Invariants of knots and 3-manifolds: Survey on 3-manifolds

Wolfgang Lück
Bonn
Germany
email wolfgang.lueck@him.uni-bonn.de
http://131.220.77.52/lueck/

Bonn, 10. & 12. April 2018
Tentative plan of the course

<table>
<thead>
<tr>
<th>title</th>
<th>date</th>
<th>lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to 3-manifolds I & II</td>
<td>April, 10 & 12</td>
<td>Lück</td>
</tr>
<tr>
<td>Cobordism theory and the s-cobordism theorem</td>
<td>April, 17</td>
<td>Lück</td>
</tr>
<tr>
<td>Introduction to Surgery theory</td>
<td>April 19</td>
<td>Lück</td>
</tr>
<tr>
<td>(L^2)-Betti numbers</td>
<td>April, 24 & 26</td>
<td>Lück</td>
</tr>
<tr>
<td>Introduction to Knots and Links</td>
<td>May 3</td>
<td>Teichner</td>
</tr>
<tr>
<td>Knot invariants I</td>
<td>May, 8</td>
<td>Teichner</td>
</tr>
<tr>
<td>Knot invariants II</td>
<td>May, 15</td>
<td>Teichner</td>
</tr>
<tr>
<td>Introduction to knot concordance I</td>
<td>May, 17</td>
<td>Teichner</td>
</tr>
<tr>
<td>Whitehead torsion and (L^2)-torsion I</td>
<td>May 29th</td>
<td>Teichner</td>
</tr>
<tr>
<td>(L^2)-signatures I</td>
<td>June 5</td>
<td>Teichner</td>
</tr>
<tr>
<td>tba</td>
<td>June, 7</td>
<td>tba</td>
</tr>
<tr>
<td>title</td>
<td>date</td>
<td>lecturer</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Whitehead torsion and L^2-torsion II</td>
<td>June, 12</td>
<td>Lück</td>
</tr>
<tr>
<td>L^2-invariants und 3-manifolds I</td>
<td>June, 14</td>
<td>Lück</td>
</tr>
<tr>
<td>L^2-invariants und 3-manifolds II</td>
<td>June, 19</td>
<td>Lück</td>
</tr>
<tr>
<td>L^2-signatures II</td>
<td>June, 21</td>
<td>Teichner</td>
</tr>
<tr>
<td>L^2-signatures as knot concordance invariants I & II</td>
<td>June, 26 & 28</td>
<td>Teichner</td>
</tr>
<tr>
<td>tba</td>
<td>July, 3</td>
<td>tba</td>
</tr>
<tr>
<td>Further aspects of L^2-invariants</td>
<td>July 10</td>
<td>Lück</td>
</tr>
<tr>
<td>tba</td>
<td>July 12</td>
<td>Teichner</td>
</tr>
<tr>
<td>Open problems in low-dimensional topology</td>
<td>July 17 & 19</td>
<td>Teichner</td>
</tr>
</tbody>
</table>

- No talks on May 1, May 10, May 22, May 24, May 31, July 5.

- On demand there can be a discussion session at the end of the Thursday lecture.
We give an introduction and survey about 3-manifolds.

We cover the following topics:
- Review of surfaces
- Prime decomposition and the Kneser Conjecture
- Jaco-Shalen-Johannsen splitting
- Thurston’s Geometrization Conjecture
- Fibering 3-manifolds
- Fundamental groups of 3-manifolds
Some basic facts surfaces

- **Surface** will mean compact, connected, orientable 2-dimensional manifold possibly with boundary.

- Every surface has a preferred structure of a PL-manifold or smooth manifold which is unique up to PL-homeomorphism or diffeomorphism.

- Every surface is homeomorphic to the standard model F^d_g, which is obtained from S^2 by deleting the interior of d embedded D^2 and taking the connected sum with g-copies of $S^1 \times S^1$.

- The standard models F^d_g and $F^{d'}_{g'}$ are homeomorphic if and only if $g = g'$ and $d = d'$ holds.

