

To explain the first transfer into knot theory, recall that every knot bounds a Seifert
surface (embedded in 3-space), but only the trivial knot bounds an embedded disk.
Thus all of knot theory is created by the difference between a surface and a disk.
The new idea is to filter this difference by introducing a concept into knot theory
which is the analogue of iterated commutators in group theory. Commutators arise
because a continuous map ¢ : S' — X extends to a map of a surface if and only if ¢
represents a commutator in the fundamental group 71 X. Iterated commutators can
similarly be expressed by gluing together several surfaces. Namely, there are certain
finite 2-complexes (built out of iterated surface stages) called gropes by Cannon [1],
with the following defining property: ¢ : S' — X represents an element in the k-th
term of the lower central series of m1 X if and only if it extends to a continuous map
of a grope of class k. Similarly, there are symmetric gropes which geometrically
implement the derived series of m X, see Figures 2. and 3.

Gropes, therefore, are not quite manifolds but the singularities that arise are of
a very simple type, so that these 2-complexes are in some sense the next easiest thing
after surfaces. Two sentences on the history of the use of gropes in mathematics are
in place, compare [11, Sec.2.11]. Their inventor Stan’ko worked in high-dimensional
topology, and so did Edwards and Cannon who developed gropes further. Bob
Edwards suggested their relevance for topological 4-manifolds, where they were
used extensively, see [11] or [12]. It is this application that seems to have created
a certain " Angst“ of studying gropes, so we should point out that the only really
difficult part in that application is the use of infinite constructions, i.e. when the
class of the grope goes to infinity.

One purpose of this note is to convince the reader that (finite) gropes are a
very simple, and extremely powerful tool in low-dimensional topology. The point
is that once one can describe iterated commutators in 71 X by maps of gropes, one
might as well study embedded gropes in 3-space (respectively 4-space) in order to
organize knots up to isotopy (respectively up to concordance). In Section 2. we shall
explain joint work with Jim Conant on how gropes embedded in 3-space lead to a
geometric interpretation of Vassiliev’s knot invariants [21] and of the Kontsevich
integral [17].

1.2. Von Neumann signatures and knot concordance

In Section 3. we study symmetric gropes embedded in 4-space, and explain how
they lead to a geometric framework for all known knot concordance invariants and
beyond. More precisely, we explain our joint work with Tim Cochran and Kent
Orr [6], where we define new concordance invariants by inductively constructing
representations into certain solvable groups G, and associating a hermitian form
over the group ring ZG to the knot K, which is derived from the intersection form
of a certain 4-manifold with fundamental group G and whose boundary is obtained
by O-surgery on K. This intersection form represents an element in the Cappell-
Shaneson I'-group [2] of ZG and we detect it via the second transfer from a different
area of mathematics: The standard way to detect elements in Witt groups like the
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I’-group above is to construct unitary representations of G, and then consider the
corresponding (twisted) signature of the resulting hermitian form over C. It turns
out that the solvable groups G we construct do not have any interesting finite
dimensional representations, basically because they are “too big” (e.g. not finitely
generated), a property that is intrinsic to the groups G in question because they
are “universal solvable” in the sense that many 4-manifold groups (with the right
boundary) must map to G, extending the given map of the knot group.

However, every group G has a fundamental unitary representation given by
2@, the Hilbert space of square summable sequences of group elements with com-
plex coefficients. The resulting (weak) completion of CG is the group von Neumann
algebra NG. 1t is of type II; because the map > agzg — a1 extends from CG to
give a finite faithful trace on N'G.

The punchline is that hermitian forms over the completion NG are much
easier to understand than over CG because they are diagonalizable (by functional
calculus of self-adjoint operators). Here one really uses the von Neumann algebra,
rather than the C*-algebra completion of CG because the functional calculus must
be applied to the characteristic functions of the positive (respectively negative) real
numbers, which are bounded but not continuous.

