
THE (TWISTED/L2)-ALEXANDER POLYNOMIAL OF IDEALLY
TRIANGULATED 3-MANIFOLDS

STAVROS GAROUFALIDIS AND SEOKBEOM YOON

Abstract. We establish a connection between the Alexander polynomial of a knot and
its twisted and L2-versions with the triangulations that appear in 3-dimensional hyperbolic
geometry. Specifically, we introduce twisted Neumann–Zagier matrices of ordered ideal tri-
angulations and use them to provide formulas for the Alexander polynomial and its variants,
the twisted Alexander polynomial and the L2-Alexander torsion.
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1. Introduction

The Alexander polynomial is a fundamental invariant of knots that dates back to the
origins of algebraic topology [Ale28]. It has been studied time and again from various points
of view that include twisting by a representation [Wad94, Lin01], or considering L2-versions
[L0̈2, DFL15]. There are numerous results and surveys to this subject that the reader may
consult that include [FV11, DFJ12, Kit15].

Let M be an oriented compact 3-manifold with torus boundary and T a concrete (in the
sense of [GGZ15, Defn.2.1]) ideal triangulation of the interior of M . One can think of T as
tetrahedra with their vertices removed, whose faces are identified in pairs. Under such an
identification, an edge can lie in more than one tetrahedron, or said differently, going around
an edge, one traverses several tetrahedra, possibly with repetition. Such combinatorial data
gives rise to a pair of integer matrices, known as Neumann–Zagier matrices [NZ85]. The ideal
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triangulation lifts to the interior of any cover of M , and this gives rise to a twisted version
of the Neumann–Zagier matrices. In particular, from the universal cover we obtain twisted
Neumann–Zagier matrices, whose entries are in the group ring Z[π1(M)]; see Section 2 for
details.

Our main theorems provide explicit relations of the twisted Neumann–Zagier matrices
with the Alexander polynomial and its variants, the twisted Alexander polynomial and the
L2-Alexander torsion (Theorems 4.1, 4.4, 4.5). These relations follow from a connection
between twisted Neumann–Zagier matrices and Fox calculus [Fox53]. More precisely, we will
show in Section 3 that for an ordered ideal triangulation, one of the twisted Neumann–Zagier
matrices can be explicitly computed from the dual complex of the triangulation by using Fox
calculus. We use this fact to relate the twisted Neumann–Zagier matrix to the matrices that
define the Alexander polynomial and its variants; see Section 4 for details. One important
aspect of our results is the use of ordered ideal triangulations, which breaks the symmetry
between the two (twisted) Neumann–Zagier matrices.

The paper is organized as follows. In Section 2, we briefly recall Neumann–Zagier matrices
and introduce their twisted version. In Section 3, we show that twisted Neumann–Zagier
matrices can be obtained from Fox calculus. In Section 4, we present and prove our main
theorems. In Section 5, we give an explicit computation for the figure-eight knot and verify
our theorems.

2. Twisted Neumann–Zagier matrices

In this section we briefly recall ideal triangulations of 3-manifolds, their gluing equation
and Neumann–Zagier matrices following [Thu77, NZ85], and introduce their twisted versions.

Fix an oriented compact 3-manifold M with torus boundary and a concrete (in the sense
of [GGZ15, Defn.2.1]) ideal triangulation T of the interior of M . Note that such a trian-
gulation is oriented, but not necessarily ordered, and that such triangulations are the ones
used in SnapPy [CDGW]. Ordered triangulations, which we do not use, are also known as
∆-complexes. We denote the edges and the tetrahedra of T by ei and by ∆j, respectively,
for 1 ≤ i, j ≤ N . Note that the number of edges is equal to that of tetrahedra. Every
tetrahedron ∆j is equipped with shape parameters, i.e. each edge of ∆j is assigned to one
shape parameter among zj, z

′
j and z′′j with opposite edges having same parameters as in Fig-

ure 1. If T is ordered, i.e. if every tetrahedron has (ideal) vertices labeled with {0, 1, 2, 3}
and every face-pairing respects the vertex-order, then we assign the edges (01) and (23) of
each tetrahedron ∆j with the shape parameter zj.

z′′

z′′

z′

z

z

z′
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Figure 1. A tetrahedron with shape parameters.
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The gluing equation matrices G,G′ and G′′ of T are N ×N integer matrices whose rows
and columns are indexed by the edges and by the tetrahedra of T , respectively. The (i, j)-
entry of G□ for □ ∈ { ,′ ,′′ } is the number of edges of ∆j assigned to the shape parameter
z□j and identified with the edge ei in T . The Neumann–Zagier matrices of T are defined as
the differences of the gluing equation matrices:

A := G−G′, B := G′′ −G′ ∈ MN×N(Z) . (1)

We now define a twisted version of the above matrices. These are essentially the Neumann–

Zagier matrices of the ideal triangulation T̃ of the universal cover of M obtained by pulling

back T . We choose a lift ẽi of ei and ∆̃j of ∆j for all 1 ≤ i, j ≤ N so that every edge

and tetrahedron of T̃ is expressed as γ · ẽi or γ · ∆̃j for γ ∈ π := π1(M). Analogous to the
gluing equation matrices, for □ ∈ { ,′ ,′′ } and γ ∈ π let G□

γ be N ×N integer matrices whose

(i, j)-entry is the number of edges of γ ·∆̃j assigned to the shape parameter z□j and identified

with the edge ẽi in T̃ . We define the twisted gluing equation matrices of T by

G□ :=
∑
γ∈π

G□
γ ⊗ γ ∈ MN×N(Z[π]) (2)

and the twisted Neumann–Zagier matrices of T by

A := G−G′, B := G′′ −G′ ∈ MN×N(Z[π]) . (3)

The above notation differs slightly from the one used in [GY23]; hopefully this will not cause
any confusion. Note that G□

γ is the zero matrix for all but finitely many γ, hence the sum
in (2) is finite. Since the above matrices are well-defined after fixing lifts of each edge and
tetrahedron of T , a different choice of lifts changes G□, A and B by multiplication from the
left or right by the same diagonal matrix with entries in π.

The Neumann–Zagier matrices of an ideal triangulation satisfy a key symplectic prop-
erty [NZ85] which has been the source of many invariants in quantum topology. In par-
ticular, it follows that ABT is a symmetric matrix. This property generalizes for twisted
Neumann–Zagier matrices

AB∗ = BA∗ (4)

where the adjoint X∗ of a matrix X ∈ MN×N(Z[π]) is given by the transpose followed by
the involution of Z[π] defined by γ 7→ γ−1 for all γ ∈ π. The above equation can be proved
by repeating the same argument as in the proof of [GY23, Theorem 1.2] or [Cho06].

3. Fox calculus and twisted NZ matrices

In this section, we discuss a connection between twisted Neumann–Zagier matrices and
Fox calculus.

3.1. Fox calculus. Let M be an oriented compact 3-manifold with torus boundary and T
an ideal triangulation of the interior of M with N tetrahedra. The dual complex D of T
is a 2-dimensional cell complex with 2N edges and N faces. We fix an orientation of each
edge and let FD be the free group generated by the edges of D; if T is ordered, we fix the
orientation by the one induced from the vertex-order.
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Each face of D correspond to a word generated by the edges, hence from the faces of D
we obtain words r1, . . . , rN ∈ FD well-defined up to conjugation. Two consecutive letters1

of ri for 1 ≤ i ≤ N represent two adjacent face pairings of T , and there is a unique shape
parameter lying in between. Inserting such shape parameters between the letters of ri, we
obtain a word Ri whose length is two times that of ri. Precisely, let Fẑ be the free group
generated byẑ□j for 1 ≤ j ≤ N and □ ∈ { ,′ ,′′ } where ẑ□j is a formal variable corresponding

to a shape parameter z□j . The word Ri ∈ FD ∗ Fẑ is defined so that

• its 2k-th letter is the k-th letter of ri and
• its (2k− 1)-st letter is a generator of Fẑ corresponding to the shape parameter lying
between the (k − 1)-st and the k-th letters of ri.

Here k ≥ 1 and the 0-th letter of ri means the last letter of ri.
We choose N − 1 generators of FD forming a spanning tree in D and define a map

p : FD ∗ Fẑ → π1(M) (5)

by eliminating those N − 1 generators of FD and all generators ẑ□j of Fẑ. Note that the rest
N + 1 generators of FD with N relators p(r1), . . . , p(rN) give a presentation of π = π1(M).

Theorem 3.1. The twisted gluing equation matrices G□ of T agree with
p

(
∂R1

∂ẑ□1

)
· · · p

(
∂R1

∂ẑ□N

)
...

...

p

(
∂RN

∂ẑ□1

)
· · · p

(
∂RN

∂ẑ□N

)
 ∈ MN×N(Z[π]) (6)

up to left multiplication by a diagonal matrix with entries in π.