- Any homotopy equivalence of closed surfaces is homotopic to a homeomorphism.
The following assertions for two closed surfaces \(M \) and \(N \) are equivalent:

- \(M \) and \(N \) are homeomorphic;
- \(\pi_1(M) \cong \pi_1(N) \);
- \(H_1(M) \cong H_1(N) \);
- \(\chi(M) = \chi(N) \).

A closed surface admits a complete Riemannian metric with constant sectional curvature 1, 0 or \(-1\) depending on whether its genus \(g \) is 0,1 or \(\geq 2 \). For \(-1\) there are infinitely many such structures on a given surface of genus \(\geq 2 \).

A closed surface is either simply connected or aspherical.

A simply connected closed surface is homeomorphic to \(S^2 \).

A closed surface carries a non-trivial \(S^1 \)-action if and only if it is \(S^2 \) or \(T^2 \).
The fundamental group of a compact surface F^d_g is explicitly known.

The fundamental group of a compact surface F^d_g has the following properties

- It is either trivial, \mathbb{Z}^2, a finitely generated one-relator group, or a finitely generated free group;
- It is residually finite;
- Its abelianization is a finitely generated free abelian group;
- It has a solvable word problem, conjugacy problem and isomorphism problem.

Question

Which of these properties carry over to 3-manifolds?
3-manifold will mean compact, connected, orientable 3-dimensional manifold possibly with boundary.

Every 3-manifold has a preferred structure of a PL-manifold or smooth manifold which is unique up to PL-homeomorphism or diffeomorphism.

This is not true in general for closed manifolds of dimension ≥ 4.
Prime decomposition and the Kneser Conjecture

- Recall the connected sum of compact, connected, orientable \(n \)-dimensional manifolds \(M_0 \# M_1 \) and the fact that \(M \# S^n \) is homeomorphic to \(M \).

Definition (prime)

A 3-manifold \(M \) is called prime if for any decomposition as a connected sum \(M_0 \# M_1 \) one of the summands \(M_0 \) or \(M_1 \) is homeomorphic to \(S^3 \).

Theorem (Prime decomposition)

Every 3-manifold \(M \), which is not homeomorphic to \(S^3 \), possesses a prime decomposition

\[
M \cong M_1 \# M_2 \# \cdots \# M_r
\]

where each \(M_i \) is prime and not homeomorphic to \(S^3 \). This decomposition is unique up to permutation of the summands and homeomorphism.
Definition (incompressible)

Given a 3-manifold M, a compact connected orientable surface F which is properly embedded in M, i.e., $\partial M \cap F = \partial F$, or embedded in ∂M, is called **incompressible** if the following holds:

- The inclusion $F \to M$ induces an injection on the fundamental groups;
- F is not homeomorphic to S^2;
- If $F = D^2$, we do not have $F \subseteq \partial M$ and there is no embedded $D^3 \subseteq M$ with $\partial D^3 \subseteq D^2 \cup \partial M$.

One says that ∂M is **incompressible in** M if and only if ∂M is empty or any component C of ∂M is incompressible in the sense above.

- $\partial M \subseteq M$ is incompressible if for every component C the inclusion induces an injection $\pi_1(C) \to \pi_1(M)$ and C is not homeomorphic to S^2.
Theorem (The Kneser Conjecture is true)

Let M be a compact 3-manifold with incompressible boundary. Suppose that there are groups G_0 and G_1 together with an isomorphism $\alpha : G_0 * G_1 \xrightarrow{\cong} \pi_1(M)$.

Then there are 3-manifolds M_0 and M_1 coming with isomorphisms $u_i : G_i \xrightarrow{\cong} \pi_1(M_i)$ and a homeomorphism $h : M_0 \# M_1 \xrightarrow{\cong} M$

such that the following diagram of group isomorphisms commutes up to inner automorphisms

$$
\begin{array}{ccc}
\pi_1(M_0) * \pi_1(M_1) & \xrightarrow{\cong} & \pi_1(M_0 \# M_1) \\
\uparrow u_0 * u_1 & & \downarrow \pi_1(h) \\
G_0 * G_1 & \xrightarrow{\cong} & \pi_1(M)
\end{array}
$$
Definition (irreducible)

A 3-manifold is called **irreducible** if every embedded two-sphere $S^2 \subseteq M$ bounds an embedded disk $D^3 \subseteq M$.

