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Abstract. We show that for each k ∈ N, a link L ⊂ S3 bounds a degree k Whitney tower
in the 4-ball if and only if it is Ck-concordant to the unlink. This means that L is obtained
from the unlink by a finite sequence of concordances and degree k clasper surgeries. In our
construction the trees associated to the Whitney towers coincide with the trees associated
to the claspers.

As a corollary to our previous obstruction theory for Whitney towers in the 4-ball, it
follows that the Ck-concordance filtration of links is classified in terms of Milnor invariants,
higher-order Sato-Levine and Arf invariants.

Using a new notion of k-repeating twisted Whitney towers, we also classify a natural
generalization of the notion of link homotopy, called twisted self Ck-concordance, in terms
of k-repeating Milnor invariants and k-repeating Arf invariants.

Introduction

Two links L,L′ ⊂ S3 are clasper concordant if L is related to L′ by a finite sequence of
concordances (in S3× [0, 1]) and clasper surgeries (in S3). For the latter we only allow simple
claspers associated to trivalent trees, see Section 3. Recall also that a link L ⊂ S3 bounds
a Whitney tower if the components of L bound generic disks in B4 together with iterated
stages of Whitney disks, pairing the arising intersections. The unpaired intersections in the
top layers of the Whitney tower are again organized by trivalent trees, see Section 2.

Theorem 1. A link L ⊂ S3 bounds a Whitney tower W with associated trees t(W) if and
only if L is clasper concordant to the unlink with t(C) = t(W), where t(C) denotes the trees
associated to the clasper surgeries C = (C1, . . . , Cr) that are part of the clasper concordance.

The “only if” direction of this theorem is new and was previously announced and (used!)
in [11, Thm. 3.1]. It will follow from the more precise Theorems 5.1 and 5.3.

The effect of Goussarov–Habiro clasper surgery [16], [18, Fig.34] on links corresponds to
“iterated Bing doubling along a tree” introduced by Tim Cochran [3] to realize Milnor invari-
ants. We have shown in [6, 7] that if L is the result of clasper surgery on the unlink along
a collection C of tree claspers, then L bounds a Whitney tower W into the 4–ball such that
the associated collections of trees t(W) and t(C) are identical (Figure 1), implying the “if”
direction of the Theorem above. The proof of the new “only if” direction involves decompos-
ing a given W into local Whitney towers around each tree in t(W) which are bounded by
iterated Bing doubles and can be expressed as clasper surgeries and concordances.

Two links are Ck-equivalent (cf. Habiro–Goussarov) if they are connected by a finite se-
quence of simple tree clasper surgeries of degree ≥ k, where the degree of a clasper is half the
number of vertices of the associated tree. It has been conjectured by Habiro and Goussarov
that finite type ≤ k invariants classify string links up to Ck-equivalence, as has been proved
for knots [17, 18].
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Figure 1. Left: A tree 3
1 >−−−< 2

1 = t(C) associated to a clasper C on the 3-
component unlink. Center: The link L resulting from surgery along C. Right:
A Whitney tower W bounded by L with t(W) = 3

1 >−−−< 2
1 can be constructed

from the track of a null-homotopy of L which changes two red-green crossings.

Two links are Ck-concordant if they are connected by a finite sequence of Ck-equivalences
and concordances. In other words, the links are clasper concordant in a way that each arising
clasper has degree ≥ k. This notion was introduced by Meilhan and Yasuhara in [21].

Similarly, a Whitney tower has degree k if all its associated trees are of degree ≥ k, see
Definition 2.5. The following result holds for all k ∈ N.

Corollary 2. A link is Ck-concordant to the unlink iff it bounds a Whitney tower of degree k.

It remains an open problem whether two links L and L′ are Ck-concordant provided they
cobound an Whitney tower concordance of degree k. Our argument requires the unlink on
one side of the Whitney concordance.

To connect more directly to our previous results, we will now switch to order for measuring
the complexity of a Whitney tower (section 2.5). The order of a tree is the number of
trivalent vertices, hence order is just one less than degree. For example, if a knot K ⊂ S3

bounds an immersed disk ∆ # B4 together with framed, immersed Whitney disks for all
self-intersections of ∆, these data constitute a Whitney tower of order 1, or degree 2, and
the associated trees would correspond to interior intersections between the Whitney disks
and ∆, with each tree having the shape of a Y. Such a Whitney tower exists if and only if
Arf(K) = 0.

In [7, Thm.1.1] we showed that a link L bounds an order n Whitney tower if and only if L
has all vanishing Milnor invariants, higher-order Sato–Levine invariants and higher-order Arf
invariants through order n. Here order is two less than length in traditional Milnor invariant
terminology (see section 6.4), and the new Sato–Levine invariants appear in all odd orders as
certain projections of Milnor invariants in the next higher even order [7, Sec.4.1]. A version
of the higher-order Arf invariants will be defined in Section 6.8.

Combining [7, Thm.1.1] with Corollary 2, we get the following algebraic characterization
of Ck-concordance to the unlink:

Corollary 3. For any k ∈ N and any link L ⊂ S3, the following statements are equivalent:

(i) L is Ck-concordant to the unlink.
(ii) L bounds a Whitney tower of order (k − 1) (aka degree k).
(iii) L has vanishing Milnor, Sato–Levine and Arf invariants in orders < k.
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In fact, the results of [7, 8] led to the discovery that the notion of order k twisted Whitney
towers provided a complexity that better expressed the geometry of Milnor invariants, and in
particular the higher-order Sato-Levine invariants are not needed. As detailed in Section 2,
twisted Whitney towers of order k are allowed to contain certain Whitney disks of order
≥ k/2 which are not framed, and in Section 3 we define analogous twisted claspers along
with a corresponding notion of twisted Ck-concordance. The leaves of a twisted clasper on a
link L are all zero-framed meridians to the components of L except for one leaf which bounds
an embedded disk in the complement of L which has non-zero framing. The special -trees
associated to twisted Whitney disks and twisted claspers are also covered by Theorem 1, as
explained in Section 5. Combining Theorem 1 with [7, Cor.1.16], we have:

Corollary 4. For any k ∈ N and any link L ⊂ S3, the following statements are equivalent:

(i) L is twisted Ck-concordant to the unlink.
(ii) L bounds a twisted Whitney tower of order (k − 1).
(iii) L has vanishing Milnor and Arf invariants in orders < k.

Twisted self Ck-concordance, k-repeating Milnor invariants. A self Ck-equivalence
is a Ck-equivalence which only allows surgery on claspers whose leaves are all meridians to the
same link component [30]. That is, each tree t associated to a clasper in a self Ck-equivalence
is mono-labeled, meaning that all univalent vertices of t have the same label (but two trees
associated to two different claspers in the same Ck-equivalence can each be mono-labeled by
a different label).

A self Ck-concordance is a finite sequence of self Ck-equivalences and concordances. Self
Ck-equivalence and self Ck-concordance both generalize Milnor’s notion of link homotopy.
A link homotopy is realized by a sequence of self-crossing changes which is exactly a self
C1-equivalence. Moreover, since concordance implies link homotopy we see that the notions
of self C1-equivalence, self C1-concordance and link homotopy all coincide.

Recall that for an m-component link L, the multi-indices I which parametrize the Milnor
concordance invariants µI(L) take their entries from the set {1, 2, . . . ,m} indexing the com-
ponents of L. For a multi-index I, denote by ri(I) the number of occurrences of the label
i in I, and denote by r(I) the maximum of ri(I) over the index set. Then µI(L) is a k-
repeating Milnor invariant if r(I) = k. The case k = 1 recovers the original “non-repeating”
link-homotopy µ-invariants, with each label occurring at most once in I.

The k-repeating µI are invariants of self Ck-equivalence by [12], and hence also of self
Ck-concordance. Milnor showed that a link is self C1-equivalent (link homotopic) to the
unlink if and only if all of its 1-repeating µ-invariants vanish [22], and Yasuhara showed that
a link is self C2-equivalent (also called self ∆-equivalent) to the unlink if and only if all of
its 1-repeating and 2-repeating µ-invariants vanish [31].

Understanding self Ck-equivalence in general is a difficult problem, due to the multitude of
finite type isotopy invariants which are not Milnor invariants, but it is natural to ask about
the role of k-repeating Milnor invariants in characterizing self Ck-concordance.

Self C2-concordance was studied in [28, 29] (where it was called ∆-cobordism), and the
classification of string links up to self C2-concordance was given by Yasuhara in [32]. In [21,
Thm.6.1] Meihlan and Yasuhara classified self C3-concordance of 2-component string links
in terms of the classical Arf invariants of the components, the k-repeating µ-invariants for
k ≤ 3, and the reductions modulo 2 of the 4-repeating µ-invariants.
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These mod 2 reductions of the 4-repeating µ-invariants are an example of the higher-order
Sato-Levine invariants from Corollary 3, and it can be shown that there exist 2j-repeating
µ-invariants which project to higher-order Sato-Levine invariants that obstruct self (2j− 1)-
concordance to the unlink for all j.

However, in the setting of twisted self Ck-concordance (twisted Ck-concordance restricted
to mono-labeled claspers, see section 3.3) the Sato-Levine invariants do not appear, and from
Theorem 1, together with a k-repeating analogue of Corollary 4 in the form of Corollary 6.20,
we have for any k ∈ N:

Theorem 5. For an m-component link L the following statements are equivalent:
(i) L is twisted self Ck-concordant to the unlink.
(ii) L bounds a k-repeating twisted Whitney tower of degree m · k.
(iii) For each r, 1 ≤ r ≤ k, L has vanishing r-repeating Milnor and Arf invariants.

Theorem 5 is proved in Section 6, where we introduce twisted k-repeating Whitney towers
and show that the associated order-raising obstruction theory corresponds to the k-repeating
Milnor invariants and k-repeating Arf invariants. Note that implicitly this order is bounded,
which is easiest expressed in terms of length: If each of the m indices repeats exactly k times
then the length of the last possibly non-trivial invariant is m · k, or equivalently of degree
m · k − 1. This is also the last invariant that vanishes for links which bound k-repeating
twisted Whitney towers of degree m · k.

Acknowledgments: This paper was partially written while the first two authors were
visiting the third author at the Max-Planck-Institut für Mathematik in Bonn. They all
thank MPIM for its stimulating research environment. The second author was supported by
a Simons Foundation Collaboration Grant for Mathematicians.
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1. Trees

This section fixes notation and terminology for the decorated trees that will be associated
to Whitney towers, claspers, Lie brackets and iterated commutators.

