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1. Introduction

In order to seperate3-dimensional linking and knotting phenomena, John
Milnor introduced the notion of alink homotopy[14]. He allowed self-
intersections but did not allow different components to cross during a link
homotopy. It is clear that any knot is link homotopically trivial but one
of the most surprising and unintuitive (see the left hand side of Fig. 1)
results of Milnor was that arbitrarily many parallel copies of a knot form
a homotopically trivial link. In fact, one knows that anyboundary linkhas
vanishingµ-invariants and thus it is homotopically trivial by the main result
of Milnor. By definition, in a boundary link the components bound disjointly
embedded Seifert surfaces. For example, any knot has a Seifert surface and
is thus a boundary link. Similarly, parallel copies of a knot bound (disjoint)
parallel copies of this Seifert surface.

The notion of a link homotopy makes clearly sense for links in any
dimension. In fact, the correct category to work in seems to be the following:
A link map is a continuous map such that connected components in the
source are mappeddisjointly into the target. A link homotopy between two
link maps is then an ordinary homotopythrough link maps. In this context,
a boundary link mapL : qi Mi → N is a link map which is the boundary
of a link mapqi Wi → N of oriented manifoldsWi, the “Seifert surfaces”
for L.
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Fig. 1. Can you see the null-homotopies for these boundary links?

Answering an old question of Jerry Levine and Dale Rolfsen in the
affirmative, our main result is as follows:

Theorem 1. Any boundary link mapL : qi SN → SN+2 is link homotopic
to the unlink.

In the classical dimensionN = 1 this can probably be proven along the
lines of the embedded case discussed above. However, there is a more ge-
ometric argument, explained to the author by Mike Freedman, which uses
a procedure known assymmetric surgeryor contraction/pushofffrom 4-
manifold theory. It seems to go back to an idea of Bob Edwards. It is this
procedure which we generalize to all dimensions. We show that a bound-
ary link map is link concordant to the trivial link and then we utilize our
result from [15], namely that link concordance implies link homotopy in
codimension≥ 2.

Remark 1.The attentive reader will have realized that the link on the right
hand side of Fig. 1 has linking number±4 and is thusnot homotopically
trivial. This is the reason why we used onlyorientedSeifert surfaces in the
definition of a boundary link. (This also coincides with established notions,
since Seifert used only orientable surfaces to bound knots inS3.) Orientable
but non-spin Seifert surfaces will be exploited in Example 1.

In higher dimensions, codimension 2 boundary links gained importance
in the 1970’s through the work of Cappell and Shaneson, see e.g. [1] or [2].
They observed that exactly for boundary links there is a degree one normal
map to the unlink and thus their homology surgery approach works for that
class of links. This lead to a complete algebraic computation of the bound-
ary link concordance groups in high dimensions. The answer is in terms of
Γ -groups of the free group (on the number of components of the links). As
a consequence, many odd-dimensional boundary links are not concordant
to split links, see [2]. In this light Theorem 1. is very interesting even in the
embedded case. In contrast, it follows from algebraic facts aboutΓ -groups
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Fig. 2. A boundary linkS4 q S4 ↪→ S7 which is not null-homotopic

that every even-dimensional boundary link is null-concordant and thus also
null-homotopic. Our proof of Theorem 1. actually gives a geometric argu-
ment that even-dimensional boundary links are null-concordant. It coincides
with Kervaire’s original argument [8] for knots.

It remains an open problem whether any even dimensional link is null-
concordant and it is a very good test question whether they are all null-
homotopic. It should also be mentioned that it took until 1991 before
Cochran and Orr [3] found examples of links in any odd dimension that
are not concordant to boundary links (and with vanishingµ-invariants in
dimension3).

In our proof of Theorem 1., symmetric surgery is only needed for odd
dimensionsN , the even case being easier (as for embedded links). ForN = 2
and two component link maps, Theorem 1. was proven in [10].

Surprisingly, the situation becomes more complicated in codimension>2:

Example 1.There is a boundary linkL : S4 q S4 ↪→ S7 which is not
homotopically trivial. In fact,L has non-trivial generalized linking number
α(L) ∈ πst

2 .

The 5-dimensional Seifert surfaces for this link are constructed from
plumbings of a2-sphere and a3-sphere, where one uses the nontrivialD3-
bundles to thicken the2-spheres. Moreover, the two3-spheres form a Hopf
link in S7, see Fig. 2. Note that in this example the Seifert surfaces do not
allow a spin structure. In fact, we have the following result for arbitrary
codimensions≥ 2:

Theorem 2. Let L : qi Sni −→ SN+2, ni ≤ N , be a boundary link map
with parallelizable Seifert surfaces. ThenL is homotopically trivial

The Seifert surfaces of a boundary link map always refer to the ones
which are mapped in disjointly. Now Theorem 1. follows from Theorem 2.
together with the following result.
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Proposition 3. A boundary link mapL : qi SN → SN+2 is link homotopic
to a boundary link mapL′ with parallelizable Seifert surfaces.

