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Abstract. In this paper we will promote the 3D index of an ideal triangulation T of
an oriented cusped 3-manifold M (a collection of q-series with integer coe�cients, intro-
duced by Dimofte-Gaiotto-Gukov) to a topological invariant of oriented cusped hyperbolic
3-manifolds. To achieve our goal we show that (a) T admits an index structure if and only if
T is 1-e�cient and (b) if M is hyperbolic, it has a canonical set of 1-e�cient ideal triangu-
lations related by 2-3 and 0-2 moves which preserve the 3D index. We illustrate our results
with several examples.
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1. Introduction

1.1. The 3D index of Dimofte-Gaiotto-Gukov. The goal of this paper is to convert the
index of an ideal triangulation T (a remarkable collection of Laurent series in q1/2 introduced
by Dimofte-Gaiotto-Gukov [DGG14, DGG13] and further studied in [Garb]) to a topological
invariant of oriented cusped hyperbolic 3-manifolds M . Our goal will be achieved in two
steps.
The �rst step identi�es the existence of an index structure of T (a necessary and su�cient

condition for the existence of the index of T; see [Garb]) with the non-existence of sphere or
non vertex-linking torus normal surfaces of T; see Theorem 1.2 below. Such ideal triangula-
tions are called 1-e�cient in [JR03, KR05]. The unexpected connection between the index of
an ideal triangulation (a recent quantum object) and the classical theory of normal surfaces
places restrictions on the topology of M ; see Remark 1.3 below.
The second step constructs a canonical collection XEP

M of triangulations of the Epstein-
Penner ideal cell decomposition of a cusped hyperbolic 3-manifold M , such that the index
behaves well with respect to 2�3 and 0�2 moves that connect any two members of XEP

M . The
index of those triangulations then gives the desired topological invariant of M ; see Theorem
1.8 below.
We should point out that normal surfaces were also used by Frohman-Bartoszynska [FKB08]

in an attempt to construct topological invariants of 3-manifolds, in the style of a Turaev-Viro
TQFT. Strict angle structures (a stronger form of an index structure) play a role in quan-
tum hyperbolic geometry studied by Baseilhac-Benedetti [BB05, BB07]. In the recent work
of Andersen-Kashaev [AK14], strict angle structures were used as su�cient conditions for
convergence of analytic state-integral invariants of ideal triangulations. The latter invariants
are expected to depend on the underlying cusped 3-manifold and to form a generalization
of the Kashaev invariant [Kas97]. The q-series of Theorem 1.8 below are q-holonomic, of
Nahm-type and, apart from a meromorphic singularity at q = 0, admit analytic continuation
in the punctured unit disc.
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Before we get to the details, we should stress that the origin of the 3D index is the
exciting work of Dimofte-Gaiotto-Gukov [DGG14, DGG13] (see also [BDP]) who studied
gauge theories with N = 2 supersymmetry that are associated to an ideal triangulation T

of an oriented 3-manifold M with at least one cusp. The low-energy limit of these gauge
theories gives rise to a partially de�ned function, the so-called 3D index

(1) I : {ideal triangulations} −→ Z((q1/2))H1(∂M ;Z), T 7→ IT([$]) ∈ Z((q1/2))

for [$] ∈ H1(∂M ; Z).1 The function I is only partially de�ned because the expression for
the 3D index may not converge. The above gauge theories provide an analytic continuation
of the coloured Jones polynomial and play an important role in Chern-Simons perturbation
theory and in categori�cation. Although the gauge theory depends on the ideal triangulation
T, and the 3D index in general may not be de�ned, physics predicts that the gauge theory
ought to be a topological invariant of the underlying 3-manifold M . Recall that any two
ideal triangulations of a cusped 3-manifold are related by a sequence of 2-3 moves [Mat87,
Mat07, Pie88]. In [Garb] the following was shown. For the de�nition of an index structure,
see Section 2.

Theorem 1.1. (a) IT is well-de�ned if and only if T admits an index structure.
(b) If T and T′ are related by a 2�3 move and both admit an index structure, then IT = IT′.

1.2. Index structures and 1-e�ciency.

Theorem 1.2. An ideal triangulation T of an oriented 3-manifold with cusps admits an
index structure if and only if T is 1-e�cient.

The above theorem has some consequences for our sought topological invariants.

Remark 1.3. 1-e�ciency of T implies restrictions on the topology of M : it follows that M is
irreducible and atoroidal. Note that here by atoroidal, we mean that any embedded torus is
either compressible or boundary parallel. It follows by Thurston's Hyperbolization Theorem
in dimension 3 that M is hyperbolic or small Seifert-�bred.

Remark 1.4. If K is the connected sum of the 41 and 52 knots, or K ′ is the Whitehead
double of the 41 knot and T is any ideal triangulation of the complement of K or K ′, then T

is not 1-e�cient, thus IT never exists. On the other hand, the (coloured) Jones polynomial,
the Kashaev invariant and the PSL(2,C)-character variety of K and K ′ happily exist; see
[Jon87, Kas97, CCG+94].

Theorem 1.5. Let T be an ideal triangulation of an oriented atoroidal 3�manifold with at
least one cusp. If T admits a semi�angle structure then T is 1�e�cient.

Remark 1.6. Taut and strict angle structures are examples of semi-angle structures, and for
these cases this is proved in [KR05, Thm.2.6]. In Section 3, we give a brief outline of the
argument for a general semi�angle structure.

1Here and below we will use the notationM for both a cusped hyperbolic 3-manifold and the corresponding
compact manifold with boundary ∂M consisting of a disjoint union of tori; the intended meaning should be
clear from the context.
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Remark 1.7. In Corollary 3.4, we note that a construction of Lackenby produces triangu-
lations with taut angle structures, which are therefore 1�e�cient, on all irreducible cusped
3�manifolds containing no essential annulus. However, it is not clear that the triangulations
produced by this construction are connected by the appropriate 2�3 and 0�2 moves, so we
cannot prove that the 3D index is independent of the choice of taut triangulation for the
manifold.

1.3. Regular ideal triangulations and topological invariance. In view of Remark 1.3,
we restrict our attention to hyperbolic 3-manifolds M with at least one cusp. All we need
is a canonical set XM of 1�e�cient ideal triangulations of M such that any two of these
triangulations are related by moves that preserve IT. From Theorem 1.1, we know that
we can use 2�3 and 3�2 moves for this purpose. Given the choice we will make for XM

below, it turns out that we will also need to use 0�2 and 2�0 moves to connect together
the triangulations of XM . Using the dual language of special spines, it is shown in [Mat07,
Lem.2.1.11] and [Pie88] (see also [Pet95, Prop.I.1.13]) that the 0�2 and 2�0 moves can be
derived from the 2�3 and 3�2 moves, as long as the triangulation has at least two tetrahedra.
However, the required sequence of 2�3 and 3�2 moves takes us out of our set XM , and it is
not clear that the triangulations the sequence passes through are 1�e�cient.
Every cusped hyperbolic 3�manifold M has a canonical cell decomposition [EP88] where

the cells are convex ideal polyhedra in H3. The cells can be triangulated into ideal tetrahedra,
with layered �at tetrahedra inserted to form a bridge between two polyhedron faces that
are supposed to be glued to each other but whose induced triangulations do not match.
Unfortunately, it is not known whether any two triangulations of a 3-dimensional polyhedron
are related by 2�3 and 3�2 moves; the corresponding result trivially holds in dimension 2 and
nontrivially fails in dimension 5; [DLRS10, San06]. Nonetheless, it was shown by Gelfand-
Kapranov-Zelevinsky that any two regular triangulations of a polytope in Rn are related by
a sequence of geometric bistellar �ips; [GKZ94]. Using the Klein model of H3, we de�ne
the notion of a regular ideal triangulation of an ideal polyhedron and observe that every
two regular ideal triangulations are related by a sequence of geometric 2�2, 2�3 and 3�2
moves. Our set XEP

M of ideal triangulations of a cusped hyperbolic manifold M consists
of all possible choices of regular triangulation for each ideal polyhedron, together with all
possible �bridge regions� of layered �at tetrahedra joining the induced triangulations of each
identi�ed pair of polyhedron faces. From the geometric structure of the cell decomposition,
we obtain a natural semi-angle structure on each triangulation of XEP

M , which shows that they
are all 1-e�cient by Theorem 1.5, and so the 3D index is de�ned for each triangulation by
Theorems 1.1(a) and 1.2. We show that any two of these triangulations are related to each
other by a sequence of 2�3, 3�2, 0�2 and 2�0 moves through 1�e�cient triangulations, the
moves all preserving the 3D index, using Theorems 1.1(b), 1.2 and 5.1. (The intermediate
triangulations are mostly also within XEP

M , although we sometimes have to venture outside of
the set brie�y.) Therefore we obtain a topological invariant of cusped hyperbolic 3�manifolds
M .

Theorem 1.8. If M is a cusped hyperbolic 3-manifold, and T ∈ XEP
M we have IM := IT is

well-de�ned.
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The next theorem is of independent interest, and may be useful for the problem of con-
tructing topological invariants of cusped hyperbolic 3-manifolds. For a de�nition of the
gluing equations of an ideal triangulation, see [NZ85, Thu77] and also Section 4.3 below.

Theorem 1.9. Fix a cusped hyperbolic 3-manifold M .

(a) For every T ∈ XEP
M , there exists a solution ZT to the gluing equations of T which

recovers the complete hyperbolic structure on M . Moreover, all shapes of ZT have
non-negative imaginary part.

(b) If T,T′ ∈ XEP
M are related by 2�3, 3�2, 0�2 or 2�0 moves, then so are ZT and ZT′.

(c) For every T, the arguments of ZT give a semi-angle structure on T.

Remark 1.10. In [HRS12], it is shown that a cusped hyperbolic 3�manifold M admits an
ideal triangulation with strict angle structure if H1(M,∂M ; Z2) = 0. All link complements
in the 3�sphere satisfy this condition. Such triangulations admit index structures but it is
not known if they can be connected by 2�3 and 0�2 moves within the class of 1�e�cient
triangulations.

Remark 1.11. For a typical cusped hyperbolic manifold, one expects that the Epstein-Penner
ideal cell decomposition consists of ideal tetrahedra, i.e., that XEP

M consists of one element.
Many examples of such cusped hyperbolic manifolds appear in the census [CDW] and also
in [Aki01, GS10].

Remark 1.12. In a later paper we will extend this work in the following ways:

• extend the domain of the 3D index IT([$]) to [$] ∈ H1(∂M ; 1
2
Z) such that 2[$] ∈

Ker(H1(∂M ; Z)→ H1(M ; Z/2Z)),
• give a de�nition of the 3D index using singular normal surfaces in M .

Remark 1.13. Theorem 1.8 constructs a family of q-series IM([$])(q) (parametrized by [$] ∈
H1(∂M,Z)) associated to a cusped hyperbolic manifold M . When M = S3 \ K is the
complement of a knot K, we can choose [$] = µ to be the homology class of the meridian
and consider the series

(2) Itot
K (q) =

∑
e∈Z

IM(eµ)(q)

Since the semi-angle structures of Theorem 1.9 have zero holonomy at all peripheral curves,
it can be shown that Itot

K (q) is well-de�ned. It turns out that Itot
K (q) is closely related to the

state-integral invariants of Andersen-Kashaev and Kashaev-Luo-Vartanov [AK14, KLV12].
The relation between state-integrals of the quantum dilogarithm and q-series is explained in
detail in [GK]. An empirical study of the asymptotics of the series Itot

41
(q) is given in [GZ].

1.4. Plan of the paper. In Section 2 we review the basic de�nitions of ideal triangulations,
e�ciency, angle structures and index structures.
In Section 3 we prove Theorem 1.2. So for an ideal triangulation, existence of an index

structure is equivalent to being 1-e�cient.
In Section 4 we review the basic properties of the tetrahedron index from [Garb], and give

a detailed discussion of the 3D index for an ideal triangulation of a cusped 3-manifold. In
Section 5 we study the behaviour of the 3D index under the 0�2 and 2�0 move.
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In Section 6 we discuss the Epstein-Penner ideal cell decomposition and its subdivision
into regular triangulations. At the end of Section 6.4 we prove Theorems 1.8 and 1.9.
In Section 7 we compute the �rst terms of the 3D index for some example manifolds.
Finally in the appendix, we give a detailed and self-contained proof of the invariance of

the 3D index of 1-e�cient triangulations under 2�3 moves, following [Garb] and [DGG13].

2. Definitions

De�nition 2.1. LetM be a topologically �nite 3-manifold which is the interior of a compact
3-manifold with torus boundary components. An ideal triangulation T of M consists of a
pairwise disjoint union of standard Euclidean 3�simplices ∆̃ = ∪nk=1∆̃k with vertex set ∆̃(0),

together with a collection Φ of Euclidean isometries between the 2�simplices in ∆̃, called
face pairings, such that the quotient space (∆̃ \ ∆̃(0))/Φ is homeomorphic to M. The images
of the simplices in T may be singular in M .

De�nition 2.2. Let T be an ideal triangulation with at least 2 distinct tetrahedra. A 2�3
move can be performed on any pair of distinct tetrahedra of T that share a triangular face
t. We remove t and the two tetrahedra, and replace them with three tetrahedra arranged
around a new edge, which has endpoints the two vertices not on t. See Figure 1a. A 3�2
move is the reverse of a 2�3 move, and can be performed on any triangulation with a degree
3 edge, where the three tetrahedra incident to that edge are distinct.

De�nition 2.3. Let T be an ideal triangulation. A 0�2 move can be performed on any pair
of distinct triangular faces of T that share an edge e2. Around the edge e, the tetrahedra of
T are arranged in a cyclic sequence, which we call a book of tetrahedra. (Note that tetrahedra
may appear more than once in the book.) The two triangles and e separate the book into two
half�books. We unglue the tetrahedra that are identi�ed across the two triangles, duplicating
the triangles and also duplicating e. We glue into the resulting hole a pair of tetrahedra
glued to each other in such a way that there is a degree 2 edge between them. See Figure 1b.
A 2�0 move is the reverse of a 0�2 move, and can be performed on any triangulation with a
degree 2 edge, where the two tetrahedra incident to that edge are distinct, there are no face
pairings between the four external faces of the two tetrahedra, and the two edges opposite
the degree 2 edge are not identi�ed.

Remark 2.4. A 0�2 move is also called a lune move in the dual language of standard
spines [Mat87, Mat07, Pie88, BP97]. In [Mat87, Lem.2.1.11] and [Pie88] (see also [Pet95,
Prop.I.1.13]) it was shown that a 0�2 move follows from a combination of 2�3 moves as long
as the initial triangulation has at least 2 ideal tetrahedra.

De�nition 2.5. Let ∆3 be the standard 3�simplex with a chosen orientation. Each pair of
opposite edges corresponds to a normal isotopy class of quadrilateral discs in ∆3, disjoint
from the pair of edges. We call such an isotopy class a normal quadrilateral type. Each vertex
of ∆3 corresponds to a normal isotopy class of triangular discs in ∆3, disjoint from the face
of ∆3 opposite the vertex. We call such an isotopy class a normal triangle type. Let T(k)

2Unlike for the 2�3 move, it is possible to make sense of the 0�2 move when the two triangles are not
distinct. However, we will not make use of this variant in this paper.



1-EFFICIENT TRIANGULATIONS AND THE INDEX OF A CUSPED HYPERBOLIC 3-MANIFOLD 7

2�3

3�2

(a) The 2�3 and 3�2 moves.

0�2

2�0

(b) The 0�2 and 2�0 moves.

Figure 1. Moves on (topological) triangulations.

be the set of all k�simplices in T. If σ ∈ T(3), then there is an orientation preserving map
∆3 → σ taking the k�simplices in ∆3 to elements of T(k), and which is a bijection between
the sets of normal quadrilateral and triangle types in ∆3 and in σ. Let � and 4 denote the
sets of all normal quadrilateral and triangle types in T respectively.

De�nition 2.6. Given a 3-manifold M with an ideal triangulation T, the normal surface
solution space C(M ; T) is a vector subspace of R7n, where n is the number of tetrahedra
in T, consisting of vectors satisfying the compatibility equations of normal surface theory.
The coordinates of x ∈ R7n represent weights of the four normal triangle types and the
three normal quadrilateral types in each tetrahedron, and the compatibility equations state
that normal triangles and quadrilaterals have to meet the 2�simplices of T with compatible
weights.
A vector in R7n is called admissible if at most one quadrilateral coordinate from each

tetrahedron is non-zero and all coordinates are non-negative. An integral admissible element
of C(M ; T) corresponds to a unique embedded, closed normal surface in (M,T) and vice
versa.

De�nition 2.7. (See [JR03], [KR05]) An ideal triangulation T of an orientable 3-manifold is
0-e�cient if there are no embedded normal 2-spheres or one-sided projective planes. An ideal
triangulation T is 1-e�cient if it is 0-e�cient, the only embedded normal tori are vertex-
linking and there are no embedded one-sided normal Klein bottles. An ideal triangulation T

is strongly 1-e�cient if there are no immersed normal 2�spheres, projective planes or Klein
bottles and the only immersed normal tori are coverings of the vertex-linking tori.

