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Abstract. The technical lemma underlying the 5-dimensional topological 
s-cobordism conjecture and the 4-dimensional topological surgery conjecture 
is a purely smooth category statement about locating ~-null immersions of 
disks. These conjectures are theorems precisely for those fundamental groups 
("good groups") where the ~l-null disk lemma (NDL) holds. We expand the 
class of known good groups to all groups of subexponential growth and those 
that can be formed from these by a finite number of application of two opera- 
tions: (1) extension and (2) direct limit. The finitely generated groups in this 
class are amenable and no amenable group is known to lie outside this class. 

Introduction 

The 4-dimensional surgery and 5-dimensional s-cobordism theorems are known 
to be true in the topological category for a certain class of groups called "good 
groups". The class of previously known good groups coincided with the ele- 
mentary amenable groups [F2] which is the class of groups containing all 
groups of polynomial growth and closed under (1) extension and (2) direct 
limit. We expand the class of good groups to contain all groups of subex- 
ponential growth (and still closed under (1) and (2)). This is a nontrivial 
expansion because it is known that elementary amenable groups grow either 
polynomially or exponentially. Moreover, there are (uncountably many) groups 
of  intermediate growth [G], i.e. groups that grow faster than any polynomial 
but slower than any exponential function. Thus they give new good groups. 
The known groups of intermediate growth are finitely generated but not finitely 
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presentable, one therefore has to go to the noncompact setting in order to get 
specific new applications of surgery or s-cobordisms. 

In the smooth setting, the surgery and s-cobordism theorems are known to 
be false even in the simply-connected case [D]. This fact is extremely hard to 
prove. The seemingly obvious failure of  the Whitney-trick (i.e. locating em- 
bedded 2-disks on null homotopic circles) is not at all easy to nail down since 
in the proofs of  the surgery and s-corbordism theorems every Whitney circle 
(for which one needs an embedded 2-disk to change the algebraic intersection 
information into actual geometric intersections) comes equipped with some ad- 
ditional data which can be used for geometric constructions. For example, in 
the simply-connected case these "Whitney data" suffice to construct a Casson 
handle on the Whitney circle [C] which is an infinite union of thickenings of  
immersed disks proper homotopy equivalent to an open 2-handle D 2 • b By 
the work of the first author [F1] a Casson handle is actually homeomorphic 
to the open 2-handle and thus a topological Whitney trick can be performed. 
But even in the presence of a fundamental group ~, the Whitney data might 
suffice to locate a (smooth) Casson-handle (and thus a topological 2-handle). 
We now formulate the precise conditions on rt under which one does find the 
desired Casson-handle. As made precise in the definition below, a group lr is 
good if the following lemma holds for it. 

~l-Null Disk Lemma (NDL). Let  (G~',~) be a Capped Grope o f  hei,qht 2 and 
q~ : nIG" --+ ~ a group homomorphism. Then 7 bounds a disk A : D 2 ---+ G C 
which is ~1-null under qz 

Here a Capped Grope G c of height 2 is the standard thickening of a spec- 
ified 2-complex (made from two surface stages and one layer of  disks, the 
"caps") and 7 is a special circle in ~G". The simplest example is given in Fig. 
0.1. (Also see Fig. 1.1.) 

I I 

Z. 2 J  
Fig. 0.1. 
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A disk A : D 2 ~ M 4 is hi-null if  all loops / in A(D 2) are contractible in 
M, and A is gl-null under ~o : rqM --, z if all (p( / )= I. 

Definition. A ,group n is good ~['the (NDL) hohls for all {(G',7),q~} as above. 

Theorem 0.1. Groups ~" suhexponentkd .qrowth are ,qood. 

Remarks. (i) The (NDL) is a purely smooth lemma because Capped Gropes 
are smooth 4-manifolds and any tel-null disk can be perturbed to become a 
smooth ~l-null disk (small loops are contractible). Note that a topologically 
embedded disk is tel-null but in general it cannot be perturbed to become 
smoothly embedded. 

(ii) As explained above, the topological surgery and s-cobordism theorems 
hold for good groups, (compare with [FQ]). Since noncompact formulations 
are absent from the standard texts we formulate the simplest such application. 

s-cobordisms. Let (WS,M0,M1) be a 5-dimensional (noncompact) topological 
h-cobordism. Assume W 5 has a product structure near infinity; i.e. for some 
compactum K C W there is a homeomorphism 

(W\K, Mo\K,M.\K) ~ (M x ?,M • {0},M x { l } ) .  

Then the torsion z( W s ) E Wh(~l(  W 5 )) is defined. If ~( W 5 ) = 0 and 7ci( W s ) is 
good then some restriction of the product structure to a smaller neighborhood 
of  infinity extends to a product structure over all o f  W 5. 

Surgery. Let f :  (M4,~M) ~ (X,(')X) be a degree 1 normal map from a 
(noncompact)  topological 4-manifold to a 4-dimensional Poincar6 duality pair 
(using cohomology with compact supports and locally finite homology). As- 
sume f is already a [proper] homotopy equivalence near infinity; i.e. for some 
compacta Ki C 1(2 C X there is a 9 : (X\K2,0X\K2) --~ (M4,~')M) so that .[o 9 
is relatively [properly] homotopic in X\KI to idx\t(2. Then the Wall obstruction 
0 to normally bording f ,  rel boundary, to a [proper] homotopy equivalence is 
defined in L 4 ( g l / 4 / ) .  If gt W is good then the vanishing of 0 implies that f has 
a compactly supported normal bordism, rel boundary, to a [proper] homotopy 
equivalence f '  : (M', c~M') ~ (X, ~?X). 

Since the fundamental group of  a Capped Grope is free, one immediately 
sees that the (NDL) holds for all groups if and only if it holds for free groups. 
At the time of  writing there is no proof that the (NDL) requires any fundamen- 
tal group restriction. However, there is a program for locating an obstruction in 
the free case. This program does not involve gauge theory, the most powerful 
known source of  restrictions on smooth 4-manifolds and subsurfaces, but per- 
haps it should. We wish to advertise the (NDL) as a fascinating open problem. 

The paper is organized as follows: In Sect. 1 we give the definitions 
o f  (Capped) Gropes, the growth rate of  a group, and outline the proof of  
Theorem 0.1. This proof uses improvements of  two basic constructions previ- 
ously used to verify the (NDL) for groups of  polynomial growth: Grope height 
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raising and Contraction/Pushoff. In Sect. 2 we describe the new "linear" Grope 
height raising. Section 3 contains the new "exponential" Contraction/Pushoff 
which is derived from computations in the (nilpotent) theory of  "colored" link 
homotopy. We would like to point out that both these generalizations are best 
possible in the sense that if they could be improved by an ~: > 0 (which is 
made precise in Sect. 1) then the (NDL) would hold ['or the simplest "model" 
gropes (and the identity homomorphism ~p) where we strongly believe it to 
be false. 

