A VERY INFORMAL INTRODUCTION TO WHITNEY TOWERS, PART 2

Peter Teichner

Joint work with Jim Conant and Rob Schneiderman

HIM, September 2016

RECALL SPLIT WHITNEY TOWERS IN THE 4-BALL, THEIR INTERSECTION TREES ...

... AND THE LINK ON THE BOUNDARY 3-SPHERE

LEADING TO MASTER DIAGRAM

If a Whitney tower W of order n has vanishing intersection forest T_n (W)=0, then it extends to order n+1 (up to Whitney moves).

MASTER DIAGRAM CONTINUED

R_n T_n = abelian group generated W_n = links that bound order n by trees of order n, up to the Whitney towers, up to those AS- and IHX-relations bounding order n+1. discrete Morse theory: ≅ η_n = sum over roots μ_n D'_n = subgroup of abelian Pn D_n = free abelian group of group generated by rooted known rank, target of order n trees of order n, up to the AStotal Milnor invariant μ_n and IHX-relations for odd n, kernel is 2-torsion: [x,x] free quasi free Lie algebra: Lie algebra: $[\times, y] = -[y, x]$

GOALS FOR TODAY

- Explain quasi Lie algebras, the groups D_n and D'_n, and how Milnor invariants arise in this language.
- Show how to read off Milnor invariants from the intersection forest of a Whitney tower.
- Compute $W_n(m)$ = associated graded groups of links.
- Discuss the open problem of higher order Arf invariants.

RECALL OUR TREE GROUPS

T(m) is the abelian group generated by oriented trivalent trees, with leaves labelled by {1, 2, ..., m}, modulo the two local relations:

RECALL THE FREE LIE ALGEBRA L'(m) guasi-

L(m) is the abelian group generated by oriented trivalent trees, with leaves labelled by {1, 2, ..., m} and one root, modulo the two local relations:

YET ANOTHER DIAGRAMMATIC GROUP resp. L'(m) @ 2^m

L(m) 2 is the abelian group generated by oriented trivalent trees, leaves labelled by {1, 2, ..., m} and one labelled root, modulo the two local relations:

Precise relation between the various tree groups is given by the following Levine Conjecture [C.S.T in G&T 2014]: $T_{h}^{(m)} \xrightarrow{2}{\cong} D_{n}^{(m)} average over vots h = order =$ $Y_{3}^{2} \xrightarrow{2}{\longrightarrow} Y_{3}^{2} + Y_{3}^{2} + Y_{3}^{2} + Y_{4}^{2} + Y_{4}^$

How to understand
$$D'_{n}(m)$$
 and prove for \tilde{l}
Start with $L'_{n+1}(m)$ or better, $L_{n+1}(m)$:
Easy Fact: $UL(m)$ is the ring freely generated by $\chi_{l-1}\chi_{m}$,
in part. $L(m)$ is a free abelian group and
 $P-B-W$: $m = \frac{2}{2} d \cdot l_{d}(m)$, $l_{d}(m) = rank of L_{d}(m)$
 $\frac{l_{d}(m)}{dln} = \frac{m^{2}-m}{2} \frac{m^{2}-m}{3} \frac{m^{2}-m}{4} \frac{m^{5}-m}{5} \frac{m^{6}-m^{2}-m^{2}+m}{6}$

$$m' = \#$$
 words of length n in alphabet $\{x_{1}, ..., x_{m}\}$
A Lyndon word is one that's \iff word is
snallest among its cyclic rotations non-periodic
 $l_{d}(m) = \#$ Lyndon words of lyth $d \implies m' = \sum_{d \mid n} d \cdot l_{d}(m)$
Basis for $L_{n}(m)$ from Lyndon words given by algorithm:
 $m=2$ a, qaab, aab, aabb,
 $n \le 4$ ab, abb, b
a, $[a, [a, [a, b]], [a, [a, b], b]],$
 $[a, b], [[a, b], b], [[[a, b], b]], b$

