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1. Introduction

In order to seperatg-dimensional linking and knotting phenomena, John
Milnor introduced the notion of dink homotopy[14]. He allowed self-
intersections but did not allow different components to cross during a link
homotopy. It is clear that any knot is link homotopically trivial but one
of the most surprising and unintuitive (see the left hand side of Fig. 1)
results of Milnor was that arbitrarily many parallel copies of a knot form
a homotopically trivial link. In fact, one knows that abgpundary linkhas
vanishingu-invariants and thus it is homotopically trivial by the main result
of Milnor. By definition, in a boundary link the components bound disjointly
embedded Seifert surfaces. For example, any knot has a Seifert surface and
is thus a boundary link. Similarly, parallel copies of a knot bound (disjoint)
parallel copies of this Seifert surface.

The notion of a link homotopy makes clearly sense for links in any
dimension. In fact, the correct category to work in seems to be the following:
A link mapis a continuous map such that connected components in the
source are mappatisjointly into the target. A link homotopy between two
link maps is then an ordinary homotogilyough link mapsin this context,
aboundary link mag. : II; M; — N is a link map which is the boundary
of a link mapll; W; — N of oriented manifold$V;, the “Seifert surfaces”
for L.
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Fig. 1. Can you see the null-homotopies for these boundary links?

Answering an old question of Jerry Levine and Dale Rolfsen in the
affirmative, our main result is as follows:

Theorem 1. Any boundary link mag : IT; SV — SV+2 s link homotopic
to the unlink.

In the classical dimensiolN = 1 this can probably be proven along the
lines of the embedded case discussed above. However, there is a more ge-
ometric argument, explained to the author by Mike Freedman, which uses
a procedure known asymmetric surgerpr contraction/pushoffrom 4-
manifold theory. It seems to go back to an idea of Bob Edwards. It is this
procedure which we generalize to all dimensions. We show that a bound-
ary link map is link concordant to the trivial link and then we utilize our
result from [15], namely that link concordance implies link homotopy in
codimensior> 2.

Remark 1.The attentive reader will have realized that the link on the right
hand side of Fig. 1 has linking numberi and is thushot homotopically
trivial. This is the reason why we used ordsientedSeifert surfaces in the
definition of a boundary link. (This also coincides with established notions,
since Seifert used only orientable surfaces to bound knatd.)rOrientable

but non-spin Seifert surfaces will be exploited in Example 1.

In higher dimensions, codimension 2 boundary links gained importance
in the 1970’s through the work of Cappell and Shaneson, see e.g. [1] or [2].
They observed that exactly for boundary links there is a degree one normal
map to the unlink and thus their homology surgery approach works for that
class of links. This lead to a complete algebraic computation of the bound-
ary link concordance groups in high dimensions. The answer is in terms of
I'-groups of the free group (on the number of components of the links). As
a consequence, many odd-dimensional boundary links are not concordant
to split links, see [2]. In this light Theorem 1. is very interesting even in the
embedded case. In contrast, it follows from algebraic facts abbegroups
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Fig. 2. A boundary linkS* 11 §* — S7 which is not null-homotopic

that every even-dimensional boundary link is null-concordant and thus also
null-homotopic. Our proof of Theorem 1. actually gives a geometric argu-
ment that even-dimensional boundary links are null-concordant. It coincides
with Kervaire’s original argument [8] for knots.

It remains an open problem whether any even dimensional link is null-
concordant and it is a very good test question whether they are all null-
homotopic. It should also be mentioned that it took until 1991 before
Cochran and Orr [3] found examples of links in any odd dimension that
are not concordant to boundary links (and with vanishirgvariants in
dimension3).

In our proof of Theorem 1., symmetric surgery is only needed for odd
dimensionsV, the even case being easier (as forembedded linksiN Fer2
and two component link maps, Theorem 1. was proven in [10].

Surprisingly, the situation becomes more complicated in codimenston

Example 1.There is a boundary lin, : S4 11 §* < S7 which is not
homotopically trivial. In fact,L has non-trivial generalized linking number
a(L) € w5t

The 5-dimensional Seifert surfaces for this link are constructed from
plumbings of &2-sphere and a-sphere, where one uses the nontrivigk
bundles to thicken the-spheres. Moreover, the twiespheres form a Hopf
link in S7, see Fig. 2. Note that in this example the Seifert surfaces do not
allow a spin structure. In fact, we have the following result for arbitrary
codimensions> 2:

Theorem 2. Let L : II; S — SN*2 n; < N, be a boundary link map
with parallelizable Seifert surfaces. Théris homotopically trivial

The Seifert surfaces of a boundary link map always refer to the ones
which are mapped in disjointly. Now Theorem 1. follows from Theorem 2.
together with the following result.
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Proposition 3. A boundary link mag. : I1; S — SV*2is link homotopic
to a boundary link mag’ with parallelizable Seifert surfaces.

