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Abstract. In [12] we studied PGL(n,C)-representations of a 3-manifold via a general-
ization of Thurston’s gluing equations. Neumann has proved some symplectic properties of
Thurston’s gluing equations that play an important role in recent developments of exact and
perturbative Chern-Simons theory. In this paper, we prove similar symplectic properties of
the PGL(n,C)-gluing equations for all ideal triangulations of compact oriented 3-manifolds.
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1. Introduction

Thurston’s gluing equations are a system of polynomial equations that were introduced
to concretely construct hyperbolic structures. They are defined for every compact, oriented
3-manifold M with arbitrary, possibly empty, boundary together with a topological ideal
triangulation T . The system has the form

(1.1)
∏
j

z
Aij
j

∏
j

(1− zj)Bij = εi,

where A and B are integer matrices whose columns are parametrized by the simplices of T
and εi ∈ {−1, 1}. Each non-degenerate (zj /∈ {0, 1,∞}) solution explicitly determines (up
to conjugation) a representation of π1(M) in PGL(2,C) = PSL(2,C).

The matrices A and B in (1.1) have some remarkable symplectic properties that play a
fundamental role in exact and perturbative Chern-Simons theory for PSL(2,C) [9, 4, 6, 8,
11, 13, 5].

In [12] Garoufalidis, Goerner and Zickert generalized Thurston’s gluing equations to rep-
resentations in PGL(n,C), i.e. they constructed a system of the form (1.1) such that each
solution determines a representation of π1(M) in PGL(n,C). The PGL(n,C)-gluing equa-
tions are expected to play a similar role in PGL(n,C)-Chern-Simons theory as Thurston’s
gluing equations play in PSL(2,C)-Chern-Simons theory.

In this paper we focus on the symplectic properties of the PGL(n,C)-gluing equations.
This was initiated in [12], where we proved that the rows of (A|B) are symplectically orthog-
onal. The symplectic properties for n = 2 play a key role in the definition of the formal power
series invariants of [8] (conjectured to be asymptotic to all orders to the Kashaev invariant)
and in the definition of the 3D-index of Dimofte–Gaiotto–Gukov [6] whose convergence and
topological invariance was established in [11] and [13]. Our results fulfill a wish of the physics
literature [5], and may be used for an extension of the work [8, 13, 3] to the setting of the
PGL(n,C)-representations.
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2. Preliminaries and statement of results

2.1. Triangulations. Let M denote a compact, connected, oriented 3-manifold with (possi-

bly empty) boundary, and let M̂ be the space obtained from M by collapsing each boundary
component to a point. In the following, a simplex always refers to a 3-simplex, i.e. a tetra-
hedron.

Definition 2.1. A triangulation of M is an identification of M̂ with a closed 3-cycle, i.e. a
space obtained from a collection of simplices by gluing together pairs of faces via affine
homeomorphisms.

We refer to Neumann [17, Section 4] for the precise definition of a closed 3-cycle. In
particular, we will make use of the fact that the link of each vertex is connected.

Definition 2.2. A concrete triangulation is a triangulation together with an identification
of each simplex of M with a standard ordered 3-simplex. A concrete triangulation is oriented
if for each simplex, the orientation induced by the identification with a standard simplex
agrees with the orientation of M .

Fix an oriented triangulation T of M .

Remark 2.3. All of our results can be generalized to arbitrary concrete triangulations
(e.g. ordered triangulations) by introducing additional signs. For the sake of notational
simplicity, we shall not do this here. The census triangulations are all oriented (when M is
orientable).

2.2. Thurston’s gluing equations. We briefly review Thurston’s gluing equations. For
details, see Thurston [19] or Neumann–Zagier [18]. Let zj be complex variables, one for each
simplex ∆j of T . Assign shape parameters zj, z

′
j = 1

1−zj and z′′j = 1− 1
z

to the edges of ∆j

as in Figure 1.

zj

0

1

2

3

zjz′j

z′j

z′′j

z′′j

ε01

ε02

ε23

ε13

ε12

ε03

20

1
3

Figure 1. Shape parameters. Figure 2. Quiver representation of Ω.
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2.2.1. Edge equations. We have a gluing equation for each 1-cell e of T defined by setting
equal to 1 the product of all shape parameters assigned to the edges identified with e. The
gluing equation for e can thus be written in the form

(2.1)
∏
j

(zj)
A′e,j
∏
j

(z′j)
B′e,j
∏
j

(z′′j )C
′
e,j = 1, or

∏
j

(zj)
Ae,j
∏
j

(1− zj)Be,j = εe

where A = A′ − C ′ and B = C ′ − B′ are the so-called gluing equation matrices. Each non-
degenerate (zj ∈ C \ {0, 1,∞}) solution determines a representation π1(M) → PGL(2,C).
Note that the rows of the gluing equation matrices are parametrized by 1-cells, and the
columns by the simplices of T .

2.2.2. Cusp equations. Each (non-degenerate) solution z = {zj} to the edge equations gives
rise to a cohomology class C(z) ∈ H1(∂M ; C∗). This is defined by taking a class α ∈ H1(M)
to the product of the shape parameters of the edges passed by traversing a normal curve
in M representing α. One can show that C(z) is trivial if and only if the representation
corresponding to z is boundary-unipotent. Fixing a system of generators of H1(∂M), the
vanishing of C(z) is equivalent to a system of equations

(2.2)
∏
j

(zj)
A′ cusp
λ,j

∏
j

(z′j)
B′ cusp
λ,j

∏
j

(z′′j )C
′ cusp
λ,j = 1, or

∏
j

(zj)
Acusp
λ,j

∏
j

(1− zj)B
cusp
λ,j = ελ

of the form (2.1) with an equation for each generator λ. Note that the rows of the cusp
equation matrices are parametrized by generators λ of H1(∂M), and the columns by the
simplices of T .

2.3. Neumann’s chain complex. For an ordered 3-simplex ∆, let J∆ denote the free
abelian group generated by the unoriented edges of ∆ subject to the relations

ε01 = ε23, ε12 = ε03, ε02 = ε13(2.3)

ε01 + ε12 + ε02 = 0.(2.4)

Here εij denotes the edge between vertices i and j of ∆. Note that (2.3) states that two
opposite edges are equal, and that (2.3) and (2.4) together imply that the sum of the edges
incident to a vertex is 0.

