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Super manifolds: an incomplete survey*

HENNING HOHNHOLD, STEPHAN STOLZ AND PETER TEICHNER

Abstract. We present an incomplete survey on some basic notions of super
manifolds which may serve as a short introduction to this subject.
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1. Introduction

We present an incomplete survey on some basic notions of super manifolds which
may serve as a short introduction to this subject. Almost all the material is taken
from the beautiful survey article on super manifolds [3]. Standard references also
include [5], [2], [6] or [8]. The material below is a prerequisite to our papers [4] and
[7].

2. Super Algebra

Let us begin by explaining briefly what super means in an algebraic context,
working with the ground field of real numbers. The monoidal category of super vector
spaces, with tensor products, is by definition the same as the monoidal category of
Z/2-graded vector spaces, with the graded tensor product. As a consequence, a
super algebra is simply a monoidal object in this category and is hence the same
thing as a Z/2-graded algebra. For example, the endomorphism ring End(V ) of a
super vector space V inherits a natural Z/2-grading from that of V . The distinction
between these notions only arises from the choice of symmetry operators

σ = σV,W : V ⊗W
∼=−→ W ⊗ V.

There are two standard choices, yielding two very different symmetric monoidal
categories. For super vector spaces one has

σ(v ⊗ w) = (−1)|v|·|w|w ⊗ v,
where |v| is the Z/2-degree of a homogenous vector v ∈ V . For Z/2-graded vector
spaces the signs would be omitted. This basic difference is sometimes summarized
as the
• Sign rule: Commuting two odd quantities yields a sign −1.

As a consequence, a super algebra is commutative if for all homogenenous a, b ∈ A
we have

ab = (−1)|a||b|ba,
a very different notion than a commutative Z/2-graded algebra. The standard ex-
amples of commutative super algebras are the exterior algebras Λ∗(Rq). As we shall
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see, the generators of Λ∗(Rq) yield the so-called odd coordinates on super manifolds;
these anti-commute and hence are useful when trying to describe physical systems
involving Fermions. Super algebras also arise naturally in algebraic topology: for
every space X, the cohomology ring H∗(X;R) is a commutative super algebra.

Let A be a commutative super algebra. The derivations of A are endomorphisms
D ∈ End(A) satisfying the Leibniz rule:1

D(a · b) = Da · b+ (−1)|D||a|a ·Db.
DerA is a super Lie algebra with respect to the bracket operation

[D,E] := DE − (−1)|D||E|ED
This means that the following axioms are satisfied for L = DerA.

Definition 2.1. A super Lie algebra is a super vector space L together with a Lie
bracket [·, ·] : L⊗ L→ L that is skew symmetric

[D,E] + (−1)|D||E|[E,D] = 0
and satisfies the Jacobi identity

[D, [E,F ]] + (−1)|D|(|E|+|F |)[E, [F,D]] + (−1)|F |(|D|+|E|)[F, [D,E]] = 0.
Note that we cyclically permuted the 3 symbols and put down the signs according
to the above sign rule.

3. Super Manifolds

We will define super manifolds as ringed spaces following [3]. By a morphism we
will always mean a map of ringed spaces. The local model for a super manifold of
dimension p|q is Rp equipped with the sheaf ORp|q of commutative super R-algebras
U 7→ C∞(U)⊗ Λ∗(Rq).

Definition 3.1. A super manifold M of dimension p|q is a pair (|M |,OM) consisting
of a (Hausdorff and second countable) topological space |M | together with a sheaf
of commutative super R-algebras OM that is locally isomorphic to (Rp,ORp|q). A
morphism f = (|f |, F ) between super manifolds M,N is defined to be a continuous
map |f | : |M | → |N |, together with a map F of sheaves covering |f |. More precisely,
for every open subset U ⊆ |N | there are algebra maps

F (U) : ON(U)→ OM(|f |−1(U))
that are compatible with the restriction maps of the two sheaves. In the future we
shall write f ∗ for F and we denote this category of super manifolds by SM.

To every super manifold M there is an associated reduced manifold
M red := (|M |,OM/Nil)

obtained by dividing out the ideal of nilpotent functions. By construction, this gives
a smooth manifold structure on the underlying topological space |M | and there is
an inclusion of super manifolds M red ↪→M . Note that the sheaf of ideals Nil ⊂ OM

1Whenever we write formulas involving the degree |.| of certain elements, we implicitly assume
that these elements are homogenous.
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is generated by odd functions. Other geometric super objects can be defined in
a similar way. For example, replacing R by C and C∞ by analytic functions one
obtains complex (analytic) super manifolds. There is also an important notion of
cs manifolds. These are spaces equipped with sheaves of commutative super C-
algebras that locally look like ORp|q ⊗C. One relevance of cs manifolds is that they
appear naturally as the smooth super manifolds underlying complex analytic super
manifolds. In our work, cs manifolds are essential to define the notion of a unitary
field theory but this is not relevant for the current discussion.

Definition 3.2. Let E be a real vector bundle of fiber dimension q over the ordinary
manifold Xp and Λ∗(E∗) the associated algebra bundle of alternating multilinear
forms on E. Then its sheaf of sections gives a super manifold (X,Γ(Λ∗E∗)) of
dimension p|q, denoted by ΠE. In the current smooth setting, Marjorie Batchelor
proved in [1] that every super manifold is isomorphic to one of this type (this is not
true for analytic super manifolds). More precisely, let BunMan denote the category
of real vector bundles over smooth manifolds, and for M ∈ SM, consider the vector
bundle J(M) over M red with sheaf of sections Nil/Nil2. Then the functors

Π : BunMan→ SM and J : SM→ BunMan

come equipped with natural isomorphisms J ◦ Π(E) ∼= E but there are only non-
natural isomorphisms Π ◦ J(M) ∼= M , coming from a choice of a partition of unity.
In other words, these functors induce a bijection on isomorphism classes of objects
and inclusions on morphisms but they are not equivalences of categories because
there are many more morphims in SM than the linear bundle maps coming from
BunMan.