Theorem

A prime 3-manifold M is either homeomorphic to $S^1 \times S^2$ or is irreducible.

Theorem (Knot complement)

The complement of a non-trivial knot in S^3 is an irreducible 3-manifold with incompressible toroidal boundary.
The Sphere and the Loop Theorem

Theorem (Sphere Theorem)

Let M be a 3-manifold. Let $N \subseteq \pi_2(M)$ be a $\pi_1(M)$-invariant subgroup of $\pi_2(M)$ with $\pi_2(M) \setminus N \neq \emptyset$.

Then there exists an embedding $g : S^2 \to M$ such that $[g] \in \pi_2(M) \setminus N$.

- Notice that $[g] \neq 0$.
- However, the Sphere Theorem does not say that one can realize a given element $u \in \pi_2(M) \setminus N$ to be $u = [g]$.

Corollary

An irreducible 3-manifold is aspherical if and only if it is homeomorphic to D^3 or its fundamental group is infinite.
Theorem (Loop Theorem)

Let M be a 3-manifold and let $F \subseteq \partial M$ be an embedded connected surface. Let $N \subseteq \pi_1(F)$ be a normal subgroup such that
\[
\ker(\pi_1(F) \to \pi_1(M)) \setminus N \neq \emptyset.
\]
Then there exists a proper embedding $(D^2, S^1) \to (M, F)$ such that $[g|_{S^1}]$ is contained in $\ker(\pi_1(F) \to \pi_1(M)) \setminus N$

- Notice that $[g] \neq 0$.
- However, the Loop Theorem does not say that one can realize a given element $u \in \ker(\pi_1(F) \to \pi_1(M)) \setminus N$ to be $u = [g]$.
Haken manifolds

Definition (Haken manifold)
An irreducible 3-manifold is **Haken** if it contains an incompressible embedded surface.

Lemma
If the first Betti number \(b_1(M) \) is non-zero, which is implied if \(\partial M \) contains a surface other than \(S^2 \), and \(M \) is irreducible, then \(M \) is Haken.

A lot of conjectures for 3-manifolds could be proved for Haken manifolds first using an inductive procedure which is based on cutting a Haken manifold into pieces of smaller complexity using the incompressible surface.
Conjecture (Waldhausen’s Virtually Haken Conjecture)

Every irreducible 3-manifold with infinite fundamental group has a finite covering which is a Haken manifold.

Theorem (Agol, [1])

The Virtually Haken Conjecture is true.

- **Agol** shows that there is a finite covering with non-trivial first Betti number.
We use the definition of Seifert manifold given in the survey article by Scott [8], which we recommend as a reference on Seifert manifolds besides the book of Hempel [4].

Lemma

If a 3-manifold M has infinite fundamental group and empty or incompressible boundary, then it is Seifert if and only if it admits a finite covering \overline{M} which is the total space of a S^1-principal bundle over a compact orientable surface.

Theorem (Gabai [3])

An irreducible 3-manifold M with infinite fundamental group π is Seifert if and only if π contains a normal infinite cyclic subgroup.
Definition (Hyperbolic)

A compact manifold (possible with boundary) is called hyperbolic if its interior admits a complete Riemannian metric whose sectional curvature is constant -1.

Lemma

Let M be a hyperbolic 3-manifold. Then its interior has finite volume if and only if ∂M is empty or a disjoint union of incompressible tori.
A **geometry** on a 3-manifold M is a complete locally homogeneous Riemannian metric on its interior.

- Locally homogeneous means that for any two points there exist open neighbourhoods which are isometrically diffeomorphic.

- The universal cover of the interior has a complete homogeneous Riemannian metric, meaning that the isometry group acts transitively. This action is automatically proper.