The paperis organized as follows. In Sect. 2 we prove Theorem 2. modulo
the symmetric surgery part. In particular, this contains the c'se#n and
N odd,n; < N.In Sect. 3 we introduce symmetric surgery and finish the
proof of Theorem 2.. In Sect. 4 we prove Proposition 3. and in the last Sect. 5
we describe Example 1 and prove that it is the smallest one:

Theorem 4. If n; < 3 andn; < N then any boundary link mag :
I1; ™ — SN*2is homotopically trivial.

In fact, our Example 1 is the unique smallest possible example since the
generalized linking numbet : LM47,4 — w3t = 7,/2 detects link maps
with one embedded componeit: The inclusion of the meridia-sphere
to L; induces a homotopy equivalen®@ ~ S7 . L;(S*) and thus the
second componerit, is an element ofry (S?) = st

Here LM, denotes the set of link homotopy classes of link mapsl
S7 — S™. It Was shown in [11] that the connected sum operation gives a
well-defined addition on this setif ¢ < n — 2. Up to link concordance,
reflection in a hypersphere provides an inverse for any given link map.
Since link concordance implies link homotopy [15] it follows that the sets
LM, actually form abelian groups i,q < n — 2. For example, the

groupsLMq;r2 are infinite cyclic and detected by the linking number for all
g > 1.Inthe metastable range, Koschorke [12] has an exact sequence which
relates the groupsM,;) , to classical homotopy theory and thus makes many
calculations possible. Very recently, the infinitely generated gnbj\l@{2
was computed, see [10] [16] [13].

One of the nice features of working with link maps up to link homotopy
is that the categories are irrelevant: One may always assume that the maps
in question are smooth or PL. Without further notice, we always work in the
smooth setting.

Acknowledgementlt is a pleasure to thank Jerry Levine for valuable discussions and for
criticizing a preliminary draft.

2. Parallelizable Seifert surfaces

Inthis section we prove Theorem 2. up to the point where symmetric surgery
is needed. This will only be the case in the presence of a codimension 2
component andv odd.

The idea of the proof is simple: We try to replace the disjoint Seifert
surfaces inSV*2 by disjoint disks inDV*3. Then the result follows from
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“link concordance implies link homotopy” [15]. In fact, we will construct

link maps of cobordisms, rel boundary, between the Seifert surfaces and
disks. These cobordisms will have handles only up to the middle dimension
which will guarantee the disjointness properties. Thus the problem splits
into two steps: First we have to find suitable abstract cobordisms between
the Seifert surfaces and disks. This is where we use the assumption that the
Seifert surfaces are parallelizable. Then these cobordisms will be mapped
disjointly into DN+3,

Let W1 be one of the parallelizable Seifert surfaces for our link map
L. As explained in the classic [9] one may do framed surgeries on k-spheres
in the interior ofi¥ to get a highly connected manifold’. Here the framing
refers to a trivialization of thetable normabundle which is carried along
in all constructions. More precisely, one can add k-handldd’tx 1 C
W x1I,k=1,...,[n/2], to obtain a framedn + 2)-manifold N with
lower boundary?” and upper boundary[a/2]-connected manifold . (In
addition, N has a “vertical” boundang™ x I sincedW = S™ = 9V.)

Then one runs into the surgery obstruction/ip,(e) for making V'
contractible by surgeries in the middle dimension. Note thatfor 4 the
h-cobordism theorem implies that a contractible manifold with boundary an
n-sphere must be gm + 1)-disk (see Remark 2 for the cases< 4).

The surgery obstruction groups are 4-periodic in the dimension and in
our simply-connected case they were described in [9]: Foretka groups
Ly+1(e) are trivial. If n + 1 is divisible by4 thenL,,1(e) = Z and the
surgery obstruction is the signature. Finallynif+ 1 = 2 mod 4 then
L,+1(e) = Z/2 and the surgery obstruction is the Kervaire invariant.

A priori, these surgery obstructions depend on the highly connected
manifold V' but it turns out that they can be read off from the original
manifold . In our case this is easy to see since the signature and the
Kervaire invariantare unchanged under framed cobordisms. These invariants
are notimportamtin our context of link homotopy since they involve only one
component at a time. More precisely, we may locally add to each component
of L the oppositely oriented knot map it represents, together with a copy
of the oppositely oriented Seifert surfaed?. Since knot maps are null
homotopic, this addition can be achieved by a link homotopy taking place
in small disjoint(/NV + 2)-balls, one for each component. It has the effect
that the new Seifert surfaces have trivial surgery obstructions. Therefore,
there is a sequence of surgeries on frarhexpheres in the interior dii’,
k=1,...,[n/2] + 1, leading fromi¥ to D" 1.

