
A SPACE LEVEL LIGHT BULB THEOREM IN ALL DIMENSIONS

DANICA KOSANOVIĆ AND PETER TEICHNER

Abstract. Given a d-dimensional manifold M and a knotted sphere s : Sk−1 ↪→ ∂M with 1 ≤ k ≤ d,
for which there exists a framed dual sphere G : Sd−k ↪→ ∂M , we show that the space of neat embeddings
Dk ↪→ M with boundary s can be delooped by the space of neatly embedded (k − 1)-disks, with a
normal vector field, in the d-manifold obtained from M by attaching a handle to G. This increase in
codimension significantly simplifies the homotopy type of such embedding spaces, and is of interest also
in low-dimensional topology. In particular, we apply the work of Dax to describe the first interesting
homotopy group of these embedding spaces, in degree d− 2k. In a separate paper we use this to give a
complete isotopy classification of 2-disks in a 4-manifold with such a boundary dual.

1 Introduction and survey of results

1.1 A space level light bulb theorem for arbitrary dimensions

Fix a d-dimensional manifold M and an embedding s : Sk−1 ↪→ ∂M , and let Embs(Dk,M) denote the
space of neat embeddings of the k-disk into M that restrict to s on the boundary. In this paper all
manifolds are smooth, compact, connected, oriented, and have nonempty boundary, and all embeddings
are smooth. A smooth map K : X → Y of manifolds is neat if it is transverse to ∂Y and K−1(∂Y ) = ∂X.

For a setting with a (framed geometric) dual (in the boundary) we assume that there exists an
embedding G : Sd−k ↪→ ∂M with trivialized normal bundle, such that s t G is a single positive
point, and we fix such a framed sphere G.

(1.1)

In this setting, we denote byMG the d-manifold obtained fromM by attaching to ∂M a (d−k+1)-handle
along the framed sphere G. Then ∂MG is the surgery on ∂M along G, and since s intersects G, we have
s = u− ∪u0

u+ for u0 : Sk−2 ↪→ ∂MG, u− : Dk−1 ↪→ ∂MG, and u+ : Dk−1 ↪→MG neat, see Figure 1.2.

When k = 1 and d = 3 this is precisely the setting of the well-known “light bulb trick” in knot theory,
see the top left of Figure 1.2. Thus, G is the “light bulb” to which a “cable” D1 ↪→ M connects on one
end, while the other end is fixed in another component of ∂M , the “ceiling”. The trick refers to the proof
that such cables K are isotopic if and only if they are homotopic, i.e. π0 Embs(D1,M) = π1M . Namely,
a homotopy from one knotted K to another can be turned into an isotopy using the swinging motion
around the light bulb G.

Motivated by ideas of Jean Cerf [Cer68] and recent generalizations of the light bulb trick to the setting of
2-spheres in 4-manifolds [Gab20; ST22], we prove the following theorem for general 1 ≤ k ≤ d. In [KT21]
we use it to recover and generalize those results in dimension d = 4.

Theorem A. In the setting with a dual (1.1), any U ∈ Embs(Dk,M) leads to a fibration sequence

Embs(Dk,M) Ω Embu0
(Dk−1,MG) Ωk−1Sd−kfU δev0

where fU(K) is obtained by foliating Dk by a 1-parameter family of Dk−1 (rel. Sk−2), applying −U and
then K to it and getting a loop based at u+ ∈ Embu0

(Dk−1,MG).
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Recall that a sequence of based maps F i→ E
p→ B is a fibration sequence if i factors through a weak

homotopy equivalence to a homotopy fiber of p. In particular, this induces a long exact sequence on
homotopy groups. For more details on the map fU we refer to Remark 2.3, and for δev0 to Remark 1.7;
we use Ω to denote based loop spaces. Finally, we note that if the space Embs(Dk,M) is nonempty, then
the diffeomorphism type of MG does not depend on the sphere G or its framing, see Lemma 2.2.

Figure 1.2. Correspondence of neat k-disks in M with boundary and half-disks in MG for k = 1, 2, d = 3.

Example 1.3. For k = 1 and d = 3 this indeed recovers the light bulb trick π0 Embs(D1,M) ∼= π1M ,
since Emb∅(D0,MG) = MG and π1Ω0S2 = 0. For example, we have Embs(D1,D1 × S2) ' ΩS2 for the
inclusion s : ∂D1×{pt} ↪→ ∂D1×S2 (since (D1×S2)G ∼= D3), so all arcs are isotopic; however, note that
π1ΩS1 = Z, so there is a nontrivial loop of arcs (given by the swing around the dual, see Section 5.2.1).
In fact, we more generally have Embs(D1,M) ' ΩS2 × ΩMG, see Example 1.4.

Example 1.4. For k = 1 and d ≥ 2 the fibration splits by Lemma B.8, so we get a homotopy equivalence

Embs(D1,M)
'−→ ΩSd−1 × ΩMG = ΩSd−1 × Ω(M ∪Sd−1 Dd).

Here a dual for the boundary condition means that the two points s(S0) lie in distinct components of ∂M ,
one of which is diffeomorphic to Sd−1, and along which a d-handle is attached, giving MG := M ∪Sd−1 Dd.
For dim(M) = d = 2 it follows that the group Z × π1(M ∪S1 D2) acts simply and transitively on the set
π0 Embs(D1,M) of connected components, which are all contractible. The action of Z is by Dehn twists
around one boundary component, while π1(M ∪S1 D2) acts by the “point-push” map, well known in the
surface community, see [FM11]. For d ≥ 3 we get such an action of π1(M) on π0 Embs(D1,M). For all
d ≥ 4 the connected components have nontrivial higher homotopy groups.

Example 1.5. For 1 ≤ k = d−1 we have Sd−k = S1 so for n > 0 (and n = 0 if d ≥ 4) Theorem A gives:

πn Embs(Dd−1,M) ∼= πn+1 Embu0
(Dd−2,M ∪S1 h2).

In particular, this holds for M = S1×Dd−1, s = p×∂Dd−1, G = S1× q, and MG = M ∪S1 h2 = Dd. This
case was discussed by Budney and Gabai [BG20] (using the same arguments of Cerf), who constructed
for d = 4 and n = 0 an infinitely generated subgroup of this group.

Example 1.6. For 1 ≤ k = d any embedding (Dd, ∂Dd) ↪→ (M,∂M) is a diffeomorphism, as we assumed
for simplicity that M is connected. However, Theorem A also applies to the disjoint union M = Dd tM ′
with any d-manifold M ′, for s = ∂Dd and G : S0 ↪→ ∂M satisfying G(−1) ∈ ∂Dd, G(1) ∈ ∂M ′. Since
Sd−k = S0 and MG := (Dd tM ′) ∪νG h1 ∼= M ′ we obtain

Diff∂(Dd) ∼= Embs(Dd,Dd tM ′) ' Ω Embu0
(Dd−1,M ′).

For M ′ = Dd this is the result of Cerf [Cer68, App.] that motivated our entire approach.
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In fact, Embs(Dk,M) is itself a loop space, as we explain next.

Firstly, a result of Cerf shows that this space is weakly homotopy equivalent to its subspace Embsε(Dk,M),
consisting of those embeddings which agree with a fixed one on an ε-collar of the boundary ∂Dk (see
Proposition 2.10). Secondly, if we extend the foliation of Dk from Theorem A to a 1-parameter family
of thickened disks Dk−1 × [0, ε], then K ∈ Embsε(Dk,M) gives a path in the space Embεu0

(Dk−1,MG)

of such ε-augmented (k − 1)-disks Dk−1 × [0, ε] ↪→ MG. We can similarly use U to complete this to a
loop fεU(K) based at uε+. Let us point out that the space Embεu0

(Dk−1,MG) is homotopy equivalent to
Emb↑u0

(Dk−1,MG), the space of (k − 1)-disks equipped with a normal vector field, see Proposition 5.1.

Theorem B (Space level light bulb theorem for disks). In the setting with a dual (1.1), any basepoint
U ∈ Embsε(Dk,M) leads to a pair of inverse homotopy equivalences

fεU : Embsε(Dk,M) Ω Embεu0
(Dk−1,MG) : aU∼

where fεU is the ε-augmented foliation map, and for n ≥ 0 the value of πnaU on an n-parameter family of
isotopies S1 → Embεu0

(Dk−1,MG) is the n-parameter family of k-disks obtained by applying the family
version of the ambient isotopy extension theorem.

We prove this in Section 3 using Cerf’s idea of considering the space of half-disks inMG, which are k-disks
that restrict to u− on one half of the boundary, and to u+ on the other half ∂+Dk, see the third column
of Figure 1.2. This space is homotopy equivalent to Embs(Dk,M), but it is also the fiber of a restriction
map from the space of half-disks for which ∂+Dk is free to move in the interior of MG. The latter space
is contractible, so the fiber is the loop space on the base. See Section 2.1 for a detailed outline.

Remark 1.7. Theorem A follows from Theorem B using Proposition 5.2, which says that forgetting the ε-
augmentation is a fibration ev0 : Embεu0

(Dk−1,MG)� Embu0
(Dk−1,MG), with fiber Ωk−1Sd−k measuring

the normal derivative in the ε-direction; then δev0 in Theorem A is the connecting map of this fibration.

Remark 1.8. One might hope to use Theorem B repeatedly. However, the boundary condition for (k−1)-
disks, u0 : Sk−2 ↪→MG, is null homotopic (it bounds u− ⊆ ∂MG), so cannot have a geometric dual.

1.2 Applications of the work of Dax

The essence of Theorem B is that it increases the codimension for the embedding space and thus simplifies
the computation of its homotopy groups. In particular, Jean-Pierre Dax [Dax72] computed the homotopy
groups πn Embs(Dk,M) in the “metastable range”, i.e. in degrees n < 2d − 3k − 3, beyond the stable
range n < d− k− 2 where they are as for immersions (in turn determined by Smale–Hirsch theory). But
now in the setting with a dual, Theorem B implies that the group

πnf
ε
U : πn Embsε(Dk,M) πn+1 Embεu0

(Dk−1,MG) : πnaU∼=

can be computed using Dax’s techniques for all n < 2d− 3k− 1 (equivalently, n+ 1 < 2d− 3(k− 1)− 3).
For example, when d− k ≤ 2 the range of Dax is empty, n < 1− k, whereas we have n < 3− k.

We remark that for k = d − 2 the Goodwillie–Weiss embedding tower [GKW01], which generalizes the
work of Dax, converges for Embu0

(Dk−1,MG), but it need not converge for Embs(Dk,M).

More precisely, Dax expresses the homotopy group πn
(

Imm∂(V,X),Emb∂(V,X);u
)
of neat immersions,

relative to neat embeddings of an `-manifold V into a d-manifold X (the boundary condition u0 : ∂V ↪→
∂X is omitted from the notation) as a certain bordism group, recalled in Theorem 4.3. However, to
compute this explicitly requires more work, which to our knowledge has not been done prior to the
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present paper. We identify this bordism group and the Dax invariant for n = d − 2` and V simply
connected, as an isomorphism

Dax : πd−2`

(
Imm∂(V,X),Emb∂(V,X);u

) ∼=−→ Z[π1X]�rel`,d (1.9)

where the group of relations rel`,d is trivial for ` = 1, and given by 〈g− (−1)d−`g−1 : g ∈ π1X〉 for ` ≥ 2.
The map Dax is the signed count of group elements at the double points of an associated generic immersion
Id−2` × V # Id−2` × X, see Theorem 4.13. For d − 2` = 0 this resembles the result of Grant [Gra13]
which compares the invariant of Hatcher and Quinn [HQ74] (who study whether an immersion is regularly
homotopic to an embedding for 2d− 3`− 3 ≥ 0) to Wall’s self-intersection invariant, see Remark 4.18.

We then specialize to V = D` and prove the following (restated as Theorem 4.2, which includes d−2` = 0).

Theorem C. Let X be a d-manifold and consider the space Emb∂(D`, X) with a basepoint u. Assume
d ≥ `+3 and d−2` ≥ 1. Then the map pu : πn(Emb∂(D`, X), u)→ πn+`X, pu(f) = (~t 7→ −u∪∂ f~t), is an
isomorphism for 0 ≤ n ≤ d− 2`− 2, and there is a short exact sequence of groups (sets if d− 2`− 1 = 0):

Z[π1Xr1]�rel`,d ⊕ daxu(πd−`X) πd−2`−1(Emb∂(D`, X), u) πd−`−1X.
∂r pu

Dax

The map daxu : πd−`M → Z[π] whose image appears in the kernel of the extension is a restriction of
the isomorphism Dax from (1.9). The realization map ∂r is an explicit inverse of Dax, constructed in
Section 4.1. The case ` = 1, d = 4 was also studied by Gabai [Gab21], see Remark 4.22. Some properties
of these invariants in that case can be found in [KT21], and for ` = 1 and d ≥ 3 in [Kos21].

Next, we extend this to ε-augmented `-disks in Theorem 5.5, using some results on homotopy groups of
frame bundles, proven in Appendix B. In particular, when d− ` is odd it turns out that

πd−2`−1(Embε∂ε(D`, X), uε) ∼= Z× πd−2`−1(Emb∂(D`, X), u), (1.10)

so any Sd−2`−1-family of embedded `-disks in X has Z many ε-augmentations (see Remark 5.15). In
Section 5.3 we combine the mentioned Theorem 5.5 for ` = k − 1 with Theorem B as follows.

Theorem D. Assume the setting with a dual (1.1), and let π := π1M . Then there are isomorphisms
πn Embs(Dk,M) ∼= πn+kM for n ≤ d− 2k − 1, and if d− k 6= 1, 3, 7 a group extension:

Z[π]�relk−1,d ⊕ daxε(πd−k+1M) πd−2k(Embs(Dk,M),U) Zk,d ⊕ πd−kM�Z[π]G
aU ◦ ∂r

ε
ηW,U ⊕ (−U ∪ •)

Dax ◦ fεU

where Zk,d := Z for d−k even, Zk,d := Z/2 for d−k odd, and daxε(πd−k+1M) = 〈1〉⊕dax(πd−k+1M) for
d− k even or k = 2. The map on the right is on the class of K : Sd−2k → Embs(Dk,M) given as follows.

− The map −U ∪ • assigns to K the homotopy class modulo Z[π] · G of the sphere −U ∪ K ∈
Map∗(Sd−2k,Map∗(Sk,M)) ' Map∗(Sd−k,M), obtained by gluing the oppositely oriented U with
K along boundaries.

− If d− k is even and d− k 6= k, then ηW,U(K) is one half of e(νK, νU), the relative Euler number
of the normal bundle of the immersion Id−2k × Dk # Id−2k ×M , given by (~t, x) 7→ (~t,K~t(x)),
relative to the constant family U (they agree on ∂(Id−2k ×Dk)). Moreover, Zk,d = Z splits back.

− If d− k = k = 2 or 4 or 8, then the relative Euler number e(νK, νU) might be odd, but we have

ηW,U(K) =
1

2

(
e(νK, νU)−W (−U ∪K)

)
where the homomorphism W ∈ Homπ(πkM,Z) with W (G) = 0 is an integral lift of the spherical
Stiefel–Whitney class wsk ∈ Homπ(πkM,Z/2) given by wsk(a) = wk(a∗(TM)) for a : Sk →M .
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We show that such aW always exists in Lemma B.18. We use Theorem D in [KT21] to compute the set of
path components π0 Embs(D2,M) for d = 4, thus classifying in the setting with a dual the set of isotopy
classes of disks in a 4-manifold. Note that this is precisely a case when 2d− 3k − 3 ≤ n < 2d− 3k − 1.

Remark 1.11. It is an interesting problem to determine the equivalence class of the extension in Theo-
rem D. For d− k even we can divide out Z = Zk,d that splits off and pick a set theoretic section σ of the
quotient extension. If ? is the group structure on πd−2k Embs(Dk,M) ∼= πd−2k+1 Embεuε

0
(Dk−1,MG), then

for ai ∈ πd−kMG
∼= πd−kM/Z[π]G the element σ(a1) ? σ(a2) ? σ(a1 + a2)−1 is in the kernel of −U ∪ •,

and on this Dax ◦ fεU inverts aU ◦ ∂r
ε. Thus, the group 2-cocycle is given by

(a1, a2) 7→ Dax(σ(a1) ? σ(a2) ? σ(a1 + a2)−1) ∈ Z[π1Mr1]�relk−1,d ⊕ dax(πd−k+1M),

We plan to study it in future work. Note that ? is the usual group structure for d− 2k ≥ 1, whereas for
d = 2k it is an unexpected group structure on the set π0 Embs(Dk,M). For k = 2, d = 4 we compute the
commutators of this group in [KT21] and show that it is usually nonabelian.