Proof. Let T̃ be the ideal triangulation of the universal cover of M induced from T . For two

tetahedra ∆ and ∆′ of T̃ let d(∆,∆′) ∈ FD be a word representing an oriented curve that

starts at ∆ and ends at ∆′. We choose a lift ∆̃j of each tetrahedron ∆j of T such that

p
(
d(∆̃j0 , ∆̃j1)

)
= 1 (7)

for all 1 ≤ j0, j1 ≤ N . We also choose any lift ẽi of each edge ei of T so that the twisted
gluing equation matrices G□ are determined. Precisely, the (i, j)-entry of G□ is given by∑

∆

p
(
d(∆̃1,∆)

)
∈ Z[π] (8)

where the sum is taken over all tetrahedra ∆ of T̃ contributing z□j to ẽi. The index of ∆̃1

can be replaced by any 1 ≤ j ≤ N due to Equation (7).

On the other hand, there is an initial tetrahedron, say ∆̂i, around ẽi such that the word
ri ∈ FD is obtained by winding around the edge ẽi starting from ∆̂i. Then it follows from

1Here we regard that the first and the last letter of ri are also consecutive.
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the definition of Ri that

p

(
∂Ri

∂ẑ□j

)
=

∑
∆

p
(
d(∆̂i,∆)

)
∈ Z[π] (9)

where the sum is taken over all tetrahedra ∆ of T̃ contributing z□j to ẽi. Since

p
(
d(∆̃1,∆)

)
= p

(
d(∆̃1, ∆̂i)

)
p
(
d(∆̂i,∆)

)
(10)

for any ∆, we deduce from (8) and (9) that the matrix (6) agrees with G□ up to left
multiplication by a diagonal matrix with entries in π. □

3.2. Curves in triangulations. The 1-skeleton D(1) of the dual complex D intersects with
a tetrahedron in four points. Hence there are three ways of smoothing it in each tetrahedron
as in Figure 2. Each smoothing makes two curves in a tetrahedron winding two edges with
the same shape parameter. We thus refer to it as Z, Z ′, or Z ′′-smoothing accordingly.
Applying Z-smoothing to D(1) for all tetrahedra, we obtain finitely many loops, which we
call Z-curves of T . We define Z ′ and Z ′′-curves of T similarly.

z′′
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z′′

z′′

z′

z′z′′

z′

z

z′′

z′

z

z z

z

z

z′′

z′′

z′
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z

z

z′′

z′

Z ′′Z

Figure 2. Three ways of smoothing D(1).

Proposition 3.2. If T is ordered, the Z-curves homotope to disjoint peripheral curves.

Proof. For ordered T , each face of T has a “middle” vertex, the one whose label is neither
greatest nor smallest among the three vertices of the face. Recall that the Z-curves intersect
with each face f of T in a point. We push the intersection point toward the middle vertex
of f . Doing so for all faces of T , the Z-curves homotope to disjoint peripheral curves. Note
that then the Z-curves make two small curves in each tetrahedron lying in a neighborhood
of the vertices 1 and 2 as in Figure 3. □
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Figure 3. Homotope Z-curves to peripheral curves.

We now fix a tetrahedron ∆j of T . Recall that the free group FD has 2N generators, say
g1, . . . , g2N , and that a face f of ∆j corresponds to one generator gi, oriented either inward
or outward to ∆j. We define a column vector vf ∈ Z[π]2N

vf =

{
p(gi) ei if gi is inward to ∆j

−ei if gi is outward to ∆j

(11)

where (e1, . . . , e2N) is the standard basis of Z2N . We say that two faces of ∆j are Z-adjacent
if they are joined by one of two curves in ∆j obtained from Z-smoothing (see Figure 2).
Note that ∆j has two pairs of Z-adjacent faces.

Theorem 3.3. If T is ordered, the column vector
p

(
∂r1
∂g1

)
· · · p

(
∂r1
∂g2N

)
...

...

p

(
∂rN
∂g1

)
· · · p

(
∂rN
∂g2N

)
 (vf0 + vf1) ∈ Z[π]N (12)

is equal to the j-th column of
p

(
∂R1

∂ẑ′′1

)
· · · p

(
∂R1

∂ẑ′′N

)
...

...

p

(
∂RN

∂ẑ′′1

)
· · · p

(
∂RN

∂ẑ′′N

)
−


p

(
∂R1

∂ẑ′1

)
· · · p

(
∂R1

∂ẑ′N

)
...

...

p

(
∂RN

∂ẑ′1

)
· · · p

(
∂RN

∂ẑ′N

)
 (13)

up to sign. Here f0 and f1 are the Z-adjacent faces of ∆j.

