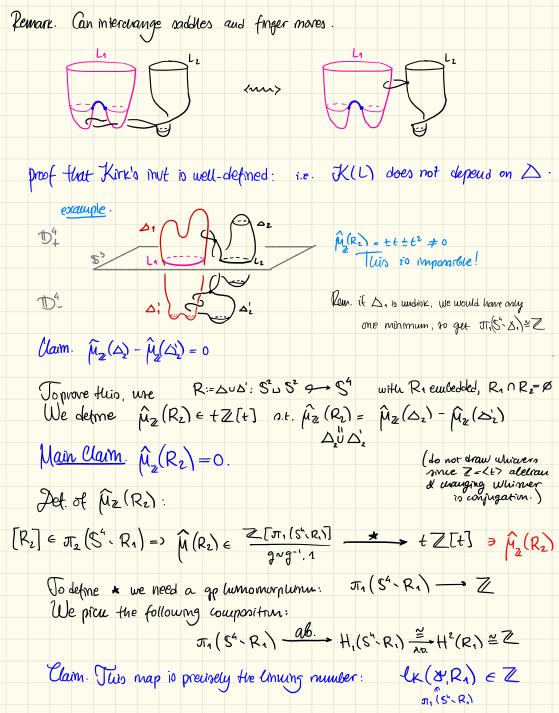
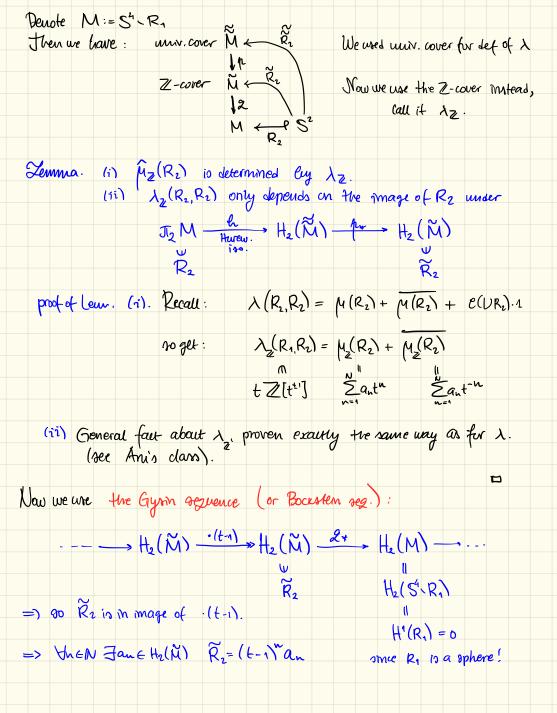


Corollary.	YneZ[t]	JL=(ununot, L	2) a.t. K	((L) = n.
	· I I I I			T T
1	$n(t) = \sum_{n=1}^{N} a_n t^n$	for ±tn	do as above.	
	w.e1			
Lı	L ₂	Need (an) man	y	
	(n)	arcs that all	(mn	
		L, n times.		
	Sourch J	"We are undoing Lz	in the complement of	t Land counting
	our mut does not -tm doe this	the linking number	of Lywith dow	ble-point loops &p.
Different choice	es for 8084	- the auidma are	s for finger mon	res
give cimus	with same XC	- the guiding ard	1 0	
0 -		e.g. L1	7	L ₂
lim	nvt does not see thi	s difference!		
	2 can even not be			
	KLL) could va			
: K(C) does not detect	glice	-tn	
			anying	
L	Lı			
HW.				
			\\	
5				
		THE 3		
hote Da is not			\mathcal{I}	^ .
blue =				time
gleen	= guiding arc			
	for finger more			





λ₂(R₂, R₂) = λ₂((t-1 an, (t-1 an) It follows that: = (t-1)" (t--1)" /2 (an,an) =) $(t-1)^n | \lambda_2(\tilde{R}_2,\tilde{R}_2)$ for all n in $\mathbb{Z}[t,t^{-1}]$ 4 since unique factors. obman. $= 1 \quad \lambda_{2}(\widetilde{R}_{2}, \widetilde{R}_{2}) = 0$ Nov 8th Recall: Me connected ruffs, n > 1 Class 9 µ(f) is (the first) $\int S^{n} \xrightarrow{\text{M}^{2M}} M^{2M} \left\{ + \text{whisher} \right\}$ obstruction for f count 9-9-1,1> being homotoric to înotopy, finger/Whitney move cump move an embedding. Whitney tricu Theorem. For n > 3 we have: $\hat{\mu}(f)$ is the only obstruction i.e. $\hat{\mu}(f) = 0 \implies f \cong \text{embedding}$ Question: n=1? $9 \rightarrow M^2$ Only $\hat{\mu}(f) \in \mathbb{Z}[\pi_1 M/(f_* S^*)]$ well-defined. It it also the only obstr? example. $9 \rightarrow M^4$ f(p)=f(g)picu α . $f(\alpha)$ is a loop! + whisner =1 get an olt $[g_{\ell}] \in T_{\ell}M$. But another choice of an arc or would matter: dx +0 exiT? .

Faut: $(a, 6) \in \mathbb{Z}^2 = \pi_1 \mathbb{T}^2$ is represented by an embedding $S^1 \longrightarrow \mathbb{T}^2$ (HW6) $\angle = >$ a and b coprime. $\angle = >$ (a, b) $\in H_{A}(\mathbb{T}^{2})$ primitive clan. Note: In dm = 4: $\hat{\mu}(f)$ can be zero even if $f \neq emb$. (See Claim on next p) We will see some "higher obstructions" Plemann. Uhitney: $\pi_1 M = 1$ trew any $N^n - M^{2n}$ can be homotoped to $N^n - M^{2n}$. Pemaru. In case: $T_1M = \{1\}$ $T_2M = \{1\}$ $T_3M = \{1\}$ $T_3M = \{1\}$ $T_4M = \{1\}$ Temma. There exists a map: | L: S'US' = S3 | LIML | S conn.or. 4-mflds M | together with | M = S'V S2 | $\frac{1}{\hat{\mu}_{2}(\delta_{2})} + \mathbb{Z}[t] \cong \mathbb{Z}[\mathbb{Z}]$ Given L construct $M_{L} := \mathcal{B}' \setminus \mathcal{V}(\text{Imdisk on } L_{1}) \cup_{L_{2} \times 10^{2}} (\mathcal{D}^{2} \times \mathcal{D}^{2})$ $(\mathcal{D}^{2} \times \mathcal{D}^{2})$ $(\mathcal{D}^{2} \times \mathcal{D}^{2})$ Note: $M_{\perp} \simeq (S^3, \mathring{\nu} L_1) \times I \cup_{L_2 \times D^2} 2$ -handle. $S' \times D^2$ le S'_{m_1}

need ML ~ Sm, UL, 2-cell We claim: M_L ≈ S' V S² because the boundary of the 2-cell is null-hippic in Sim. since lk(L) = 0. Note: la does not depend an choice of \triangle_2 cone of 2-4. Now our diagram in the statement of the Lemma commutes, because d.p. of Dzu core are precisely d.p. of \triangle_2 . => $\hat{\mu}_{\mathbb{Z}}(\triangle_2) = \hat{\mu}(\triangle_2 \cup cove)$. Bring double of a unot K= is the link B(K) =* twish at two blaw straws, untimmed = - Writhe of K. Addendum HW5 (1.1): Bring double of a unot is always a "boundary lime". i.e. The compuneuts L_i bound disjoint Reifert nurfaces F_i . Claim. Let L=B (trefoil). Then $\hat{\mu}(L) \equiv 0$ on $t_2 M_2$. (4) Lout: the generator of $t_2 M_2$ is not represented by an embedding ∇ Bing (fretoil) is not give with $\triangle_1 = undim$. (can prove using L2-signatures).

Kom. Try to prove Kru mut of B (trepoil) is zero directly shrink the trefoil comp. in the complement of the unnot by doing some crossing changes and tracuing what go. ells are. Let n=2 Min connected. A: JIn Man x JIn Man -__ Z[J,M] x is Hermitian from 2 [mM] - bilinear form. Then & is an obstruction to making f, and f2 homotopic to maps with disjoint images. Also in dimension 4 Theorem. I is the only obstruction.

proof. next time! ("the immensed Wu.more"). For higher n again Whitney tricu. We actually get: firste Jin Min Then: they are homotopic to euleddings fi...fi. û(ti)=0 $\lambda(f_i,f_i)=0 \ \forall i\neq j$

Class 10.

Nov 13

Main invariants of a connected 4-manifold M are:

(JT, M, JT, M, 1, MM) quadratic represent

(we'll see secondary of structure!)

The obstruction to realizing [4,], [4,] & T2M by maps with disjoint images.

Recall our examples $M_{L} \simeq S^{1} \vee S^{2}$ $(L_{1}, L_{2}) \simeq S^{1} \vee D^{3} \cup R^{2}$ $\pi_{2} M_{L} \simeq \mathbb{Z}[t^{\pm}]$

A is presented under homotopy equivalences $(M,\partial M) \simeq (M',\partial M')$ which are homeomorphisms on the boundary.

In fact (HWG.16): K(L) can be read off from DML!

Later (An): M, U, M, \cong S¹ × S³ # S² × S² (for framing of h² n=over)

Rumann. (u, \(\text{ are also sefined for } (\mathbb{D}^2, \mathre{D}^2) \) \rightarrow (\mathre{M}^4, \mathre{J}\mathre{M})\)
We need not close \(\text{\text{\text{\text{\text{\text{d}}}}} \) above to a sphere: Vnote: tuis generic

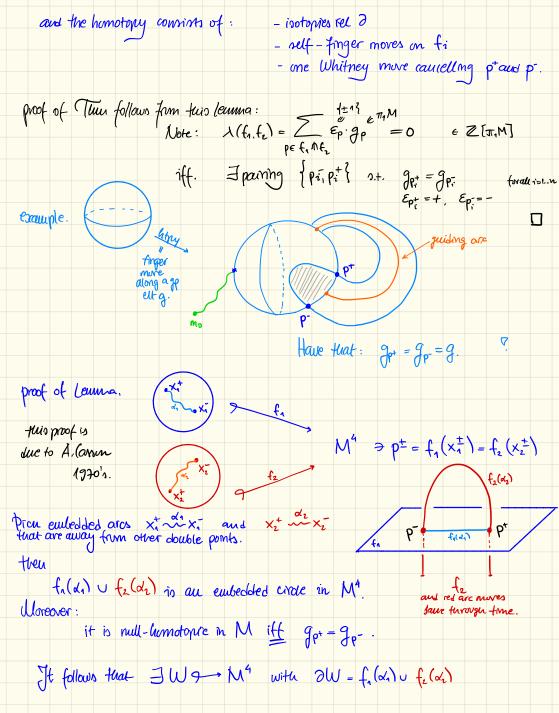
 $\triangle_2: (\mathbb{D}^2, \partial) \xrightarrow{} (\mathbb{S}^1 \times \mathbb{D}^3, \mathbb{S}^1 \times \mathbb{S}^2)$ $\mathbb{S}^1 \xrightarrow{} \mathbb{S}^1 \times \mathbb{D}^2$ $\mathbb{S}^2 \xrightarrow{} \mathbb{S}^1 \times \mathbb{D}^2$ => 2D2 c→ 2M

So raw count double points as before to get λ , $\hat{\mu}$. They do not change under homotopies of $(\mathbb{D}^2, \partial) \longrightarrow (M, \partial)$ as long as they restrict to isotopies on ∂ . 3 Note: can calculate λ , $\hat{\mu}$ for a sphere by remering a small direct and calculating λ , $\hat{\mu}$ on the direct = remaining complement Theorem. Given $f: (D^2 \cup D^2, \partial) \xrightarrow{(f_1, f_2)} (M^4, \partial)$ we have: $\lambda([f_1],[f_2])=0$ \iff $f \approx f'$ o.t. $2mf_1 \cap 2mf_2 = \emptyset$ Corollary 1. le $(L_1, L_2) = 0 \iff \exists \Delta' : (\mathbb{D}^2 : \mathbb{D}^2, \partial) \implies (\mathbb{D}^4, \partial)$ with $\partial \Delta' = L$ and $\Delta' : \cap \Delta' : = \emptyset$ lu(L,L) = # D, n D2 EZ O: More Elewentary way to prive Cor 1? $= \lambda \left(\triangle_1, \triangle_2 \right)$ Corollary 2. (HW4.2-61) For $L=(L_1,L_2,L_3)$ s.t. L_1 unmot, $U(L_1,L_1)=U(L_1,L_3)=0$ calculate the Kark invariant for (L_1,L_3) as $\lambda(\Delta_2,\Delta_3)$.