Remark 1.12. If in the setting with a dual we moreover have d ≥ k+3 and d−2k ≥ 1, then we can apply
Theorem C directly to obtain a description of πd−2k−1(Embs(Dk,M),U) as an extension of πd−k−1M by
a quotient of Z[π1Xr 1]. However, Theorem D says that this quotient is trivial, and one can see why
explicitly: we compute daxU(g · [G]) = g in Example 4.19.

Acknowledgments. Both authors cordially thank the Max Planck Institute for Mathematics in Bonn.
The first author was supported by the Fondation Sciences Mathématiques de Paris.
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2 Preliminaries

2.1 Outline

We outline the contents of the paper and the ideas of proofs of Theorems B and D.

2.1.1 Light bulb tricks. The first step in the proof of Theorem B is illustrated in Figure 1.2: attaching a
handle to G transforms a neat k-disk inM into a “half-disk” Dk ↪→MG, namely, a k-disk whose boundary
∂ Dk = Sk−1 = Dk−1

− ∪ Dk−1
+ has one half u− = s|D− embedded in ∂MG and the other u+ = s|D+ neatly

embedded in MG, with ∂u− = ∂u+. Half-disks are not smooth embeddings in the classical sense, but in
the sense of manifolds with corners, which we review in Section 2.2. Moreover, this correspondence gives
a homotopy equivalence

Embsε(Dk,M) ' Embsε( Dk,MG), (2.1)

since removing a tubular neighborhood νu+ turns half-disks back into neat disks; we first ensure that
half-disks intersect νu+ only along the collar uε+. This is done in Section 3.2.

Lemma 2.2. The existence of a disk U: Dk ↪→ M ensures that the diffeomorphism type of MG is
independent of the choice of a framing ψ of G, and in fact, of the choice of a dual G to s all together.
Moreover, there is a diffeomorphism MG

∼= MrνU.

Proof. First note that M is obtained from the complement MrνU of an open tubular neighborhood of
U by attaching a (d − k)-handle with cocore U. As G is dual to ∂U and has trivial normal bundle, the
standard handle cancellation of this (d− k)- and (d− k + 1)-handle pair gives a diffeomorphism

MG
∼= M ∪(G,ψ) h

d−k+1 ∼=
(
MrνU

)
∪ hd−k ∪ hd−k+1 ∼= MrνU. �

The second ingredient for Theorem B is Cerf–Palais “family version” of ambient isotopy extension The-
orem 2.9, saying that a map restricting embeddings to a fixed submanifold is a locally trivial fibration.
This is used in Section 3.1 as follows. Consider the space EmbDε

−
( Dk,MG; U) of half-disks which agree

with our basepoint U only on the collar Dε− of D− ⊆ ∂ Dk, while D+ moves freely and neatly inMG. Then
Embsε( Dk,MG) = Emb∂ Dk( Dk,MG; U) is by definition the fiber over uε+ of the restriction map evDε

+
.

This gives rise to a fibration sequence

Ω Embεu0
(Dk−1,MG) Embsε( Dk,MG) EmbDε

−
( Dk,MG; U) Embεu0

(Dk−1,MG).
aU evDε

+

in which the total space EmbDε
−

( Dk,MG; U) is contractible: in this space half-disks are allowed to shrink
arbitrarily close to their Dε−-collar, where they are fixed. This implies that the connecting map aU is a
homotopy equivalence with an explicit inverse fεU (given in general by Lemma A.4); see also Example 2.4.

Remark 2.3. One can try to define the map fU : Embs(Dk,M)→ Ω Embu0
(Dk−1,MG) from Theorem A

directly as follows. Consider the foliation of K ∈ Embs(Dk,M) by K(•, t) : Dk−1 ↪→ M ⊆ MG, using a
parametrization Dk ∼= Dk−1 × I; this is a path from u− to u+, so to get a closed loop use the inverse of
such a foliation of U. However, u− is not neat so does not lie in the space Embu0

(Dk−1,MG). One way
around this would be to enlarge this space to also include embeddings that lie in ∂MG; after all, they are
limits of neat embeddings and we believe the homotopy type of the space does not change.

We opted for a second way, making Embs(Dk,M) smaller by considering its homotopy equivalent (by
Cerf’s Proposition 2.10) subspace Embsε(Dk,M). Then the mentioned explicit inverse fεU induces the
following fU := ev0 ◦ f

ε
U: pick a neat ũ− : Dk−1 ↪→ U(Sk−1 × [1 − ε, 1]) that is close to u−, and define

fU(K) = f(−U) · f(K) as the path U(•,−t) from u+ to ũ−, followed by K(•, t) from ũ− back to u+.



A SPACE LEVEL LIGHT BULB THEOREM IN ALL DIMENSIONS 7

Example 2.4. For k = 1, d = 3 think of γ ∈ Ω Embε∅(D0,MG) as an isotopy of intervals D0 × [0, ε].
Extend this to an ambient isotopy Φt of MG, so diffeomorphism Φ1 takes uε+ to itself. Then aU(γ) :=

Φ1(U) ∈ Embsε( D1,MG) is the half-arc obtained by dragging the endpoint of U along γ, as in Figure 2.5.
The homotopy inverse fεU of aU glues the given embedded arc K to U along their boundaries and foliates
the resulting loop −U ∪K by small intervals D0 × [0, ε], to obtain fεU(K) ∈ Ω Embε∅(D0,MG).

g

u− u+

U

∂M

γ

g

u− u+

U

∂M

g

u−

aU(γ)

∂M

Figure 2.5. Moments t = 0, 0 < t < 1, t = 1 of an ambient isotopy Φt defining aU(γ). A neighborhood of
the intersection U ∩ γ has to be “dragged along” all the way during the isotopy, whereas a neighborhood of the
undercrossing in γ is dragged along only for a while.

2.1.2 The Dax invariant. In Section 4 we discuss the work of Dax and prove Theorem C. The goal is
to compute the homotopy groups πn(Embu0(Dk−1,MG), u+) for n ≤ d−2k, but we will work in a general
setting, with no restrictions on MG and u0. Instead consider an arbitrary d-manifold X (with adjectives
as in the first paragraph of the paper), and write Emb∂(D`, X) and Imm∂(D`, X) for the spaces of neatly
embedded and immersed disks with boundary u0 : S`−1 ↪→ ∂X and based at an arbitrary u : D` ↪→ X.

Remark 2.6. The unit derivative map D(U)−1·D(•) : Imm∂(D1, X)→ ΩV1(X) is a homotopy equivalence
by Smale [Sma58], where V1(X) is the unit sphere subbundle of the tangent bundle of X. Interestingly,
the proof idea is essentially the same Cerf’s trick outlined above, and the key ingredient is to show that
the restriction map for immersions is also a fibration. Note that ΩV1(X) ' ΩSd−1×ΩX, see Lemma B.8.

Firstly, we will see that πn(Emb∂(D`, X), u) ∼= πn(Imm∂(D`, X), u) ∼= πn+`X for every n ≤ d − 2` − 2

and that the inclusion induces a surjection

πd−2`−1(Emb∂(D`, X), u)� πd−2`−1(Imm∂(D`, X), u) ∼= πd−`−1X.

We will compute its kernel in Section 4.2: it is the quotient of the relative homotopy group, computed in
Section 4.1 as

Dax : πd−2`(Imm∂(D`, X),Emb∂(D`, X), u)
∼=−→ Z[π1X]�rel`,d

by the image of πd−2`(Imm∂(D`, X), u) ∼= Z/rel`,d ⊕ πd−`X, as computed in Proposition 4.28. Recall
from (1.9) that rel`,d := 〈g − (−1)d−`g−1 : g ∈ π1X〉 except that rel1,d := 0, and that the Dax invariant
Dax([H]) of the relative homotopy class of H : (Id−2`, ∂Id−2`) → (Imm∂(D`, X),Emb∂(D`, X)) is the
signed count of double point loops of the track H̃ : Id−2` × D` → Id−2` × X. Note that when ` = 1 we
can use the natural orientation of D1 to order the two sheets intersecting at a double point, and hence
lend in Z[π1X]. However, for ` ≥ 2 we have to mod out the ambiguous choice of sheets: the double point
loop gets reversed and the sign changes exactly if the reflection on Rd−` ×Rd−` changes the orientation.

In Theorem 4.20 (in Section 4.1) we describe the inverse r of Dax, schematically depicted in Figure 2.7.
For g ∈ π1X the class r(g) is represented by the (d− 2`− 1)-family of embedded disks that swing around
a meridian sphere Sd−`−1 to u at a point x, together with a path through immersed disks from this to
the trivial family using the meridian ball at x. In fact, discussion of Section 4.1 applies to any simply
connected manifold V in place of Dl.
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u(−1) u(+1)Sd−l−1 x

g

r(g)

Figure 2.7. Samples r(g)t ∈ Emb∂(D`, X) for several t ∈ S1 and ` = 1, d = 4.

In Section 5.2 we show an analogous result for ε-augmented arcs, see Theorem 5.5. The proof uses our
study of the augmentation map from Section 5.1 and of frame bundles from Appendix B. This almost
immediately proves Theorem D: it just remains to see that πd−kMG is the quotient of πd−kM by the
Z[π1M ]-multiples of G, and to determine the splitting ηW,U as an Euler number, see Section 5.3.

2.2 Embeddings of manifolds with corners

Following Cerf [Cer61] a d-dimensionalmanifold with corners is a topological d-manifoldX with boundary,
together with (a maximal atlas of) charts around all x ∈ X with domain Rd(q) := Rq × [0,∞)d−q for some
0 ≤ q ≤ d that send the origin ~0 to x. One requires that each transition map, initially defined only on an
open subset of Rd(q), extends to a smooth map on an open subset of Rd. This gives a notion of smooth
maps Y → X between manifolds with corners and a Whitney topology on the set C∞(Y,X).

A component of X(q) := {x ∈ X | x↔ ~0 ∈ Rd(q) in some chart} is called a q-face of X; it is a q-dimensional
smooth manifold (without boundary), and the set X is a disjoint union of its faces. The boundary ∂X

is the union of codimension ≥ 1 faces, and a corner of X is a face of codimension ≥ 2 (e.g. one of the
vertices in a square). If q ∈ {d − 1, d} we recover the usual structure on X of a smooth manifold with
boundary. The role of a collar of ∂X in X is in general played by Cerf’s “prismatic neighbourhoods”
(which restrict to collars of faces). Manifolds with corners are clearly closed under cartesian product.

For a d-manifold with corners X a subset X ′ ⊆ X is a d′-dimensional submanifold for some 0 ≤ d′ ≤ d

if each point of X ′ admits a chart in X for which X ′ maps bijectively to some submodel Rd′(q′) ⊆ R
d
(q). A

submodel is given by choosing 0 ≤ q′ ≤ q, 0 ≤ k ≤ min{q− q′, d′ − q′}, and inserting d− d′ many zeroes:

Rd
′

(q′) 3 (x1, . . . , xq′ , y1, . . . , yd′−q′) 7→ (x1, . . . , xq′ , y1, . . . , yk, 0, . . . , 0, yk+1, . . . , yd′−q′) ∈ Rd(q).

These relative charts induce the structure of a d′-manifold with corners on X ′. For example, if X is
a smooth manifold with boundary, then for the corners of X ′ of codimension d′ − q′ ≤ 2, we have the
following different cases, depending on the value of q′ listed on the left:

d′: For a top dimensional face F ⊆ X ′ we have either F ⊆ ∂X or F ⊆ X(d) = Xr∂X.
d′−1: For a small neighborhood Vp ⊆ X ′ of p ∈ X ′(d′−1) there are 3 possibilities: either Vp ⊆ ∂X

respectively Vp ⊆ Xr∂X as above, or (Vp, ∂Vp) ⊆ (X, ∂X) is a neat submanifold.
d′−2: A small neighborhood Vp ⊆ X ′ of p ∈ X ′(d′−2) looks like a neighborhood of ~0 ∈ Rd′−2× [0,∞)2, and

there are 4 possibilities for Vp ⊆ X. The case (x1, . . . , xq′ , y1, y2) 7→ (x1, . . . , xq′ , y1, 0, . . . , 0, y2) is
the most interesting: exactly “one half” of ∂Vp, the one corresponding to ~0× [0,∞)× {0}, lies in
∂X while the rest of Vp lies in Xr∂X.

Thus, a smooth submanifold with boundary is either neat or contained in the interior of X, while the
simplest next case is the local model listed last above, which we use for half-disks X ′ = Dk, see Figure 3.1.
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A smooth map f of manifolds with corners is an embedding, written f : Y ↪→ X, if f(Y ) is a submanifold
of X whose induced corner structure makes f : Y → f(Y ) a diffeomorphism. An immersion of manifolds
with corners is a smooth map that is locally an embedding. Spaces of embeddings and immersions inherit
the Whitney C∞-topology.

Definition 2.8. For y : Y ↪→ X let Emb(Y,X; y) ⊆ Emb(Y,X) consist of embeddings f : Y ↪→ X such
that for each p ∈ Y and each face FX ⊆ X we have f(p) ∈ FX if and only if y(p) ∈ FX ; we say that y
and f have the same “incidence relations” [Cer61, p. 281].

Furthermore, for a closed subset Y ′ ⊆ Y , let

EmbY ′(Y,X; y) ⊆ Emb(Y,X; y)

consist of those embeddings f that agree with y on Y ′, that is f |Y ′ = y|Y ′ . We say that “y is the boundary
condition along Y ′” (note that y at the same time determines the incidence relations).

2.2.1 Restriction maps for embeddings. Consider compact manifolds with corners and embeddings

Z ′ Z Y X.

z
y

We say a subset Y ′ ⊆ Y is a local normal tube to Z ⊆ Y along Z ′ if Y ′ ∩ Z = Z ′ and there is a tubular
neighborhood V ⊆ Y of Z in Y such that Y ′ ∩ V = pr−1(Z ′), where pr : V → Z is the projection.

Theorem 2.9. With the above notation, the following restriction maps are both locally trivial:

I. evZ : Emb(Y,X; y) −→ Emb(Z,X; z) [Cer61, p.294 Cor.2, with notation E ⊆ H ⊆ F ];
II. evZ : EmbY ′(Y,X; y) −→ EmbZ′(Z,X; z) [Cer61, p.298 Cor.2].

Here a map p : E → B is locally trivial if for each b ∈ B there exists a neighborhood x ∈ V ⊆ B and
a homeomorphism p−1(V ) ∼= V × p−1(x). Palais [Pal60] showed 2.9.I in the case when all manifolds
have empty boundary and Y is compact; Cerf extended this to manifolds with corners and quite general
boundary conditions as in 2.9.II. We also record the following fact (see [Cer61, p.331 Cor.3, p.337 Prop.9]),
which will be used to replace neat embeddings by those fixed on a collar.

Proposition 2.10. In the same notation as above, if Z ′ = Y ′ ∩ Z is the closure of a codimension 1

face, then the inclusion EmbZ∪Y ′(Y,X; y) ↪→ EmbZ(Y,X; y) is a weak homotopy equivalence.

It is a standard fact that a locally trivial map over a paracompact base is a Hurewicz fibration. As
EmbY ′(Y,X; y) are metrizable infinite-dimensional manifolds [Mic80], they are paracompact by Stone’s
theorem, so Theorem 2.9 implies that the restriction maps evZ are Hurewicz fibrations. In Appendix A
we discuss some properties of fibrations and their connecting maps, needed in the proof of Theorem 3.2.

3 Spaces of disks and half-disks

In this section we work in arbitrary dimensions and prove Theorem B. Disks in M with duals in ∂M

are reduced to half-disks in X = MG in Section 3.2, while half-disks in X are described as loops in
X of “ε-augmented” disks of lower dimension in Section 3.1. Let us first fix notation for the setting of
half-disks.

Given an embedding U: D ↪→ X of compact manifolds with corners, and a closed subset b ⊆ D, recall
from Section 2.2 the space Embb(D,X; U) consisting of those embeddings K : D ↪→ X which have the
same incidence relations (for faces in D,X) as U, and that agree with U on b. We let U be its basepoint.
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In particular, if D and X are manifolds with boundary, the incidence relation U(D) ∩ ∂X = U(∂D)

together with the boundary condition s := U|b on b = ∂D reproduces our space

Embs(D,X) = Emb∂D(D,X; U)

of neat embeddings (see the first paragraph of the paper). For such U we can expand the boundary
condition to a closed collar b := (∂D)× [0, ε] ⊆ D and define

Embsε(D,X) := Emb(∂D)×[0,ε](D,X; U).

By Proposition 2.10 the inclusion Embsε(D,X) ↪→ Embs(D,X) is a weak homotopy equivalence.

Figure 3.1. A half-disk for k = 2, d = 3.