Proof. Two faces of ∆j are Z-adjacent if and only if they are adjacent to either the edge
(01) or (23). We first consider two faces adjacent to the edge (01). One of the two faces is
oriented inward to ∆j, and the other is oriented outward. Let f0 and f1 be the former and
the latter, respectively, as in Figure 4. Note that the orientation of every edge of f0 and f1
is determined, regardless of the vertices 2 and 3 of ∆j.
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Figure 4. Two generators joined by B-smoothing.

From the edges of f0 and f1, we deduce that the generators gi0 and gi1 corresponding to
f0 and f1 respectively appear in the words R1, . . . , RN as follows.

· · · gi1 ẑj gi0 · · ·
· · · ẑ′′j gi0 · · ·
· · · g−1

i0
ẑ′j · · ·

· · · gi1 ẑ′j · · ·
· · · ẑ′′j g−1

i1
· · ·

(14)

We stress that gi0 and gi1 do not appear elsewhere other than listed above, and neither do
ẑ′j and ẑ′′j . It follows that for all 1 ≤ k ≤ N

p

(
∂rk
∂gi0

− ∂rk
∂gi1

gi1

)
= p

(
∂Rk

∂ẑ′′j
− ∂Rk

∂ẑ′j

)
. (15)

Writing the above equation in a matrix form, we obtain the proposition. We prove similarly
for two faces adjacent to the edge (23), in which case the left-hand side of (15) is equal to
negative of the right-hand side. □

Remark 3.4. One can deduce similar equations for Z ′ and Z ′′-adjacent faces, but the
equations only hold modulo 2. Namely, for Z ′-adjacent faces f0 and f1 of ∆j, the column
vector (12) and the j-th column of

p

(
∂R1

∂ẑ1

)
· · · p

(
∂R1

∂ẑN

)
...

...

p

(
∂RN

∂ẑ1

)
· · · p

(
∂RN

∂ẑN

)
−


p

(
∂R1

∂ẑ′′1

)
· · · p

(
∂R1

∂ẑ′′N

)
...

...

p

(
∂RN

∂ẑ′′1

)
· · · p

(
∂RN

∂ẑ′′N

)


are congruent modulo 2, i.e. they induce the same vector over (Z/2Z)[π]. A similar equation
modulo 2 holds for Z ′′-adjacent faces.

4. Alexander invariants from twisted NZ matrices

In this section we express the Alexander polynomial and its twisted and L2-versions in
terms of the twisted Neumann–Zagier matrix B. Throughout the section, we fix



8 STAVROS GAROUFALIDIS AND SEOKBEOM YOON

(†) an oriented compact 3-manifold M with torus boundary, an ordered ideal triangula-
tion T of the interior of M and a group homomorphism α : π → Z.

Note that it is known that every 3-manifold with nonempty boundary has such a triangula-
tion [BP97].

4.1. Alexander polynomial. The homomorphism α in (†) gives rise to a homomorphism
α : Z[π] → Z[Z] ≃ Z[t±1] of group rings, and we define

Aα(t) := α(A), Bα(t) := α(B) ∈ MN×N(Z[t
±1]) . (16)

Theorem 4.1 below relates the determinant of Bα(t) with the Alexander polynomial ∆α(t)
associated with α, assuming that this is well-defined, that is, the (cellular) chain complex of
M with local coefficient twisted by α is acyclic. A typical case is M being the complement of
a knot in a homology sphere with α being the abelianization map. Note that the determinant
of Bα(t) and ∆α(t) are well-defined up to multiplication by ±tk for k ∈ Z. Below, we denote
by

.
= the equality of Laurent polynomials up to multiplication by ±tk.

Theorem 4.1. Fix M ,T and α as in (†). Then

detBα(t)
.
=

∆α(t)

t− 1

∏
i

(tα(Zi) − 1) (17)

where Zi are the Z-curves of T .

Proof. Let D be the dual cell complex of T and consider the cellular chain complex of D
with local coefficient Z[t±1] twisted by α : π → Z ≃ tZ:

0 −→ C2(D;Z[t±1]α)
∂2−→ C1(D;Z[t±1]α)

∂1−→ C0(D;Z[t±1]α) −→ 0 . (18)

Here Ci(D;Z[t±1]α) := Ci(D̃;Z) ⊗Z[π] Z[t
±1], where D̃ is the universal cover of D, is a free

Z[t±1]-module of rank N for i = 0, 2 and of rank 2N for i = 1.

We choose a spanning tree of D, hence N − 1 edges of D. Lifting the tree to D̃, we obtain
a basis of Ci(D;Z[t±1]α). It is well-known that the boundary map ∂2 in (18) is given by the
Fox derivative

∂2 =

α(p(∂r1
∂g1

)) · · · α(p( ∂r1
∂g2N

))
...