The paper is organized as follows. In Sect. 2 we prove Theorem 2. modulo
the symmetric surgery part. In particular, this contains the casesN even and
N odd,ni < N . In Sect. 3 we introduce symmetric surgery and finish the
proof of Theorem 2.. In Sect. 4 we prove Proposition 3. and in the last Sect. 5
we describe Example 1 and prove that it is the smallest one:

Theorem 4. If ni ≤ 3 and ni ≤ N then any boundary link mapL :
qi Sni → SN+2 is homotopically trivial.

In fact, our Example 1 is the unique smallest possible example since the
generalized linking numberα : LM7

4,4 → πst
2

∼= Z/2 detects link maps
with one embedded componentL1: The inclusion of the meridian2-sphere
to L1 induces a homotopy equivalenceS2 ' S7 r L1(S4) and thus the
second componentL2 is an element ofπ4(S2) ∼= πst

2 .
HereLMn

p,q denotes the set of link homotopy classes of link mapsSp q
Sq → Sn. It was shown in [11] that the connected sum operation gives a
well-defined addition on this set ifp, q ≤ n − 2. Up to link concordance,
reflection in a hypersphere provides an inverse for any given link map.
Since link concordance implies link homotopy [15] it follows that the sets
LMn

p,q actually form abelian groups ifp, q ≤ n − 2. For example, the

groupsLM q+2
1,q are infinite cyclic and detected by the linking number for all

q ≥ 1. In the metastable range, Koschorke [12] has an exact sequence which
relates the groupsLMn

p,q to classical homotopy theory and thus makes many
calculations possible. Very recently, the infinitely generated groupLM4

2,2
was computed, see [10] [16] [13].

One of the nice features of working with link maps up to link homotopy
is that the categories are irrelevant: One may always assume that the maps
in question are smooth or PL. Without further notice, we always work in the
smooth setting.

Acknowledgement.It is a pleasure to thank Jerry Levine for valuable discussions and for
criticizing a preliminary draft.

2. Parallelizable Seifert surfaces

In this section we prove Theorem 2. up to the point where symmetric surgery
is needed. This will only be the case in the presence of a codimension 2
component andN odd.

The idea of the proof is simple: We try to replace the disjoint Seifert
surfaces inSN+2 by disjoint disks inDN+3. Then the result follows from
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“link concordance implies link homotopy” [15]. In fact, we will construct
link maps of cobordisms, rel boundary, between the Seifert surfaces and
disks. These cobordisms will have handles only up to the middle dimension
which will guarantee the disjointness properties. Thus the problem splits
into two steps: First we have to find suitable abstract cobordisms between
the Seifert surfaces and disks. This is where we use the assumption that the
Seifert surfaces are parallelizable. Then these cobordisms will be mapped
disjointly intoDN+3.

Let Wn+1 be one of the parallelizable Seifert surfaces for our link map
L. As explained in the classic [9] one may do framed surgeries on k-spheres
in the interior ofW to get a highly connected manifoldW ′. Here the framing
refers to a trivialization of thestable normalbundle which is carried along
in all constructions. More precisely, one can add k-handles toW × 1 ⊂
W × I, k = 1, . . . , [n/2], to obtain a framed(n + 2)-manifold N with
lower boundaryW and upper boundary a[n/2]-connected manifoldV . (In
addition,N has a “vertical” boundarySn × I since∂W = Sn = ∂V .)

Then one runs into the surgery obstruction inLn+1(e) for makingV
contractible by surgeries in the middle dimension. Note that forn ≥ 4 the
h-cobordism theorem implies that a contractible manifold with boundary an
n-sphere must be an(n + 1)-disk (see Remark 2 for the casesn < 4).

The surgery obstruction groups are 4-periodic in the dimension and in
our simply-connected case they were described in [9]: For evenn the groups
Ln+1(e) are trivial. If n + 1 is divisible by4 thenLn+1(e) ∼= Z and the
surgery obstruction is the signature. Finally, ifn + 1 ≡ 2 mod 4 then
Ln+1(e) ∼= Z/2 and the surgery obstruction is the Kervaire invariant.

A priori, these surgery obstructions depend on the highly connected
manifold V but it turns out that they can be read off from the original
manifold W . In our case this is easy to see since the signature and the
Kervaire invariant are unchanged under framed cobordisms. These invariants
are not importamt in our context of link homotopy since they involve only one
component at a time. More precisely, we may locally add to each component
of L the oppositely oriented knot map it represents, together with a copy
of the oppositely oriented Seifert surface−W . Since knot maps are null
homotopic, this addition can be achieved by a link homotopy taking place
in small disjoint(N + 2)-balls, one for each component. It has the effect
that the new Seifert surfaces have trivial surgery obstructions. Therefore,
there is a sequence of surgeries on framedk-spheres in the interior ofW ,
k = 1, . . . , [n/2] + 1, leading fromW to Dn+1.