Remark 2.We should say some words about low dimensions, where surgery
does not usually work: If the Seifert surfaces are 2-dimensional then there
is always al /2-basis of framed circles which lead to the 2-disk. In dimen-
sion 3 one knows that any closed orienseshanifold is obtained frons by
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surgeries on an evenly framed link [7]. This is exactly the statement which
we need folV3 above. Finally, consider a simply-connectedimensional
Seifert surfacéV’. We still assume thal’ is parallelizable and has zero sig-
nature. By [17] this implies that for somes € N there is a diffeomorphism

W#r(S? x §%) = 5(5% x §%) \. small openi-ball D.

The interior connected sum &F with copies ofS? x S? can be achieved
locally by adding copies of the unknotted pa#™V +2, 52 x S?). This does
not change the original link and it enables us to assume tiais a standard
manifold. We may clearly pick frame2ispheres iV = s(S? x 52?) \ Dy
such that surgeries lead 1.

In the remainder of this section we will outline a procedure how to ambi-
ently realize these abstract surgeries ifiAnt+ 3)-ball bounding oulsV+2,
The necessary disjointness properties will follow from general position, ex-
cept for NV odd andk equal to the middle dimension. That's were symmetric
surgery is needed.

We assume that the Seifert surfaé&@: ™' of the link mapL have the
property above. The next step is to improve the m&ps+ SV+2. SincelV;
are parallelizable, it follows from Hirsch-Smale immersion theory [6] that
there are immersiond; 3 SV 2 with trivial normal bundles and arbitrary
close to the original maps in thE&°-topology. Hence we may chose these
immersions to be still disjoint from each other and such that the new link
map is link homotopic to the original one. For each compon&ptpick a
(N — n; 4 1)-framew; for the normal bundle of/’”" "' in SN+2. Together
with the standard normal vector field f6f¥t2 ¢ RV*3 the framey; is a
framing of the stable normal bundle Bf;. We can therefore use it to control
the framings of our surgeries.

Remark 3.SincelV; is homotopy equivalent to am-complex the tangent
bundle is stably trivial if and only if it is trivial, i.elV; is parallelizable. Itis
always true that the stable tangent bundle is trivial if and only if the stable
normal bundle is trivial, since they are stable inverses of each other. Note
however, that a trivialization of the tangent bundle is more information than
just a stable trivialization, i.e. a framing. This distinction will only become
important for surgeries in the middle dimension, see Remark 4.

We may clearly assume that thig; are connected (otherwise disregard
the closed components). Therefore, the first abstract surgery which we want
to realize ambiently would be on an embbeddjhgS' — W;. Note that
the composition

St W; 9» SN2
is an immersion but it might have self-intersections. It clearly extends to map
F : D?> — DN*3 which sends the interior dd? into the interior of DV +3,
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By jet transversality [5, 11.5] this may be assumed to be an immersion (and
actually an embedding away from the boundary but this won't be used). All
we need is thaf' has a normal bundle. Then we have to extend the normal
framev; from f(S') to a normal frame o (D?).

Lemma 1. This extension of the normal framgexists.

Proof. The extension problem is as follows: Given the trivial bunbfex
RN*! and an(N — n; + 1)-frame onS' c D2 Does it extend to an
(N — n; + 1)-frame onD? ? The most elementary way to prove that the
answer is “yes” is to inductively construct the frame, one vector field at a
time: Anon-vanishing vector field in a trivial bundle is justa map into the unit
sphere of the fibre. Thus the first vector field extends becaysg") = 0.
Then we work in the orthogonal complement of that first vector field. Thus
the second vector field exists becaug¢S™¥ ~!) = 0. Continuing in this
manner the last condition is; (SN TD-(V-ni+1)) — o, Actually, all the
conditions that we need follow from

(N+1)—(N—-n;j+1)>1 <= n;>1

which is clearly satisfied (otherwise we wouldn’'t be doing surgery on a
circle). O

We now attach an ambient 2-handle Tig, as follows: First thickenV;
slightly in the radial direction inta>™+3. Then take the union with the
disk-bundle of the orthogonal complement of the vector-bundle spanned by
the above extension of, over F'(D?). This disk-bundle has fibre dimen-
sionn; and thus the result is an immersion of a franteg+ 2)-manifold
N; 9+ DN*3 with a vertical boundang™ x I and two horizontal boundary
components. The “upper” one i§; and we denote the “lower” one By,
the result of the surgery on the circfgS!) in W;. By construction, the
normal framey; extends to a normal frame fdv; in D*3 which we still
denote byy;. In particular,N; is a framed cobordism (rél) betweeniV;
andV;.