Note that in some contexts, �atoroidal� is taken to mean that there is no immersed torus
whose fundamental group injects into the fundamental group of the 3�manifold. In our
context, we mean that there are no embedded incompressible tori or Klein bottles, other
than tori isotopic to boundary components. In Corollary 3.4 and Remark 3.5 we highlight
this distinction.
Note that if M is orientable, it is su�cient to consider only normal 2-spheres and tori,

except in the special case thatM is a twisted I-bundle over a Klein bottle. For any embedded
normal projective plane or Klein bottle must be one-sided, so the boundary of a small regular
neighbourhood is a normal 2-sphere or torus. However in the non-orientable case, one must



8 STAVROS GAROUFALIDIS, CRAIG D. HODGSON, J. HYAM RUBINSTEIN, AND HENRY SEGERMAN

consider two-sided projective planes and Klein bottles. In this paper we will consider only
the orientable case.

De�nition 2.8. If e ∈ T(1) is any edge, then there is a sequence (qn1 , ..., qnk
) of normal

quadrilateral types facing e, which consists of all normal quadrilateral types dual to e listed
in sequence as one travels around e. Then k equals the degree of e, and a normal quadri-
lateral type may appear at most twice in the sequence. This sequence is called the normal
quadrilateral type sequence for e and is well-de�ned up to cyclic permutations and reversing
the order.

De�nition 2.9. A function α : �→ R is called a generalised angle structure on (M,T) if it
satis�es the following two properties:

(1) If σ3 ∈ T(3) and q, q′, q′′ are the three normal quadrilateral types supported by it,
then

α(q) + α(q′) + α(q′′) = π.

(2) If e ∈ T(1) is any edge and (qn1 , ..., qnk
) is its normal quadrilateral type sequence, then

k∑
i=1

α(qni
) = 2π.

Dually, one can regard α as assigning angles α(q) to the two edges opposite to q in the
tetrahedron containing q. The triangulations we consider are of oriented manifolds, so we
may assume that the triangulation is also oriented. We �x an ordering q → q′ → q′′ → q on
these quad types, well de�ned up to cyclic permutation. See Figure 2.

q q′ q′′

Figure 2. The three quad types within an oriented tetrahedron, arranged in
our chosen cyclic order.

De�nition 2.10. If we restrict the angles of a generalised angle structure to be in

• [0, π], then the generalised angle structure is a semi-angle structure.
• (0, π), then the generalised angle structure is a strict angle structure.
• {0, π}, then the generalised angle structure is a taut angle structure.

The set of generalised angle structures is denoted by GA(T) and is an a�ne subspace of R3N ,
where N is the number of tetrahedra in T. The subset of semi-angle structures is denoted
by SA(T), and is a closed polytope in GA(T).
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Remark 2.11. It is easy to see that a taut angle structure can only happen if every tetrahedron
has a pair of opposite edges with angles π and the other four edges have angles 0.

De�nition 2.12. For an ideal triangulation T withN tetrahedra, a quad-choice is an element
Q = (Q1, . . . , QN) ∈ �N such that Qn is a choice of one of the three quad types in the nth
tetrahedron. An index structure α on T consists of 3N generalised angle structures, indexed
by the quad-choices Q, with the property that αQ(Qn) > 0 for n = 1, . . . , N , for each
quad-choice Q.

De�nition 2.13. The equations determining a generalised angle structure can be read o�
as three N × N integer-valued matrices A = (āij), B = (b̄ij) and C = (c̄ij) whose rows
are indexed by the N edges of T and whose columns are indexed by the α(qj), α(q′j), α(q′′j )
variables respectively, where qj, q

′
j, q
′′
j are the quad types in the jth tetrahedron. These are

the so-called Neumann-Zagier matrices that encode the exponents of the gluing equations of
T, originally introduced by Thurston [NZ85, Thu77]. In terms of these matrices, a generalised
angle structure is a triple of vectors Z,Z ′, Z ′′ ∈ RN that satisfy the equations

(3) AZ + BZ ′ + CZ ′′ = 2π(1, . . . , 1)T , Z + Z ′ + Z ′′ = π(1, . . . , 1)T .

Note that the matrix entries āij, b̄ij, c̄ij give the coe�cients of Zj, Z
′
j, Z

′′
j in the ith edge

equation corresponding to the edges of tetrahedron j facing quad types qj, q
′
j, q
′′
j respectively.

We can combine these into a single matrix equation

(4)

(
A B C
IN IN IN

) Z
Z ′

Z ′′

 =

(
2π(1, . . . , 1)T

π(1, . . . , 1)T

)
,

where IN is the N ×N identity matrix. We call this matrix equation the matrix form of the
generalised angle structure equations.

3. Index structures and 1�efficiency

We �rst give a sketch proof of Theorem 1.5, showing that a semi�angle structure implies
1�e�ciency. We follow [KR05] and indicate the required small modi�cation. Suppose thatM
is oriented with cusps and has an ideal triangulation T with a semi-angle structure. Assume
that there is an embedded normal torus or Klein bottle or sphere or projective plane, where
the normal torus is not a peripheral torus. Firstly, exactly as in [Lac00b] the latter two cases
are excluded by a simple Euler characteristic argument. Similarly, if there is a cube with
knotted hole bounded by an embedded normal torus, then a barrier argument as in [JR03]
establishes that there is a normal 2-sphere bounding a ball containing this normal torus,
which is a contradiction. Embedded Klein bottles are excluded, so we are reduced to the
cases of an embedded essential non peripheral normal torus or a normal torus bounding a
solid torus.
In both cases, there is a sweepout between the normal torus and a peripheral normal

torus (for essential tori) or to a core circle of the solid torus. By a minimax argument (see
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[Rub97], [Sto00]), there is an almost normal3 torus associated with this sweepout. This is
either obtained by attaching a tube parallel to an edge to a normal 2-sphere or has a single
properly embedded octagonal disc in a tetrahedron and a collection of normal triangular and
quadrilateral discs. The �rst case is excluded, since we have ruled out such normal 2-spheres.
The semi-angle structure now implies that a standard combinatorial Gauss-Bonnet argu-

ment can be applied. Each polygonal disc in our torus has curvature given by Σiαi−(n−2)π,
where n is the number of edges of the disc and αi are the interior angles at the vertices of
the disc. Gauss-Bonnet then says that the sum of the curvatures of all the discs is zero,
since the Euler characteristic of the torus is zero. Every normal triangular disc contributes
zero and each normal quadrilateral is non-positive in the curvature sum. On the other hand,
any embedding of an octagon into an ideal tetrahedron with a semi-angle structure gives a
strictly negative contribution. See Figure 3. Hence the Euler characteristic of such a surface
cannot be zero and there could not have been an embedded normal torus to begin with. This
completes the sketch proof. �

α α

α
α

γ
γ

β

β

Figure 3. A normal octagon in a tetrahedron with a semi-angle structure
with angles α, β, γ ∈ [0, π]. The curvature of this octagon is 4α + 2β + 2γ −
(8− 2)π = 2α + 2π − 6π = 2α− 4π < 0.

Remark 3.1. Lackenby gives a result similar to Theorem 1.5 in Theorem 2.1 of [Lac08].

A useful observation (see [KR05]) following from Theorem 1.5 is the following;

Corollary 3.2. Suppose that T is an ideal triangulation of an oriented 3-manifold M with
cusps. IfM is an-annular and T admits a semi-angle structure thenM is strongly 1-e�cient.

3A closed properly embedded surface is almost normal if it is a union of normal discs together with
precisely one exceptional piece (lying inside one tetrahedron), which is an octagon or an annulus consisting
of two disjoint normal discs joined by a tube.
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Proof. The key observation is that the semi-angle structure on T lifts to a semi-angle structure

on the lifted triangulation T̃, for any covering space M̃ of M . Assume that there is an

immersed normal torus T inM which is not a covering of the peripheral torus. If M̃ is chosen
as the covering space whose fundamental group corresponds to the image of π1(T ), then T

lifts to a normal torus T̃ so that the inclusion map induces an onto map π1(T̃ )→ π1(M̃).

We can now use T̃ as a barrier (see [JR03]) to produce an embedded normal non-peripheral
torus T ∗, which is either essential and isotopic into a boundary cusp, or bounds a solid torus
or cube with knotted hole. (Here the an-annular assumption is used to show that the covering

space M̃ is atoroidal). The rest of the argument is exactly the same as in Theorem 1.5.
�

Proof of Theorem 1.2. We closely follow Luo�Tillmann [LT08]. We use the following version
of Farkas' lemma, which is given as Lemma 10 (3) in [LT08]:

Lemma 3.3. Let A be a real K ×L matrix, b ∈ RK, and · denote the usual Euclidean inner
product on RK. Then {x ∈ RL | Ax = b, x > 0} 6= ∅ if and only if for all y ∈ RK such that
ATy 6= 0 and ATy ≤ 0, one has y · b < 0.

For our purposes, Ax = b is the matrix form (4) of the generalised angle structure equa-
tions, so b = (2π, . . . , 2π, π, . . . , π)T . Consider a particular quad-choice Q, as in De�nition
2.12. If there is to be an index structure, then we must be able to �nd the appropriate
generalised angle structure x. That is, xl > 0 if l corresponds to one of the Qn, and xl can
have any real value if not. We refer to the former as restricted variables, and the latter as
unrestricted variables.
The problem with applying Farkas' lemma directly is that it applies to the set of solutions
{Ax = b | x > 0}. That is, all variables are strictly positive. However, we use a standard
trick: for each unrestricted variable xl, introduce a new variable x′l. The new variable acts
precisely like −xl, so the old xl can be written in the new coordinates as xl−x′l. This allows
both new variables xl, x

′
l > 0, making them restricted variables, so that Farkas' lemma can

be applied.
The e�ect that this has on the matrix A is as follows: We get a new column after each

unrestricted xl for x
′
l, and the values in the new column are the negatives of the values in

the column for xl.
Now we apply Farkas' lemma. We get a solution to our system if and only if for all

y ∈ RK such that ATy 6= 0 and ATy ≤ 0, we have y · b < 0. The transposed matrix AT has
dual variables (z1, ..., zn, w1, ..., wt), where the wi correspond to the tetrahedra and the zj
correspond to the edges. The dual system AT (z, w)T ≤ 0 is given by inequalities:

wi + zj + zk ≤ 0

whenever the ith tetrahedron contains a quad that faces the edges j and k (which may not
be distinct). This holds for all the rows corresponding to the xl, and we get the following
for the x′l:

−(wi + zj + zk) ≤ 0
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The two of these together imply that wi + zj + zk = 0 for the quads corresponding to
unrestricted angles, while wi + zj + zk ≤ 0 for restricted angles. The rest of the argument is
the same as in [LT08], as follows.
Kang and Rubinstein [KR04] give a basis of the normal surface solution space C(M ; T)

which consists of one element for each edge and one element for each tetrahedron of T.
For the edge e, the corresponding basis element has each of the quad types in the normal
quadrilateral type sequence for e with coe�cient −1 (or −2 if that quad appears twice), and
each of the triangle disc types that intersect e with coe�cient +1. For each tetrahedron σ,
the corresponding basis element has each of the quad types in σ with coe�cient −1, and
each of the triangle disc types in σ with coe�cient +1.
If we have a solution to the dual system, then we can form a normal surface solution class

Ww,z as a sum of tetrahedral and edge basis elements with coe�cients given by the wi and zj
corresponding to their tetrahedra and edges respectively. There is a linear functional χ∗ on
R7n called the generalised Euler characteristic, which agrees with the Euler characteristic in
the case of an embedded normal surface represented by an element of C(M ; T). It is shown
in [LT08] that the generalised Euler characteristic χ∗(Ww,z) is equal to y · b, and that the
normal quad coordinates ofWw,z are given by −(wi+zj+zk). From the above inequalities, we
�nd that the obstruction classes are solutions to the normal surface matching equations with
zero quad coordinates for unrestricted angles, non-negative quad coordinates for restricted
angles (i.e. the quads speci�ed by the quad-choice Q), at least one quad coordinate strictly
positive, and generalised Euler characteristic χ∗(Ww,z) ≥ 0.
If there are any negative triangle coordinates, we can add vertex linking copies of the

boundary tori to the solution until all normal disc coordinates are non-negative. Now, since
at most one quad coordinate in each tetrahedron is non-zero, we can in fact realise the
normal surface solution class as an embedded normal surface, and so the generalised Euler
characteristic is equal to the Euler characteristic. Therefore, an obstruction class to this
quad-choice having an associated generalised angle structure is an embedded normal sphere,
projective plane, Klein bottle or torus, with the only quads appearing being of the quad
types given by the quad-choice. Thus, if the triangulation is 1-e�cient, then there can be
no such obstruction.
The above argument shows that a 1-e�cient triangulation admits an index structure. For

the converse, note that if a triangulation is not 1-e�cient, then there is an embedded normal
sphere, projective plane, Klein bottle or non-vertex linking torus. This must then have at
least one non-zero quad coordinate, and since it is embedded, there can be only one non-zero
quad coordinate in each tetrahedron. Choosing these quad types in the tetrahedra containing
the surface, and arbitrarily choosing quad types in any other tetrahedra, we construct a quad-
choice that by the above argument cannot have a suitable generalised angle structure, and
so there is no index structure. This completes the proof of Theorem 1.2. �

Corollary 3.4. Suppose that M is a compact oriented irreducible 3-manifold with incom-
pressible tori boundary components and no immersed incompressible tori or Klein bottles,
except those which are homotopic into the boundary tori. Then M admits an ideal trian-
gulation T having an index structure. Moreover if M has no essential annuli (i.e M is
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an-annular) then for any �nite sheeted covering space M̃ , the lifted triangulation also admits
an index structure.

Proof. To construct 1-e�cient triangulations, we can use a construction of Lackenby [Lac00a].
He proves that if M is a compact oriented irreducible 3-manifold with incompressible tori
boundary components andM has no immersed essential annuli, except those homotopic into
the boundary tori, then M admits a taut ideal triangulation T. Then by Corollary 3.2 such
triangulations are strongly 1-e�cient. Note that the lift of such a triangulation to any �nite
sheeted covering space is also 1-e�cient.

There is a remaining case of small Seifert �bred spaces. For these are precisely the oriented
3-manifolds with tori boundary components which admit essential annuli, but no embedded
incompressible tori which are not homotopic into the boundary components.
Such examples have base orbifold either a disc with two cone points or an annulus with

one cone point or Möbius band with no cone points. The cone points are the images of the
exceptional �bres in the Seifert structure. These manifolds have immersed incompressible
tori, but do not have embedded incompressible tori or Klein bottles, except in the case
where the base orbifold has orbifold Euler characteristic zero: a disc with two cone points
corresponding to exceptional �bres of multiplicity two or orbit surface a Möbius band with
no cone points. This represents two di�erent Seifert �brations of the same manifold. We
exclude this latter case.
Now to construct a suitable ideal triangulation, note that these Seifert �bred spacesM are

bundles over a circle with a punctured surface of negative Euler characteristic as the �bre.
To see this, note thatM is Seifert �bred over an orientable base orbifold B with χorb(B) < 0.
Then M admits a connected horizontal surface F which is orientable with χ(F ) < 0 since
F is an orbifold covering of B. (A surface is horizontal if it is everywhere transverse to the
Seifert �bration.) Since M is orientable it follows that F non-separating, so M �bres over
the circle with F as �bre (see, for example, [Hat07, sections 1.2 and 2.1].)
After Lemma 6 in [Lac00a], it is shown that, starting with any ideal triangulation of the

punctured surface F , a bundle can be formed as a layered triangulation. This is done by
realising a sequence of diagonal �ips on the surface triangulation needed to achieve any
given monodromy map. Such a triangulation then gives an ideal triangulation with a taut
structure. So by Theorem 1.5 these are 1-e�cient triangulations and hence admit index
structures. �

Remark 3.5. The small Seifert �bred spaces from the proof of Corollary 3.4 have �nite
sheeted coverings with embedded incompressible tori so that the lifted triangulations do not
all admit index structures, in contrast with the hyperbolic case.