The space J∆ is endowed with a non-degenerate skew symmetric bilinear form Ω defined
uniquely by

Ω(ε01, ε12) = Ω(ε12, ε02) = Ω(ε02, ε01) = 1.(2.5)

The form Ω may be represented by the quiver in Figure 2. Namely, each edge of ∆ corre-
sponds to a vertex of the quiver, and Ω(ε, ε′) = 1 if and only if there is a directed edge in
the quiver going from ε to ε′.

Neumann [17, Thm 4.1] encoded the symplectic properties of the gluing equations in terms
of a chain complex J = J (T )

(2.6) 0 // C0(T )
α // C1(T )

β // J(T )
β∗ // C1(T )

α∗ // C0(T ) // 0

defined combinatorially from the triangulation T . Here

• Ci(T ) is the free Z-module of the unoriented i-simplices of T .
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• J(T ) =
⊕

∆∈T J∆, with Ω extended orthogonally.
• α takes a 0-cell to the sum of incident 1-cells (with multiplicity).
• β takes a 1-cell to the sum of its edges.
• α∗ maps an edge to the sum of its endpoints.
• β∗ is the unique rotation equivariant map taking ε01 to [ε03] + [ε12]− [ε02]− [ε13].
• α∗ and β∗ are the duals of α and β (using that J(T ) ∼= J(T )∗ via Ω).

Since β∗ ◦β = 0, Ker(β∗) is Ω-orthogonal to Im(β), so Ω descends to a form on H3(J ). This
form remains non-degenerate on H3(J ) modulo torsion.

The complex J is indexed such that J5 is the leftmost C0(T ), and J0 the rightmost.

Theorem 2.4 (Neumann [17, Thm 4.2]). The homology groups of J are given by

(2.7)
H5(J ) = 0, H4(J ) = Z/2Z, H3(J ) = K ⊕H1(M̂ ; Z/2Z)

H2(J ) = H1(M̂ ; Z/2Z), H1(J ) = Z/2Z,

where K = Ker
(
H1(∂M,Z) −→ H1(M,Z/2Z)

)
. Moreover, the isomorphism

(2.8) H3(J )/torsion ∼= K

identifies Ω with the intersection form (restricted to K) on H1(∂M).

Remark 2.5. Under the isomorphism

(2.9) H3(J )⊗ Z[1/2] ∼= H1(∂M ; Z[1/2]),

the form Ω corresponds to twice the intersection form [17, Theorem 4.1].

2.4. Symplectic properties of the gluing equations. Neumann’s result implies some
important symplectic properties of the gluing equation matrices. We formulate them here
in a way that generalizes to the PGL(n,C) setting.

By the definition of β we have for each 1-cell e

(2.10) β(e) =
∑
j

A′e,jε01,j+
∑
j

B′e,jε12,j+
∑
j

C ′e,jε02,j =
∑
j

Ae,jε01,j+
∑
j

Be,jε12,j ∈ J(T ).

Similarly, for a generator λ of H1(∂M), we have the element

(2.11) δ(λ) =
∑
j

Acusp
λ,j ε01,j +

∑
j

Bcusp
λ,j ε12,j ∈ J(T ).

Neumann shows that this element is in Ker(β∗), so that we have a map δ : H1(∂M)→ H3(J ).

Corollary 2.6. Let wJ be the standard symplectic form on Z2t given by J =
(

0 I
−I 0

)
, where

t is the number of simplices of T and let ι denote the intersection form on H1(∂M).

(i) For any rows x and y of (A|B), wJ(x, y) = 0.
(ii) For any rows x of (A|B) and y of (Acusp|Bcusp), wJ(x, y) = 0.

(iii) For any rows x and y of (Acusp|Bcusp) corresponding to λ and µ in H1(∂M), respectively,
wJ(x, y) = Ω(δ(λ), δ(µ)) = 2ι(λ, µ).

Proof. The first and second statement follow from the fact that β∗◦β = 0, which implies that
Ker(β∗) is symplectically orthogonal to Im(β). The third result is proved in Neumann [17],
c.f. Remark 2.5. Namely δ : H1(∂M)→ H3(J ) induces the isomorphism in (2.9). �
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Corollary 2.7. The rank of (A|B) is the number of edges minus the number of cusps.

Proof. It follows from (2.10), that the matrix representation for β in the basis {ε01,j, ε12,j}
for J(T ) is the transpose of (A|B). The result now follows from the fact that H4(J ) is zero
modulo torsion. �

Remark 2.8. A simple argument that uses the Euler characteristic shows that the number
of edges of T equals t+ c−h, where t is the number of simplices, h = 1

2
rank(H1(∂M)) and c

is the number of boundary components. Hence, the matrix (A|B) has size (t+c−h)×2t. In
particular, if all boundary components are tori (the case of most interest), the size is t× 2t.
If we extend a basis for the row span of (A|B) by rows of (Acusp|Bcusp), the resulting t× 2t
matrix has full rank, and is thus the upper half of a symplectic matrix. Such matrices play
a crucial role in [4, 8, 7, 6, 13].

2.5. Statement of results. The PGL(n,C)-gluing equations [12] are defined in terms of
complex variables zs,∆, one for each subsimplex s (Definition 3.1) of each simplex ∆ of T .
There is a gluing equation for each non-vertex integral point p of T (Definition 3.3), which
can be written in the form

(2.12)
∏
(s,∆)

(zs,∆)Ap,(s,∆)

∏
(s,∆)

(1− zs,∆)Bp,(s,∆) = εp,

where A and B are integer matrices whose rows are parametrized by the (non-vertex) integral
points of T and columns by the set of subsimplices of the simplices of T .

Furthermore there is a cusp equation for each generator λ ⊗ er of H1(∂M ; Zn−1) of the
form

(2.13)
∏
(s,∆)

(zs,∆)A
cusp
λ⊗er,(s,∆)

∏
(s,∆)

(1− zs,∆)B
cusp
λ⊗er,(s,∆) = ελ⊗er

for matricesAcusp andBcusp whose rows are parametrized by generators λ⊗er ofH1(∂M ; Zn−1)
and columns by the set of subsimplices of the simplices of T .