We thank Richard Stong for many useful comments on earlier versions of  
this paper. 

1. Outline of the proof of Theorem 0.1 

The derived series of  a group G is defined by G (I) := [G ,G] ,G  (h+t) := 
[G~h),G Ih)] for h > 1. There is an equivalent geometric formulation in terms 
of  maps of  gropes. 

Definition. A grope is a special pair (2-complex, base circle). A 9rope has 
a height h C IN. For h -- 1 a #rope is preeiseO' a compact oriented surface 
Z with a single boundary component which is the base circle. A #rope of  
height (h + 1) is defined inductively as .[ollows: Let {~,, i -- 1 . . . . .  2 .qenus} he 
a standard symplectie basis o f  circles Jor X. Then a grope o[" height (h + 1) 
is formed by attaching ,qropes o f  height h to each ~, alonq the base circles. 

Thus a grope of height h has h surface stages and its fundamental group 
is freely generated by the circles of  the symplectic basis for all the sur- 
faces in the top stage. To be precise, these circles have to be connected 
by arcs to a base-point (on the base circle). The ~l-elements represented 
by these circles do depend on these arcs. For example, if all the surfaces 
in the grope have genus 1 then there are 2 Ih-IJ top stage surfaces each giv- 
ing 2 free generators. We leave the following lemma as an exercise to the 
reader, 

Lemma 1.1. For a space X, a loop 7 lies in ~I(X)/~) ( /and  only (['7 bounds 
a map of  a grope of  height h (i.e. 7 becomes the base circle oJ" that .qrope). 
Moreover, the height of  a ,arope (9,?) is the maximal h C IN such that 

E ~(.q)~h). 

As one can see from Fig. 1.1. every grope (g, 7) embeds properly (i.e. 
boundary goes to boundary) into (IR3+, 1R 2 • {0}) mapping 7 to the unit circle 
in IR 2. 

Definition. A Grope is a special pair (4-man(fold, base circle). It is obtained 
from a 9rope 9 C ~3+ by first thickening g into a 3-man(fbld in IR3+ (with 
a preJerred annulus around t' in the boundary) and then crossinq with the 
interval 1 = [0, 1] to get a 4-maniJ'old G. It has a preferred solid torus 
(around the base circle 7) in the boundary. 
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3rd stage 

2nd stage 

Fig. I.I. 

Note that the 3-dimensional thickening of a grope does not depend on the 
choice of the embedding into IR 3. This is obvious for all the surfaces Xi in 
the grope (they all give Z', x l). But the gluings are only along the preferred 
annuli and are thus uniquely determined by the gluings of the cores of these 
annuli (=base  circles) and thus by the grope. Therefore, a Grope G is the 
unique "untwisted" thickening of a grope ,q (which constitutes the spine of G). 
In particular, all the zrl-data carry over from g to G. 

Definition. A capped grope is a slweial pair (2-complex, hase eire/e). It is 
ohtained ji'onl a ,qrope g by .lirst attaching 2-cells (=:caps)  to the circles 
of  the sympleetie basis for all the sur/'aees in the top stage of  ,q. Then one 
introduces finitely many double points atnong caps. 

We do not allow double points between a cap and the grope. The funda- 
mental group of a capped grope is freely generated by the double point hmps. 
These start at the base point (on the base circle) and run up through the grope 
to the attaching circle of  a cap. Then they pass through exactly one double 
point of this cap bringing them back to the same cap or to some other cap. 
Finally, the loops run down the grope to the base point without passing through 
further double points. Note that the rq-element represented by a double point 
loop does only depend on the double point it uses (and the direction it passes 
through it) because the inclusion map ~zl(grope) ---, ~zp (capped grope) is triv- 
ial. Changing the direction in which a cap-cap double point is passed changes 
the double point loop to its inverse. 

Note that a capped grope without double points also embeds properly into 
the pair ( IR3,]R 2 • {0}).  

Definition. A Capped Grope is a special pair (4-man(lbkl, base eirch,). It is 
obtained from a capped ,qrope ~1 ~' C IR3+ without double points by .lirst thiek- 
enin 9 it into a 3-man(fidd in IR3+, then erossin,q with 1, and finally introducing 
finitely many plumbings amon,q caps. 
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Fig. 1.2. 

A plumbing is an identification o f  Do • D 2 with Di • D ~ where Do, D] are 
subdisks of  some caps o f  9' and the second factor D 2 refers to the thickened 
normal directions. In complex coordinates the plumbing may be written as 
(zl,z2) ~ (z2,zl) or (zl,z2) ~ (~2,~i) creating either a positive or negative 
double point on the caps of  9". 

If one just thickened a capped grope (with double points) in IR 3, one would 
completely loose the feature of  transversality at the double point. But one 
might still think o f  a Capped Grope G C as the unique "untwisted" thickening 
of  a capped grope 9" (which constitutes the spine of  G"). In particular, the 
hi-information discussed above carries over from 9 '  to G". 

Definition. The height q/ 'a  Grope, capped ,qrope or Capped Grope is the 
hei9ht o f  the underlyin9 9rope. 

Remark. Our terminology slightly differs from the one in [FQ]. There a capped 
grope has no double points at all while a Capped Grope is the image of  a 
"properly immersed capped grope" in [FQ]. Finally, the term "grope" was not 
explicitly defined in [FQ] but it was sometimes abused to mean a capped grope. 
The object "grope" in our sense, which we now think of  the fundamental object, 
was referred to as the "body of  the capped grope". 

As an exercise in getting used to the definitions we next want to prove 
(compare [F]) the following 

Lemma 1.2. The class o f  good groups is closed under (1) extension and 
(2) direct limit. 

Proof  Let 1 ~ N --~ z~ - .  Q ~ 1 be a group extension and assume that N 
and Q are good groups. Let (GO,7) be a Capped Grope of  height 2 and 
q~ : 7riG ~' --+ ~ a group homomorphism. Using any kind of  "Grope height 
raising" (e.g. Theorem 2.1 or [FQ, 2.7.]) we may construct a Capped Grope 
(G~,~) C_ (G",~,) of  height 4. Use the composition niGh" --~ n~G ~" ~ n ~ Q 
(and the fact that Q is good) at the 2 top stages o f  G' z' to find disks inside 
these top stages which map trivially into Q. Thus (G]',y) contains a Capped 
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Grope (G~,7) of  height 2 such that the following diagram commutes: 

7rl G~ > N 

Since N is good G~ (and thus G ~) contains a disk on ?, which maps r~l-null 
under q~. Thus n is a good group. 