The subspace on which the hermitian form is positive (respectively negative)
definite has a continuous dimension, which is the positive real number given by the
trace of the projection onto that subspace. As a consequence, one can associate to
every hermitian form over N'G a real valued invariant, the von Neumann signature.
In [6] we use this invariant to construct our new knot concordance invariants, and
a survey of this work can be found in Section 3. It is not only related to embedded
gropes in 4-space but also to the existence of towers of Whitney disks in 4-space.
Unfortunately, we won’t be able to explain this aspect of the theory, but see [6,
Thm.8.12].

1.3. Noncommutative Alexander modules

In Section 3. we shall hint at how the interesting representations to our solvable
groups are obtained. But it is well worth pointing out that the methods developed
for studying knot concordance have much simpler counterparts in 3-space, i.e. if one
is only interested in isotopy invariants.

A typical list of knot invariants that might find its way into a text book
or survey talk on classical knot theory, would contain the Alexander polynomial,
(twisted) signatures, (twisted) Arf invariants, and maybe knot determinants. It
turns out that all of these invariants can be computed from the homology of the
infinite cyclic covering of the knot complement, and are in this sense “commutative”
invariants.

Instead of the maximal abelian quotient one can use other solvable quotient
groups of the knot group to obtain “noncommutative” knot invariants. The canon-
ical candidates are the quotient groups of the derived series G(™ of the knot group
(compare Section 3. for the definition). One can thus define the higher order Alexan-
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der modules of a knot K to be the Z[G /G ]-modules
An(K) = H,(S® < K;Z[G/GM D).

The indexing is chosen so that A is the classical Alexander module. For n > 1
these modules are best studied by introducing further algebraic tools as follows. By
a result of Strebel the groups G/G(™ are torsionfree. Therefore, the group ring
Z|G/G™)] satisfies the Ore condition and has a well defined (skew) quotient field.
This field is in fact the quotient field of a (skew) polynomial ring K, [t*!], with K,
the quotient field of Z|G™M /G™)] and G/G™) = (t) = Z. Thus one is exactly in the
context of [6, Sec.2] and one can define explicit noncommutative isotopy invariants
of knots. For example, let d,,(K) be the dimension (over the field K, ;1) of the
rational Alexander module

An(K) @z16/c00) Knpa [t

It is shown in [6, Prop.2.11] that these dimensions are finite with the degree of the
usual Alexander polynomial being do(K). Moreover, Cochran [5] has proven the
following non-triviality result for these dimensions.

Theorem: If K is a nontrivial knot then for n > 1 one has
do(K) <di(K)+1<do(K)+1<---<dp(K)+1<2-genus of K.

Moreover, there are examples where these numbers are strictly increasing up to any
given n.

Corollary: If one of the inequalities in the above theorem is strict then K is not
fibered. Furthermore, 0-surgery on K cross the circle is not a symplectic 4-manifold.

The first statement is clear: For fibered knots the degree of the Alexander polyno-
mial do(K) equals twice the genus of the knot K. The second statement follows
from a result of Kronheimer [18] who showed that this equality also holds if the
above 4-manifold is symplectic.

Recently, Harvey [16] has studied similar invariants for arbitrary 3-manifolds
and has proven generalizations of the above results: There are lower bounds for
the Thurston norm of a homology class, analogous to d;(K), that are better than
McMullen’s lower bound, which is the analogy of do(K). As a consequence, she
gets new algebraic obstructions to a 4-manifold of the form M3 x S admitting a
symplectic structure.

Just like in the classical case n = 0, there is more structure on the rational
Alexander modules. By [6, Thm.2.13] there are higher order Blanchfield forms which
are hermitian and non-singular in an appropriate sense, compare [5, Prop.12.2]. Tt
would be very interesting to know whether the n-th order Blanchfield form deter-
mines the von Neumann 7-invariant associated to the G(**D-cover. So far, these
n-invariants are very mysterious real numbers canonically associated to a knot.