In this paper a tree is a finite trivalent tree, equipped with cyclic orientations at trivalent
vertices, and with each univalent vertex (usually) labeled by an element from the index set
{1, 2, 3, . . . ,m}. A rooted tree has a designated preferred univalent vertex called the root.
The root of a rooted tree is usually indicated by being the only univalent vertex which is not
labeled by an element of the index set. A twisted tree, or -tree, has one univalent vertex
labeled by the twist symbol “ ” and all other univalent vertices labeled from from the index
set (so a twisted tree is gotten by labeling the root of a rooted tree by ).

When the context is clear, the word “trees” may refer to all these types of trees.
The adjectives “un-rooted”, or “non- ”, may also be occasionally applied to trees for em-

phasis.
Un-rooted non- trees are sometimes referred to as framed trees.
(The terminology “twisted” and “framed” will be explained by the association of trees with

Whitney disks and their intersections – see the paragraph after Definition 2.6.)
The following definition applies to all three of the above types of trees: framed, twisted,

and rooted.

Definition 1.1. The order of a tree is defined to be the number of trivalent vertices.
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We adopt the convention that the trivalent orientations of trees illustrated in figures are
induced by a fixed orientation of the plane.

Definition 1.2. Let I and J be two rooted trees.
(i) The rooted product (I, J) is the rooted tree gotten by identifying the root vertices of

I and J to a single vertex v and sprouting a new rooted edge at v. This operation
corresponds to the formal (non-associative) bracket of elements from the index set
(Figure 2 upper right).

I1

I1

I ( I , J )
I2

( I1 , I2 )
I2

=

J1

J1

J
J2

( J1 , J2 )

J2

=
I1

I , J
I2 J1

J2

Figure 2. The rooted product (I, J) and inner product 〈I, J〉 of rooted trees
I = (I1, I2) and J = (J1, J2). Here I1, I2, J1, J2 each represent rooted trees
which are contained as subtrees of I and J .

(ii) The inner product 〈I, J〉 is the unrooted tree gotten by identifying the roots of I and
J to a single non-vertex point. (Figure 2 lower right.)

Other than drawing explicit pictures of trees, we have the following descriptive conven-
tions: Rooted trees are usually denoted by upper-case letters, and indexed by (identified
with) formal non-associative bracketings of elements from the index set as in item (i) of
Definition 1.2. Twisted trees are denoted by adding a -superscript to a bracketing for the
corresponding rooted tree, for instance J . Framed trees are usually denoted by lower case
letters, especially “t”, or by the inner product as in item (ii) of Definition 1.2.

2. Whitney towers

This section sketches some basic background material on (twisted) Whitney towers. Ad-
ditional Whitney tower material relevant to the proof of Theorem 5 will be sketched in
Section 6. See e.g. [7] for more details.

2.1. Whitney disks and their twistings. Let A and B be oriented connected immersed
surfaces in an oriented 4–manifold X, and suppose there exists a pair of oppositely signed
transverse intersection points p and q in A ∩B. Joining these points by any embedded pair
of arcs lying in the interiors of A and B and avoiding any other intersection points forms a
loop, and any generically immersed disk W in (the interior of) X bounded by such a loop is
called a Whitney disk.

The normal disk-bundle of a Whitney disk W in X is isomorphic to D2 ×D2, and comes
equipped with a nowhere-vanishing Whitney section over the boundary ∂W given by pushing
∂W tangentially along one surface and normally along the other, avoiding the tangential
direction of W .

The relative Euler number ω(W ) ∈ Z of the Whitney section represents the obstruction to
extending the Whitney section to a nowhere-vanishing section overW . Following traditional
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terminology, when ω(W ) vanishes W is said to be framed. The value of ω(W ) is called the
twisting of W , and when ω(W ) is non-zero we say that W is twisted.

2.2. Definition of Whitney towers.

Definition 2.1. Let A be an oriented properly immersed surface in an oriented 4–manifold.
A Whitney tower supported by A is defined by:

(i) A itself is a Whitney tower.
(ii) If W is a Whitney tower and W is a Whitney disk pairing intersections in W, then

the union W ∪W is a Whitney tower.

If W is a Whitney tower supported by A, then we also say that W is a Whitney tower
“on” A.

We say that a link L ⊂ S3 “bounds a Whitney tower W” if the components of L bound
properly immersed disks into B4 which support W . And a Whitney tower concordance
between two links is a Whitney tower on immersed annuli in S3 × [0, 1] cobounded by the
links in S3 × {0, 1}.

If a Whitney towerW on A contains no unpaired intersections, and if all the Whitney disks
in W are framed, then A is regularly homotopic to an embedding by performing Whitney
moves along the Whitney disks inW . So constructing a Whitney tower on A can be thought
of as an attempt to “approximate” a homotopy to an embedding. On the other hand, the
unpaired intersections and Whitney disk twistings in W can represent obstructions to the
existence of a homotopy of A to an embedding.

2.3. Trees in Whitney towers. The following definition describes the association of trees
to Whitney disks and unpaired intersections in a Whitney tower. As illustrated in Figure 3
these trees can be considered to be immersed in the Whitney tower, and we adopt the
convention that tree orientations correspond to Whitney disk orientations via this point of
view. However, specific orientation choices and conventions will usually be suppressed from
notation/discussion.

Definition 2.2. Let A = W1, . . . ,Wm # X be an oriented properly immersed surface sup-
porting a Whitney tower W in an oriented 4–manifold X, with Wi the connected components
of A.

(i) To each Wi is associated the order zero rooted tree consisting of an edge with one
vertex labeled by i. Recursively, the rooted tree (I, J) is associated to any Whitney
disk W(I,J) in W pairing intersections between WI and WJ (Figure 3, left).

(ii) To each transverse intersection p ∈ W(I,J) ∩WK between any W(I,J) and WK in W
is associated the un-rooted tree tp := 〈(I, J), K〉 (Figure 3, right).

The left side of Figure 3 shows (part of) the rooted tree (I, J) associated to a Whitney disk
W(I,J), with the rooted edge and adjacent trivalent vertex embedded in the interior ofW(I,J).
The rest of the edges of (I, J) are sheet-changing paths across Whitney disk boundaries
between the other trivalent vertices of (I, J) in the interiors of each Whitney disk that has
non-empty intersection with the trees I and J associated toWI andWJ . The right side of the
same figure shows (part of) the unrooted tree tp = 〈(I, J), K〉 associated to an intersection
p ∈ W(I,J) ∩WK . Note that p corresponds to where the roots of (I, J) and K are identified
to a (non-vertex) point in 〈(I, J), K〉. Also, I, J and K need not be distinct.
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K p
( I , J )W

W

W
I

J

W

W

W
I

J

Figure 3

From these associated trees come the gradings by order of the connected components and
Whitney disks, and their transverse intersections:

Definition 2.3. For all WI and WJ in W:
(i) The order of WI is defined to be the order of the rooted tree I.
(ii) The order of a transverse intersection p ∈ WI ∩WJ is defined to be the order of the

tree tp = 〈WI ,WJ〉.
If WJ ′ contains a vertex of the tree J associated to a Whitney disk WJ , then we say that

WJ ′ supports WJ .

2.4. Whitney tower intersection forests. The trees associated to unpaired intersections
and twisted Whitney disks, together with signs and twistings, capture the essential geometric
information contained in a Whitney tower:

Definition 2.4. The (oriented) intersection forest t(W) of a Whitney towerW is the disjoint
union of signed trees associated to all unpaired intersections p in W and integer-coefficient
-trees associated to all twisted Whitney disks WJ in W:

t(W) = q εp · tp +q ω(WJ) · J
with εp ∈ {+,−} the usual sign of the transverse intersection point p, and ω(WJ) ∈ Z the
twisting of WJ .

More precisely, t(W) is the multiset of signed oriented trees and integer-coefficient -trees
associated to the un-paired intersections and non-trivially twisted Whitney disks in W . For
cosmetic convenience, t(W) will often be written as a formal linear combination of trees,
e.g. the “+” sign in the equation defining t(W).

2.5. Whitney towers of order n. Intersection forests can be used to organize Whitney
towers by order as in the following definition, which will be used in Section 6. (This also
defines the degree of a Whitney tower as one more than the order.)

Definition 2.5.
(i) W is an order n (framed) Whitney tower if every framed tree in t(W) is of order ≥ n,

and every twisted tree in t(W) is of order ≥ n+ 1.
(ii) W is an order n twisted Whitney tower if every framed tree in t(W) is of order ≥ n,

and every twisted tree in t(W) is of order ≥ n
2
.
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So an order n framed Whitney tower is also an order n twisted Whitney tower, and the
difference between the weaker notion of order for twisted Whitney towers is that an order
n twisted Whitney tower is allowed to have twisted Whitney disks of order as low as n/2,
whereas an order n framed Whitney tower is required to have only framed Whitney disks
through order n. Motivation for allowing order n/2 twisted Whitney disks in an order n
twisted Whitney tower will appear in sections 6.5 and 6.6.

Using standard manipulations of Whitney towers (as in the proof of Lemma 6.3 of sec-
tion 6.3), any order n Whitney tower W can always be modified so that t(W) contains only
framed trees of order exactly n, and any order n twisted Whitney tower W can be modified
so that t(W) contains only framed trees of order exactly n and twisted trees of order exactly
n/2.

2.6. Split Whitney towers. The singularities of a Whitney tower are the transverse in-
tersections and self-intersections, as well as the arcs of intersections between the boundary
of each Whitney disk and the interiors of the lower-order surfaces containing the boundary
arcs.

A Whitney disk W in a Whitney tower W is clean if the interior of W contains no
singularities (i.e. is embedded and disjoint from the rest of W).

Definition 2.6. A Whitney tower W is split if both the following hold:
(i) The set of singularities in the interior of any Whitney disk in W consists of either

a single point, or a single boundary arc of a Whitney disk, or is empty.
(ii) All non-trivially twisted Whitney disks in W are clean and have twisting ±1.