To prove (2 ) jus t  observe that :zl(Capped Grope) is finitely generated and 
thus any homomorphism to a direct limit ~r = lira ~z(i) will eventually fac- 

___._> 

tot through a map n(N) -- '  ~. This implies that 7z is good if all groups re(N) 
are good. [] 

We can now start the outline of  the proof of  Theorem A. Let (G ' ,7 )  be a 
Capped Grope of  height 2, Instead o f  directly trying to find a lrl-null disk on 

C 7 in G", we first construct Capped Gropes (Gh, ~ ) C (G",),) of arbitrary large 
height h. We need some control on the ~t-elements that occur in the new 
Capped Gropes. This is measured as follows: Any double point loop in G~ can 
be expressed as a unique reduced word in the double point loops (and their 
inverses) of  G ~'. Let / (h )  be the maximum length of  these words. Then our 
Linear Grope Height Raising (Theorem 2.1) produces for each height h > 2 
Capped Gropes (Gh,?) C_ (G~,y) with #(h) < 200h, i.e. the maximum word 
length / (h )  is bounded by a linear function in the height h. 

Remark. At the end of  this section it will be clear that if one found a "sublin- 
ear" Grope height raising, i.e. one in which / (h )  was bounded by a function 
that grew slower than linear in h, then one could prove that all free groups, 
and thus all groups, are good. The same remark applies to the "model" gropes 
(indicated in Fig. 1.1 with qo : id,r~(;, in mind) if one could replace our bound 
2 h - I by the bound 2 h in the following result, proved in Sect. 3. 

Exponential contractionlPushoff (Corollary 3.5). L e t  ~p �9 niG' -~ n b e  a 

,qroup homomorphL~'m with (G~',7) a Capped Grope o f  height h. I/'~p maps 
the double point loops o f  G" to a set o] eardinality at most  2 ~ - 1 in ~ then 
G ~' contains a disk on 7 which is ~l-null under ~o. 

This result is exponentially better than the old Contraction/Pushoff which 
had the number h instead of  2 ~ - 1 as an upper bound. The main reason for 

2 h 
getting this improvement is the group theoretic rebracketing fact rr (h) C_ 7r , 
i.e. the h-th derived group of  rc lies inside the 2h-th term of  the lower central 
series of  rr. In Sect. 3 we will explain in detail why the nilpotent quotients 
rather than the solvable quotients of  = measure the existence of  ~l-null disks. 
Roughly speaking, finger moves on disks in 4-manifolds correspond to link 
homotopies in 3-manifolds and this theory can be computed from ni[potent 
quotients of  the fundamental group. 

Proof  o f  Theorem 0.1. Let ~p " ~ziG" --, ~ be a group homomorphism with 
(GC,?) a Capped Grope of  height 2. Let S C_ r~ be the (finite) image of  the 
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double point loops of G c under 50. Use linear Grope height raising to find 
G c Capped Gropes ( h , 7 )  C_ (G",7) of height h whose maximal word length in ~r 

(relative to S) is smaller than 200 h. If  rc grows subexponentially then (for large 
h) the number of distinct group elements in ~ which are images of double point 
loops in G)~ is less than b 2001~ for any b > 1. Setting b < 21 ,2r exponential 
contraction/pushoff implies that G~, eventually contains a disk on 7 which is 
xt-null under 50. [] 

We close this section by reminding the reader of  the necessary definitions 
concerning the growth of groups, compare [M2]: If S is a finite subset of a 
group z, one may define a growth .fimetion .]is' " N --~ N by sending a "radius" 
r E N to the number of distinct group elements in 7: which can be written as 
words of  length < r in the elements of S and their inverses. 

Definition. (i) 7: has polynomial growth iJJor all.finite subsets S C ~ there 
exists a degree d C IN such that .Is(r) <= r a for  all su~cient/y large r. 

(ii) 7z has suhexponential growth (].[br all ,finite subsets S C 7: and all 
basis b > 1 one has fs,(r) < b" ,/or all su~ciently large r. 

Note that for a finitely generated group it suffices to check the conditions 
on any generating set S. However, from our point of  view S is always given in 
a natural way as the image of some finite set of double point loops. Therefore, 
the above definition captures exactly the property of 7z that we need. 

2. Linear grope height raising 

To fix notation let g (resp. g~') be the 2-dimensional spine of a Grope (resp. 
Capped Grope) of height k > 2 and let the corresponding capital letters G and 
G ~ denote the standard untwisted 4-dimensional thickenings. In this section, we 
require that the number of selfintersections of  each cap is zero when counted 
by sign. Since selfintersections can be introduced locally this represents no loss 
of  generality. We remind the reader that caps are permitted to have transverse 
intersections with (1) themselves, (2) other caps. Thus body-body intersections 
in g and cap-body intersections are prohibited. Sometimes, to emphasize the 
distinguished circle I' in g we will write (g, 7),(G~,7) etc. 

The term grope height raising (compare [F2]) refers to the location of new 
C ~ C Capped Gropes (G h, ~) C (G' ,7)  of large height h>>k. Given (gh,7) C (G",?) 

and a base point * E 7 each double point loop (see Sect. 1) of  g)~ determines 
a reduced word w in r~l(G') which is well defined up to inverse. We call w a 
word rather than element because ~I(G") has a preferred free basis (consisting 
of  double point loops of  G') .  This basis can be described dually by marking 
with a letter either one of the two canonical solid tori z at each plumbing 
(these are associated to the double points of  G") and then reading that signed 
letter as a (base pointed) loop crosses that solid toms. Let / be the maximum 
length among reduced words w which express the double point loops of  g~ 
in terms of the double point loops of G C. The goal is to produce embeddings 
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(g),,7) C (G~,7) where word length / grows as slowly as possible relative to 
the height h. The previous best estimate [Sto] produces arbitrarily large values 
of  h with / < const �9 h ~ ~ ~ 1.94, that is, length grows slightly slower 
than height squared. Similar power laws with larger 6 's  are implicit in [F2] 
and [FQ]. 

Theorem 2.1 (Linear grope height raising). Given a Capped Grope ( G ~,7 ) of  
heiqht k > 2 . Then there exist Capped Gropes (Gh, , ) C (G",7) o[" he#lht h 
and word len,qth / sati,sJ'ying / < 200 h Jbr all wdues q /  h > k. 