Example 3.6. The trefoil knot complement has an ideal layered triangulation with two
tetrahedra and two edges, one of degree 2 and one of degree 10. See Figure 4. The comple-
ment of the trefoil knot can be seen as a punctured torus bundle with monodromy given by
RL−1, where

L =

(
1 0
1 1

)
R =

(
1 1
0 1

)
.
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L−1

R

(0, 0) (1, 0)

(1, 1)(0, 1)

(0, 1)

(0, 0) (1, 0)

(1, 1)

(0,−1)

(1, 1)

(0, 0) (1, 0)

Figure 4. A layered triangulation of the complement of the trefoil knot, seen
as a punctured torus bundle. On the left, the monodromy is decomposed
into generators which act on the punctured torus. The diagrams are shown
sheared to highlight the fact that the monodromy has the e�ect of rotation
by −π/3. The arrows show where edges of a triangulation of the punctured
torus map to under the generators. In the middle, we realise each change in
the triangulation by layering on a �at tetrahedron. The arrows are shown on
the bottom and top of the stack of two tetrahedra to show the gluing. On the
right, we see the edges after the identi�cations induced by gluing the top to
the bottom. There are two tetrahedra and two edges in the triangulation, one
of degree two (shown with a dashed line) and the other of degree ten.
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Following the caption of Figure 4, we obtain a triangulation of the complement of the trefoil
consisting of two tetrahedra. The matrix form of the generalised angle structure equations
for this triangulation is 

1 1 0 0 0 0
1 1 2 2 2 2
1 0 1 0 1 0
0 1 0 1 0 1



Z1

Z2

Z ′1
Z ′2
Z ′′1
Z ′′2

 =


2π
2π
π
π

.
There is a taut structure given by choosing angles (π, π, 0, 0, 0, 0)T . This assigns the angle

π to the quad types facing the degree 2 edge and 0 to all other angles. This taut structure is
compatible with the layering construction. By Theorem 1.5, this triangulation is 1�e�cient.
It is easy to see that there are no other semi-angle structures for this particular triangu-

lation, because of the degree 2 edge. However, consistent with Theorem 1.2, it admits an
index structure. To see this, we have to produce a generalised angle structure for each of
the 32 = 9 possible quad-choices. However, by symmetry of the matrix we can reduce this
number to three, represented by the following three pairs of conditions that must be satis�ed
by three generalised angle structures.

(Z1 > 0, Z2 > 0), (Z1 > 0, Z ′2 > 0), (Z ′1 > 0, Z ′2 > 0)

These three representatives are all satis�ed by, for example, (π, π, x, x,−x,−x)T for any
x > 0.

Note that there is a well-known 6-fold cyclic covering by the bundle which is a product
of a once punctured torus and a circle. This covering is toroidal so we see that there is an
index structure on the trefoil knot space but not on this covering space.

e1

e2

a

b

q

Figure 5. Part of a triangulation that does not admit an index structure,
and part of the corresponding surface. The edge e1 is degree 1, so the two
faces incident to it are identi�ed (indicated by the arrows).
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Example 3.7. We give an example of a subset of a triangulation consisting of two tetrahedra
identi�ed in a particular way. Namely, we have a tetrahedron σ1 with opposite edges e1 of
degree 1 and e2 of degree 2, and another tetrahedron σ2 which is the second tetrahedron
incident to e2. See Figure 5. If these tetrahedra are part of any ideal triangulation with
torus boundary components then that triangulation will not have an index structure, and
will have a normal torus that is not vertex-linking, so it is not 1�e�cient.
First we show that there is no index structure. Since e1 is degree 1, for any generalised

angle structure the angle of σ1 at the quad type facing e1 must be 2π. This quad type also
faces e2. The angle of the quad type in σ2 facing e2 must add to 2π to give 2π, and so it
must be zero. Therefore this angle can never be strictly positive, and so there is no index
structure.
Next, we �nd the corresponding embedded normal torus. It has a single quadrilateral in

σ2, labelled q in Figure 5. Two of its triangles are in σ1, also shown. When the two identi�ed
faces of σ1 are glued to each other, the boundary of the shown surface consists of the two arcs
labelled a and b, on two of the boundary faces of σ2. Now consider the vertex�linking normal
torus T , given by the link of the vertex at which the endpoints of e2 meet. We complete our
surface into an embedded normal torus by deleting from T the normal triangles in σ1 and
σ2 at the endpoints of e2, and gluing the resulting boundary arcs to a and b. The resulting
surface is boundary parallel and so is a torus, but is obviously not vertex�linking since it
contains a quadrilateral.

4. A review of the index of an ideal triangulation

4.1. The tetrahedron index and its properties. In this section we review the de�nition
and the identities satis�ed by the tetrahedron index of [DGG13]. For a detailed discussion,
see [Garb].
The building block of the index IT of an ideal triangulation T is the tetrahedron index

I∆(m, e)(q) ∈ Z[[q1/2]] de�ned by

(5) I∆(m, e) =
∞∑

n=(−e)+

(−1)n
q

1
2
n(n+1)−(n+ 1

2
e)m

(q)n(q)n+e

where
e+ = max{0, e}

and (q)n =
∏n

i=1(1 − qi). If we wish, we can sum in the above equation over the integers,
with the understanding that 1/(q)n = 0 for n < 0.
The tetrahedron index satis�es the following linear recursion relations

(6a) q
e
2 I∆(m+ 1, e) + q−

m
2 I∆(m, e+ 1)− I∆(m, e) = 0

(6b) q
e
2 I∆(m− 1, e) + q−

m
2 I∆(m, e− 1)− I∆(m, e) = 0

and

(7a) I∆(m, e+ 1) + (qe+
m
2 − q−

m
2 − q

m
2 )I∆(m, e) + I∆(m, e− 1) = 0

(7b) I∆(m+ 1, e) + (q−
e
2
−m − q−

e
2 − q

e
2 )I∆(m, e) + I∆(m− 1, e) = 0
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and the duality identity

(8) I∆(m, e)(q) = I∆(−e,−m)

and the triality identity

(9) I∆(m, e)(q) = (−q
1
2 )−eI∆(e,−e−m)(q) = (−q

1
2 )mI∆(−e−m,m)(q)

and the pentagon identity

(10) I∆(m1− e2, e1)I∆(m2− e1, e2) =
∑
e3∈Z

qe3I∆(m1, e1 + e3)I∆(m2, e2 + e3)I∆(m1 +m2, e3) ,

and the quadratic identity

(11)
∑
e∈Z

I∆(m, e)I∆(m, e+ c)qe = δc,0 =

{
1 if c = 0
0 if c 6= 0

The above relations are valid for all integers m, e,mi, ei, c.

4.2. The degree of the tetrahedron index. The (minimum) degree δ(m, e) with respect
to q of I∆(m, e) is given by

(12) δ(m, e) =
1

2
(m+(m+ e)+ + (−m)+e+ + (−e)+(−e−m)+ + max{0,m,−e})

It follows that δ(m, e) is a piecewise quadratic polynomial shown in Figure 6.

e = 0

m = 0

e+m = 0

− em
2

m(e+m)
2 + m

2

e(e+m)
2 − e

2

Figure 6. The degree of the tetrahedron index I∆(m, e). Here the positive
m axis is to the right and the positive e axis is upwards.

The regions of polynomiality of δ(m, e) give a fan in R2 with rays spanned by the vectors
(0, 1), (−1, 0) and (1,−1). An important feature of δ is that it is a convex function on rays.

4.3. Angle structure equations. Recall the equations for a generalised angle structure as
given in De�nition 2.13. In this section, we will refer to the angle variables within the ith
tetrahedron, α(qi), α(q′i), α(q′′i ), as Zi, Z

′
i, Z

′′
i respectively.

We can view a quad-choice Q for T (as in De�nition 2.12) as a choice of pair of opposite
edges at each tetrahedron ∆i for i = 1, . . . , N . The quad-choice Q can be used to eliminate
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one of the three variables Zi, Z
′
i, Z

′′
i at each tetrahedron using the relation Zi +Z ′i +Z ′′i = π.

Doing so, equations (3) take the form

AZ + BZ ′′ = πν ,

where ν ∈ ZN . (For example, if we eliminate the variables Z ′i then A = A−B, B = C−B
and ν = 2(1, . . . , 1)T −B(1, . . . , 1)T .
The matrices (A|B) have some key symplectic properties, discovered by Neumann-Zagier

whenM is a hyperbolic 3-manifold (and T is well-adapted to the hyperbolic stucture) [NZ85],
and later generalised to the case of arbitrary 3-manifolds in [Neu92]. Neumann-Zagier show
that the rank of (A|B) is N − r, where r is the number of boundary components of M ; all
assumed to be tori.

4.4. Peripheral equations. Assume �rst, for simplicity, that ∂M consists of a single torus,
and let $ be an oriented simple closed curve in ∂M that is in normal position with respect
to the induced triangulation T∂ of ∂M . Let

(13) (a$|b$|c$) = (ā$,1 . . . , ā$,N | b̄$,1, . . . , b̄$,N | c̄$,1, . . . , c̄$,N)

denote the vector in Z3N computed as follows. See Figure 7.

Vertex 0Vertex 1

Vertex 2 Vertex 3
Z

Z

Z ′
Z ′

Z ′′ Z ′′

b̄0$

ā0
$

c̄0$

c̄3$b̄3$

ā3
$

c̄2$ b̄2$

ā2
$

ā1
$

b̄1$
c̄1$

Figure 7. Each term of the �turning number� vector (a$|b$|c$) is calculated
as a sum of the signed number of times the curve $ turns anticlockwise around
the corners of the triangular ends of the truncated tetrahedra. Edges and arcs
on the back side of the tetrahedron are drawn with dashed lines.

The term āl$ counts the signed number of normal arcs of $ that turn anticlockwise around
the corner of the truncated tetrahedron associated to the variable Z, at vertex number l of
this tetrahedron. The entry in the vector a$ for this tetrahedron is

∑3
l=0 ā

l
$, and similarly

for the b$ and c$ terms. We suppress the vertex number superscripts from now on, since
this data is implied by the location of the labels in the �gures.
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If we eliminate Z ′j using Zj + Z ′j + Z ′′j = π, then we obtain the vector in Z2N

(14) (a$|b$) = (a$ − b$|c$ − b$)

as well as the scalar

(15) ν$ = −
N∑
j=1

b$,j.

Similarly, we can de�ne �turning number� vectors (a$|b$|c$) ∈ Z3N and (a$|b$) ∈ Z2N for
any oriented multi-curve $ on ∂M (i.e. a disjoint union of oriented simple closed normal
curves on ∂M).
More generally, suppose that M is a 3-manifold whose boundary ∂M consists of r ≥ 1

tori T1, . . . , Tr. Let $ = ($1, . . . , $r) where $h is an oriented multi-curve on Th for each
h = 1, . . . , r. Then we will use the notation

(16) (a$|b$|c$) =
r∑

h=1

(a$h
|b$h
|c$h

), (a$|b$) =
r∑

h=1

(a$h
|b$h

), and ν$ =
r∑

h=1

ν$h
.

Remark 4.1. Suppose that $ = Ci is a small linking circle on ∂M around one of the two
vertices at the ends of the ith edge, with Ci oriented anticlockwise as viewed from a cusp of
M . Then

(a$|b$|c$) = (āi1 . . . , āiN | b̄i1, . . . , b̄iN | c̄i1, . . . , c̄iN)

gives the coe�cients of the ith edge equation as a special case of this construction.

4.5. The index of an ideal triangulation. Suppose thatM is a 3-manifold whose bound-
ary ∂M consists of r ≥ 1 tori T1, . . . , Tr, and let T be an ideal triangulation of M . Let
$ = ($1, . . . , $r) be a collection of oriented peripheral curves as above. By Theorem 4.3,
proved below, we can order the edges of T so that the �rst N−r rows of the Neumann-Zagier
matrix (A | B) form an integer basis for its integer row space (i.e. the Z-module of all linear
combinations of its rows with integer coe�cients). Then we de�ne

(17) IT($)(q) =
∑

k∈ZN−r⊂ZN

(−q
1
2 )k·ν+ν$

N∏
j=1

I∆(−b$,j − k · bj, a$,j + k · aj) .

where aj and bj for j = 1, . . . , N denote the columns of A and B, and

ZN−r =
{

(k1, . . . , kN) ∈ ZN : kj = 0 for j > N − r
}
.

It can be checked that this de�nition is independent of the quad choice involved in forming
(A | B); see (25). It is also independent of the choice ofN−r edges used to produce an integer
basis for the integer row space of the Neumann-Zagier matrix, by Remark 4.6. In the case of
a 1-cusped manifoldM , any N−1 edges can be used; in other words we could replace the do-
main of summation ZN−1 by any of the coordinate hyperplanes

{
(k1, . . . , kN) ∈ ZN : ks = 0

}
with s ∈ {1, . . . , N}. In general, we choose a set B of N − r basic edges whose correspond-
ing rows we sum over, for example by using Theorem 4.3. Equivalently, we choose the
complementary set X of excluded edges.
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Theorem 4.7 below shows that the index is unchanged by an isotopy of $ so only depends
on the homology class

[$] =
[∑

$i

]
∈ H1(∂M ; Z) =

N⊕
i=1

H1(Ti; Z).

So the index gives a well-de�ned function

IT : H1(∂M ; Z) −→ Z((q1/2)) where IT([$]) = IT($).

If M is a 1-cusped manifold M , and µ and λ in H1(∂M ; Z) are a �xed oriented meridian
and longitude on ∂M (a canonical choice exists when M is the complement of an oriented
knot in S3). Then we can write

(18) [$] = −mλ+ eµ

for integers e,m. The naming of the integers e and m (electric and magnetic charge) and
the above choice of signs was chosen to make our index compatible with the de�nition of
[DGG13] and [Garb].

4.6. Choice of edges in the summation for index. Let M be an orientable 3-manifold
with r ≥ 1 torus cusps and let T be an ideal triangulation of M with N tetrahedra and,
hence, N edges which we denote e1, . . . , eN . Let G be the 1-skeleton T(1) of T together with
one (ideal) vertex for each cusp of M . Note that G has r vertices and N edges, and may
contain loops (i.e. edges with both ends at a single vertex) or multiple edges between the
same two vertices. The incidence matrix C = (chi) for G is an r×N matrix whose (h, i) entry
gives the number of ends of edge i on cusp h. Note that each chi ∈ {0, 1, 2} and the sum of
entries is 2 in each column of C. Let E(ei) = Ei ⊂ Z2N be the edge equation coe�cients
corresponding to edge ei in T, and let

(19) Λ =

{∑
k∈ZN

kiEi

}
⊂ Z2N

be the lattice of all integer linear combinations of these. In other words, Ei is the ith row of
the Neumann-Zagier matrix (A | B), and Λ is the integer row space of this matrix.
From the work of Neumann and Zagier (see [NZ85] and [Neu92, Thm 4.1]), the lattice

Λ has rank N − r and the matrix C gives the linear relations between the edge equation
coe�cients Ei ∈ Z2N . More precisely,

(20)
∑
i

chiEi = 0 for all h = 1, . . . , r

and any other linear relation between the Ei arises from a real linear combination of the
rows of C.

De�nition 4.2. A subset of the edges of a graph Γ is a maximal tree with 1- or 3-cycle in Γ
if (together with the vertices) it consists of any maximal tree T together with one additional
edge that either (1) is a loop at one vertex, or (2) forms a 3-cycle together with two edges
in T .
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Theorem 4.3. There exists an integer basis for Λ consisting of N − r of the edge equation
coe�cients E1, . . . , EN . In fact, we can choose such a basis by omitting r edge equations
corresponding to a maximal tree with 1- or 3-cycle in G.

Remark 4.4. In other words, we can choose any maximal tree with 1- or 3- cycle for our set
X of excluded edges, and hence choose the remaining edges as our set B of basic edges.

This result and its proof were inspired by Je� Weeks' argument in [Wee85, pp. 35�36].

Proof. First we show that we can �nd a maximal tree with 1- or 3-cycle. If there exists a loop
in G we use this loop together with any maximal tree. If not, any face of the triangulation
has its ideal vertices on 3 distinct cusps. Pick two edges of this face and extend these to a
maximal tree T ⊂ G. Adding the third edge of the face gives the desired subgraph.
Now let S be a maximal tree with 1- or 3-cycle. Next we show that the N − r equations

E(e) corresponding to the edges e /∈ S give an integer basis for Λ. We show that for each
s ∈ S, the equation E(s) can be written as an integer linear combination of the equations
E(e) with e /∈ S. Given this, the N − r equations E(e) with e /∈ S form an integer spanning
set for Λ. The work of Neumann and Zagier ([NZ85] and [Neu92, Thm 4.1]), implies that
these equations are also linearly independent, hence form an integer basis for Λ, and we are
done.
So, we have to show that every E(s) can be written as an integer linear combination of

the E(e) for e /∈ S. To organise the construction, we use the following sequence of decorated
graphs. At each step we have a graph Gk whose edges are labelled by names of edges of G.
We decorate each end of each edge of Gk with a sign. Each vertex v of Gk is then incident
to a set of ends of edges with signs. We list the names of the edges, together with the sign
associated to this end: {(eiv(1), εv(1)), (eiv(2), εv(2)), . . . , (eiv(d), εv(d))}. Here d is the degree
of the vertex v. To this vertex we associate the equation

Rk(v) =
d∑
l=1

εv(l)E(eiv(l)) = 0.

For each Gk we have a subset Sk of the edges of Gk which is a maximal tree with 1-or
3-cycle in Gk. We set G0 = G and S0 = S, with all signs set to +. Note that the equations
associated to the vertices of G0 are then the same as those given by (20).
We obtain the graph and edge subset (Gk+1, Sk+1) from (Gk, Sk) as follows. We arbitrarily

choose a vertex v of Gk that has only one end of one edge s of Sk incident. If there are no
such vertices then the sequence ends at (Gk, Sk). Let w be the other end of s, which by
assumption is distinct from v. The graph Gk+1 is the result of collapsing the edge s of Gk;
the two ends of s, v and w, are identi�ed in Gk+1. We label the edges of Gk+1 with the same
names as in Gk and set Sk+1 = Sk \ {s}. All of the signs decorating Gk+1 are the same as
in Gk, except that the ends of edges that were incident to v have their signs �ipped. See
Figure 8.
Note that at each step of the sequence, both ends of each element of Sk have a + sign,

since they do in G0 and we never collapse an edge from a vertex with more than one incident
edge end in S. Consider the equations associated to the vertices of Gk and Gk+1. We have
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Figure 8. Collapsing the edge s �ips the signs on the ends of the edges
incident to v. Edges in S are drawn dashed.