...
α(p(∂rN

∂g1
)) · · · α(p( ∂rN

∂g2N
))


T

∈ M2N×N(Z[t
±1]) (19)

where p is the map eliminating all generators in the tree. Also, the boundary map ∂1 can
be expressed in terms of the vector described in (11). Precisely, the j-th row of ∂1 is

α(vTf0) + · · ·+ α(vTf3) ∈ Z[t
±1]2N (20)

where f0, . . . , f3 are the faces of ∆j. Recall that vf is a column vector, hence its transpose
vTf is a row vector. Since Z-smoothing couples the faces f0, . . . , f3 of ∆j into pairs, we can
decompose ∂1 into

∂1 = ∂1,B + (∂1 − ∂1,B) (21)
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where the j-th rows of both ∂1,B and ∂1 − ∂1,B are of the form α(vTf ) +α(vTf ′) for Z-adjacent
faces f and f ′ of ∆j. Then Theorems 3.1 and 3.3 imply that

∂T
2 ∂T

1,B = DBα(t) (22)

where D is a diagonal matrix with entries in {±tk | k ∈ Z}. It follows that for any N -tuple
b = (b1, . . . , bN) of column vectors in C1(D;Z[t±1]α), we have(

∂T
2

bT

)(
∂T
1,B ∂T

1

)
=

(
DBα(t) 0
∂1,B(b)

T ∂1(b)
T

)
(23)

and thus
det

(
∂2 b

)
det ∂1(b)

det

(
∂1,B
∂1

)
.
= detBα(t) (24)

provided that det ∂1(b) ̸= 0.
The first term of the left-hand side of (24) is by definition ∆α(t)/(t − 1) where ∆α(t) is

the Alexander polynomial associated with α. The second term obviously satisfies

det

(
∂1,B
∂1

)
= det

(
∂1,B

∂1 − ∂1,B

)
. (25)

Recall that each row of ∂1,B and ∂1 − ∂1,B is of the form vTf + vTf ′ for some faces f and f ′

and that each column of ∂1 has at most two non-trivial entries. It follows that each row
and column of the matrix in the right-hand side of (25) has at most two non-trivial entries.
Such a matrix after changing some rows and columns can be expressed as a direct sum of
matrices of the form 

x1 −y1
x2 −y2

. . . . . .
xn−1 −yn−1

−yn xn

 (26)

whose determinant is x1 · · ·xn−y1 · · · yn. In our case, expressing the matrix in the right-hand
side of (25) as in the form (26) is carried out by following the Z-curves. In particular, all
xi are of the form tα(gi) and all yi are 1. It follows that the right-hand side of (25) equals
to

∏
(tα(Zi) − 1) where the product is over all components Zi of the Z-curves. Therefore, we

obtain

detBα(t)
.
=

∆α(t)

t− 1

∏
i

(tα(Zi) − 1) .

This completes the proof. □

Remark 4.2. Proposition 3.2 says that the Z-curves homotope to disjoint peripheral curves.
If one component is homotopically trivial, we have detBα(t) = 0. Otherwise, the Z-curves
are m-parallel copies of a peripheral curve γ for m ≥ 1, hence we obtain

detBα(t)
.
=

∆α(t)

t− 1
(tα(γ) − 1)m . (27)
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Remark 4.3. Applying the same argument as in the proof of Theorem 4.1, we deduce similar
equations in (Z/2Z)[t±1] from Remark 3.4:

detAα(t) ≡
∆α(t)

t− 1

∏
i

(tα(Z
′′
i ) − 1) (mod 2) , (28)

det(Aα(t)−Bα(t)) ≡
∆α(t)

t− 1

∏
i

(tα(Z
′
i) − 1) (mod 2) . (29)

Here Z ′
i and Z ′′

i are the Z ′ and Z ′′-curves of T , respectively. These equations usually fail in
Z[t±1]; see Section 5 for an example.

4.2. Twisted Alexander polynomial. The homomorphism α in Theorem 4.1 can be re-
placed by α⊗ρ for any representation ρ : π → SLn(C), provided that the twisted Alexander
polynomial ∆α⊗ρ(t) associated with α⊗ρ is defined. This happens when the (cellular) chain
complex of M with local coefficient twisted by α ⊗ ρ is acyclic. A typical case is M being
the complement of a hyperbolic knot in a homology sphere with ρ : π → SL2(C) being a lift
of the geometric representation.