We will need the the next simplest case of manifolds with corners,
which also have codimension 2 faces. Namely, we now take the
domain D to be Dk := {x ∈ Rk : ||x|| ≤ 1, x1 ≤ 0}, which is
the west half of the unit k-dimensional disk, and consider subsets
D− := {x ∈ Dk : ||x|| = 1} and D+ := {x ∈ Dk : x1 = 0},
which are (k − 1)-dimensional disks with ∂ Dk = D− ∪ D+ and
S0 := D− ∩ D+, which is a (k − 2)-dimensional sphere. Then Dk

is a k-manifold with corners with one k-face ˚Dk, two (k−1)-faces
D̊± and one (k − 2)-face S0, the unique corner of Dk.

Moreover, consider subsets Dε− := {x ∈ Dk : ||x|| ≥ 1 − ε} and
Dε+ := {x ∈ Dk : x1 ≥ −ε} (shaded strips in Figure 3.1), both
diffeomorphic to Dk−1 × [0, 1] and with Dε− ∩ Dε+ ∼= S0 × [0, ε]2.
Denote ∂ε Dk := Dε−∪Dε+ (an example of Cerf’s prismatic collar).

Next, we fix a smooth manifold with boundary X and an embedding U: Dk ↪→ X of manifolds with
corners such that U maps ˚Dk to the interior of X and the other incidence relations are determined by the
restrictions of U to D± as follows (see Figure 3.1): the image of u− := U|D− is contained in ∂X, while
u+ := U|D+ : D+ ↪→ X is a neat embedding, with u0 := ∂(u−) = ∂(u+) : S0 ↪→ ∂X.

Similarly, we write uε± := U|Dε
±

and uε0 := U|Dε
−∩Dε

+
, and identify their domains with the corresponding

products. Let us also still write s := U|∂D and sε := U|∂Dε

The elements of Cerf’s space Emb( Dk, X; U) are called half-disks in X. We are interested in its subspace
Embsε( Dk, X) := Emb∂ε Dk( Dk, X; U) which by definition consists of those half-disks K : Dk ↪→ X that
agree with U on the prismatic collar ∂ε Dk. Equivalently, K is a topological embedding that agrees with
U on ∂ε Dk and restricts to an (ordinary) smooth embedding on interiors ˚Dk ↪→ Xr∂X.

We saw in Proposition 2.10 that the space of neat disks Embu0
(Dk−1, X) = EmbS0(D+, X;u+) has a

weakly equivalent subspace Embuε
0
(Dk−1, X) = EmbS0×[0,ε](D+, X;u+) of disks fixed on a collar S0 ×

[0, ε] ⊆ D+. We will also need a space where each such disk is augmented with “push-offs”, namely

Embεuε
0
(Dk−1, X) := EmbDε

−∩Dε
+

(Dε+, X;uε+).

A point here is a topological embedding K : Dk−1 × [0, ε] ↪→ X that restricts to uε0 on (S0 × [0, ε])× [0, ε]

and to an (ordinary) smooth embedding D̊k−1× [0, ε] ↪→ Xr∂X; we call K an “ε-augmented” (k−1)-disk.

3.1 From half-disks to loops of ε-augmented disks

Our embedding spaces are always equipped with basepoints according to the convention above; in the
next theorem these are respectively uε+ and U. A proof of this result was essentially given in [Cer68,
App.], but we also identify the maps involved, needed for future geometric applications, see [KT21].
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Theorem 3.2. For all k ≥ 1 and d ≥ 1 there are inverse homotopy equivalences

aU : Ω Embεsε(Dk−1, X) Embsε( Dk, X) : fεU∼ (3.3)

where aU is given on homotopy groups by the family ambient isotopy theorem, while fεU maps a half-disk
K to the loop of ε-augmented (k − 1)-disks induced by appropriate foliation of the sphere −U ∪K.

Proof. Consider the fibration sequence

Embsε( Dk, X) := ev−1
Dε

+
(uε+) EmbDε

−
( Dk, X; U) Embεuε

0
(Dk−1, X)

evDε
+

where evDε
+
restricts K : Dk ↪→ X to the ε-collar Dε+ ⊆ Dk of the unconstrained half of its boundary. This

is a fibration by Cerf’s Theorem 2.9.II for Y ′ := Dε− ⊆ Dk =: Y and Z ′ := Dε− ∩ Dε+ ⊆ Dε+ =: Z. We will
show that its total space Eε := EmbDε

−
( Dk, X;U) admits an explicit contraction

R : Eε × [0, 1] −→ Eε, with R0 = constU, R1 = Id. (3.4)

Then Lemma A.4 implies that any connecting map

aU : Ω Embεuε
0
(Dk−1, X) −→ Embsε( Dk, X)

is a homotopy equivalence, and is by definition is given by lifting the loop in the base space to a path
in the total space and taking the endpoint. In our setting this amounts to extending a loop β of ε-
augmented (k − 1)-disks based at uε+ to an isotopy of half-disks starting with U and ending with the
desired half-disk aU(β). By the same lemma, the restriction fεU(K)(t) = evDε

+
◦ Rt(K) = Rt(K)|Dε

+
is a

homotopy inverse to aU, and we will see below that it is indeed given by a foliation, cf. Section 1.1.

To construct the retraction R we start with a path of re-embeddings ϕt : Dk ↪→ Dk, t ∈ [ε, 1], such that

(1) ϕ1 = Id Dand ϕt|Dε/2
−

= IdDε/2
−

for all t,

(2) ϕε( Dk) ⊆ Dε−,
(3) ϕt(Dε−) ⊆ Dε− for all t.

It is not hard write down such an isotopy ϕt using radial coordinates, see Figure 3.5 for k = 2.

Figure 3.5. The image of ϕt for t = 2/3, 1/3, ε. Dashed strips show where ϕt is the identity; they are always
contained in the blue-colored strip Dε

− ⊆ Dk. The black line is the image of Dk−1 × {ε} ⊆ Dε
+ ⊆ Dk.

Consider the homotopy Eε×[ε, 1]→ Eε/2 := EmbDε/2
−

( Dk, X;U), defined byK 7→ K ◦ϕt. By Property (1)

this indeed defines paths in the space Eε/2 (Eε ⊆ Eε/2 is smaller as it has the stronger boundary
condition), ending with Kϕ1 = K, and starting with Kϕε = Uϕε, using Property (2) and that K ∈ Eε.
We next modify this homotopy to have image contained in the subspace Eε. We fix an ambient isotopy
Φt : X

∼=−→ X, t ∈ [ε, 1], supported in a collar of ∂X, such that Φ1 = IdX and U ◦ ϕt|Dε
−

= Φ−1
t ◦ U|Dε

−

for t ∈ [ε, 1]. This can be constructed explicitly in a collar ∂X × [0, ε] ↪→ X (or extend the isotopy of
half-disks Uϕt by the usual ambient isotopy theorem).
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Then for t ∈ [ε, 1] let
Rt(K) := Φt ◦K ◦ ϕt.

This defines a path from Rε(K) = ΦεKϕε = ΦεUϕε to R1(K) = IdXKId D= K, and now each half-disk
Rt(K) for t ∈ [ε, 1] is in Eε, i.e. it agrees with U on Dε−. Indeed, by Property (3) and K ∈ Eε we have
Kϕt|Dε

−
= Uϕt|Dε

−
, so Rt(K)|Dε

−
:= ΦtKϕt|Dε

−
= ΦtUϕt|Dε

−
= U|Dε

−
by construction of Φ.

Finally, for t ∈ [0, ε] we let Rt(K) := R1+t−t/ε(U). This goes from U to ΦεUϕε, so glues with the above
Rt, t ∈ [ε, 1] to a map R : Eε × [0, 1] → Eε which is the desired contraction as in (3.4). Finally, the
homotopy inverse to aU is defined by the formula

fεU(K)(t) = Rt(K)|Dε
+

=

{
Φ1+t−t/ε ◦U ◦ ϕ1+t−t/ε|Dε

+
, t ∈ [0, ε]

Φt ◦K ◦ ϕt|Dε
+
, t ∈ [ε, 1].

which we call the foliation: outside of a fixed collar of X it agrees either with the ε-augmented arc Uϕt|Dε
+

or Kϕt|Dε
+
, and in the collar uses their modifications by Φt, making “a turn” at ũε− := ΦεUϕε|Dε

+
. �

3.2 From neat disks to half-disks

Recall that the model half-disk Dk ⊆ Dk has boundary decomposed into two (k−1)-disks ∂ Dk = D−∪S0D+

intersecting along the (k − 2)-sphere S0, the corner of Dk. Also recall that U: Dk ↪→ X by definition
restricts to a neat (k − 1)-disk u+ : D+ ↪→ X, while the image of D− is contained in ∂X.

Using a Riemannian metric on X we extend u+ to an embedding V : D+ × Dd−k+1
≤ε ↪→ X onto a closed

tubular neighborhood νεu+. We may assume that the restriction V | : D+ × [0, ε] ∼= Dε+ ↪→ X to the first
normal vector agrees with our preferred ε-augmentation uε+ = U|Dε

+
and also, by decreasing ε if necessary,

that im(uε+) = νεu+ ∩ im(U), i.e. the half-disk U does not return to this neighborhood of u+.

We can view V (D+×Dd−k+1
≤ε/2 ) as a (d−k+1)-handle attached to XrV (D+×Dd−k+1

<ε/2 ) along V (D+×Sd−kε/2 ),
see Figure 3.6. Conversely, that complement is obtained from X by removing a (k− 1)-handle with core
u+(D+), and is a smooth manifold with boundary only if we first smoothen the corner V (S0 × Sd−kε/2 ).

Figure 3.6. Removing a handle h+ ⊆ X turns the
half-disk U in X into a neat disk U′ in Xrh+.

Figure 3.7. The model smoothening.

This is a standard procedure, used for example when attaching handles in the smooth category. In our
context it amounts to picking an open subset h+ ⊆ νεu+ which is the union of V (D+ × D̊d−k+1

≤ε/2 ) and a
small set near the corner, so that Xrh+ is a compact smooth manifold with boundary. We make such
a choice once and for all in D+ × Dd−k+1

≤ε , and then let h+ be its image in X under V , see Figure 3.7.
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Namely, the constant radius ε/2 along D+ increases near S0 by a smooth function with fairly obvious
properties (ensuring that the stretching function σ in the next proof is well defined on all of h+).

Now let D′ := DkrV −1(h+) ⊆ Dk and fix a diffeomorphism Dk ∼= D′ that is the identity near Dε−rDε+.
Then the restriction of U to D′ is a neat embedding U′ : D′ ↪→ Xr h+, by our choice of ε. This is an
element in the space of neat embeddings Embsε/2(D′, Xrh+) ⊆ Emb(Dk, Xrh+), where the boundary
condition is the remaining ε/2-part of uε+ in D′, as well as the original uε− along u−. Note that we can
reconstruct U from U′ as U = U′ ∪ uε+.

Lemma 3.8. The map • ∪ uε+ : Embsε/2(D′, Xrh+)→ Embsε( Dk, X) is a homotopy equivalence.

Proof. The chosen boundary conditions sε/2 make this map well-defined. It is continuous with image
E ⊆ Embsε( Dk, X) consisting of those half-disks that meet h+ only along im(u

ε/2
+ ). In fact, it is a

homeomorphism onto E whose inverse is given by restricting embeddings from Dk to D′. It thus suffices
to construct a homotopy inverse from Embsε( Dk, X) back to this subspace E .
To this end, use the Riemannian metric on X to obtain the continuous map

r : Embsε( Dk, X) −→ (0, 3
5ε)

so that r(K) gives the minimal distance of K(D′) to K(D+) = U(D+). Possibly shrinking ε further, we
may assume that the geodesic distance to U(D+) on the sphere bundle in νδu+ is δ for all δ < ε. By
compactness and the injectivity of K, r(K) is strictly positive as claimed and we will now stretch it to
3
5ε, in order to deform K until it lies in E . So we pick a smooth “stretching” function

σ : (0, ε/2)× [0, 1]× [0, ε] −→ [0, ε]

such that σ(r, t, x) = x whenever one of the following conditions is satisfied: t = 0 or x = 0 or x ≥ 4
5ε.

Moreover, we require σ(r, 1, r) = 3
5ε for all r and that each σ(r, t,−) is strictly increasing, see Figure 3.10.

Figure 3.9. Stretch K towards the dashed
lines to avoid the smallest central disk h+.

Figure 3.10. Stretching functions σ(r, t) : [0, ε]→ [0, ε]
for fixed r < ε/2 and three values of t ∈ [0, 1].

If (x, v) ∈ [0, ε] × Sd−k are polar coordinates, then we will refer to “stretching by σ(r, t)” as the self-
diffeomorphism (x, v) 7→ (σ(r, t, x), v) of Dd−k+1

≤ε , see Figure 3.9. The same formula applies to disk
bundles in vector bundles if we stretch in a constant way along the base. Using the parametrization
V , we can apply such diffeomorphisms also to our tubular neighborhood νεu+. The stretching near the
smoothened corners along S0 needs to be slightly modified but we leave this variation to the reader.
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We can then construct a homotopy H : Embsε( Dk, X) × [0, 1] → Embsε( Dk, X) with H0 = Id and
im(H1) ⊆ E , induced by a smooth family of diffeomorphisms φr(K),t : X → X that are the identity
outside ν

4
5 εu+ and on νεu+ they stretch by σ(r(K), t). More precisely, we define H(K, t) to be the

half-disk that equals K on ∂ε Dk but away from that collar is given by the composition φr(K),t ◦K.

The properties of the stretching function σ show that each Ht sends E to itself and that H1 is the required
homotopy inverse. In fact, homotopies for both compositions to the identity are constructed from Ht as
follows: If j : E ⊆ Embsε( Dk, X) is the inclusion then H1 ◦j : E → E is homotopic via Ht ◦j to H0 ◦j = IdE .
Similarly, j ◦H1 = H1 ' H0 = Id. �

We can now prove Theorem B. This is about the space of neat k-disks in a d-manifold M , with the
boundary s : Sk−1 ↪→ ∂M which has a framed geometric dual G : Sd−k ↪→ ∂M , that is, the normal bundle
ν∂M (G) is trivial and G t s = {p}. Then the theorem says Embs(Dk,M) ' Ω Embεuε

0
(Dk−1,MG), where

MG := M ∪(G,ψ) h, is obtained by attaching a (d− k + 1)-handle h = Dd−k+1 ×Dk−1 along any framing
ψ : Sd−k × Dk−1 ↪→ ν∂M (G) (this choice is inessential because MG

∼= MrνU, see Lemma 2.2).

Proof of Theorem B. Removing fromMG an open ε-neighborhood h+ of the cocore {0}×Dk−1 of h gives
M back because we are all together just attaching Sd−k × [ε, 1]×Dk−1 along Sd−k × {1} ×Dk−1 ↪→ ∂M .
Using this diffeomorphism MG

rh+
∼= M and Proposition 2.10 we have

Embs(Dk,M) ∼= Embs(Dk,MG
rh+) ' Embsε(Dk,MG

rh+).

Applying Lemma 3.8 and Theorem 3.2 to X := MG we obtain

Embsε(Dk,MG
rh+) ' Embsε( Dk,MG) ' Ω Embεuε

0
(Dk−1,MG).

The final statement of Theorem B, identifying homotopy equivalences, follows from Proposition 5.2. �

4 On homotopy groups of spaces of neat disks

In this section we apply Dax’s results to compute the first homotopy group of the space of embedded
disks differing from that of immersed disks. In the next section we extend this to ε-augmented disks.

In fact, in Section 4.1 we follow Dax and work more generally with V,X smooth (oriented) manifolds with
boundary, and V compact (but X not necessarily). We consider the space Emb∂(V,X) (for V = Dk−1

this was previously denoted Embu0
(Dk−1, X)) of neat embeddings of V into X that are on the boundary

given by u0 := u|∂V , for a fixed “unknot” u : V ↪→ X; note that no dual is assumed.

We study the homotopy groups of Emb∂(V,X) by comparing them to the space Imm∂(V,X) of immersions
V # X with the same boundary condition u0. Denoting dimV = ` ≤ d = dimX, and assuming d−2` ≥ 0

and d ≥ `+ 3, the Dax invariant will be an isomorphism (bijection for d− 2` = 0 or 1):

Dax : πd−2`

(
Imm∂(V,X),Emb∂(V,X);u

)
−→ Z[π1X]�rel`,d

given on a relative homotopy class

F :
(
Id−2`, Id−2`−1 × {0}, ∂Id−2`−1 × I ∪ Id−2`−1 × {1}

)
−→ (Imm∂(V,X), Emb∂(V,X), u)

as the count of double point loops of the associated track F̃ : Id−2` × V → Id−2` ×X, see Theorem 4.13.
The group of relations rel`,d is trivial for ` = 1, whereas for ` ≥ 2 it is given by 〈g−(−1)d−`g−1 : g ∈ π1X〉.
We will then concentrate on the case V = D` and study the connecting map

δImm : πd−2` Imm∂(D`, X) −→ πd−2`(Imm∂(D`, X),Emb∂(D`, X), u). (4.1)

in order to prove the following in Section 4.2.
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Theorem 4.2. The inclusion i : Emb∂(D`, X) ↪→ Imm∂(D`, X) is (d − 2` − 1)-connected. Assume
d ≥ `+ 3. If d− 2`− 1 ≥ 1 there is a short exact sequence of groups:

Z[π1Xr1]�rel`,d ⊕ daxu(πd−`X) πd−2`−1(Emb∂(D`, X), u) πd−2`−1(Imm∂(D`, X), u),
∂r πd−`−1i

Dax

where the homomorphism daxu : πd−`X → Z[π1Xr1]/rel`,d is defined in (4.30) below in terms of Dax◦δImm.
The dashed arrow Dax inverts on ker(πd−`−1i) an explicit realization map ∂r.