It is convenient to describe the constructions of  geometric topology as if 
smooth structures and even Riemannian metrics are present. It is routine to 
remedy this small abuse using the foundational results [FQ, Chapters 8 and 9] 
on smoothings, normal bundles and transversality for topological 4-manifolds. 

Proof The core of  the proof is an inductive argument for raising height from 
k to k + 1 to . . .k  + r for any positive integer r. Bracketing this core are 
"warm up" and "warm down" steps whose numerical effects are summarized in 
Table 2.1 below. 

If  k = 2, the "warm up" begins by raising height to 3. The grope height 
raising algorithm of [FQ, Exercise 2.7] produces a Capped Grope of  height 3 
and with word length of  its double points =< 52 = 25 (not 72 as suggested by 
a slight miscounting in [FQ, 2.8]) in the thndamental group of  the original G~. 
Next non-disjoint immersed dual spheres {S} to the second stage surfaces {X2 } 
of  the grope are constructed. The collections {S} and {X2} are geometrically 
paired 3,~ and {S} has no other intersections with the (modified) Capped Grope. 
A sphere S is formed as follows. Choose a "branch" b of  g' issuing from a 
symplectic basis curve p, or q, on the base surface Z'l and let b' be a parallel 
copy. "Contract" the caps on b ~ to get b" and then "push ofF' all caps of  g~ 
from {b '}  (see [FQ, 2.3]). Now the sphere S is formed by joining two copies 
of b" by an annulus. According to the counting rules explained in [FQ], the 
length of  double point words in {S} is increased by at most a factor of  3 and 
the length o f  the double point words of  (g~')pushed off is increased by at most a 
factor of  2. Thus the new ,q~ has word length < 50 and the dual spheres have 
word length < 75. 

Table 2.1. 

grope height word length of g~ 

k ~> 2 I initial state 
k > 3 25 �9 2 -- 50 made duals {S} 
h = k + r 2(50r) + 50 core construction 
h = k + r 212(50r) + 50] + 75 < 200h removed intersections using {S} 

In the above table, the last ("warm down") step is necessary because the core 
construction gives "capped gropes" with cap-grope intersections which are not 
allowed. 
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As we start the core construction we have a Capped Grope G '  := G[ of  
height k > 3 and word length < 50. The inductive set up is a Grope Gh-t  of  
height h - I > k and an imbedding (Gh- l , 7 )  ~ (GO, Y). One works with the 
spines, proceeding from ,q~-i to ,qh in two steps: Step 1 raises height by one 
but creates (illegal) double points between the top stage surfaces and stages at 
various heights above 

Y := base stage U second stage surfaces of  ~,1" =: $1 U {L'2} . 

The subspace Y is protected in the construction so that the dual spheres {S} 
will remain geometrically dual to {Z2}, the second stages, and disjoint from 
everything else. Step 2 only changes the new top stage to remove double 
points o f  the top stage with itself and with earlier stages (and in the process 
increases the genus of the surfaces in that top stage). Every application of  
Step I involves grabbing some obvious surface (often a disk) so, formally, the 
presence o f  these obvious surfaces is an inductive hypothesis which must be 
propagated in passing from gh-i  to ,qh. These surfaces are of  three types: 

(1) the initial caps gO\g, used only to get from ,q = ,q~ to Y~+l, 
(2) meridinal disks M~ and Mis described below, and 
(3) "parallel" copies of  stages of  lower height which have been previously 

constructed. 
Every application of Step 2 is accomplished by a finite number of  moves 

called a lol l ipop m o v e  or a doub le  lol l ipop move .  These moves change some 
surface to avoid an intersection; but we do not rename the modified surface 
in our notation. At an intersection between a new stage and an old stage the 
new stage is moved. At a new stage-new stage intersection, we will see that at 
least one o f  the two sheets o f  intersection lies on a stage which is topologically 
a disk. The Step 2 algorithm moves one such sheet to eliminate each new 
stage-new stage intersection. The caps 9~\,qh, necessary to define f(,qh), are 
constructed last and in two steps. The preliminary caps cross all grope stages 
above Y (stages > 3); these are refined to caps disjoint from the grope using 
the duals {S}. 

The first application of  Step 1 simply attaches the caps to g to get 
gk+l := g ~'- Thus ,qC is regarded as a "singular" uncapped grope of  height 
k + 1 by noting that disks are surfaces, it is singular because when regarded 
as grope stages the crossings in the caps ,q"\,q are impermissible. 

Every surface stage Z in a grope except for top surface stages has a sym- 
plectic basis of  circles el,Ill . . . . .  e~/,[~/ where ,q is the genus of  Z, along which 
higher stages have been attached. We consider tori T~, (resp. T/s,), i = 1 . . . . .  ,q, 
which are normal ~:- (resp. 2c-)  circle bundles to Z in G C restricted to ~i (resp. 
[~,) where t: is a small positive number depending on Z. Notice that all these 
tori are disjoint. Suppose x is a double point with local sheets Sv C Zv and 
SI~ C Sty, and that Sy C Z), is the sheet selected for modification by the Step 2 
algorithm, and finally that -Y'/t is attached to L" along /3. Symmetrically, if the 
sheet not selected for modification attaches to r along c~ then lane  it by Z~ 
and interchange e and [~' (also c and 2c) in the next paragraph. 
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The lollipop move replaces a disk neighborhood Sv o f x  with a copy of  T~, 
made by taking normal ~:-circle bundle over a parallel displacement (depending 
on x) of  a in X, boundary connected summed to S,. along a tube which is the 
normal ~:/10-bundle of  Z# in G' restricted to an arc 2 C ~vl~ from T~(displaced)f"l~'/:~ 
to x. Denote the lollipop by L~. It is the punctured torus made by attaching 
the tube to T:~(dtsplaced). 

In Fig.2.1 the lollipop L~ is shown in bold. Surfaces drawn as 2-dimensional 
lie (at least locally) in the 3-space model. Surfaces drawn as 1-manifolds are 
being observed in a cross section or a "time frame". Surfaces will only be 
represented in cross section when their global behavior is quite simple so that 
the figure is informationally complete. For example, to see all of  T~di~pl~ccd) 
imagine the two circles indicated in Fig. 2.1 converging to ~(displaced) in 
Z' • {present time} both forward and backward in time. The curve ~(displaced) 
lies slightly below cr and parallel to the plane of  c~. 

We specify that the initial application of  Step 2 replaces all intersection in 
the (k + l) ~t stage (formerly 9~\9) using lollipop moves. 