Then $K(L_1,L_3)=0$ iff $\exists \Delta_2,\Delta_3$ diagoint from Δ_1 and $\triangle_2 \cap \triangle_3 = \emptyset$. Geometric Caucellation Theorem (-will imply thun) Set $f: (D^2 D^2, \partial) \rightarrow (M, \partial M)$ o.t. I intens. points $p_+, p_- \in f_1 \cap f_2$ with $g_{p_+} = g_{p_-}$ in $\sigma_1 M$.

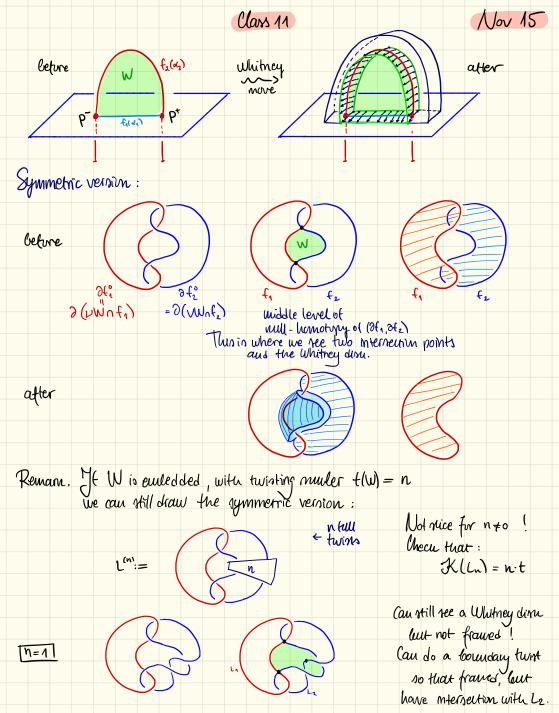
Then there is a homotopy $f \approx f'$ with $g_{p_+} = g_{p_-}$ in $\sigma_1 M$.

Then that: $f'_1 \cap f'_2 = f_1 \cap f_2 - f'_{p_+, p_-}$ and:

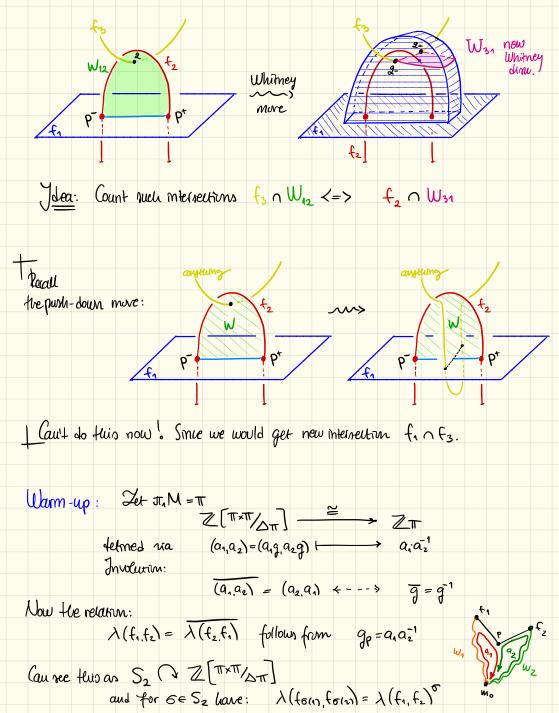


CASE EASY (Embedded): Warrently immened, Assume Wan be chosen sun that (DW fixed!): on not found with 1) W is embedded: W - M fafz. 2) W is famed: t(W) = 0 € Z 3) $W(t_0^2) \cap (f_1 \cup f_2) = \emptyset$. ' Then the Whitney more does the job. proof. Note: V(W) ≅ D4 > we will later reduce to the 2 one E NW n f, rectangle around & W \f_2(d2) E-embelded - framed - no mercul PW n fz terrangre around &z. and red arc moves Same through time. to form its rectangle It gives an associated invariant 2; = unit veltor field along ∂W called the twist number of W: which is: • normal to W · non-vaccisting t(W) := (e(NW2), [W3]) Choice of mu 3 gives taugeut to fa N(M)=D, =D, xI Z 1 normal to f₂ Itaning that t(W)=0 tells us that we can indeed draw DW as * and find W exactly as embedded dim there: $W \in \mathbb{D}^3 = \text{normal boundle of } W \text{ along } \mathcal{Z}_1$.

Now do the Whitney move and note:	3) => no new interneutrus
	between for a fe.
General Case: Pedice to E in 3 steps:	of ane E.
1) Arrange that W is frame	
27 Arrange that W io eule	70000
3) Arrange that Ø=W(1) a (f.uf.) need next-finger
	moves on fa / on fz
1): Weara point in 2Wnf1	
m W by the	W = x I
Coundary turist	/ x I
and obtain W':	
w' = 24 humotopy	
isotopy, humotopy,	humotopy, isotopy.
£v	
mother picture:	1 more at so interpretate at 11)
Dissu in R° with a line of self-intercection (green). Perturb interior of lower into the part,	Han al
and menior of red into the future to get an immersed dime with 1 d.p.	is new allow the rightness flows the off
	interseum 10 that: of Wand for + (1,1) + 1
2&3): Another tricu:	$t(w) = t(w) \pm 1$.
pushing down intersections	
of W with (toute):	
$= W \operatorname{cr} f_1 \operatorname{or} f_2$	The preimage in $W=D^2$:
I × = Wor from f2 To yet and of two! yet	\mathbb{W} $f_{2}(\alpha_{2})$
not of two! yn,	(• Jean
finger more along	£ 2
awarc in W	we fe fed)
across SW	nua aro
	Mi.