So if p ∈ WI ∩WJ is an unpaired intersection in a split Whitney tower, then WI and WJ

are framed, explaining why the associated trees tp = 〈I, J〉 are called “framed” trees. Note
that any framed Whitney disks which are clean can be eliminated by Whitney moves (on
themselves), and this is usually tacitly assumed during manipulations of Whitney towers.
The following lemma is useful for proofs involving manipulations of Whitney towers, and
will be invoked frequently in subsequent sections:

Lemma 2.7. If A supports a Whitney tower W in a 4-manifold X, then A is homotopic
(rel ∂) by finger-moves to A′ supporting a split Whitney tower W ′ with t(W ′) = t(W). �

A proof of this result can be found in Lemma 2.18 of [7]; and in the case where all Whitney
disks are framed in [25, Lem.3.5] or [26, Lem.13].

3. Claspers

This section fixes terminology, notation and conventions on (twisted) claspers, and sum-
marizes the relevant relationship between clasper surgery and grope cobordism.

3.1. Clasper conventions. For details on Habiro’s clasper surgery techniques see [4, 5, 18].
We adopt the terminology of [4, 5], together with that of [11] for twisted claspers. Although
claspers are surfaces, unless otherwise specified we follow the customary identification of a
clasper with its 1-dimensional spine, which is a framed unitrivalent graph. All of our claspers
will be tree claspers, which means that collapsing each leaf to a point yields a unitrivalent
tree, sometimes referred to as “the underlying tree” of the clasper.

Definition 3.1. For claspers and links in S3 we have the following terminology:
9



(i) A clasper Γ is capped if the leaves of Γ bound disjointly embedded disks (the caps)
into S3 \ Γ. (So each leaf of a capped clasper is unknotted.)

(ii) A cap for a clasper on a link L is called a simple cap if it is 0-framed and intersects
L in a single point.

(iii) A simple clasper Γ is a capped tree clasper on a link such that each cap of Γ is
simple.

(iv) A twisted clasper Γ is a capped tree clasper on a link L such that all caps are simple
except for one ω-framed cap, for some ω 6= 0, whose interior is disjoint from L. If
Γ is a twisted tree clasper, this twisting ω ∈ Z of Γ will be denoted ω(Γ ).

(v) The tree t(Γ) associated to a simple clasper Γ is the underlying tree of Γ with each
univalent vertex labeled by the index of the link component that intersects the corre-
sponding cap of Γ.

(vi) The twisted tree t(Γ ) associated to a twisted clasper Γ is the underlying tree of Γ
with each univalent vertex corresponding to simple cap of Γ labeled by the index of
the link component that intersects the cap, and the univalent vertex corresponding to
the twisted cap labeled by the twist symbol .

3.2. Clasper intersection forests. Let Γ be a simple tree clasper on an oriented link L,
with a choice of orientation for Γ as a surface. This orientation induces a cyclic orientation
on the trivalent vertices of the tree t(Γ), and also defines a normal direction to the surface Γ.
Define the sign εΓ ∈ {+,−} of Γ to be the product of the signs of all the leaves of Γ, where
the sign of a leaf is ±1 according to whether or not the link component passes through the
leaf in the same or opposite direction as the normal direction to Γ. Then εΓ does not depend
on the choice of orientation on Γ (see [5, 18]).

Definition 3.2. The (oriented) intersection forest t(C) of a collection C = ΓiqΓj of simple
claspers Γi and twisted claspers Γj is the disjoint union of signed trees and integer-coefficient
-trees:

t(C) = q εΓi
· t(Γi) +q ω(Γj ) · t(Γj ).

More precisely, t(C) is the multiset of signed framed trees and integer-coefficient -trees
associated to the simple and twisted claspers in C (compare with Definition 2.4). For cosmetic
convenience, t(C) will often be written as a formal linear combination of trees, e.g. the “+”
sign in the equation defining t(C).

3.3. Twisted Ck-concordance and twisted self Ck-concordance. Links L and L′ are
twisted Ck-concordant if L and L′ are related by a sequence of concordances and/or clasper
surgeries along collections Ci of claspers such that t(Ci) contains only framed trees of degree
≥ k and/or twisted trees of degree ≥ k/2 for each i.

Links L and L′ are twisted self Ck-concordant if L and L′ are twisted Ck-concordant via
claspers whose intersection forests contain only mono-labeled trees. Here a mono-labeled
framed tree has all univalent vertices labeled by the same element of the index set, and a
mono-labeled twisted tree has all univalent vertices labeled by the same element of the index
set except for the univalent vertex which is labeled by the twist symbol .

3.4. Claspers and gropes. We refer the reader to e.g. [4, 6] for details on gropes and their
associated trees, as well as the notions of capped grope cobordism and grope concordance of
links. Briefly, a capped grope cobordism between links is a grope embedded in 3-space whose
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bottom stage is a collection of annuli each cobounded by the corresponding link components,
such that the tips of the grope bound embedded caps whose interiors each only intersect a
single component of the bottom stage annuli. And a grope concordance between links is a
grope embedded in S3× I cobounded by the links in each end of S3× I. By “pushing down”
intersections and “cap splitting”, the tips of a grope concordance can always be arranged
to bound caps whose interiors each only intersect a single component of the bottom stage
annuli, so both capped grope cobordisms and grope concordances have associated trees whose
labels come from the bottom stage components cobounded by the link components. One gets
twisted notions of capped grope cobordism and grope concordance by allowing each grope
branch to have at most one twisted clean cap.

The following special case of the main result of [4] adapted to links (as in [6, Thm.23])
will be used during the proof of Theorem 5.1:

Theorem 3.3. A link L is the result of clasper surgery along a collection C of claspers on
the unlink U if and only if L and U are capped grope cobordant by a capped grope G with
t(G) = t(C).

Here t(G) is the collection of signed trees associated to G, see [6, Sec.3.4].
Links L and L′ are clasper concordant if L and L′ are related by a sequence of clasper

surgeries and/or concordances. The following theorem follows from pushing the capped
grope cobordisms from Theorem 3.3 into 4-space as in [6, Sec.3.5]:

Theorem 3.4. If C1, C2, . . . , Cr are the collections of claspers in a clasper concordance from
L to L′, then there exists a grope concordance G from L to L′ such that t(G) = qri=1t(Ci).

Theorem 3.4 will be used in the proof of Theorem 5.3.

4. Iterated Bing-doubles

This section describes relationships among Bing-doubling, Whitney towers and clasper
surgery that will be used in Section 5.

The following generalization of the usual indexing for links and Whitney towers will be
useful for describing links and Whitney towers that temporarily appear during intermediate
steps in constructions.

4.1. Colored links and Whitney towers. A colored link is a link L together with a
“coloring” map from the components of L to the set {1, 2, . . . ,m} which is not necessarily a
bijection (cf. [14]). A coloring is indicated by subscripts, eg. Li denotes a component of L
in the preimage of i.

Similarly, a colored Whitney tower W is a Whitney tower on a properly immersed surface
A equipped with a map from the connected components of A to the set {1, 2, . . . ,m} which
is not necessarily a bijection.

4.2. Bing-doubling along trees. See [7, sec.3.2] for details on the following association
of trees to iterated Bing-doubles, which is based on Tim Cochran’s “Bing-doubling along a
tree” construction [3].

Let L be a colored iterated untwisted Bing-double of the ±-Hopf link. A signed framed tree
t(L) corresponds to such an L as follows: If L is just the ±-Hopf link Li∪Lj (Bing-doubling
zero times), then t(L) = ±〈i, j〉. Inductively, if L′ is gotten from L by Bing-doubling a
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component Lr of L, then t(L′) is gotten from t(L) by attaching a pair of new univalent
edges to the univalent vertex of t(L) that corresponds to Lr, and then labeling each of the
two new univalent vertices by the elements of {1, 2, . . . ,m} which color the corresponding
components of L′.

This correspondence between L and t(L) is described by saying “L is gotten by Bing-
doubling a Hopf link along t(L)”.

Now let L be a colored iterated untwisted Bing-double of a twisted Bing-double of the
unknot, i.e. L is constructed by starting with a ω-twisted Bing-double of the unknot Li∪Lj,
for some integer ω 6= 0, and then performing finitely many untwisted Bing-doublings of Li
and/or Lj. A signed twisted tree T (L) corresponds to such an L as follows: If L = Li ∪Lj
is the ω-twisted Bing-double of the unknot, then T (L) = ω · (i, j) . The inductive step is
the same as for framed trees: If L′ is gotten from L by Bing-doubling a component Lr of L,
then t(L′) is gotten from T (L) by attaching a pair of new univalent edges to the univalent
vertex of T (L) that corresponds to Lr, and then labeling each of the two new univalent by
the elements of {1, 2, . . . ,m} which color the corresponding components of L′.

This correspondence between L and T (L) is described by saying “L is gotten by Bing-
doubling a ω-twisted unknot along T (L)”.

4.3. Iterated Bing-doubles in Whitney towers. The two following lemmas show how
Whitney towers in 4–manifolds can be decomposed into local standard Whitney towers in
4–balls bounded by colored links which are iterated Bing-doubles of Hopf links or iterated
Bing-doubles of twisted Bing-doubles of the unlink. These lemmas will be used in the proof
of Theorem 5.1 in Section 5.

Lemma 4.1. Let W ⊂ X be a split Whitney tower in a 4–manifold X, and let εp · tp ∈ t(W)
be an order n tree corresponding to p = WI ∩WJ , with tp embedded in W. Then there exists
a regular 4–ball neighborhood N ⊂ X of tp such that:

(i) LN := ∂N ∩W is an (n+ 2)-component colored iterated Bing double of a Hopf link
along εp · tp, and

(ii) N ∩W is a colored split Whitney tower in N on embedded disks bounded by LN with
t(N ∩W) = εp · tp.

Proof. First consider the special case n = 0, with tp = i −− j a small sheet-changing arc
passing through p ∈ Wi ∩ Wj: For N a small 4–ball around p containing tp, N ∩ W =
Di(p) ∪ Dj(p) is the union of embedded disks Di(p) ⊂ Wi and Dj(p) ⊂ Wj intersecting
transversely in p, and LN := ∂N ∩W is a Hopf link Hp = ∂Di(p) ∪ ∂Dj(p) (Bing-doubled
zero times) colored by i and j. Here the sign εp of tp is the sign ofHp, via the usual orientation
conventions.