Remark 2.We should say some words about low dimensions, where surgery
does not usually work: If the Seifert surfaces are 2-dimensional then there
is always a1/2-basis of framed circles which lead to the 2-disk. In dimen-
sion 3 one knows that any closed oriented3-manifold is obtained fromS3 by
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surgeries on an evenly framed link [7]. This is exactly the statement which
we need forW 3 above. Finally, consider a simply-connected4-dimensional
Seifert surfaceW . We still assume thatW is parallelizable and has zero sig-
nature. By [17] this implies that for somer, s ∈ N there is a diffeomorphism

W#r(S2 × S2) ∼= s(S2 × S2) r small open4-ball D0.

The interior connected sum ofW with copies ofS2 × S2 can be achieved
locally by adding copies of the unknotted pair(SN+2, S2 × S2). This does
not change the original linkL and it enables us to assume thatW is a standard
manifold. We may clearly pick framed2-spheres inW = s(S2 ×S2) r D0
such that surgeries lead toD4.

In the remainder of this section we will outline a procedure how to ambi-
ently realize these abstract surgeries in an(N +3)-ball bounding ourSN+2.
The necessary disjointness properties will follow from general position, ex-
cept forN odd andk equal to the middle dimension. That’s were symmetric
surgery is needed.

We assume that the Seifert surfacesWni+1
i of the link mapL have the

property above. The next step is to improve the mapsWi → SN+2. SinceWi

are parallelizable, it follows from Hirsch-Smale immersion theory [6] that
there are immersionsWi # SN+2 with trivial normal bundles and arbitrary
close to the original maps in theC0-topology. Hence we may chose these
immersions to be still disjoint from each other and such that the new link
map is link homotopic to the original one. For each componentWi, pick a
(N − ni + 1)-frameνi for the normal bundle ofWni+1

i in SN+2. Together
with the standard normal vector field forSN+2 ⊂ RN+3 the frameνi is a
framing of the stable normal bundle ofWi. We can therefore use it to control
the framings of our surgeries.

Remark 3.SinceWi is homotopy equivalent to ann-complex the tangent
bundle is stably trivial if and only if it is trivial, i.e.Wi is parallelizable. It is
always true that the stable tangent bundle is trivial if and only if the stable
normal bundle is trivial, since they are stable inverses of each other. Note
however, that a trivialization of the tangent bundle is more information than
just a stable trivialization, i.e. a framing. This distinction will only become
important for surgeries in the middle dimension, see Remark 4.

We may clearly assume that theWi are connected (otherwise disregard
the closed components). Therefore, the first abstract surgery which we want
to realize ambiently would be on an embbeddingf : S1 ↪→ Wi. Note that
the composition

S1 ↪→ Wi # SN+2

is an immersion but it might have self-intersections. It clearly extends to map
F : D2 → DN+3 which sends the interior ofD2 into the interior ofDN+3.
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By jet transversality [5, II.5] this may be assumed to be an immersion (and
actually an embedding away from the boundary but this won’t be used). All
we need is thatF has a normal bundle. Then we have to extend the normal
frameνi from f(S1) to a normal frame onF (D2).

Lemma 1. This extension of the normal frameνi exists.

Proof. The extension problem is as follows: Given the trivial bundleD2 ×
RN+1 and an(N − ni + 1)-frame onS1 ⊂ D2. Does it extend to an
(N − ni + 1)-frame onD2 ? The most elementary way to prove that the
answer is “yes” is to inductively construct the frame, one vector field at a
time: A non-vanishing vector field in a trivial bundle is just a map into the unit
sphere of the fibre. Thus the first vector field extends becauseπ1(SN ) = 0.
Then we work in the orthogonal complement of that first vector field. Thus
the second vector field exists becauseπ1(SN−1) = 0. Continuing in this
manner the last condition isπ1(S(N+1)−(N−ni+1)) = 0. Actually, all the
conditions that we need follow from

(N + 1) − (N − ni + 1) > 1 ⇐⇒ ni > 1

which is clearly satisfied (otherwise we wouldn’t be doing surgery on a
circle). ut
We now attach an ambient 2-handle toWi as follows: First thickenWi

slightly in the radial direction intoDN+3. Then take the union with the
disk-bundle of the orthogonal complement of the vector-bundle spanned by
the above extension ofνi over F (D2). This disk-bundle has fibre dimen-
sionni and thus the result is an immersion of a framed(ni + 2)-manifold
Ni # DN+3 with a vertical boundarySni ×I and two horizontal boundary
components. The “upper” one isWi and we denote the “lower” one byVi,
the result of the surgery on the circlef(S1) in Wi. By construction, the
normal frameνi extends to a normal frame forNi in DN+3 which we still
denote byνi. In particular,Ni is a framed cobordism (rel∂) betweenWi

andVi.
In the next step we want to do surgery on a 2-sphere inVi. Note that the

setup is slightly different from the first step becauseVi is not immersed in
SN+2 any more, nor are we sure that it lies in some level sphere ofDN+3.
However, the above argument nevertheless goes through. We will give the
inductive argument forf : Sk ↪→ Vi for some1 < k < ni+1