In Section 4 below we define a chain complex J g = J g(T ) (indexed so that J g
5 is the

leftmost Cg
0(T ))

(2.14) 0 // Cg
0(T )

α // Cg
1(T )

β // Jg(T )
β∗ // Cg

1(T )
α∗ // Cg

0(T ) // 0

generalizing (2.6). Here g denotes the Lie algebra of SL(n,C), the notation being in antici-
pation of a generalization to arbitrary simple, complex Lie algebras. The three middle terms
of J g appeared already in Garoufalidis–Goerner–Zickert [12]. There is a non-degenerate an-
tisymmetric form on Jg(T ) descending to a non-degenerate form on H3(J g) modulo torsion.

Theorem 2.9. Let h = 1
2

rank(H1(∂M)). The homology groups of J g are given by

(2.15)
H5(J g) = 0, H4(J g) = Z/nZ, H3(J g) = K ⊕H1(M̂ ; Z/nZ)

H2(J g) = H1(M̂ ; Z/nZ), H1(J g) = Z/nZ,

where K ⊂ H1(∂M,Zn−1) is a subgroup of index nh. Moreover, the isomorphism

(2.16) H3(J g)⊗ Z[1/n] ∼= H1(∂M ; Z[1/n]n−1)
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identifies Ω with the non-degenerate form ωAg on H1(∂M ; Z[1/n]n−1) given by

(2.17) ωAg(λ⊗ v, µ⊗ w) = ι(λ, µ)〈v,Agw〉,

where ι is the intersection form on H1(∂M), 〈, 〉 the canonical inner product on Rn, and Ag

the Cartan matrix of g. �

Remark 2.10. Presumably, K = Ker
(
H1(∂M ; Zn−1) → H1(M ; Z/nZ)

)
, where Z/nZ is

regarded as the quotient of Zn−1 by the column space of the Cartan matrix. This would be
a natural generalization of the K in Theorem 2.4.

As explained in Section 4.1, the group Jg(T ) is generated by terms (s, e)∆, where e is an
edge of a subsimplex s of a simplex ∆ of T . As in (2.10) we have

(2.18) β(p) =
∑
(s,∆)

Ap,(s,∆)(s, ε01)∆ +
∑
(s,∆)

Bp,(s,∆)(s, ε12)∆ ∈ Jg(T ).

Also, as in (2.11), we have for each generator λ⊗ er of H1(∂M ; Zn−1) an element

(2.19)
∑
(s,∆)

Acusp
λ⊗er,(s,∆)(s, ε01)∆ +

∑
(s,∆)

Bcusp
λ⊗er,(s,∆)(s, ε12)∆ ∈ Jg(T ),

in the kernel of β∗. In fact it equals δ′(λ ⊗ er) for a map δ′ : H1(∂M ; Zn−1) → H3(J g)
which induces the isomorphism (2.16) (see Section 8.2). The following is the analogue of
Corollary 2.6.

Corollary 2.11. The rows of (A|B) are orthogonal to the rows of (Acusp|Bcusp) with re-
spect to the standard symplectic form ωJ . Moreover, if x and y are rows of (Acusp|Bcusp)
corresponding to λ⊗ er and µ⊗ es, respectively, we have

�(2.20) ωJ(x, y) = Ω
(
δ′(λ⊗ er), δ′(µ⊗ es)

)
= ι(λ, µ)〈er, Ages〉.

The proof of the following result is identical to that of Corollary 2.7. In the case where all
boundary components are tori, the number of non-vertex integral points is

(
n+1

3

)
times the

number of simplices (see Lemma 3.5).

Corollary 2.12. The rank of (A|B) is the number of non-vertex integral points minus
c(n− 1), where c is the number of boundary components. �

Remark 2.13. If all boundary components are tori, (A|B) has twice as many columns as
rows, and c(n − 1) = 1

2
rankH1(∂M ; Zn−1). It follows that one can extend a basis for the

row space of (A|B) by adding rows of (Acusp|Bcusp) to obtain a matrix with full rank. This
matrix is then the upper part of a symplectic matrix and as stated in the introduction plays
a crucial role in extending the work of [4, 8, 7, 6, 13] to the PGL(n,C) setting.

Remark 2.14. The computation of the rational homology of H3(J g) was obtained for
n = 3 by Bergeron–Falbel–Guilloux [2] (using a different, but isomorphic chain complex). A
generalization to n > 3 by Guilloux [15] yields results similar to ours.
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2.6. A side comment on quivers. If you take a quiver as in Figure 2 for each subsimplex
and superimpose them canceling edges with opposite orientations, you get the quiver shown
in Figure 3. Everything cancels in the interior. The quiver on the face equals the quiver in
Fock–Goncharov [10, Fig. 1.5], and also appears for n = 3 in Bergeron–Falbel–Guilloux [2,
Fig. 4]. One can go from the quiver on two of the faces to the quiver on the two other
faces by performing quiver mutations (see e.g. Keller [16]). The quiver mutations change
the X-coordinates and Ptolemy coordinates by cluster mutations [?], and there is a one-one
correspondence between quiver mutations and subsimplices. Although we do not need any
of this here, this observation was a major motivation for [14] and [12].

1

0 2

1

3

2

Figure 3. Superposition of copies of the quiver in Figure 2, one for each subsimplex.

3. Shape assignments and gluing equations

We identify each simplex of M with the simplex

(3.1) ∆3
n =

{
(x0, x1, x2, x3) ∈ R4

∣∣ 0 ≤ xi ≤ n, x0 + x1 + x2 + x3 = n
}
.

Let ∆3
n(Z) denote the integral points of ∆3

n, and ∆̇3
n(Z) denote the integral points with the

4 vertex points removed. The natural left A4-action on ∆3
n given by

(3.2) σ(x0, . . . , x3) = (xσ−1(0), . . . , xσ−1(3))

induces A4-actions on ∆3
n(Z) and ∆̇3

n(Z) as well.