root. pair up double points: $2^{+}, 2^{+}, \cdots p$. $2^{-}, 2^{-}, \cdots p$. get $W^{2} \rightarrow M^{6}$ s.t. (i) W euledded V (ii) $W \cap f = \emptyset$ (iii) roon-vauintung nurmal vector field: $V \cap W \cap f = \emptyset$ no obstruction to finding a section $\mathcal{F}_{F}_{\mathcal{F}_{\mathcal{F}_{\mathcal{F}_{\mathcal{F}_{\mathcal{F}_{\mathcal{F}_{\mathcal{F}_{\mathcal{F}_{\mathcal{F}_{\mathcal{F}_{\mathcal{F}_{\mathcal{F}_{F$	HIGH DIMENSIONAL CASE: 7:53 9- M6
pair up obable points: $g, \stackrel{*}{}, 2, \stackrel{*}{} \longmapsto p$. $g, \stackrel{*}{}, 2, \stackrel{*}{} \longmapsto p$. $g, \stackrel{*}{}, 2, \stackrel{*}{} \longmapsto p$. $g, \stackrel{*}{}, 2, \stackrel{*}{} \mapsto p$. $g, \stackrel{*}{}, 2, \stackrel{*}{}, 2, \stackrel{*}{} \mapsto p$. $g, \stackrel{*}{}, 2, \stackrel{*}{}, 2, \stackrel{*}{} \mapsto p$. $g, \stackrel{*}{}, 2, \stackrel{*}{}, 2, \stackrel{*}{}, 2, \stackrel{*}{} \mapsto p$. $g, \stackrel{*}{}, 2, \stackrel{*}{}, 2, \stackrel{*}{}, 2, \stackrel{*}{}, 2, \stackrel{*}{}, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,$	$\widehat{\mu}(f) = 0 \iff f$ represented by an endedding
get $W^2 \rightarrow M^6$ s.t. (i) W eucledded \checkmark (ri) \mathring{W} of $f = \emptyset$ \checkmark (rii) non-vacuining normal vector field: $?W$ is 4-dome \Rightarrow no obstruction to finding a section $?$. \square Theorem [Schneiderman-Teichner, AGT 2001.] Assume $f: (\mathbb{D}^2 \cup \mathbb{D}^2 \cup \mathbb{D}^2) \rightarrow (\mathbb{M}^4 \ni)$, where M oriented satisfies: $A_M(f_i, f_i) = 0$ $\forall i \neq j$ Then: $f: o homotopic to f' = \lambda(f_i, f_a, f_b) = 0 \in \mathbb{Z}[\pi_i M \times \pi_i M]$ $f: o homotopic to f' = \lambda(f_i, f_a, f_b) = 0 \in \mathbb{Z}[\pi_i M \times \pi_i M]$ $f: o homotopic to f' = \lambda(f_i, f_a, f_b) = 0 \in \mathbb{Z}[\pi_i M \times \pi_i M]$ $f: o homotopic to f' = \lambda(f_i, f_a) = 0$ $f: f: o homotopic fo f' = \lambda(f_i, f_a) = 0$ $f: f: o homot$	naof.
get $W^2 \rightarrow M^6$ s.t. (i) W eucledded \checkmark (ri) \mathring{W} of $f = \emptyset$ \checkmark (rii) non-vacuining normal vector field: $?W$ is 4-dome \Rightarrow no obstruction to finding a section $?$. \square Theorem [Schneiderman-Teichner, AGT 2001.] Assume $f: (\mathbb{D}^2 \cup \mathbb{D}^2 \cup \mathbb{D}^2) \rightarrow (\mathbb{M}^4 \ni)$, where M oriented satisfies: $A_M(f_i, f_i) = 0$ $\forall i \neq j$ Then: $f: o homotopic to f' = \lambda(f_i, f_a, f_b) = 0 \in \mathbb{Z}[\pi_i M \times \pi_i M]$ $f: o homotopic to f' = \lambda(f_i, f_a, f_b) = 0 \in \mathbb{Z}[\pi_i M \times \pi_i M]$ $f: o homotopic to f' = \lambda(f_i, f_a, f_b) = 0 \in \mathbb{Z}[\pi_i M \times \pi_i M]$ $f: o homotopic to f' = \lambda(f_i, f_a) = 0$ $f: f: o homotopic fo f' = \lambda(f_i, f_a) = 0$ $f: f: o homot$	pair up double points: 2, +, 2, + \rightarrow p+
get $W^2 \rightarrow M^6$ s.t. (i) W euleodded V (rin W of $f = \emptyset$ V (rin) W of $f = \emptyset$ V (rin) W of $f = \emptyset$ V is 4-dome V on obstruction to finding a section V of finding a section V	
(iii) Non-Validing Normal verter field: VU is 4-dime \Rightarrow no obstruction to finding a retire \mathcal{F}_{i} . \square Theorem [Schneiderman-teacher, AGT 2001.] Assume \mathcal{F}_{i} ($\mathbb{D}^{2} \cup \mathbb{D}^{2} \cup \mathbb{D}^{2}$, \mathcal{F}_{i}) \mathcal{F}_{i} ($\mathbb{A}^{4}, \mathcal{F}_{i}$), where \mathbb{M} oriented. Satisfies: Then: In ($\mathcal{F}_{i}, \mathcal{F}_{j}$) =0 $\forall i \neq j$ Then: I is homotopic to \mathcal{F}_{i} with \mathcal{F}_{i} all disjoint a trilinear hermitian \mathcal{F}_{i} Example. $\mathbb{M} = \mathbb{D}^{4}$ and $\mathcal{F}_{i} = \mathcal{F}_{i}$ Community \mathcal{F}_{i} Community \mathcal{F}_{i} Community \mathcal{F}_{i} Then: $\mathcal{F}_{i} = \mathcal{F}_{i}$ Then: \mathcal{F}_{i}	
Numal verter field: ν W is 4-dme => no obstruction to finding a verter τ field: ν W is 4-dme => no obstruction to finding a verter τ . τ . Theorem [Schneiderman-Teichner, AGT 2001.] Assume τ : $(D^2 \cup D^2 \cup D^2, \vartheta) \rightarrow (M^4, \vartheta)$, where τ oriented satisfies: Then: τ is homotopic to τ if τ is homotopic to τ in	get W ² → M ⁶ s.t. (i) W euledded ~
nurmal vertur field: pW is 4-dime p no obstruction to p no obstruction to p finding a section p	(ii) $\hat{W} \cap \hat{f} = \emptyset$
Theorem [Schneiderman-Teichner, AGT 2001.] Assume $f: (D^2 \cup D^2 \cup D^2$	(iii) non-vauinung
Theorem [Schneideman: Teichner, AGT 2001.] Assume $f: (D^2 \cup D^2 \cup D^2) \rightarrow (M^4, \partial)$, where M oriented, satisfies: $\lambda_M (f_i, f_j) = 0 \forall i \neq j$ Then: $f \text{ is homotoric to } f'$ with f'_i all disjoint $\begin{cases} a \text{ trilinear bermitian} \\ \text{form} \end{cases} \begin{cases} x_i M \times \pi_i M \end{cases}$ Example. $M = D^4$ and $\partial f' = \text{Bossomean linus}$ $\text{How:} \lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 \in \lambda(f_i, S) = 0$	normal vector field: VW is 4-dime
Theorem [Schneideman: Teichner, AGT 2001.] Assume $f: (D^2 \cup D^2 \cup D^2) \rightarrow (M^4, \partial)$, where M oriented, satisfies: $\lambda_M (f_i, f_j) = 0 \forall i \neq j$ Then: $f \text{ is homotoric to } f'$ with f'_i all disjoint $\begin{cases} a \text{ trilinear bermitian} \\ \text{form} \end{cases} \begin{cases} x_i M \times \pi_i M \end{cases}$ Example. $M = D^4$ and $\partial f' = \text{Bossomean linus}$ $\text{How:} \lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 \in \lambda(f_i, S) = 0$	=> no obstruction to
Then: $ \lambda_{M}(f_{i}, f_{j}) = 0 \forall i \neq j $ $ f \text{ is homotopic to } f'_{i} \forall f'_{i} \text{ all disjoint} $ $ \lambda_{M}(f_{i}, f_{j}) = 0 \forall i \neq j $	
Then: $ \lambda_{M}(f_{i}, f_{j}) = 0 \forall i \neq j $ $ f \text{ is homotopic to } f'_{i} \forall f'_{i} \text{ all disjoint} $ $ \lambda_{M}(f_{i}, f_{j}) = 0 \forall i \neq j $	Theorem Chreiderman-Teichner, AGT 2001.
Then: $ \lambda_{M}(f_{i}, f_{j}) = 0 \forall i \neq j $ $ f \text{ is homotopic to } f'_{i} \forall f'_{i} \text{ all disjoint} $ $ \lambda_{M}(f_{i}, f_{j}) = 0 \forall i \neq j $	Assume $f: (\mathbb{D}^2 \cup \mathbb{D}^2 \cup \mathbb{D}^2, \partial) \rightarrow (M^4, \partial)$, where M oricited.
F is homotopic to f' with f'_i all disjoint a trilinear hermitian for $S \in \mathcal{I}_2 M$. Example. $M = D^4$ and $\partial f = \text{Borromean limps}$ then: $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ C In fact this is called the Milner invariant $M_{123}(L)$ of this 3-component lime $L = \partial f$ with $F_i \cap L_j = \emptyset$ $V_i \neq j$ with $F_i \cap L_j = \emptyset$ $V_i \neq j$ then:	Natinfres:
F is homotopic to f' with f'_i all disjoint a trilinear hermitian for $S \in \mathcal{I}_2 M$. Example. $M = D^4$ and $\partial f = \text{Borromean limps}$ then: $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ C In fact this is called the Milner invariant $M_{123}(L)$ of this 3-component lime $L = \partial f$ with $F_i \cap L_j = \emptyset$ $V_i \neq j$ with $F_i \cap L_j = \emptyset$ $V_i \neq j$ then:	$\lambda_{M}(f_{i},f_{j})=0$ $\forall i\neq j$
F is homotopic to f' with f'_i all disjoint a trilinear hermitian for $S \in \mathcal{I}_2 M$. Example. $M = D^4$ and $\partial f = \text{Borromean limps}$ then: $\lambda(f_1, f_2, f_3) = \pm 1 \in \lambda(f_i, S) = 0 = \mathbb{Z}$ C In fact this is called the Milner invariant $M_{123}(L)$ of this 3-component lime $L = \partial f$ with $F_i \cap L_j = \emptyset$ $V_i \neq j$ with $F_i \cap L_j = \emptyset$ $V_i \neq j$ then:	Theu:
Example. $M = D'$ and $\partial f = Borromean lines \frac{\mathbb{Z}[1 \times n]}{\lambda(f_1, f_2, f_3)} = \pm 1 \in \frac{\mathbb{Z}[1 \times n]}{\lambda(f_i, s)} = 0 = \mathbb{Z} C \text{ In fact this is called the Milner invariant Mass (L)} of this 3-component lines L= 2f With F_i \cap L_j = \emptyset \forall i \neq j with lineing numbers With F_i \cap L_j = \emptyset \forall i \neq j u(L_i, L_j) = 0 Here:$	f is himotopic to f' \(\lambda(\xi_1, \xi_2, \xi_3) = 0\) \(\int \text{platem common fine}\)
Example. $M = D'$ and $\partial f = Borromean lines \frac{\mathbb{Z}[1 \times n]}{\lambda(f_1, f_2, f_3)} = \pm 1 \in \frac{\mathbb{Z}[1 \times n]}{\lambda(f_i, s)} = 0 = \mathbb{Z} C \text{ In fact this is called the Milner invariant Mass (L)} of this 3-component lines L= 2f With F_i \cap L_j = \emptyset \forall i \neq j with lineing numbers With F_i \cap L_j = \emptyset \forall i \neq j u(L_i, L_j) = 0 Here:$	with f_i all disjoint $\stackrel{\text{def}}{=}$
Example. $M = D'$ and $\partial f = Borromean lines \frac{\mathbb{Z}[1 \times n]}{\lambda(f_1, f_2, f_3)} = \pm 1 \in \frac{\mathbb{Z}[1 \times n]}{\lambda(f_i, s)} = 0 = \mathbb{Z} C \text{ In fact this is called the Milner invariant Mass (L)} of this 3-component lines L= 2f With F_i \cap L_j = \emptyset \forall i \neq j with lineing numbers With F_i \cap L_j = \emptyset \forall i \neq j u(L_i, L_j) = 0 Here:$	a trilinear bermitian for S∈ T2M.
Example. $M = D'$ and $\partial f = Borromean lines \frac{\mathbb{Z}[1 \times n]}{\lambda(f_1, f_2, f_3)} = \pm 1 \in \frac{\mathbb{Z}[1 \times n]}{\lambda(f_i, s)} = 0 = \mathbb{Z} C \text{ In fact this is called the Milner invariant Mass (L)} of this 3-component lines L= 2f With F_i \cap L_j = \emptyset \forall i \neq j with lineing numbers With F_i \cap L_j = \emptyset \forall i \neq j u(L_i, L_j) = 0 Here:$	- John
Here: $\lambda(f_1, f_2, f_3) = \pm 1 \in \mathbb{Z}[1 \times n]$	Example. M=D4 and If = Borromean linus
$\lambda(f_1, f_2, f_3) = \pm 1 \in \overline{\lambda(f_i, S)} = 0 = \overline{L}$ $L \text{ In fact this is called the Milner invariant Mass(L)}$ of this 3-component lime L=2f With $F_i \cap L_j = \emptyset$ $\forall i \neq j$	
If $F_i \hookrightarrow S^3$ are Seifert surfaces for Li with linuing numbers with $F_i \cap L_j = \emptyset$ $\forall i \neq j$ $\forall i \neq j$ $\forall i \neq j$ $\forall i \neq j$	$\lambda(f_1,f_2,f_3) = \pm 1 \epsilon {\lambda(f_i,S)} = 0 = \mathbb{Z}$
If $F_i \hookrightarrow S^3$ are Seifert surfaces for Li with linuing numbers with $F_i \cap L_j = \emptyset$ $\forall i \neq j$ $\forall i \neq j$ $\forall i \neq j$ $\forall i \neq j$	1 To Court this so called the Milyer marginet M. (1)
If $F_i \hookrightarrow S$ are Seifert surfaces for Li with linuing numbers with $F_i \cap L_j = \emptyset$ $\forall i \neq j$	of this 3 course out they in
	The First Component with Linear March 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	with Fig. 1 - a de la
	11 cy - 0 71 # 3 W(Li, Li,) = 0
$(M_{123}(L) = \# F_1 \wedge F_2 \wedge F_3$	1123 (4) 7 11 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1



Now define:	
Now define: $\pi \times \pi \times \pi$ $\supset S_3$ $(g_1, g_2, g_3) := sgn(6) \cdot (g_{6(1)}, g_{6(2)}, g_{$	6(31)
We will define $\lambda(f_1, f_2, f_3)$ (my here which is "S3-hermitian" $\lambda(f_{\sigma(x)}, f_{\sigma(x)}, f_{\sigma(x)}) = \lambda(f_1, f_2, f_3)^{\sigma}$	
to be to be to the whimsen: a tree who will whimsen: a tree	662
Definition. $ \lambda\left(f_{a},f_{2},f_{3}\right) = \sum_{G \in S_{3}} \sum_{p \in W_{GMG(x)}} A f_{G(3)} $ $ \xi_{p} \cdot \left(Q_{a}(p), Q_{2}(p), Q_{3}(p)\right) $ $ \xi_{p} \cdot \left(Q_{a}(p), Q_{2}(p), Q_{3}(p)\right) $ $ \xi_{p} \cdot \left(Q_{a}(p), Q_{2}(p), Q_{3}(p)\right) $	
whore we denote: a.(p) = lwhimer to b.i. · (path from b.i. to bwi) · (path from bwi) to mo). of a	
	fh.

Theorem [ST2001] M4 connoniented, TI=TIAM

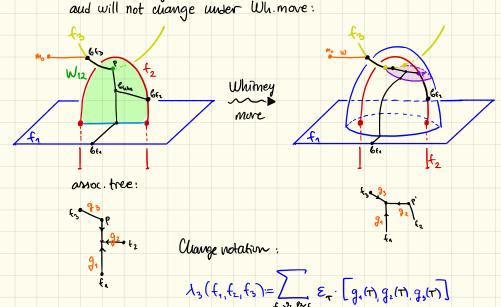
whitness chosen (up to homotopy rel 2)

by a map with 3 disjoint images Iff $\lambda(f_i,f_j)$, $\forall i \neq j$ and $\lambda_s(f)$ vanish. where:

 $\lambda\left(f_{i_{1}}f_{j_{1}}\right) = \sum_{\substack{\text{petinf}_{i}\\\text{ces}}} \xi_{p} g_{p} \in \mathbb{Z}\pi \quad \text{and} \quad \lambda_{3}\left(f_{1_{1}}f_{2_{1}}f_{3}\right) = \sum_{\substack{\text{pelwijh } f_{k}\\\text{pelwijh } f_{k}}} \xi_{p} \cdot \left[g_{1}(p), g_{2}(p), g_{3}(p)\right]$

 $T = {}^{r_1} {}^{3} {}^{r_2} {}^{r_2} \in \mathbb{Z}[\pi^3 / \pi]$ These are himotopy rel & invariants. Verall. $\lambda(f_i, f_j) = 0$ **/=**> 3 Wij = Whitney dim pairing intersections fi Mtj

(can make it empedded a trained a disjoint from fix fi) but cau't control Wij nfx! Heme: 12 will precisely measure this