Now assume tp has positive order n > 0. Take the embedding of tp in W to have each i-
labeled univalent edge terminate at the order 0 surface Wi (rather than changing sheets into
Wi), so if a Whitney disk W(i,J) contains a trivalent vertex of t, then the adjacent i-labeled
univalent vertex of tp is in the boundary arc of W(i,J) that lies in Wi.

Take N to be a small regular 4–ball neighborhood of the union of the Whitney disks
containing the trivalent vertices of tp (and hence containing all of tp by the previous para-
graph’s choice of the embedding t ⊂ W). By taking N small enough it may be arranged
that N intersects the order 0 disks Wi in embedded disk-neighborhoods ∆r

i ⊂ Wi around
12



each boundary arc ∂W(i,J) ⊂ Wi, and around p if p ∈ Wi. The superscript r for ∆r
i ranges

over the number of univalent vertices labeled by i in tp.
The link LN = ∪i,r∂∆r

i = ∂N∩W has n+2 components, one component for each univalent
vertex of tp. To see that LN is an iterated Bing-double of a Hopf link along tp, we start with
the following general observation:
Observation: Let W be an embedded Whitney disk pairing oppositely-signed transverse

intersections p and q between surface sheets U and V in a 4–manifold X. The normal disk
bundle νW ∼= W ×D2 of W in X is diffeomorphic to a 4–ball B; and via the identification of
νW with a tubular neighborhood of W in X, it may be assumed that B ∩U is an embedded
disk-neighborhood ∆U ⊂ U of the boundary arc ∂UW ⊂ U , and B ∩ V is an embedded
disk-neighborhood ∆V ⊂ V of ∂VW ⊂ V . The disk ∆U decomposes as the union of disks
DU(p) and DU(q) around p and q, together with a band bU running along ∂UW . Similarly,
the disk ∆V decomposes as the union of disks DV (p) and DV (q) around p and q, together
with a band bV running along ∂VW .

The link LB = ∂∆U ∪ ∂∆V ⊂ ∂B is a band sum of two oppositely signed Hopf links
Hp = ∂DU(p) ∪ ∂DV (p) and Hq = ∂DU(q) ∪ ∂DV (q). It follows that LB is a (possibly
twisted) Bing-double of a knot; and this knot must be the unknot, since an unknotting disk
is exhibited by a parallel of the embedded W pushed into ∂B (using the product structure
B ∼= W ×D2). The twisting of the Bing-doubling of LB is equal to the twisting ofW relative
to U and V around ∂UW ∪ ∂VW , which is exactly ω(W ).

Returning to consideration of LN :
Since tp = 〈WI ,WJ〉 has positive order, at least one of WI and WJ is a Whitney disk,

say WI = W(U,V ) (recall that all Whitney disks containing trivalent vertices of t are framed
and embedded sinceW is split). Now applying the above Observation to a 4–ball thickening
B ⊂ N ofW(U,V ), we see in ∂B∩N an untwisted Bing-double LB = LBU∪LBV of the unknotted
boundary of W(U,V ), with LBU ⊂ WU and LBV ⊂ WV . If WU (resp. WV ) is order zero, then
we my assume LBU = ∂∆r

u (resp. LBV = ∂∆r
v) for some r. Otherwise, say WU = W(U1,U2) is

of positive order. Then B can be extended to a 4–ball B′ which also contains a thickening
of WU , with LBU = ∂WU , and the resulting link LB′

= B′ ∩ N is gotten from LB by Bing-
doubling the component LBU . This argument can be iterated until B is extended to N ,
exhibiting the link LN = ∪i,r∂∆r

i as an iterated Bing double of the Hopf link along the tree
tp = 〈WI ,WJ〉. �

Lemma 4.2. Let W ⊂ X be a split Whitney tower in a 4–manifold X, and let J ∈ t(W)
be a twisted order n tree corresponding to a clean twisted Whitney disk WJ , with ω(WJ) ∈ Z.
Then there exists a regular 4–ball neighborhood N ⊂ X of J such that:

(i) LN = ∂N ∩W is an (n+ 2)-component colored iterated untwisted Bing-double of the
twisted-Bing double of the unknot along the tree J with twisting ω(WJ), and

(ii) N ∩W is a colored split Whitney tower in N on embedded disks bounded by LN with
t(N ∩W) = ω(WJ) · J .

Proof. Starting with the Observation in the proof of Lemma 4.1, a regular 4–ball neighbor-
hood B of the embedded WJ = W(J1,J2) intersects WJ1 and WJ2 in an ω(WJ)-twisted Bing
double of the unknot. The rest of the proof of Lemma 4.1 applies essentially word for word
to complete the proof of this lemma. �
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4.4. Iterated Bing-doubles and clasper surgery. It is well-known that the effect of
tree clasper surgery on an unlink corresponds to iterated Bing doubling [18, Sec.7.1]. This
follows from the observation that a Y-clasper surgery ties three strands of a link into a local
Borromean Rings which is a Bing double of a Hopf link, see e.g. [18, Fig.34]. And surgery on
a twisted Y-clasper with one clean ω-twisted leaf ties the other two strands into an ω-twisted
Bing-double of the unknot, see e.g. [18, Move 10].

For future reference we state this as a lemma:

Lemma 4.3. If a link L is a band-sum of iterated Bing-doubles along a linear combination
z of trees (possibly including some twisted trees), then L is equal to clasper surgery along a
collection C of claspers on an unlink such that t(C) = z. �

5. Clasper concordance and Whitney towers

Theorem 1 in the introduction follows from Theorem 5.1 and Theorem 5.3 in this section.

5.1. From Whitney towers to clasper concordance. The following theorem implies the
“only if” direction of Theorem 1:

Theorem 5.1. If a link L bounds a Whitney tower W with intersection forest t(W), then
the unlink is clasper concordant to L via a concordance, followed by clasper surgeries on a
collection C of claspers with t(C) = t(W), followed by another concordance.

Remark 5.2. Theorem 5.1 plays a fundamental role in the proof of the main result of [11]
which describes Cochran’s β-invariants in terms of Whitney disk twistings.

s

L1

L2

P1

P2

N

B4

L1

L2

W1

W2

B4

W(1,2)

LN

L

Figure 4. Left: L = L1 ∪ L2 bounds W with t(W) = ± · tp = ±〈(1, 2), 2〉.
Right: The link LN = W ∩ ∂N , where N is a 4–ball neighborhood of tp
containing all singularities of W , and the planar surface cobordism P = P1 ∪
P2 ⊂ B4 \ int(N) ∼= S3 × [0, 1] from L to LN . (The s-arrow indicates the
interval factor of S3 × [0, 1].)

Proof. We first consider the cases where t(W) consists of a single framed or twisted tree.
The general case will follow easily from these cases.
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Case 1: Let L be an m-component link bounding a Whitney tower W which has just a
single unpaired intersection point p, which is of order n, and all Whitney disks in W are
framed. So the intersection forest t(W) consists of a single signed tree εp · tp of order n.

As per Lemma 2.7, we can assume that W is split, so the Whitney disks of W are each
embedded, and the singularities in the interior of each Whitney disk consist of either a single
boundary arc of a high-order Whitney disk or the unpaired intersection p.

By Lemma 4.1 there exists a regular 4–ball neighborhood N of the Whitney disks con-
taining tp ⊂ W such that the link LN = ∂N ∩W is an (n + 2)-component colored iterated
Bing-double of the Hopf link, bounding embedded disks which support the Whitney tower
N ∩W in N , with t(N ∩W) = tp (see schematic picture in Figure 4).

P1

s

L1L2

P2

N

B 4

∂

∂

0 0

C1
+C2

+

L

L

L

+

U

L2 L1
++

N k

Figure 5. The cobordism C+ ∪ P 0 ⊂ S3 × [0, 1] from L to LN q Uk.

Now B4 \ int(N) ∼= S3 × [0, 1], and W ∩ (B4 \ int(N)) is an m-component planar surface
P which is a cobordism from L ⊂ S3 × {0} to the iterated Bing-double LN ⊂ S3 × {1}. We
can assume all minima come before all maxima. Alter P by puncturing the local maxima
and stretching them upward to meet S3×{1} = ∂N . Then we have a cobordism from L to a
split union LNqUk, where Uk is a k-component unlink (with k the number of maxima of P ),
and this cobordism has no local maxima. We can factor this cobordism as a concordance C+

from L to somem-component link L+, followed by a cobordism P 0 from L+ to LNqUk which
only has saddles (Figure 5). Pushing the saddles of P 0 up into ∂N yields a concordance C0

from L+ to an m-component link L′ = #b(L
N qUk) ⊂ ∂N , which is an internal band sum of

LN qUk along some collection b of bands preserving components of P 0 (bottom two sections
of Figure 6).

Let Γ ⊂ ∂N be a capped tree clasper on an (n+2+k)-component unlink Un+2+k such that
Γ(Un+2) = LN and Γ(Un+2+k) = LN q Uk, with εΓ · t(Γ) = εp · tp. Such a Γ exists because
LN is the (n+ 2)-component iterated Bing-double of an εp-Hopf link along tp (Lemma 4.3).

15



C1

L1L2

C2

N

B 4

∂

∂

0 0

C1
+C2

+

Γ

C1
-C2

-

L2' 'L1

L1''L2''

L+

U1U2

Figure 6. The bottom section is the same as in Figure 5. The second from
bottom section shows the concordance C0 from L+ to L′ formed by pushing the
punctured maxima and saddles of P 0 (Figure 5) into ∂N . The third section
from bottom (purple) depicts clasper-surgery on Γ as (the bottom stage of)
a 3-dimensional grope cobordism between L′ and L′′ entirely contained in the
3-dimensional slice ∂N . The top section shows the ‘band-cutting’ concordance
C− from L′′ (an internal band sum of an (n+ 2 + k)-component unlink) to an
m-component unlink Um.

Since the bands b and Γ can be assumed to be disjoint, Γ is also a clasper on the link
L′′ = ]bU

n+2+k, with the same associated tree t(Γ) = ε · tp = t(W) as W , and the result of
clasper surgery by Γ on L′′ is equal to L′.

Now L′′ is concordant to an m-component unlink Um via a concordance C− with n+ 2 +
k −m minima and n+ 2 + k −m saddles which “cuts the bands" (Figure 6).