In the next step we want to do surgery on a 2-sphefé.ilNote that the
setup is slightly different from the first step becaliges not immersed in
SN+2 any more, nor are we sure that it lies in some level spheie’6f3.
However, the above argument nevertheless goes through. We will give the
inductive argument fof : S¥ < V; for somel < k < ”T“ The first step
is to extend the composition

S*— V; & DN

to a mapF : DFt! — DN+3 which in the interior is disjoint from all
previously constructed;. This extension exists by general position using
the fact that

2(k+1)<n; +3< N +3
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and that\V; has only handles of index k + 1 (since we might already have
realized an ambient surgery on anotlsér— V;). By jet transversality we
may again assume thét is an immersion. The extension problem of the
normal data is now as follows: In the trivial bundl#+! x RV *+2=* we have
given the( N — n; + 1)-framey; restricted taS* and we want to extend it to
an(N —n;+1)-frame onD**+1. Exactly as in Lemma 1. one shows that there
is a solution to this extension problenif (SN +2-k)=(N=n+1)) — o, This
certainly follows from

(N+2—k)—(N—-n;+1)>k <= 2k<n;+1

which is exactly our assumption that we are doing surgery below the mid-
dle dimension. We can thus attach an ambient k-handle to the previously
constructed cobordisnV; as follows: Just take the union &f; with the
disk-bundle of the orthogonal complement of the vector-bundle spanned by
the above extension of over F(D**1). The result is an immersion of a
framed(n; + 2)-manifold N/ &~ DV +3 with a “vertical” boundarys™ x I

and two “horizontal” boundary components. One componeht &nd the
other is the result of the surgery on the cir¢lgs®) in V;. By construction,

the normal frame; extends to a normal frame fa¥; in DN+3,

Summarizing the previous steps, we now have disjoint immersions
N2 q» DN+3 which are constructed from the original Seifert surfaces
Wfi“ by attaching handles of index k; + 1, wherek; is the largest integer
< "TH Together with the vertical boundari®s: x I the lower horizontal
boundaried; of N; bound the original link componenfs : S™ — SN+2,

The surgeries were done in order to kill the homotopy groupd/pfand
therefore, thd/; arek;-connected.

If n; is even therk; = n;/2 which implies by Poinca duality thatV;
is contractible. By the discussion about abstract surgeries at the beginning
of this section, we actually know th&t is an(n; + 1)-ball.

Remark 4.1t should be pointed out that the last surgeriesigspheres in
V; are in the middle dimension. In particular, the stable framingdoes not
quite determine the (unstable) framing of the normal bundi&*of— V;.
In fact, there is an exact sequence

72 1 1 SM Y — 1 SO(ks +1) 5 1, SO(Ks + 2) = 74, SO

and in the proof that odd-dimensionalgroups vanish one really uses the
freedom of being able to pick arbitrary attaching maps in the kerngl.of
However, by changing the last vector field in the framealong D*:*!
(corresponding to an elementin, 1 5% 1) we may arrange that any such
unstable framing extends over our ambient handle.
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If n; is odd thenk; = “-! and thus by the same discussion there are
abstract surgeries on framékl + 1)-spheres ir//; which lead to(n; + 1)-
balls B;. We will next check that in some cases a variant of the above
procedure still goes through to do these surgeries ambiently.

Lemma 2. If N is even then ambienit;-surgeries orl; can be done such
that the resulting balls3; are mapped disjointly intd>"+3 and thus the
link L is null-homotopic.

Proof. We may assume tha#; are odd. IfNV is even then it follows from

n; < N that
n;+ 1 < g
2 = 2
To do the first step of the above construction we need to find an extension

F : DF+2  DN*3 of a composition

f . Ski+1 G VAN DN+3.

ki+1=

Moreover, the interior of” should be disjoint from allV;. Sincel; is built
out of handles of index< k; + 1 the disjointness follows from general
position since

(ki +2) 4+ (ki +1) =2(k; +1) + 1 < N + 1.

Infact, the extra leverage of one dimension can be used to make all necessary
extensiont’ = F} disjoint from each other. In the dimension count for the
normal datay; we see that we might not be able to extend the framings in this
middle dimension. However, since this is the very last step of the argument,
we don't need this extension: All we need israp F' : D*+2 x Dni—ki

which extends the giveri : S**! x D% — V; to DN*3 and equals

F on the coreD*+2 x {0}. But this is a trivial extension problem since
DFi+2 . pni—ki collapses to the subset

Shitl s pri=ki y DRit2 5« {0},

In particular, away from the boundafyin V;, the image ofF is the same
as that off" and thus all the disjointness properties stay satisfied.