If d − 2` − 1 = 0 there is an analogous exact sequence of sets, with u omitted and ∂r extending to an
action on π0 Emb∂(D`, X). Finally, if d− 2` = 0 there is an exact sequence of sets

π0 Emb∂(D`, X) π0 Imm∂(D`, X) Z[π1X]�rel`,d,
π0i Dax ◦ δImm

and Dax ◦ δImm agrees with the Wall self-intersection invariant µ` (see Remark 4.18).

This can be made more explicit by computing homotopy groups of Imm∂(D`, X) using Smale–Hirsch
immersion theory, see Corollary 4.26, which immediately gives Theorem C. An analogue for ε-augmented
disks will be given as Theorem 5.5 in Section 5.2, and its case ` = k − 1 and X = MG will be used to
prove Theorem D in Section 5.3.

The first sentence of Theorem 4.2 follows by general position. Namely, for a family of immersed disks
F (~t) : D` # X, ~t ∈ Sn, their double points correspond to double points of the track F̃ : Sn×D` → Sn×X,
defined by (~t, v) 7→ (~t, F (~t)(v)). The set of double points of F̃ has dimension n+d−2(d− `) = n−d+ 2l.
This is negative if n < d− 2`, when a generic n-family is embedded, i.e. gives a class in πn Emb∂(D`, X).
If n < d − 2` − 1 then these lifts are also unique, by an analogous argument with one more parameter,
implying the injectivity on πn as well.

Thus, it remains to determine the kernel of πd−2`−1i. This amounts to computing the relative homotopy
group in degree d− 2` and the image of the connecting map δImm.

4.1 The work of Dax: the relative homotopy group

4.1.1 The original formulation. As mentioned in the introduction (Section 1.2), Dax computes the
homotopy groups of immersions relative to embeddings in the metastable range 0 ≤ n ≤ 2d − 3l − 3, in
terms of certain bordism groups. His manifolds are more general than considered so far in this paper:
they can be disconnected and nonorientable, and the target can be noncompact.

Theorem 4.3 ([Dax72, p. 375]). Let V be a smooth, compact `-manifold with boundary, X a smooth
d-manifold with boundary, and u : V ↪→ X a smooth neat embedding. If 1 ≤ ` ≤ d are such that
d− 2` ≥ 0, then for 0 ≤ n ≤ 2d− 3l − 3 there is an explicit isomorphism (injection for n = 0):

βn : πn
(

Imm∂(V,X),Emb∂(V,X);u
)
−→ Ωn−(d−2`)(Cu;ϑu).

For n = 0 the relative homotopy group is understood as the set-theoretic quotient of π0 Imm∂(V,X)

by the image of π0 Emb∂(V,X). Thus, β0 is a complete obstruction for an immersion to be regularly
homotopic to an embedding; this was also studied in [HQ74] using similar techniques, see Remark 4.18.

As usual, the normal bordism group Ωi(Y ;ϑ) of a space Y with a stable vector bundle ϑ over it, consists
of bordism classes of tuples (D, b : D → Y,B : b∗(ϑ) → νD) where D is an i-manifold with the stable
normal bundle νD, b is a map, and B is a bundle isomorphism. We do not recall here the definitions from
[Dax72, p. 338] of the space Cu and the stable vector bundle ϑu over it, to save space as we do not need
them explicitly. We only point out the following three properties they have.
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Firstly, there is a fibration sequence ΩX → Cu
prW−−−→ W , where W is a compactification (to a manifold

with boundary) of the quotient of V 2r∆V , where V 2 = V × V and ∆V := {(v, v) ∈ V 2} is the diagonal,
by the involution (v, w) 7→ (w, v). Thus, the interior is the space of coinvariants, intW = (V 2r∆V )Z/2.

Secondly, the subspace Eg
u := pr−1

W (intW ) ⊆ Cu can be described as the quotient of the space

Ẽg
u :=

{
(v, w, ρ) ∈ (V 2r∆V )×Map([−1, 1], X) : ρ(−1) = u(v), ρ(1) = u(w)

}
by the free involution (v, w, ρ) 7→ (w, v, ρ−1). We use notation [v, w, ρ] ∈ Eg

u . This description follows
from the definition of the bundle ω over W , implying it is trivial over intW , see [Dax72, p. 337].

Thirdly, the restricted bundle ϑu|Eg
u

is obtained as the quotient of a bundle ϑ̃u over Ẽg
u . Namely, for

the stable normal bundle νV and the tangent bundle TX, let ϑ̃u be the pullback of ν2
V ⊕ TX under

(prV 2 , prX) : Ẽg
u → V 2 × X, (v, w, ρ) 7→ (v, w, ρ(0)). This map is equivariant for the involution which

switches the two V factors and is identity on X, giving an involution on ϑ̃u, whose quotient is ϑu|Eg
u
.

The following is used in the survey article [GKW01] without proof (with Eg
u denoted by Eg(u, u) there).

Lemma 4.4. The space Cu is homotopy equivalent to its subspace Eg
u . In particular,

Ωn−(d−2`)(Cu;ϑu) ∼= Ωn−(d−2`)(E
g
u ; ϑu|Eg

u
).

Proof. As intW is the interior of the compact manifold W with boundary, the inclusion i : intW ↪→ W

is a homotopy equivalence. Thus, the pullback i∗(Cu) = p−1(intW ) is homotopy equivalent to Cu. �

Let us now translate the isomorphism βn from Theorem 4.3 to this simpler target bordism group as

β′n : πn
(

Imm∂(V,X),Emb∂(V,X);u
) ∼=−→ Ωn−(d−2`)(E

g
u ; ϑu|Eg

u
). (4.5)

We also need the following standard result; see for example [Dax72, p. 335] (note that Dax considers all
maps rather than immersions, so has more conditions on perfect maps, regarding singular points).

Lemma 4.6. Under assumptions of Theorem 4.3, a smooth map

F :
(
In, In−1 × {0}, ∂In−1 × I ∪ In−1 × {1}

)
−→ (Imm∂(V,X), Emb∂(V,X), u)

can be approximated, relative to the boundary, by a perfect map, i.e. a smooth map F whose track

F̃ : In × V −→ In ×X, (~t, v) 7→ (~t, F (~t)(v) ) (4.7)

has no triple points, and double points are isolated and transverse. Equivalently, the restricted square
F̃ 2| : (In × V )2r∆In×V → (In ×X)2 is transverse to the diagonal ∆In×X .

For F a perfect map as in the lemma, let β′n[F ] be the bordism class of the tuple (∆Dax, bDax, BDax)

defined as follows. Firstly, the double point preimage set is defined as

∆̃Dax := (F̃ 2|)−1(∆In×X) ∼=
{

(~t, v, w) ∈ In × (V 2r∆V ) : F (~t)(v) = F (~t)(w)
}
,

whereas ∆Dax is the quotient of ∆̃Dax by the free involution interchanging the factors:

∆Dax := (∆̃Dax)Z/2 ∼=
{

(~t, [v, w]) ∈ In × intW : F (~t)(v) = F (~t)(w)
}
.

Note that F : ∆Dax ↪→ X, F (~t, [v, w]) = F (~t)(v) = F (~t)(w), embeds ∆Dax as the double point set, and
we have a double cover

q : ∆̃Dax −→ ∆Dax.

Next, bDax : ∆Dax → Eg
u is defined by

bDax(~t, [v, w]) =
[
v, w, ρ := F (~1− s(~1− ~t))(v)|s∈[0,1] · F (~1− s(~1− ~t))(w)|−1

s∈[0,1]

]
. (4.8)
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So ρ is a path in X from ρ(−1) = F (~1)(v) = u(v) to ρ(0) = F (~t)(v) = F (~t)(w) followed by a path to
ρ(1) = F (~1)(w) = u(w). Note that Dax takes relative classes to instead be u on the 0-face In−1×{0}, so
has a slightly different formula for ρ.

Finally, BDax is an isomorphism of the stable normal bundle ν∆Dax
and b∗Dax(ϑu|Eg

u
), given as follows.

Taking the pullback under q : ∆̃Dax → ∆Dax we have

q∗ν∆Dax
∼= ν∆̃Dax

∼= ν(In×V )2 |∆̃Dax
⊕ ν∆̃Dax⊆(In×V )2

∼=s ν2
V |∆̃Dax

⊕ (F̃ 2|)∗(ν∆In×X⊆(In×X)2). (4.9)

On the other hand, q∗b∗Dax(ϑu|Eg
u

) ∼= b̃∗Dax(ϑ̃u) for the obvious double cover b̃Dax : ∆̃Dax → Ẽg
u of bDax.

Since prX ◦ b̃Dax(~t, v, w) = F (~t)(v) = pr1 ◦ F̃
2|(~t, v, w) and T (In ×X) ∼= δ∗(ν∆⊆(In×X)2), we have

b̃∗Dax(pr∗X(TX)) ∼= (pr1 ◦ F̃
2|)∗(TX) ∼=s (F̃ 2|)∗(pr∗1(T (In ×X)) ∼= (F̃ 2|)∗(ν∆⊆(In×X)2), (4.10)

Since ϑ̃u := pr∗V 2ν2
V ⊕ pr∗X(TX) and b̃∗Dax(pr∗V 2ν2

V ) ∼= ν2
V |∆̃Dax

, we have a stable isomorphism B̃Dax of
q∗b∗Dax(ϑu|Eg

u
) and q∗ν∆Dax

. Moreover, this respects the involutions, so gives the desired BDax. Thus,
we have defined a bordism class (∆Dax, bDax, BDax) ∈ Ωn−(d−2`)(E

g
u ; ϑu|Eg

u
).

4.1.2 The Dax bordism group for a simply connected source. One can identify the 0-th bordism
group with the target of Wall’s self-intersection invariants.

Proposition 4.11. Let V,X, u be as in the first sentence of Dax’s Theorem 4.3. Additionally assume
that V and X are oriented, and that V is 1-connected. Then

Ω0(Eg
u ;ϑu|Eg

u
) ∼= Z[π1X]�rel`,d with rel`,d =

{
0, if ` = 1,

〈g − (−1)d−`g−1 : g ∈ π1X〉, otherwise.

Proof. It is a standard fact that Ω0(Eg
u ;ϑu|Eg

u
) ∼= H0(Eg

u ;Z(ϑu|Eg
u

)), where Z(ϑu|Eg
u

) are the local
coefficients induced by the orientation of the bundle, so over the connected component c of Eg

u the
coefficient group is Z or Z/2 depending on whether ϑu|c is orientable or not.

To compute the set π0E
g
u of components, we first find πi(V 2r∆V )Z/2 for i = 1, 2, using the exact sequence

π1(V 2r∆V ) π1(V 2r∆V )Z/2 Z/2 π0(V 2r∆V ) π0(V 2r∆V )Z/2.

For ` ≥ 2 we have π0(V 2r∆V )Z/2 = π0(V 2r∆V ) = 1, whereas (D1)2r∆D1 has two components which
get identified by the involution Z/2 ∼= π0((D1)2r∆D1), so again π0(V 2r∆V )Z/2 = 1.

Since V is 1-connected, from the fibration sequence Vrpt→ V 2r∆V → V we see that π1(V 2r∆V ) = 1,
unless ` = 1, 2. For ` = 1, 2, the only examples are D1 and D2, for which (D1)2r∆D1 is two triangles, so
simply connected, whereas π1((D2)2r∆D2) = π1S1 = Z for the meridian S1 of ∆D2 ⊆ (D2)2. Thus, from
the displayed exact sequence we see π1(V 2r∆V )Z/2 ∼= Z/2 for ` ≥ 3 and π1((D1)2r∆∆1)Z/2 ∼= 1. For
` = 2 in Z ↪→ π1((D2)2r∆D2)Z/2 � Z/2 note that Z/2 acts by −Id on Z. Thus, π1((D2)2r∆V )Z/2 ∼= Z.
Next, we claim that there is a fibration sequence

ΩX Eg
u (V 2r∆V )Z/2.

prV 2

(4.12)

Indeed, the fiber over [v, w] ∈ (V 2r∆V )Z/2 consists of paths ρ from u(v) to u(w) (or equivalently from
u(w) to u(v)), so taking γ ∈ ΩX to the path ρ = u(φv) · γ · u(φw)−1 gives a homotopy equivalence,
for some fixed whiskers φv from v to eV ∈ V (alternatively, restrict Dax’s fibration prW : Cu → W to
intW = (V 2r∆V )Z/2). The bottom of the induced long exact sequence of homotopy groups is:

π1(Eg
u , c) {1} or Z or Z/2 π1X π0E

g
u ,
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for ` = 1 or ` = 2 or ` ≥ 3 respectively, and a component c ∈ π0E
g
u . A generator σ of Z/2 or Z sends

g = [γ] ∈ π1X to g−1: indeed, σ is represented by the loop of two points in V switching positions, so
if the lifted path starts at [v, w, u(φv) · γ · u(φw)−1] ∈ Eg

u then it ends at [w, v, u(φw) · γ · u(φv)
−1] =

[v, w, u(φv) · γ−1 · u(φw)−1]. Thus,

π0E
g
u
∼=

{
π1X, ` = 1
π1X�g ∼ g−1, ` ≥ 2.

Moreover, σ fixes an element g ∈ π1X if and only if g = g−1. Thus, π1(Eg
u , c) → Z/2 or Z is surjective

if and only if c corresponds to an order 2 element g (i.e. c = [v, w, u(φv) · γ · u(φw)−1] for [γ] = g).

Now, we claim that for c = [g] ∈ π0E
g
u the bundle ϑu|c is nonorientable if and only if ` ≥ 2, d− ` is odd

and g2 = 1. Indeed, recall that ϑu|Eg
u

is the quotient of pr∗V 2(νV ) ⊕ pr∗X(TX) ∼= pr∗V 2(ν2
u) ⊕ pr∗X(νX)

(using that νV ∼= νu ⊕ νX and νX ⊕ TX is trivial) by the involution swapping the two V factors. As X
is orientable, it suffices to check if there is a loop in (V 2r∆V )Z/2 which is orientation-reversing for the
quotient of ν2

u, and lifts to Eg
u . We saw π1(V 2r∆V )Z/2 is Z or Z/2, and along the generating loop σ the

monodromy is (−1)d−`, since (d− `) is the rank of νu. By the previous paragraph, σ lifts to π1(Eg
u , [g])

if and only if g2 = 1. Therefore, Ω0(Eg
u ;ϑu|Eg

u
) is canonically isomorphic to

Z[π], ` = 1

Z
[
π�g ∼ g−1

]
∼= Z[π]�〈g = g−1〉, ` ≥ 2, d− ` even,

Z
[
{g ∈ π : g2 6= 1}�g ∼ g−1

]
⊕ Z/2

[
{g ∈ π : g2 6= 1}

] ∼= Z[π]�〈g = −g−1〉, ` ≥ 2, d− ` odd.

where π := π1X. This was exactly denoted Z[π1X]/rel`,d in the statement, and finishes its proof. �

4.1.3 The Dax invariant for a simply connected source. We next simplify the Dax isomorphism β′n
from (4.5) for n = d−2` using the description Ωn−(d−2`)=0(Ẽg

u ;ϑu|Eg
u

) ∼= Z[π1X]/rel`,d from the previous
section. First note that for this to fall into the metastable range we need to have 0 ≤ d−2` ≤ 2d−3l−3,
which says d ≥ `+ 3, and d− 2` ≥ 0. For ` = 1 and d = 4 the following interpretation of Dax’s work was
also studied and used by Gabai in [Gab21] (his spinning map is analogous to our ∂r, see Remark 4.22).

Theorem 4.13. Let V,X, u be as in the first sentence of Dax’s Theorem 4.3. Additionally assume that
V and X are oriented, that V is 1-connected, and d ≥ ` + 3 and d − 2` ≥ 0. Under the isomorphism of
Proposition 4.11, β′d−2` is equivalent to the isomorphism

Dax : πd−2`

(
Imm∂(V,X),Emb∂(V,X);u

) ∼=−→ Z[π1X]�rel`,d,

Dax[F ] :=

k∑
i=1

ε(~ti,xi)
gxi
, (4.14)

which sends a perfect map F to the sum over all double points (~ti, xi) of its track F̃ from (4.7), of the
associated signed loops ε(~ti,xi)

gxi
, where ε(~ti,xi)

∈ {±1} and gxi
∈ π1X are defined below.