In subsequent applications of  Step 1 we must specify which surfaces we 
grab and what the intersections are. Each lollipop L~#) contains a meridinal 
circle m~c# ) to which we attach the meridinal disk M~(I~ ~ and a longitude/~(/~), 
see Fig. 2.1, to which we attach a parallel (in the 3-space present of  Fig. 2.2) 
copy U~ of  the surface stage 2;~]s>. The rest o f  the top stage is constructed from 
parallel copies of  previous stages. By the framing assumption on G ~' these sur- 
face stages and its parallels are disjoint. Note that such surfaces "moving up" 
the original Grope G will collide with the M~II~ ) and that M~II~ ) will intersect 
older (lower) stages as well. The reader may expect that the next application 
of Step 2 will use lollipop moves on the meridinal disks to remove the grope- 
grope intersection points. This is part of  the picture, but there is a difficulty. 
The lollipop moves, if repeated, produce a branch heading inexorably down G: 
namely resolving Mz~([~)UI,Y, i ( ~  being a surface at stage i in G ~) with a lollipop 
capped by a meridinal disk meeting a Z',_j leads toward the base of  G which 
is Z'l. There is no way of  using a lollipop to remove a point o f  M~I# ) N ZI.  

+ 

7 ) 

L :5 
Fig. 2.1. 
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The solution is to use the double lollipop move to resolve any intersection of  a 
current top stage meridinal disk with a third stage surface Z3. This move turns 
the branch of  the growing grope back "upward" to avoid the base Zi and also 
to avoid the second stages {Z2} for which we have duals {S} which need to 
be protected from additional intersections. 

The doubh, Mlipop move replaces an intersection x of  a top stage Z,. with a 
third story surface Z3. This move replaces a small disk neighborhood S,. C X~. 
of x with L~/Z~. The notation assumes Z3 attaches to [~ (otherwise reverse the 
labels :~ and [~), L~ is the lollipop made from T~ as described above. (Here and 
later we simplify the notation ":~(displaced)" to :c) Moreover, Z~ is the third 
story surface attached to c~ and finally L~/Z~ denotes the imbedded surface that 
results by surgering L~ along a parallel copy 22'~ of  Z~, i.e. 

L~/Z~ := (L~\neib.(/~))U two copies of  Z'~. 

Because we have assumed G C is an untwisted thickening the two copies of  Z'~ 
are disjoint from each other and the original. We claim that if Step 2 is done 
with care the result is an embedding .qh ~-~ G c. Since the various lollipops are 
easily made disjoint the chief concern is disjointness of  the copies of  Z~ and 
-Y'/~ from the stems of  the lollipops. The solution to this positioning problem 
is described by Fig. 2.2 below. The same figure solves the closely related 
disjointness problems of  the later applications of  Step 2. 

In later applications of  Step 2 meridinal disks cross other top surface stages 
(growing up the original grope). For later convenience in counting the word 
length / we make the necessary lollipop moves on these disks. In general, Step 
2 removes double points by replacing sheets of  top stage surfaces. It prefers 
to replace sheets lying on disks. The replacement is with a lollipop except in 
the case of intersection with a third stage surface -r 3 in which case a double 
lollipop is used. 

L==:   para e opops 

Fig. 2.2. 
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The operations of  any given Step 1 or Step 2 are performed simultaneously. 
After finishing a Step 1, we have a new object, a singular grope, and all the 
operations in the next Step 2 (constructing T~l/h, normal tubes, parallel copies 
of  surfaces etc.) take place in a small regular neighborhood of  the new object. 
After finishing a Step 2, the latest grope .q/, has been constructed. The next 
application of  Step 1 adds meridinal disks M~[~) and higher genus surfaces 
both of  which leave the neighborhood of  .qt,. Fig. 2.2 can be used to verify ( I ) 
that, in a Step 2, two or more double-lollipop moves across a stage two surface 
can be made disjoint from each other and the first three stages of  dh and (2) 
that at any stage, the surfaces added to various parallel L~'s and Ll~'S can be 
made disjoint from each other and the lower stages. Property (2) is not crucial 
since the additional surface-surface intersection points could be replaced during 
the next Step 2 but (1) seems critical for Step 2 to make progress. 

The fig. 2.2 indicates two parallel lollipops resolving two intersections with 
both Z'~ and Z'/; but these should be interpreted as parallel packets o f  p and q 
lollipops respectively. To visualize, the L/~'s vary vertically and the L~'s vary 
into the page. The key point is that the parallel copies of  Z'~/~) which will 
variously surger or attach to L~II b, in cases (1) and (2) above, slip through the 
stems of  the lollipops LFI~ ~ without intersection. 

After r cycles through steps 1 and 2 we have an imbedded grope (.qh-+,-,7) 
of  height h := k + r into (G~,7). We now check the normal framings. A 
lollipop move on a i-self- intersection changes the relative Euler class by •  
This is best checked in the closed case, S 2 z S 2, where adding the framed dual 
0 x S 2 to S 2 x 0 gives the diagonal. The restriction on cap selfintersections, 
that they sum to zero, shows that the totality of  lollipop moves on the stages 
at height k + l leave the relative Euler class trivial so the neighborhood agrees 
with the standard model. Subsequent stages are clearly 0-framed. This allows 
us to thicken any g~+,. to a G~.+,.. Write 

G ~ = neighborhood(base Z'l) U G~rt U G,~.ight 

where Gieft(r,ght ) is a disjoint union of  genus(Z'l ) Capped Gropes of  height k -  I. 
Although any individual surface stage of .q~+,. may be very "spread out" and 
reside partially in all three pieces of  G ~, the natural symplectic basis ;s of  
simple closed curves on the top stages of  .qk+,. is disjoint from Z'I so we may 
write ,~ = ,~lert ]_[ J4'~,'lght, with '~left(righl) C Gleft(right). Since Glet~(nght) is ~1-null 
in Gieft(right ) we can cap off each element of  ,~lefl(r,ght) by an immersed disk 6 
in G[dtr which will be specified in more detail below. Note already that 
the left-right distinction implies that ~ does not intersect the base Z'l. Without 
loss of  generality we may spin 6 near ~')6 (see [FQ, Chapter 1]) to ensure that 
the relative Euler class of  v ~ ; ,  vanishes and also stabilize 6 to ensure that it 
has equally many + and - double points. We set 

,~j~+,. :=  ,qk+,. u {~}.  