Assume thatV is odd. If some component satisfies < N then we get
again
ntl N
2 = 2
Therefore, the same argument as in Lemma 2. shows that for all components
of dimensions; < N we may complete the last step of the ambient surgery.
For the codimension 2 components the argument still shows that the last

(k; + 1)-handles can be mapped inf¥ 3 in a way such that the interiors

ki+1=
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miss the previously constructéd,. However, in this case we hawvg = N
and thus
+ 1 N+3
n; + 11— 74-
2

By general position these la@t; + 2)-handles are immersed and will meet
in DN13 in a finite number of points. In the next section we will explain
the symmetric surgeries which will remove these intersection points. These
surgeries take place in a neighborhood of thet+ 2)-handles and thus we
can work on a pure codimension 2 link map in Sect. 3.

ki +2=

3. Symmetric surgery

We first describe the model spaces involved. For the 4-dimensional case
compare [452.3]. In order to avoid smoothening a lot of corners, we will
just describe the topology of the spaces and not their smooth structure. The
following evident lemma will be used to show that most of our models are
homeomorphic to balls (which can be equipped with a smooth structure if
necessary).

Lemma 3. Let N be a manifold and// € N a compact codimension 0
submanifold. TheV is homeomorphic t&V Upsxo M x [0, 1].

All the isotopies that will be needed in this section surprisingly follow
from the following obvious lemma.

Lemma 4. Let S¥~1 ¢ S¥ = 9D**1 be an unknotted sphere. Then the
closures of the components®ff . S*~! are twok-balls which are isotopic
(rel @) in DF+1,

Let D. andD ¢ be two standard n-balls. Consider the follow{2g +1)-
ball:

B:= D, x[-2,2] x Dy CR" x R x R".
Denote bysS. the n-sphere which is the boundaryiQf:= D, x [—2,0] x 0
and similarlyS; := 0hy whereh; := 0 x [0, 2] x Dy. Define the following
subsets o3, see Fig. 3:
H := (8¢ x D) Up,xoxD; (De % Sy)

and

C:= (he X 8Df) UDG><O><8Df (De x 0 % Df) U8D6><0><Df (8De X hf).
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he | 7 Z

h 1 N

Fig. 3. The model spaceB, C and an isotopic version df

Remark 5.In Fig. 3 we show:. andh inside the balB. Clearly a(2n+1)-
dimensional thickening of. U iy in B is isotopic to the whole balB (rel

he U hy). Itis the image offf under this isotopy which we have drawn on
the right hand side of Fig. 3. This has purely artistic reasons. Note however,
that the logic in later applications is reversed: We'll first findandh s,
meeting in a single point in some manifold and then we thicken the union
to our model ballB, using the isotopy above.

By two applications of Lemma 3. we see th@tis a 2n-ball which
is the model for theontraction Moreover,H is homotopy equivalent to
the “hyperbolic” wedgeS, v Sy and has the same boundary@si.e. a
(2n — 1)-sphere. Note thaB is obtained fromH by filling back in the two
(n + 1)-handlesh, x Dy andD,. x hy. If one fills in only one of the two
handles, sayi. x Dy, then one obtains the model for a surgerySonc H.
This surgery changeX to the ball (by Lemma 3.)

0B := (he x 0Dy) UD. x0x8D; (D, x (Sy~ Df)).

It has the same boundary@sandH . Moreover, an application of Lemma 4.
inside the ballD, x [-2,0] x Dy shows that.B andC' are isotopic (rel
0).

Symmetrically, surgery oy leads to the bald; B which is again iso-
topic (reld) to C'. In addition, one has

0.B N afB = 0H anddB = 9.B Ugy 8fB ,
see Fig. 4.

Remark 6.The above discussion points out the symmetry between the two
possible surgeries aft. respectivelyS. Itis an elementary explanation of
the Morse cancellation of the two handlesandh.
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Fig. 4. The surgerie$. B anddy B

/x[—e,e]
v
/ v
V £
1" &8
P
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%

Fig. 5. Pushing a shee¥/’ off the contraction

The model for thgoushofipart of the construction takes place in a neigh-
borhood ofB x R in R?"*! x R. Pick a poinip in the interior ofh,. Itis the
transverse intersection point betwderand the sheet!” := px D'y x[—e¢, €]
for any smalle > 0 and amn-disk D} C R” of radius slightly bigger than
1. We want to replace the shedft’ by a sheefM/ disjoint from the contrac-
tion C and withOM = OM’. For some smald > 0, choose an ard in
D, x (—2,4] x 0 from the pointp to a pointg = (q1, 6, 0) with ¢; in the
interior of D... Consider thén + 2)-ball