Firstly, for any v ∈ V fix a whisker φv : [0, 1] → V from the basepoint e` ∈ ∂V to v. For example, for
V = D` take the straight line φv(s) = sv + (1 − s)e` from e` = (−1, 0, . . . , 0) to v ∈ ∂V . For ` = 1 we
simply have e` = −1 and φv = [−1, v].

Secondly, the map F̃ has finitely many double points, all of the form (~ti, xi) with 1 ≤ i ≤ k, for some
~ti ∈ Id−2 and xi := F (~ti)(vi) = F (~ti)(wi) ∈ X with vi, wi ∈ V . Let us pick an order (vi, wi). In other
words, for the immersed manifold F (~ti) we choose “an order of the sheets” at the double point xi.
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∂X ∂X

F (~ti)

xi
e1

g

∂X ∂X

F (~ti)≤vi

F (~ti)
−1
≤wi

e1
xi

g

Figure 4.15. The double point xi ∈ X of the arc F (~ti) ∈ Imm∂(D1, X) has the associated loop gxi = g.

Let ε(~ti,xi)
∈ {±1} be the relative orientation at (~ti, xi), obtained by comparing orientations of the tangent

space T(~ti,xi)
(Id−2` ×X) and (in this order):

dF̃
(
T(~ti,vi)

(Id−2` × V )
)
⊕ dF̃

(
T(~ti,wi)

(Id−2` × V )
)
. (4.16)

Again using the fact that we chose an order of sheets at xi, we define the group element gxi
∈ π1(X,u(e`))

to be represented by the following loop based at u(e`) (see Figure 4.15 for ` = 1):

γxi
:= F (~ti)(φvi) · F (~ti)(φwi)

−1 (4.17)

Now note that if ` = 1 the order vi < wi is canonical in the interval D1. On the other hand, if ` ≥ 2 and
we switch the order then the sign (4.16) changes by (−1)d−` and the loop (4.17) becomes its inverse. But
since gxi

− (−1)d−`g−1
xi
∈ rel`,d the class Dax(F ) is well defined.

Proof of Theorem 4.13. Since ∆Dax is 0-dimensional, the bordism class of bDax : ∆Dax → Eg
u is by

definition the sum of signed components of Eg
u containing bDax(∆Dax), with the sign εDax([v, w],~t) = +1

if and only if BDax is an orientation-preserving isomorphism ν∆Dax
∼= b∗Dax(ϑu|Eg

u
). Equivalently, this is

the sum of signed components of Ẽg
u containing b̃Dax(∆̃Dax), modulo the involution. For (~t, v, w) ∈ ∆̃Dax

the component of b̃Dax(~t, v, w) = (v, w, ρ) corresponds to the class [u(φv) · ρ · u(φ−1
w )] ∈ π1X (see (4.12)),

with ρ as in (4.8). We claim that this loop in X is based homotopic to the loop γxi
from (4.17). Indeed,

Id−2` × V is simply connected, so the choice of whiskers is irrelevant: Dax chooses to go in a direction
tangent to Id−2`, while we opt for a direction tangent to V .

Finally, the sign of this component b̃Dax(~t, v, w) is positive if and only if B̃Dax|(~t,v,w) preserves orientations.
Tracing through isomorphisms (4.9) and (4.10) we see that the source of the sign is the isomorphism
ν∆Dax⊆(Id−2`×V )2

∼= (F̃ 2|)∗(ν∆⊆(Id−2`×X)2). Equivalently, εDax([v, w],~t) = +1 if and only if d(F̃ 2|) is
orientation preserving at (v, w,~t) if and only if the orientation of ν∆⊆(Id−2`×X)2 agrees with that of
dF̃ 2|(v,w,~t)T (Id−2`×V )2 = (dF̃ |(~t,v)(T (Id−2`×V ), dF̃ |(~t,w)(T (Id−2`×V )). This is precisely our definition
of the sign ε~t,x in (4.16). �

Remark 4.18. For d− 2` = 0 this should be compared to Grant’s result [Gra13] that the Wall invariant

µ` : π0 Imm∂(V,X)�π0 Emb∂(V,X) −→
Z[π1X]�rel`,d

agrees with the Hatcher–Quinn invariant [HQ74] for V simply connected (the latter is defined for any
V,X with 2d − 3` − 3 ≥ 0). On one hand, µ` is defined as the count of signed double point loops, so
it clearly agrees with Dax. On the other hand, one can check that β′0 agrees with the Hatcher–Quinn
invariant (in fact for any V,X with 2d− 3`− 3 ≥ 0).

Example 4.19. Let us compute the Dax invariant of the following class. Assume U: Dk ↪→ M has a
boundary dual G : Sd−k ↪→ ∂M and pick g ∈ π1M . Push G into the interior of M and foliate it by
a (d − 2k)-family of k-spheres (see Figure 4.21), then drag a piece of U around g and connect sum it
into each of those k-spheres. This defines a class in πd−2k(Imm∂(Dk, X),U), which clearly lifts g · [G] ∈
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πd−kM . When considered as a relative class πd−2k(Imm∂(Dk,M),Emb∂(Dk,M),U) we can compute its
Dax invariant: we see a single double point, namely U ∩G′ = {pt}, with the signed double point loop g.

4.1.4 The realization map.

Theorem 4.20. Let V,X, u be as in the first sentence of Dax’s Theorem 4.3. Additionally assume that
V and X are oriented. There is an explicit realization map

r : Z[π1X]�rel`,d −→ πd−2`(Imm∂(V,X),Emb∂(V,X), u).

If V is 1-connected, and d ≥ `+ 3 and d− 2` ≥ 0, then r is the inverse of Dax given in Theorem 4.13.

Proof. For g ∈ π1X we define

r(g) : (Id−2`−1 × I, Id−2`−1 × {0}, ∂Id−2`−1 × I ∪ Id−2`−1 × {1}) −→ (Imm∂(V,X), Emb∂(V,X), u).

Firstly, define for ~t ∈ Id−2`−1 × {0} the embedded arcs ∂r(g)(~t) := r(g)~t by dragging a piece of u near
u(e`) along the group element g, then “swing a lasso” around a meridian µ(Sd−`−1) at a point x ∈ u

near u(e`), then drag back to u. More precisely, we foliate Sd−`−1 by a (d − 2` − 1)-family of `-disks
α~t : D` ↪→ Sd−`−1 based at two fixed points, see Figure 4.21. Use the pinch map Id−2`−1 → I ∨ Sd−2`−1

and along I apply the finger move to a small disk in u(V ) following g, ending with the connect sum of u
with the `-disk µ(αN ). For ~t ∈ Sd−2`−1 connect sum with the disk µ(α~t) instead.

For (~t, s) ∈ Id−2`−1 × I the paths of immersions r(g)~t,s : V # X from r(g)~t,0 = r(g)~t back to r(g)~t,1 = u

are defined by similarly foliating by `-disks the meridian ball µ(Bd−`) bounded by µ(Sd−`−1).

Define r(−g) analogously, but connecting into the meridian µ(Sd−`−1) from “below”. Then extend r to
Z[π1X] linearly: for d ≥ 4 the target is an abelian group, but for ` = 1, d = 4 we need to check that r(g)

and r(h) commute. Namely, they can be constructed using disjoint supports Ji and different meridian
balls µi(B3), so there is a null homotopy I× I2 → Imm∂(D1, X) of their commutator, given at (t0, t1, t2)

by applying the map r(g)(t0, t1) on J1 and r(h)(t0, t2) on J2, and u otherwise.

e1 = u(−1) u(1)
µ(Sd−l−1)

x

r(g)t

g

µ(αN )

µ(αt)
u(−1) u(1)

g

x

Figure 4.21. Left. The samples r(g)t ∈ Emb∂(D`, X) for several t ∈ I1, ` = 1, d = 4, with r(g)0 = r(g)1 = u as
the horizontal arc. Right. The double point loop gx = g is the dashed arc followed by the solid red arc.

Let us show that Dax ◦ r(g) = g. In the family r(g)~t,s all disks are embedded except one, for which
there is exactly one double point {x} = u ∩ µ(Bd−`) and the associated loop is precisely gx = g ∈ π1X,
see the right part of Figure 4.21. To determine the sign choose coordinates Rd = R2`+1 × Rd−2`−1

around x ∈ X so that R2`+1 × {0} contains R` × {~0} × {0} as the w-sheet and {~0} × R` × {0} as the
v-sheet (for ` = 1 this is depicted in the figure). The derivative at v-sheet of r(g) applied to Id−2`−1

gives the positive basis of Id−2`−1 and the positive basis of Rd−2`−1, applied to I it is the sum of the
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positive I direction and the upward pointing vector in our R2l-chart, i.e. in {~0} × {~0} × R ⊆ R2`+1,
while applied to D` it gives the positive basis of {~0} × R` × {0}. At w-sheet we see the vector in the
positive Id−2`−1-direction and the positive basis of R` × {~0} × {0}. Comparing to the canonical basis of
Id−2`−1× I×Rd−2`−1×R2`+1 ⊆ Id−2`−1× I×X we use 2(d− `− 1) transpositions, so εx = +1. We also
clearly have Dax ◦ r(−g) = −g.

Finally, we check that r(g) = (−1)d−`r(g−1) if ` ≥ 2. Firstly, for any ` we can perform a homotopy of r(g)

by making the first sheet stand still whereas the second sheet moves, and then pushing the neighborhood
of x back around g, so that the root and the tip of the finger switch positions and the finger follows g−1.
However, when ` ≥ 2 the root of the finger can also be freely moved around D`, so that we obtain the
class (−1)d−`r(g−1). Namely, the meridian sphere µ(Sd−`−1) to the second sheet became the meridian
sphere to the first sheet but with the sign (−1)d−`, since it got inverted (cf. (anti)symmetry of the linking
number). Thus, Dax ◦ r = IdZ[π1X]/rel`,d by construction. �

Remark 4.22. This proves that Dax is surjective, without using Dax’s Theorem 4.3. For ` = 1, d = 4,
Gabai proves in [Gab21, Step 4] that Dax is injective also directly, avoiding a parametrized double point
elimination argument of Dax. Namely, Gabai shows that if F̃ has double points xi with signed loops εxi

gxi

then F is homotopic to r(r), r =
∑
i εxi

gxi
. But if r = 0 ∈ Z[π1X] then r(r) is clearly null homotopic.

Remark 4.23. To show r ◦Dax = Id one could instead of Dax’s theorem use the fundamental theorem of
embedding calculus [GKW01], which implies that the evaluation map ev2 from Emb∂(D`, X) to the second
Taylor stage T2 is (2d− 3l − 3)-connected. Since T1 ' Imm∂(D`, X) and d− ` ≥ 3 we have

πd−2`ev2 : πd−2`(Imm∂(D`, X),Emb∂(D`, X), u)
∼=−→ πd−2`(T1, T2, u).

For example, for ` = 1 the last group is isomorphic to Z[π1X] via an isomorphism χ, see e.g. [Kos20].
Moreover, by a slight generalization of the results there, we have χ ◦ πd−3ev2 ◦ r = IdZ[π1X], see [Kos20,
Rem. 1.10]. Thus, r is an isomorphism for ` = 1, so its unique left inverse Dax is as well.

4.2 Proof of Theorem 4.2

4.2.1 On homotopy groups of spaces of immersions.

Lemma 4.24. There is a homotopy equivalence Du(•) := −D(u) ∪∂ D(•) : Imm∂(D`, X) ' Ω`V`(X),
where V`(X) denotes the frame bundle of orthonormal `-frames in the tangent bundle TX.

Proof. By Smale–Hirsch [Sma58; Hir59] the derivative map gives a homotopy equivalence

D : Emb∂ε(D`, X) −→ Map∂(D`, V`(X);Du+)

to the space of sections over D` of the frame bundle V`(X) (`-frames in TX), which are constant on the
boundary (given by the derivative of u along ∂D`). This map takes derivatives in all k−1 tangent directions
at each point of D`. The next lemma identifies this mapping space with a loop space using a map −u∪∂ •,
so D ◦ (−u ∪∂ •) = D(−u) ∪∂ D(•) is the claimed homotopy equivalence Imm∂(D`, X) ' Ω`V`(X). �

Lemma 4.25. For a space Y let u : D` → Y be a based map, u(e`) = eY for basepoints e` ∈ ∂D` and
eY ∈ Y . Then there are inverse homotopy equivalences (based for u and −u ∪∂ u)

−u ∪∂ • : Map∂(D`, Y ;u) Map∗(S`, Y ) =: Ω`Y : u ∨ •∼

where −u ∪∂ K glues two disks along the boundary, while u ∨ S : D` → D` ∨ S` → Y is the wedge sum
(pinch off a sphere from a neighborhood of the point opposite to the basepoint e` ∈ ∂D` in ∂D`).
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Proof. For a homotopy from −u ∪∂ (u ∨ •) to IdΩ`Y use the obvious null homotopy −u ∪∂ u ' consteY .

Similarly, for the homotopy from u ∨ (−u ∪∂ •) = (u ∨ −u) ∪∂ • to the identity collapse the part u ∨ −u
to eX : use the foliation φv ⊆ D` by the straight lines from v ∈ ∂D` to e` ∈ ∂D` and then for each v the
obvious null homotopy of loop u(φv)u(φv)

−1 through loops based at u(v). �

The homotopy equivalence Du induces isomorphisms πn Imm∂(D`, X) → πn+`V`(X). Using this and
Proposition B.16 from Appendix B about homotopy groups of frame bundles, we obtain the following
corollary. Note that it implies that Theorem C indeed follows from Theorem 4.2.

Corollary 4.26. Assume d − 2` ≥ 0. The homomorphism pu : πn Imm∂(D`, X) → πn+`X, given by
pu(f) = (~t 7→ −u∪∂ f~t) union the canonical null homotopy of −u∪∂ u on the boundary, is an isomorphism
for all n ≤ d− 2`− 1, and we have an exact sequence

Z`,d πd−2` Imm∂(D`, X) πd−`X,
pu (4.27)

where Z`,d := Z/rel`,d is isomorphic to Z for l = 1 or d− ` even, and to Z/2 for d− ` odd with ` ≥ 2.

4.2.2 The connecting map. Recall the connecting map δImm from (4.1), and consider the composite

Z`,d πd−2`(Imm∂(D`, X), u) πd−2`

(
Imm∂(D`, X),Emb∂(D`, X), u

) Z[π1X]�rel`,d
i∗ δImm Dax

Proposition 4.28. This composite takes 1 ∈ Z`,d to the class of the unit 1 in Z[π1X]/rel`,d.

Proof. The map i∗ for any X factors through the one for X = Dd, so it suffices to consider that case.
Then both i∗ and Dax are isomorphisms with Z`,d = Z/rel`,d. By definition, i∗(1) is the class of any
map τ : Sd−2` → Imm∂(D`,Dd) whose Smale–Hirsch derivative Du ◦ τ : Sd−2` → Ω`V`(Dd) ' Ω`V`(d) is a
generator of πd−`V`(d) ∼= Z`,d of the Stiefel manifold (see Corollary B.10).

Let us describe one such τ . Firstly, for parameters (~t, s) ∈ Id−2`−1×I ∼= Dd−2` of the upper hemisphere of
Sd−2` let τ(~t, s) := r(1)~t,1−s be the time-reversed path of immersed disks from the previous proof. Recall
that this drags a piece of u to the position αN , and then uses (` + 1)-disks foliating the meridian ball
µ(Bd−`) to slide αN into an embedded `-disk r(1)~t ⊆ µ(Sd−`−1). For parameters in the lower hemisphere
of Sd−2` we now describe how to undo disks r(1)~t by an isotopy, so it will immediately follow that
Dax(i∗(1)) = Dax([τ ]) = Dax ◦ r(1) = 1.

u(−1) u(1)

x
C

αN

αS
u(−1) u(1)

αN

αS

Figure 4.29. The present slice D3 × {0} ⊆ Dd contains an arc c ⊆ r(1)~tx , and a 2-disk C ⊆ µ(B`+1
x ). In the

second picture c is isotoped so that now the subarc αS can be slid across C without creating any double points.

Observe that in the foliation of µ(Bd−`) there is a unique (`+ 1)-disk µ(B`+1
x ) which contains x, the only

double point in the homotopy. We can pick coordinates so that the intersection of this disk with the
“present” slice is a 2-disk µ(B2

x) = µ(B`+1
x ) ∩ D3 × {~0} ⊆ Dd with ∂µ(B2

x) = αN ∪∂ αS as on the left of
Figure 4.29. In particular, r(1)~tx contains αS .
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Now, let us first isotope the arc r(1)~tx ∩ D
3 × {~0} as in Figure 4.29: we isotope the front guiding arc

and a part of u in r(1)~tx by “pulling them through” µ(B2
x) (using the rotation around the vertical axis).