The superscript �9 warns the reader that ,q~'+,. does not satisfy the definition of  
a capped grope owing to the cap-grope intersections. These will be removed 
at the last step. 
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Let us next bound the word length /(~q~'+,.). We must, mentally, mark the 
1-dimensional submanifolds ~ of  ~/~+,. which are inverse images of  the solid 
tori {~} coming from the double points of  G", see the beginning of  this section. 
Then we count how many times a preferred generating loop of  ,q~,+,. crosses a. 
The first cycle of  Steps 1 and 2 produces unnested a-loops at the stems of  
the attached lollipops. These loops are unnested in the sense that any point 
on the surface may be joined to the boundary by an arc which crosses the 
union of  the a ' s  in only one point. In subsequent Steps 1, meridinal disks M 
satisfy M N {~} = (3 but they may at the next Step 2 have a sheet replaced 
with a lollipop whose stem is a normal circle bundle over an arc 2 c L" 
which crosses {r} once. Thus these modified meridinal disks may also have 
unnested a-loops. Also, Steps 1 grab parallels of  earlier non-disk surfaces and 
these contain unnested a-loops but the following Step 2 will not modify these 
surfaces at all since the Step 2 algorithm replaces only sheets lying on disks. 
Finally the double lollipop move is too low in the grope to produce a loops. 
What this analysis shows is that any point on .q~+,. can be joined by an arc 
~o c ,qk+,- to the base 7 of  ,qh-+,- which crosses rr in at most r points. The 
universal cover G" of  G ~' is built from ~ l ( G " ) - m a n y  copies of  G := G" with 
its plumbings separated, by replumbing distinct copies together according to the 
group element of  the plumbing. In this picture e9 lifts to an arc in G c which 
traverses through at most r + 1 copies of  G. Now suppose that ~) connects a 
circle of  the top symplectic basis .~ to 7 and that this circle bounds its cap 
6 in Gl"eft(right ). We may choose 6 such that the lift /~ lies in a single copy of  

G. Consider two such assemblages uJ U 6 and c d U  6 ~. Their lilts each lie in 
at most r + 1 copies of  G so if they intersect the union lies in at most 2r + 2 
copies of  G. This represents the longest possible lift o f  a preferred path in 
#~+,. and gives the estimate: /(9~+,.) < 2r + 1, in terms of  the modified ,q]'. 
Measuring with respect to the original 9~i (the one before the "warm up" step) 
we get: 

/(,qk+,-) < 2(50r) + 50. 

Recall that the caps are disjoint from Y. Push all cap-grope intersections 
in ,q/~+,. down to the second stage {-r2} by pushing the sheet on the cap and 
then remove these by tubing (ambient connected sum) into copies of  the dual 
spheres {S}. Note that our r steps of  grope height raising took place "above Y" 
leaving {S} disjoint from all but the second stages and geometrically dual to 

" since there are now only cap-cap intersections. them. This changes 9~+,. to 9k+,. 
Since {S} are framed the untwisted framings of  the caps are preserved by the 
tubings and ,q~+,. may be thickened to G~?+,.. The longest words associated to 
the cap-cap double points of  9~'.+,. result from tubing two double points of  
word length 2 ( 5 0 r ) +  50 into dual spheres Si and $2 which intersect with 
a double point o f  length 75. Thus recalling that h = k + r  and k > 2 we 
get 

f (y~)  < 212(50r) + 50] + 75 < 2 0 0 h .  
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3. Exponential eontractionlPushoff 

We first collect the necessary group theoretic facts: The lower central series 
of  a group G is defined by G I :=  G, G ~+l : :  [G,G ~] for k > 1. All nilpotent 
quotients of  a group factor through some GIG h, however these are not the only 
interesting nilpotent quotients. If  G is provided with a set o f  normal generators, 
G = {{xl . . . . .  x,,)), then there is the Milnor quotient or Milnor .qroup 

MG :=  G/({[x,,x,"])}, i = 1 . . . . .  n and y E G .  

These quotients were introduced in J. Milnor's thesis [MI] for the study of  link 
homotopy. A useful generalization of  the Milnor quotient is the colored Milnor 
~troup CMG. Here a set o f  normal generators is provided in batches or colors 
determined by the first of  two indices, i.e. G = ((x~i)), 1 <- i < n, 1 < ./ < n,, 
and x;i are thought of  as having the color i. Define 

V �9 , !  

, __ - -  = j , j  = n~ y . CMG :=  G/ ( ([x,l,x /, ]) ) 1 < i < n, 1 < < and E G 

Therefore, n, is the number of  generators with the same color and if each n, = 1 
then CMG = MG. Moreover, n is the number o f  colors of  G. The following 
lemma about colored Milnor groups uses the fact that we have chosen the 
elements x, i to be normal generators for G. 

Lemma 3.1. CMG has nilpotency class <= n, i.e. CMG "+1 = { 1}. 

Propel: We will use an induction on the number n of  colors in CMG. If  n = 1 
the relations imply that all x, ~) commute in CMG. Since by assumption these 
elements generate G it follows that all commutators vanish in CMG. 

Now assume the statement holds for groups with n -  I colors and let G 
be normally generated by x~, I < i <_ n, 1 <_ j =< n,. Define A, ~ CMG 
to be the normal closure o f  the elements x,i . . . . .  x,,,,. Since all the conjugates 
of these elements commute, A i iS abelian. Moreover, the intersection A of  all 
A, lies obviously in the center of  CMG. Now consider a commutator [x,y] 
with x E CMG, y E CMG". Since all quotients CMG/Ai are Milnor groups 
with n - I colors it follows by induction that y E A and thus y is central i.e. 
[x,y] = 1 in CMG. This shows that CMG n+l = {I}. [] 

Corollary 3.2. CMG is (.finitely) 9enerated by x,/ and is also .finitely 
presen ted. 

Proof  The statement for the generators follows from the standard rewritin9 
process in nilpotent groups: If  a nilpotent group N is normally generated by 
xi then it is also generated by these elements. One uses an induction on the 
nilpotency class o f  N based on the fact that x - y m o d N  k implies a ~ -= 
aYmodN ~+~ for all a ,x , y  E N. Moreover, the fact that N k is generated by 
k-fold commutators [n,~ . . . . .  nix] if the n/ generate N shows that N k is -finitely 
generated if N is (compare [V, 2.1.10]). An induction on the nilpotency class 
together with the fact that a (central) extension of  finitely presented groups 
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is finitely presented implies that a finitely generated nilpotent group is also 
finitely presented. I~] 

Definition. A colored link L = ( / , I ) c S  3, 1 <_ i <_ n, 1 < j < n, is a link 
whose components are batched into colors as above. A colored link homotopy 
is a motion o f  the link durin9 which only components with identical colors 
m u y  ('ross. 

There is a generalization of  Milnor's theorem on link homotopy [M1] and 
its extension to the 4-ball [L]. 