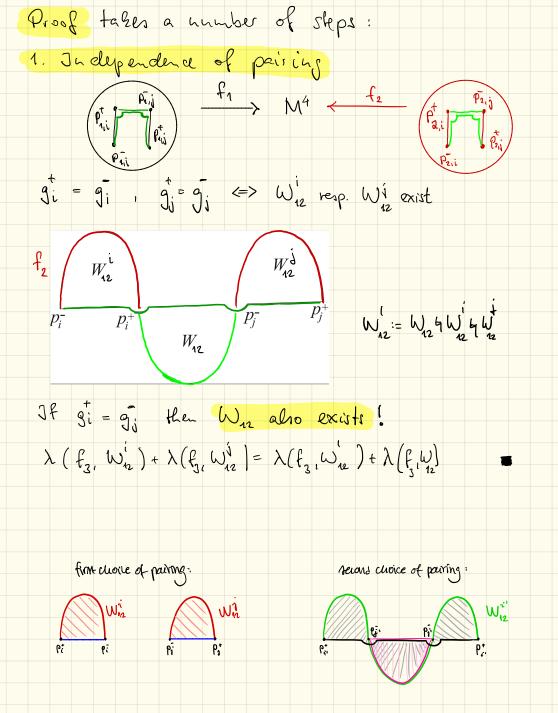
(O _{nta}	utatio	: 4N																	
			oneuted	winen	(1·	ψ (,	ure c	mew	ted	i.	.e.	Hav	eρ	arc	,			
			<u></u>	aud			•						Hav Pe.	Pe	ė	÷ (,	wί	i .	
		(9)	oneut.of M									βέ, vifa		90	ء م	7 ₀ .		
fr.	4	/					_	,							o re		1 1/2		
1.1.1	PI	\		amure	\Rightarrow		W	ų.	is c	meu	ted	ley	goi	ng .	fron	n			
Wg	,]		i <j< th=""><th></th><th></th><th></th><th>p⁻</th><th>6</th><th>ρ[†]</th><th>а</th><th>long</th><th>fi</th><th>a</th><th>ud</th><th>6++</th><th>, b_</th><th>alone</th><th>g fj</th></j<>				p ⁻	6	ρ [†]	а	long	fi	a	ud	6++	, b_	alone	g fj
R		Pc.															0		
				=	=>	H	t a	sign	. of	av	ry_	in ter	relti	m	υ(-	W	lij u	ith.	€k
\sim	,																		
20	ummo	દ .	= مح	ε _{ρ'} .		U	Me	zvei	we.		ک	Lg.(01.920	ρ). '	93(b)		1. II.		_
4	laim	(Has Maiso	ام	الله	ihaa	. d:	04.4		(1)	una	nang	ed	una	ier	Wn	·vnov	č
U	,uuii).		isang	the papies	िर	W	ATME	y vi	1W2	\\.	ı	۱۸/	i	u/	i na				
			Naming	all (nm-n	enect	(ma)	l ih	tense	ሂሐኒነ	113	(2 , / 01	o no	31 1 + 2e/	4-1	cs Hevi	reum	(ano		
		4	ben	the choice all (non-n	٢	Ü								1					
				$\lambda_3(f_0,f_2)$ defined!	£3,	W_{i}	i 2, M	J;	Wz	i 3	ϵ	1	<u> </u>	_ ₂ √	sт]				
			io	, _		7		-01/I	ما م	ب ۱۱۱۲.	مويل:		10.0	2.Y	z-f	oc lo	-1 -	^	
			Well.	defined!		ļu	CI OL	au	בני נג	<u>w</u>	CTIO	9 (0)	DEI	<u>w</u>	۲۰	UI CACA	± m	24.	
φ_{I}	,												_ 9		-				
U	aum.		13(+	(w) =	λ	3(+	: ; Y	U)	1ì	r .		π]. NI	Т	_				
μ	weuni	. /	13 (460	n, forn, forn):	= /\ ₃	(+1,	t2,t	3)											
D	10L H	T	NT C	- Z[π³⁄Δ1	Γ,	an	£1	lows											
	9.50			3	9.	- 2 - 2	Joi	(000		3	۱.	92/2				92	77 .		
	typi	cal 6	demeut	$\sum_{i}^{3} n_{i}^{\frac{3}{3}}$	Vai				let		1		;=	5	- n	·Y	91		
	0,			í	191							λ _Λ		1			01		
												7	at .	1.					
									auc	nv.	nila	arly	93	Ý	'				
												•		1,	14				

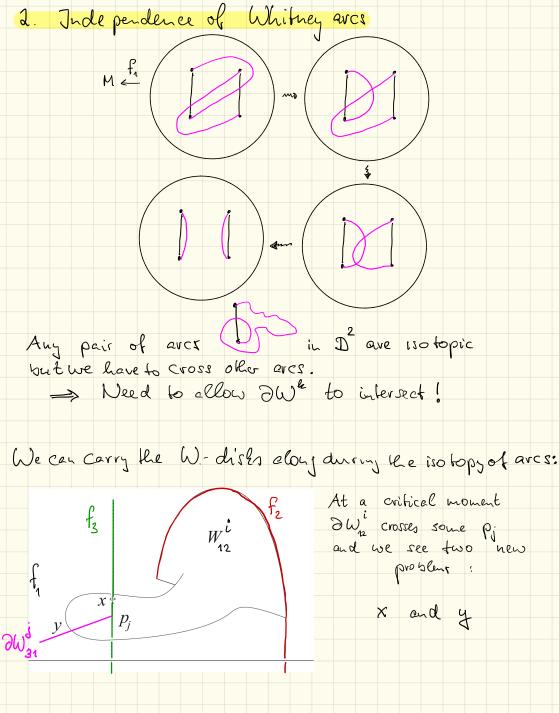
INT is the Z-span of: 30 1(6,5) A(6,5) for all S∈ JI2M 91.92.93 € TT. proof of THM: Let S be any ophere in M. Step 1. These relations are necessary: Tube Waz mto S: problems Get W12 20 Hear: $\lambda_3(f,W') = \lambda_3(f,W) + \lambda(6,5)$ $\int_{\mathbb{R}^{2}} \mathbb{R}^{2} \cdot \lambda_{s}(f; w) = \lambda_{s}(f; w')$ if W' changed by the following choices: 5) ways to pair f. In f. 2 (en oborous b) choices of Whitney arcs 2Wij . Next time. c) choices of the interior Wij. wave a ophere S from two choices. $\lambda_3(f, W') = \lambda_3(f, W)$

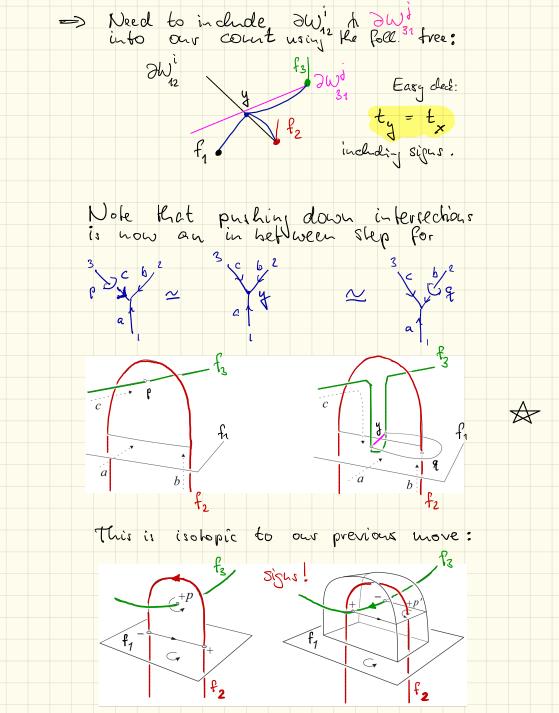
Step 3. $\lambda_3(f) = \lambda_3(f')$ if	fãf'
proof. f' differs from f by:	TSOTOPY CUSP HOMOTOPY
	FINGER / WHITNEY MOVES.
isotopy: Ambreut Joseph Theorem	for Mable maps.
oaying:	isotopy embeds into an ambient isotopy
	i.e. diffeotopies on domain and range realizing isotrpy f ~~ f'.
So tou	ve W for f and drag it along
uam	the ambient isotopy.
CUSP HOMOTOPY: only produces sel	4-mtersections, so irrelovant.
FÎNGER MOVE: fixed f. W.	
do finger move, ger	ta dean Wh. digu Next Time.
Step 4.	
Step 4. W12 Politic Gen.	
f., 66.	
66.	
	Mu.

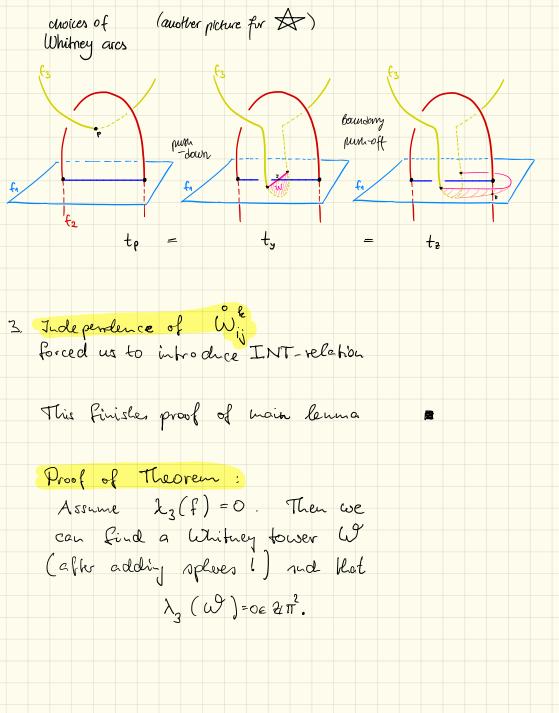
Class 13 Nov 22 Theorem: [S-T] M connected, oriented 4-uld, T:= Ty H f: (DuDuD, 2) e (M, 2) is honolopic vel. I to a nep will 3 disjoint images iff the following inverients venish: Quadretic: $\lambda(f_i, f_j) = Z_i \in \{f_i, f_j\}$ $\lambda(f_i,f_j)=0 \iff \exists \text{ Whitney disks } W_i$ pairing all points in f_i in f_j . Choose an order 1 hon-repeating Whitney tower W = (f, f2, f3, W12, W23, W21) for f λ3 (ω):= = Et [gt, St, St] E ZT

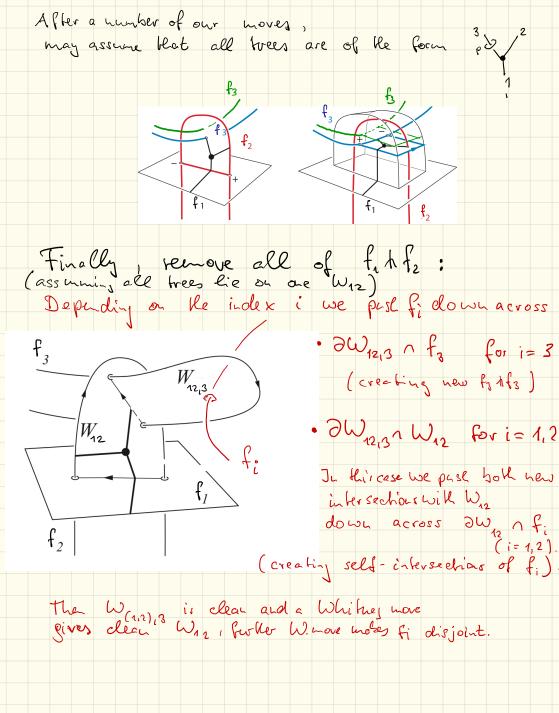
is the cubic intersection invariant for ω. Main Lemma: $\lambda_3(f) := [\lambda_3(w) \in \mathbb{Z} \text{ tr}]$ only depends on 3 2 11 < 93 7 32 ,... / S∈πη> ×(f₁,s) 1 $[f_1]_1[f_2]_1[f_3] \in \pi_2(M, \partial)$