Rk(v) = +E(s)+
∑

l,eiv(l) 6=s

εv(l)E(eiv(l)) = 0, Rk(w) = +E(s)+
∑

m,eiw(m) 6=s

εw(m)E(eiw(m)) = 0.

If we use Rk(v) to solve for E(s) we get

E(s) =
∑

l,eiv(l) 6=s

−εv(l)E(eiv(l)).

Substituting this into Rk(w) gives∑
l,eiv(l) 6=s

−εv(l)E(eiv(l)) +
∑

m,eiw(m) 6=s

εw(m)E(eiw(m)) = 0.

This is the equation associated to the vertex of Gk+1 formed by the identi�cation of v with
w. Thus, the sequence of graphs gives an expression for E(s) for each edge s ∈ S which is
removed.
This expression is an integer linear combination of the E(e) for e /∈ S. The sequence ends,

at GK say. By construction GK has no vertices for which only one end of an edge of S is
incident. If we are in case (1) of De�nition 4.2 then GK has one vertex, SK has one edge
and GK looks like Figure 9 (left). If we are in case (2) then GK has three vertices, SK has
three edges, and GK looks like Figure 9 (right).
In the �rst case, the equation from the last vertex is of the form

2E(s) +
∑

l,ei(l)6=s

ε(l)E(ei(l)) = 0.
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(b) The last graph when S has a
3-cycle.

Figure 9. The last graph in the sequence has one of these two forms.

Notice that since all edges are now loops, each E(ei) appears with total coe�cient either
−2, 0 or 2. So we can divide the entire equation by 2, and get E(s) as an integer linear
combination of the E(ei).
The second case is slightly more complicated. We have three vertices x, y, z, with three

edges sx, sy, sz ∈ S connecting the vertices into a triangle. The three vertices give equations
of the form

E(sy) + E(sz) +X = 0, E(sz) + E(sx) + Y = 0, E(sx) + E(sy) + Z = 0,

where X, Y, Z are terms coming from the edges not in S. We can solve these equations for
E(sz) as

2E(sz) = −X − Y + Z,

and the other two expressions similarly. We just have to show that −X − Y + Z has even
coe�cients, and then we will be done. As before, any loops contribute a coe�cient in
{−2, 0, 2} to one of X, Y or Z. For edges with the same endpoints as one of sx, sy or sz, their
coe�cients are 1 or −1 at two of X, Y and Z and 0 at the third. Thus their contribution to
−X − Y +Z is also in {−2, 0, 2}, and so −X − Y +Z has even coe�cients, as required. �

Example 4.5. The following example shows that the edges omitted must be chosen carefully
in the multi-cusped case. Let M be the Whitehead link complement (with the triangulation
given by m129 in SnapPy notation). Then the matrix of edge equations is

(A | B) =


2 −1 1 1 1 −2 0 0
−1 0 0 0 −1 1 1 1
0 1 −1 −1 1 0 −2 −2
−1 0 0 0 −1 1 1 1


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The cusp incidence matrix is

C =

(
1 2 1 0
1 0 1 2

)
and the corresponding graph G is shown in Figure 10.

e1 e3

e0

e2

c0 c1

Figure 10. The graph of edges and cusps for the Whitehead link.

The rows E0, E1, E2, E3 of (A | B) satisfy the relations:

E0 + 2E1 + E2 = 0 (from cusp 0)

and
E0 + E2 + 2E3 = 0 (from cusp 1),

which imply that E1 = E3.

It follows that E0, E1 are linearly independent and form an integer basis for the Z-span of
{E0, E1, E2, E3}. (This basis corresponds to removing the edge e2 in a maximal tree and an
additional loop e3.)
On the other hand, E0, E2 are also linearly independent and 2E1 is in the Z-span of
{E0, E2} but E1 is not in Z-span of {E0, E2}. So Z-span{E0, E2} is an index 2 subgroup in
Z-span{E0, E1}. Thus, a summation using E0, E2 will most likely give a di�erent result for
the index than using E0, E1.

4.7. A reformulation of the de�nition of the index. It is sometimes convenient to work
with a slight variation on the tetrahedral index function (5). Whenever a− b, b− c ∈ Z we
de�ne

(21) J∆(a, b, c) = (−q
1
2 )−bI∆(b−c, a−b) = (−q

1
2 )−cI∆(c−a, b−c) = (−q

1
2 )−aI∆(a−b, c−a).

Note that the above expressions are equal by the triality identity (9) for I∆, and by using the
duality identity (8), it follows that J∆ is invariant under all permutations of its arguments.
Further, we have

(22) J∆(a+ s, b+ s, c+ s) = (−q
1
2 )−sJ∆(a, b, c) for all s ∈ R.

We also note that the quadratic identity (11) can be rewritten in the form

(23)
∑
a∈Z

J∆(a, b, c)J∆(a+ x, b, c) qa = δx,0.

This follows since

LHS =
∑
a∈Z

(−q1/2)−bI∆(b− c, a− b) (−q1/2)−bI∆(b− c, a− b+ x) qa

=
∑
e∈Z

I∆(m, e)I∆(m, e+ x) qe = δx,0
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by (11) with m = b− c and e = a− b.

Now suppose thatM is a 3-manifold whose boundary ∂M consists of r ≥ 1 tori. Let A, B
and C be the matrices of angle structure equation coe�cients as in De�nition 2.13, and let
āj, b̄j, c̄j for j = 1, . . . N denote the columns of A, B and C respectively. For each k ∈ ZN

and oriented multi-curve $ in ∂M representing a homology class [$] ∈ H1(∂M,Z), let

āj(k, $) = k · āj + ā$,j, b̄j(k, $) = k · b̄j + b̄$,j, c̄j(k, $) = k · c̄j + c̄$,j,

and
aj(k, $) = āj(k, $)− b̄j(k, $), bj(k, $) = c̄j(k, $)− b̄j(k, $).

Then the de�nition (17) of the index of the triangulation T of a manifoldM can be written

(24) IT($)(q) =
∑

k∈ZN−r⊂ZN

(−q
1
2 )k·ν+ν$

N∏
j=1

I∆(−bj(k, $), aj(k, $)) ,

where the sum is over k in any coordinate plane ZN−r ⊂ ZN corresponding to a set B of
N − r basic edges as given by Theorem 4.3.
Let k = (k1, . . . , kN), ν = (ν1, . . . , νN) and let b̄ij be the (i, j) entry of B. Then we have

k · ν =
∑
i

kiνi =
∑
i

2ki −
∑
i,j

kib̄ij =
∑
i

2ki −
∑
j

k · b̄j

and ν$ = −
∑
b̄$,j, so

k · ν + ν$ =
∑
i

2ki −
∑
j

b̄j(k,$).

Hence, grouping together the contributions from tetrahedron j, we have

IT($)(q) =
∑

k∈ZN−r

q
P

i ki

∏
j

(−q
1
2 )−b̄j(k,$)I∆(b̄j(k, $)− c̄j(k, $), āj(k, $)− b̄j(k, $))

=
∑

k∈ZN−r

q
P

i ki

∏
j

J∆(āj(k, $), b̄j(k, $), c̄j(k, $)),(25)

where ZN−r ⊂ ZN corresponds to a set B of N − r basic edges as given by Theorem 4.3.
In particular, this expression shows that the index does not depend on the quad-choice

used in the original de�nition.

Remark 4.6. Next we show that the de�nition of index in (17) does not depend on the choice
of integer basis for the integer row space Λ ⊂ R2N of the Neumann-Zagier matrix (A | B).
Each x ∈ Λ can be written in the form

(26) x =
∑
i

kiEi

where Ei is the ith row of (A | B) and k = (k1, . . . , kN) ∈ ZN . We claim that the expression

(27) J(x,$) = q
P

i ki

∏
j

J∆(āj(k, $), b̄j(k, $), c̄j(k, $))

is well-de�ned, depending only on x ∈ Λ and not on the choice of k in (26).



26 STAVROS GAROUFALIDIS, CRAIG D. HODGSON, J. HYAM RUBINSTEIN, AND HENRY SEGERMAN

To see this, consider the linear map ψ : RN → R2N de�ned by ψ(k1, . . . , kN) =
∑

i kiEi
and let 〈C〉 ⊂ RN be the real subspace generated by the cusp relation vectors (ch1, . . . , chN)
where the cusp index h varies over {1, . . . , r}. Then ψ(〈C〉) = 0 by the cusp relations (20),
and the work of Neumann and Zagier ([NZ85, Neu92]) also shows that dim Imψ = N− r and
dim〈C〉 = r where r is the number of cusps. Hence 〈C〉 = kerψ.
So if x =

∑
i kiEi =

∑
i k
′
iEi where k

′ = (k′1, . . . , k
′
N) ∈ RN then k′ = k+c where c ∈ 〈C〉.

We claim that replacing k by k′ does not change the expression (27). To see this, suppose we
replace k by k′ where k′i = ki + schi for i = 1, . . . , N and s ∈ R. Then the term q

P
i ki in (27)

is multiplied by qsnh where nh is the number of vertices in the triangulation of cusp h, while
āj(k, $), b̄j(k, $), c̄j(k, $) are increased by s for each triangle of tetrahedron j lying in the
cusp h. By (22), this changes

∏
j J∆(āj(k, $), b̄j(k, $), c̄j(k, $)) by a factor (−q1/2)−2snh

since there are 2nh triangles on cusp h. Hence the right hand side of (27) does not change.
We conclude that the expression for index in (25) can be rewritten in the form

(28) IT($) =
∑
x∈Λ

J(x,$)

and so does not depend on a choice of basis for Λ. Further, we can evaluate IT($) by
choosing an integer basis for Λ corresponding to a set of basic edges as given by Theorem
4.3, and we recover the de�nition of index in (17).
It also follows that we can write the index in the form

(29) IT($) =
∑
k∈S

q
P

i ki

∏
j

J∆(āj(k, $), b̄j(k, $), c̄j(k, $)),

where S ⊂ ZN is any complete set of coset representatives for (ZN + 〈C〉)/〈C〉 ⊂ RN/〈C〉.

4.8. Invariance of index under isotopy of peripheral curve.

Theorem 4.7. Let $ be an oriented simple closed curve $ in ∂M which is a normal curve
relative to the triangulation T∂ of ∂M . Then the index IT($) is invariant under isotopy of
the curve $ in ∂M .

Proof. Suppose we have two isotopic oriented normal curves $1, $2. Then we can convert
one into the other via a sequence of moves (and their inverses) of the form shown in Figure
11. That is, we choose a point p on the curve $ and an arc α, disjoint from $ other than at
p, and which joins p to either a vertex or a point in the interior of an edge of T∂. We then
push the curve along and in a regular neighbourhood of α over the vertex or edge.
We will show that IT($) is invariant under these moves. Note that the result of these

isotopies will not in general be normal curves, so we need to extend the de�nition of the
index to deal with these cases as well. The class of curves we work in consists of oriented
simple closed curves, transverse to T

(1)
∂ and disjoint from T

(0)
∂ . For our purposes we will deal

only with curves that are non trivial in H1(∂M), and so none of our curves is disjoint from

T
(1)
∂ . Given such a curve, it enters a triangle somewhere on one edge, and can exit out either

of the two other edges, or the same edge that it entered, either to the left or the right of its
entry point. Thus there are four ways in which a component of a curve intersects a given
triangle. These contribute to the index in the following way. See Figure 12.
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Figure 11. The two kinds of isotopy moves on a curve relative to the trian-
gulation of ∂M .

+ − ⊕ 	

Figure 12. The four ways in which a curve can travel through a triangle.
We call the last two possibilities a positive backtrack and negative backtrack
respectively.

If the curve turns either left or right around a corner of the triangle then it contributes
to the index in exactly the same way as for a normal curve: we add +1 to the entry in the
vector (ā$|b̄$|c̄$) corresponding to the angle at the edge of the tetrahedron we are turning
around if we are going anticlockwise around the corner, and add −1 if we are going clockwise.
Compare with Figure 7.
Here we de�ne the e�ect of backtracks on the index calculation: (This is, of course, chosen

in such a way as to be consistent with the index calculated with curves without backtracks.)
We do not change the vector (ā$|b̄$|c̄$). These backtracks only alter the power of (−q1/2),
either multiplying the expression by (−q1/2) for a positive backtrack (turning to the left),
or by (−q1/2)−1 for a negative backtrack (turning to the right). We indicate these using the
symbols ⊕ and 	.
Note that by (22), a positive backtrack has the same e�ect on the index as anticlockwise

turns around each of the three corners of a triangle. Note also that by (25), an anticlockwise
loop around a vertex of the triangulation produces a power of (−q1/2)2. This follows since
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adding an anticlockwise loop around an end of the ith edge has the e�ect of shifting the sum
by one in the ki component. The terms are unchanged after shifting other than the term
q

P
i ki , and the e�ect is to multiply the index by q.
Thus an anticlockwise loop around a vertex is cancelled by two negative backtracks, and

anticlockwise turns around each of the three corners of a triangle are cancelled by one negative
backtrack.
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+
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Figure 13. Four cases of isotopy across a vertex and six cases of isotopy
across an edge. All other cases are symmetries of these.

Now all we need to do is to show that each version of the moves from Figure 11 preserves
the index, using the above rules. There are di�erent versions of the isotopy moves depending
on where the curve we are acting on enters or exits the triangle. We show the possibilities
in Figure 13. Here the +,−,⊕ and 	 signs show the di�erence in the index calculation



1-EFFICIENT TRIANGULATIONS AND THE INDEX OF A CUSPED HYPERBOLIC 3-MANIFOLD 29

under the isotopy as we change from one curve to the other in the direction following the
double head arrow. Note that reversing the arrow on the curve �ips all of the signs, as does
re�ecting the picture. With combinations of these symmetries applied to the ten cases shown
we obtain all possible ways in which the isotopy can be made relative to the position of the
curve. Considering each case in turn, we can see that the signs cancel out and so the index
is unchanged by these moves.
For example, consider the second diagram in the top row of Figure 13. We start with a

curve that enters the right side of the triangle and exits the bottom. We isotope this curve
by pushing it over the top vertex of the triangle. This has the following e�ects:

• Remove an anticlockwise turn around the lower right corner of the triangle, this
changes the coe�cient at that angle by −1.
• Add a negative backtrack to the right edge of the triangle.
• Add an anticlockwise turn around each of the angles at the top vertex of the triangle
other than the top corner of the triangle itself.
• Add a clockwise turn around the lower left corner of the triangle.

We view the top corner of the triangle as having both a + and a −, so that the total change
in the index calculation consists of one anticlockwise turn around a vertex, one negative
backtrack and clockwise turns around each of the three corners of the triangle. By our above
rules, these cancel out and so the index is unchanged. �

Remark 4.8. These calculations are exactly analogous to those for calculating the holonomy
of a peripheral curve given shapes of ideal hyperbolic tetrahedra satisfying Thurston's gluing
equations. Thus this argument can easily be adapted to reprove the well-known fact that
the holonomy is independent of the choice of simple closed curve representing an element of
H1(∂M ; Z).

5. Invariance of index under the 0�2 move

Let M be a cusped 3-manifold and consider the 0�2 move on a pair T and T̃ of ideal
triangulations of M with N and N + 2 tetrahedra, as shown in Figure 14.

Theorem 5.1. Suppose that T and T̃ are ideal triangulations related by a 0�2 move and both
admit an index structure. Then, for any [$] ∈ H1(∂M ; Z), IT([$]) = IeT([$]).

Proof. Our assumptions imply that both IT and IeT exist. We now compare these indices
using the alternative de�nition (25) and quadratic identity (23).

We use the labelling of the two bigons and triangles on T̃ shown in Figure 14. Let Ti for
i = 3, . . . , N+2 denote the tetrahedra in T, and let T1, T2 be the additional tetrahedra added

in T̃. Note that the edge e in T splits into two edges e′, e′′ in T̃, and there is another new

edge ẽ in T̃. We abuse notation by identifying the symbols for the corresponding remaining

edges in T and T̃. We denote these as e1, . . . , eN−1.