Stallings' theorem : X a connected space Jf $[g_i]$ generate $H_1 X \cong G_2$, $G := \pi_1 X$ and $[r_j] - II - H_2X$, $G_n \in l.c.s.$ $G_{G_n} = (g_i | r_j, G_n) + u, eg.$ • $L(F(m)) \cong L(m)$ is the free Lie alg. where $L(G) := \bigoplus_{n \ge 1} G_n G_{n+1}$ for any G_{n+1} $T_n \left(\underbrace{S : link}_{-n-m} = \left(\begin{array}{c} X_1 \\ X_2 \end{array} \right) \left[\left[X_1 : l_1 \right], G_n \right] + h$

 $G = \pi_1 \left(S^3 \setminus (l_1, \dots, l_m) \right)$ M = meridians m;F = free group on XII-IXm $Jf l_i \in G_{n+1}$ then G_{n+1} order = w class = nt1 $\sum_{I=(i_{0},\dots,i_{n})} \mu(I,i) \times \prod_{I} \mu(I,i) \times \prod_{$ length = htd $I=(i_{0},..,i_{n})$ $\mathbb{Z}[F] \longrightarrow L_{h+1} \cong F_{h+1}/F_{h+2}$ $\mu(I_i)$ $1 + x_i \quad \leftarrow \quad x_i$ $\mu(123) = 1$ $\mu(213) = -1$ $X_1 X_2 - X_2 X_1 \leftarrow [X_1, X_2] = l_2$ for Bor:

Milnor invariant, containing all $\mu(i_{0}, i_{n}, i)$ Master $T_{n} \xrightarrow{\mathcal{R}_{n}} \mathcal{W}_{n}$ Jupart. if diagram: $\gamma_{n} | \cong \# \mu_{n} |$ (limitin) = $\partial \mathcal{W}_{n}$ $\mathcal{Y}_n \downarrow \cong \# \mu_n \downarrow$ then lieG Thm: [=,] $D_n \xrightarrow{i} D_n$ iso. mod 2-torsionand µn is defined!

contail 7 ordens 0 -J I Sq 1 - $L \otimes L \otimes \frac{2}{2}$ /Sq $h \times \frac{2}{2}$ $\otimes L_{g} \otimes \mathcal{H}_{2}$ Squ D 2h-1 \otimes \otimes 9 tl A sloµ20e 3) ->> D2h-1 2h-1 M2h-1 2h-1 29+1 28-1 Sato-Levine invariants of order 2h-1, defined on Ker (M28-1).

Note: Ro Sq = O

PROOFTHATTHE MASTER DIAGRAM COMMUTES

(a) If L bounds an order n split twisted Whitney tower \mathcal{W} , then L bounds a dyadic class n+1 twisted capped grope G^c such that:

- (i) $t(\mathcal{W})$ is isomorphic to $t(G^c)$;
- (ii) each framed cap of G^c has intersection +1 with a bottom stage of G, except that one framed cap in each dyadic branch of G^c with signed tree $\epsilon_p \cdot t_p$ has intersection ϵ_p with a bottom stage;

(b) If $L \subset S^3$ bounds a class (n+1) twisted capped grope $G^c \subset B^4$, then the inclusion $S^3 \setminus L \hookrightarrow B^4 \setminus G^c$ induces an isomorphism

$$\frac{\pi_1(S^3 \setminus L)}{\pi_1(S^3 \setminus L)_{n+2}} \cong \frac{\pi_1(B^4 \setminus G^c)}{\pi_1(B^4 \setminus G^c)_{n+2}}$$

We'll show below that this implies that all longitudes of L lie in the (n+1)-st term of the l.c.s. and how they can be computed in the capped grope complement.

WHITNEY TOWERS TO CAPPED GROPES

READING OFFTHE LONGITUDES

GROPE DUALITY OR SHAKING THE TREE:

It follows that the i-th longitude is given by the summand of $\eta(L)$ that corresponds to the leaves labelled by i. QED

GROPE DUALITY OR SHAKING THE TREE:

It follows that the i-th longitude is given by the summand of $\eta(L)$ that corresponds to the leaves labelled by i. QED