Definition 3.1. A subsimplex of ∆3
n is a subset S of ∆3

n obtained by translating ∆3
2 ⊂ R4

by an element s in ∆3
n−2(Z) ⊂ Z4, i.e. S = s+ ∆3

2. Note that |∆3
n(Z)| =

(
n+1

3

)
.

We shall identify the edges of an ordered simplex with ∆̇3
2(Z), e.g. the edges ε01 and ε12

correspond to (1100) and (0110).

Definition 3.2. A shape assignment on ∆3
n is an assignment

(3.3) z : ∆3
n−2(Z)× ∆̇3

2(Z)→ C \ {0, 1}, (s, e) 7→ zes

satisfying the shape parameter relations
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(3.4) zε01
s = zε23

s =
1

1− zε02
s
, zε12

s = zε03
s =

1

1− zε01
s
, zε02

s = zε13
s =

1

1− zε12
s

One may think of a shape assignment as an assignment of shape parameters to the edges
of each subsimplex. The ad hoc indexing of the shape parameters by z, z′ and z′′ is replaced
by an indexing scheme, in which a shape parameter zes,∆ is indexed according to the edge e
of the subsimplex s of the simplex ∆ to which it is assigned.

Definition 3.3. An integral point of T is an equivalence class of points in ∆3
n(Z) identified

by the face pairings of T . We view an integral point as a set of pairs (t,∆) with t ∈ ∆3
n(Z)

and ∆ ∈ T . An integral point is either a vertex point, an edge point, a face point, or an
interior point.

Definition 3.4. A shape assignment on T is a shape assignment zes,∆ on each simplex ∆ ∈ T
such that for each non-vertex integral point p, the generalized gluing equation

(3.5)
∏

(t,∆)∈p

∏
s+e=t

zes,∆ = 1.

is satisfied. Here, the first product is over pairs (t,∆) representing p, and the second is over
pairs (s, e) ∈ ∆3

n−2(Z)× ∆̇3
2(Z) such that s+ e = t.

The gluing equation for p sets equal to 1 the product of the shape parameters of all edges
of subsimplices having p as midpoint, see Figures 4 and 5 (taken from [12]). The product
has 6 terms if p is an interior point or a face point, and ν terms if p is an edge point on an
edge of valence ν.

1
3

2

0

3
2

0

0

1

3

2

z1100
1200,0

z0110
0120,2

z0101
0102,1

0

2
1

3

0

21

3

∆0 ∆1

Figure 4. Edge equation for n = 5:

z1100
1200,0z

0101
0102,1z

0110
0120,2 = 1.

Figure 5. Face equation for n = 6:

z0011
2011,0z

1001
1021,0z

1010
1012,0z

0011
0211,1z

0101
0121,1z

0110
0112,1 = 1.

Lemma 3.5. If all boundary components are tori, the number of non-vertex integral points
is
(
n+1

3

)
τ , where τ is the number of simplices of T . Hence, the number of variables is the

same as the number of equations.
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Proof. Letting ε, and ψ denote the number edges, and faces, respectively, the number q of
non-vertex integral points is given by

(3.6) q = (n− 1)ε+
(n− 1)(n− 2)

2
ψ +

(n− 1)(n− 2)(n− 3)

6
τ.

Clearly, ψ = 2τ , and if all boundary components are tori, a simple Euler characteristic
argument shows that τ = ε. It thus follows that q =

(
n+1

3

)
τ , as desired. �

Note that the gluing equation for p can be written in the form

(3.7)
∏
(s,∆)

(z(s,∆))
Ap,(s,∆)

∏
(s,∆)

(1− z(s,∆))
Bp,(s,∆) = εp.

Theorem 3.6 (Garoufalidis–Goerner–Zickert [12]). A shape assignment on T determines
(up to conjugation) a representation π1(M)→ PGL(n,C).

3.1. X-coordinates. The X-coordinates are defined on the face points of T , and are used
in Section 8 to define the cusp equations. They agree with the X-coordinates of Fock and
Goncharov [10].

Definition 3.7. Let z be a shape assignment on ∆3
n and let t ∈ ∆3

n(Z) be a face point. The
X-coordinate at t is given by

(3.8) Xt = −
∏
s+e=t

zes ,

i.e. it equals (minus) the product of the shape parameters of the 3 edges of subsimplices
having t as a midpoint.

Remark 3.8. Note that the gluing equation for a face point p = {(t1,∆1), (t2,∆2)} states
that Xt1Xt2 = 1.

4. Definition of the chain complex

We now define the chain complex (2.14).

4.1. Definition of the terms. Let Cg
0(T ) = C0(T )⊗Zn−1 and let Cg

1(T ) be the free abelian
group on the non-vertex integral points of T . Letting e1, . . . , en−1, denote the standard basis
vectors of Zn−1, it follows that Cg

0(T ) is generated by symbols x⊗ ei, where x is a 0-cell of
T . It will occasionally be convenient to define e0 = en = 0. Let

(4.1) Jg(T ) =
⊕
∆∈T

⊕
s∈∆3

n−2(Z)

J∆3
2

be a direct sum of copies of J∆3
2
, one for each subsimplex of each simplex of T . The group

Jg(T ) is thus generated by the set of all edges e of all subsimplices s of the simplices ∆ of
T , and we denote a generator by (s, e)∆. The generators are subject to relations

(s, ε01)∆ = (s, ε23)∆, (s, ε12)∆ = (s, ε03)∆, (s, ε02)∆ = (s, ε13)∆(4.2)

(s, ε01)∆ + (s, ε12)∆ + (s, ε02)∆ = 0.(4.3)

It thus follows that {(s, ε01)∆, (s, ε12)∆} is a basis for Jg(T ).
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The form Ω on J∆3
2

induces by orthogonal extension a form on Jg(T ) also denoted by Ω.

Since Ω is non-degenerate it induces a natural identification of Jg(T ) with its dual. Similarly,
the natural bases of Cg

0(T ) and Cg
1(T ) induce natural identifications with their respective

duals.

4.2. Formulas for β and β∗. Define

(4.4) β : Cg
1(T )→ Jg(T ), p = {(t,∆)} 7→

∑
(∆,t)∈p

∑
e+s=t

(s, e)∆.