Note that in the new position αS can be slid to αN across µ(B2
x) without creating any double points, and

that from there we have an obvious isotopy to u – namely, “by pulling tight”. More generally, the desired
isotopy from each r(1)~t ∩D3×{~0} to u consists of the same isotopy as in Figure 4.29, then sliding across
the corresponding 2-disk µ(B`+1

~t
) ∩ D3 × {~0} ⊆ Dd to get to position αN , and then pulling it tight.

Finally, we make this into an isotopy of the whole family r(1)~t. Firstly, we“taper off” in the remaining
d−3 dimensions the isotopy of the guiding arc performed in the present slice; this is a standard procedure
using smooth bump functions. From there, we simply use the isotopies across µ(B`+1

~t
) as before. �

4.2.3 Proof of Theorem 4.2. The last proposition implies 1 ∈ im(Dax ◦δImm). We can use any section
of pu : πd−2`(Imm∂(D`, X), u)� πd−`X to define a group homomorphism

daxu : πd−`X πd−2`(Imm∂(D`, X), u) Z[π1X]�〈1, rel`,d〉
∼= Z[π1Xr1]�rel`,d

Dax ◦ δImm (4.30)

By construction the value daxu([f ]) is computed by lifting f : (Id−`, ∂Id−`) → (X,u(−1)) to any family
F : Id−2` → Imm∂(D`, X) (in this case the entire ∂Id−` goes to u), calculating its Dax invariant Dax(F ) =

n(f) · 1 + daxu(f) ∈ Z[π1X]/〈rel`,d〉, and disregarding the trivial group elements n(f).

Thus im(Dax ◦ δImm) = 〈1, daxu(πd−`X)〉, finishing the proof. �

5 On homotopy groups of spaces of ε-augmented disks, and of disks
with a dual

Recall that the space of ε-augmented disks Embε∂ε(D`, X) (previously denoted Embεuε
0
(Dk−1, X)) consists

of embeddings D`×[0, ε] ↪→ X that agree on (S`−1×[0, ε])×[0, ε] ⊆ D`×[0, ε] with one such uε (previously
denoted uε+). In other words, their boundary condition is uε0 := uε|(S`−1×[0,ε])×[0,ε]. Note that whereas
∂ε records, as before, a stronger boundary condition u|S`−1×[0,ε] along a collar of ∂D`, the superscript ε
reflects additional structure, the ε-augmentation.

This additional structure has a fairly simple homotopy type that just reflects a normal vector field along
an `-disk. In other words, the fiber of the forgetful map ev0 : Embε∂ε(D`, X)→ Emb∂ε(D`, X) agrees with
the analogous fiber for immersions, or equivalently frame bundles, see Section 5.1. Using this and results
about frame bundles from Appendix B, in Section 5.2 we extend Theorem C to the space Embε∂ε(D`, X).
Finally, in Section 5.3 we combine this with our Space Level Light Bulb Theorem 3.2 to prove Theorem D.

5.1 Forgetting augmentations

Proposition 5.1. The space Embε∂ε(D`, X) is homotopy equivalent to the space Emb↑∂ε(D`, X) of neat
embeddings D` ↪→ X equipped with a normal vector field (a nonvanishing section of the normal bundle).

Proof. Firstly, we claim that there is a commutative diagram of fibration sequences

ev−1
0 (u) Embε∂ε(D`, X) Emb∂ε(D`, X)

Γ∂ε

(
Sνu

)
Emb↑∂ε(D`, X) Emb∂ε(D`, X).

ev0

D↑

pr↑

where Γ∂ε

(
Sνu

)
= (pr↑)−1(u↑) is the space of those sections of the unit sphere bundle Sνu of the normal

bundle of our basepoint u : D` ↪→ X that agree with the basepoint u↑ := D↑(uε) on a collar of ∂D`.
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Indeed, both ev0 and pr↑ are fibrations by Theorem 2.9.II, and for a fixed Riemannian metric on X, the
unit derivative along D` × {0} in the direction of [0, ε] is a map D↑ between total spaces. Once we show
that its restriction to fibers D↑ : ev−1

0 (u)→ Γ∂ε

(
Sνu

)
are homotopy equivalences, the result will follow.

A homotopy inverse Expu of D↑ comes from identifying the total space of νu with a tubular neighborhood
of u via a scaled exponential map: for a unit normal vector field ξ along u define Expu(ξ) : D`× [0, ε] ↪→ X

by Expu(ξ)(v, s) := exp(s · ξ(v)). Here we may assume by compactness of X that ε is smaller than the
injectivity radius of the chosen metric. We have D↑ ◦ Expu = Id by construction. To define a homotopy
from Expu ◦D↑ to the identity in the space ev−1

0 (u) we observe that by continuously scaling the parameter
and using the exponential map, it suffices to construct such a homotopy Kt for K : D` × [0, ε] ↪→ νu.
This is given by Kt(v, s) := K(v,t·s)

t for t ∈ [0, 1], since K0 is indeed the usual description of the normal
derivative of K = K1 at (v, 0). �

Recall that V`(X) denotes the `-frame bundle of the tangent bundle of X, and that the unit derivative
defines a map Du : Emb∂ε(D`, X)→ ΩlVl(X), see Lemma 4.24. We similarly have a map

Du↑ : Emb↑∂ε(D`, X) −→ Map∂(D`, V`+1(X);D(uε)) −→ Ω`V`+1X,

which to a k-disk K with a normal vector field assigns Du↑(K) := −D(u↑)∪∂ D(K), where D(K) is given
by derivatives of K at (v, 0) in all ` tangent directions, followed by the normal vector.

Proposition 5.2. There is a commutative diagram of fibration sequences

Ω`Sd−`−1 Emb↑∂ε(D`, X) Emb∂ε(D`, X)

Ω`Sd−`−1 Ω`V`+1(X) Ω`V`(X).

n pr↑

Du↑ Du

i`+1 pr`+1

In particular, we can choose the connecting map δev0 for the top fibration sequence in the diagram of
Proposition 5.2 to be the composite of ΩDu with the connecting map δpr`+1

for the bottom sequence.

Proof. A trivialization of the sphere bundle Sνu ∼= D`×Sd−`−1 induces a homeomorphism h between the
space Γ(Sνu) of all its sections and the space Map(D`,Sd−`−1). This identifies the basepoint u↑ = D↑(uε)
with some u′ : D` → Sd−`−1, so that the subspace Γ∂ε(Sνu) of sections which agree near boundary with u↑

is homotopy equivalent to the subspace ∂−1(∂u′) ⊆ Map(D`,Sd−`−1), the fiber over ∂u′ of the restriction
map ∂ : Map(D`,Sd−`−1) → Map(S`−1,Sd−`−1). Moreover, we can identify this space ∂−1(∂u′) of maps
rel. boundary with a (k − 1)-fold loop space as in Lemma 4.25, to obtain the map

n : Ω`Sd−`−1 ∂−1(∂u′) Γ∂ε

(
Sνu

)
↪→ Emb↑∂ε(D`, X)u′ ∨ •

∼
h
∼=

(5.3)

which we use as the top left arrow in the diagram of the statement. For basepoints at the bottom we use
the images of u↑ and u under the vertical derivative maps. The square on the right clearly commutes:
forgetting normal vector corresponds to forgetting the last vector in an (`+ 1)-frame. The square on the
left also commutes, since the map S 7→ −D(u↑)∪∂ D(h(u′ ∨ S)) = D(−u↑)∪∂ D(u↑ ∪ h(S)) is homotopic
to the inclusion S 7→ i`+1(S) of the fiber of pr`+1 over the basepoint Du(u) = −D(u) ∪∂ D(u). �

Remark 5.4. Combining Theorem B with Proposition 5.2 (for ` = k−1) we obtain a proof of Theorem A:
in the setting with a dual there is a fibration sequence

ΩkSd−k Embs(Dk,M) Ω Emb∂(Dk−1,MG) Ωk−1Sd−k.
Exp ◦ aU fU := ev0 ◦ f

ε
U δev0

In particular, fU is a homotopy equivalence if d = k or d = k+1 ≥ 3. If d > 2k, then π0fU is a bijection.
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5.2 On homotopy groups of spaces of ε-augmented disks

We have the following analogue of Theorem C for ε-augmented disks. Note that we assume d − 2` ≥ 1

for simplicity and as the case d− 2` = 0 does not arise in Theorem D.

Theorem 5.5. Assume 1 ≤ ` ≤ d− 3 and d− 2` ≥ 1, and X is a d-manifold with boundary, π := π1X.
For 1 ≤ n ≤ d − 2` − 2 there are isomorphisms pu : πn(Embε∂ε(D`, X), uε) ∼= πn+`X, and a short exact
sequences of groups:

` = 1, Z[πr1]�daxu(πd−1X)

` ≥ 2, d− ` odd, Z[πr1]�〈g + g−1〉 ⊕ daxu(πd−`X)

` ≥ 2, d− ` even, Z[π]�〈g − g−1〉 ⊕ daxεuε(πd−`X)

 πd−2`−1(Embε∂ε(D`, X), uε)

d− ` odd, Z
d− ` 6= 2, 4, 8 even, Z/2

}
⊕ πd−`−1X

∂rε

(ηW ◦Duε)⊕ pu

Moreover, for d − ` odd, (η, πd−2`−1ev0) : πd−2`−1 Embε∂ε(D`, X) ∼= Z × πd−2`−1 Emb∂(D`, X) is an iso-
morphism, so any Sd−2`−1-family of embedded disks has Z many ε-augmentations. On the other hand,
in the even case, the number of augmentations is twice the order of the element 1 in Z[π]/daxεuε(πd−`X).

The homomorphisms daxεuε and ηW will be defined in the course of the proof, see (5.8). The map ∂rε is
the family of disks ∂r with suitable ε-augmentations; pu is the same composite of a forgetful map and
concatenation with −u as in (4.27).

To prove Theorem 5.5 we consider the diagram of fibration sequences from Proposition 5.2. Taking the
long exact sequences in homotopy groups of these fibrations implies that Du↑ is (d− 2`)-connected (as is
Du), so is Duε := Du↑ ◦D↑, and gives the following commutative diagram with exact rows and columns:

πd−`Sd−`−1 πd−`V`+1(X) πd−`V`(X)

0 πd−2`

(
Ω`V`+1(X),Embε

)
πd−2`

(
Ω`V`(X),Emb

)
πd−2` Emb πd−`−1Sd−`−1 πd−2`−1 Embε πd−2`−1 Emb

πd−`V`(X) πd−`−1Sd−`−1 πd−`−1V`+1(X) πd−`−1V`(X)

πd−`pr`+1

δImmε δImm

∼=

∂ε ∂
δev0

πd−2`Du

πd−2`−1Expu πd−2`−1ev0

πd−2`−1Duε πd−2`−1Du

δpr`+1 πd−`−1i`+1 πd−`−1pr`+1

(5.6)
We abbreviate Emb := Emb∂ε(D`, X) and Embε ' Embε∂ε(D`, X), and δf is the connecting map for
a fibration f . Recall the isomorphism Dax : πd−2`(Ω

`V`(X),Emb) → Z[π1X]/rel`,d and its inverse r

from Section 4.1 (using that Imm∂(D`, X) ' Ω`V`(X) by Lemma 4.24). Thus, we need to compute
πd−`−1V`+1(X) and the kernel of the surjection πd−2`−1Duε . To this end, we study homotopy groups of
frame bundles, and in Proposition B.16 show that for d− 2`− 1 > 0:

coker(δpr`+1
) ∼= Z`+1,d πd−`−1V`+1(X) πd−`−1V`(X) ∼= πd−`−1X

i`+1 pr`+1 (5.7)

where Z`+1,d = Z if d−`−1 even (i.e. im(δpr`+1
) = 0), and Z`+1,d = Z/2 if d−`−1 odd (im(δpr`+1

) = 2Z).
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Moreover, there are splittings ηW of πd−`−1i`+1 for every d− ` 6= 2, 4, 8, see Proposition B.16. Thus, in
these cases we have the desired right hand side in Theorem 5.5:

ηW ⊕ πd−`−1pr`+1 : πd−`−1V`+1(X)
∼=−→ Z`+1,d ⊕ πd−`−1X.

Proof of Theorem 5.5. It remains to find ker(πd−2`−1Duε), which is the quotient of Z[π1X] by im(δImmε).

Assume first d−` is odd, so d−`−1 is even. Since im(δpr`+1
) = 0 the map πd−`pr`+1 is surjective. Looking

at the top right of (5.6), it follows that im(δImm) ∼= im(δImmε), so πd−2`−1ev0 induces an isomorphism
(ev0)∗ : ker(πd−2`−1Duε)

∼=−→ ker(πd−2`−1Du). The latter is isomorphic to Z[π1Xr1]/rel`,d⊕ daxu(πd−1X)

by Theorem C, so we get the desired exact sequence in the theorem in this case. The maps are ∂rε :=

(ev0)−1
∗ ∂r, and ηW ◦ πd−2`−1Duε and pu ◦ πd−2`−1ev0.

Furthermore, in this case πd−2`−1Expu is injective (since πd−`−1i`+1 is), so ηW ◦Duε is its left splitting.
Therefore, we have the claimed isomorphism

(ηW ◦Duε)⊕ πd−2`−1ev0 : πd−2`−1 Embε∂(D1, X)
∼=−→ Z⊕ πd−2`−1 Emb∂(D1, X).

Now assume d− ` is even, so d− `− 1 is odd. Since im(δpr`+1
) = 2Z and ker(δpr`+1

) = im(πd−`pr`+1) we
have the following horizontal exact sequence

Z

im(πd−`pr`+1) πd−`V`(X) 2Z

πd−`X

∼=

p

δpr`+1

πd−`pr`

The vertical sequence is just (5.7) with the index `+ 1 replaced by ` (note Z`,d = Z for d− ` even). This
implies that p is an isomorphism, and we can define daxεuε as the composite

daxεuε : πd−`X im(πd−`pr`+1) ⊆ πd−`V`(X) ∼= πd−2l(Imm∂(D`, X), u) Z[π1X].
p−1

Dax ◦ δImm

(5.8)
Cf. the definition of daxu in (4.30). Then by construction we have im(δImmε) = im(daxεuε) ⊆ Z[π1X].
This gives the second claimed short exact sequence in the theorem, with the maps as before.

Finally, note that in this case (ev0)∗ : ker(πd−2`−1Duε) � ker(πd−2`−1Du) is not an isomorphism in
general, but has for the kernel the cyclic group generated by the class of 1 ∈ Z[π1X] modulo daxεuε(πd−1X).
Taking the kernels in the bottom of (5.6) we get the exact sequence ker(ev0)∗ ↪→ ker(πd−2`−1ev0)� Z/2,
so the cardinality of ker(πd−2`−1ev0) = Z/ im(δev0) – which is precisely the number of augmentations of
an arc u ∈ πd−2`−1 Emb∂(D`, X) – is equal to two times the mentioned order. �

Remark 5.9. The map πd−2`−1(Expu) : Z → πd−2`−1 Embε∂ε(D`, X) is on a generator given by “inte-
grating” the (d−`−1)-family of unit normal vector fields to u, given by its meridian µ(Sd−`−1) at a point
p = u+(x). See the proof of Proposition 5.2, Remark 5.15 and [KT21, Fig.5.9].

5.2.1 The 3-dimensional case. We have so far considered d ≥ 4. However, for d = 3 we still have an
exact sequence comparing embedded to immersed arcs, which using Lemma 4.24 translates to:

π1(Imm∂(D1, X), u) ∼= Z⊕ π2X πrel1 π0 Emb∂(D1, X) π0 Imm∂(D1, X) ∼= π1X.
δImm π0i

where an element of the set πrel1 := π1(Imm∂(D1, X),Emb∂(D1, X);u) is represented by a knot together
with a path to u through immersed arcs. Moreover, one still has a well-defined surjection Dax : πrel1 �
Z[π1X], with a set-theoretic section r, given by doing crossing changes along group elements. In particular,
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we can define an invariant of knots homotopic to u, namely

Daxu : K(X,u) := (π0i)
−1[u]� Z[π1Xr1]�daxu(π2X).

In [Kos21] the first author shows that this is the universal Vassiliev invariant of type ≤ 1 for knots in X.

When ∂u has a geometric dual, then π0i : π1(X ∪S2 D3) � π1X has trivial kernel K(X;u) = 0, see
Example 1.4. Instead, there is a distinguished class uGtw ∈ π1 Emb∂(D1, X), given by “swinging the lasso”
around the parallel push-off of the dual G into X.

Now consider ε-augmented arcs for d = 3 (equivalently, framed long knots). From (5.6) we have
an extension Z/daxεuε(π2X) ↪→ (π0ev0)−1[u] � Z/2, with Z/daxεuε(π2X) ∼= ker(πrel,ε1 / im(δImmε) �
πrel1 / im(δImm)) is generated by the crossing change along 1 ∈ π1X, and Z/2 ∼= ker(π1pr2) by (5.7).

