
HIGHER CATEGORIES IN A NUT-SHELL

These are notes for a talk at the Max Planck Institute for Mathematics in Spring 2013.
The goal was to convince the audience that the necessary definitions for a good model of
(symmetric monoidal) (∞, n)-categories can be presented in one lecture. These gadgets
naturally form a relative category and examples include n-dimensional bordism categories
and deloopings of the symmetric monoidal category of vector spaces. Maps between these
objects describe local (functorial, homotopical) field theories, more precisely, the space of
such field theories is the simplicial mapping space in this relative category.

We will ignore set theoretic issues in the following, refering to Mike Shulman’s article [Sh].

1. Strict n-categories via iterated enrichments

Let A be a category with products, the letter A standing for ambient. Then there is a new
category A-Cat with products, namely A-enriched categories, or shorter A-categories:

Definition 1. An A-category C consists of a set (of objects) C0 and objects C(X, Y ) in A
(of morphisms) for each pair X, Y ∈ C0. Moreover, there are composition maps

◦ : C(X, Y )× C(Y, Z)→ C(X,Z)

which are (strictly) associative and have (strict) identities.

Morphisms in the category A-Cat are (strict) functors and the product is given objectwise.
Iterating this construction, one obtains strict versions of higher categories.

Definition 2. A strict n-category is a category enriched in strict (n−1)-categories. These are
the objects in the category (with products) n-Catst, defined inductively, starting at 0-Catst =
Set. Similarly, starting with A = Top, the category of compactly generated Hausdorff spaces,
leads to strict topological n-categories which are categories enriched in strict topological
(n− 1)-categories.

A product preserving functor A→ B induces a product preserving functor A-Cat→ B-Cat.
Starting with the known adjunctions between Cat and Set thus leads to adjunctions between
n-Catst and (n − 1)-Catst. These can be combined to the functor of isomorphism classes of
objects π0 : n-Catst → Set and to the discrete n-category functor Set→ n-Catst.

Grothendieck’s homotopy hypothesis requires that a good notion of n-groupoids includes
a classifying space functor which induces an “equivalence” between n-groupoids and n-types
(spaces whose homotopy groups vanish above dimension n). If one defines the notion of a
strict n-groupoid inductively (similarly to the weak case below) from strict n-categories, it
was already known to Grothendieck that no essentially surjective classifying space functor
exists, see [Si]. In fact, Dmitri Ara showed [A] that simply connected strict n-groupoids lead
exactly to products of Eilenberg MacLane spaces.

This is one reason to generalize definitions from strict to weak n-categories. There are
many ways to do this, see e.g. Tom Leinster’s beautiful survey [L], and we present an iterated
construction, where enriched categories are simply replaced by enriched simplicial sets.
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2. Enriched simplicial sets

Definition 3. An A-simplicial set S consists of a set (of vertices) S0 and objects S(X0, . . . , Xk)
in A (of k-simplices) for each sequence X0, . . . , Xk ∈ S0. Moreover, there are structure maps

σ∗ : S(X0, . . . , Xk)→ S(Xσ(0), . . . , Xσ(m))

for every order preserving map σ : [m] → [k] := {0, . . . , k}. These maps are required to
compose: (σ1 ◦ σ2)∗ = σ∗2 ◦ σ∗1 (“higher associativity”) and there is the “identity axiom”
saying that S(X0) ∈ A are terminal objects. The last condition implies that the unique map
[m]→ [0] induces “unit” maps from a terminal object to S(X0, . . . , X0) ∈ A.

Remark 4. The above notion of an A-simplicial set (or A-enriched simplicial set) compares
to a simplicial object in A exactly as an A-enriched category compares to a category internal
to A. It is important for the considerations below that S0 is a set and not an object in A.

We get a category of A-simplicial sets with products (taken simplex-wise). A morphism
f : S → S′ is a map between vertex sets f0 : S0 → S′0, together with morphisms in A,
fk : S(X0, . . . , Xk)→ S′(f(X0), . . . , f(Xk)) that are compatible with the structure maps.