Hence, β takes p to the formal sum of all the edges of subsimplices whose midpoint is p. By
[12, Lemma 7.3], the dual map β∗ : Jg(T )→ Cg

1(T ) is the unique map satisfying

(4.5)

β∗((s, ε01)∆) = [(s+ ε03,∆)] + [(s+ ε12,∆)]− [(s+ ε02,∆)]− [(s+ ε13,∆)]

β∗((s, ε12)∆) = [(s+ ε02,∆)] + [(s+ ε13,∆)]− [(s+ ε01,∆)]− [(s+ ε23,∆)]

β∗((s, ε02)∆) = [(s+ ε01,∆)] + [(s+ ε23,∆)]− [(s+ ε23,∆)]− [(s+ ε12,∆)].

We refer to an element of the form β∗((s, εij)∆) as an elementary quad relation, see Fig-
ures 6, 7 and 8.

0

1

2

3

−

+
+

−

0

1

2

3

+

+

− −

0

1

2

3

−
+

−+

Figure 6. β∗(s, ε01). Figure 7. β∗(s, ε12). Figure 8. β∗(s, ε02).

Lemma 4.1. [Garoufalidis–Goerner–Zickert [12, Prop. 7.4]] β∗ ◦ β = 0. �

4.3. Formulas for α and α∗. For a 0-cell x of T and a simplex ∆, let I∆(x) ⊂ {0, 1, 2, 3} be
the set of vertices of ∆ that are identified with x. Also, for t ∈ ∆3

n(Z) and k ∈ {1, . . . , n−1},
let

(4.6) ct,∆,k(x) = |{i ∈ I∆(x) | ti = k}| .

Note that if (t,∆) and (t′,∆′) define the same integral point, then ct,∆,k(x) = ct′,∆′,k(x).
Define

(4.7) α : Cg
0(T )→ Cg

1(T ), x⊗ ek 7→
∑
p

ct,∆,k(x)p,

where the sum is over all integral points p, and (t,∆) is any representative of p. Also, define

(4.8) α∗ : Cg
1(T )→ Cg

0(T ), [(t,∆)] 7→
3∑
i=0

xi ⊗ eti ,
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where xi is the 0-cell of T defined by the ith vertex of ∆ (recall that e0 = 0). Informally,
α takes x ⊗ ek to the integral points at distance k from x (counted with multiplicity), and
α∗ sends an integral point to its coordinates with respect to any simplex containing it (see
Figures 9 and 10). It is elementary to check that α∗ is well defined, and that it is the dual
of α.

x

x y

1

1

2

x

y z

t

Figure 9. α(x⊗e2) for n = 4. Figure 10. α∗([t,∆]) = x⊗ e2 + y⊗ e1 + z⊗ e1.

Lemma 4.2. We have α∗ ◦ β∗ = 0.

Proof. Let s ∈ ∆3
n−2(Z) be a subsimplex. We have

α∗ ◦ β∗(s, ε01)∆ = α∗([(s+ ε03,∆)]) + α∗([(s+ ε12,∆)])

− α∗([(s+ ε02,∆)])− α∗([(s+ ε13,∆)])

= x0 ⊗ es0+1 + x1 ⊗ es1 + x2 ⊗ es2 + x3 ⊗ es3+1

+ x0 ⊗ es1 + x1 ⊗ es1+1 + x2 ⊗ es2+1 + x3 ⊗ es3
− x0 ⊗ es0+1 − x1 ⊗ es1 − x2 ⊗ es2+1 − x3 ⊗ es3
− x0 ⊗ es0 − x1 ⊗ es1+1 − x2 ⊗ es2 − x3 ⊗ es3+1 = 0

Similarly, α∗ ◦ β∗(s, ε12)∆ = α∗ ◦ β∗(s, ε02)∆ = 0. �

By duality, β ◦ α is also 0, so by Lemmas 4.1 and 4.2 we have a chain complex J g(T ):

(4.9) 0 // Cg
0(T )

α // Cg
1(T )

β // Jg(T )
β∗ // Cg

1(T )
α∗ // Cg

0(T ) // 0

Note that when n = 2, J g equals J .

Convention 4.3. When there can be no confusion, we shall sometimes suppress the simplex
∆ from the notation. For example, we sometimes write (s, e) instead of (s, e)∆, and if t is
an integral point of a simplex ∆ of T , we denote the corresponding integral point of T by
[t] or sometimes just t instead of [(t,∆)].

5. Characterization of Im(β∗)

We develop some relations in Cg
1(T )/Im(β∗) that are needed for computing H2(J g). These

relations may be of independent interest.
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5.1. Quad relations.

Definition 5.1. A quadrilateral (quad for short) in ∆3
n is the convex hull of 4 points

(5.1) p0 = a+ (k, 0, 0, l), p1 = a+ (k, 0, l, 0), p2 = a+ (0, k, l, 0), p3 = a+ (0, k, 0, l),

or the image of such under a permutation in S4. Here k, l are positive integers with k+ l ≤ n
and a ∈ ∆n−k−l(Z). A quad determines a quad relation in Cg

1(T ) given by the alternating
sum p0 − p1 + p2 − p3 of its corners.

Figure 11 shows 3 quad relations for n = 4.

Lemma 5.2. A quad relation is in the image of β∗, and is thus zero in H2(J g).

Proof. This follows from the fact that any quad relation is a sum of the elementary quad
relations in Figures 6, 7 and 8. For an algebraic proof, note that

�(5.2) p0 − p1 + p2 − p3 =
∑

1<i≤k,1<j≤l

β∗
(
a+ (k − i, i− 1, j − 1, l − j), ε01

)
.

-

--

-

++

+

0

1

2

3

-
+

+
+ -

-

0 2

1

t

+ -
-

-
-

+

+
+

20

1

Figure 11. Quad rela-

tions.

Figure 12. Hexagon

relation.

Figure 13. Long

hexagon relation.

Recall that we have divided integral points into edge points, face points and interior points.
We shall need a finer division.

Definition 5.3. The type of a point t ∈ ∆n(Z) is the orbit of t under the S4 action.

Note that the type is preserved under face pairings, so it makes sense to define the type
of an integral point p = [(t,∆)] to be the type of any representative.