- **Thurston** has shown that there are precisely eight maximal simply connected 3-dimensional geometries having compact quotients, which often come from left invariant Riemannian metrics on connected Lie groups.
\[S^3, \quad \text{Isom}(S^3) = O(4); \]
\[\mathbb{R}^3, \quad 1 \to \mathbb{R}^3 \to \text{Isom}(\mathbb{R}^3) \to O(3) \to 1; \]
\[S^2 \times \mathbb{R}, \quad \text{Isom}(S^2 \times \mathbb{R}) = \text{Isom}(S^2) \times \text{Isom}(\mathbb{R}); \]
\[H^2 \times \mathbb{R}, \quad \text{Isom}(H^2 \times \mathbb{R}) = \text{Isom}(H^2) \times \text{Isom}(\mathbb{R}); \]
\[\widetilde{\text{SL}_2(\mathbb{R})}, \quad 1 \to \mathbb{R} \to \text{Isom}(\widetilde{\text{SL}_2(\mathbb{R})}) \to \text{PSL}_2(\mathbb{R}) \to 1; \]
\[\text{Nil} := \left\{ \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix} \right\}, \quad 1 \to \mathbb{R} \to \text{Isom}(\text{Nil}) \to \text{Isom}(\mathbb{R}^2) \to 1; \]
\[\text{Sol} := \left\{ \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \right\}; \quad 1 \to \text{Sol} \to \text{Isom}(\text{Sol}) \to D_{2.4} \to 1; \]
\[\mathbb{H}^3, \quad \text{Isom}(\mathbb{H}^3) = \text{PSL}_2(\mathbb{C}). \]
A geometry on a 3-manifold M modelled on S^3, IR^3 or H^3 is the same as a complete Riemannian metric on the interior of constant section curvature with value 1, 0 or -1.

If a closed 3-manifold admits a geometric structure modelled on one of these eight geometries, then the geometry involved is unique.

The geometric structure on a fixed 3-manifold is in general not unique. For instance, one can scale the standard flat Riemannian metric on the torus T^3 by a real number and just gets a new geometry with different volume which of course still is a R^3-geometry.
Theorem (Mostow Rigidity)

Let M and N be two hyperbolic n-manifolds with finite volume for $n \geq 3$. Then for any isomorphism $\alpha : \pi_1(M) \xrightarrow{\cong} \pi_1(N)$ there exists an isometric diffeomorphism $f : M \to N$ such that up to inner automorphism $\pi_1(f) = \alpha$ holds.

- This is not true in dimension 2, see Teichmüller space.
A 3-manifold is a Seifert manifold if and only if it carries one of the geometries $S^2 \times \mathbb{R}$, \mathbb{R}^3, $H^2 \times \mathbb{R}$, S^3, Nil, or $\text{SL}_2(\mathbb{R})$. In terms of the Euler class e of the Seifert bundle and the Euler characteristic χ of the base orbifold, the geometric structure of a closed Seifert manifold M is determined as follows:

<table>
<thead>
<tr>
<th>$e = 0$</th>
<th>$\chi > 0$</th>
<th>$\chi = 0$</th>
<th>$\chi < 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S^2 \times \mathbb{R}$</td>
<td>\mathbb{R}^3</td>
<td>$H^2 \times \mathbb{R}$</td>
<td></td>
</tr>
<tr>
<td>$e \neq 0$</td>
<td>S^3</td>
<td>Nil</td>
<td>$\text{SL}_2(\mathbb{R})$</td>
</tr>
</tbody>
</table>
Let M be a prime 3-manifold with empty boundary or incompressible boundary. Then it is a Seifert manifold if and only if it is finitely covered by the total space \overline{M} of an principal S^1-bundle $S^1 \to \overline{M} \to F$ over a surface F.

Moreover, $e(M) = 0$ if and only if this S^1-principal bundle is trivial, and the Euler characteristic χ of the base orbifold of M is negative, zero or positive according to the same condition for $\chi(F)$.

The boundary of a Seifert manifold is incompressible unless M is homeomorphic to $S^1 \times D^2$.

A Seifert manifold is prime unless it is $\mathbb{RP}^3 \# \mathbb{RP}^3$.