Theorem 4.4. Fix M ,T and α as in (†) and a representation ρ : π → SLn(C). Then

detBα⊗ρ(t)
.
= ∆α⊗ρ(t)

∏
i

det(ρ(Zi) t
α(Zi) − In)

where Zi are the Z-curves of T , and In is the identity matrix of rank n.

Note that if ρ is the trivial 1-dimensional representation, we have Bα⊗ρ(t) = Bα(t) and
∆α(t)/(t− 1) = ∆α⊗ρ(t) [Wad94]. Hence Theorem 4.1 is a special case of Theorem 4.4.

Proof. We obtain Theorem 4.4 by simply replacing α in the proof of Theorem 4.1 by α⊗ ρ.
We omit details, as this is indeed a repetition with only obvious variants. For instance, the
coefficient of the chain complex (18) is replaced by (Z[t±1] ⊗ Cn)α⊗ρ, and the matrix (26)
becomes a block matrix. □

4.3. L2-Alexander torsion. In [DFL15] Dubois–Friedl–Lück introduced the L2-Alexander
torsion as an L2-version of the Alexander polynomial

τ (2)(M,α) : R+ → [0,∞), t 7→ τ (2)(M,α)(t) . (30)

As the Alexander polynomial, τ (2)(M,α) is well-defined up to multiplication by a function
t 7→ tr for r ∈ R. We will write f

.
= g for functions f and g : R+ → [0,∞) if f(t) = trg(t)

for some r ∈ R. Briefly, for fixed t > 0, τ (2)(M,α)(t) is defined to be the L2-torsion of the
chain complex of R[π]-modules

R[π]⊗Z[π] C∗(M̃ ;Z) (31)

where M̃ is the universal cover of M and R[π] is viewed as a Z[π]-module using the homo-
morphism

αt : Z[π] → R[π], g 7→ tα(g)g . (32)

The L2-torsion of the above complex is defined in terms of the Fulgede-Kadison determinant
of matrices with entries in R[π]. Roughly speaking, the Fulgede-Kadison determinant of a
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matrix X is defined in terms of the spectral density function of X, viewed as a map between
direct sums of the Hilbert space ℓ2(π) of squared-summable formal sums over π. We refer
to [L0̈2, DFL15] for the precise definition. However, we will not use the definition, but only
some basic properties for square matrices, such as

detrN (π)(XY ) = detrN (π)(X) detrN (π)(Y ) ,

detrN (π)

(
X 0
Z Y

)
= detrN (π)(X) detrN (π)(Y ) .

(33)

Here X and Y are square matrices with entries in R[π], and detrN (π)(X) denotes the regular
Fuglede-Kadison determinant of X, which equals to the Fuglede-Kadison determinant of X
if X has full rank, and zero otherwise.
We now consider the Fuglede–Kadison determinant of the twisted Neumann–Zagier ma-

trices and relate it with the L2-Alexander torsion. Recall that the twisted Neumann–Zagier
matrix B is a square matrix with entries in the group ring Z[π]. We define a function

det(B, α) : R+ → [0,∞), t 7→ detrN (π)(αt(B)) (34)

where αt : Z[π] → R[π] is the homomorphism given in (32).

Theorem 4.5. Fix M ,T and α as in (†). Suppose that every component of the Z-curves of
T has infinite order in π. Then we have

det(B, α)
.
= τ (2)(M,α)max{1, tn} (35)

for some n ∈ Z.

Proof. Let D be the dual cell complex of T . The universal cover D̃ of D has the cellular
chain complex of left Z[π]-modules

0 −→ C2(D̃;Z)
∂2−→ C1(D̃;Z)

∂1−→ C0(D̃;Z) −→ 0 (36)

where Ci := Ci(D̃;Z) has rank N for i = 0, 2 and rank 2N for i = 1. The boundary maps
∂i : Ci → Ci−1 act on the right, i.e., we have

∂2 ∈ MN,2N(Z[π]), ∂1 ∈ MN,2N(Z[π]) . (37)

As in the proof of Theorem 4.1, we decompose ∂1 as ∂1 = ∂1,B + (∂1 − ∂1,B) where the j-th
columns of both ∂1,B and ∂1 − ∂1,B are of the form vf + vf ′ for Z-adjacent faces f and f ′ of
∆j. Then Theorems 3.1 and 3.3 imply that

∂2 ∂1,B = DB (38)

where D is a diagonal matrix with entries in ±π.
We now fix t ∈ R+ and twist the coefficient of Ci by using the homomorphism αt, i.e.