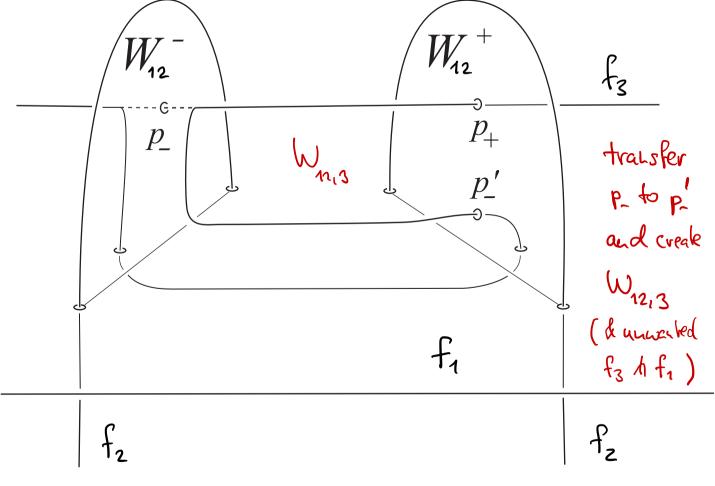


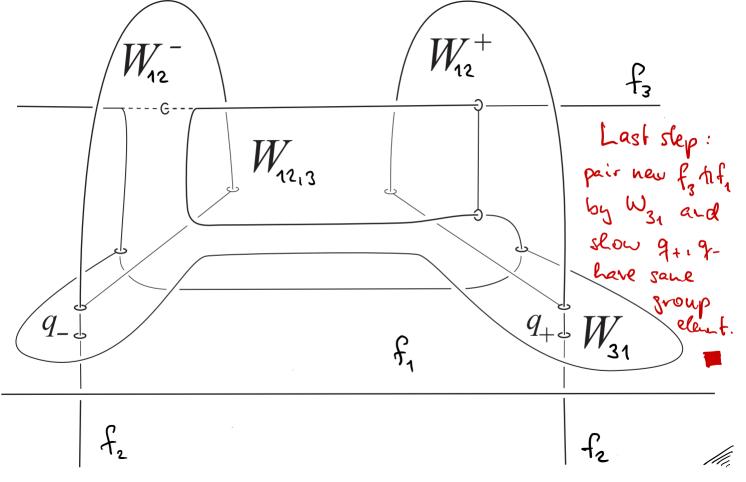












Class 14

Nov 26

Theorem 3. f: (ID2, 3) 9 (M43), M connected, T := J1,M

The following are equivalent:

(i) f and fi.fi.fi have disjoint mages.

obv. If prush down (ii) f extends to a non-repressing Whitney tower of order 2

065.)) transfer more: transfer pair of mer. to the same who discu

(iii) f extends to a non-reproting Whitney tower of order 1 W1= {W12, W23, Will with

(iv) Both $\lambda_2(f)=0$ and $\lambda_3(f)=0 \in \frac{\mathbb{Z}[\pi^2]}{\inf}$

Theorem 4. f: ([D2, 2) s (M4,2), M connected, T = J1M

[S-T2014] The following are equivalent: (i) for and fi have disjoint mages.

obv. I prush down

(ii) f extends to a non-repressing Whitney tower of order m-1 obs.) transfer more: transfer pour of mer. to the same who direc (iii) f extends to a non-repressing Whitney tower of order m-2 Wm-2

with $\lambda_{m}(f, \mathcal{U}_{m-2})=0$ in $\Delta_{m}(\pi)$

(iv) UNKNOWN where should \m (f) live?

esauple

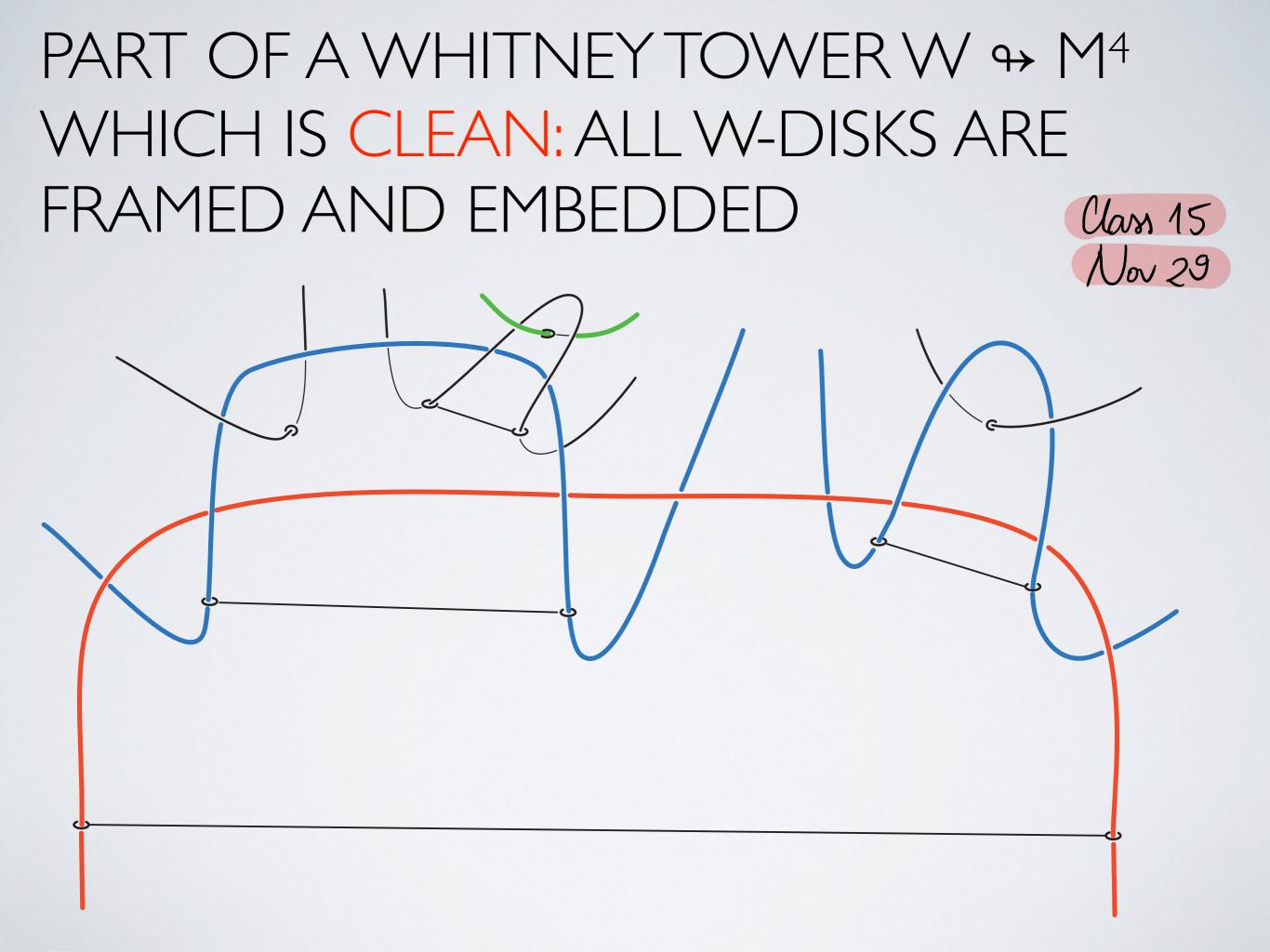
get the interrection tree: m=5 order 3

Wh. tower

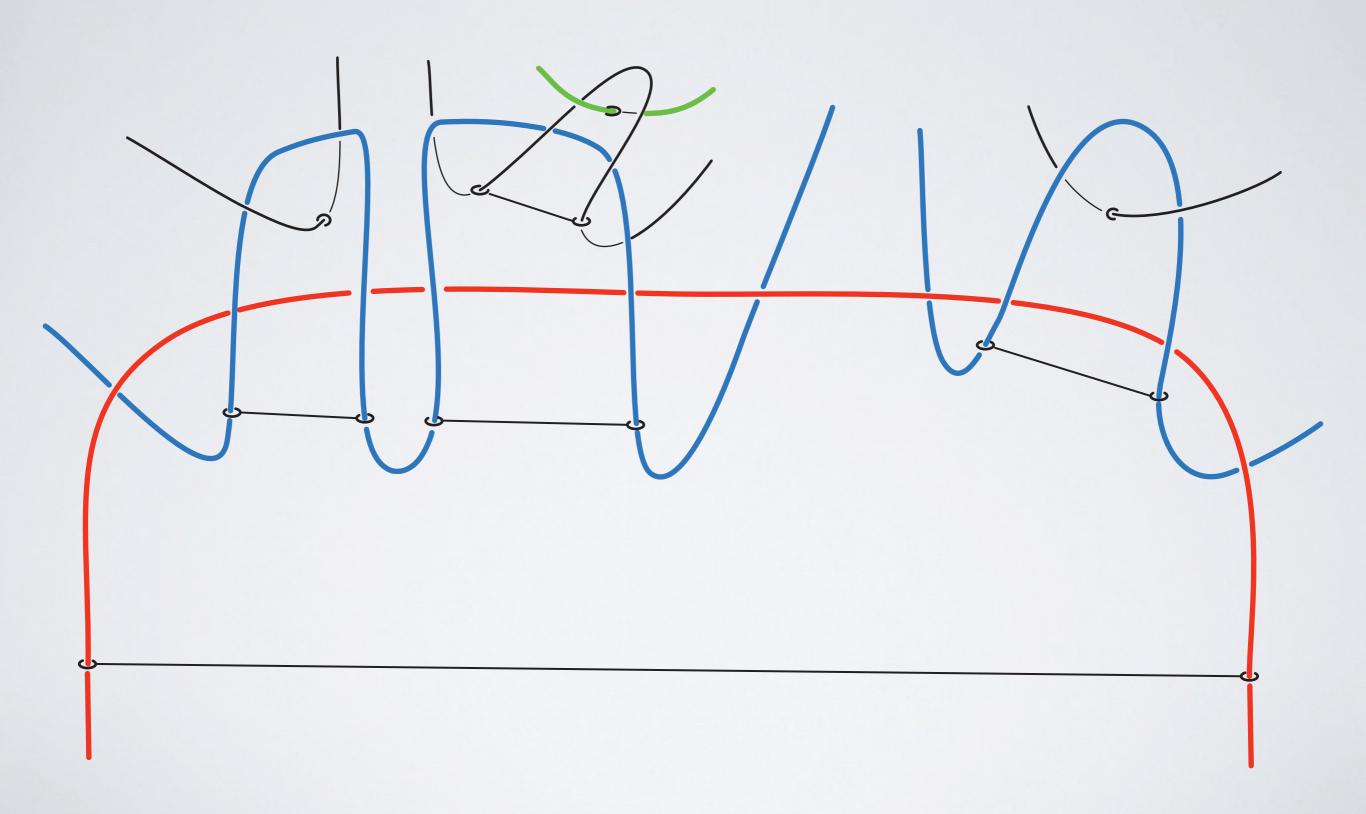
Vocall: Leumna. The little circle 0 can be moved anywhere in the tree. Def. Am(th) is the abelian group generated by uni-trivaleut labelled trees oneuted - univalent vertices - edges oneuted two types of vertices latelled by etts of 11. m3 univalent (< m of them) & trivalent - trivalent vertices have applic order - edges labelled by g∈TT on incident edges modulo: holonumy relation: 3,732 = 3,473,4 onoutation relation: auti-symmetry relation: IHX (Javobi) identity:

example	s. (HW8	8 #2)								
	All elem	reuts in	1 1 m	(tr) are	realitea	l in any	given	(M,3)		
Taue	M=D4	f: ((e , OC	9 (D431			ø		
Theor	ω λ_{κ} ((1) fo	r Kem							
		carres	the a	ame in	formatio	n as	Min ik	(af)!		
							1	mum S ³		
					(Wilnur	7	unum 53		
e.ş.	λ ₂ = 1		\mathfrak{D}	Hornf Cons	ı	invanau	us.			
	λ₂=0	H3=1	()		Borr.m	15/5	Waz	1 2	3	
			É				U	1 2		
					\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	ns double				
	λ,=0 λ	3 = 0	U. = 1		2		Was	4	2 Julya Ws4	/ 4
			(14	9 (1)		BD (Berr)	· 2	W ₁₄		
							1		1	3
Def.	Tk(m) i	s detin	red aimil	arlu as	λ,,(-	T= 40%				
	Court 1	now allo	w neneo	ating inc	dices fro	m the se	'L {1,2,	.m?		
				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			eut verti			
	(1, (2)			0 - 1 (100.						
	Z(m):	2 A =	74 (m)		Ze (w) := jum	live Tu	e(m) except	tees have	a root
	Œ(III)	1R=0	~ K ()		VIEW	3.01	. Ouc Cy	e(m) wapt	TIOS VILVE	(100 -
Course	· ·	(m) 2.	1400 (- 12	alon4o					
	na. Z(-		nerators.			
pro	o / -	2	Z(m)	<u> </u>	L(x	×m				
		\ \		_3	[[v v]	~ 7				
		8			[[^2 , ^3]	^2]				
			2	. ,						
	<hi_< td=""><td>←¥-</td><td>+</td><td>X</td><td>[[xx Xz</td><td>]×1] - [x3</td><td>+ [[,x x],</td><td>[X₂,[x₃,X,</td><td>]] Tawbi</td><td></td></hi_<>	←¥-	+	X	[[xx Xz]×1] - [x3	+ [[,x x],	[X ₂ ,[x ₃ ,X,]] Tawbi	
		/\								
			AS ⊢		AS					