Let M be a Seifert manifold with finite fundamental group. Then M is closed and carries a S^3-geometry.
A 3-manifold admits an S^1-foliation if and only if it is a Seifert manifold.

Every S^1-action on a hyperbolic closed 3-manifold is trivial.

A 3-manifold carries a Sol-structure if and only if it is finitely covered by the total space E of a locally trivial fiber bundle $T^2 \to E \to S^1$ with hyperbolic glueing map $T^2 \to T^2$, where hyperbolic is equivalent to the condition that the absolute value of the trace of the automorphism of $H_1(T^2)$ is greater or equal to 3.
Theorem (Jaco-Shalen [5], Johannson [6])

Let M be an irreducible 3-manifold M with incompressible boundary.

1. There is a finite family of disjoint, pairwise-nonisotopic incompressible tori in M which are not isotopic to boundary components and which split M into pieces that are Seifert manifolds or are geometrically atoroidal, i.e., they admit no embedded incompressible torus (except possibly parallel to the boundary).

2. A minimal family of such tori is unique up to isotopy.
Definition (Toral splitting or JSJ-decomposition)

We will say that the minimal family of such tori gives a toral splitting or a JSJ-decomposition.

We call the toral splitting a geometric toral splitting if the geometrically atoroidal pieces which do not admit a Seifert structure are hyperbolic.
Thurston’s Geometrization Conjecture

Conjecture (Thurston’s Geometrization Conjecture)

- An irreducible 3-manifold with infinite fundamental group has a geometric toral splitting;

- For a closed 3-manifold with finite fundamental group, its universal covering is homeomorphic to S^3, the fundamental group of M is a subgroup of $SO(4)$ and the action of it on the universal covering is conjugated by a homeomorphism to the restriction of the obvious $SO(4)$-action on S^3.

Theorem (Perelmann, see Morgan-Tian [7])

Thurston’s Geometrization Conjecture is true.
Thurston’s Geometrization Conjecture implies the 3-dimensional Poincaré Conjecture.

Thurston’s Geometrization Conjecture implies:
- The fundamental group of a 3-manifold M is residually finite, Hopfian and has a solvable word, conjugacy and membership problem.
- If M is closed, $\pi_1(M)$ has a solvable isomorphism problem.
- Every closed 3-manifold has a solvable homeomorphism problem.

Thanks to the proof of the Geometrization Conjecture, there is a complete list of those finite groups which occur as fundamental groups of closed 3-manifolds. They all are subgroups of $SO(4)$.

Recall that, for every $n \geq 4$ and any finitely presented group G, there exists a closed n-dimensional smooth manifold M with $\pi_1(M) \cong G$.
Thurston’s Geometrization Conjecture implies the **Borel Conjecture** in dimension 3 stating that every homotopy equivalence of aspherical closed 3-manifolds is homotopic to a homeomorphism.

There are irreducible 3-manifolds with finite fundamental group which are homotopy equivalent but not homeomorphic, namely the lens spaces $L(7; 1, 1)$ and $L(7; 1, 2)$.

Thurston’s Geometrization Conjecture is needed in the proof of the **Full Farrell-Jones Conjecture** for the fundamental group of a (not necessarily compact) 3-manifold (possibly with boundary).
Thurston’s Geometrization Conjecture is needed in the complete calculation of the L^2-invariants of the universal covering of a 3-manifold.

These calculations and calculations of other invariants follow the following pattern:

- Use the prime decomposition to reduce it to irreducible manifolds.
- Use the Thurston Geometrization Conjecture and glueing formulas to reduce it to Seifert manifolds or hyperbolic manifolds.
- Treat Seifert manifolds with topological methods.
- Treat hyperbolic manifolds with analytic methods.
Theorem (Stallings [9])

The following assertions are equivalent for an irreducible 3-manifold M and an exact sequence $1 \to K \to \pi_1(M) \to \mathbb{Z} \to 1$:

- K is finitely generated;
- K is the fundamental group of a surface F;
- There is a locally trivial fiber bundle $F \to M \to S^1$ with a surface F as fiber such that the induced sequence

$$1 \to \pi_1(F) \to \pi_1(E) \to \pi_1(S^1) \to 1$$

can be identified with the given sequence.
Conjecture (Thurston’s Virtual Fibering Conjecture)

Let M be a closed hyperbolic 3-manifold. Then a finite covering of M fibers over S^1, i.e., is the total space of a surface bundle over S^1.