This completes the case where t(W) = tp.
Case 2: Now assume that W has no unpaired intersections, and just a single twisted

Whitney disk WJ with twisting ω(WJ) ∈ Z. This case only differs from Case 1 in that we
apply Lemma 4.2 instead of Lemma 4.1.
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General case: For t(W) consisting of multiple trees, by the above arguments there exist
disjoint 4–ball neighborhoods Nr of the trees in t(W) such that ∂Nr ∩W are iterated Bing-
doubles of Hopf links and/or of twisted Bing-doubles of the unknot. Connecting the Nr by
thickenings of arcs that miss W yields a single 4-ball N , and the constructions proceed as
before, except that Γ will now be a collection of disjoint claspers Γr. �

5.2. From clasper concordance to Whitney towers. The following theorem implies the
“if” direction of Theorem 1 from the introduction. It follows directly from [4, 5, 6], but we
state it here for completeness, and outline the proof:

Theorem 5.3. If a link L is (twisted) clasper concordant to the unlink, then L bounds
a (twisted) Whitney tower W with intersection forest t(W) = qi t(Ci), where Ci are the
collections of claspers in the clasper concordance.

Proof. The (twisted) capped grope concordance between L and the unlink from Theorem 3.4
can be surgered to a (twisted) Whitney tower by [25, Thm.6] and capped off. (The correspon-
dence between twisted caps and twisted Whitney disks is illustrated in e.g. [8, Fig.10].) �

6. Proof of Theorem 5

Theorem 5 states that for an m-component link L in the 3–sphere the following three
properties are equivalent for each positive integer k: L is twisted self Ck-concordant to the
unlink; L bounds a k-repeating twisted Whitney tower of ordermk−1; and, for all 1 ≤ r ≤ k,
L has vanishing r-repeating Milnor invariants and r-repeating higher-order Arf invariants.

The proof given in this section uses k-repeating versions of the classification of the order n
twisted Whitney tower filtration on links given in [7, 8, 9, 10]. Results from these papers will
be summarized as needed during the proofs, with details given for the new aspects that arise
in the k-repeating setting. Rather than recreating here the many arguments and construc-
tions from [7, 8, 9, 10], the necessary definitions will be given along with descriptions of how
to adapt proofs to the current k-repeating setting. Inevitably, a complete understanding of
Theorem 5 will depend heavily on having already understood [7, 8, 9, 10].

Here is an outline of this section:

• Sections 6.1 fixes notions of multiplicity, section 6.2 defines k-repeating (twisted)
Whitney towers and shows that a k-repeating twisted Whitney tower of ordermk−1
can be modified to have only mono-labeled trees. This latter result is used in section-
6.3 to show that bounding a k-repeating Whitney tower of order mk−1 is equivalent
to being self Ck-concordant to the unlink.
• Sections 6.4–6.8 describe the classification of the twisted Whitney tower filtration
on links by order in terms of Milnor invariants and higher-order Arf invariants, as
summarized in Corollary 6.12.
• In sections 6.9–6.16 this classification is adapted to the twisted k-repeating set-
ting, including definitions of the first non-vanishing k-repeating total Milnor invari-
ants, the k-repeating twisted Whitney tower obstruction theory, and the k-repeating
higher-order Arf invariants. The proof of Theorem 5 is completed by Corollary 6.20.

Throughout this section the parameter k denotes a positive integer.
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6.1. Multiplicities. Recall from Section 1 that our trees are finite, unitrivalent and vertex-
oriented. Univalent vertices come equipped with labels from the index set {1, 2, . . . ,m},
except that a rooted tree has one designated univalent vertex (the root) which is indicated
by not having a label, and a -tree has one univalent vertex which is labeled by the twist
symbol .

For a tree T (rooted or un-rooted) such that T is not a -tree, the i-multiplicity ri(T ) is
defined to be the number of univalent vertices labeled by the index i, and the multiplicity
r(T ) is the maximum of ri(T ) over the index set.

For a -tree T with underlying rooted tree T , the i-multiplicity and multiplicity are
defined by ri(T ) = ri(〈T, T 〉) = 2 · ri(T ) and r(T ) = r(〈T, T 〉) = 2 · r(T ), respectively.

Via the usual identification of rooted trees with non-associative bracketings, these notions
of i-multipicity and multiplicity apply as well to Lie brackets and iterated commutators of
generators in a free group.

Similarly, i-multiplicities and multiplicities are defined for intersection points p and Whit-
ney disks WJ in a Whitney tower as the multiplicities of the corresponding trees tp and J ,
or J if WJ is twisted.

6.2. k-repeating twistedWhitney towers of order n. The following definition of twisted
k-repeating Whitney towers of order n is a relaxation of the definition of twisted Whitney
towers of order n given in section 2.5:

Definition 6.1. A Whitney tower W is a k-repeating twisted Whitney tower of order n if
every framed tree in t(W) has order ≥ n or has multiplicity > k, and every -tree in t(W)
has order ≥ n

2
or has multiplicity > k.

So in a k-repeating twisted Whitney tower of order n any intersections of multiplicity > k
are not required to be paired by Whitney disks, even if they are of order < n, and any
Whitney disks of multiplicity > k are allowed to be twisted, even if they are of order < n

2
.

The following result will be used to prove Proposition 6.4 in the subsequent section showing
that a link bounds a k-repeating twisted Whitney tower of order mk − 1 if and only if it is
self Ck-concordant to the unlink:

Lemma 6.2. If A = W1, . . . ,Wm supports a k-repeating twisted Whitney tower W of order
mk − 1, then A is regularly homotopy rel boundary to A′ supporting a k-repeating twisted
Whitney tower W ′ of order mk − 1 such that all trees in t(W ′) are mono-labeled.

Note that since framed trees of order ≥ mk − 1 have ≥ mk + 1 univalent vertices, each
tree in t(W) has j-multiplicity ≥ k for some j. The idea of the proof of Lemma 6.2 is to
modify W in a way that collapses away the other i-labeled edges for i 6= j of each tree in
t(W) to yield the desired W ′.

To state this precisely in the following lemma we introduce the operation of “collapsing
an i-labeled edge” in a tree T of positive order, which means the following: Given an edge
e of T that has a univalent vertex labeled by i, retract e onto its trivalent vertex, which is
then considered to be an interior point of the single edge formed by fusing the two edges of
T that were adjacent to e. In the notation of Definition 1.2, for framed trees this collapsing
operation can be described as 〈(J1, J2), i〉 7→ 〈J1, J2〉; and for rooted trees or -trees a subtree
of the form (J, i) in the original tree goes to the subtree J in the collapsed tree.
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Lemma 6.3. Let A support a split Whitney tower W.
(i) Let tp be a tree of positive order corresponding to an unpaired intersection p ∈ W,

and let i be an index such that ri(tp) ≥ 1. Then W can be modified near tp ⊂ W
to yield W ′ on A′ regularly homotopic rel boundary to A such that t(W ′) contains
the same trees as t(W) except that εp · tp is replaced by a pair of oppositely signed
trees +tq and −tq, where tq is the result of collapsing an i-labeled edge of tp. So in
particular, ri(tq) = ri(tp)− 1.

(ii) Let J be a twisted tree corresponding to a twisted Whitney disk WJ ⊂ W, and let
i be an index such that ri(J) ≥ 1. Then W can be modified near J ⊂ W to yield
W ′ on A′ regularly homotopic rel boundary to A such that t(W ′) contains the same
trees as t(W) except that ω(WJ) · J is replaced by either
(a) the signed tree ω(WJ) · 〈I, I〉, where I is the result of collapsing an i-labeled edge

of J which is adjacent to the rooted edge of J ; or
(b) two copies of the signed -tree ω(WJ) · I plus the signed tree ω(WJ) · 〈I, I〉,

where I is the result of collapsing an i-labeled edge of J which is not adjacent
to the rooted edge of J .

So in particular, ri(I ) = ri(〈I, I〉) = ri(J )− 2.

Proof of Lemma 6.2. Apply Lemma 6.3 as needed: For each tree T ∈ t(W) there exists j
such that rj(T ) = r(T ) ≥ k + 1. So collapsing all i-labeled edges of T for i 6= j yields a tree
mono-labeled by j, still of multiplicity ≥ k + 1. �

We remark that Lemma 6.3 can be applied further until all trees are mono-labeled with
multiplicity exactly k + 1.

Proof of Lemma 6.3. Statement (i): Consider first the case that tp = 〈J, i〉 corresponds to
an unpaired intersection p = WJ ∩Wi between a Whitney disk WJ and an order zero surface
Wi, with ri(tp) ≥ 1. Then deleting the Whitney disk WJ from W eliminates p and creates
two unpaired intersections ±q which used to be paired by WJ . The associated signed trees
are ±tq = ±〈J1, J2〉, where J = (J1, J2).

Now recall from section 2.3 that the tree tp = 〈J1, J2〉 associated to any unpaired inter-
section p ∈ WJ1 ∩WJ2 can be embedded tp ⊂ W with p as an interior point of an edge of
tp. The reason that the extra data of this “preferred” edge containing p is not taken into
account in the intersection forest t(W) is that local modifications can “move” the unpaired
intersection onto any chosen edge of tp, as described in [26, Lem.14] (see Figures 10 and 11
of [26] and note that [26] uses the dot product notation J1 ·J2 for our inner product 〈J1, J2〉).
So for any tp ⊂ W with ri(tp) ≥ 1, the previous paragraph can be used to replace tp by ±tq
after applying [26, Lem.14] to arrange for an i-labeled edge of tp to contain the unpaired
intersection.
Statement (iia): Let ±(I, i) ∈ t(W) be associated to a ±1-twisted Whitney diskW(I,i).