Lemma 3.3. I f  y is a loop in S3\L,  a colored link complement, then the 
followin# condithms are equivalent: 

(1) y Ls' trivial in CMTrl (S3\L)  (use one meridkm m u per component / , i  .[or 
the d~ffinition o f  this colored Milnor yroup. These obt~ious[y #enerate 7rl (S3\L) 
normally). 

(2) 7 is null homotopic in S3\L r f o r  some link U colored homotopic to L. 

(3) There exists properly immersed annuli A,/ : Sl x 1 --+ S3x  1 restrietin# 
to L at top and bottom aml a proper ~h'sk A : D 2 --~ S 3 x I boundin# 3' with 
the Jbllowin# di, sjointness properties: Aii 7) A,, ff = ~b .[or i ~ i' and A N A, i = ~ 

Jbr all i,j. 

Proqf  (1) =~ (2) is a straightforward generalization of  Milnor 's  original 
argument: One writes }, as a product o f  colored Milnor relations [m',//,ml;j,] 
and one reduces the number of  these relations one at a time using the follow- 
ing figure (or Figs. 1, 2 in [M1, p. 183]). (This move is sometimes referred to 
as a (colored) elementary homotopy).  

Note that we allow components {,i and /n '  of  the same color to cross 
which is precisely reflected in the choice of  the colored Milnor relations. 

(2) ::~ (3) The annuli Ai/ and the disk A may be constructed in three steps: 
First run the (colored) link homotopy from L to L / keeping 7 fixed. (The time 
parameter is thought of  as the / -d i rec t ion  to get annuli in S 3 x I,  one of  them 
being 7 x 1 c_ S 3 x 1.) Then keep U fixed and run the null homotopy for 7 
in S3\L ' to cap off the annulus ? x I into A. Finally, run the first homotopy 
backwards, with ? out of  the picture, to get back to the link L. The conditions 
on the colored homotopies translate precisely into the disjointness properties 
in (3). 

(3) ::~ (1) Let A C_ S 3 x I be the union o f  the annuli A u. There is a 
homomorphism 

i, : CM~z~(S3\L) ~ CMTzI(S 3 x I \ A )  

of  colored Milnor groups (formed w.r.t, the meridians m~i) coming from the 
inclusion i �9 S3\ L ~ S 3 x I \  A. Since the meridians m,j normally generate both 
fundamental groups, i, is onto by Corollary 3.2. The existence of A (disjoint 
from A) shows that i , (y)  = 1 and thus it suffices to show that i, is injective. 
This will be proved using a theorem o f  Stallings (which can be derived by it- 
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erated applications of  the 5-term exact sequence for group extensions involving 
the terms of  the lower central series). 

Stallings' Theorem [St]. I r a  --+ n is  a hontomorphism ~[" groups indueing 
an isomorphism on HI and an epimorphism on tt2 then the induced maps 
a/a ~ --+ ~ /~  are isomorphisms Jor all 1 < k < ~o. 

The above inclusion i induces an isomorphism on Hi because by Alexander 
duality the meridians m,/ freely generate HI(S3\L) as well as HI(S 3 • I \A) .  
By Lemma 3.1 all colored Milnor groups are nilpotent and thus it suffices to 
show that i, is an epimorphism in 142. Let us for convenience introduce finger 
moves (see [FQ, 1.5]) between A,j and A,#, to achieve 

nl(S 3 • I \A )  TM CMrtI(S 3 • I \A)  

(without changing the disjointness properties of  the A,j). Note that a finger 
move as above introduces precisely the relation [mill,m,~ ] = 1 into 7rj of  the 
complement [C] and by Corollary 3.2 finitely many finger moves give the 
desired isomorphism. Now H2(S 3 x I \A)  maps onto H2(CM~I(S 3 • I \A) )  and 
it is Alexander dual to H~(A,~3). This group is freely generated by (a) arcs 
a,/ C Aii connecting top and bottom of  the boundary of  each annulus A, I (and 
missing the double points) and (b) the double point loops, i.e. circles on A 
passing through precisely one double point (as in the case of  capped gropes). 
Obviously, the arcs a,/ are Alexander dual to boumlary tori T, 1 C S3\L which 
can be obtained as the boundary of  S3\N(L) where N(L) is a small open 
tubular neighborhood of  the link L in S 3. Moreover, if a neighborhood of the 
k th (transverse) intersection point Pt- is parametrized by IR 2 x JR 2 then S 1 • S 1 
is called the linkin# torus Th, of Pt.  It lies in the complement o f  A and links 
6(k, / )  with the double point loops for p/ (and does not link the arcs a,j). 
Therefore, the linking tori T~ are Alexander dual to the double point loops. 
We conclude that H2(S 3 • I \A )  is (freely) generated by the tori Tij and T~. By 
construction, the boundary tori Tij come from H2(S3\L) and thus it suffices to 
show that the linking tori Tk are in the image of  i,.  I f  p~ is an intersection 
point between Aii and A,i, then a symplectic basis on Tk is given by meridians 
mi/~1 and m)/, for some 9,h E ~1(S 3 x I \A).  But since i, is onto, there must be 

a relation [mJl,m~d ] in CMgI(S3\L) which maps homologically onto Tx.. Thus 
i, is indeed onto in //2 and by Stallings' theorem i, is thus an isomorphism. 
This concludes the proof of  Lemma 3.3. [] 

Remark. An elementary link homotopy as in Fig.3.l .  is the moving picture for 
"half"  a finger move. To get a full finger move one has to run the elementary 
link homotopy forward and then backward, allowing circles like 7 to slip off 
the link components in the middle of  the move. This explains the presence 
of  the Milnor relation in rcl of  the 4-dimensional complement after the finger 
move.  
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I_ 1_' 

lij ~ lij, I'1~ ~ ~  
~----~~,.~~ ~ ) .__ 

Fig. 3. I. 

Iij, 

Fig. 3.2. 

We are now ready to prove the main result of  this section. Let 
H := ~I~j(S I • D 3) be a 1-handlebody imbedded in the interior of  a 4- 
manifold M with boundary ~3M. Let 7 be a simple closed curve in ~H and A a 
r~l-null general position annulus in [ /  which connects 7 to a simple closed 
curve ~ in (?M. Let mi, i = 1 . . . . .  g be standard representatives for ~ I ( H )  lying 
in (?H\ 7. We use this notation to suggest the mi are the meridians to the unlink 
in a standard 1-handle diagram for H. Now suppose that the m, bound general 
position disks Ai C M \ H ,  i =- 1 . . . . .  9. Picking a base point in H and an 
(arbitrary) ordering of  the sheets at each intersection point between A i and Aj 
o r  A i and A, each double point is associated with a group element in ~ t (M) ,  
the double point loop. The situation is pictured in Fig. 3.2. 