Example 5. If C = (C0,C(X, Y ), ◦) is an A-category, we define its nerve NC to be the
A-simplicial set with vertices C0 and k-simplices

NC(X0, . . . , Xk) := C(X0, X1)× C(X1, X2)× · · · × C(Xk−1, Xk)

The structure maps are induced by compositions ◦ and projections, just like for the ordinary
nerve of a category. For example, the k projections from the right hand side of the above
equation to C(Xi, Xi+1) correspond to the inclusions of the edge 〈i, i + 1〉 into a k-simplex.
Another important example is the first face map d∗1 : NC(X0, X1, X2)→ NC(X0, X2) which is
simply given by the composition ◦ in C.

One should think of the nerve as having k-simplices determined by the longest path from
the vertex X0 to the vertex Xk. It is an important excercise to check that the associativity of
composition ◦ is equivalent to a simplicial identity for maps [1]→ [3] (which in turn implies
all required simplicial identities).

The nerve construction will later lead to an inclusion of strict n-categories into weak
n-categories and similarly of topological n-categories into (∞, n)-categories.

The goal of the next notion is to weaken the condition that nerves of A-categories satisfy by
definition. For this purpose, we need to assume that the ambient category A allows a notion
of equivalences X

∼−→ Y . For example, we use bijections for A = Set and π∗-isomorphisms
for A = Top.

Definition 6. An A-simplicial set S satisfies the Segal conditions if for each k ≥ 2, the
product of inclusions of the edges 〈i, i+ 1〉 into a k-simplex induces an equivalence

(Seg) S(X0, . . . , Xk)
∼−→ S(X0, X1)× S(X1, X2)× · · · × S(Xk−1, Xk)

For A = Set with bijections ∼, we see that simplicial sets satisfy the Segal conditions
if and only if they are nerves of categories. Below a weak 1-category will be a simplicial
set satisfying the Segal conditions and hence Cat ' 1-Cat as desired. A Segal category is a
simplicial space satisfying the Segal conditions, i.e. one uses (A,∼) = (Top,∼π∗) in (Seg).
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3. A model for weak n-categories and (∞, n)-categories

Definition 7. Let (∞, 0)-Cat := Top with π∗-isomorphisms and “homotopy category” equal
to the fundamental groupoid hX := π≤1(X). Assume inductively that we defined a category
(∞, n)-Cat with products together with

• a notion of equivalences ∼,
• a functor h : (∞, n)-Cat→ Cat that preserves products and equivalences.

Let (∞, n+ 1)-Cat be the category of (∞, n)-Cat-simplicial sets that satisfy the Segal condi-
tions (Seg). The (nerve of the) homotopy category hS of an (∞, n+1)-category S is obtained

by applying π0 ◦ h the each k-simplex. An equivalence f : S
∼→ S′ is an enriched simplicial

map inducing equivalences

fk : S(X0, . . . , Xk)
∼−→ S′(f(X0), . . . , f(Xk)) and hf : hS

∼−→ hS′

This is probably the simplest model for (∞, n)-categories, also called Segal n-categories. If
we start with 0-Cat := Set with bijections as equivalences then the same inductive procedure
leads us to n-Cat, the category of (weak) n-categories, with products, a notion of equivalences
and a functor h : n-Cat→ Cat. This beautiful inductive approach goes back to Simpson [Si]
and Tamsamani.

The functors π0 : Top 
 Set lead to functors (∞, n)-Cat 
 n-Cat and in fact, there is a
whole filtration between these two notions given by (n+ k, n)-categories: These are (n+ k)-
categories with all r-morphisms (weakly) invertible for r > n. We thus require a careful
analysis of invertibility which we shall only formulate in the ∞-setting.

Definition 8. An (∞, n)-groupoid is an (∞, n)-category S such that all k-simplices
S(X0, . . . , Xk) ∈ (∞, n− 1)-Cat are (∞, n− 1)-groupoids and moreover, the homotopy cat-
egory hS is a groupoid. We define π0(S) := π0(hS), as isomorphism classes of objects, and
inductively πk(S, X) := πk−1(S(X,X), 1X) for k > 0 and a basepoint X ∈ S0. As usual,
these are groups for k ≥ 1, abelian for k > 1.

This gives full subcategories (∞, n)-Grp and n-Grp whose objects are (∞, n)-groupoids
respectively (weak) n-groupoids (defined inductively exactly as in the ∞-case). They in-
herit products, notions of equivalence and their homotopy category functors take values in
groupoids Grp ' 1-Grp.