Let k̃ ∈ ZN+2 be a weight function on the edges of T̃ and write k̃ = (k′, k′′, k̃, k1, . . . , kN−1)

where k′, k′′, k̃, ki are the values of k̃ on e′, e′′, ẽ and ei respectively. Similarly, let k =
(k, k1, . . . , kN−1) ∈ ZN be a corresponding weight function on T. We choose label āj on the
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ee

e2 e4

e1 e3

e2 e4

e1 e3

e′

e′′

ẽ

ā2 ā1

c̄2

b̄2

b̄1

c̄1

ā1 ā2

c̄1

b̄1

b̄2

c̄2

ā1c̄1 b̄1

ā2b̄2 c̄2

ā2c̄2 b̄2

ā1b̄1 c̄1

Figure 14. The 0�2 move shown with truncated tetrahedra. The four trian-
gulated ends of the new pair of tetrahedra are shown. All of the �zoomed in�
pictures are as seen from viewpoints outside of the pair of tetrahedra. The
labels at the corners of the triangles in the �zoomed in� pictures are explained
in Section 4.4.

edge ẽ on tetrahedron Tj for j = 1, 2; then the location of labels b̄j, c̄j are determined using
the orientation on M .
Let $ be an oriented multi-curve which is normal with respect to the triangulation

T∂ of ∂M induced by T, and let $̃ an oriented multi-curve which is normal with re-

spect to T̃∂ and represents the same homology class [$] ∈ H1(∂M ; Z). Let J(Tj,k, $) =
J∆(āj(k, $), b̄j(k, $), c̄j(k, $)) denote the contribution of tetrahedron Tj to the index with
weight function k on its edges and peripheral curve $ on its truncated ends, and similarly

let J(Tj, k̃, $̃) be contribution with weight function k̃ and peripheral curve $̃.
To compute IT we use Theorem 4.3 to choose an excluded set X of r edges in a maximal

tree with 1- or 3-cycle in T to be omitted from the summation in (25).
Case 1: If e /∈ X we can order the edges of T so that X = {eN−r, . . . , eN−2, eN−1}. Then

we can compute IeT by omitting the same edge set X̃ = X.
Case 2: If e ∈ X we can order the edges so X = {e, eN−r+1, . . . , eN−2, eN−1}. Then we can

compute IeT by omitting the edge set X̃ = {e′′, eN−r+1, . . . , eN−2, eN−1}.
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Then

(30) IeT($̃) =
∑
ek∈eS

qk
′+k′′+ek+

PN−1
i=1 ki J(T1, k̃, $̃)J(T2, k̃, $̃)

N+2∏
j=3

J(Tj, k̃, $̃),

where

S̃ =
{
k̃ = (k′, k′′, k̃, k1, . . . , kN−1) ∈ ZN+2 : kN−i = 0 for i = 1, . . . , r

}
in case 1

and

S̃ =
{
k̃ = (k′, k′′, k̃, k1, . . . , kN−1) ∈ ZN+2 : k′′ = 0, kN−i = 0 for i = 1, . . . , r − 1

}
in case 2.

Note that in both cases, the new edge ẽ is included in the set of basic edges so k̃ varies over
Z in the sum.
Now we look at the contribution to IeT coming from the tetrahedra T1, T2 and summed

over the weight k̃ on ẽ, namely

(31)
∑
ek∈Z

q
ekJ(T1; k̃, $̃)J(T2; k̃, $̃)

where

J(T1; k̃, $̃) = J∆(k′ + k̃ + āe$,1, k2 + k3 + b̄e$,1, k1 + k4 + c̄e$,1)

and

J(T2; k̃, $̃) = J∆(k′′ + k̃ + āe$,2, k1 + k4 + b̄e$,2, k2 + k3 + c̄e$,2).

Recall that $ be an oriented multi-curve which is normal with respect to the triangulation
T∂ of ∂M induced by T. Since the index only depends on the homology class of a peripheral
curve, we can calculate IeT([$]) by using for $̃ a corresponding curve on ∂M which is normal

with respect to T̃∂ and goes �straight through� each pair of added triangles on ∂M . See
Figure 15.
Then we have

āe$,1 = āe$,2 = 0, b̄e$,1 = c̄e$,2 = x, b̄e$,2 = c̄e$,1 = y,

for some x, y ∈ Z, and
āe$,j = ā$,j, b̄e$,j = b̄$,j, c̄e$,j = c̄$,j for j = 3, . . . , N + 2.

Using the invariance of J∆ under all permutations of its arguments and the quadratic
identity (23), the sum (31) becomes∑

ek∈Z

q
ekJ∆(k′ + k̃, k2 + k3 + x, k1 + k4 + y)J∆(k′′ + k̃, k1 + k4 + y, k2 + k3 + x) = q−k

′
δk′,k′′ .

This means that in the sum (30) we can remove the summation over k̃ and put k′ = k′′ = k.

Hence J(Tj, k̃, $̃) = J(Tj,k, $) for j = 3, . . . , N + 2, and

IeT($̃) =
∑
k∈S

qk+
PN−1

i=1 ki

N+2∏
j=3

J(Tj,k, $) = IT($),
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ā2 ā1

c̄2

b̄2

b̄1

c̄1

ā2c̄2 b̄2

ā1b̄1 c̄1

Figure 15. Changes in peripheral curve from $ in T∂ to $̃ in T̃∂. Note that
the curve in the top diagram could go either way around the new vertex.

where
S =

{
k = (k, k1, . . . , kN−1) ∈ ZN : kN−i = 0 for i = 1, . . . , r

}
in case 1

and

S =
{
k = (k, k1, . . . , kN−1) ∈ ZN : k = 0, kN−i = 0 for i = 1, . . . , r − 1

}
in case 2.

This completes the proof of invariance of the index under the 0�2 move. �

6. The XEP
M class of triangulations

6.1. Subdivisions of the Epstein�Penner decomposition. For a once-cusped hyper-
bolic 3�manifold M , the Epstein�Penner decomposition (see [EP88]) divides M into a �nite
number of ideal hyperbolic polyhedra. This subdivision is canonical, depending only on the
topology of the manifold, if M has a single cusp. If M has r ≥ 1 cusps, then the Epstein-
Penner cell decomposition is canonical up to the choice of a scale vector (t1, . . . , tr) with
t1, t2, . . . , tr > 0 giving the relative size of the cusps. The scale vector is well-de�ned up to
multiplication by a positive real number. For the purposes of de�ning our canonical set, we
can choose all ti to be the same.
Very often, the cells of the decomposition are all ideal tetrahedra, but other polyhedra

can occur. For many applications, including the use in this paper, we need a subdivision
of M into ideal tetrahedra only. It is well known that every cusped 3�manifold has a
decomposition into ideal tetrahedra, but one often needs more than a purely topological
structure on the tetrahedra. The Epstein�Penner decomposition, coming as it does with
a geometric structure, provides all of the nice geometric properties one could want. So,
in the cases when the cells of the decomposition are not themselves tetrahedra, we would
like to further subdivide the polyhedra into tetrahedra. However, there is no canonical
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way to subdivide, and it is not even clear if one can subdivide the various polyhedra in
a consistent way, so that the triangulations induced on the faces of the polyhedra match
when the polyhedra are glued to each other. In particular, it is still unknown whether every
cusped hyperbolic 3�manifold admits a geometric triangulation (that is, a subdivision into
positive volume ideal hyperbolic tetrahedra), either constructed by further subdividing the
Epstein�Penner decomposition or otherwise.
However, one can use the Epstein�Penner decomposition to produce an ideal triangulation

by subdividing the ideal polyhedra, if we also allow �at tetrahedra inserted between faces of
the polyhedra to bridge between incompatible triangulations of those faces. Such an ideal
triangulation has a natural semi-angle structure (see Remark 6.6), and so by Theorem 1.5
all of these triangulations are 1�e�cient.
To describe our triangulations more precisely, we use the same notation as in [HRS12].

De�nition 6.1. In this paper, the term polyhedron will mean a combinatorial object ob-
tained by removing all of the vertices from a 3-cell with a given combinatorial cell decom-
position of its boundary. We further require that this can be realised as a positive volume
convex ideal polyhedron in hyperbolic 3-space H3.

De�nition 6.2. An (ideal) polygonal pillow or n-gonal pillow is a combinatorial object
obtained by removing all of the vertices from a 3-cell with a combinatorial cell decomposition
of its boundary that has precisely two faces. The two faces are copies of an n-gon identi�ed
along corresponding edges.

De�nition 6.3. Suppose that P is a cellulation of a 3-manifold consisting of polyhedra
and polygonal pillows with the property that polyhedra are glued to either polyhedra or
polygonal pillows, but polygonal pillows are only glued to polyhedra. Then we call P a
polyhedron and polygonal pillow cellulation, or for short, a PPP-cellulation.

De�nition 6.4. Let t be a triangulation of a polygon. A diagonal �ip move changes t as
follows. First we remove an internal edge of t, producing a four sided polygon, one of whose
diagonals is the removed edge. Second, we add in the other diagonal, cutting the polygon
into two triangles and giving a new triangulation of the polygon.

De�nition 6.5. Let Q be a polygonal pillow, with triangulations t− and t+ given on its
two polygonal faces Q− and Q+. By a layered triangulation of Q, bridging between t− and
t+, we mean a triangulation produced as follows. We are given a sequence of diagonal �ips
which convert t− into t+. This gives a sequence of triangulations t− = L1, L2, . . . , Lk = t+,
where consecutive triangulations are related by a diagonal �ip. Starting from Q− with the
triangulation t− = L1, we glue a tetrahedron onto the triangulation L1 so that two of its
faces cover the faces of L1 involved in the �rst diagonal �ip. The other two faces together
with the rest of L1 produce the triangulation L2. We continue in this fashion, adding one
tetrahedron for each diagonal �ip until we reach Lk = t+, which we identify with Q+.

Our class of triangulations XEP
M of M consists of triangulations that are subdivisions

of PPP-cellulations. Our PPP-cellulation will have polyhedra being the polyhedra of the
Epstein-Penner decomposition. It also has a polygonal pillow inserted between all pairs of
identi�ed faces that have at least 4 sides. We will form our triangulations by �rst sub-
dividing the ideal hyperbolic polyhedra into positive volume ideal hyperbolic tetrahedra.
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Secondly, for each polygonal pillow, we insert any layered triangulation that bridges between
the induced triangulations of the two boundary polygons of the polyhedra to each side.

Remark 6.6. Any triangulation produced in the way described above has a natural semi�
angle structure. This comes from the shapes of the tetrahedra as ideal hyperbolic tetrahedra.
The dihedral angles of the positive volume ideal hyperbolic tetrahedra, together with 0 and
π angles for the �at tetrahedra in the layered triangulations in the polygonal pillows satisfy
all of the rules for a generalised angle structure, and all angles are in [0, π].

The natural semi�angle structure together with Theorem 1.5 show that each triangulation
in our class is 1-e�cient. However, we also need to show that our class is connected under
2�3, 3�2, 0�2 and 2�0 moves, and for this we will need some extra machinery. The main tool
we will use is the theory of regular triangulations of point con�gurations, following [DLRS10].

6.2. Regular triangulations. The concept of a regular triangulation comes from the study
of triangulations of convex polytopes in Rn. Here we are not dealing with topological trian-
gulations, where tetrahedra may have self-identi�cations or two vertices may have multiple
edges connecting them. Rather, the vertices are concrete points in Rn, the edges are straight
line segments in Rn and so on. In this context, a triangulation of a convex polytope is a
subdivision of the polytope into concrete Euclidean simplices. Roughly speaking, a triangu-
lation of a polytope in Rn is regular if it is isomorphic to the lower faces of a convex polytope
in Rn+1. The following series of de�nitions make this idea precise.

De�nition 6.7. An a�ne combination of a set of points (pj)j∈C in Rn is a sum
∑

j∈C λjpj
where

∑
j∈C λj = 1. A set of points is a�nely independent if none of them is an a�ne

combination of the others. A k�simplex is the convex hull of an a�nely independent set of
k + 1 points.

De�nition 6.8. A point con�guration is a �nite set of labelled points in Rn. Let A = (pj)j∈J
be a point con�guration with label set J . For C ⊂ J , the a�ne span of C in A is the set of
a�ne combinations of the set of points labelled by C. The dimension of C is the dimension
of the a�ne span of C. The convex hull of C in A is the convex hull in Rn of the set of
points labelled by C.

convA(C) :=

{∑
j∈C

λjpj | λj ≥ 0 for all j ∈ C, and
∑
j∈C

λj = 1

}
The relative interior of C in A is the interior of the convex hull in its a�ne span.

relintA(C) :=

{∑
j∈C

λjpj | λj > 0 for all j ∈ C, and
∑
j∈C

λj = 1

}
De�nition 6.9. With the above notation, if ψ ∈ (Rn)∗ is a linear functional, then the face
of C in direction ψ is the subset of C given by

faceA(C,ψ) :=

{
j ∈ C | ψ(pj) = max

b∈C
(ψ(pb))

}
If F is a face of C, we write F ≤A C and if in addition F 6= C we write F <A C.
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De�nition 6.10. With the above notation, a collection S of subsets of J is a polyhedral
subdivision of A if it satis�es the following conditions. (The elements of S are called cells.)

(1) If C ∈ S and F ≤ C then F ∈ S.
(2) ∪C∈SconvA(C) ⊃ convA(J).
(3) If C 6= C ′ are two cells in S then relintA(C) ∩ relintA(C ′) = ∅.

Remark 6.11. The �rst condition says that if some cell is in our subdivision then all faces
of it are also. The second condition says that it is a subdivision of the whole convex hull of
the points in A. The third condition says that the cells can only overlap with each other on
their faces, not their interiors.

De�nition 6.12. With the above notation, a triangulation of A is a polyhedral subdivision
of A such that every cell is a simplex.

De�nition 6.13. Let A = (pj)j∈J be a point con�guration with label set J . Suppose that
ω : A→ R is any map. The lifted point con�guration in Rn+1 is the point con�guration

Aω = (pωj )j∈J := (pj, ω(pj))j∈J

(again with label set J) given by adjoining to each vector an n + 1th coordinate given by
the value of ω at that point. Consider the set of faces of convAω(J). A lower face of this
convex hull is a face that is �visible from below�. That is, faceAω(J, ψ) is a lower face if ψ is
negative on the last coordinate.

De�nition 6.14. The regular polyhedral subdivision of A produced by ω, denoted S(A, ω),
is the set of lower faces of the point con�guration Aω.

Note that a face in these de�nitions is a set of labels for the point con�guration. So the
set of faces making up the polyhedral subdivision of A is de�ned in terms of Aω, but this
works because the same set of labels is used for the two point con�gurations. Lemma 2.3.11
of [DLRS10] shows that S(A, ω) is indeed a polyhedral subdivision of A, for every ω.

De�nition 6.15. A regular triangulation of A is a regular polyhedral subdivision of A that
is a triangulation of A.

Proposition 2.2.4 of [DLRS10] shows that every point con�guration has a regular trian-
gulation. The connection between regular triangulations of point con�gurations and our
situation can be made via the Klein model of H3. In this model, geodesics are represented
as straight lines in Euclidean space, E3. A convex ideal hyperbolic polyhedron is represented
as a convex Euclidean polyhedron whose vertices lie on a sphere. Such a Euclidean polyhe-
dron can be seen as a point con�guration, with the points consisting of the vertices of the
polyhedron. Note that this is a more restrictive situation than the full generality discussed
in [DLRS10] � since all the vertices lie on a sphere, there can be no internal points, and no
three points can lie on a line. These observations imply that the set of subdivisions of a
convex ideal hyperbolic polyhedron into (strictly positive) volume ideal hyperbolic tetrahe-
dra is in one-to-one correspondence with the set of triangulations of the convex Euclidean
polyhedron, in the sense of De�nition 6.12. The bijective map between the two sets preserves
the combinatorial structure of the triangulations.
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De�nition 6.16. Given the above discussion, we de�ne a regular ideal triangulation of a
convex ideal hyperbolic polyhedron to be an ideal triangulation of the polyhedron whose
corresponding Euclidean triangulation of the corresponding convex Euclidean polyhedron is
regular.4

We are now in a position to be able to de�ne our class of triangulations XEP
M .

De�nition 6.17. Let M be a cusped hyperbolic 3�manifold. Let P be the PPP�cellulation
of M derived from the Epstein�Penner decomposition of M (choosing equal volumes for the
cusps if there is more than one) by inserting polygonal pillows between any two non-triangular
faces of the decomposition. The class of triangulations XEP

M consists of all triangulations
constructed via the following method:

(1) Insert a regular ideal triangulation of each polyhedron P of P into P .
(2) Each polygonal pillow Q has two (not necessarily distinct) polyhedra P− and P+

glued to it. The regular ideal triangulations of P− and P+ induce triangulations t−
and t+ of the two polygonal faces of Q. Insert into Q a layered triangulation of Q,
bridging between t− and t+.

Note that although there are only �nitely many regular ideal triangulations of a given
convex ideal polyhedron, there may be in�nitely many triangulations in XEP

M , since the
layered triangulations can be arbitrarily long.

Remark 6.18. From the geometric construction, every triangulation of XEP
M has a natural

semi-angle structure, as in Remark 6.6, so they are all 1-e�cient by Theorem 1.5.

De�nition 6.19. The corank of a d�dimensional point con�guration with n points is the
number n− d− 1.

A point con�guration has corank zero if and only if it is a�nely independent. A point
con�guration has corank one if and only if it has a unique a�ne dependence relation. This
means that there is a unique solution to∑

j∈J

λjpj = 0 with
∑
j∈J

λj = 0, where at least one λj 6= 0.