Interestingly, there are now only two distinct cases for this extension, depending on whether ∂u has a
geometric dual or not: u has respectively either exactly two framings – that is, (π0ev0)−1[u] ∼= Z/2, or
countably many, (π0ev0)−1[u] ∼= Z. The first case is immediate from daxεuε(G) = 1 as in Example 4.19.
To see this more explicitly, the mentioned loop uGtw can be extended to a path of ε-augmented arcs, whose
start and end framings on u differ by 2, so δev0(uGtw) = 2. This is precisely the well-known light bulb trick
for framed knots! To prove that in cases without a dual there is Z many framings, one approach would
be to show that 1 ∈ Z[π1X]/daxεuε(π2X) has infinite order; see [CCS14] for another proof.

5.3 On homotopy groups of spaces of disks with a dual: proof of Theorem D

We collect the results obtained so far in order to prove Theorem D, concerning the space Embs(Dk,M)

of neat embeddings of the k-disk in a d-manifold M such that d − k ≥ 2, with the boundary condition
s : Sk−1 ↪→ ∂M , which has a framed geometric dual G : Sd−k−1 ↪→ ∂M .

Firstly, Theorem B gives for all n ≥ 0 explicit “ambient isotopy” and “ε-foliation” isomorphisms

πnf
ε
U : πn Embs(Dk,M) πn+1(Embεuε

0
(Dk−1,MG), uε+) : πnaU∼=

depending on the choice of a basepoint U ∈ Embs(Dk,M) (recall MG := M ∪νG hd−1 and s = u− ∪ u+).
Secondly, Theorem 5.5 gives for n ≤ d − 2` − 2 isomorphisms πn(Embεuε

0
(D`, X), uε) ∼= πn+1X and an

extension on πd−2`−1 by a quotient of Z[π1X]. Combining these two results by putting X := MG and
u := u+ and ` = k − 1, we obtain isomorphisms

πn Embs(Dk,M) ∼= πn+2MG, for n ≤ d− 2(k − 1)− 3 = d− 2k − 1,

and the extension:

k = 2, Z[πr1]�daxu(πd−1MG)

k ≥ 3, d− k even, Z[πr1]�〈g + g−1〉 ⊕ daxu(πd−k+1MG)

k ≥ 3, d− k odd, Z[π]�〈g − g−1〉 ⊕ daxεuε(πd−k+1MG)

 πd−2k(Embs(Dk,M),U)

d− k even, Z
d− k 6= 1, 3, 7 odd, Z/2

}
⊕ πd−kMG

πd−2kaU ◦ ∂r
ε

(ηW ◦Duε ⊕ pu) ◦ πd−2kf
ε
U

In Theorem D we have such an extension but only in terms of the original manifoldM , so we now remove
all appearances of MG. Moreover, our u+ is homotopic into ∂M in which case we simply write

dax := daxu+
, and daxε := daxεuε

+
. (5.10)
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Lemma 5.11. The inclusion M ⊆MG induces isomorphisms πiM ∼= πiMG for all 0 ≤ i ≤ d− k − 1, a
surjection πd−k+1M � πd−k+1MG, and a split short exact sequence of Z[π1M ]-modules

Z[π1M ] πd−kM πd−kMG,
·G

λrel
M (U, •)

where λrelM : πk(M,∂M)× πd−k(M)→ Z[π1M ] is the relative equivariant intersection form.

Proof. A (d−k+1)-handle is homotopy equivalent to a (d−k+1)-cell, so we immediately get πiM ∼= πiMG

below degree d− k. Moreover, the relative homotopy group πd−k+1(MG,M) is the free Z[π1M ]-module
spanned by hd−k+1. Once we show that homomorphism λrelM (U, •) is a splitting, the surjectivity on πd−k+1

will follow from the long exact sequence of a pair. Indeed, since G is the geometric dual for s = ∂U, we
have λ∂M (s,G) = 1, so a push-off of G intersects U in the interior with λrelM (U, G) = 1. �

Lemma 5.12. We have dax(πd−k+1MG) = dax(πd−k+1M) as subgroups of Z[π1M ]. Similarly for daxε.

Proof. We need show that im(daxM ) = im(daxMG
) for the respective dax maps. The diagram

πd−k+1M πd−k+1MG Z[π1M ]
p

daxM

daxMG

commutes, since attaching a handle to ∂M does not influence the calculation of daxM ([f ]) := Dax(F̃ ).
Indeed, if f : Sd−k+1 → M is represented by a (d − 2k)-family F (~t) : Dk−1 # M , the same family also
computes daxMG

([f ]). This immediately implies im daxM ⊆ im daxMG
. The other inclusion follows since

p is surjective (by Lemma 5.11): if r = daxMG
(a) for a ∈ πd−k+1M , then r = daxM (b) for b = p(a). The

argument is the same for daxε. �

Proof of Theorem D. By the last two lemmas, we may replace πd−kMG by πd−kM/Z[π1M ] · G and
dax(πd−k+1MG) by dax(πd−k+1M), and daxε(πd−k+1MG) by daxε(πd−k+1M). It thus only remains to
see that the maps are as claimed in Theorem D, namely

(ηW ◦Duε ⊕ pu+) ◦ πd−4f
ε
U = ηW,U ⊕ (−U ∪ •).

For K : Sd−2k → Embs(Dk,M) the map fεU(K) : Sd−2k+1 → Embεuε
0
(Dk−1,MG) maps ~t∧ t ∈ Sd−2k ∧ S1 ∼=

Sd−2k+1 to fεU(K~t)(t), the time t of the foliation of the sphere −U∪K~t (use the canonical null homotopy of
−U∪U to get the map on the smash product). Then, pu+

([fεU(K)]) is the homotopy class of the map which
takes ~t ∈ Sd−2k+1 to −u+∪∂ fεU(K~t)(t) ∈ ΩMG (based at u+(eDk−1)), see the discussion after Theorem 5.5.
It is not hard to see that −u+ is inessential, i.e. this is homotopic to −U ∪K : Sd−2k → Map∗(Sk,MG),
so (pu+

◦ πd−2kf
ε
U)(K) = [−U ∪K] modulo Z[π1M ]G.

For d − k even we next identify the composite ηW,U := ηW ◦ πd−2k+1Due
+
◦ πd−2kf

ε
U for the splitting

ηW : πd−kVk(MG)→ Z constructed in Proposition B.14. Unless d− k = k = 2, 4, 8, it was given by ηW =

edk/2 where edk([f ]) = 〈e(f∗(TMG)d−k), [Sd−k]〉 ∈ 2Z (see Definition B.1), while for d− k = k = 2, 4, 8 we
also have the correction term W [f ]. The following lemma then finishes the proof of Theorem D. �

Remark 5.13. The homomorphism πd−2kaU ◦ ∂r
ε
u+

can be made explicit: its value on g ∈ π1X is the
family of k-disks in M obtained by applying to the half-disk U in MG the ambient isotopy extended from
the family ∂rεu+

(g). Alternatively, one can guess a geometric candidate fg ∈ πd−2k Embs(D2,M) and
check that its foliation has the correct Dax invariant, that is, Dax ◦ fεU(fg) = g, so fg = πd−2kaU ◦∂r

ε
u+

(g).
The latter approach is carried through for k = 2, d = 4 in [KT21]. Moreover, in these cases we also
compute there the kernel and cokernel of −U ∪ • : πd−2k Embs(Dk,M)→ πd−kM .
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Lemma 5.14. The number edk ◦Due
+
◦ fεU([K]) ∈ Z is equal to the relative Euler number e(νK̃, νŨ) of the

normal bundle of the immersion K̃ : Id−2k ×Dk # Id−2k ×M given by (~t, x) 7→ (~t,K~t(x)), relative to the
immersion Ũ corresponding to the constant family U. In particular, the map πd−2k(Embs(Dk,M),U)→
Z, given by [K] 7→ e(νK̃, νŨ), is a homomorphism.

Proof. The normal bundle to K̃ consists of vectors (~0, vx) where ~0 ∈ T~t(Id−2k) and vx is a normal direction
to K~t at x in M . We need to compute the Euler class of the bundle f∗(TMG)d−k over Sd−k, where
f = Duε

+
fεU(K) : Sd−k → Vk(MG). This is obtained by gluing together two maps Id−k−1 → ΩVk(MG),

namely fK(~t) = Duε
+
fε(K~t) and the constant family f−U(~t) = Duε

+
fε(−U).

First observe we can disregard uε+ as before, so that fK : Id−2k × Dk → Vk(MG) is at (~t, x) given by the
derivative at x ∈ Dk of the embedded disk K~t in MG. Then the bundle f∗K(TMG)d−k is by definition
given at a point (~t, x) as the subspace of TpMG, for p = K~t(x), orthogonal to the derivative DxK~t, so
belongs to the normal bundle of K~t in MG. The same is true for the constant family ~t 7→ −U in place
of K, and they agree on the boundary ∂(Id−2k × Dk). Moreover, these normal bundles can be taken in
Id−2k×M instead. Thus, the Euler number of f∗(TMG)d−k is precisely the relative Euler number of the
normal bundles to the immersions K̃ and Ũ. �

Remark 5.15. For d − k even we describe a map UG
tw := aUExp(1) : Sd−2k → Embs(Dk,M) that splits

off the Z factor, ηW,U(UG
tw) = 1. Firstly, Exp(1) is the (d−2k+1)-family of augmentations of the (k−1)-

disk u+ obtained by integrating the normal vector field given by its meridian µ(Sd−k−1), see Remark 5.9.
Applying the ambient isotopy map aU to this gives a family UG

tw(~t) = aU(Exp(1)(~t ∧ −)), supported in a
neighborhood of U; for a fixed ~t ∈ Sd−2k the ambient isotopy pushes U around µ(~t∧−), so UG

tw is obtained
by a “family interior twist” to U, plus tubing the unique double point at p into G. See [KT21, Fig.5.9]
for the 2-disk UG

tw when d = 4 (in other dimensions this is one of the disks in the family UG
tw).

A On Hurewicz fibrations

Recall that a map p : E → B is a Hurewicz fibration if any homotopy lifting problem as in

X × {0} E

X × [0, 1] B

H0

p

h

H (A.1)

has a solution H, a so-called “lift”. We will need some properties of such lifts.

Lemma A.2. Up to homotopy rel. X × {0} and over B, the lift H as in the diagram (A.1) is uniquely
determined by the initial conditions (h,H0). As a consequence, its restriction H1 : X × {1} → E is also
unique up to homotopy.

Proof. If Λk−1 ⊆ ∂∆k is a (k−1)-horn, i.e. it consists of all (k−1)-faces of the k-simplex, except for one,
then a Hurewicz fibration also has the lifting property for pairs (X ×∆k, X × Λ), by the fact that these
are acyclic cofibrations in the model structure on topological spaces for which the Hurewicz fibrations are
the fibrations. The case k = 1 is precisely the lifting problem (A.1), and we use the case k = 2 to show
the uniqueness of the lifted homotopy. Namely, suppose we have two lifts H and H ′ in diagram (A.1).
Since they agree on X×{0} we can glue them together at the vertex v0 ∈ ∆2 to give a map X×Λ1 → E

that lifts (the restriction of) the map h̃ : X ×∆2 → B which equals h on all rays from v0 to the opposite
edge 〈v1, v2〉 ⊆ ∆2. The lift X ×∆2 → E is thus a homotopy from H to H ′ rel. X ×{0} and over B. �
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In particular, consider in (A.1) the space X := ΩB of loops based at b := p(e) for a basepoint e ∈ E, and
the initial conditions H0 = conste : β 7→ e and h = ev : (β, t) 7→ β(t). Any lift êv := H : ΩB× [0, 1]→ E at
time t = 1 takes values in the fiber F := p−1(b), hence gives a so-called connecting map δ := êv1 : ΩB → F .

Corollary A.3. Up to homotopy, the map δ : ΩB → F is independent of the choice of a lift êv and
only depends on the Hurewicz fibration p and the basepoint e ∈ E. Moreover, it is natural: given two
commuting squares on the right of the diagram

ΩB′ F ′ E′ B′

ΩB F E B

δ′

Ω(gB) g|F

p′

g gB
δ p

any choice of connecting maps δ, δ′ makes the square on the left commute up to homotopy.

Proof. The first part follows directly from Lemma A.2. The naturality follows from it as well, this time
applied to lifting gB ◦ ev′ : ΩB′ × [0, 1]→ B with the initial condition g ◦ conste′ . �

If B is well-based the above discussion holds in the based category; this is the case for our spaces
of embeddings as they are locally contractible. Then ΩB is well-based at constb and there are based
connecting maps δ : ΩB → F , inducing the boundary maps in the long exact sequence of homotopy
groups for the fibration p. In particular, if E is contractible then any such δ is a weak homotopy
equivalence. We will also need the following strengthening, whose proof we did not find in the literature.

Lemma A.4. If E is contractible, a connecting map δ is a homotopy equivalence with homotopy inverse
(p∗R)|F : F → ΩB given by x 7→ (t 7→ p ◦ Rt(x)), where R : E → PeE := {η : [0, 1] → E | η(0) = e} is a
contraction of E with ev1 ◦R = IdE .

Proof. Consider the following diagram of two fibrations and a lifting problem on top:

ΩB × {1} PbB × {0} PbB × [0, 1]

F E B

ΩB PbB B

δ conste evêv

p∗R|F

p

p∗R
ev1

(A.5)

As a map between contractible spaces, p∗R := (t 7→ p ◦ Rt) is a homotopy equivalence. Being over B
(ev1p∗R = p), this is also a fiber homotopy equivalence [Hat02, 4.H]. For the same reason, the restriction
q := êv1 : PbB → E of the lift êv is a fiber homotopy equivalence over B. We claim that there is a
homotopy p∗R ◦ q ' Id over B, so uniqueness of inverses will imply that p∗R and q are inverse homotopy
equivalences, as well as the desired restrictions p∗R|F to F ⊆ E and δ = q|ΩB to ΩB ⊆ PbB.

To find the claimed homotopy we observe two solutions for the outer lifting problem on the right of (A.5)
(for the fibration ev1). One lift is clearly p∗R ◦ êv. We define the second by the formula

(β, t) 7→

(
s 7→

{
p ◦ ρt(

s
1−t ), s ∈ [0, 1− t]

β(s− (1− t)), s ∈ [1− t, 1]

)
,

where ρt ∈ ΩE for t ∈ [0, 1] is a homotopy from ρ0 = R(e) to ρ1 = conste, which exists by the argument
below. This is indeed another solution, since ev1 evaluates all paths at s = 1, so it gives β(t) = ev(β, t),
while restricting to t = 0 gives exactly pρ0 = pR(e). The first lift at t = 1 is p∗R ◦ q whereas the second
is IdPbB , so the uniqueness from Lemma A.2 gives the desired homotopy over B between them.
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To find a homotopy ρt from R(e) ∈ ΩE to conste rel. e, first observe that these loops are homotopic (since
E is contractible to e), and then by the usual argument they are also based homotopic: free homotopy
classes in a path-connected space are in bijection with the conjugacy classes in the fundamental group,
and for the unit this consists of a single element. �

B On homotopy groups of frame bundles

In this appendix we collect some information needed for the results in the body of the paper. For the
convenience of the reader we include short arguments, some of which may be new.

B.1 Universal Euler classes of frame bundles

Fix integers 0 ≤ ` ≤ d, a topological space X, and a rank d vector bundle ξ on X with inner product. Let
fr` : V`(ξ)→ X be the associated `-frame bundle, given by orthonormal sequences (v1, . . . , v`) of vectors
vi ∈ ξ|x, x ∈ X, meaning that vi are pairwise orthogonal and have unit norm. The pullback bundle fr∗` (ξ)
has ` canonical sections, and we consider their orthogonal complement ξd−`, which is a rank (d−`) vector
bundle on V`(ξ). Note that V0(ξ) = X and fr0 = Id.

We will not assume that ξ is orientable in this appendix, although this will be the case in our applications.
Recall that one can define the twisted Euler class of ξd−` as a class e(ξd−`) ∈ Hd−`(V`(ξ);Zw), where the
coefficients are twisted by the first Stiefel–Whitney class w := w1(ξd−`).

Definition B.1. Define the map ed` : πd−`V`(ξ) −→ Z by the formula:

ed` (f) := 〈e(ξd−`), f∗[Sd−`]〉 = 〈e(f∗(ξd−`)), [Sd−`]〉.

Note that the last expression shows that ed` is a group homomorphism.

Lemma B.2. For ` ≥ 1 let pr` : V`(ξ) → V`−1(ξ) be the fibration that forgets the last vector in an
`-frame, and i` : Sd−` ↪→ V`(ξ) its fiber inclusion. Then ed` (i`) = χ(Sd−`), the Euler characteristic of Sd−`.