2 . The first step
is to extend the composition

Sk ↪→ Vi # DN+3

to a mapF : Dk+1 → DN+3 which in the interior is disjoint from all
previously constructedNi. This extension exists by general position using
the fact that

2(k + 1) < ni + 3 ≤ N + 3
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and thatNi has only handles of index≤ k +1 (since we might already have
realized an ambient surgery on anotherSk ↪→ Vi). By jet transversality we
may again assume thatF is an immersion. The extension problem of the
normal data is now as follows: In the trivial bundleDk+1×RN+2−k we have
given the(N −ni +1)-frameνi restricted toSk and we want to extend it to
an(N−ni+1)-frame onDk+1. Exactly as in Lemma 1. one shows that there
is a solution to this extension problem ifπk(S(N+2−k)−(N−ni+1)) = 0. This
certainly follows from

(N + 2 − k) − (N − ni + 1) > k ⇐⇒ 2k < ni + 1

which is exactly our assumption that we are doing surgery below the mid-
dle dimension. We can thus attach an ambient k-handle to the previously
constructed cobordismNi as follows: Just take the union ofNi with the
disk-bundle of the orthogonal complement of the vector-bundle spanned by
the above extension ofνi overF (Dk+1). The result is an immersion of a
framed(ni +2)-manifoldN ′

i # DN+3 with a “vertical” boundarySni × I
and two “horizontal” boundary components. One component isVi and the
other is the result of the surgery on the circlef(Sk) in Vi. By construction,
the normal frameνi extends to a normal frame forN ′

i in DN+3.
Summarizing the previous steps, we now have disjoint immersions

Nni+2
i # DN+3 which are constructed from the original Seifert surfaces

Wni+1
i by attaching handles of index≤ ki+1, whereki is the largest integer

< ni+1
2 . Together with the vertical boundariesSni × I the lower horizontal

boundariesVi of Ni bound the original link componentsLi : Sni → SN+2.
The surgeries were done in order to kill the homotopy groups ofWi and
therefore, theVi areki-connected.

If ni is even thenki = ni/2 which implies by Poincaŕe duality thatVi

is contractible. By the discussion about abstract surgeries at the beginning
of this section, we actually know thatVi is an(ni + 1)-ball.

Remark 4.It should be pointed out that the last surgeries onki-spheres in
Vi are in the middle dimension. In particular, the stable framingνi does not
quite determine the (unstable) framing of the normal bundle ofSki ↪→ Vi.
In fact, there is an exact sequence

Z ∼= πki+1S
ki+1 −→ πki

SO(ki + 1)
j∗� πki

SO(ki + 2) ∼= πki
SO

and in the proof that odd-dimensionalL-groups vanish one really uses the
freedom of being able to pick arbitrary attaching maps in the kernel ofj∗.
However, by changing the last vector field in the frameνi along Dki+1

(corresponding to an element inπki+1S
ki+1) we may arrange that any such

unstable framing extends over our ambient handle.
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If ni is odd thenki = ni−1
2 and thus by the same discussion there are

abstract surgeries on framed(ki + 1)-spheres inVi which lead to(ni + 1)-
balls Bi. We will next check that in some cases a variant of the above
procedure still goes through to do these surgeries ambiently.

Lemma 2. If N is even then ambientki-surgeries onVi can be done such
that the resulting ballsBi are mapped disjointly intoDN+3 and thus the
link L is null-homotopic.

Proof. We may assume thatni are odd. IfN is even then it follows from
ni < N that

ki + 1 =
ni + 1

2
≤ N

2
.

To do the first step of the above construction we need to find an extension
F : Dki+2 → DN+3 of a composition

f : Ski+1 ↪→ Vi # DN+3.

Moreover, the interior ofF should be disjoint from allNi. SinceNi is built
out of handles of index≤ ki + 1 the disjointness follows from general
position since

(ki + 2) + (ki + 1) = 2(ki + 1) + 1 ≤ N + 1.

In fact, the extra leverage of one dimension can be used to make all necessary
extensionF = Fj disjoint from each other. In the dimension count for the
normal dataνi we see that we might not be able to extend the framings in this
middle dimension. However, since this is the very last step of the argument,
we don’t need this extension: All we need is amapF̄ : Dki+2 × Dni−ki

which extends the given̄f : Ski+1 × Dni−ki ↪→ Vi to DN+3 and equals
F on the coreDki+2 × {0}. But this is a trivial extension problem since
Dki+2 × Dni−ki collapses to the subset

Ski+1 × Dni−ki ∪ Dki+2 × {0}.

In particular, away from the boundarȳf in Vi, the image ofF̄ is the same
as that ofF and thus all the disjointness properties stay satisfied.ut
Assume thatN is odd. If some component satisfiesni < N then we get
again

ki + 1 =
ni + 1

2
≤ N

2
.