J x Dy x [—¢,¢]

We define the new sheétl by asking that the boundary of this ball is the
union of M and M’ along their common bounda#/’. By Lemma 4. this

ball actually defines an isotopy froid’ to M (rel 9) which we refer to as
pushingM’ off the contractiorC'. In fact, one easily checks thaf is disjoint

from C, see Fig. 5. Symmetrically, one may push any sheet intersefcting
transversely in a point off the contraction. Note however, that two pushed
off sheets, one oft. the other offh ¢, will intersect in two additional points.



Symmetric surgery and boundary link maps 729

The usual model for surgery starts with an embedding? x D? — V.
Then one attaches dp + 1)-handle to the image gpin V' x 0 C V' x
[0, 1]. This gives therace of the surgeryith upper boundary” and lower
boundary a manifold obtained fromby cutting out the interior of the image
of p and replacing it byDP+! x §9-1,

LetV have dimension and letp = ¢ = n. Then we are doing surgery
in the middle dimension and there is an important additional fact to use:
Whenever the surgery obstruction vanishes, the sphereg’ x D™ — V
may be assumed to have framed embedtieal spheresin other words,
the embedding can be extended to an embedding of our hyperbolic model
H — V2", In dimensiongn > 4 this follows from the fact that a quadratic
form represents zero ifg,(e) if and only if it is hyperbolic. For small
dimensiongn = 1, 2), see Remark 2.

We may thus attactwo (n+1)-handlestd” x [0, 1], onetoS. C V x0,
the othertds; C V' x1.This gives a manifold together with an embedding
of our model balkd : B — X: As explained in Remark 5, all we need are
embeddings ok. andh ; which meetin a single point (on their boundaries).
Such embeddings are provided by the cores of the handles together with
product structuredh, x [0, 3] respectivelyoh; x [3,1]in V x [0,1]. The
arguments above show th&tis homeomorphic td™2" x [0, 1] with Y x 0
mapping to surgery o, Y x 1 mapping to surgery oy, andY” x %
identified withsymmetric surgerpr contractionof H. By definition, this
is obtained fromV” by removing the image off and replacing it by the
contractionC'.

We are now in the position to finish the proof of Theorem 2.. Let us
briefly recall the set-up from the end of Sect. 2. The dimenaias odd and
we write it asN = 2n — 1. Thus our pure codimension 2 link maplis:

I1; S?7—1 o §2n+l gnd the Seifert surfacé®; are2n-dimensional. More-
over, we have disjoint immersiod§>" ! o~ D?"+2 with a non-vanishing
normal vector field;;. The manifoldsV; have vertical boundarie&®” ! x I,
upper boundaried’; and lower boundariel; which are(n — 1)-connected.
Moreover, there are framed n-spheegsf; C 1I; V;, j = 1,...,J, with
geometric intersections

ejﬁek:(b:fjﬂfk, €j N fi = 0jk,

and such that surgery on al} makes théV; into 2n-balls. Alternatively,
we will do symmetric surgery on the hyperbolic paiss f;! Finally, there
are immersiongz;, F; : D"*! a» D?"*2 with boundarieg;, f; and with
interiors disjoint from allV;. We may assume that the disks, Fj;, j, k =
1,...,J, intersect and self-intersect transversely in finitely many pagints
Pick any orderingj = 1,2,...,J. Thicken the first hyperbolic pair
e1, f1 to our modelH in V;, identifying e; to S, and f; to Sy. We may
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clearly assume that the compositiéh ¢ V; ¢ D?"*+2 is an embedding
on the central squar®, x 0 x Dy since this is just a thickening of the
wedge poine; N f1. We would like to ambiently attach our two handles to
Vi x [0,1] by identifying E; to h. andF; to h . We may use the direction
“into” N; as the[0, 1]-direction (and completely disregard; otherwise).
However, the thickenings ef;, f1 in V; might not extend to a thickening of
E; respectivelyF; in D?>"*2, In fact, there is a relative Euler number which
is the obstruction to extending the normal vector figlttom V; to (say)E; .

But we can extend to a vector field with only finitely many zeros which we
may assume to be distinct from the poipts In particular, the thickenings
of Eq, I} exist in the neighborhood of disjoint arck that connect the
intersection pointg, to the boundary as in the model pushoff discussion.
Moreover, the normal directiop; can be used as the last scoordinate in
[—¢, €] of the sheefl/’ in the model pushoff.