We shall next explain the relation between n-groupoids and n-types which uses the classi-
fying space functor. It can be defined for an (∞, n+1)-category S inductively as follows: As-
sume B : (∞, n)-Cat→ Top is constructed and preserves products and equivalences. Define
B(S) as the usual classifying space of the simplicial space with k-simplices B(S(X0, . . . , Xk)).
Segal’s work [Se] implies that B preserves products and equivalences and that on (∞, n+1)-
groupoids, it also preserves homotopy groups:

πk(B(S), X) ∼= πk(S, X)

Theorem 9 (Grothendieck’s homotopy hypothesis). The classifying space functor induces

B : n-Grp
∼−→ n-Typ

The right hand side is the full subcategory of Top consisting of spaces with vanishing homotopy
groups above dimension n. Both sides are naturally (∞, 1)-categories and our statement is
that B induces an equivalence between them.
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The most subtle point is the correct notion of “mapping space” between two objects of
the above categories. On the right hand side this is routine: One replaces the domain n-
type by a CW-complex (cofibrant replacement) and then takes the (compactly generated)
compact-open topology on the mapping space. It is easy to check that the homotopy groups
of these mapping spaces vanish above dimension n and hence the right hand side is in fact
an (n+ 1, 1)-category.

On the left hand side, there is no obvious model structure and in fact, we don’t want to
define the structure of a topological category on n-groupoids but rather the corresponding
weak notion, an (∞, 1)-category.

There is a beautiful approach going back to Clark Barwick and Dan Kan who showed that
any relative category has a well defined “homotopy theory” which can be expressed by saying
that it defines an (∞, 1)-category, unique up to equivalence in the Joyal model structure.
In our setting, the equivalences we defined inductively give n-Grp the structure of a relative
category and hence lead to an (∞, 1)-category (which is (n+ 1, 1) by the theorem).

4. Symmetric monoidal higher categories

These are the key to a precise definition of functorial field theories. Our approach again
goes back to Segal [Se] who first introduced the category Γop of finite pointed sets into the
discussion. The object {0, 1, . . . , k} is denoted by k+, where 0 =̂ + is the basepoint.

Definition 10. Let A be a category with products and equivalences. A weakly symmetric A-
monoid is a functor F : Γop → A satisfying the Segal conditions: The product of the k maps
pi : k+ → 1+ sending i ∈ {1, . . . , k} to 1 and everything else to + induces an equivalence

(Segal) Fk
∼−→ F×k1

Here we wrote Fk := F (k+). For k = 0 this condition says that F0 ∈ A is terminal.
For A = (∞, n)-Cat we obtain the notion of a symmetric monoidal (∞, n)-category and

for A = n-Cat we get symmetric monoidal n-categories (using our notion of equivalence ∼).

Note that there is a third map p : 2+ → 1+ with p(1) = p(2) = 1 and it induces the weakly

symmetric multiplication F1 × F1
ι→ F2

p∗→ F1, after the choice of “inverse” ι for the Segal
map F2

∼−→ F1 × F1.
This is just like the third edge 〈0, 2〉 in the 2-simplex for the Segal conditions (Seg). In

fact, there is a functor ∆op → Γop which associates to each weakly symmetric A-monoid
a weakly associative A-monoid. The latter is simply an A-simplicial set with one object
satisfying the Segal conditions.

The functor ∆op → Γop is easiest to describe by noting that ∆op is equivalent to the
following category: Objects are finite ordered sets with two basepoints, one being the smallest
element and the other the largest. Morphisms are order preserving maps which preserve both
basepoints. Then the functor to Γop just ignores the order and sends both basepoints to the
single basepoint.

Example 11. Symmetric monoidal 1-categories can be shown to form a category equivalent
to (the usual notion of) symmetric monoidal categories.

Symmetric monoidal (∞, 0)-categories or symmetric monoidal ∞-groupoids are usually
referred to as Γ-spaces. They turn out to be Quillen equivalent to E∞-spaces [M].

A Γ-spaces is grouplike if the monoid structure on π0(F1) induced by p is a group. These
are also called Picard∞-groupoids and they give a very simple model for connective spectra.
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In particular, the inner Hom in connective spectra is homotopy equivalent to the inner
Hom in Picard ∞-groupoids and this is the way one can calculate the space of invertible
field theories. Sometimes it may be advantagous to compute the enriched Hom in spectra
whose connective cover is the inner Hom.
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