Only in the bottom case n = 0 do we understand this n-invariant well: The
L?-index theorem implies that the von Neumann n-invariant corresponding to the
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Z-cover is the von Neumann signature of a certain 4-manifold with fundamental
group Z. Moreover, this signature is the integral, over the circle, of all (Levine-
Tristram) twisted signatures of the knot [7, Prop.5.1] (and is thus a concordance
invariant). For m > 1 there is in general no such 4-manifold available and the
corresponding n-invariants are not concordance invariants.

2. Grope cobordism in 3-space

We first give a more precise treatment of the first transfer from group theory
to knot theory hinted at in the introduction. Recall that the fundamental group
consists of continuous maps of the circle S' into some target space X, modulo
homotopy (i.e. 1-parameter families of continuous maps). Quite analogously, clas-
sical knot theory studies smooth embeddings of a circle into 53, modulo isotopy
(i.e. 1-parameter families of embeddings). To explain the transfer, we recall that
a continuous map ¢ : S' — X represents the trivial element in the fundamental
group m X if and only if it extends to a map of the disk, gz~5 : D? — X. Moreover,
¢ represents a commutator in 7w X if and only if it extends to a map of a surface
(i.e. of a compact oriented 2-manifold with boundary S*'). The first statement has
a straightforward analogy in knot theory: K : 8! < S§3 is trivial if and only if it ex-
tends to an embedding of the disk into S2. However, every knot “is a commutator”
in the sense that it bounds a Seifert surface, i.e. an embedded surface in S3.

Figure 2: Gropes of class 3, with one respectively two boundary circles.

Recall from the introduction that gropes are finite 2-complexes defined by the
following property: ¢ : S — X represents an element in the k-th term 7 Xy of the
lower central series of 71 X if and only if it extends to a continuous map of a grope of
class k. Here Gy, is defined inductively for a group G by the iterated commutators

Gs :=[G,G] and Gy, := [G,G—1] for k > 2.

Accordingly, a grope of class 2 is just a surface, and one can obtain a grope of class k
by attaching gropes of class (k — 1) to g disjointly embedded curves in the bottom
surface. Here g is the genus of the bottom surface and the curves are assumed to
span one half of its homology. This gives gropes of class k& with one boundary circle
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as on the left of Figure 2. It’s not the most general way to get gropes because of
re-bracketing issues, and we refer to [9, Sec.2.1] for details. The boundary of a grope
is by definition just the boundary of the bottom surface, compare Figure 2.

Definition 1 Two smooth oriented knot types are grope cobordant of class k, if
there is an embedded grope of class k in S3 (the grope cobordism) such that its
boundary represents the given knots.

An embedding of a grope is best defined via the obvious 3-dimensional local model.
Since every grope has a 1-dimensional spine, embedded gropes can then be isotoped
into the neighborhood of a 1-complex. As a consequence, embedded gropes abound
in 3-space! It is important to point out that the two boundary components of a
grope cobordism may link in an arbitrary way. Thus it is a much stronger condition
on K to assume that it is the boundary of an embedded grope than to say that it
cobounds a grope with the unknot. For example, if K bounds an embedded grope
of class 3 in S2 then the Alexander polynomial vanishes. Together with Stavros
Garoufalidis, we recently showed [13] that the 2-loop term of the Kontsevich integral
detects many counterexamples to the converse of this statement.

In joint work with Jim Conant [9], we show that grope cobordism defines
equivalence relations on knots, one for every class kK € N. Moreover, Theorem 2
below implies that the resulting quotients Iy are in fact finitely generated abelian
groups (under the connected sum operation). For the smallest values k = 2,3,4
and 5, the groups Ky are isomorphic to

{0},Z/2,Z and Z x Z/2

and they are detected by the first two Vassiliev invariants [10, Thm.4.2].

The following theorem is formulated in terms of clasper surgery which was
introduced independently by Habiro [15] and Goussarov [14], as a geometric answer
to finite type invariants a 14 Vassiliev [21]. We cannot explain the definitions here
but see [9, Thm.2 and 3]. We should say that the notion of a capped grope is well
known in 4 dimensions, see [11, Sec.2]. In our context, it means that all circles at
the “tips” of the grope bound disjointly embedded disks in 3-space which are only
allowed to intersect the bottom surface of the grope.