Proposition 5.4. Let p and q be integral points of the same type. Then

(5.3) p− q ∈ Im(β∗) + E,

where E is the subgroup of Cg
1(T ) generated by edge points.

Proof. We first assume that the points lie in the same simplex. The quad relation (together
with similar relations obtained by permutations)

(5.4) (a, b, c, d)− (a, b, c+ d, 0) + (b, a, c+ d, 0) + (b, a, c, d)
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shows that the difference between two interior points of the same type is equal modulo Im(β∗)
to the difference between two face points of the same type. Similarly, the relation

(5.5) (a, b, 0, c)− (a, b, c, 0) + (0, a+ b, c, 0)− (0, a+ b, 0, c)

shows that the difference between two face points (of the same type) in distinct faces is in
Im(β∗) + E. Finally, the two quad relations

(5.6)
(0, a, b, c) = (a, 0, b, c) + (0, a, 0, b+ c)− (a, 0, 0, b+ c),

(0, a, c, b) = (a, 0, c, b) + (0, a, b+ c, 0)− (a, 0, b+ c, 0)

in Cg
1(T )/Im(β∗) imply that the difference between two face points (of the same type) in the

same face is also in Im(β∗) + E. This concludes the proof when the points are in the same
simplex. The quad relation

(5.7) (a, b, c, d) = (a, b, c+ d, 0)− (0, b+ a, c+ d, 0) + (0, a+ b, c, d)

shows that (a, b, c, d) modulo E + Im(β∗) is a sum of face points, which we (by the above)
may move to the same face. This proves the result for p and q in adjacent simplices, and the
general case follows from the fact that M is connected. �

5.2. Hexagon relations. Besides the quad relations, we shall need further relations that
lie entirely in a face.

Lemma 5.5. For any face point t, the element β∗
(∑

s+e=t(s, e)
)

is an alternating sum of
the corners of a hexagon with center at t (see Figure 12).

Proof. By rotational symmetry, we may assume that t = (t0, t1, t2, 0). We thus have

(5.8) β∗
( ∑
s+e=t

(s, e)
)

= β∗(t− ε01, ε01) + β∗(t− ε12, ε12) + β∗(t− ε02, ε02).

Using the formula (4.5) for β∗, (5.8) easily simplifies to

(5.9) β∗
( ∑
s+e=t

(s, e)
)

= −[t+ (−1, 1, 0, 0)] + [t+ (−1, 0, 1, 0)]− [t+ (0,−1, 1, 0)]

+ [t+ (1,−1, 0, 0)]− [t+ (1, 0,−1)] + [t+ (0, 1,−1, 0)].

This corresponds to the configuration in Figure 12. �

Definition 5.6. An element as in Lemma 5.5 is called a hexagon relation. By taking sums
of hexagon relation, we obtain relations as shown in Figure 13. We refer to these as long
hexagon relations (a hexagon relation is also regarded as a long hexagon relation).

6. The outer homology groups

We focus here on the computation of H1(J g) and H2(J g); the computation of H5(J g)
and H4(J g) will follow by a duality argument (see Section 6.3).
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6.1. Computation of H1(J g).

Proposition 6.1. H1(J g) = Z/nZ.

Proof. Consider the map

ε : Cg
0(T )→ Z/nZ, x⊗ ek 7→ k.

We must prove that ε is surjective and that Ker(ε) = Im(α∗). Surjectivity is obvious, and
the inclusion Im(α∗) ⊂ Ker(ε) follows from the fact that the sum of the coordinates of
any point in ∆3

n(Z) is n. To prove the other inclusion, let [σ] ∈ Ker(ε)
/

Im(α∗), and let

σ =
∑N

i=1 εixi⊗ eki be a representative with N minimal and εi = ±1. We wish to prove that
N = 0, so suppose N > 0. We start by showing that modulo Im(α∗), the relations

(6.1) x⊗ ek + y ⊗ en−k = 0, x⊗ ek − y ⊗ ek = 0

hold for all 0-cells x, y. Pick an edge path of odd length between x and y with vertices x0 =
x, x1, . . . , x2k−1 = y. For z, w vertices joined by an edge e, let (z, w; k) be the edge point of T
corresponding to the point on e at distance k from w. Then α∗(z, w; k) = z⊗ ek +w⊗ en−k.
We thus have

(6.2) x⊗ ek + y ⊗ en−k = α∗
(
(x, x1; k)− (x1, x2;n− k) + · · ·+ (x2k−2, y; k)

)
.

This proves the first equation in (6.1). The second follows similarly by considering an edge
path of even length.

Clearly N 6= 1, and it follows from (6.1) that [σ] = 0 if N = 2. Hence, we may assume
that N ≥ 3, and also (using (6.1)) that ki ≤ n/2 for all i. Up to switching the sign of σ and
reordering the summands, we may thus assume that

(6.3) σ = x1 ⊗ ek1 + x2 ⊗ ek2 +
∑
i>2

εixi ⊗ eki .

Fix three 0-cells x, y, z lying on a face, and let p be the unique integral point satisfying

(6.4) α∗(p) = x⊗ ek1 + y ⊗ ek2 + z ⊗ en−k1−k2 .

Subtracting α∗(p) from σ and using (6.1), we can thus construct a representative of [σ] with
fewer than N terms, contradicting minimality of N . Hence, σ = 0. �

6.2. Computation of H2(J g). In this section we prove that H2(J g) = H1(M̂ ; Z/nZ). The
fact that H2(J g) is torsion is crucial, and is used in the proof of Proposition 7.9. We see no
way of proving that H2(J g) is torsion without computing it explicitly.

Let εori
ij denote the oriented edge (from i to j) between i and j.

6.2.1. Definition of a map ν : H2(J g)→ H1(M̂ ; Z/nZ). Consider the map

(6.5) ν : Z[∆̇3
n(Z)]→ C1(∆3; Z/nZ), (t0, t1, t2, t3) 7→ t1ε

ori
01 + t2ε

ori
02 + t3ε

ori
03 .