Uniqueness is up to scaling all λ's by the same factor. The a�ne dependence divides J into
three subsets:

J+ := {j ∈ J | λj > 0}, J0 := {j ∈ J | λj = 0}, J− := {j ∈ J | λj < 0}.
(Which is which of J+ and J− is not well de�ned since we can multiply all of the coe�cients
by −1 to swap them.) Then relintA(J+) ∩ relintA(J−) is a single point, given by∑

j∈J+

λjpj =
∑
j∈J−

−λjpj,

where we have normalised the λ's so that∑
j∈J+

λj =
∑
j∈J−

−λj = 1.

4Note that this de�nition has no relation to the de�nition of a regular ideal hyperbolic tetrahedron, in
the sense of a tetrahedron with all dihedral angles being π/3.
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De�nition 6.20. Let A = (pj)j∈J be a point con�guration with label set J . A subset of J
is called a circuit, Z, if it is a minimal a�nely dependent set (i.e. it is dependent, but every
proper subset is independent).

In the above discussion, Z = J+ ∪ J−, and Z is partitioned into the two sets, Z+ = J+

and Z− = J− since if λj = 0 in the a�ne dependence then it could be removed from Z,
contradicting minimality.

In R3, �ve points in general position are a circuit, but there may be circuits with fewer
points. Four points are a circuit if they lie in a plane, three if they lie on a line, and two
if they are coincident. However, for our purposes the points are the vertices of a convex
Euclidean polyhedron, so we may assume that there are no repeated points. Moreover, the
points lie on a sphere, so no three lie on a line. Therefore, the only two possibilities are �ve
points in general position, or four points that lie on a plane, as shown in Figure 16.

−

+

−

+

+

+

+

−

−

Figure 16. Circuits with 4 and 5 elements.

Remark 6.21. For us then, the only possible corank one con�gurations are

(1) �ve points in general position, or
(2) four points in a plane, or
(3) four points in a plane plus one point not in that plane.

De�nition 6.22. Let S be a polyhedral subdivision that is not a triangulation. Then S is
an almost�triangulation if

(1) all of the cells of S have corank at most one, and
(2) all of the cells of S of corank one contain the same circuit.

Lemma 6.23. In our case, the 3�cells of an almost�triangulation are all simplices apart
from one or two 3�cells. These 3�cells can have the following forms:

(1) The convex hull of �ve points on a sphere, in general position, as in the upper diagram
of Figure 17.

(2) A 4�sided pyramid, with the base of the pyramid on a boundary face of the polyhedron,
as in the upper diagram of Figure 18a.

(3) Two 4�sided pyramids whose bases are coincident, as in the upper diagram of Figure
18b.
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Proof. This follows immediately from De�nition 6.22 and Remark 6.21. �

re�nement re�nement

�ip

Figure 17. The almost�triangulation in case (1) of Lemma 6.23, and its
two re�nements to triangulations. Note that although the top and lower left
pictures are identical, the top is to be interpreted as a single 3�cell, while
the lower left shows two tetrahedra meeting in a triangle. The associated �ip
between the two triangulations is a 2�3 �ip.

De�nition 6.24. Let S and S′ be two polyhedral subdivisions of a point con�guration A.
Then S is a re�nement of S′ if for each C ∈ S, there is a C ′ ∈ S′ with C ⊂ C ′.

Lemma 6.25 (Corollary 2.4.6 of [DLRS10]). Every almost�triangulation has exactly two
proper re�nements, which are both triangulations.

De�nition 6.26. Two triangulations of the same point con�guration are connected by a �ip
supported on the almost�triangulation S if they are the only two triangulations re�ning S.

De�nition 6.27. We call the �ips associated to the three possible almost�triangulation
types listed in Lemma 6.23 the 2-3 �ip, external 2�2 �ip, and internal 2�2 �ip respectively.
See Figures 17 and 18.

Remark 6.28. The internal 2-2 �ip acts on the triangulation by a move sometimes called the
4-4 move, as it removes four tetrahedra and replaces them with four others. However, here
we stick with the notation derived from the bistellar �ip terminology.

De�nition 6.29. The �ip graph of the point con�guration A is the graph whose vertices
are the triangulations of A and whose edges are triangulations connected by �ips.

We use the following result, due to Gelfand, Kapranov and Zelevinsky, and given as
Corollary 5.3.14 in [DLRS10].
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re�nement re�nement

�ip

v1

v2

v3

v4

(a) The almost�triangulation in
case (2) of Lemma 6.23, and its two
re�nements to triangulations.

re�nement re�nement

�ip

v1

v2

v3

v4

(b) The almost�triangulation in
case (3) of Lemma 6.23, and its two
re�nements to triangulations.

Figure 18. Almost�triangulations in cases (2) and (3) of Lemma 6.23, and
the associated 2�2 �ips. In all diagrams, vertices v1 through v4 are coplanar.

Theorem 6.30 (Gelfand, Kapranov and Zelevinsky [GKZ94]). Let A be a point con�gura-
tion. The subgraph of the �ip graph induced by all regular triangulations of A that use the
same vertices is connected.

In our case, since the vertices lie on a sphere, all vertices are used in every triangulation,
so this says that we can get from any regular triangulation of the polyhedron to any other
by performing �ips.

Remark 6.31. Our strategy for connecting two triangulations T1,T2 ∈ XEP
M is as follows.

Both triangulations consist of regular triangulations of the polyhedra of the PPP�cellulation,
together with layered triangulations in the polygonal pillows between them.

(1) Use Theorem 6.30 on each polyhedron, to change the triangulation of each polyhedron
in T1 into the corresponding triangulation of the polyhedron in T2. This step may
alter the triangulations of the polygonal pillows as well.

(2) Change the triangulation in each polygonal pillow of the resulting triangulation so
that it matches with the corresponding triangulation in T2. This step does not alter
the triangulations of the polyhedra.

6.3. Interpreting �ip moves using 2�3 moves. In order to carry out step (1) of our plan
in Remark 6.31, we will interpret the �ip moves in terms of the 2�3 and 3�2 moves allowed
in Theorem 1.1.
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(1) First, consider a 2�3 �ip in one polyhedron. This is simply a 2�3 move. Since the
triangulations on either side of the move are in XEP

M , they are both 1�e�cient by
Remark 6.18. Therefore the triangulations have the same index by Theorem 1.1.

(2) Second, consider an external 2�2 �ip. See Figure 19a. The base of the pyramid is on
a face of the polyhedron that is glued to a polygonal pillow. The two triangles on
the base of the pyramid are glued to either a single tetrahedron in the pillow, or two
tetrahedra in either the polygonal pillow or the polyhedron on the other side of the
polygonal pillow.
• If the two triangles are glued to a single tetrahedron then we are in the situation
shown in the top diagram of Figure 19a, and we can perform a 3�2 move, which
performs the �ip to the polyhedron, and removes the single tetrahedron from
the layered triangulation of the polygonal pillow.
• Otherwise, we perform a 2�3 move, which performs the �ip to the polyhedron,
and adds a �at tetrahedron to the layered triangulation of the polygonal pillow.
(Note that we could use only this move, even in the previous case; the di�erence
between the two options is a 0�2 move.)

Once again, the triangulations on either side of the move are in XEP
M , so they are both

1�e�cient and the triangulations have the same index.
(3) Lastly, consider an internal 2�2 �ip. See Figure 19b. We can perform a 2�3 move

followed by a 3�2 move, which together perform the �ip. Since the four vertices in
the circuit are coplanar, at the intermediate step we introduce a �at tetrahedron.
The intermediate triangulation is not in XEP

M , since it includes a �at tetrahedron in a
polyhedron, and so the polyhedron does not have a regular triangulation. However,
the intermediate triangulation still has a natural semi�angle structure in the obvious
way, and so it is 1�e�cient, and again the three triangulations involved all have the
same index.

The arguments so far show that we can achieve step (1) of Remark 6.31. Now we need to
deal with step (2).

6.4. Moving paths in the 1�skeleton of the associahedron using 2�3 and 0�2

moves. In order to carry out step (2) of our plan in Remark 6.31, we need to modify the
layered triangulations in the polygonal pillows. We will do this using the 2�3, 3�2, 0�2 and
2�0 moves allowed in Theorems 1.1 and 5.1.

Having completed step (1), we have two triangulations, T1 and T2, which agree on the
polyhedra but may di�er in the polygonal pillows. Let Q be a polygonal pillow. Since T1

and T2 agree on the polyhedra glued to either side of Q, they agree on the triangulations of
the polygonal faces Q+ and Q−. Call these triangulations t+ and t−.

The next well-known theorem concerns the identi�cation of the set of triangulations of
an n-gon with the vertices of the associahedron Kn−2, and the set of geometric bistellar
�ips with the edges of Kn−2. The associahedron Kn−2 was introduced by Stashe� [Sta63].
An identi�cation of Kn−2 with a convex polytope in Euclidean space was given in the ap-
pendix to [Sta97]. The cellular decomposition of the polytope Kn−2 (and in particular, its
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3�2

2�3

v1

v2

v3

v4

v1

v2

v3

v4

(a) Two possible ways to perform
an external 2�2 move, depending
on whether or not there is a suit-
able �at tetrahedron in the polygo-
nal pillow that the base of the pyra-
mid is glued to.

2�2

2�3 3�2

v1

v2

v3

v4

(b) An internal 2�2 �ip, obtained
by performing a 2�3 move followed
by a 3�2 move. At the intermediate
step we get a �at tetrahedron with
vertices v1 through v4.

Figure 19. The possible 2�2 moves on a triangulation of a point con�gura-
tion, realised using 2�3 and 3�2 moves. Again in each case, vertices v1 through
v4 are coplanar.

2-skeleton) is discussed at length in the above references and also in [Lod04]. The fact that
the 2-dimensional faces of the associahedron are squares and pentagons also follows from
MacLane's coherence theorem [Mac71]. A vast generalization of regular triangulations of
point con�gurations was studied by Gelfand-Kapranov-Zelevinsky, and in [GKZ94, Sec.7.3]
it is explained how to identify the secondary polytope of 2-dimensional con�gurations with
the associahedron.

Theorem 6.32. The set of triangulations of an n�gon and the set of diagonal �ips connecting
them correspond to the vertices and edges of a convex polytope called the associahedron. The
set of 2�cells of the associahedron consists of squares and pentagons. Each square corresponds
to two commuting diagonal �ips (as in De�nition 6.4) on two 4-gons whose interiors are
disjoint. Each pentagon corresponds to a pentagon relation between the �ve triangulations
of a pentagon. See Figure 20.

Our two layered triangulations of the polygonal pillow Q can be represented as two paths
p1 and p2 in the 1�skeleton of the associahedron that both start at the vertex corresponding to
t− and end at the vertex corresponding to t+. Since the fundamental group of the 2�skeleton
X(2) of a CW complex X satis�es π1(X(2)) = π1(X), it follows that the 2�skeleton of a
convex polytope is simply connected, and every loop along the 1-skeleton can be trivialized
by moving pieces of it across the 2-cells. It follows that the 2�skeleton of the associahedron
is simply connected, and so we can homotope p1 to p2, �xing endpoints, by moving the path
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(a) A square 2�cell of the asso-
ciahedron.

(b) A pentagon 2�cell of the associahedron.

Figure 20. The 2�cells of the associahedron.

across some �nite sequence of the 2�cells. To be precise, we can homotope p1 to p2 with a
combination of the following moves and their inverses.

(1) Remove a backtracking, that is, replace a segment of a path of the form . . . , t1, t2, t1, . . .
with . . . , t1, . . ., where t1 and t2 are related by a diagonal �ip.

(2) Move a path that follows two consecutive sides of a square 2�cell to follow the other
two sides.

(3) Move a path that follows three consecutive sides of a square 2�cell to follow the other
side.

(4) Delete a part of a path that goes around all four sides of a square 2�cell.
(5) Move a path that follows three consecutive sides of a pentagon 2�cell to follow the

other two sides.
(6) Move a path that follows four consecutive sides of a pentagon 2�cell to follow the

other side.
(7) Delete a part of a path that goes around all �ve sides of a pentagonal 2�cell.

These moves can be achieved as follows.

• Move (1) corresponds to performing a 2�0 move on the triangulation. Since the two
triangulations are both in XEP

M , they are both 1�e�cient by Remark 6.18. Therefore
the two triangulations have the same index by Theorem 5.1.
• Move (2) does not change the layered triangulation at all, it only swaps the order in
which we add two non-overlapping �at tetrahedra to the layering.
• Move (3) can be made by applying move (2) followed by move (1).
• Move (4) can be made by applying move (2) followed by move (1) twice.
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• Move (5) corresponds to performing a 3�2 move on the triangulation. As before,
since the two triangulations are both in XEP

M , they are both 1�e�cient by Remark
6.18. Therefore the two triangulations have the same index by Theorem 1.1(b).
• Move (6) can be made by applying move (5) followed by move (1).
• Move (7) can be made by applying move (5) followed by move (1) twice.

Proof of Theorem 1.8. We have shown in this section that given any two triangulations in
XEP
M , the steps in Remark 6.31 can be made using 2�3, 3�2, 0�2 and 2�0 moves which preserve

the index. Thus the entire class of triangulations has the same index. Since XEP
M depends

only on the topology ofM , we can take the index of any of these triangulations for the value
of the index for the manifold, and this depends only on the topology of M . �

Proof of Theorem 1.9. Fix a cusped hyperbolic manifold M and T ∈ XEP
M . T consists of

two types of tetrahedra: the ones that subdivide the ideal hyperbolic cells of the Epstein-
Penner cell decomposition of M , and the ones that are parts of the pillows. The former
have geometric shapes (i.e., shapes that are in the upper half plane), and the latter have
real non-degenerate shapes. By construction, the shapes ZT satisfy the gluing equations of
T, proving part (a). Their arguments also satisfy the gluing equations, proving part (c).
Also by construction, the shapes ZT and ZT′ are related by 2�3, 3�2, 0�2 and 2�0 moves

if the corresponding triangulations T and T′ are related by the same moves. �

7. Computations

7.1. How to compute the coe�cients of a q-series. In this section we will explain a
general method to compute the coe�cients of a q-series which is given by a multi-dimensional
sum of some basic q-series. The idea is simple, but the e�ective aspects of it are tricky and
were explained to the �rst author by D. Zagier. The method is applied in forthcoming work
[GV] which computes the coe�cients of the stabilization of the coloured Jones polynomial
of an alternating knot [GL].
Fix a 1-e�cient ideal triangulation T with n tetrahedra of a 1-cusped hyperbolic manifold

M and an oriented multi-curve $ on ∂M . The index IT($)(q) ∈ Z((q1/2)) is given by a
convergent (n−1)-dimensional sum over the integers of a summand that depends on the angle
structure equation matrices of T; see Equation (17). The summand of IT($) is a product of
tetrahedron indices (one per tetrahedron of T) of linear forms in k = (k1, . . . , kn−1) ∈ Zn−1

and the turning number vectors (a$|b$) of $.
The building block of the summand is the tetrahedron index I∆, whose degree (i.e., mini-

mum degree with respect to q) is a piecewise quadratic function on R2; see Section 4.2. By
a piecewise quadratic function on Rm, we mean that there exists a partition F of Rm into
a �nite number of chambers whose boundaries are rational polyhedral cones such that the
restriction of the function to each chamber is given by a quadratic polynomial. It follows
that for �xed $, the degree δ($,k) of the summand in (17) is a piecewise quadratic function
de�ned on a partition FT of Rn−1. In a later publication, we will explain how to compute
FT directly from T. A priori, FT need not be a fan in Rn−1 as the cones in the partition may
not be convex.
Since T is 1-e�cient, it follows that its index IT($)(q) is a convergent series. In other

words, the degree of the summand is a proper function on Zn−1. Thus, for �xed $ and every
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half-integer N , the set {k ∈ Zn−1 : δ($,k) ≤ N} is �nite. To compute the index of T,
we need to compute bounds on this �nite set. Since δ is convex and piecewise quadratic, it
follows that to bound δ($,k), it su�ces to bound the restriction of δ($,k) to an arbitrary
ray ρ = {k′ρ0 : k′ ∈ N} of FT . Now δ($, k′ρ0) is a quadratic function of k′ ∈ N, and we

obtain sharp bounds for ki typically of the form ki = O(
√
N) and exceptionally of the form

ki = O(N). The latter happens when δ has linear growth on some ray of FT . These directions
of linear growth (also observed in [GL] in the context of stabilization of the coloured Jones
function) are computationally costly. For an example, see the case of the knot 61 discussed
below.
The bounds for ki discussed above are rigorous and sharp, and work well for n = 2 and

n = 3 tetrahedra. However, they quickly become ine�cient when n increases (e.g. n = 9).
The better way to proceed for larger n, as was explained to us by D. Zagier and is applied
successfully in [GV], is to use iterated summation. In the examples shown below for n = 2
and n = 3 iterated summation is not needed. For simplicity, we focus on 1-cusped manifolds
and their index for [$] = 0 ∈ H1(∂M ; Z). The data presented below are available from
[Gara].