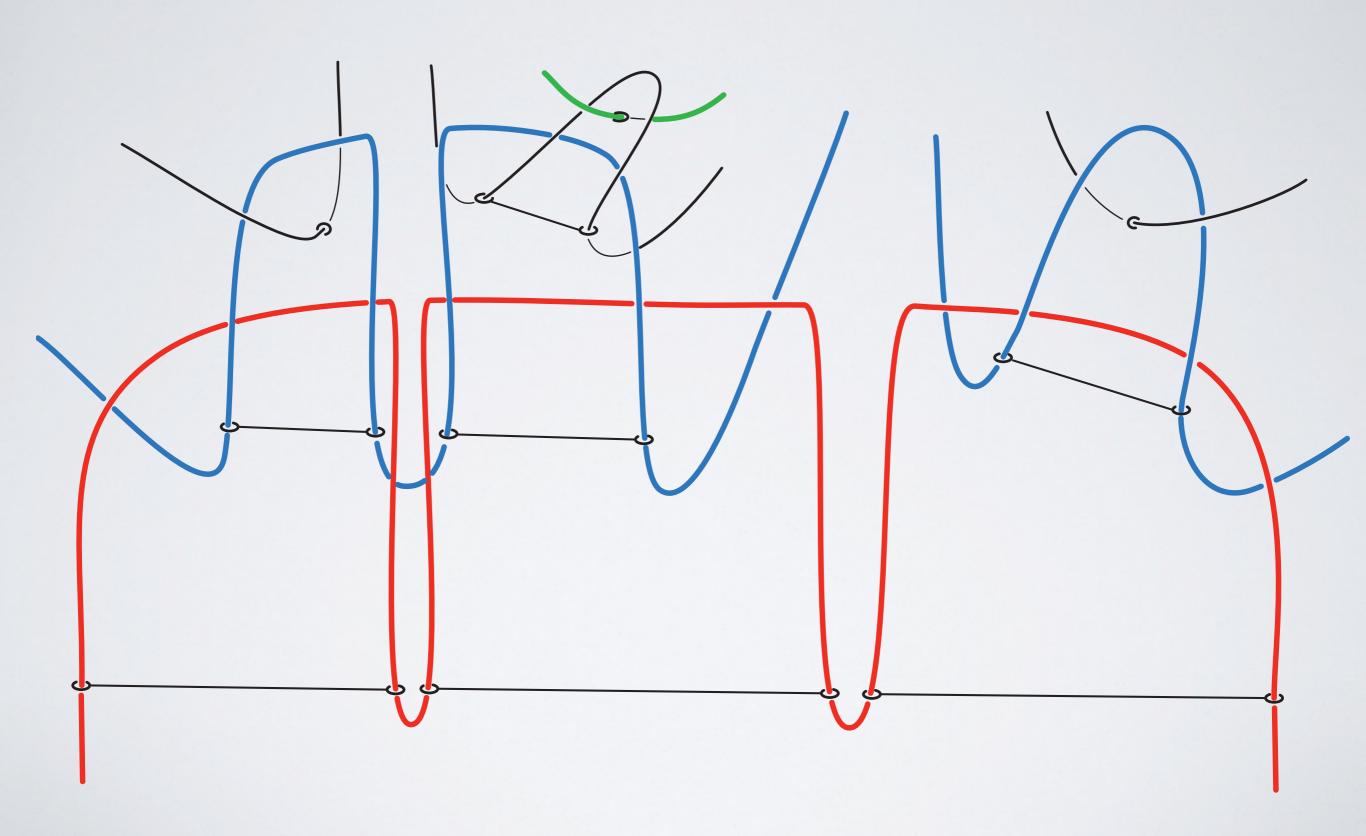
Define the lie branch on Z(m) by: $t_1,t_2 \in Z(m)$ \cdots $[t_1,t_2]:=$ e-3. Finally, define the map thus in the mucrose! X_i Remark. Zim is N-graded by weight: $deg(b) = deg(x_i) = 1$ deg (t) = #thvaleut + 1 vertices $\eta: \mathcal{T}_{k}(m) \longrightarrow \mathcal{Z}_{k}(m) \otimes \mathbb{Z}^{m}$ J. Levine map: Theorem (ST 14) η takes λ_{k+2} (fraction) to ... e.g. λ_3 (Borr) = $\mu_{10}\eta$ $\mu_{321} \times_3 \times_2 \times_1 + \mu_{132}^{8017} \times_2 \times_3 \times_1 + \mu_{132}^{8017} \times_1 \times_3 \otimes \times_2 - \mu_{312}^{8017} + \dots$ Ram. All the symmetries of Milnur muts come from the fact they come from thees!



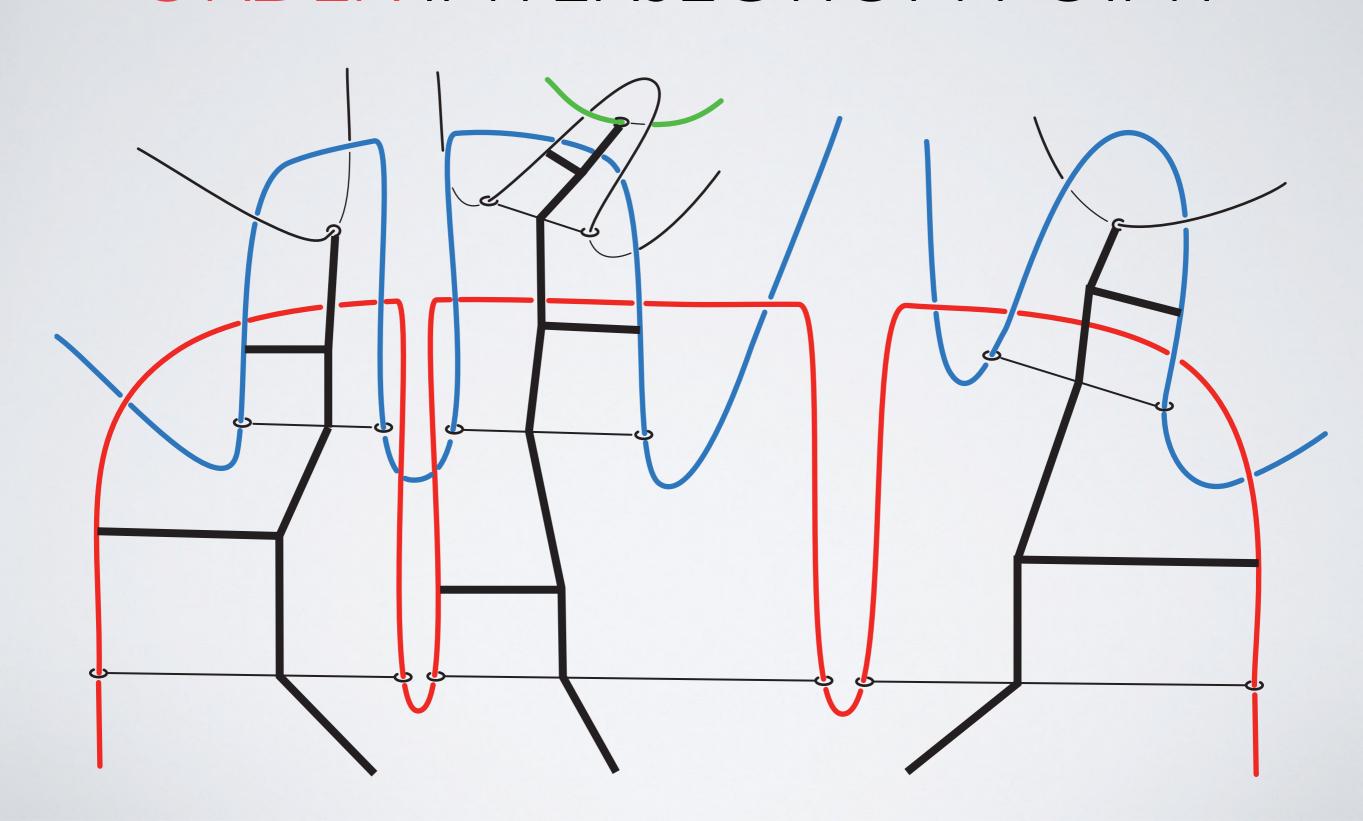
IT CAN BE SPLIT...