Therefore, the same argument as in Lemma 2. shows that for all components
of dimensionsni < N we may complete the last step of the ambient surgery.
For the codimension 2 components the argument still shows that the last
(ki + 1)-handles can be mapped intoDN+3 in a way such that the interiors
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miss the previously constructedNi. However, in this case we haveni = N
and thus

ki + 2 =
ni + 1

2
+ 1 =

N + 3
2

.

By general position these last(ki + 2)-handles are immersed and will meet
in DN+3 in a finite number of points. In the next section we will explain
the symmetric surgeries which will remove these intersection points. These
surgeries take place in a neighborhood of the(ki + 2)-handles and thus we
can work on a pure codimension 2 link map in Sect. 3.

3. Symmetric surgery

We first describe the model spaces involved. For the 4-dimensional case
compare [4,§2.3]. In order to avoid smoothening a lot of corners, we will
just describe the topology of the spaces and not their smooth structure. The
following evident lemma will be used to show that most of our models are
homeomorphic to balls (which can be equipped with a smooth structure if
necessary).

Lemma 3. Let N be a manifold andM ⊂ ∂N a compact codimension 0
submanifold. ThenN is homeomorphic toN ∪M×0 M × [0, 1].

All the isotopies that will be needed in this section surprisingly follow
from the following obvious lemma.

Lemma 4. Let Sk−1 ⊂ Sk = ∂Dk+1 be an unknotted sphere. Then the
closures of the components ofSk rSk−1 are twok-balls which are isotopic
(rel ∂) in Dk+1.

LetDe andDf be two standard n-balls. Consider the following(2n+1)-
ball:

B := De × [−2, 2] × Df ⊂ R
n × R × R

n.

Denote bySe the n-sphere which is the boundary ofhe := De × [−2, 0]×0
and similarlySf := ∂hf wherehf := 0× [0, 2]×Df . Define the following
subsets ofB, see Fig. 3:

H := (Se × Df ) ∪De×0×Df
(De × Sf )

and

C := (he × ∂Df ) ∪De×0×∂Df
(De × 0 × Df ) ∪∂De×0×Df

(∂De × hf ).
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Fig. 3. The model spacesB, C and an isotopic version ofH

Remark 5.In Fig. 3 we showhe andhf inside the ballB. Clearly a(2n+1)-
dimensional thickening ofhe ∪ hf in B is isotopic to the whole ballB (rel
he ∪ hf ). It is the image ofH under this isotopy which we have drawn on
the right hand side of Fig. 3. This has purely artistic reasons. Note however,
that the logic in later applications is reversed: We’ll first findhe andhf ,
meeting in a single point in some manifold and then we thicken the union
to our model ballB, using the isotopy above.

By two applications of Lemma 3. we see thatC is a 2n-ball which
is the model for thecontraction. Moreover,H is homotopy equivalent to
the “hyperbolic” wedgeSe ∨ Sf and has the same boundary asC, i.e. a
(2n − 1)-sphere. Note thatB is obtained fromH by filling back in the two
(n + 1)-handleshe × Df andDe × hf . If one fills in only one of the two
handles, sayhe × Df , then one obtains the model for a surgery onSe ⊂ H.
This surgery changesH to the ball (by Lemma 3.)

∂eB := (he × ∂Df ) ∪De×0×∂Df
(De × (Sf r

◦
Df )).

It has the same boundary asC andH. Moreover, an application of Lemma 4.
inside the ballDe × [−2, 0] × Df shows that∂eB andC are isotopic (rel
∂).

Symmetrically, surgery onSf leads to the ball∂fB which is again iso-
topic (rel∂) to C. In addition, one has

∂eB ∩ ∂fB = ∂H and∂B = ∂eB ∪∂H ∂fB ,

see Fig. 4.

Remark 6.The above discussion points out the symmetry between the two
possible surgeries onSe respectivelySf . It is an elementary explanation of
the Morse cancellation of the two handleshe andhf .
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Fig. 4. The surgeries∂eB and∂fB

Fig. 5. Pushing a sheetM ′ off the contraction

The model for thepushoffpart of the construction takes place in a neigh-
borhood ofB ×R in R2n+1 ×R. Pick a pointp in the interior ofhe. It is the
transverse intersection point betweenhe and the sheetM ′ := p×D′

f×[−ε, ε]
for any smallε > 0 and ann-disk D′

f ⊂ Rn of radius slightly bigger than
1. We want to replace the sheetM ′ by a sheetM disjoint from the contrac-
tion C and with∂M = ∂M ′. For some smallδ > 0, choose an arcJ in
De × (−2, δ] × 0 from the pointp to a pointq = (q1, δ, 0) with q1 in the
interior ofDe. Consider the(n + 2)-ball

J × D′
f × [−ε, ε]

We define the new sheetM by asking that the boundary of this ball is the
union ofM andM ′ along their common boundary∂M ′. By Lemma 4. this
ball actually defines an isotopy fromM ′ to M (rel ∂) which we refer to as
pushingM ′ off the contractionC. In fact, one easily checks thatM is disjoint
from C, see Fig. 5. Symmetrically, one may push any sheet intersectinghf

transversely in a point off the contraction. Note however, that two pushed
off sheets, one offhe the other offhf , will intersect in two additional points.