consider the chain complex C ′
i := R[π]⊗Z[π] Ci where R[π] is viewed as a Z[π]-module using

the homomorphism αt. Note that the boundary maps of C ′
i are given by ∂′

i = αt(∂i). It
follows from Equation (38) that for any N -tuple b = (b1, . . . , bN) of (row) vectors, we have(

∂′
2

b

)(
∂′
1,B ∂′

1

)
=

(
αt(DB) 0
∂′
1,B(b) ∂′

1(b)

)
(39)
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where ∂′
1,B = αt(∂1,B). Therefore, we obtain

detrN (π)

(
∂′
2

b

)
detrN (π)(∂1(b))

detrN (π)

(
∂′
1,B ∂′

1

)
= tk detrN (π)(αt(B)) (40)

for fixed k ∈ Z, provided that detrN (π)(∂1(b)) ̸= 0. The first term of the left-hand side of (40)

is τ (2)(M,α)(t) (see [DFL15, Lemma 3.1]), and the second term satisfies

detrN (π)

(
∂′
1,B ∂′

1

)
= detrN (π)

(
∂′
1,B ∂′

1 − ∂′
1,B

)
. (41)

Recall that the matrix (∂1,B | ∂1 − ∂1,B) after changing some rows and columns is the direct
sum of matrices of the form (26) with xi ∈ π and yi = 1. Such matrices decompose into
x1

x2

. . .
xn−1

xn



1 −x−1

1

1 −x−1
2

. . . . . .

1 −x−1
n−1

1



1− x−1

1 · · ·x−1
n

−x−1
2 · · ·x−1

n 1
...

. . .

−x−1
n−1x

−1
n 1

−x−1
n 1

 ,

hence we deduce that

detrN (π)

(
∂′
1,B ∂′

1 − ∂′
1,B

)
=

∏
i

detrN (π)(1− αt(Z
−1
i )) =

∏
i

detrN (π)(1− t−α(Zi)Z−1
i ) (42)

where the products are over all the components Zi of the Z-curves of T . Since we assumed
that each component Zi has infinite order in π, detrN (π)(1−t−α(Zi)Z−1

i ) is the Mahler measure

of Zi− t−α(Zi), viewed as a polynoimal in Zi, which equals to max{1, t−α(Zi)}. It follows that

detrN (π)(αt(B)) = t−k τ (2)(M,α)(t)
∏
i

max{1, t−α(Zi)} (43)

for fixed k ∈ Z. Since each component Zi is of infinite order and, in particular, non-trivial,
Proposition 3.2 implies that all α(Zi) should be the same up to sign. Thus Equation (43)
implies Theorem 4.5. □

5. Example

As is customary in hyperbolic geometry, in this section we give an example of a cusped
hyperbolic 3-manifold M , the complement of the knot 41 in S3. The default SnapPy tri-
angulation T of M consists of two ideal tetrahedra ∆1 and ∆2, and is orderable with the
ordering shown in Figure 5 [CDGW]. It has two edges e1 and e2; (01), (03), (23) of ∆1 and
(02), (12), (13) of ∆2 are identified with e1; (02), (12), (13) of ∆1 and (01), (03), (23) of ∆2

are identified swith e2.
The dual cell complex of T has 4 edges and 2 faces, hence we have two words r1 and r2 in

four generators g1, . . . , g4 Note that g1 and g4 (resp., g2 and g3) are oriented inward to ∆1

(resp., ∆2) and that the words r1 and r2 are obtained from winding around the edges of T :

e1 : g1
z1−→ g3

z′′2−→ g4
z1−→ g2

z′2−→ g−1
3

z′1−→ g−1
4

z′2−→ g1 ,

e2 : g1
z′1−→ g2

z2−→ g4
z′′1−→ g−1

1

z′′2−→ g−1
2

z′′1−→ g3
z2−→ g1 .

(44)
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0 3

1

g1 g2

g4

g3

z1

2

z′′1

z′1

z1

z′1

z′′1
2 1

0

g1 g2

g3

g4

z′2
3

z2

z′′2

z′2

z′′2

z2

Figure 5. An ordered ideal triangulation of 41.

Precisely, r1 = g3g4g2g
−1
3 g−1

4 g1 and r2 = g2g4g
−1
1 g−1

2 g3g1. Eliminating one generator, say g1,
we obtain a presentation of π = π1(M):

π = ⟨g2, g3, g4 | g3g4g2g−1
3 g−1

4 , g2g4g
−1
2 g3⟩ . (45)

Note that g4 is a meridian of the knot.
As in Section 3, we define a word Ri for i = 1, 2 by inserting shape parameters to the

word ri (c.f. (44)):

R1 = ẑ1 g3 ẑ
′′
2 g4 ẑ1 g2 ẑ

′
2 g

−1
3 ẑ′1 g

−1
4 ẑ′2 g1 ,

R2 = ẑ′1 g2 ẑ2 g4 ẑ
′′
1 g

−1
1 ẑ′′2 g

−1
2 ẑ′′1 g3 ẑ2 g1 .