- A locally compact surface bundle $F \to E \to S^1$ is the same as a selfhomeomorphism of the surface F by the mapping torus construction.
- Two surface homeomorphisms are isotopic if and only if they induce the same automorphism on $\pi_1(F)$ up to inner automorphisms.
- Therefore mapping class groups play an important role for 3-manifolds.
Theorem (Agol, [1])

The Virtually Fibering Conjecture is true.

Definition (Graph manifold)

An irreducible 3-manifold is called graph manifold if its JSJ-splitting contains no hyperbolic pieces.

- There are aspherical closed graph manifolds which do not virtually fiber over S^1.
- There are closed graph manifolds, which are aspherical, but do not admit a Riemannian metric of non-positive sectional curvature.
- Agol proved the Virtually Fibering Conjecture for any irreducible manifold with infinite fundamental group and empty or incompressible toral boundary which is not a closed graph manifold.
Actually, Agol, based on work of Wise, showed much more, namely that the fundamental group of a hyperbolic 3-manifold is virtually compact special. This implies in particular that they occur as subgroups of RAAG-s (right Artin angled groups) and that they are linear over \mathbb{Z} and LERF (locally extended residually finite). For the definition of these notions and much more information we refer for instance to Aschenbrenner-Friedl-Wilton [2].
On the fundamental groups of 3-manifolds

- The fundamental group plays a dominant role for 3-manifolds what we want to illustrate by many examples and theorems.

- A 3-manifold is prime if and only if $\pi_1(M)$ is prime in the sense that $\pi_1(M) \cong G_0 \ast G_1$ implies that G_0 or G_1 are trivial.

- A 3-manifold is irreducible if and only if $\pi_1(M)$ is prime and $\pi_1(M)$ is not infinite cyclic.

- A 3-manifold is aspherical if and only if its fundamental group is infinite, prime and not cyclic.

- A 3-manifold has infinite cyclic fundamental group if and only if it is homeomorphic to $S^1 \times S^2$.
Let M and N be two prime closed 3-manifolds whose fundamental groups are infinite. Then:

- M and N are homeomorphic if and only if $\pi_1(M)$ and $\pi_1(N)$ are isomorphic.
- Any isomorphism $\pi_1(M) \xrightarrow{\cong} \pi_1(N)$ is induced by a homeomorphism.

Let M be a closed irreducible 3-manifold with infinite fundamental group. Then M is hyperbolic if and only if $\pi_1(M)$ does not contain $\mathbb{Z} \oplus \mathbb{Z}$ as subgroup.

Let M be a closed irreducible 3-manifold with infinite fundamental group. Then M is a Seifert manifold if and only if $\pi_1(M)$ contains a normal infinite subgroup.
A closed Seifert 3-manifold carries precisely one geometry and one can read off from $\pi_1(M)$ which one it is:

- S^3

 $\pi_1(M)$ is finite.

- \mathbb{R}^3

 $\pi_1(M)$ contains \mathbb{Z}^3 as subgroup of finite index.

- $S^2 \times \mathbb{R}$

 $\pi_1(M)$ is virtually cyclic.

- $H^2 \times \mathbb{R}$

 $\pi_1(M)$ contains a subgroup of finite index which is isomorphic to $\mathbb{Z} \times \pi_1(F)$ for some closed surface F of genus 2.

- $\tilde{SL}_2(\mathbb{R})$

 $\pi_1(M)$ contains a subgroup of finite index G which can be written as a non-trivial central extension $1 \to \mathbb{Z} \to G \to \pi_1(F) \to 1$ for a surface F of genus ≥ 2.