Symmetric surgery and boundary link maps 729

The usual model for surgery starts with an embeddingϕ : Sp×Dq ↪→ V .
Then one attaches an(p + 1)-handle to the image ofϕ in V × 0 ⊂ V ×
[0, 1]. This gives thetrace of the surgerywith upper boundaryV and lower
boundary a manifold obtained fromV by cutting out the interior of the image
of ϕ and replacing it byDp+1 × Sq−1.

Let V have dimension2n and letp = q = n. Then we are doing surgery
in the middle dimension and there is an important additional fact to use:
Whenever the surgery obstruction vanishes, the spheresϕ : Sn × Dn ↪→ V
may be assumed to have framed embeddeddual spheres. In other words,
the embeddingϕ can be extended to an embedding of our hyperbolic model
H ↪→ V 2n. In dimensions2n > 4 this follows from the fact that a quadratic
form represents zero inL2n(e) if and only if it is hyperbolic. For small
dimensions(n = 1, 2), see Remark 2.

We may thus attachtwo(n+1)-handles toV × [0, 1], one toSe ⊂ V ×0,
the other toSf ⊂ V ×1. This gives a manifoldX together with an embedding
of our model ballΦ : B ↪→ X: As explained in Remark 5, all we need are
embeddings ofhe andhf which meet in a single point (on their boundaries).
Such embeddings are provided by the cores of the handles together with
product structures∂he × [0, 1

2 ] respectively∂hf × [12 , 1] in V × [0, 1]. The
arguments above show thatX is homeomorphic toY 2n × [0, 1] with Y × 0
mapping to surgery onSe, Y × 1 mapping to surgery onSf , andY × 1

2
identified withsymmetric surgeryor contractionof H. By definition, this
is obtained fromV by removing the image ofH and replacing it by the
contractionC.

We are now in the position to finish the proof of Theorem 2.. Let us
briefly recall the set-up from the end of Sect. 2. The dimensionN is odd and
we write it asN = 2n − 1. Thus our pure codimension 2 link map isL :
qi S2n−1 # S2n+1 and the Seifert surfacesWi are2n-dimensional. More-
over, we have disjoint immersionsN2n+1

i # D2n+2 with a non-vanishing
normal vector fieldνi. The manifoldsNi have vertical boundariesS2n−1×I,
upper boundariesWi and lower boundariesVi which are(n−1)-connected.
Moreover, there are framed n-spheresej , fj ⊂ qi Vi, j = 1, . . . , J , with
geometric intersections

ej ∩ ek = ∅ = fj ∩ fk, ej ∩ fk = δj,k,

and such that surgery on allej makes theVi into 2n-balls. Alternatively,
we will do symmetric surgery on the hyperbolic pairsej , fj ! Finally, there
are immersionsEj , Fj : Dn+1 # D2n+2 with boundariesej , fj and with
interiors disjoint from allNi. We may assume that the disksEj , Fk, j, k =
1, . . . , J , intersect and self-intersect transversely in finitely many pointspr.

Pick any orderingj = 1, 2, . . . , J . Thicken the first hyperbolic pair
e1, f1 to our modelH in Vi, identifying e1 to Se andf1 to Sf . We may
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clearly assume that the compositionH ⊂ Vi # D2n+2 is an embedding
on the central squareDe × 0 × Df since this is just a thickening of the
wedge pointe1 ∩ f1. We would like to ambiently attach our two handles to
Vi × [0, 1] by identifyingE1 to he andF1 to hf . We may use the direction
“into” Ni as the[0, 1]-direction (and completely disregardNi otherwise).
However, the thickenings ofe1, f1 in Vi might not extend to a thickening of
E1 respectivelyF1 in D2n+2. In fact, there is a relative Euler number which
is the obstruction to extending the normal vector fieldνi fromVi to (say)E1.
But we can extend to a vector field with only finitely many zeros which we
may assume to be distinct from the pointspr. In particular, the thickenings
of E1, F1 exist in the neighborhood of disjoint arcsJr that connect the
intersection pointspr to the boundary as in the model pushoff discussion.
Moreover, the normal directionνi can be used as the last scoordinate in
[−ε, ε] of the sheetM ′ in the model pushoff.

As in the proof of Lemma 2. we can extend these thickenings tomaps
Ē1, F̄1 : Dn+1 × Dn+1 → D2n+2. This leads to a mapΦ of our modelB
to D2n+2.