Theorem 2 Two knots Ko and K1 are grope cobordant of class k if and only if K
can be obtained from Ky by a finite sequence of simple clasper surgeries of grope
degree k (as defined below).

Moreover, two knots are capped grope cobordant of class k if and only if they
share the same finite type invariants of Vassiliev degree < k.

As a consequence of this result, the invariants associated to grope cobordism are
highly nontrivial as well as manageable. For example, we prove the following result
in [10, Thm.1.1]:

Theorem 3 The (logarithm of the) Kontsevich integral (with values in B, ), graded
by the new grope degree k, is an obstruction to finding a grope cobordism of class k
between two knots and it gives an isomorphism

Kk@QgBik
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Here BY, is one of the usual algebras of Feynman diagrams known from the
theory of finite type invariants, but graded by the grope degree. More precisely,
Bg<k is the Q-vector space generated by connected uni-trivalent graphs of grope
degree i,1 < i < k, with at least one univalent vertex and a cyclic ordering at
each trivalent vertex. The relations are the usual IHX and AS relations. The grope
degree is the Vassiliev degree (i.e. half the number of vertices) plus the first Betti
number of the graph. Observe that both relations preserve this new degree.

Read backwards, our results give an interpretation of the Kontsevich integral
in terms of the geometrically defined equivalence relations of grope cobordism. Note
that regrading diagrams from Vassiliev to grope degree is not a technical issue but it
removes the caps from the discussion, closing the gap to group theory considerably.

3. Grope concordance

We now turn to the 4-dimensional aspects of the theory. It may look like the
end of the story to realize that any knot with trivial Arf invariant bounds a grope
of arbitrary big class embedded in D*, [10, Prop.3.8]. However, group theory has
more to offer than the lower central series. Recall that the derived series of a group
G is defined inductively by the iterated commutators

GY = [@,G) and G = [V G Y] for h > 1.

Accordingly, we may define symmetric gropes with their complexity now measured
by height, satisfying the following defining property: A continuous map ¢ : S' — X
represents an element in 7; X" if and only if it extends to a continuous map of a
symmetric grope of height h. Thus a symmetric grope of height 1 is just a surface,
and a symmetric grope of height A is obtained from a bottom surface by attaching
symmetric gropes of height (h — 1) to a full symplectic basis of curves. This defines
symmetric gropes of height h with one boundary circle as in Figure 3.

Figure 3: Symmetric gropes of height 2 and 2.5.

Note that a symmetric grope of height h is also a grope of class 2", just like in
group theory. But conversely, not every grope is symmetric. It should also be clear
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from Figure 3. how one defines symmetric gropes with half-integer height (even
though there is no group theoretic analogue).

In the following definition we attempt to distinguish the terms “cobordant”
and “concordant” in the sense that the latter refers to 4 dimensions, whereas the
former was used in dimension 3, see Definition 1. Historically, these terms were used
interchangeably, but we hope not to create any confusion with our new distinction.

Definition 4 Two oriented knots in S* are grope concordant of height h € %N, if
there is an embedded symmetric grope of height h in S3 x [0, 1] such that its boundary
consists ezactly of the given knots K; : ST — S x {i}.

Observe that since an annulus is a symmetric grope of arbitrary height we
indeed get a filtration of the knot concordance group. This group is defined by
identifying two knots which cobound an embedded annulus in S3 x [0, 1], where there
are two theories depending on whether the embedding is smooth or just topological
(and locally flat). For grope concordance the smaller topological knot concordance
group is the more natural setting: a locally flat topological embedding of a grope
(defined by the obvious local model at the singular points) can be perturbed to
become smooth. This perturbation might introduce many self-intersection points
in the surface stages of the grope. However, these new singularities are arbitrarily
small and thus they can be removed at the expense of increasing the genus of the
surface stage in question but without changing the height of the grope.