The following proposition gives two extremely useful ways of looking at morphisms
between super manifolds. We shall use the notation C∞(M) := OM(M) for the
algebra of (global) functions on a super manifold M .

Proposition 3.3. For S,M ∈ SM, the functor C∞ induces natural bijections

SM(S,M) ∼= Alg(C∞(M), C∞(S)).

If M ⊆ Rp|q is an open super submanifold (a domain), SM(S,M) is in bijective cor-
respondence with those (f1, ..., fp, η1, ..., ηq) in (C∞(S)ev)p× (C∞(S)odd)q that satisfy

(|f1|(s), ..., |fp|(s)) ∈ |M | ⊆ Rp for all s ∈ |S|.

The fi, ηj are called the coordinates of φ ∈ SM(S,M) defined by

fi = φ∗(xi) and ηj = φ∗(θj),

where x1, ..., xp, θq, ..., θp are coordinates on M ⊆ Rp|q. Moreover, by the first part
we see that fi ∈ C∞(S)ev = SM(S,R) and hence |fi| ∈ Man(|S|,R).

The proof of the first part is based on the existence of partitions of unity for super
manifolds, so it is false in analytic settings. The second part always holds and is
proved in [5].
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4. The Functor of Points

Since sheaves are generally difficult to work with, one often thinks of super mani-
folds in terms of their S-points, i.e. instead of M itself one considers the morphism
sets SM(S,M), where S varies over all super manifolds S. More formally, embed
the category SM of super manifolds in the category of contravariant functors from
SM to Set by

Y : SM→ Fun(SMop, Set), Y (M) = ( S 7→ SM(S,M) ).
This Yoneda embedding is fully faithful and identifies SM with the the category of
representable functors, defined to be those in the image of Y . We will sometimes
refer to an arbitrary functor F : SMop → Set as a generalized super manifold.
Note that Proposition 3.3 makes it easy to describe the morphism sets SM(S,M).
We’d also like to point out that the functor of points approach is closely related
to computations involving additional odd quantities (the odd coordinates of S as
opposed to those of M) in many physics papers.

5. Super Lie Groups

These are simply group objects in SM. According to the functor of points ap-
proach, such a group object in SM can be described by giving a functor G : SMop →
Group such that the composition with the forgetful functor Group → Set is repre-
sentable.

Example 5.1. The simplest super Lie group is the additive group structure on Rp|q.
It is given by the following composition law on SM(S,Rp|q), obviously natural in S:

(f1, ..., ηq)× (h1, ..., ψq) 7→ (f1 + h1, ..., ηq + ψq).
The super general linear group GL(p|q) is defined by

GL(p|q)(S) := AutOS
(Op|qS ) ∼= AutC∞(S)(C∞(S)p|q),

where Ap|q denotes the A-module freely generated by p even and q odd generators.
We need to check that this is representable. We claim that GL(p|q)(_) is represented
by the open super submanifold G ⊂ Rp2+q2|2pq characterized by

|G| = { x ∈ Rp2+q2 | x ∈ GLp ×GLq }.
This follows directly from proposition 3.3 using that a map between super algebras
is invertible if and only if it is invertible modulo nilpotent elements.

6. Super Vector Bundles

A (super) vector bundle over a super manifold M is a locally free sheaf E of OM -
modules of dimension p|q. The most basic example of a super vector bundle is the
tangent bundle of a super manifoldMp|q. It is the sheaf of OM -modules TM defined
by

TM(U) := DerOM(U).
TM is locally free of dimension p|q: If x1, ..., θq are local coordinates on M , then
a local basis is given by ∂x1 , ..., ∂θq . Note that there is also a linear fibre bundle
TM →M with structure groupGL(p|q), where TM is a super manifold of dimension
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2p|2q. More generally, any vector bundle E over M has a total space E ∈ SM that
comes with a projection map π : E → M . It can be most easily described in terms
of its S-points

E(S) = {(f, g) | f ∈ SM(S,M), g ∈ f ∗(Eev(M))}.
So g is an even global section of the pullback bundle on S and the projection π comes
from forgetting this datum. To prove that this functor SMop → Set is representable
one uses the local triviality of E and Proposition 3.3. It follows by construction that
the typical fibre of the projection π is Rp|q and the structure group is GL(p|q).

There is an important operation of parity reversal on the category of vector bun-
dles over M . It is an involution

Π : VectM → VectM
that takes a vector bundle E with grading involution α to (E,−α). This means
that even and odd parts are exchanged. To define Π on morphisms it is easiest to
give it as Π(E) = ε0|1⊗E, where ε0|1 is the trivial bundle of dimension 0|1 (aka the
constant sheaf of free OM -modules).

One can define the super Lie algebra g of a super Lie group G as follows. A vector
field ξ ∈ T G is called left-invariant if ξ is related to itself under the left-translation
by all f : S → G:

S ×G
f×id
−−−→ G×G

µ

−−−→ G.

Here we interpret ξ as a vertical vector field on S×G in the obvious way. The super
Lie algebra g consists of all left-invariant vector fields on G. Pulling back via the
unit e : pt → G defines an isomorphism g ∼= TeG, in particular, the vector space
dimension of g is p|q.
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