The next step is to contractH to C in the modelB and map it forward
intoD2n+2 byΦ. Then push all disksEj , Fj , j ≥ 2, off the contraction. This
will introduce more intersections among these disks but makes them disjoint
from the contraction. We repeat the above process for the hyperbolic pair
e2, f2. After contracting it, we push all disksEj , Fj , j ≥ 3, off the second
contraction and continue working on the paire3, f3. After finitely many
steps, all pairsej , fj are contracted and these contractions map disjointly
into D2n+2. This gives the desired disjoint maps of2n-disks bounding the
original link mapL. ut

4. Framing Seifert surfaces in codimension 2

Proof of Proposition 3.By immersion theory [6] we may assume that the
link mapL is an immersion since the tangent bundles of spheres are stably
trivial. By jet transversality we may also assume that the mapsWi → SN+2

are smooth and immersions with normal crossings away from submanifolds
calledSr in [5, Ch.II.5]. Herer is the corank of the differential and sor = 0
corresponds to points whereWi is immersed. Moreover, the codimension
of Sr in Wi is r(r + 1) [5, Thm.II.5.4] which is> 1 for r ≥ 1.

Lemma 5. Under these conditions there is an epimorphism

φ : π1(SN+2
r L) −→ Fn

which sends meridians ofL to n free generatorsxi of the free groupFn.
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Fig. 6. A possible configuration of circles and arcs in∆

Proof. The homomorphismφ is obtained by putting a circle inSN+2 r L
into general position withWi and then reading off the oriented intersections
as a word inx±1

i . (By the dimension count above, a circle only intersects
embedded sheets ofWi transversely in points.) To prove thatφ is well-
defined it suffices to show that a circle which bounds a disk inSN+2 r L
reads off the trivial word: Put the 2-disk∆ into general position with the
Wi. Since the singularities ofWi are of codimension> 2 in SN+2 we may
assume that∆ misses them. Actually, there is one sort of codimension 2
singularities, namely the self-intersection of two embedded sheets of one
Wi. Therefore, the intersection

∆ ∩ (∪
i
Wi)

consists of a union of oriented circles and arcs, labelled by the indices
i = 1, . . . , n, see Fig. 6.

Moreover, only circles and arcs labelled by the same index may cross (in
general position) because theWi are disjoint. Then an innermost argument
shows that the word on the boundary of∆ is trivial. ut
Let W denote a wedge ofn circles. SinceW is aK(Fn, 1), Lemma 5. gives
a continuous mapΦ : SN+2 rL → W which inducesφ on the fundamental
group. LetNi be a small open regular neighborhood of the i-th component
Li. We assume thatNi do not meet each other and denote byN the disjoint
union of all Ni. Then we have a continuous mapΦ : SN+2 r N → W
which we smoothen in the complement of the inverse image of the wedge
point in W. Consider “anti-basepoints”pi ∈ W, i.e. regular values ofΦ,
one for each circle factori = 1, . . . , n. ThenΦ−1(pi) are disjoint framed
codimension 1 submanifolds ofSN+2 r N with

Mi := ∂Φ−1(pi) = Φ−1(pi) ∩ ∂Ni.

We consider the framed codimension 1 submanifoldMi of ∂Ni = ∂N̄i as
an element

[Mi] ∈ [∂Ni, MO(1)] ∼= [∂Ni, S
1] ∼= H1(∂Ni; Z) ∼= Hom(π1(Ni), Z),
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the group of framed cobordism classes of codimension 1 submanifolds in
∂Ni. By definition,[Mi] is the image of a generator under the composition

Z ∼= HN (Ni) ∼= H1(SN+2
r Ni)

res−→ H1(∂Ni).(*)

Assume that there are framed immersionsVi # Ni such that∂Vi = Li q
−M ′

i with [M ′
i ] = [Mi] ∈ H1(∂Ni). Then the proof of Proposition 3. is

finished by taking as the disjoint parallelizable Seifert surfaces forL the
unions ofVi andΦ−1(pi) along framed cobordisms betweenM ′

i andMi in
small collars∂Ni × I.

Now observe that the existence of the immersionsVi is a question about
one component at a time because one may takeVi to be the transverse inter-
section ofNi with any framed immersed Seifert surface for the component
Li. As before this will have the desired property that the framed cobordism
class ofVi ∩ ∂Ni is the image of a generator under the composition (*)
above.

Thus Proposition 3. is implied by the observation that a more careful
application of immersion theory indeed shows that the original mapsLi :
SN → SN+2 are arbitrary close in theC0-topology to immersions which
extend to immersionsDN+1 # DN+2. More precisely, letUi be disjoint
open neighborhoods ofLi(SN ). Immersion theory says that any regular
homotopy class of bundle monomorphismsTSN � L∗

i (TUi) is realized
by an immersion homotopic toLi in Ui. We consider the composition

TSN � TSN ⊕ 1 ∼= SN × R
N+1

i� SN × R
N+2 ∼= L∗

i (TUi) −→ L∗
i (TSN+2),

wherei is chosen to beconstantin the SN -factor. Picking any extension
of Li to a mapDN+1 → SN+2, this composition extends to a bundle
monomorphism overDN+1. ut

5. The7-dimensional example

We first describe Example 1 from Fig. 2 in more detail. Consider a (neces-
sarily unknotted)2-sphereS2 ⊂ S7. Write the trivial normal bundle as