As in the proof of Lemma 2. we can extend these thickeningadps
Eq, Fy : D"t x D1 — D?"+2 This leads to a mag of our modelB
to D2 +2,

The next step is to contraéf to C' in the modelB and map it forward
into D*"*2 by ®. Then push all disk&);, F;, j > 2, off the contraction. This
will introduce more intersections among these disks but makes them disjoint
from the contraction. We repeat the above process for the hyperbolic pair
e2, fa. After contracting it, we push all disks;, F;, 5 > 3, off the second
contraction and continue working on the pair, f5. After finitely many
steps, all pairg;, f; are contracted and these contractions map disjointly
into D?"*2_ This gives the desired disjoint mapsdi-disks bounding the
original link mapL. O

4. Framing Seifert surfaces in codimension 2

Proof of Proposition 3By immersion theory [6] we may assume that the
link map L is an immersion since the tangent bundles of spheres are stably
trivial. By jet transversality we may also assume that the mitipss SV 12

are smooth and immersions with normal crossings away from submanifolds
calledS, in [5, Ch.II.5]. Herer is the corank of the differential and se= 0
corresponds to points whei®; is immersed. Moreover, the codimension

of S, in W isr(r + 1) [5, Thm.11.5.4] which is> 1 for r > 1.

Lemma 5. Under these conditions there is an epimorphism
¢:m(SNT2NL) — F,

which sends meridians df to n free generators:; of the free groupF’,.



Symmetric surgery and boundary link maps 731

Fig. 6. A possible configuration of circles and arcsdn

Proof. The homomorphismg is obtained by putting a circle ifV+2 < L

into general position withl; and then reading off the oriented intersections
as a word irn:;“. (By the dimension count above, a circle only intersects
embedded sheets &¥; transversely in points.) To prove thatis well-
defined it suffices to show that a circle which bounds a diskfn2 < L

reads off the trivial word: Put the 2-disk into general position with the

;. Since the singularities d¥; are of codimensior- 2 in SV 2 we may
assume thatd misses them. Actually, there is one sort of codimension 2
singularities, namely the self-intersection of two embedded sheets of one
W;. Therefore, the intersection

AN (UW;)

consists of a union of oriented circles and arcs, labelled by the indices
i=1,...,n, see Fig. 6.

Moreover, only circles and arcs labelled by the same index may cross (in
general position) because tHé are disjoint. Then an innermost argument
shows that the word on the boundaryfis trivial. O

Let)V denote a wedge of circles. SinceV is aK (F,,,1), Lemma5. gives

a continuous mag : SV*2 < L — W which induces on the fundamental
group. LetN; be a small open regular neighborhood of the i-th component
L;. We assume thaY¥; do not meet each other and denoteMyhe disjoint
union of all N;. Then we have a continuous mép: SN2 N — W
which we smoothen in the complement of the inverse image of the wedge
point in WW. Consider “anti-basepointgy; € W, i.e. regular values ob,

one for each circle factar = 1,...,n. Then®~!(p;) are disjoint framed
codimension 1 submanifolds 672 <. N with

M; .= 6(15_1(pi) = @_l(pi) N ON;.

We consider the framed codimension 1 submanifaidof ON; = ON, as
an element

[M;] € [ON;, MO(1)] = [ON;, '] = H'(ON;; Z) = Hom (w1 (N;), Z),
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the group of framed cobordism classes of codimension 1 submanifolds in
ON;. By definition,[M;] is the image of a generator under the composition

*) Z = Hy(N;) 2 H' (SY? N N) 55 HY(ON;).

Assume that there are framed immersidfis— N; such thav'V; = L; 11
—M! with [M]] = [M;] € H*(dN;). Then the proof of Proposition 3. is
finished by taking as the disjoint parallelizable Seifert surfaced ftie
unions ofV; and®~!(p;) along framed cobordisms betwe#ff and/; in
small collarsoN; x 1.

Now observe that the existence of the immersiBnis a question about
one component at a time because one maytake be the transverse inter-
section of N; with any framed immersed Seifert surface for the component
L;. As before this will have the desired property that the framed cobordism
class ofV; N dN; is the image of a generator under the composition (*)
above.