Performing a boundary-twist of W(I,i) into WI converts W(I,i) into a framed Whitney disk
that has a single unpaired intersection with WI (see [7, Fig.18] or [13, Chap.1.3]). This
exchanges ±(I, i) for ±〈(I, i), I〉 in t(W), which can then be exchanged for ±〈I, I〉 by the
above proof of Statement (i). (Alternatively, one could just do the W(I,i)-Whitney move
on WI using the original twisted W(I,i). This Whitney move (which is a regular homotopy)
would create a single self-intersection of WI (from the unit twisting) with associated tree
±〈I, I〉.)
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Statement (iib): Let ±J ∈ t(W) be associated to a ±1-twisted Whitney disk WJ

such that J has an i-labeled vertex which is not adjacent to its rooted edge. This means
that J contains a subtree of the form ((I1, i), I2) which corresponds to a Whitney disk
W((I1,i),I2) supporting WJ , or possibly W((I1,i),I2) = WJ . Do the W(I1,i)-Whitney move on WI1

as illustrated in Figure 7. This eliminates the pair of intersections between Wi and WI1 that
were paired by W(I1,i), and creates two new pairs of intersections {p+, p−} and {q+, q−} in
WI1 ∩WI2 . The W(I1,i)-Whitney move on WI1 also eliminates W(I1,i) and all Whitney disks
supported byW(I1,i), includingWJ . We will describe how to locally recover the desired trees:

The new intersection pairs {p+, p−} and {q+, q−} admit Whitney disksW p
(I1,I2) andW

q
(I1,I2),

respectively, which are parallel copies of the Whitney disk W((I1,i),I2) (Figure 7). Consider
first the case that W((I1,i),I2) = WJ . In this case each of the parallel copies W p

(I1,I2) and
W q

(I1,I2) are also ±1-twisted, and there is a single intersection r ∈ W p
(I1,I2) ∩ W

q
(I1,I2) with

associated tree tr = ±〈(I1, I2), (I1, I2)〉. So the effect on t(W) is that±J has been exchanged
for +I − I ± 〈I, I〉, where I = (I1, I2) is the result of collapsing an i-labeled edge of
J = ((I1, i), I2).

Now considering the case that W((I1,i),I2) supports WJ , the Whitney disks W p
(I1,I2) and

W q
(I1,I2) are framed and disjoint since they are parallels of W((I1,i),I2). Each of W p

(I1,I2) and
W q

(I1,I2) will inherit the intersections W((I1,i),I2) had with some WI3 , and by taking parallels of
the Whitney disks that were supported byW((I1,i),I2) all the way up toWJ we see thatW p

(I1,I2)

and W q
(I1,I2) each support Whitney disks leading up to parallels W p

I and W q
I of WJ whose

trees I are the result of collapsing an i-labeled vertex of J . Since W p
I and W q

I are parallel
copies ofWJ , they are each ±1-twisted and have a single unpaired intersection r = W p

I ∩W
q
I .

So the effect on t(W) is that ±J has been exchanged for +I − I ± 〈I, I〉, where I is the
result of collapsing an i-labeled edge of J . �

6.3. k-repeating twisted Whitney towers and twisted self Ck-concordance. The
following result covers the equivalence of the first two statements in Theorem 5:

Proposition 6.4. An m-component link L ⊂ S3 bounds a k-repeating twisted Whitney tower
of order mk − 1 if and only if L is twisted self Ck-concordant to the unlink.

Proof. The “if” direction follows directly from Theorem 5.3: A twisted self Ck-concordance
gives a twisted Whitney tower W bounded by L which is a k-repeating Whitney tower of
order n for all n, since t(W) consists of only mono-labeled trees of multiplicity k + 1.

For the “only if” direction, given a k-repeating twisted Whitney tower W of order mk− 1
bounded by L, Lemma 6.2 yields a k-repeating twisted Whitney tower W ′ of order mk − 1
bounded by L such that t(W ′) contains only mono-labeled trees of multiplicity ≥ k+1. Now
Theorem 5.1 implies that L is self Ck-concordant to the unlink. �

Showing the equivalence the second and third statements in Theorem 5 will occupy the
rest of this section.

6.4. Quick review of first non-vanishing Milnor invariants. Let L ⊂ S3 be an m-
component link with fundamental group G = π1(S3 \ L). If the longitudes of L lie in the
(n + 1)-th term of the lower central series Gn+1, then a choice of meridians induces an
isomorphism Gn+1

Gn+2

∼= Fn+1

Fn+2
where F = F (m) is the free group on {x1, x2, . . . , xm}.
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I1

(I1,i)

I2
(I1,i),I2( )

p

pq

q

i

I1

I2

Figure 7. Left: A 4-ball neighborhood of the Whitney disk W(I1,i) pairing
WI1 t Wi, with W(I1,i) t WI2 paired by W((I1,i),I2). Right: Doing the W(I1,i)

Whitney move onWi creates {p+, p−} and {q+, q−} inWI1∩WI2 . The Whitney
disk W p

(I1,I2) pairing p
± is a trimmed parallel copy of W((I1,i),I2), with ∂W p

(I1,I2)

shown in red. The Whitney disk W q
(I1,I2) pairing q± is formed from a parallel

copy of W((I1,i),I2), and ∂W q
(I1,I2) is indicated in blue. The dashed blue subarc

indicates that part of W q
(I1,I2) lies in a nearby ‘past or future’ coordinate via

the convention of considering 4-space as 3-space crossed with a time interval.
In the case thatW((I1,i),I2) equals the twisted Whitney diskWJ , then the figure
is slightly inaccurate in that the pictured W((I1,i),I2) is framed.

Let L = L(m) denote the free Lie algebra (over Z) on generators {X1, X2, . . . , Xm}. It
is N-graded, L = ⊕nLn, where the degree n part Ln is the additive abelian group of length
n brackets, modulo Jacobi identities and self-annihilation relations [X,X] = 0. The mul-
tiplicative abelian group Fn+1

Fn+2
of length n + 1 commutators is isomorphic to Ln+1, with xi

mapping to Xi and commutators mapping to Lie brackets.
In this setting, denote by li the image of the i-th longitude in Ln+1 under the above

isomorphisms and define the order n Milnor invariant µn(L) by

µn(L) :=
m∑
i=1

Xi ⊗ li ∈ L1 ⊗ Ln+1

This definition of µn(L) is the first non-vanishing “total” Milnor invariant of order n, and
corresponds to all Milnor invariants of length n + 2 in the original formulation of [22, 23].
The original µ̄-invariants are computed from the longitudes via the Magnus expansion as
integers modulo indeterminacies coming from invariants of shorter length. Since we will only
be concerned with first non-vanishing µ-invariants, we do not use the “bar” notation µ̄.

It turns out that µn(L) lies in the kernel Dn of the bracket map L1 ⊗ Ln+1 → Ln+2 (by
“cyclic symmetry” [15]).
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6.5. Intersection invariants for twisted Whitney towers. The intersection forest t(W)
(Definition 2.4) of an order n twisted Whitney towerW determines an intersection invariant
τn (W) which represents the obstruction to the existence of an order n+ 1 twisted Whitney
tower on the same order 0 surfaces and takes values in a finitely generated abelian group Tn
as we briefly describe next. For details see [7, 26].

Denote by T = T (m) the quotient of the free abelian group on framed trees (as in section 1)
by the following local antisymmetry (AS) and Jacobi (IHX) relations:

Since the AS and IHX relations are homogeneous with respect to order, T inherits a
grading T = ⊕nTn, where Tn = Tn(m) is the free abelian group on order n trees, modulo AS
and IHX relations.

As a consequence of the AS relations the signs of the framed trees in t(W) only depend
on the orientation of the order zero surfaces after mapping to Tn [8, Sec.2.5].

For a twisted Whitney tower W of order n, the twisted intersection invariant τn (W) is
defined by taking the sum of all order n framed trees and order n

2
-trees in the intersection

forest t(W) in a finitely generated abelian group Tn which is defined as follows:

Definition 6.5 ([7]). In odd orders, the group T2j−1 is the quotient of T2j−1 by the boundary-
twist relations:

i −−< J
J = 0

where J ranges over all order j − 1 subtrees. These relations correspond to the fact that
via the boundary-twisting operation [7, Fig.18] any order 2j − 1 tree i −−< J

J ∈ t(W) can be
replaced by the -tree i −−< J of order j at the cost of only creating trees of order ≥ 2j in
t(W).

In even orders, the group T2j is the quotient of the free abelian group on trees of order 2j
and -trees of order j by the following relations:

(i) AS and IHX relations on order 2j trees
(ii) symmetry relations: (−J) = J
(iii) twisted IHX relations: I = H +X − 〈H,X〉
(iv) interior-twist relations: 2 · J = 〈J, J〉

The AS and IHX relations are as pictured above, but they only apply to framed trees (not
to -trees). The symmetry relation corresponds to the fact that the relative Euler number
of a Whitney disk is independent of its orientation, with the minus sign denoting that the
cyclic edge-orderings at the trivalent vertices of −J differ from those of J at an odd number
of vertices.

As explained in [7], the twisted IHX relation corresponds to the effect of performing a
Whitney move in the presence of a twisted Whitney disk, and the interior-twist relation
corresponds to the fact that creating a ±1 self-intersection in a Whitney disk changes its
twisting by ∓2. The IHX relations on framed trees can also be realized geometrically, and
we have the following obstruction theory for order n twisted Whitney towers:

Theorem 6.6 (Thm.1.9 of [7]). A link L bounds an order n twisted Whitney tower W with
τn (W) = 0 ∈ Tn if and only if L bounds an order n+ 1 twisted Whitney tower. �

22



An outline of the proof of this theorem will be given during the proof-sketch of its k-
repeating analogue Theorem 6.17 in section 6.13.

6.6. The summation maps ηn. The connection between τn (W) and µn(L) is via a homo-
morphism ηn : Tn → Dn, which is most easily described by regarding rooted trees of order
n as elements of Ln+1 in the usual way: For v a univalent vertex of an order n framed tree
t, denote by Bv(t) ∈ Ln+1 the Lie bracket of generators X1, X2, . . . , Xm determined by the
formal bracketing of indices which is gotten by considering v to be a root of t.

Definition 6.7. Denoting the label of a univalent vertex v by `(v) ∈ {1, 2, . . . ,m}, the map
ηn : Tn → L1 ⊗ Ln+1 is defined on generators by

ηn(t) :=
∑
v∈t

X`(v) ⊗Bv(t) and ηn(J ) :=
1

2
ηn(〈J, J〉)

The first sum is over all univalent vertices v of t, and the second expression lies in L1⊗Ln+1

because the coefficients of ηn(〈J, J〉) are even. Here J is a rooted tree of order j for n = 2j.

The image of ηn is contained in the bracket kernel Dn < L1 ⊗ Ln+1 (see e.g. [8, Lem.32] ).