Due to Theorem 3.1, the twisted gluing equation matrices G□ of T are equal to (∂Ri/∂ẑ
□
j )

followed by eliminating g1 and all ẑ□j . Explicitly, we have

G =

(
1 + g3g4 0

0 g2 + g2g4g
−1
2 g3

)
,

G′ =

(
g3g4g2g

−1
3 g3g4g2 + g3g4g2g

−1
3 g−1

4

1 0

)
,

G′′ =

(
0 g3

g2g4 + g2g4g
−1
2 g2g4

)
and thus the twisted Neumann–Zagier matrices of T are given as

A =

(
1 + g3g4 − g3g4g2g

−1
3 −g3g4g2 − g3g4g2g

−1
3 g−1

4

−1 g2 + g2g4g
−1
2 g3

)
, (46)

B =

(
−g3g4g2g

−1
3 g3 − g3g4g2 − g3g4g2g

−1
3 g−1

4

g2g4 + g2g4g
−1
2 − 1 g2g4

)
. (47)

On the other hand, the abelianization map α : π → Z is given by α(g2) = 0, α(g3) = −1
and α(g4) = 1. Applying α to the twisted Neumann–Zagier matrices, we obtain

Aα(t) =

(
2− t −2
−1 2

)
, Bα(t) =

(
−t t−1 − 2

2t− 1 t

)
. (48)

One easily verifies Theorem 4.1:

detBα(t)
.
= (t− 1)(t2 − 3t+ 1) . (49)
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Note that the Alexander polynomial of 41 is t
2−3t+1 and that T has two Z-curves Z1 = g1g3

and Z2 = g4g2 with α(Z1) = −1, α(Z2) = 1. One can also verify Remark 4.3:

detAα(t) ≡ det(Aα(t)−Bα(t)) ≡ 0 (mod 2) . (50)

Note that T has one Z ′-curve Z ′
1 = g1g2g

−1
3 g−1

4 with α(Z ′
1) = 0 and one Z ′′-curve Z ′′

1 =
g−1
2 g3g4g

−1
1 with α(Z ′′

1 ) = 0.
We now compute a (positive) lift ρ : π → SL2(C) of the geometric representation of M .

Since g4 is a meridian of the knot, we may let (see [Ril84, Lemma 1])

ρ(g4) =

(
1 1
0 1

)
, ρ(g2) =

(
n 0
u 1/n

)
. (51)

A straightforward computation shows that the above assignment induces a representation ρ
of π if and only if u = −(1−4n2+n4)/(3n+3n3) and 1−3n+5n2−3n3+n4 = 0. Applying
α⊗ ρ to Equation (47), one verifies Theorem 4.4:

detBα⊗ρ(t)
.
= (t− 1)4(t2 − 4t+ 1)/t2 . (52)

Note that the twisted Alexander polynomial of 41 associated with α⊗ ρ is t2 − 4t+ 1.

Remark 5.1. For ordered ideal triangulations, detAα(t) is often a multiple of 2 and thus
vanishes in (Z/2Z)[t±1]. One example which is not the case is the knot 82. Its default SnapPy
triangulation is orderable, and Philip Choi’s program computes that

Aα(t) =


t−4 + 1 1 −t−4 t−4 0 0
−t−2 − 1 0 1 0 0 0

0 −1 0 t 1 −1
0 −t−1 −t −t−4 −t t−5

0 1 0 0 0 t
0 0 1 −1 0 −1

 ,

Bα(t) =


t−2 0 −t−4 0 0 0

−t−2 − 1 t−2 0 0 0 0
1 −1 1 0 t t− 1
0 1− t−1 −t t−5 − t−4 −t 0
0 0 t2 t2 −t t
0 0 0 −1 1 −1


with

detAα(t) = (t− 1)(t12 + t7 − 2t6 + t5 + 1) ,

detBα(t) = (t− 1)(t6 − 3t5 + 3t4 − 3t3 + 3t2 − 3t+ 1) .

Note that the Alexander polynomial of the knot 82 is the second factor of detBα(t) (hence
this verifies Theorem 4.1) and that

detAα(t) ≡ (t− 1)2(t4 + t3 + t2 + t+ 1)(t6 − 3t5 + 3t4 − 3t3 + 3t2 − 3t+ 1) (mod 2) .
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