...BY FINGER MOVES



GET ONETREE FOR EACH TOP ORDER INTERSECTION POINT



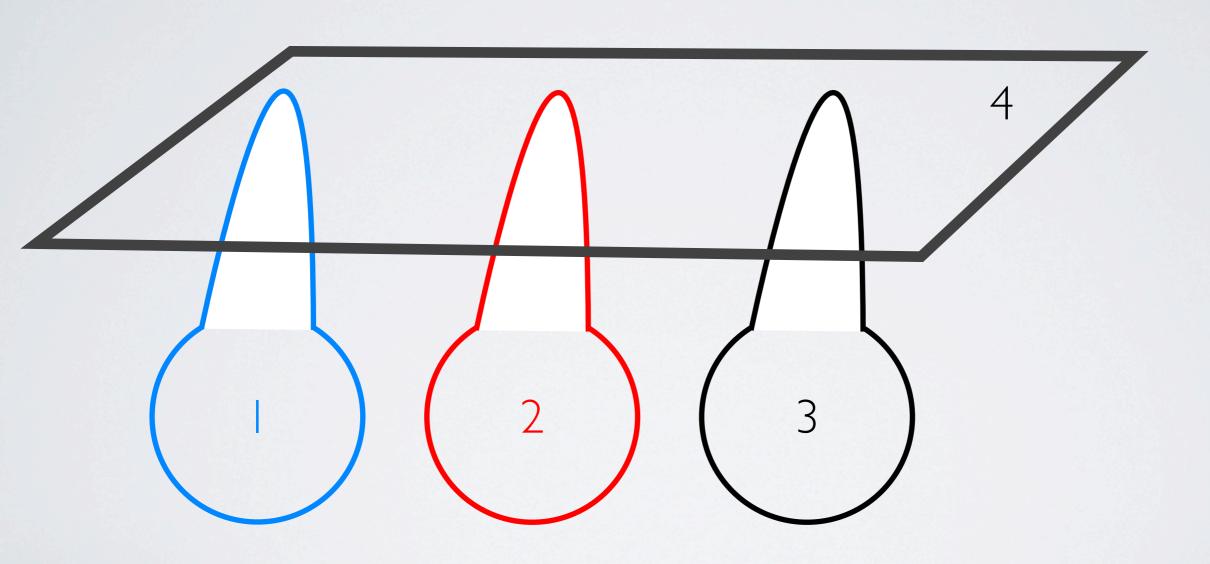
RELATIONS ON ORIENTED TREES

IHX:
$$\begin{array}{c|c} & c & \\ & & \\ \hline & & \\ \hline$$

AS:
$$\int_{I}^{c} dx = 0$$

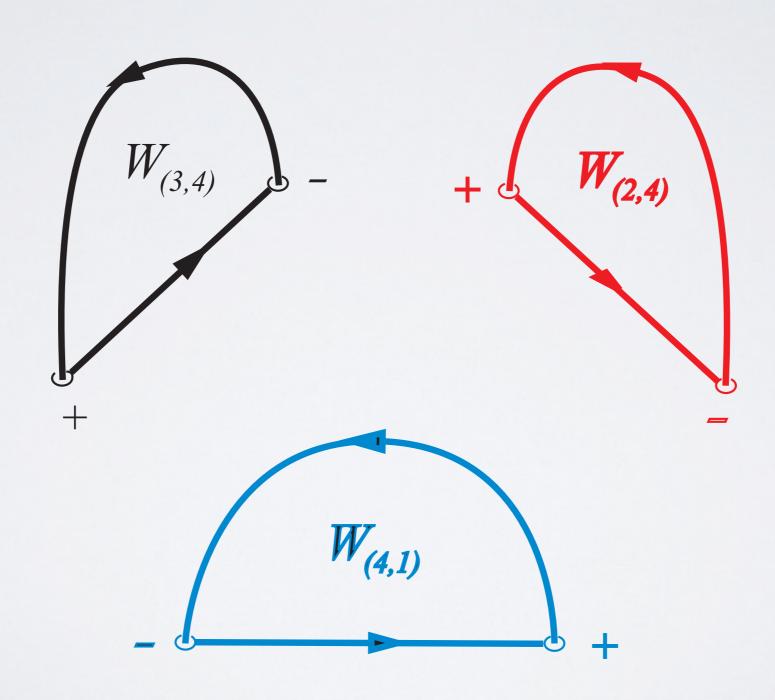
OR:
$$g = \int g^{-1}$$
 HOL: $g = \int g dx = \int g dx$

TREES ARE NOT PRESERVED WHEN MOVING WHITNEY ARCS

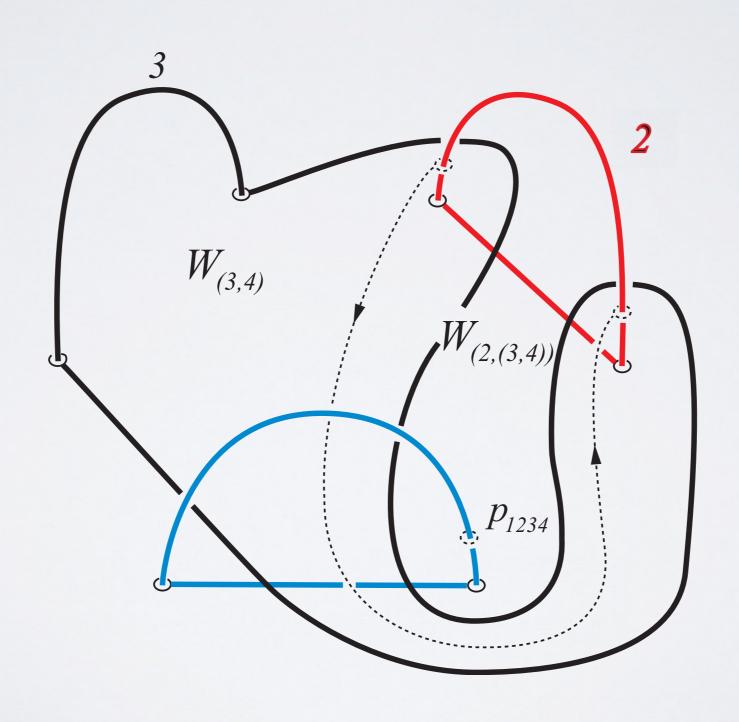


4 small spheres in the 4-ball will be made complicated:

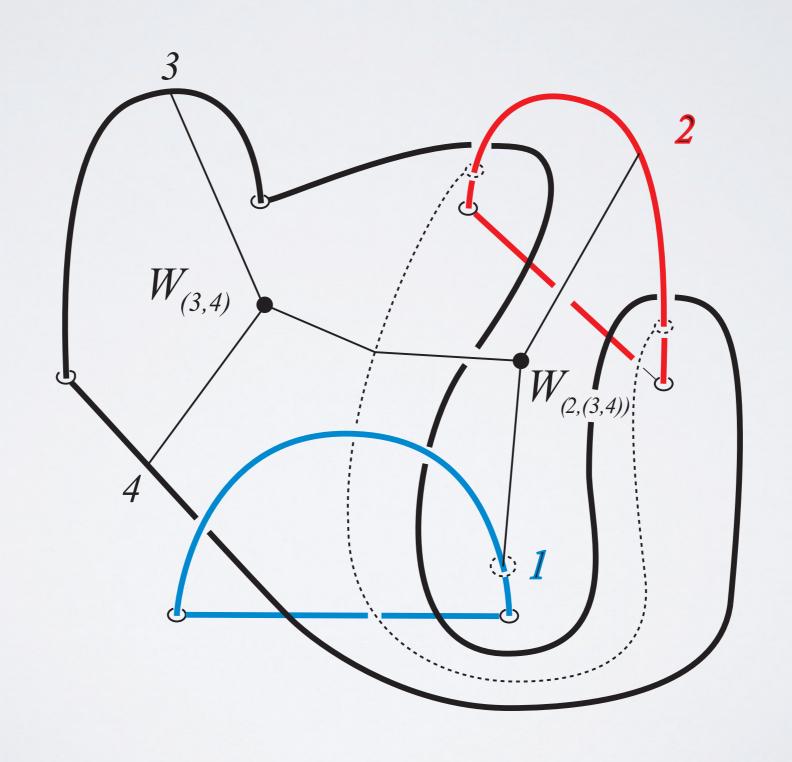
TO GIVE A 4-DIMENSIONAL JACOBI IDENTITY



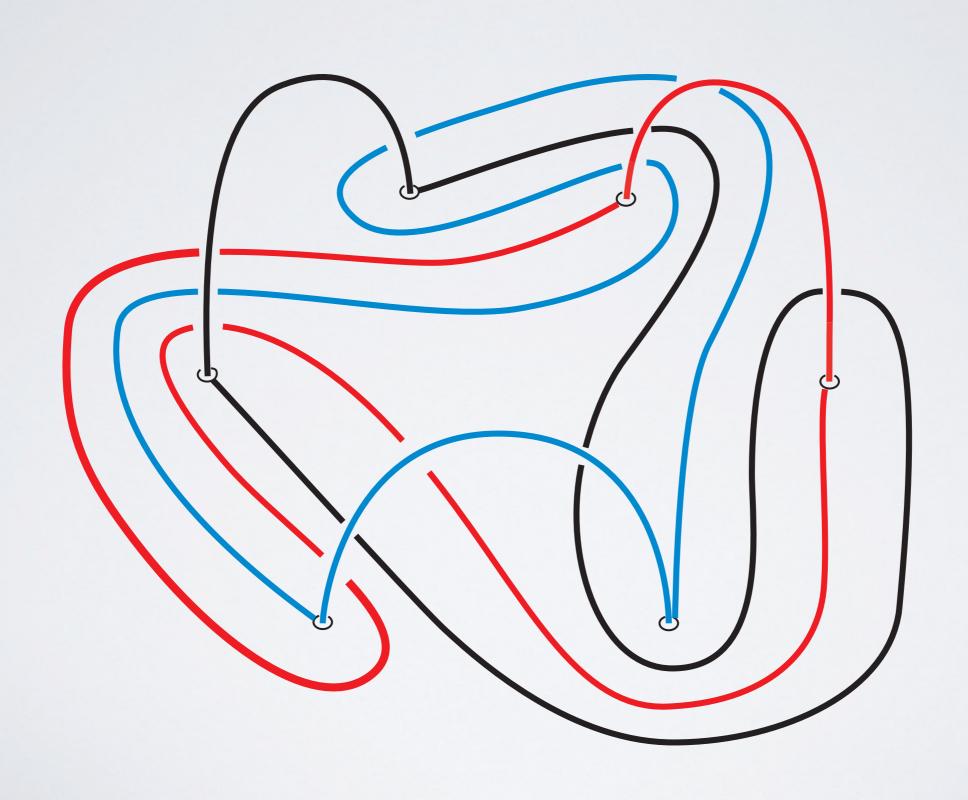
MOVE WHITNEY ARCS



A WHITNEY TOWER OF ORDER 2 ARISES



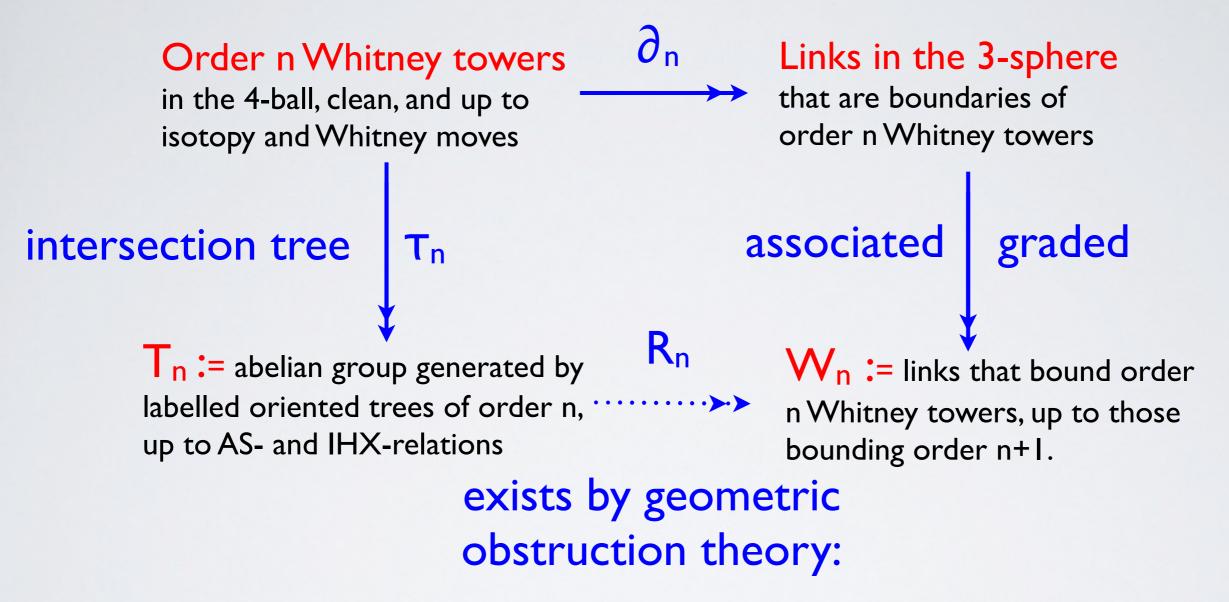
MAKE ALL ARCS INTO DISJOINT



GET IHX-RELATION OR 4-DIM JACOBI IDENTITY



FILTERING THE SET OF LINKS IN S3



If a Whitney tower W of order n has vanishing intersection invariant, T_n (W)=0, then it extends to order n+1, after some Whitney moves.