Remark 7.1. If two 1-cusped hyperbolic 3-manifolds M and M ′ have 1-e�cient ideal tri-
angulations T and T′ with equal angle structure matrices, then IT(0)(q) = IT′(0)(q). For
example, M and −M have such triangulations, where −M denotes the orientation reversed
cusped hyperbolic manifold. Also, Mφ and M−φ have such triangulations for a pseudo-
Anosov homeomorphism φ of a once punctured torus, where Mφ denotes the mapping torus
of φ.

7.2. The index of the 41 knot complement. The default SnapPy triangulation T of the
41 knot complement uses 2 regular ideal tetrahedra and coincides with the Epstein-Penner
decomposition, thus XEP

41
= {T}. SnapPy gives the angle structure matrices of T:

A =

(
2 2
0 0

)
B =

(
1 1
1 1

)
C =

(
0 0
2 2

)
.

SnapPy also gives an additional two rows which correspond to the meridian and longitude
equations; we will not use these in our examples so we omit them here. We eliminate B to
obtain A and B. We choose our basic edge set B = {e1} and excluded edge set X = {e2}.
We can therefore ignore the rows of our matrices corresponding to e2, and write

A′ =
(

1 1
)

B′ =
(
−1 −1

)
ν ′ =

(
0
)
.

Here A′ is just A with the last row omitted, and similarly for the other primed symbols. We
obtain the angle structure equations

A′α + B′γ = πν ′.

Equation (17) gives that

I41(0)(q) =
∑
k∈Z

I∆(k, k)(q)2 ∈ Z[[q]] .
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Equation (12) implies that the degree δ(k) of the summand is given by the piecewise quadratic
polynomial

δ(k) = 2δ(k, k) = 2k2 + |k| .
Its corresponding fan FT in R consists of two rays, corresponding to the columns of the
matrix (

1 −1
)
.

Here, a column vector v of a matrix, spans the ray R+v. It follows that for every natural
number N we have

I41(0)(q) +O(q)N+1 =

d1/4(−1+
√

1+8N)e∑
k=b1/4(−1−

√
1+8N)c

I∆(k, k)(q)2 +O(q)N+1 .

To compute I∆(k, k)(q) + O(q)N+1, we use its de�nition (5) and truncate the n-summation
as follows

(32) I∆(k, k)(q)+O(q)N+1 =

d1/4(−1+
√

1+8N)e∑
n=b1/2(−1+2k−

√
1−4k+8k2+8N)c

(−1)n
q

1
2
n(n+1)−(n+ 1

2
k)k

(q)n(q)n+k

+O(q)N+1 .

Putting everything together, the �rst 100 coe�cients of I41(0)(q) are given by

1 − 2q − 3q2 + 2q3 + 8q4 + 18q5 + 18q6 + 14q7 − 12q8 − 52q9 − 106q10 − 164q11 − 209q12 − 212q13 − 141q14 + 14q15 +

309q16 + 714q17 + 1249q18 + 1824q19 + 2401q20 + 2794q21 + 2898q22 + 2434q23 + 1256q24 − 918q25 − 4186q26 − 8712q27 −

14394q28 − 21046q29 − 28184q30 − 35094q31 − 40740q32 − 43732q33 − 42508q34 − 35068q35 − 19524q36 + 6288q37 + 43942q38 +

95026q39 + 159698q40 + 237774q41 + 326680q42 + 422880q43 + 519595q44 + 608636q45 + 677761q46 + 713352q47 + 697625q48 +

611956q49+434572q50+144616q51−279773q52−856288q53−1599627q54−2515906q55−3602521q56−4842516q57−6203552q58−

7632646q59−9054429q60−10367858q61−11443874q62−12125534q63−12226286q64−11535062q65−9815935q66−6820480q67−

2289703q68+4024698q69+12355340q70+22887604q71+35751602q72+50979996q73+68497913q74+88071340q75+109297633q76+

131547294q77 +153959928q78 +175385202q79 +194390216q80 +209208210q81 +217767013q82 +217655122q83 +206182023q84 +

180375446q85 + 137083864q86 + 73018494q87 − 15089960q88 − 130393760q89 − 275708923q90 − 453351590q91 − 664856517q92 −

910744842q93−1190185170q94−1500703210q95−1837805659q96−2194650672q97−2561673782q98−2926258326q99−3272416148q100

The �rst 1000 coe�cients are available from [Gara].

7.3. The index of the sister of the 41 knot complement. The 41 knot complement
and its sister are the census manifolds m004 and m003 respectively, and are punctured torus
bundles over a circle with monodromy +RL and −RL respectively [CDW]. The Epstein-
Penner decompositions for m004 and m003 consist of two regular ideal tetrahedra. The edge
gluing equations of +RL and −RL coincide. Thus, Im003(0) = Im004(0).

7.4. The index of the 52 knot complement. The default SnapPy triangulation T of the
52 knot complement uses 3 ideal tetrahedra. The Epstein-Penner decomposition TEP uses 4
ideal tetrahedra. Both triangulations carry geometric shape structures and thus canonical
strict angle structures. One can show that T and TEP are related by geometric 2�3 moves
hence they have equal indices. For reasons of e�ciency, we will work with the triangulation
T. Its angle structure matrices are given by:
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A =

 1 1 1
0 0 0
1 1 1

 B =

 0 2 0
1 0 1
1 0 1

 C =

 1 0 1
1 2 1
0 0 0

 .

Eliminating B, and removing the third row (which corresponds to the third edge equation),
we obtain the angle structure equations

A′α + B′γ = πν ′

where

A′ =

(
1 −1 1
−1 0 −1

)
B′ =

(
1 −2 1
0 2 0

)
ν ′ =

(
0
0

)
.

The index of T is given by

(33) I52(0)(q) =
∑

(k1,k2)∈Z2

I∆(−k1, k1 − k2)2I∆(2k1 − 2k2,−k1) ∈ Z[[q]] .

Equation (12) implies that the degree δ(k1, k2) of the summand is a piecewise quadratic
polynomial with fan FT given by six rays, ρ1, . . . , ρ6, corresponding to the columns of the
matrix (

2 1 0 −1 −1 0
1 1 1 0 −1 −1

)
.

ρ5

ρ4

ρ3 ρ2

ρ1

ρ6

Figure 21. The fan of the summand of I52(0).

Let Cij denote the two-dimensional cone with rays ρi and ρj. Then we have:

δ(k1, k2) =



k1

2
+

k2
1

2
if (k1, k2) ∈ C12

−k1

2
− k2

1

2
+ k2 + k2

2 if (k1, k2) ∈ C23

−k1 + k2
1 + k2 − 2k1k2 + k2

2 if (k1, k2) ∈ C34

−k1 + k2
1 if (k1, k2) ∈ C45

k2
1 − k2 − 2k1k2 + 2k2

2 if (k1, k2) ∈ C56

k1 + 2k2
1 − k2 − 4k1k2 + 2k2

2 if (k1, k2) ∈ C61 .

A plot of δ(k1, k2) for k1, k2 ∈ [−1, 1] is given in Figure 22.
If δ(k1, k2) ≤ N , then to bound k1 from above and below we use the restriction to the rays

ρ1 and ρ5 respectively. Likewise, to bound k2 from above and below we use the restriction
to the rays ρ2 and ρ5 respectively. The equations

δ(k1, k1) =

{
(−1 + k1)k1 if k1 ≤ 0
1
2
k1(1 + k1) if k1 ≥ 0

δ(2k2, k2) =

{
2k2(−1 + 2k2)k2 if k2 ≤ 0

k2(1 + 2k2) if k2 ≥ 0
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Figure 22. The plot of the degree of the summand of 52.

and the inequality δ(k1, k2) ≤ N give the bounds

(34a)
1

2
(1−

√
1 + 4N) ≤ k1 ≤

1

2
(1 +

√
1 + 8N)

(34b)
1

2
(1−

√
1 + 4N) ≤ k2 ≤

1

2
(1 +

√
1 + 8N) .

With these bounds, we can compute the coe�cients of I52(0)(q). The �rst 100 of them are
given by:

1 − 4q − q2 + 16q3 + 26q4 + 23q5 − 34q6 − 122q7 − 239q8 − 312q9 − 221q10 + 102q11 + 778q12 + 1757q13 + 2930q14 +

3825q15 + 4003q16 + 2560q17 − 1183q18 − 8033q19 − 18087q20 − 30864q21 − 44625q22 − 56225q23 − 60913q24 − 52342q25 −

23373q26 + 33675q27 + 124356q28 + 251997q29 + 412837q30 + 596153q31 + 778487q32 + 925195q33 + 984860q34 + 895092q35 +

579789q36 − 39418q37 − 1039055q38 − 2474979q39 − 4370844q40 − 6691737q41 − 9326308q42 − 12059462q43 − 14553043q44 −

16329323q45−16762776q46−15091256q47−10436174q48−1863234q49+11551967q50+30594044q51+55785006q52+87178516q53+

124185931q54 +165312079q55 +207965719q56 +248191454q57 +280543349q58 +297911617q59 +291580973q60 +251299184q61 +

165675668q62+22662435q63−189540512q64−481437576q65−860708203q66−1330509280q67−1887333621q68−2518748267q69−

3200856694q70−3895826567q71−4549488766q72−5089337005q73−5423179738q74−5438686309q75−5004368747q76−3972096155q77−

2181963773q78 + 530655834q79 + 4324768774q80 + 9340768927q81 + 15683465230q82 + 23402429365q83 + 32468254286q84 +

42746925974q85 +53970937518q86 +65710530396q87 +77343886238q88 +88031000047q89 +96690414035q90 +101984965333q91 +

102316085357q92+95834146866q93+80464612248q94+53958404128q95+13966121550q96−41855327561q97−115704867879q98−

209460627592q99 − 324467541887q100

The �rst 300 coe�cients are available from [Gara].

7.5. The index of the (−2, 3, 7) pretzel knot complement. The (−2, 3, 7) pretzel knot
is the 12 crossing knot 12n242 in the census. The default SnapPy triangulation T of the
12n242 complement uses 3 ideal tetrahedra. The Epstein-Penner decomposition TEP uses 3
ideal tetrahedra. However, the two triangulations T and TEP are combinatorially di�erent; for
instance have edge-valencies 5, 6, 7 and 5, 5, 8 respectively. Nevertheless, both triangulations
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are geometric with canonical strict angle structure and are related by geometric 2�3 moves,
which preserve the index. The angle structure equations of T are given by:

A =

 1 0 0
0 1 1
1 1 1

 B =

 0 1 0
1 1 0
1 0 2

 C =

 1 1 2
1 0 0
0 1 0

 .

Apply the following operations on (A|B|C):

• Permute the rows according to (123) 7→ (312).
• Permute the second and third columns of A and simultaneously, of B and C.
• If ā1, b̄1, c̄1 are the �rst columns ofA, B andC, then permute (ā1|b̄1|c̄1) 7→ (b̄1|c̄1|ā1).

After the above permutations, the matrix (A|B|C) of the (−2, 3, 7) pretzel knot becomes
the corresponding matrix of the 52 knot. Since the above permutations do not change the
index, it follows that I(−2,3,7)(0) = I52(0).

Exercise 7.2. Using the matrix (A|B|C) above, it follows that the index of T is given by
(35)

I(−2,3,7)(0)(q) =
∑

(k1,k2)∈Z2

(−1)k2q
1
2

(k1−2k2)I∆(k1,−k2)I∆(−k1 +k2, k1)I∆(−2k1 + 2k2, k1−2k2).

On the other hand, the index of 52 is given by Equation (33). Using the identities of the
tetrahedron index from Section 4, show that∑

(k1,k2)∈Z2

I∆(−k1, k1 − k2)2I∆(2k1 − 2k2,−k1) =

∑
(k1,k2)∈Z2

(−1)k2q
1
2

(k1−2k2)I∆(k1,−k2)I∆(−k1 + k2, k1)I∆(−2k1 + 2k2, k1 − 2k2).

7.6. The index of the 61 knot complement. In this section we discuss the index I61(0)
as an example of the phenomenon of linear growth. The default SnapPy triangulation T of
the 61 knot complement has 4 ideal tetrahedra, and the Epstein-Penner decomposition uses
6 ideal tetrahedra. The two triangulations are related by geometric 2�3 moves and so have
equal indices. The angle structure equations of T are given by:

A =


1 1 0 0
0 0 0 1
0 1 1 0
1 0 1 1

 B =


0 2 0 1
1 0 1 0
1 0 0 0
0 0 1 1

 C =


1 0 1 1
1 2 1 0
0 0 0 1
0 0 0 0

 .

Eliminating B, and removing the fourth row (which corresponds to the fourth edge equa-
tion), we obtain the angle structure equations

A′α + B′γ = πν ′

where

A′ =

 1 −1 0 −1
−1 0 −1 1
−1 1 1 0

 B′ =

 1 −2 1 0
0 2 0 0
−1 0 0 1

 ν ′ =

 −1
0
1

 .
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The index of T is given by

I61(0)(q) =
∑

(k1,k2,k3)∈Z3

q
1
2

(−k1+k3)I∆(−k1,−k2 + k3)I∆(2k1 − 2k2,−k1 + k3)

I∆(−k3,−k1 + k2)I∆(−k1 + k3, k1 − k2 − k3) ∈ Z[[q]] .

FT in R3 has 18 rays, corresponding to the columns of the matrix −1 −1 −1 −1 −1 −1 0 0 0 0 0 0 1 1 1 1 2 3
−2 −2 −1 0 0 1 −1 −1 −1 0 1 1 0 0 1 1 1 2
−3 −1 0 −1 0 0 −2 −1 0 1 −1 0 −1 1 0 1 1 1

 .

If δ(k1, k2, k3) denotes the degree of the summand and N ∈ N, then δ(k1, k2, k3) ≤ N implies
that (k1, k2, k3) satisfy the bounds

1

2
(1−

√
1 + 4N) ≤ k1 ≤

1

2
(−1 +

√
1 + 12N)

2

3
(1−

√
1 + 3N) ≤ k2 ≤

1

2
(−1 +

√
1 + 8N)

3

7
(1−

√
1 + 7N) ≤ k3 ≤ N .

Observe that the upper bound for k3 is linear in N . For instance, when N = 3, the following
17 terms (each a product of 4 truncated tetrahedron indices, as in Equation (32) for N = 3)
contribute to I61(0) +O(q)4 = 1− 4q + q2 + 18q3 +O(q)4:

I∆(−2, 0)2I∆(0,−2)I∆(0, 0)− q−
1
2 I∆(−1,−1)I∆(−1, 0)I∆(0,−1)I∆(0, 0) + I∆(−1, 0)2I∆(0,−1)I∆(0, 0) + I∆(0, 0)4

+ I∆(−2, 0)I∆(0,−1)2I∆(0, 1)− q
1
2 I∆(−2, 0)I∆(−1, 1)I∆(0, 1)I∆(1,−2)− q

1
2 I∆(−1, 0)I∆(0, 1)2I∆(1,−1)

− q−
1
2 I∆(−1, 1)I∆(0,−1)2I∆(1, 0)− q

1
2 I∆(−2, 1)I∆(0, 1)I∆(1,−1)I∆(1, 0) + I∆(0, 0)I∆(0, 1)I∆(1, 0)2

+ I∆(−2, 0)I∆(0, 0)I∆(1,−1)I∆(1, 1)− q
1
2 I∆(0, 0)I∆(0, 1)I∆(1, 0)I∆(1, 1) + qI∆(−2, 0)I∆(0, 2)2I∆(2,−2)

− q−
1
2 I∆(−2, 0)I∆(−1,−1)I∆(−1, 0)I∆(2,−1)− q−

1
2 I∆(−1, 0)I∆(−1, 1)I∆(0,−1)I∆(2,−1)

− q−
1
2 I∆(−1, 2)I∆(0, 0)I∆(1,−1)I∆(2,−1))− q

3
2 I∆(−3, 0)I∆(0, 3)2I∆(3,−3)

The �rst 50 coe�cients of I61(0) are given by:

1− 4q+ q2 + 18q3 + 22q4 + q5− 78q6− 178q7− 254q8− 188q9 + 167q10 + 855q11 + 1864q12 + 2892q13 + 3426q14 + 2583q15−

488q16 − 6698q17 − 16273q18 − 28550q19 − 41189q20 − 49943q21 − 48554q22 − 28899q23 + 17621q24 + 98726q25 + 217819q26 +

371551q27 + 544496q28 + 707360q29 + 811832q30 + 792301q31 + 565550q32 + 40436q33− 872995q34− 2241496q35− 4087180q36−

6354321q37−8877834q38−11348143q39−13283739q40−14014789q41−12685231q42−8288627q43 +266720q44 +14032731q45 +

33862808q46 + 60173861q47 + 92687285q48 + 130092845q49 + 169735693q50

7.7. The index of the 72 knot complement. The index I72(0) is another example of linear
growth. The default SnapPy triangulation T of the 72 knot complement has 4 ideal tetrahedra,
and the Epstein-Penner decomposition has 8 ideal tetrahedra. The two triangulations are
related by geometric 2�3 moves and have equal indices. The angle structure equations of T

are given by:
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A =


1 2 1 0
0 0 1 0
1 0 0 1
0 0 0 1

 B =


1 0 0 0
1 0 0 0
0 2 1 0
0 0 1 2

 C =


0 0 1 0
0 1 0 2
1 1 1 0
1 0 0 0

 .