Note that modulo boundaries in C1(∆3; Z/nZ), we have

(6.6) t1ε
ori
01 +t2ε

ori
02 +t3ε

ori
03 = t0ε

ori
10 +t2ε

ori
12 +t3ε

ori
13 = t0ε

ori
20 +t1ε

ori
21 +t3ε

ori
23 = t0ε

ori
30 +t1ε

ori
31 +t2ε

ori
32 .
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Lemma 6.2. The map (6.5) induces a well defined map

(6.7) ν : Cg
1(T )→ C1(M̂ ; Z/nZ)

/
{boundaries}

which takes cycles to cycles and boundaries to 0.

Proof. If the triangulation T is ordered (all face pairings are order preserving), so that all
edges of T are canonically oriented, the fact that ν is well defined is a simple consequence

of (6.6). The general case follows from the fact that if εori
ij,∆ and εori

kl,∆′ are identified in M̂ ,

their images in C1(M̂) differ by a sign, which is positive if and only if i − j and k − l have
the same sign. To see that cycles map to cycles consider the diagram

(6.8)

Cg
1(T )

ν //

α∗

��

C1(M̂ ; Z/nZ)
/
{boundaries}

∂
��

Cg
0(T )

ν0 // C0(M̂ ; Z/nZ),

where ν0 is the map given by

(6.9) ν0 : Cg
0(T )→ C0(M̂ ; Z/nZ), x⊗ ei 7→ ix.

We must prove that (6.8) is commutative. This follows from

(6.10) ∂(ν(t)) = ∂(t1ε
ori
01 + t2ε

ori
02 + t3ε

ori
03 ) =

t1(x1 − x0) + t2(x2 − x0) + t3(x3 − x0) = t0x0 + t1x1 + t2x2 + t3x3 = ν ◦ α∗(t).

We must check that ν takes β∗(Jg(T )) to 0. By rotational symmetry, it is enough to prove
that ν takes β∗(s, ε01) to 0. Using (4.5) we have

(6.11) ν
(
β∗(s, ε01)

)
=
(
s1ε

ori
01 + s2ε

ori
02 + (s3 + 1)εori

03

)
+
(
(s1 + 1)εori

01 + (s2 + 1)εori
02 + s3ε

ori
03

)
−
(
s1ε

ori
01 + (s2 + 1)εori

02 + s3ε
ori
03

)
−
(
(s1 + 1)εori

01 + s2ε
ori
02 + (s3 + 1)εori

03

)
= 0.

This concludes the proof. �

Hence, ν induces a map

(6.12) ν : H2(J g)→ H1(M̂ ; Z/nZ).

6.2.2. Construction of a map µ : H1(M̂ ; Z/nZ) → H2(J g). We prove that ν is an isomor-
phism by constructing an explicit inverse. Let k ∈ {1, 2, . . . , n− 1}.

Definition 6.3. Let e be an oriented edge of T . If f is a face containing e, the path
consisting of the two other edges in f is called a tooth of e.

Given a tooth Te of an edge e, let µk(e)Te ∈ C
g
1 be the element shown in Figure 14.

Lemma 6.4. For any two teeth Te and T ′e of e, we have

(6.13) µk(e)Te = µk(e)T ′e ∈ C
g
1(T )

/
Im(β∗).
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Proof. Since any two teeth of e are connected through a sequence of flips past simplices in
the link of e, it is enough to prove the result when Te and T ′e are teeth in a single simplex.
Hence, we must prove that a configuration as in Figure 15 represents zero in Cg

1(T )
/

Im(β∗).
This is a consequence of the quad relation (Definition 5.1). �

e

k

1 −1

Te

e

k
1 −1

−1 1
Te

T ′e

Figure 14. A tooth Te of e and

µk(e)Te .
Figure 15. µk(e)Te − µk(e)T ′e is a

quad relation.

It follows that we have a map

(6.14) µk : C1(M̂)→ Cg
1(T )

/
Im(β∗), e 7→ µk(e)Te .

We shall also consider the map µk : C1(M̂) → Cg
1(T ) taking an oriented edge e of T to the

integral point on e at distance k from the initial point of e. Note that if f1 and f2 are the
first and second edge of some tooth of e, µk(e) = µk(f1)− µn−k(f2). This is immediate from
the definition of µk and µk.

Lemma 6.5. If e1 and e2 are two consecutive oriented edges,

(6.15) µk(e1 + e2) = µk(e1)− µn−k(e2) ∈ Cg
1(T )

/
Im(β∗).

Proof. We must show that a configuration as in Figure 16 represents 0 in Cg
1(T )

/
Im(β∗).

By flipping the teeth of e1 and e2 (which by Lemma 6.4 does not change the element in
Cg

1(T )
/

Im(β∗)), we can tranform the configuration into a configuration as in Figure 17 where
the two teeth meet at a common edge e (the fact that this is always possible follows from
the fact that each vertex link is connected). This configuration also represents µn−k(e)Te −
µn−k(e)T ′e for two teeth Te and T ′e of e, so is zero by Lemma 6.4. �

Corollary 6.6. µk induces a map µk : H1(M̂)→ H2(J g).

Proof. The fact that µk takes cycles to cycles is immediate from the definition of α∗. Let
e1 + e2 + e3 be an oriented path representing the boundary of a face in T . We have

(6.16) µk(e1 + e2 + e3) = µk(e1 + e2) + µk(e3) =

µk(e1)− µn−k(e2) + µk(e3) = −µk(e3) + µk(e3) = 0,

where the third equality follows from the fact that e1 + e2 is a tooth of e3. This proves the
result. �
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k
k

1
−1

−1 1

1

−1

k k

e1 e2

Te1 Te2

−1

1

1

−1

e
Te T ′e

e1 e2

Figure 16. Configuration represent-

ing µk(e1 + e2)− µk(e1) + µn−k(e2).

Figure 17. Configuration represent-

ing µk(e)Te − µk(e)T ′e = 0.

Lemma 6.7. We have µk = −µn−k : H1(M̂)→ H2(J g).

Proof. Let α ∈ H1(M̂). Since H1(M̂) is generated by edge cycles, we may assume that α is
represented by an edge cycle e1 + e2 + · · ·+ e2l, which we may assume to have even length.
We thus have (indices modulo 2l)

(6.17) µk(α) =
l∑

i=1

(
µk(e2i−1)− µn−k(e2i)

)
=

l∑
i=1

(
− µn−k(e2i) + µk(e2i+1)

)
= −µn−k(α),

where the first and third equality follow from Lemma 6.5 and the second equality follows
from shifting indices by 1. �

Lemma 6.8. For each k, we have µk = kµ1 : H1(M̂)→ H2(J g).