Theorem 6.8 ([7]). If L bounds a twisted Whitney tower W of order n, then the order q
Milnor invariants µq(L) vanish for q < n, and

µn(L) = ηn ◦ τn (W) ∈ Dn

6.7. Classification of the twistedWhitney tower filtration. Following [7], the set ofm-
component framed links in S3 which bound order n twisted Whitney towers in B4 is denoted
by Wn ; and the quotient of Wn by the equivalence relation of order n+1 twisted Whitney tower
concordance is denoted by Wn . Here a twisted Whitney tower concordance between two links
is a twisted Whitney tower on a singular concordance of immersed annuli in S3× I between
the links. As a consequence of the twisted Whitney tower obstruction theory (Theorem 6.6),
the component-wise band-sum operation makes Wn a finitely generated abelian group. (See
[7] for details.)

The quotient Wn is the associated graded of the filtration Wn in the sense that L ∈ Wn+1

if and only if L ∈ Wn and [L] = 0 ∈ Wn , with 0 corresponding to the unlink.
Using Cochran’s Bing-doubling techniques (as in section 4.2), we constructed in [7, sec.3.2]

twisted realization epimorphisms
Rn : Tn � Wn

which send g ∈ Tn to the equivalence class of links bounding an order n twisted Whitney
tower W with τn (W) = g.

From Theorem 6.8 there is a commutative triangle diagram of epimorphisms:

(5) Tn
Rn
// //

ηn !! !!

Wn

µn
����

Dn

The following partial classification of Wn is a consequence of our proof [9] of a combina-
torial conjecture of J. Levine [20]:
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Theorem 6.9 ([7]). The maps ηn : Tn → Dn are isomorphisms for n ≡ 0, 1, 3 mod 4. As
a consequence, both the Milnor invariants µn : Wn → Dn and the twisted realization maps
Rn : Tn → Wn are isomorphisms for these orders.

Since Dn is a free abelian group of known rank for all n [24], this gives a complete com-
putation of Wn in three quarters of the cases.

The following result computes the kernel of ηn for all n ≡ 2 mod 4:

Proposition 6.10 ([7]). The map sending 1 ⊗ J to −−−< J
J ∈ T4j−2 for rooted trees J of

order j − 1 defines an isomorphism Z2 ⊗ Lj ∼= Ker(η4j−2 : T4j−2 → D4j−2).

It follows from the above commutative triangle diagram (5) that Z2⊗ Lj is also an upper
bound on the kernels of the epimorphisms R4j−2 and µ4j−2, and the calculation of W4j−2 is
completed by higher-order Arf invariants defined on the kernel of µ4j−2, as we describe next.

6.8. Higher-order Arf invariants. Let K4j−2 denote the kernel of µ4j−2 : W4j−2 � D4j−2.
It follows from the triangle diagram (5) and Proposition 6.10 above that mapping 1⊗ J to
R4j−2( −−< J

J ) induces a surjection αj : Z2 ⊗ Lj � K4j−2, for all j ≥ 1. Denote by αj the
induced isomorphism on (Z2 ⊗ Lj)/Kerαj .

Definition 6.11. The higher-order Arf invariants are defined by

Arfj := (αj )−1 : K4j−2 → (Z2 ⊗ Lj)/Kerαj

So from the triangle diagram (5), Theorem 6.9, Proposition 6.10 and Definition 6.11 we
see that the groups Wn are computed by the Milnor and higher-order Arf invariants:

Corollary 6.12 ([7]). The groups Wn are classified by Milnor invariants µn and, in addition,
higher-order Arf invariants Arfj for n = 4j − 2.

In particular, a link bounds an order n+ 1 twisted Whitney tower if and only if its Milnor
invariants and higher-order Arf invariants vanish up to order n.

For the case j = 1, the classical Arf invariants of the link components correspond to Arf1

[8], but it remains an open problem whether Arfj is non-trivial for any j > 1. The links
R4j−2( −−< J

J ) realizing the image of Arfj can all be constructed as internal band sums
of iterated Bing doubles of knots having non-trivial classical Arf invariant [8]. Such links
(which are all boundary links) are known not to be slice by work of J.C. Cha [1], providing
evidence in support of the following Conjecture:

Conjecture 6.13 ([7]). Arfj : K4j−2 → Z2 ⊗ Lj are isomorphisms for all j.

Conjecture 6.13 would imply that W4j−2
∼= T4j−2

∼= (Z2 ⊗ Lj) ⊕ D4j−2 where the second
isomorphism (is non-canonical and) already follows from Proposition 6.10.

6.9. The k-repeating (labeled) free Lie algebra. Recall from section 6.4 that L = ⊕nLn
denotes the free Z-Lie algebra on {X1, X2, . . . , Xm}, which we identify with the additive
abelian group on rooted trees modulo IHX and self-annihilation relations, with the subgroup
Ln of degree n brackets corresponding to the subgroup of order n− 1 rooted trees. Here the
IHX relation corresponds to the Jacobi identity, and the self-annihilation relations set a tree
equal to zero if it contains a sub-tree of the form (J, J).
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Define the k-repeating free Lie algebra Lk = ⊕nLkn on the Xi to be the quotient of L by the
relations which set equal to zero all rooted trees of multiplicity > k. So Lkn is the subgroup
of Ln spanned by order n− 1 rooted trees (degree n brackets) of multiplicity ≤ k.

Elaborating on the identification of L with rooted trees modulo IHX and self-annihilation,
we now identify L1 ⊗ Ln+1 with the abelian group on order n rooted trees with roots labeled
by an index from {1, 2, . . . ,m}, modulo IHX and self-annihilation relations. We refer to a
rooted tree whose root vertex is labeled by an index from {1, 2, . . . ,m} as a root-labeled tree.
Define (L1 ⊗ Ln+1)k to be the quotient of L1 ⊗ Ln+1 by the relations which set equal to zero
all root-labeled trees of multiplicity > k.

6.10. k-repeating quotients. For a fixed set of generators of a group G, define the k-
repeating quotient Gk to be the quotient of G by the subgroup generated by arbitrary length
iterated commutators of the generators with multiplicity > k, which by basic properties of
commutators is a normal subgroup of G.

Note that for F the free group on {x1, x2, . . . , xm} the (multiplicative) lower central quo-
tient F k

n+1/F
k
n+2 of the k-repeating quotient F k is isomorphic to the (additive) subgroup

Lkn+1 < Ln+1.

6.11. k-repeating Milnor invariants. In this section we define the first non-vanishing
total k-repeating order nMilnor invariant µkn(L), which, roughly speaking, differs from µn(L)
as in section 6.4 in that µkn(L) ignores all iterated commutators of multiplicity > k.

For a link L = ∪mi=1Li ⊂ S3 with G := π1(S3 \ L) we have the following presentation for
the (n+ 2)th lower central quotient G/Gn+2:

G/Gn+2
∼= 〈x1, x2, . . . , xm | [xi, wi], Fn+2 〉

where xi is represented by a meridian to Li, with wi a word in the generators representing
a 0-parallel longitude of Li.
Assumption: We assume that each wi is contained in the subgroup of G/Gn+2 generated

by length (n+ 1) commutators and arbitrary length commutators c such that r([xi, c]) > k.
Under this assumption (G/Gn+2)k is isomorphic to the free k-repeating nilpotent quotient

(F/Fn+2)k ∼= F k/F k
n+2. Via this isomorphism we now consider wi ∈ F k/F k

n+2, and denote by
lki ∈ Lkn+1 < Ln+1 the image of wi in F k

n+1/F
k
n+2
∼= Lkn+1 < Ln+1. The total k-repeating order

n Milnor invariant µkn(L) is then defined by

µkn(L) :=
m∑
i=1

Xi ⊗ lki ∈ (L1 ⊗ Ln+1)k

Note that the vanishing of µkq(L) for all q < n implies the above Assumption. This total
k-repeating order n Milnor invariant µkn(L) determines all Milnor invariants µI(L) of length
n+ 2 where the multi-index I has multiplicity ≤ k.

The image of µkn(L) is contained in the kernel Dk
n < Dn of the (restricted) bracket map

(L1 ⊗ Ln+1)k → Lkn+2.
In the case k = 1, which corresponds to Milnor’s original “non-repeating” link homotopy

µ-invariants, the longitudinal elements l1i < L1,i
n+1 are length n+1 commutators in the Milnor

group of the sublink of L gotten by deleting the ith component [22].
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6.12. k-repeating nilpotent quotients and twisted Whitney towers.

Lemma 6.14. Let L = ∪mi=1 ⊂ S3 be a link bounding a k-repeating order n twisted Whitney
towerW ⊂ B4, with G = π1(S3\L) and G = π1(B4\W). Then the following three statements
hold:

(i) The integral first homology H1(B4 \ W) is isomorphic to ⊕mi=1Z, with generators
x1, x2, . . . , xm, where each xi is represented by a meridian to the order 0 disk Wi

with ∂Wi = Li.
(ii) The nilpotent quotient G/Gn+2 has the presentation:

G/Gn+2
∼= 〈x1, x2, . . . , xm | c1, c2, . . . , cM , Fn+2 〉

where the xi are as in statement (i), and each word cj is an iterated commutator in
the xi of multiplicity r(cj) > k.

(iii) The inclusion S3 \ L ↪→ B4 \ W induces isomorphisms on the k-repeating nilpotent
quotients:

Gk/Gk
n+2
∼= Gk/Gkn+2

∼= F k/F k
n+2

Proof. Statement (i): Since H1(B4) = 0, any 1-cycle in H1(B4 \ W) can be represented
by a union of circles, each of which is a meridian to a Whitney disk or an order zero disk
in W . Each meridian to a Whitney disk is null-homologous since it bounds a punctured
Clifford torus displaying it as a commutator in π1(B4 \ W) of meridians to the two lower
order surfaces paired by the Whitney disk, see [2, Lem.3.6] or [8, Fig.14]. So H1(B4 \W) is
generated by {x1, x2, . . . , xm}, where each xi a meridian to the order zero surface Wi.

Any relation in H1(B4 \W) is represented by a surface S with ∂S a union of meridians to
the Wi. But since any closed surface in B4 has zero algebraic intersection with each Wi, the
relation represented by S restricts for each i to a trivial relation in xi, soH1(B4\W) ∼= ⊕mi=1Z.

Statement (ii): It suffices (e.g. [19, Lem.13]) to show that the commutators cj are 2-cell
attaching maps for surfaces representing a generating set forH2(B4\W) which are Alexander
dual to a generating set for H1(W).