Proof. This follows since i∗` (ξd−`) ∼= TSd−`. Indeed, the fiber of ξd−` over (x, v1, . . . , v`) ∈ V`(ξ) is the
orthogonal complement (v1, . . . , v`)

⊥ ⊆ ξx, so if v` = u ∈ S(U) for a fixed U := (v1, . . . , v`−1)⊥ ⊆ ξx then
the fiber is u⊥ ⊆ U , so exactly the tangent space to the (d− `)-sphere S(U) ⊆ U at u. �

By induction and the long exact sequence of homotopy groups for the fibration pr`+1 : V`+1(ξ) → V`(ξ)

we get isomorphisms

πnV`(ξ) πnX
fr`
∼=

(B.3)

for all n ≤ d− `− 1, and an exact sequence in the first interesting case

πd−`V`(ξ) πd−`−1Sd−`−1 πd−`−1V`+1(ξ) πd−`−1X.
δpr`+1 i`+1 fr`+1 (B.4)

Lemma B.5. For 0 ≤ ` ≤ d the connecting map δpr`+1
of pr`+1 can be identified with the homomorphism

ed` : πd−`V`(ξ)→ Z ∼= πd−`−1Sd−`−1.

Proof. Since the statement is inherited by pullbacks of vector bundles, it suffices to check it for ξ = γ, the
universal rank d bundle γ → BOd over the Grassmannian BOd of d-planes in R∞. Then EOd := Vd(γ)

is a contractible, free Od-space and we have for 0 ≤ ` ≤ d homotopy equivalences

V`(γ) ' EOd�Od−` ' BOd−`.
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The map pr`+1 is induced by the inclusion Od−`−1 ↪→ Od−` and we have a 5-term fibration sequence,
where the connecting map in question is induced by the action map act on a basepoint in Sd−`−1:

Od−`−1 Od−` Sd−`−1 V`+1(γ) V`(γ).act pr`+1 (B.6)

Recall that the Euler class is the unique (necessary and sufficient) obstruction for finding a nonvanishing
section in an rank n vector bundle over Sn, and πd−`−1Od−` are isomorphism classes of such bundles for
n = d − ` (via clutching). Then the claim follows since πd−`−1(act) is also the unique obstruction for
such a section by the exact sequence above. �

As a consequence, for 0 ≤ ` ≤ d we get an extension of groups

Z�im(ed` )
πd−`−1V`+1(ξ) πd−`−1X

i`+1 fr`+1 (B.7)

and we determine the image of the homomorphism ed` next.

If d− ` is odd then ed` = 0, because it is given by Euler classes of bundles f∗(ξd−`)→ Sd−` of rank d− `,
for which fiberwise −Id is an orientation reversing vector bundle isomorphism over Id on the base.

If ` = 0 and d is even then im(ed` ) = e(ξ)(πdX) is simply the image of the Euler-class e(ξ) evaluated on
πd(X) under the Hurewicz map. Then any image is possible, for example, take X = S2 and d = 2. Then
e(ξ)[S2] ∈ Z can be any integer n by taking ξ to be the n-fold (complex) tensor product of the Hopf
bundle. As a consequence im(ed0) = e(ξ)(π2S

2) = n · Z. Note that for higher genus surfaces X we have
π2X = 0 and hence this image always vanishes. This example can be generalized as follows.

Lemma B.8. Let X be a compact d-manifold.

− If X has nonempty boundary then ed0 = 0 and the sequence (B.7) splits for ` = 0. In fact, there
are isomorphisms πnV1(ξ) ∼= πnSd−1 ⊕ πnX for all n ≥ 1.

− If X is closed then e(TX)(πdX) is nontrivial if and only if d is even and the universal cover of
X is a rational homology d-sphere. More precisely, X is either a simply connected Q-homology
d-sphere (orientable) or a Q-homology ball (non-orientable) with fundamental group Z/2.

Proof. If X has nonempty boundary then Hd(X;Zw) = 0 and hence e(ξ) = 0. This means that we have
a continuous section of V1(ξ)→ X. As a consequence, the long exact sequence of the fibration turns into
(split) short exact sequences on homotopy groups.

For closed X we consider the case ξ = TX. We may assume that d is even, otherwise ed0 = 0. If Σ is a
simply connected Q-homology sphere then the degree 1 map Σ→ Sd is a rational homotopy equivalence
and hence πd(Σ)⊗Q ∼= Q. It follows that there is a map Sd → Σ of nonzero degree and so e(TΣ)(πdΣ) 6= 0

since the Euler characteristic of Σ is 2. If X is covered by Σ, it therefore also satisfies e(TX)(πdX) 6= 0.

Conversely, if this group is nontrivial then there is a map Sd → X of nonzero degree. Let Σ be the
universal cover of X. Then this map lifts to a map Sd → Σ of nonzero degree (which implies that this
is a finite cover). Then Σ must be a Q-homology sphere, otherwise there would be a nontrivial rational
cup product in its top cohomology which contradicts that all cup products are trivial for Sd. This also
implies that the only free action on Σ can be by Z/2 and that the quotient is a Q-homology ball. �

Finally, we consider the case d − ` even with l ≥ 1. We define the spherical Stiefel–Whitney class
wsi (ξ) : πiX → Z/2 as the evaluation of the i-th Stiefel–Whitney class wi(ξ) ∈ Hi(X;Z/2) on spherical
classes, namely those in the image of the Hurewicz homomorphism h : πiX → Hi(X;Z).
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Proposition B.9. For X, ξ and 1 ≤ ` ≤ d = dim(ξ) as above, assume that d − ` is even. Then ed`
is either onto or has image 2 · Z. The latter happens if and only if the spherical Stiefel–Whitney class
wsd−`(ξ) : πd−`X → Z/2 vanishes. This homomorphism can be nontrivial only for d− ` = 2, 4, or 8.

Proof. If d−` is even and l ≥ 1, then ed` (i`) = χ(Sd−`) = 2 by Lemma B.2, so 2·Z is contained in the image
of ed` . To decide whether this is the entire image, we only need to understand the Euler class modulo 2.
But then it equals the Stiefel–Whitney class wd−` which is a stable characteristic class and hence we can
evaluate it on ξ rather then ξd−`. This implies our claim regarding the spherical Stiefel–Whitney class.

Recall that Adams’ solution of the Hopf invariant 1 problem implies that rank n vector bundles over Sn

have even Euler class unless n = 2, 4, 8. The universal complex, quaternion and octonian line bundles over
the corresponding projective spaces have Euler number 1, so for d− ` = 2, 4, 8 both cases can arise. �

For X = ∗, the frame bundle V`(ξ) is just the Stiefel manifold V`(d), whereas for X = BOd and the
universal rank d bundle ξ := γ over it we have V`(γ) ' BOd−` (see the proof of Lemma B.5).

Corollary B.10. If 1 ≤ k ≤ d, the groups πnVk(d) vanish for n ≤ d−k−1 and there are isomorphisms

πd−kVk(d) ∼= Zk,d :=

{
Z k = 1 or d− k even,

Z/2 otherwise,

generated by the fiber inclusion ik : Sd−k → Vk(d).

Proof. For X = ∗ we have πnVk(d) = 0 for n ≤ d−k−1 by (B.3), and πd−kVk(d) ∼= ker frk ∼= Z/ im(edk−1)

by (B.7) for l+1 = k. We saw after (B.7) that for d−k even this is infinite cyclic, as well as for k = 1 since
πdX = 0. For d− k odd we trivially have wsd−`(ξ) = 0, so Proposition B.9 implies im(edk−1) = 2Z. �

Corollary B.11. For m ≥ 1 there are isomorphisms πnBOm−1
∼= πnBOm for n ≤ m−2, and a short

exact sequence

m odd Z
m 6= 2, 4, 8 even Z/2
m = 2, 4, 8 0

 πm−1BOm−1


Z m ≡ 1, 5 (mod 8),

Z/2 m ≡ 2, 3 (mod 8),

0 m ≡ 0, 4, 6, 7 (mod 8).

Proof. The kernel was computed in Proposition B.9 for m := (d−`). Just recall that πmV`(γ) = πmBOm
consists of isomorphism classes of all rank m vector bundles over Sm, including those with Euler number
1. To compute the right hand side, note that by (B.7) the group πm−1BOm ∼= πm−1BO is in the stable
range, so the result follows from Bott periodicity. �

B.2 Splittings for the first interesting homotopy groups

For X, ξ as above, let k := `+ 1 with 2 ≤ k ≤ d. If d−k is even (i.e. d− ` odd) there is a group extension

Z πd−kVk(ξ) πd−kX
ik frk (B.12)

as we showed below (B.7). On the other hand, when d − k is odd, k ≥ 2, d − k 6= 1, 3, 7, we know from
Proposition B.9 that our extension is by Z/2:

Z/2 πd−kVk(ξ) πd−kX.
ik frk (B.13)

We now ask in which circumstances these extensions split and how to construct such splittings.
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Proposition B.14. If 2 ≤ k ≤ d = dim(ξ) with d − k even, splittings η : πd−kVk(ξ) → Z of the
extension (B.12) are in bijection with integer lifts W : πd−kX → Z of the spherical Stiefel–Whitney class

W ←→ ηW :=
1

2
(edk +W ◦ frk).

Moreover, wsd−k(ξ) can be nontrivial only for d − k = 2, 4, or 8, so apart from these cases W = 0 gives
the preferred splitting η0 = 1

2e
d
k.

Proof. To show that the claimed formula for ηW is a splitting, first note that the division by 2 makes
sense for any integer lift W of wsd−k(ξ). Both summands are homomorphisms and ηW splits the inclusion
ik because edk(ik) = 2 and frk(ik) = 0. Conversely, if η is any splitting then (2η − edk)(ik) = 2− 2 = 0, so
2η − edk factors through a homomorphism Wη : πd−kX → Z. This is an integer lift of wsd−k(ξ).

Moreover, two splittings η differ by a unique homomorphism u : πd−kX → Z (composed with frk). Given
one integer lift W of wsd−k(ξ), we have a second lift W + 2u, leading to another splitting ηW+2u =

ηW + u ◦ frk. This shows the claimed 1-1 correspondence. The last claim follows from the solution of the
Hopf invariant 1 problem as in Proposition B.9. �

Proposition B.15. If 2 ≤ k ≤ d = dim(ξ) with d − k 6= 1, 3, 7 odd, then there is a splitting
η : πd−kVk(ξ)→ Z/2 of (B.13) that only depends on the isomorphism class of the vector bundle ξd−k.

Proof. Note that for d − k odd Euler numbers edk = 0 are trivial, so the method of the preceding proof
does not construct splittings. However, Corollary B.11 gives for d−k 6= 1, 3, 7 odd a short exact sequence

Z/2 πd−kBOd−k πd−kBO =

{
Z/2 d− k ≡ 1 (mod 8),

0 d− k 6≡ 1 (mod 8).

Thus, in the case d− k 6≡ 1 (mod 8), returning to X and comparing to the universal bundle, we see that
a splitting η arises by the formula η(f) := f∗(ξd−k) ∈ πd−kBOd−k ∼= Z/2. On the other hand, if d−k ≡ 1

(mod 8) the displayed sequence splits, πd−kBOd−k ∼= Z/2 × Z/2, by Kervaire [Ker60] (this is the entry
r = −1 and m = 8s+ 1 = d− k in his second table, with s ≥ 1, which is also our case since d− k 6= 1).
In particular, we get our splitting that again only depends on the isomorphism class of ξd−k → Vk(X)

(but in these cases we do not know an explicit formula). �

B.3 Tangent bundles

We now improve the above results in the case ξ = TX is the tangent bundle of a manifold. For d − k
odd this follows from (B.13), Proposition B.15 and Lemma B.17 below. For d− k even this follows from
(B.12), Proposition B.14 and Lemma B.18. In Lemma B.8 we looked at k = 1.

Proposition B.16. For a compact d-manifold X let Vk(X) := Vk(TX) be its k-frame bundle. For
any 2 ≤ k ≤ d except possibly for k = d− 1 ≥ 3 or k = d− 3 ≥ 5 or k = d− 7 ≥ 9, there is an extension

d− k even, Z
d− k odd, Z/2

}
=: Zk,d πd−kVk(X) πd−kX.

ik frk

These extensions split and for d − k even splittings are given by ηW = 1
2 (edk + W ◦ frk), where one can

take W = 0 unless d− k = 2, 4 or 8 and d < 2k.

Lemma B.17. Assume k ≥ 2 and d− k is odd. The homomorphism edk−1(TX) has image 2 · Z unless
k = d− 1 ≥ 3 or k = d− 3 ≥ 5 or k = d− 7 ≥ 9.
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Proof. By Proposition B.9 the image of ed` (ξ) is 2 · Z if and only if the spherical Stiefel–Whitney class
wsd−`(ξ) vanishes, which is true unless d − ` = 2, 4, 8. Thus, we just need to show that for ξ = TX we
additionally must have d ≤ 2` with ` = k − 1 for wsd−`(TX) to vanish (since then d− k = 1, 3 or 7, and
d ≤ 2k − 2 gives k ≥ d− k + 2 = 3, 5 or 9 respectively).

If vj ∈ Hj(X;Z/2) are the Wu classes of X and Sqi denotes Steenrod squares, the Wu formula says

wd−`(TX) =
∑

i+j=d−`

Sqi(vj).

Since the cohomology of Sd−` is concentrated in two dimensions, pulling back to it kills all these sum-
mands, except possibly Sq0(vd−`) = vd−`. For any a ∈ H`(X, ∂X;Z/2), by the defining property

〈vd−` ∪ a, [X]〉 = 〈Sqd−`(a), [X]〉.

This vanishes on compact d-manifolds X such that d > 2`, since Sqi is zero on cohomology classes in
degrees < i. So wd−`(TX) vanishes on spherical classes unless d ≤ 2`. �

Lemma B.18. Assume k ≥ 2 and d− k is even. The extension (B.12) for πd−kVk(X) splits also in the
cases d− k = 2, 4 or 8 if d ≥ 2k.

Proof. The previous proof shows that wsd−k(TX) vanishes unless d ≤ 2k, so ηW with W = 0 is a splitting
unless d ≤ 2k. Thus, it remains to show that a lift W of wsd−k(TX) also exists in the middle-dimensional
setting d = 2k with k = d− k = 2, 4 or 8. The following argument actually works for any k.

Consider the twisted intersection form of X, a bilinear pairing 〈−,−〉X : Hk(X;Z) × Hk(X;Zw) → Z,
where the second term denotes coefficients twisted by w := w1(TX). The pairing is given algebraically by
Poincaré duality and cup products and geometrically by counting transverse intersection points carefully
with signs.

There are Hurewicz homomorphisms h : πkX → Hk(X;Z) and their twisted partners

hw : πkX ∼= πkX̃
h̃−→ Hk(X̃;Z) ∼= Hk(X;Z[π1X])

εw∗−→ Hk(X;Zw),

where εw : Z[π1X]→ Zw is the π1X-linear map determined by εw(g) := w(g) ∈ {±1} for all g ∈ π1X. In
this middle dimension, any class a ∈ πkX is represented by a generic immersion A : Sk # X and

〈h(a), hw(a)〉X =: 〈a, a〉X = 2〈A〉X + e(νA), (B.19)

where 〈A〉X is the self-intersection number (the sum of signed double points of A) and e(νA) is the Euler
number of the normal bundle νA → Sk. The formula is proven by intersecting A with a transverse push-off
A↑ of A, and noting that intersection points in A t A↑ are either those where the normal vector vanishes,
contributing to e(νA), or occur as a pair of points in a neighborhood of a self-intersection of A.

Using a∗(TX) ∼= TSk ⊕ νA we get

wsk(TX)(a) = wk(a∗(TX)) = wk(TSk) + wk(νA) ≡ e(νA) ≡ 〈a, a〉X (mod 2). (B.20)

By definition, wsk(TX) factors through the quotient πkX/ ker(h) and the twisted intersection form can
also be restricted to a bilinear pairing on πkX/ ker(h)×Hk(X;Zw). Since it takes values in the torsion-
free group Z, the formula (B.20) implies that wsk(TX) actually factors even further, namely through
(πkX/ ker(h))/torsion. By compactness of X we know that Hk(X;Z) is finitely generated and so is its
subgroup im(h) ∼= πkX/ ker(h). Therefore, we have shown that wsk(TX) factors through a finitely gener-
ated torsion-free abelian group. As such groups are free, the required integer lift W can be constructed
by defining it on the free generators of this group. �
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We note that the 5-manifold X = SU(3)/SO(3) is simply connected, has π2X ∼= Z/2 with nontrivial
ws2(TX). So there is no integer lift W and Lemmas B.17 and B.18 indeed fail for d = 5, k = 4 and
d = 5, k = 3. As a consequence, our assumptions are the best possible for d = 5.
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