In joint work with Tim Cochran and Kent Orr [6], we showed that all known
knot concordance invariants fit beautifully into the scheme of grope concordance!
In particular, all known invariants turned out to already be invariants of grope
concordance of height 3.5:

Theorem 5 Consider two knots K; in S°. Then

1. K; have the same Arf invariant if and only if they are grope concordant of
height 1.5 (or class 3).

2. K, are algebraically concordant in the sense of Levine [19] (i.e. all twisted
signatures and twisted Arf invariants agree) if and only if they are grope con-
cordant of height 2.5.

8. If K; are grope concordant of height 3.5 then they have the same Casson-
Gordon invariants [3].

The third statement includes the generalizations of Casson-Gordon invariants
by Gilmer, Kirk-Livingston, and Letsche. In [6] we prove an even stronger version
of the third part of Theorem 5. Namely, we give a weaker condition for a knot
K to have vanishing Casson-Gordon invariants: it suffices that K is (1.5)-solvable.
All the obstruction theory in [6] is based on the definition of (h)-solvable knots,
h e %N7 which we shall not give here. Suffice it to say that this definition is closer
to the algebraic topology of 4-manifolds than grope concordance. In [6, Thm.8.11]
we show that a knot which bounds an embedded grope of height (h + 2) in D* is
(h)-solvable.

It should come as no surprise that the invariants which detect grope concor-
dance have to do with solvable quotients of the knot group. In fact, the above
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invariants are all obtained by studying the Witt class of the intersection form of a
certain 4-manifold M* whose boundary is obtained by 0-surgery on the knot. The
different cases are distinguished by the fundamental group 71 M, namely

1. w1 M is trivial for the Arf invariant,
2. m1 M is infinite cyclic for algebraic concordance, and
3. m M is a dihedral group for Casson-Gordon invariants.

So the previously known concordance invariants stopped at solvable groups which
are extensions of abelian by abelian groups. To proceed further in the understand-
ing of grope (and knot) concordance, one must be able to handle more complicated
solvable groups. A program for that purpose was developed in [6] by giving an elab-
orate boot strap argument to construct inductively representations of knot groups
into certain universal solvable groups. On the way, we introduced Blanchfield du-
ality pairings in solvable covers of the knot complement by using noncommutative
localizations of the group rings in question.

The main idea of the boot strap is that a particular choice of “vanishing” of the
previous invariant defines the map into the next solvable group (and hence the next
invariant). In terms of gropes this can be expressed quite nicely as follows: pick
a grope concordance of height h € N and use it to construct a certain 4-manifold
whose intersection form gives an obstruction to being able to extend that grope to
height h.5. There is an obvious technical problem in such an approach, already
present in [3]: to show that there is no grope concordance of height h.5, one needs
to prove non-triviality of the obstruction for all possible gropes of height h. One
way around this problem is to construct examples where the grope concordances of
small height are in some sense unique. This was done successfully in [6] for the level
above Casson-Gordon invariants, and in [7] we even obtain the following infinite
generation result. Let G;, be the graded quotient groups of knots, grope concordant
of height & to the unknot, modulo grope concordance of height h.5. Then the results
of Levine and Casson-Gordon show that G, and G3 are not finitely generated.

Theorem 6 G, is not finitely generated.

The easiest example of a non-slice knot with vanishing Casson-Gordon invariants
is given in [6, Fig.6.5]. As explained in the introduction, the last step in the proof
of Theorem 6 is to show that the intersection form of the 4-manifold in question
is nontrivial in a certain Witt group. Our new tool is the von Neumann signature
which has the additional bonus that it takes values in R, which is not finitely
generated as an abelian group. This fact makes the above result tractable. We
cannot review any aspect of the von Neumann signature here, but see [6, Sec.5].

Last but not least, it should be mentioned that we now know that for every
h € N the groups G, are nontrivial. This work in progress [8] uses as the main
additional input the Cheeger-Gromov estimate for von Neumann 7-invariants [4] in
order to get around the technical problem mentioned above. It is very likely that
non of the groups Gy, h € N, h > 2, are finitely generated.
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