The generators of H2(B4 \ W) are tori which are Alexander duals to the sheet-changing
loops in W which generate H1(W) (see [27, Prop.25]), and these tori are either Clifford tori
around un-paired intersections, or normal circle-bundles over circles around boundary-arcs
of Whitney disks (these circles are called “ovals” in [27, Prop.25]). The attaching maps for
these generators are iterated commutators in the xi which are determined by t(W) as follows.
Let e be an edge of a framed tree tp ∈ t(W), and let Σ be a torus dual to a sheet-changing
loop through a transverse intersection point in W corresponding to e. (If p ∈ e then Σ is
Clifford torus around p, and if p /∈ e then Σ is a normal circle-bundle over an oval around
the boundary of a Whitney disk where e changes sheets.) By Whitney tower-grope duality
[27, Prop.25] (see also [2, Lem.3.11] and [8, Lem.33]), the attaching map of the 2-cell of Σ
is the iterated commutator in the xi corresponding to the rooted tree gotten by attaching
a new rooted edge to e and creating a new trivalent vertex in what used to be an interior
point of e. If tp has order n, then this commutator will be length n + 2 so the attaching
map will be trivial in G/Gn+2. If tp has order < n, then tp and the resulting attaching map
commutator must have multiplicity > k. The same applied to the tree 〈J, J〉 describes the
attaching maps for tori corresponding to edges in a -tree in J ∈ t(W) (see proof of [2,
Lem.3.11(2)]).
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Statement (iii): By the previous statement, the inclusion S3 \ L ↪→ B4 \ W induces
an isomorphism on first homology, and the kernel of the induced surjection G/Gn+2 �
G/Gn+2 is contained in the inverse image of the iterated commutator relations cj in the
presentation of Item (ii). Since the map on first homology sends the ith meridian to the
ith meridian, the inverse image of each cj has multiplicity > k. It follows that the induced
map on k-repeating quotients is an isomorphism Gk/Gk

n+2
∼= (G/Gn+2)k ∼= (G/Gn+2)k ∼=

Gk/Gkn+2. The isomorphism Gk/Gkn+2
∼= F k/F k

n+2 follows directly from the presentation of
Statement (ii). �

6.13. k-repeating intersection invariants for twisted Whitney towers. Recall the
definition of Tn from Definition 6.5 of section 6.5, as well as the definitions of multiplicities
for framed trees and -trees given in section 6.1.

Definition 6.15. For each n, the group T kn is defined to be the subgroup of Tn spanned by
order n trees of multiplicity ≤ k and order n/2 -trees of multiplicity ≤ k.

Since the relations in Tn are homogeneous with respect to tree multiplicities, T kn is a
direct summand of Tn .

Definition 6.16. The k-repeating order n intersection intersection invariant τ kn (W) of a
k-repeating order n twisted Whitney tower W is defined to be

τ kn (W) :=
∑

εp · tp +
∑

ω(WJ) · J ∈ T kn
where the first sum is over all order n intersections p such that r(tp) ≤ k, and the second
sum is over all order n/2 Whitney disks WJ with twisting ω(WJ) ∈ Z such that r(J ) ≤ k.

We have the following k-repeating version of the obstruction theory described in Theo-
rem 6.6:

Theorem 6.17. A link L bounds a k-repeating order n twisted Whitney tower W with
τ kn (W) = 0 ∈ T kn if and only if L bounds a k-repeating order n+ 1 twisted Whitney tower.

Proof. The “if” direction holds since any k-repeating order n + 1 twisted Whitney tower is
also a k-repeating order n twisted Whitney tower.

The “only if” direction follows from the observation that the order-raising constructions
in the proof of Theorem 6.6 can be applied to all trees of multiplicity ≤ k in t(W), while
ignoring the presence of any lower-order trees in t(W) which have multiplicity > k, as we
summarize here:

The condition τ kn (W) = 0 ∈ T kn means that the trees in t(W) of multiplicity ≤ k
represent 0 ∈ Tn , and any framed trees of order < n or -trees of order < n/2 in t(W) must
have multiplicity > k.

There are three main steps to the proof of Theorem 6.6 in [7, Sec.4.1], using also [26, Sec.4]
and [6]. First, controlled modifications ofW realizing the relations in Tn are used to arrange
that the order n trees and order n/2 trees in t(W) all occur in oppositely-signed “algebraically
canceling” pairs (see the start of section 4 of [7]). Since the relations are homogeneous in
multiplicities, this step does not create any trees of smaller (or greater) multiplicities and
is supported away from all previously existing trees. In our current k-repeating setting, all
trees of multiplicity ≤ k can be paired while any trees of multiplicity > k do not need to be
paired. Secondly, the paired trees are converted into pairs of “simple” (right- or left-normed)
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trees by IHX constructions which are again multiplicity-preserving. In both of these first
two steps all intersections are completely controlled, and the constructions can be assumed
to be supported away from any trees of multiplicity > k.

The final third step converts algebraic cancellation into “geometric cancellation”, which
means that a new layer of order n + 1 Whitney disks can be constructed for the pairs of
order n intersections, and the pairs of order n/2 twisted Whitney disks can be combined into
single framed Whitney disks. In this step the new layer of order n + 1 Whitney disks have
uncontrolled intersections, but all of these new intersections are of order ≥ n + 1. And the
construction combining the twisted Whitney disk pairs into framed Whitney disks (Figures
21–22 in [7, Sec.4.1]) creates only new twisted Whitney disks of order > n/2, which are
supported near the original twisted Whitney disk pairs, along with intersections of order
≥ n among these new twisted Whitney disks. �

6.14. The k-repeating twisted Whitney tower filtration. Denote by Wk
n the set of

m-component framed links in S3 which bound k-repeating order n twisted Whitney towers
in B4; and let Wk

n denote the quotient of Wk
n by the equivalence relation of k-repeating

order n+ 1 twisted Whitney tower concordance. As a consequence of the k-repeating twisted
Whitney tower obstruction theory (Theorem 6.17), the component-wise band-sum operation
makes Wk

n into a finitely generated abelian group, with a surjective k-repeating twisted
realization map Rk

n : T kn → Wk
n . This follows from the k-repeating analogue of [7, Sec.3].

6.15. The k-repeating summation maps ηkn. The k-repeating summation maps ηkn :
T kn → Dk

n are defined as the restrictions of the maps ηn : Tn → Dn of Definition 6.7 in
section 6.6.

The following k-repeating version of Theorem 6.8 will yield in the subsequent section a
k-repeating analogue of the diagram (5) from section 6.7:

Theorem 6.18. If L bounds a k-repeating twisted Whitney towerW of order n, then µkq(L) =
0 for q < n, and

µkn(L) = ηkn(τ kn (W)) ∈ Dk
n

Proof. For G = π1(S3 \L) and G = π1(B4 \W), Lemma 6.14 gives isomorphisms Gk/Gk
n+2
∼=

Gk/Gkn+2
∼= F k/F k

n+2, with the first isomorphism induced by inclusion. Then by (the proof
of) [2, Lem.3.8, Lem.3.9] the link longitudes are represented by the products of iterated
commutators of meridians corresponding to the image under the ηkn-map of the trees in t(W)
representing τ kn (W). Since W is k-repeating order n it follows that the Assumption of
section 6.11 is satisfied, so µkq(L) = 0 for q < n, and each ith longitude maps to lki ∈ Lk,in+1.

To see that µkn(L) = ηkn(τ kn (W)), observe that the calculation given in [2, Lem.3.9] of the
link longitudes as iterated commutators of meridians determined by the trees in t(W) holds
in G/Gn+2 even when W is a k-repeating order n twisted Whitney tower, rather than an
ordinary order n Whitey tower as considered in [2]. So in the current k-repeating setting the
presence of framed trees which have both multiplicity > k and order < n, and -trees which
have both multiplicity > k and order < n

2
, only contribute factors in G/Gn+2 to the longitudes

which map trivially to lki ∈ Lk,in+1 < Lkn+1 < Ln+1, while the order n framed trees and order
n/2 -trees contribute longitude factors in Gn+1/Gn+2 which map to Xi ⊗ lki ∈ (L1 ⊗ Ln+1)k,
determining µkn(L). �
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6.16. The k-repeating twisted Whitney tower classification. From Theorem 6.18 we
have the following commutative triangle of groups and maps:

(5k) T kn
Rk

n
// //

ηkn "" ""

Wk
n

µkn
����

Dk
n

It follows from Theorem 6.9 that the maps ηkn : T kn → Dk
n are isomorphisms for n ≡ 0, 1, 3

mod 4, since they are restrictions of the maps ηn to the k-repeating direct summands. So the
k-repeating Milnor invariants µkn : Wk

n → Dk
n and the k-repeating twisted realization maps

Rk
n : T kn → Wk

n are isomorphisms for these orders.
Restricting to direct summands again, for k ≥ 4 Proposition 6.10 yields isomorphisms

Z2 ⊗ L
bk/4c
j

∼= Ker(ηk4j−2 : T k4j−2 → Dk
4j−2) defined by sending 1 ⊗ J to −−−< J

J ∈ T k4j−2 for
rooted trees J ∈ L

bk/4c
j of order j − 1, where b · c denotes the floor function.

For Kk4j−2 denoting the kernel of µk4j−2 : Wk
4j−2 � Dk

4j−2, it follows from the k-repeating
triangle diagram (5k) that mapping 1 ⊗ J to Rk

4j−2( −−< J
J ) induces a surjection αkj :

Z2 ⊗ L
bk/4c
j � Kk4j−2, for all j ≥ 1. Denoting by αkj the induced isomorphism on (Z2 ⊗

L
bk/4c
j )/Kerαkj , for k ≥ 4 the k-repeating higher-order Arf invariants are defined by

Arfkj := (αkj )−1 : K4j−2 → (Z2 ⊗ L
bk/4c
j )/Kerαkj

We have the following k-repeating analogue of Conjecture 6.13:

Conjecture 6.19. Arfkj is an isomorphism for all k and j.

Regardless of the size of Kerαkj , we have the following k-repeating analogue of Corol-
lary 6.12:

Corollary 6.20. The groups Wk
n are classified by k-repeating Milnor invariants µkn and, in

addition, k-repeating higher-order Arf invariants Arfkj for n = 4j − 2 and k ≥ 4.
In particular, a link bounds a k-repeating twisted Whitney tower of order n+ 1 if and only

if its k-repeating Milnor invariants and k-repeating higher-order Arf invariants vanish up to
order n. �

This completes the proof of Theorem 5.
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