Lemma  3.4. (Exponential contraction/Pushoff) In the above notation suppose 
that 5' lies' in n I (H)  k, the k-th term o f  the lower central series o [ n l ( H ) ,  and 
that the cardinality o f  the set o f  double point loops in ~IM is at most  k -  1. 
Then ~ bounds, a ~l-null disk in M. 

P r o o f  Formally add untwisted 2-handles hi to the mi Q ~H to produce a 
4-ball B = H U {hi} containing standard slices {co-core (hi)} for the unlink 
{Yi} where Ei C OH is parallel in S 3 to a meridian to mi.  Note that the 1- 
handlebody H also contains slices for {~i}. 
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k-1 parallel copies of li 

Fig. 3.3. 

Take k -  1 parallel copies of  each /i  to form a ( k -  1),q component unlink 
J in 3B 4. Erect cylinders on J Y I' using a standard product structure near 3B 4. 
This can be done so that (1) the inner boundaries of  the cylinders are lower 
than the slices {hi} and (2) only the cylinder C:. on 1' meets the slices {h,}. Let 
B I : =  B4\ collar and denote by j t  resp. 7' the inner boundaries of  the cylinders. 

Now suppose k - 1 colors are used to label the parallels o f  {/t} so that 
each subscript has a parallel of  each color. From ), E h i ( H )  ~ it follows that 
~," E nl((?B' \J ' )  k and therefore by Lemmas 3.1 and 3.3 that there is a colored 
null homotopy of  j t U  71 in B'. (This means that each component of  J ' O  ?,1 
bounds a map of  a disk into B' and that endowing 7 / with a k-th distinct color, 
intersection between disks are permitted if and only if their boundaries have 
the same color.) Let A v be the null homotopy of }, in B 4 obtained by gluing 
the cylinder Cz. to the disk map bounding 7' in B f. 

Recall that B 4 was only a formal construct, but there is an obvious quotient 
map B 4 ~+ H U {Ai}. The map 7~ is obtained by collapsing each co-core(h,) to 
one point and then introducing the double point structure of  {At} into the 
resulting {core(h, )}. 

The composition: 

A 7 -----~ B 4 ~ > H U  {At} Z ~ M  

may be perturbed near the inverse image of  {Ai} to obtain a disk A(. C M 
whose double point loops in h i ( M )  are identical to those of  {At U A} (since 
H is hi-null in M)  and thus compress to a set of  cardinality < k. By ex- 
amining the figure below, the reader may see that the k -  1 colored null 
homotopies for parallels of  the /) may be capped off (along the slices for 
{/i} in H )  to obtain (inside H )  k -  I hi-null dual spheres [FQ, 1.9] to each 
Ai. These k -  I spherical duals each have a different color, and satisfy the 
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11 y ml 11 

I I 

k-1 ~ i -  null 
~:~ dual spheres 

B4 . 

I ' B . . .  

Fig. 3.4. 

condition that no two spheres of  different color intersect. Moreover, the en- 
tire image of  the spheres of  any fixed color i is lrl-null since H is ~zl-null in 
M. 

Now use the formula (~,fi) ~ ~fl-I for the transition of  the group elements 
when a double point loop ~ and a double point loop fl are removed by sum 
with intersecting zq-null duals. We see that by assigning a distinct color to 
each group element in the set of  double point loops of  A~, U A, and this is 
possible since this set has cardinality =< k - 1, summing with copies of the 
spherical duals will produce a 7rl-null disk dl. ~ on 3,. Finally, we obtain a disk 
on ~ c ~'~M by taking A([ U;. A. This disk is 7q-null since A was tel-null to 
start with and we made the double point loops o f  AI[-A intersections trivial 
in /riM. [] 

The standard application o f  Lemma 3.4 works as follows: Take a capped 
grope o f  height h and thicken it to a 4-manifold (not necessarily the untwisted 
thickening!). The grope body thickens to a l-handlebody H with the base circle 
3' in r Define the manifold M to be H U,w ( ? H  • 1), i.e. add a little collar 
to H. The  annulus A is just 7 • 1 and the disks A i have their interiors disjoint 

from H.  Translating the height h to the nilpotency class 7 E 7rl(H) 2h gives the 

following 

Corollary 3,5. Let r : 7zl.q" ~ 7r he a group homomorphism with (gO,7) a 
capped grope q f  height h. I f  q~ maps the double point loops o f  .q~ to a set 
o f  cardinality at most  2 h - 1 in ~ then any 4-dimensional thickening o f  .q" 
contains a disk on 7 which is ~r-null ureter ~p. 

The reader should convince h im/herse l f  that Lemma 3.4 works without 
changes i f  one adds a group homomorphism 9 : ~riM -~ r~ to the assumption 
and statement. This concludes the proof o f  Theorem 0.1. [] 



4-Manifold topology 1: Subexponential groups 529 

References 

[C] A. Casson: Three lectures oll new infinite constructions in 4-dimensional manifolds. 
Notes prepared by L. Guillou. Prepublications Orsay 81 T 06 (1974) 

[D] S.K. Donaldson: An application of" Gauge theory to tile topology ot" 4-mani|`olds. 
J. Difl" Geom. 18, 279 315 (1983) 

[FI] M.H. Freedman: Tile topology of 4-dimensional manifolds. ,I. Diff. Geom. 17, 357 453 
(1982) 

IF2] M.H. Freedrnan: The disk theorem ['or rotor-dimensional manifolds. Proc. ICM Warsaw, 
647 663 (1983) 

[FQ] MH. Freedman, F. Quinn: The topology of 4-manifolds. Princeton Math. Series 39, 
Princeton, NJ (1990) 

[G] R.I. Grigorchuk: Degrees of" growth of finitely generated groups, and the theory of" 
mvariant means. Math. USSR Izvestiya 25, No. 2 259-~300 (1985) 

[L] X.S. Lin: On equivalence relations of links in 3-manilMds. Preprint (1985) 
[MI] J. Milnor: Link Groups. Ann. Math. 59, 177-195 (1954) 
[M2] J. Milnor: A note on curvature and fundamental group. J. Diff. Geom. 2, I 7 (1968) 
[Sto] R. Stong: Four-manifold topology and groups of polynomial growth. Pac. J. Math. 157, 

145 150 (1993) 
[St] J. Stallings: Homology and central series o['groups. J. Algebra 2, 1970 1981 (1965) 
[V] M. Vaughan-Lee: The restricted Burnside problem. London Math. Soc. Monographs 

New Series 8, Clarendon Press, 1993 