- Nil

 $\pi_1(M)$ contains a subgroup of finite index G which can be written as a non-trivial central extension $1 \to \mathbb{Z} \to G \to \mathbb{Z}^2 \to 1$.

Definition (deficiency)

The deficiency of a finite presentation \(\langle g_1, \ldots, g_m \mid r_1 \ldots, r_n \rangle \) of a group \(G \) is defined to be \(m - n \).

The deficiency of a finitely presented group is defined to be the supremum of the deficiencies of all its finite presentations.

Lemma

Let \(M \) be an irreducible 3-manifold. If its boundary is empty, its deficiency is 0. If its boundary is non-empty, its deficiency is \(1 - \chi(M) \).
We have already mentioned the following facts:

- The fundamental group of a 3-manifold is residually finite, Hopfian and has a solvable word and conjugacy problem.
- If M is closed, $\pi_1(M)$ has a solvable isomorphism problem.
- There is a complete list of those finite groups which occur as fundamental groups of closed 3-manifolds. They all are subgroups of $SO(4)$.
- The fundamental group of a hyperbolic 3-manifold is virtually compact special and linear over \mathbb{Z}.
Some open problems

Definition (Poincaré duality group)

A Poincaré duality group G of dimension n is a finitely presented group satisfying:

- G is of type FP;
- $H^i(G; \mathbb{Z}G) \cong \begin{cases} 0 & i \neq n; \\ \mathbb{Z} & i = n. \end{cases}$

Conjecture (Wall)

Every Poincaré duality group is the fundamental group of an aspherical closed manifold.
Conjecture (Cannon’s Conjecture in the torsionfree case)

A torsionfree hyperbolic group G has S^2 as boundary if and only if it is the fundamental group of a closed hyperbolic 3-manifold.

Conjecture (Bergeron-Venkatesh)

Suppose that M is a closed hyperbolic 3-manifold. Let

$$\pi_1(M) = G_0 \supseteq G_1 \supseteq G_2 \supseteq$$

be a nested sequence of normal subgroups G_i of finite index of $\pi_1(M)$ with $\bigcap_i G_i = \{1\}$. Let $M_i \to M$ be the finite covering associated to $G_i \subseteq \pi_1(M)$. Then

$$\lim_{i \to \infty} \frac{\ln(\|\text{tors}(H_1(G_i))\|)}{[G : G_i]} = \frac{1}{6\pi} \cdot \text{vol}(M).$$
Let M be an aspherical 3-manifold with empty or toroidal boundary with fundamental group $G = \pi_1(M)$, which does not admit a non-positively curved metric.

1. Is G linear over \mathbb{C}?

2. Is G linear over \mathbb{Z}?

3. If G is not solvable, does it have a subgroup of finite index which is for every prime p residually finite of p-power?

4. Is G virtually bi-orderable?

5. Does G satisfy the Atiyah Conjecture about the integrality of the L^2-Betti numbers of universal coverings of closed Riemann manifolds of any dimension and fundamental group G?

6. Is the group ring $\mathbb{Z}G$ a domain?
Questions

- Does the isomorphism problem has a solution for the fundamental groups of (not necessarily closed) 3-manifolds?
- Does the homeomorphism problem has a solution for (not necessarily closed) 3-manifolds?
I. Agol.
The virtual Haken conjecture.
With an appendix by Agol, Groves, and Manning.

M. Aschenbrenner, S. Friedl, and H. Wilton.
3-manifold groups.
Zürich: European Mathematical Society (EMS), 2015.

D. Gabai.
Convergence groups are Fuchsian groups.

J. Hempel.
3-Manifolds.
Ann. of Math. Studies, No. 86.

W. H. Jaco and P. B. Shalen.
Seifert fibered spaces in 3-manifolds.
K. Johannson.
Homotopy equivalences of 3-manifolds with boundaries.

J. Morgan and G. Tian.
The geometrization conjecture, volume 5 of *Clay Mathematics Monographs*.
American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2014.

P. Scott.
The geometries of 3-manifolds.

J. Stallings.
On fibering certain 3-manifolds.