Eliminating B, and removing the fourth row (which corresponds to the fourth edge equation),
we obtain the angle structure equations

A′α + B′γ = πν ′

where

A′ =

 0 2 1 0
−1 0 1 0
1 −2 −1 1

 B′ =

 −1 0 1 0
−1 1 0 2
1 −1 0 0

 ν ′ =

 1
1
−1

 .

The index of T is given by

I72(0)(q) =
∑

(k1,k2,k3)∈Z3

(−1)k1+k2−k3q
1
2

(k1+k2−k3)I∆(−k1, k1 + k2 − k3)I∆(−2k2, k3)

I∆(k1 + k2 − k3,−k2 + k3)I∆(−k2 + k3, 2k1 − 2k3) ∈ Z[[q]] .

FT in R3 has 14 rays, spanned by the columns of the matrix −2 −1 −1 0 0 0 0 0 0 1 1 1 1 2
−1 −1 0 −1 −1 −1 0 1 1 0 0 0 1 1
−2 −1 0 −2 −1 0 1 −1 0 0 1 2 1 3

 .

If δ(k1, k2, k3) denotes the degree of the summand and N ∈ N, then δ(k1, k2, k3) ≤ N implies
that (k1, k2, k3) satisfy the bounds

1−
√

1 + 2N ≤ k1 ≤
1

2
(−1 +

√
1 + 8N)

1

2
(1−

√
1 + 4N) ≤ k2 ≤ N

1−
√

1 + 2N ≤ k3 ≤
1

2
(−1 +

√
1 + 12N) .

Observe that the upper bound for k3 is linear in N . The �rst 50 coe�cients of I72(0) are
given by:

1− 4q + q2 + 16q3 + 20q4 + q5 − 72q6 − 156q7 − 206q8 − 98q9 + 275q10 + 924q11 + 1740q12 + 2370q13 + 2227q14 + 495q15 −

3485q16− 10168q17− 19045q18− 28467q19− 34899q20− 33157q21− 16460q22 + 22305q23 + 89035q24 + 185478q25 + 306146q26 +

434575q27 +539981q28 +575717q29 +479148q30 +176483q31−408854q32−1340316q33−2648389q34−4301970q35−6179555q36−

8036073q37− 9477453q38− 9942897q39− 8710346q40− 4925980q41 + 2323715q42 + 13897628q43 + 30430263q44 + 52111135q45 +

78414600q46 + 107796294q47 + 137380650q48 + 162674912q49 + 177363801q50
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Appendix A. The 2�3 move

For completeness, in this appendix we give a detailed proof of the invariance of the index
under 2�3 moves, following [Garb, Sec.6] and also [DGG13]. Let M be a cusped 3-manifold

and let $ be an oriented multi-curve on ∂M . Consider two ideal triangulations T and T̃ of
M with N and N + 1 tetrahedra, respectively, related by a 2�3 move as shown in Figure 23,
matching the conventions of [DG13, Sec.3.6].

2�3

3�2

4

0

1

3 2

4

0

1

3 2

b̄1
c̄1 ā1

b̄2 b̄3
ā2 c̄3

c̄2 ā3

b̄1
c̄1 ā1

b̄2 b̄3

ā2 c̄3

c̄2 ā3

ā3 c̄1

c̄3 ā1

b̄3 b̄1

ā2 c̄3

c̄2 ā3

b̄2 b̄3

ā1 c̄2

c̄1 ā2

b̄1 b̄2

ā0

b̄0 c̄0

ā4

b̄4c̄4

ā0

b̄0c̄0

ā4

c̄4b̄4

c̄0

ā0b̄0

b̄4

ā4c̄4

b̄0

c̄0ā0

c̄4

b̄4ā4

Figure 23. The 2�3 move shown with truncated tetrahedra and labelled
vertices. The �ve triangulated ends of the tetrahedra before and after are
shown in detail in the �zoomed in� pictures. The labels on the corners of the
triangles are explained in Section 4.4. All truncated triangulation pictures are
viewed from outside the tetrahedra.

The main result of this section is the following.

Theorem A.1. Suppose that T and T̃ are ideal triangulations related by a 2�3 move and
both admit an index structure. Then, for any [$] ∈ H1(∂M ; Z), IT([$]) = IeT([$]).

Recall that the index is not changed by isotopies of $ and, from (25), can be written in
the form

IT($)(q) =
∑

k∈ZN−r

q
P

i ki

∏
j

J(Tj;k, $)
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where the contribution from tetrahedron Tj is

J(Tj;k, $) = J∆(āj(k, $), b̄j(k, $), c̄j(k, $)).

Here we can think of k as a weight on the N edges of T and the summation is over ZN−r ⊂ ZN

corresponding to a set B of N − r basic edges as in Theorem 4.3.

De�nition A.2. Given $ as above and k ∈ ZN , let $k denote a collection of disjoint
oriented normal curves in ∂M obtained from $ by adding ki small linking circles around the
vertex at one end of the ith edge in T. (The circles are oriented anticlockwise if ki > 0 and
clockwise if ki < 0.)

By Remark 4.1, we can think of the coe�cient āj(k, $) as the turning number ā$k,j, as
de�ned in Section 4.4, of $k. Thus āj(k, $) is a sum of 4 turning numbers of the multi-curve
$k as it turns around the āj corners of the triangles of the jth truncated tetrahedron, and
similarly for b̄j(k, $) and c̄j(k, $). This point of view allows us to treat the contributions
from edge weights in the index calculation in the same way as we treat the contributions
from peripheral curves.

The triangulations T and T̃ only di�er inside a bipyramid, and we label its vertices
0, 1, 2, 3, 4 as in Figure 23, where 0 and 4 are the north and south poles, and 1, 2, 3 are
on the equator. This determines 5 tetrahedra T0, . . . , T4 where Ti is the tetrahedron �oppo-
site� vertex i with vertex set obtained by omitting vertex i from the set {0, 1, 2, 3, 4}. The
bipyramid can be decomposed into the two tetrahedra T0, T4 which contain the triangle 123,
or into the three tetrahedra T1, T2, T3 which contain the edge 04. Then it su�ces to prove
the following lemma.

Lemma A.3 (Pentagon equality for J). Let $ be an oriented multi-curve on ∂M as above.

Let k = (k1, . . . , kN) be a weight function on the edges of T, and let k̃ = (k0,k) be an

extension of k to a weight function on the edges of T̃ where k0 is the weight on the new edge
04 introduced in the 2�3 move. Then, with the notation above,

(36)
∑
k0∈Z

qk0J(T1; (k0,k), $)J(T2; (k0,k), $)J(T3; (k0,k), $) = J(T0;k, $)J(T4;k, $).

Theorem A.1 now follows immediately: In the sum (25) for IT we choose a set X of excluded
edges from a maximal tree with 1- or 3-cycle for T as in Theorem 4.3. Then the same set
of edges can be excluded from the summation for IeT, so the summation for IeT is over the
original set of basic edges B for T together with the new edge introduced in the 2�3 move.

Proof of Lemma. The plan is as follows. First, we isotope $ if necessary, so that it intersects
the truncated ends of the bipyramid involved in the 2�3 move in a standardised way. For a

given k, we consider $k, and the $ek where k̃ = (k0,k) and k0 ∈ Z. We calculate the left
hand side of (36) using the $ek, and use the original version of the pentagon equality, (10),
to show that it is equal to the right hand side of (36), calculated using $k.

So, �rst we arrange $ appropriately. The induced triangulations of ∂M , T∂ and T̃∂,

determined by T and T̃ respectively are related by 1�3 and 2�2 moves as seen in Figure
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23. We isotope $ if necessary, so that it is normal relative to both of the two induced
triangulations of ∂M .
At each of the polar vertices of the bipyramid there is a 1�3 move on the boundary, and

we can assume, after a further isotopy if necessary, that $ is represented by collections of
oriented normal arcs as shown in Figure 24, with all turning numbers 0 at the new central
vertex.

ā

b̄ c̄

ā ā

b̄
b̄

c̄
c̄

Figure 24. Change in turning numbers under a 1�3 move

At each of the equatorial vertices there is a 2�2 move on the boundary, and we can represent
$ by a collection of oriented normal arcs in a quadrilateral of the six types shown in the
right hand side of Figure 25. (Note that either s̄ = 0 or t̄ = 0 for an embedded normal curve
$.)

1

2

4

3

1

2

4

3

1

2

4

3

ȳ

ȳ′

ȳ

ȳ′

b̄ b̄′ b̄ b̄′
z̄

x̄′
x̄

z̄′

ā c̄′

c̄ ā′

s̄

t̄

Figure 25. Change in turning numbers under a 2�2 move

Then the corresponding turning numbers at the corners of the triangles in the left and
centre of the �gure are given by:

ā = ȳ + t̄, c̄ = ȳ′ − s̄, ā′ = ȳ′ − t̄, c̄′ = ȳ + s̄

and
x̄ = b̄′ − s̄, z̄ = b̄− t̄, x̄′ = b̄+ s̄, z̄′ = b̄′ + t̄.
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For example, a is the signed number of (anticlockwise) normal arcs going from edge 1 to the
vertical edge in the centre of the �gure. But each such arc is a normal arc in the quadrilateral
going from edge 1 to 3 or from edge 1 to edge 4, hence ā = ȳ + t̄.

In particular, we have the following relations that will be used below:

(37) ā+ ā′ = c̄+ c̄′ = ȳ + ȳ′ and x̄+ x̄′ = z̄ + z̄′ = b̄+ b̄′

(38) 2b̄+ c̄′ − ā = 2b̄+ ā′ − c̄ = x̄′ + z̄ and 2b̄′ + c̄− ā′ = 2b̄′ + ā− c̄′ = x̄+ z̄′.

Now $ek is obtained from $ by adding small vertex linking circles around the vertices of

T̃∂, and similarly $k is obtained from $ by adding small vertex linking circles around the
vertices of T∂. Note that we have a map from the turning numbers of $ relative to T to the

turning numbers of $ relative to T̃. If we apply the same map to the turning numbers of

$k relative to T, we obtain the turning numbers of $(0,k) relative to T̃.

In the following, we will abbreviate our notation as follows. Let

āj = āj(k, $), b̄j = b̄j(k, $), c̄j = c̄j(k, $) for j = 0, 4

āj = āj((0,k), $), b̄j = b̄j((0,k), $), c̄j = c̄j((0,k), $) for j = 1, 2, 3.

Recall that āj(k, $) is the sum of ā$,j and the weights given by k on the two edges of tetra-

hedron j labelled āj, and similarly for b̄j(k, $), c̄j(k, $). Thus, replacing k by k̃ = (k0,k)

does not change āj(k, $) or c̄j(k, $) but we have b̄j(k̃, $) = b̄j + k0 for j = 1, 2, 3, since the
new edge 04 is incident to angles labelled b̄j in Figure 23.

We also let Āj = b̄j − c̄j, B̄j = c̄j − āj, C̄j = āj − b̄j, and note that each of these is a sum
of contributions from the 4 triangular corners of the (truncated) tetrahedron Tj. On each
of these triangles, Āj, B̄j, C̄j represent inward intersection numbers of oriented normal arcs
with the sides of the triangles as shown in Figure 26.

ā

Ā

b̄

C̄

c̄

B̄

Figure 26. Intersection numbers and turning numbers in a triangle.
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Then we have

(39) Āj + B̄j + C̄j = 0 for each j,

and

(40) B̄1 + B̄2 + B̄3 = 0.

To prove the last equation, we look at the contribution from each of the 5 corners of the
bipyramid as shown in Figure 27. At the polar vertices 0, 4 the contribution to

∑
i B̄i =∑3

i=1 āi −
∑3

i=1 c̄i is zero from Figure 24, while at the equatorial vertices 1, 2, 3 this follows
from (37). Alternatively, one can look at the vertices 1, 2, 3 as shown in Figure 27, and see
that, for example, at vertex 1 the contribution to B2 is cancelled by the contribution to B3.
Similar cancellations happen at vertices 2 and 3.

Now consider the left hand side of (36). We have

J(T1; (k0,k), $) = (−q
1
2 )−c̄1I∆(c̄1 − ā1, b̄1 + k0 − c̄1) = (−q

1
2 )−c̄1I∆(B̄1, Ā1 + k0),

J(T2; (k0,k), $) = (−q
1
2 )−c̄2I∆(c̄2 − ā2, b̄2 + k0 − c̄2) = (−q

1
2 )−c̄2I∆(B̄2, Ā2 + k0),

and

J(T3; (k0,k), $) = (−q
1
2 )−ā3I∆(ā3 − b̄3 − k0, c̄3 − ā3) = (−q

1
2 )−ā3I∆(C̄3 − k0, B̄3)

= (−q
1
2 )−ā3I∆(−B̄3,−C̄3 + k0) = (−q

1
2 )−ā3I∆(B̄1 + B̄2,−C̄3 + k0)

using the duality identity (8) and (40).

The pentagon identity (10) can be rewritten (by replacing e3 by x3 + e0) in the form∑
e0∈Z

qe0I∆(m1, x1 + e0)I∆(m2, x2 + e0)I∆(m1 +m2, x3 + e0)(41)

= q−x3I∆(m1 − x2 + x3, x1 − x3)I∆(m2 − x1 + x3, x2 − x3).

We apply this with e0 = k0,m1 = B̄1,m2 = B̄2, x1 = Ā1, x2 = Ā2 and x3 = −C̄3. Then
direct calculations, using the observations above, show that

(i) m1 − x2 + x3 = B̄1 − Ā2 − C̄3 = Ā0,
(ii) x1 − x3 = Ā1 + C̄3 = C̄0,
(iii) m2 − x1 + x3 = B̄2 − Ā1 − C̄3 = B̄4,
(iv) x2 − x3 = Ā2 + C̄3 = Ā4, and

(v) c̄1 + c̄2 + ā3 + 2x3 = b̄0 + c̄4 hence (−q 1
2 )−c̄1−c̄2−ā3q−x3 = (−q 1

2 )−b̄0−c̄4 .

Thus, multiplying (41) by (−q 1
2 )−c̄1−c̄2−ā3 gives∑

k0∈Z

qk0J(T1; (k0,k), $)J(T2; (k0,k), $)J(T3; (k0,k), $) = (−q
1
2 )−b̄0I∆(Ā0, C̄0)(−q

1
2 )−c̄4I∆(B̄4, Ā4)

= J(T0;k, $)J(T4;k, $),

as desired.
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ā4

ā0
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ā4
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b̄0 c̄0

Figure 27. Turning numbers and intersection numbers at all corners of the
bipyramid.
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The identities (i)-(v) are proved by looking separately at the contributions from the 5
corners of the bipyramid, and carefully studying Figure 27.
For example, to prove (i), we note that

at vertex 1: B̄1 − Ā2 − C̄3 = 0− Ā2 − C̄3 = −B̄0 − C̄0 = Ā0

at vertex 2: B̄1 − Ā2 − C̄3 = −B̄3 − 0− C̄3 = Ā3 = Ā0

at vertex 3: B̄1 − Ā2 − C̄3 = B̄1 − Ā2 − 0 = −B̄2 − Ā2 = C̄2 = Ā0

at vertex 0: B̄1 − Ā2 − C̄3 = B̄1 + C̄1 + Ā1 = 0 = Ā0

at vertex 4: B̄1 − Ā2 − C̄3 = B̄1 + 0 = Ā0

For (ii), we note that

at vertex 1: Ā1 + C̄3 = 0 + C̄3 = C̄0

at vertex 2: Ā1 + C̄3 = C̄4 + Ā4 = −B̄4 = C̄0

at vertex 3: Ā1 + C̄3 = Ā1 = C̄0

at vertex 0: Ā1 + C̄3 = 0 = C̄0

at vertex 4: Ā1 + C̄3 = −C̄2 − Ā2 = B̄2 = C̄0

The equalities (iii), (iv) are veri�ed similarly.

Finally, to prove (v), �rst note that since x3 = −C̄3 = b̄3 − ā3, we need to show that

c̄1 + c̄2 − ā3 + 2b̄3 = b̄0 + c̄4.

Now at vertices 0 and 4, b̄3 = b̄3(0,k), $) = 0, since we can choose $ as in Figure 24.
Further, āj, b̄j, c̄j = 0 at vertex j. Thus, from Figure 27,

at vertex 0: LHS = c̄1 + c̄2 − ā3 = b̄4 + c̄4 − b̄4 = c̄4 = RHS from Figure 24

at vertex 4: LHS = c̄1 + c̄2 − ā3 = b̄0 + ā0 − ā0 = b̄0 = RHS from Figure 24

at vertex 1: LHS = c̄2 − ā3 + 2b̄3 = b̄0 + c̄4 by (38)

at vertex 2: LHS = c̄1 − ā3 + 2b̄3 = b̄0 + c̄4 by (38)

at vertex 3: LHS = c̄1 + c̄2 = b̄0 + c̄4 by (37).

This completes the proof of Lemma A.3. �
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