Thus Proposition 3. is implied by the observation that a more careful
application of immersion theory indeed shows that the original nigps
SN — §N+2 are arbitrary close in th€-topology to immersions which
extend to immersion®V 1 o» DN+2_ More precisely, lel; be disjoint
open neighborhoods df;(S”). Immersion theory says that any regular
homotopy class of bundle monomorphis#is®™ — L:(TU;) is realized
by an immersion homotopic tb; in U;. We consider the composition

7SN — TSN @12 5N x RVF!
— SN X RNH2 > L¥(TU;) — LHTSNT2),

wherei is chosen to beonstantin the SV -factor. Picking any extension
of L; to a mapDN+1 — SN2 this composition extends to a bundle
monomorphism oveDV 1. O

5. The 7-dimensional example

We first describe Example 1 from Fig. 2 in more detail. Consider a (neces-
sarily unknottedp-sphereS? c S7. Write the trivial normal bundle as

v(S?, S =HoH®1,

whereH is the (two-dimensional) Hopf-bundle ové?. Let E be the disk-
bundle of H & 1. We may plumb E together with an unknott§d x D?

in S7. This gives a 5-manifold/°® ¢ S” whose boundary is an unknotted
4-sphere. In fact, we may do ambient surgery on the 3-sphere in M to get a
5-disk B> ¢ S” with 9B° = 9M? . Note however, that we may not surger
the2-sphere inM/° because it has a non-trivial normal bundle!
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Fig. 7. A neighborhood of the intersection poimt

To construct the linkL : S* 11 S* — S7 in Example 1 we take two
disjoint copiesM;, M, of the 5-manifoldM above such that the two 3-
spheres form a Hopf-link i8”. ThenL := oM, 11 0M, is a boundary link
but it is not homotopically trivial. Th@eneralized linking numbég.1]

a: LMj, — 2} =7/2

satisfiesa(L) # 0 which can be seen as follows. We bound the first com-
ponentL; by the 5-ballB? as above. This is a framed manifold and thus by
definition

a(L) = BP N Ly(S8Y) € 2f"

where the (normal) framing on the intersection is the union of the unique
framing on B} and the normal framing odi,(S*). By convention, this
framing is the stable difference of two (once and for all fixed) trivializations
of TS @ 1fork =4,7.

Since the two 3-spheress, S; in the definition ofZ form a Hopf-link,
we may assume that the 4-digk with D] = S} which was used to get
from M; to B}, intersectsS; in a single poinp € S”. A neighborhood of
p is pictured in Fig. 7.

It contains the 5-ball/s x D% C M5 wherels is a small 3-ball aroungd
in Sg’. It also contains the 6-ball; x D% whereU; is a small 4-ball around
pin D} and theD?-direction comes from an extension of the normal bundle
of S§ ¢ M; over D} (whose boundary is used in the surgery fraf to
B?). This implies thaty(L) is a 2-torus (4 points in Fig. 7):

a(L) = 0D? x dD3.

Moreover, the normal framing is the product of two framing€Xd» which
we claim are both nontrivial. First consider the case2: By definition, the
framing f on D3 comes from the one ohy(S*) = dMs,. In particular,

it is not the framingf, which extends taD? because this 2-disk does not
lie in 9Ms. Clearly,(0D3, fo) = 0in Q{T. Moreover, fo comes from the
framing of the 2-diskB3 C dM- with 9B U D3 a non-vanishing section
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in the disk-bundleEZ = H @& 1 (which was used to defing/s). The two
normal framingsfy and f, differ by the normal bundle ol restricted to
this 2-sphere which is the Hopf bundié. Thus

0# (003, f>) € 2",

An argument very similar to the above shows that the same is true for
(0D?, f1) and thusa(L) # 0. O

We will next prove Theorem 4. which states that the example above
takes place in the smallest possible dimension. First recall that orientable
manifolds (with non-empty boundary) of dimensigr3 are actually paral-
lelizable. Together with Theorem 2. this implies that we just have to show
that the arguments in Sect. 2 go through for 4-dimensional Seifert surfaces
mapped intoSN*+2 N > 4.

Lemma 6. LetIW* be a closed oriented simply-connectechanifold. Then
there existr, s € N such that

W#r(CP?)#s(—CP?)
is the connected sum 6B-bundles ovelS?.

This lemma can be found in [17]. Itimplies Theorem 4. because after the
first step of Sect. 2 we may assume that the Seifert surfdgese simply-
connected (and oriented). Moreover, by Lemma 7. below we we may change
our link map by adding local knots with punctur€®? as Seifert surfaces.

As usual, this does not change the link homotopy class of the link map.
By Lemma 6. we obtain very specidl* which may be surgered to 4-balls
by framed surgeries on tiespheres which are the fibers of the abse
bundles. Note that this does not depend on whéthigis parallelizable or

not because we don't use tBespheres with non-trivial normal bundle. In
particular, we do not need symmetric surgery in these codimensidhs

Lemma 7. PuncturedCP? embeds intc®.

Proof. Take an (unknottedy? c SS. Write the trivial normal bundle as
H @ H, whereH is the Hopf-bundle. Then puncturé&®? sits in % as the
disk-bundle of one copy off. O
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