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RECALL SPLIT WHITNEY TOWERS IN 
THE 4-BALL, THEIR INTERSECTION TREES …



… AND THE LINK ON THE 
BOUNDARY 3-SPHERE
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LEADING TO MASTER DIAGRAM
Whitney towers of order n  
in the 4-ball, up to regular homotopy

Tn = abelian group generated 
by trees of order n, up to the 
AS- and IHX-relations

Wn = links that bound order n 
Whitney towers, up order n+1 
Whitney concordance

Links in the 3-sphere 
that are boundaries of 
order n Whitney towers

intersection forest   τn

∂n

Rn

associated    graded

geometric
obstruction theory:

If a Whitney tower W of order n has vanishing intersection forest 
τn (W)=0, then it extends to order n+1 (up to Whitney moves). 



MASTER DIAGRAM CONTINUED

Tn = abelian group generated 
by trees of order n, up to the 
AS- and IHX-relations

Dn = free abelian group of 
known rank, target of order n 
total Milnor invariant μn

D’n = subgroup of abelian 
group generated by rooted 
trees of order n, up to the AS- 
and IHX-relations

Wn = links that bound order n 
Whitney towers, up to those 
bounding order n+1.

ηn = sum over roots μn

Rn

discrete
Morse theory: ≅

pn

free 
Lie algebra: 

[x,x]=0

free quasi 
Lie algebra: 
[x,y]=-[y,x]

for odd n, kernel is
2-torsion: [x,x]



GOALS FOR TODAY
• Explain quasi Lie algebras, the groups Dn and D’n, and how 

Milnor invariants arise in this language.

• Show how to read off Milnor invariants from the 
intersection forest of a Whitney tower.

• Compute Wn(m) = associated graded groups of links.

• Discuss the open problem of higher order Arf invariants.



RECALL OUR TREE GROUPS

T(m) is the abelian group generated by oriented 
trivalent trees, with leaves labelled by {1, 2, ...., m}, 
modulo the two local relations:

IHX:

AS:Anti-symmetry:

Jacobi Identity:
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Odd orders contain 2 torsion :
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Use

framing
relations in odd orders :

two

boundary
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PROOF THAT THE 
MASTER DIAGRAM COMMUTES

We'll show below that this implies that all longitudes of L lie in the 
(n+1)-st term of the l.c.s. and how they can be computed in the 
capped grope complement.
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WHITNEY TOWERS TO CAPPED GROPES

p

1 1

2

2

3
34 4

τ



READING OFF THE LONGITUDES



GROPE DUALITY OR SHAKING THE TREE:

It follows that the i-th longitude is given by the summand 
of η(L) that corresponds to the leaves labelled by i.  QED



GROPE DUALITY OR SHAKING THE TREE:

It follows that the i-th longitude is given by the summand 
of η(L) that corresponds to the leaves labelled by i.  QED