ν(S2, S7) = H ⊕ H ⊕ 1,

whereH is the (two-dimensional) Hopf-bundle overS2. LetE be the disk-
bundle ofH ⊕ 1. We may plumb E together with an unknottedS3 × D2

in S7. This gives a 5-manifoldM5 ⊂ S7 whose boundary is an unknotted
4-sphere. In fact, we may do ambient surgery on the 3-sphere in M to get a
5-diskB5 ⊂ S7 with ∂B5 = ∂M5 . Note however, that we may not surger
the2-sphere inM5 because it has a non-trivial normal bundle!
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Fig. 7. A neighborhood of the intersection pointp

To construct the linkL : S4 q S4 ↪→ S7 in Example 1 we take two
disjoint copiesM1, M2 of the 5-manifoldM above such that the two 3-
spheres form a Hopf-link inS7. ThenL := ∂M1 q ∂M2 is a boundary link
but it is not homotopically trivial. Thegeneralized linking number[11]

α : LM7
4,4 −→ Ωfr

2
∼= Z/2

satisfiesα(L) 6= 0 which can be seen as follows. We bound the first com-
ponentL1 by the 5-ballB5

1 as above. This is a framed manifold and thus by
definition

α(L) = B5
1 ∩ L2(S4) ∈ Ωfr

2

where the (normal) framing on the intersection is the union of the unique
framing onB5

1 and the normal framing onL2(S4). By convention, this
framing is the stable difference of two (once and for all fixed) trivializations
of TSk ⊕ 1 for k = 4, 7.

Since the two 3-spheresS3
1 , S3

2 in the definition ofL form a Hopf-link,
we may assume that the 4-diskD4

1 with ∂D4
1 = S3

1 which was used to get
from M1 to B5

1 , intersectsS3
2 in a single pointp ∈ S7. A neighborhood of

p is pictured in Fig. 7.
It contains the 5-ballU2 ×D2

2 ⊂ M2 whereU2 is a small 3-ball aroundp
in S3

2 . It also contains the 6-ballU1 × D2
1 whereU1 is a small 4-ball around

p in D4
1 and theD2

1-direction comes from an extension of the normal bundle
of S3

1 ⊂ M1 overD4
1 (whose boundary is used in the surgery fromM1 to

B5
1). This implies thatα(L) is a 2-torus (4 points in Fig. 7):

α(L) = ∂D2
1 × ∂D2

2.

Moreover, the normal framing is the product of two framings on∂D2
i which

we claim are both nontrivial. First consider the casei = 2: By definition, the
framingf2 on ∂D2

2 comes from the one onL2(S4) = ∂M2. In particular,
it is not the framingf0 which extends toD2

2 because this 2-disk does not
lie in ∂M2. Clearly,(∂D2

2, f0) = 0 in Ωfr
1 . Moreover,f2 comes from the

framing of the 2-diskB2
2 ⊂ ∂M2 with ∂B2

2 ∪ D2
2 a non-vanishing section
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in the disk-bundleE = H ⊕ 1 (which was used to defineM2). The two
normal framingsf0 andf2 differ by the normal bundle ofM2 restricted to
this2-sphere which is the Hopf bundleH. Thus

0 6= (∂D2
2, f2) ∈ Ωfr

1 .

An argument very similar to the above shows that the same is true for
(∂D2

1, f1) and thusα(L) 6= 0. ut
We will next prove Theorem 4. which states that the example above

takes place in the smallest possible dimension. First recall that orientable
manifolds (with non-empty boundary) of dimension≤ 3 are actually paral-
lelizable. Together with Theorem 2. this implies that we just have to show
that the arguments in Sect. 2 go through for 4-dimensional Seifert surfaces
mapped intoSN+2, N ≥ 4.

Lemma 6. LetW 4 be a closed oriented simply-connected4-manifold. Then
there existr, s ∈ N such that

W#r(CP
2)#s(−CP

2)

is the connected sum ofS2-bundles overS2.

This lemma can be found in [17]. It implies Theorem 4. because after the
first step of Sect. 2 we may assume that the Seifert surfacesWi are simply-
connected (and oriented). Moreover, by Lemma 7. below we we may change
our link map by adding local knots with puncturedCP2 as Seifert surfaces.
As usual, this does not change the link homotopy class of the link map.
By Lemma 6. we obtain very specialW 4

i which may be surgered to 4-balls
by framed surgeries on the2-spheres which are the fibers of the aboveS2-
bundles. Note that this does not depend on whetherWi is parallelizable or
not because we don’t use the2-spheres with non-trivial normal bundle. In
particular, we do not need symmetric surgery in these codimensions≥ 3.

Lemma 7. PuncturedCP2 embeds intoS6.

Proof. Take an (unknotted)S2 ⊂ S6. Write the trivial normal bundle as
H ⊕ H, whereH is the Hopf-bundle. Then puncturedCP2 sits inS6 as the
disk-bundle of one copy ofH. ut
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