Base of our tower (f, W) where $f = (f, -f_m) : (\mathring{L} D^2, \partial) (D^4, \partial)$
is an m-component link of.
$\exists W$ order 1 tower $\langle - \rangle \lambda_2(f) = 0 \langle - \rangle \ln(2f) = 0$
continue this to get a filtration:
$im(\partial_0) \neq im(\partial_1) \neq im(\partial_2) \neq \cdots$
lootopy isotopy
notypy inotypy
Now loon at the associated graded:
T "mon" imon
$\sqrt{n} = \frac{m \partial_n}{m \partial_{n+1}} := \frac{m \partial_n}{\sim_{n+1}}$
u _n
Here L, ~ Lz <=> 3W Whitouer of order n-1 in S3xI with base USxI
nt. 0. W=L, 0. W=L2
Class $0 \in \mathbb{W}_n$ is represented by linus that bound order $n+1$ Wh. towers.
Realization map Kn: tn -> Wn
T >>> Bing double according to the tree
(connect sum components
corresponding to repetitions)
\mathcal{A}
and thore are realized.
Example $Q_{1}\left(\begin{array}{c} 1 \\ 1 \end{array}\right) = \left(\begin{array}{c} 1 \\ 1 \end{array}\right) = \left(\begin{array}{c} 1 \\ 1 \end{array}\right) = \left(\begin{array}{c} 1 \\ 1 \end{array}\right) \left(\begin{array}{c} 1 \\ 1 \end{array}\right) \left(\begin{array}{c} 1 \\ 1 \end{array}\right) \left(\begin{array}{c} 1 \\ 1 \end{array}\right)$
$ X_1 = X_2 = X_1 = X_1 = X_2 = X_1 = X_1 = X_2 = X_1 = X_2 = X_1 = X_1 = X_2 = X_1 = X_1 = X_1 = X_2 = X_1 = X_1$
Whitehead double!
uemute .

Theorem [Conant, Schneiderman, T., 2010]:

For even n, R_n is an isomorphism and $W_n = W_n(m)$ is a free abelian group of known rank. For odd n, there is at most 2-torsion:

number m of components of the link

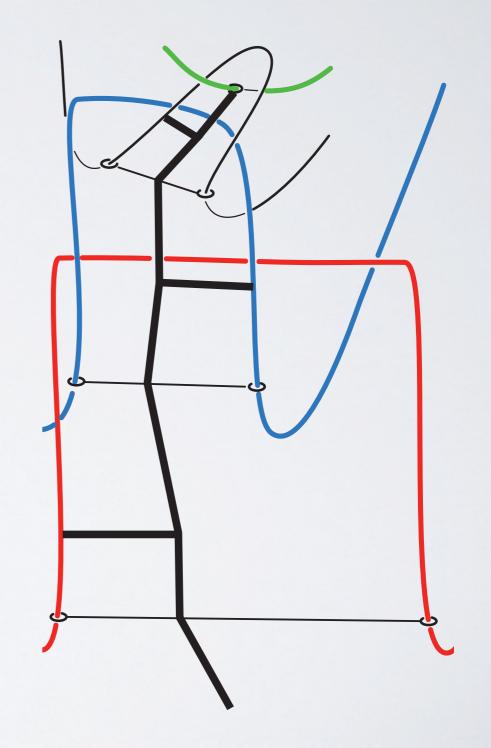
$W_n(m)$	_	1	2	3	4	5
	0	\mathbb{Z}	\mathbb{Z}^3	\mathbb{Z}^6	\mathbb{Z}^{10}	\mathbb{Z}^{15}
	1	\mathbb{Z}_2	\mathbb{Z}_2^3	$\mathbb{Z}\oplus\mathbb{Z}_2^6$	$\mathbb{Z}^4 \oplus \mathbb{Z}_2^{10}$	$\mathbb{Z}^{10}\oplus\mathbb{Z}_2^{15}$
order n	2	0	\mathbb{Z}	\mathbb{Z}^6	\mathbb{Z}^{20}	\mathbb{Z}^{50}
	3	0	\mathbb{Z}_2^2	$\mathbb{Z}^6\oplus\mathbb{Z}_2^8$	$\mathbb{Z}^{36}\oplus\mathbb{Z}_2^{20}$	$\mathbb{Z}^{126}\oplus\mathbb{Z}_2^{40}$
	4	0	\mathbb{Z}^3	\mathbb{Z}^{28}	\mathbb{Z}^{146}	\mathbb{Z}^{540}
	5	0	$\mathbb{Z}_2^{e_2}$	$\mathbb{Z}^{36} \oplus \mathbb{Z}_2^{e_3}$	$\mathbb{Z}^{340} \oplus \mathbb{Z}_2^{e_4}$	$\mathbb{Z}^{1740} \oplus \mathbb{Z}_2^{e_5}$
	6	0	\mathbb{Z}^6	\mathbb{Z}^{126}	\mathbb{Z}^{1200}	\mathbb{Z}^{7050}

Arf₂: $3 \le e_2 \le 4$, $18 \le e_3 \le 21$, $60 \le e_4 \le 66$, $150 \le e_5 \le 160$.

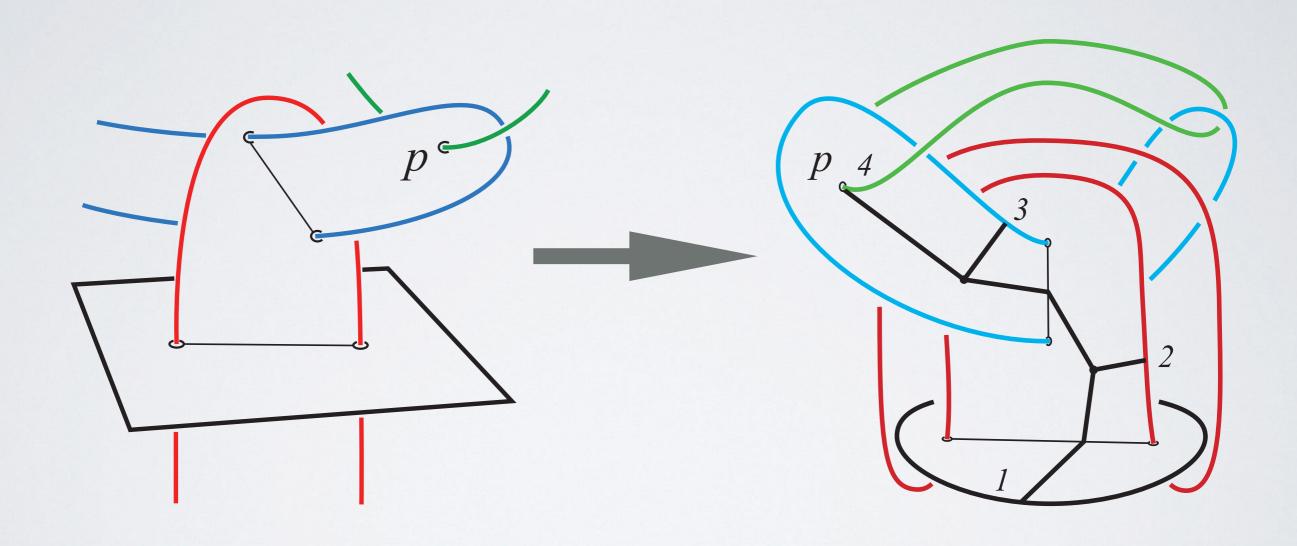
SURJECTIVITY OF MAP GIVEN BY THE INTERSECTION TREE

Take the Whitney towers W in our standard pictures:

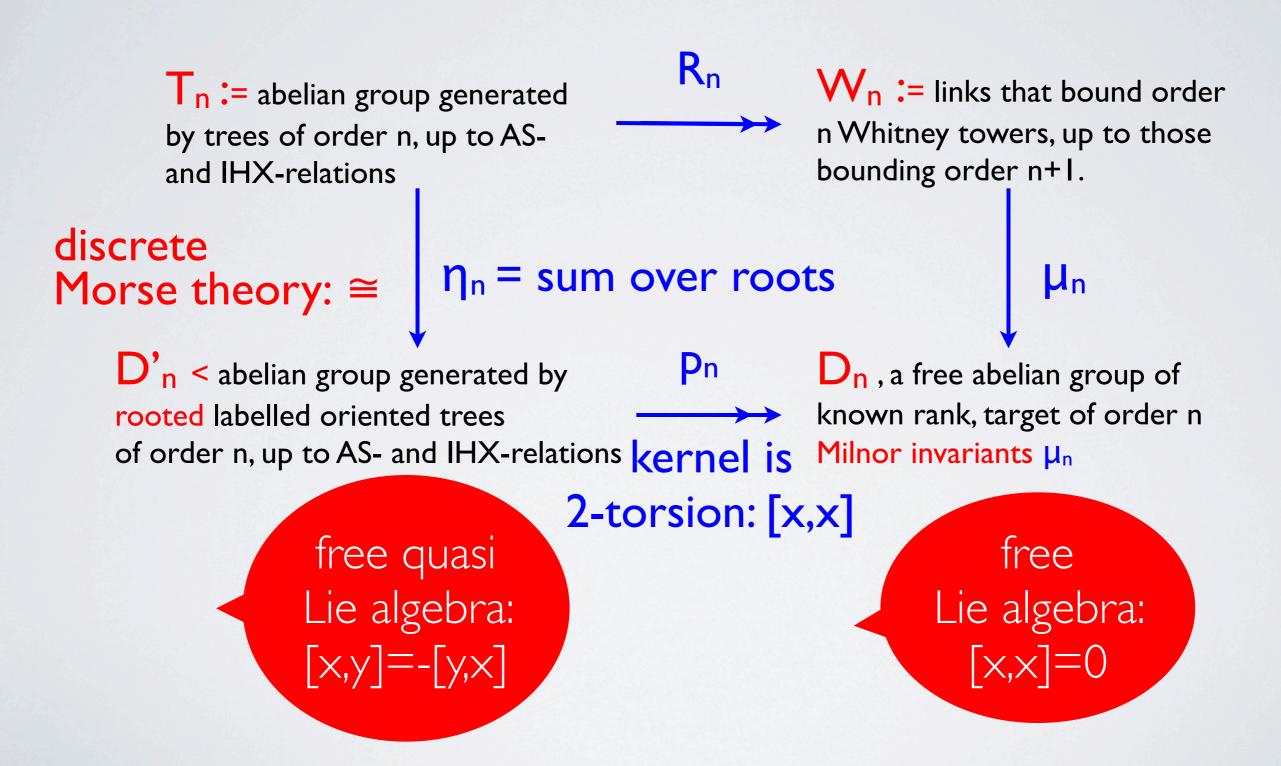
Then $t = \mathbf{T}_n$ (W) runs through trees that generate T_n and the link on the boundary is $R_n(t)$.



LINK ONTHE BOUNDARY IS A BING DOUBLE:



MASTER DIAGRAM



MILNOR INVARIANTS VIA TREE GROUPS

Recall that T(m) is the abelian group generated by oriented trivalent trees, with leaves labelled by {1, 2, ..., m}, modulo the two local relations:

Anti-symmetry:

Jacobi Identity:

$$\begin{array}{c|c} & & & \\ \hline \end{array} \qquad \qquad + \qquad \begin{array}{c|c} & & \\ \hline \end{array} \qquad = 0$$

RECALLTHE FREE LIE ALGEBRA resp. L'(m) vesp. quasi-

L(m) is the abelian group generated by oriented trivalent trees, with leaves labelled by {1, 2, ..., m} and one root, modulo the two local relations:

Anti-symmetry:

Lie: [x,x]=0 quasi-Lie:

Jacobi Identity:

$$- + = 0$$

YET ANOTHER DIAGRAMMATIC GROUP

resp. L'(m) & 2m

L(m) 2 is the abelian group generated by oriented trivalent trees, leaves labelled by {1, 2, ..., m} and one labelled root, modulo the two local relations:

Anti-symmetry:

[x,x]=0, respectively:

$$+$$
 $=$ 0

Jacobi Identity:

$$\frac{1}{1} + \frac{1}{1} = 0$$

Di= Ker (L & 2/ -> Ln+2)

Cyclic
Symmetry

Main Theorem: Theorem: Theorem

Rny

Man Dh

Cyclic

Ln+2

Ln+2

Ln+2

Ln+2

Ln+2

Ln+2

Ln+2

Ln+2

Main Theorem: Theorem

Rny

Ln+2

Ln

Two is moded in the beame, because. $\partial \left(S^3, \mathcal{L}\right) = \coprod_{i=0}^{m} T_i$ torus noted of ith comp. has longitude L_i .

menidiau mi

Detine total Milnur invariant:

Mn (L):= In Mn' & Mi

image of li in L not obtained from

$$\frac{\left(\pi_{A}(S^{3}L)\right)_{n+1}}{\left(\pi_{A}(S^{3}L)\right)_{n+2}} \cong \overline{\pi_{n+2}} \cong L_{n+1}$$