Proof. Let α = e1 + e2 + · · ·+ e2l as in the proof of Lemma 6.7. We can represent kµ1(ei)−
µk(ei) as in Figure 18. By applying long hexagon relations (k−d relations at distance d from
ei) in the direction parallel to ei, the configuration is equivalent to that of Figure 19. Now
consider two consecutive edges ei and ei+1 as in Figure 20. By flipping teeth (which doesn’t
change the homology class), we may transform the configuration into that of Figure 21,
and by further flipping, we may assume that the configuration lies in a single simplex. It
is now evident, that the points near the common edge e represents a sum of k − 1 quad
relations. Hence, all the points near e vanish. By flipping the teeth back, we end up with
a configuration as in Figure 20, but with only points near the leftmost and rightmost edge
remaining. Since α is a cycle, it follows that everything sums to zero. �

By the above lemmas we have a map

(6.18) µ : H1(M̂ ; Z/nZ)→ H2(J g), e⊗ k 7→ µk(e).

6.2.3. The map µ is the inverse of ν.

Lemma 6.9. The composition ν ◦ µ is the identity on H1(M̂ ; Z/nZ).
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ei

k

1 k

−1 1

−k
ei

k

1
k − 1

1

1− k

1
1

1

1

−1
−1
−1

−1

−1
−1
−1

−1

1
1

1

Figure 18. kµ1(ei)− µk(ei). Figure 19. kµ1(ei) − µk(ei) after

adding long hexagon relations.

k

1 e1 e2

1
1
1

1 1

1
1

1
1

1
1

1
1

1
1
1

−1

−1
−1
−1

−1

−1−1
−1

−1

−1
−1
−1

−1

−1
−1−1

k − 1
1− k k − 1

1− k

k

e1 e2

1

1
1
1 −1

−1
−1

−1

1−k k−1

Figure 20. kµ1(ei)− µk(ei). Figure 21. Figure 20 after flipping.

Proof. First observe that for each 1-cell e of T , we have ν ◦ µk(e) = ke. Consider a repre-

sentative α = e1 + · · · + e2l ∈ C1(M̂ ; Z) of a homology class in H1(M̂). As in (6.17), we
have

(6.19) ν ◦ µk(α) = ν
( l∑
i=1

(
µk(e2i−1)− µn−k(e2i)

))
=

l∑
i=1

e2i−1 ⊗ k − e2i ⊗ (n− k) = α⊗ k ∈ C1(M̂ ; Z/nZ)
/
{boundaries}.

This proves the result. �

We now show that µ ◦ ν is the identity on H2(J g). The idea is that every homology class
in H2(J g) can be represented by edge points. Consider the set

(6.20) T =
{

(t0, t1, t2, 0) ∈ ∆̇3
n(Z)

∣∣ t0 ≥ t1 ≥ t2 ≥ 0}

of points on a face of a fixed simplex of T . By Proposition 5.4 (and (5.7)), we can represent
each homology class in H2(J g) by an element τ + e, where e consists entirely of edge points,
and τ consists of terms in T . Note that by adding and subtracting edge points in T to τ ,
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one may further assume that α∗(τ) = 0. Hence, we shall study elements in Ker(α∗) of the
form

(6.21) τ =
∑
t∈T

ktt, kt ∈ Z.

We say that a term t ∈ T is in τ if kt 6= 0. For j = 1, . . . , n− 1, consider the map

(6.22) πj : Cg
0(T )→ Z, x⊗ ei 7→ δij,

where δij is the Kronecker δ. For k ∈ N, let τti=k =
∑

ti=k
ktt be the sum of the terms in τ

with ti = k.

Lemma 6.10. For any k > n/2, τt0=k is a linear combination of terms of the form

(6.23) Ct1,t′1,k = (k, t1, t2, 0)− (k, t′1, t
′
2, 0), t1 > t′1.

Proof. It is enough to prove that
∑

t0=k kt = 0. Since α∗(τ) = 0, this follows from

(6.24) 0 = πk ◦ α∗(τ) = πk ◦ α∗(τt0=k) =
∑
t0=k

kt,

which is an immediate consequence of the definition of α∗. �

Proposition 6.11. The kernel of α∗ : Cg
1(T )→ Cg

0(T ) is generated modulo Im(β∗) by edge
points. In other word, each homology class can be represented by edge points.

Proof. Let x ∈ H2(J g). As explained above, we can represent x by an element τ + e, where
e consists entirely of edge points, and τ =

∑
t∈T ktt ∈ Ker(α∗). We wish to show that τ

is a linear combination of long hexagon relations. We start by inductively decreasing the
maximal value tmax

0 of t0 among the terms in τ by adding long hexagon relations in the
direction parallel to the edge opposite vertex 0. More specifically, one adds the long hexagon
relations with corners at the two terms involved in Ct1,t′1,tmax

0
(see Figure 22). If a long

hexagon has a vertex outside of t, this vertex is replaced by the unique vertex in T of the
same type. By Lemma 6.10 we can remove all terms with t0 > n/2 in this way. We then
continue adding long hexagon relations until we end up with a configuration τ ′, where all
terms satisfy that t0− t1 ≤ 2, i.e. where all terms are either on the line t0 = t1 or on the saw
shaped curve in Figure 23. Note that for any k, the number xk of terms in τ ′ with t2 = k is
either 0, 1 or 2. Using that πk ◦α∗(τ ′) = 0, we see that xk can’t be 1, and that if xk = 2, the
coefficient of the term with t0 > t1 is −2 times the coefficient of the term with t0 = t1. Hence,
all terms of τ ′ lie on the square indicated in Figure 23. But this contradicts that α∗(τ ′) = 0,
since the corner terms of the square can’t cancel. It thus follows that τ ′ = 0, hence, that τ
is a sum of long hexagon relations, hence 0 in H2(J g). This proves the result. �

Corollary 6.12. The composition µ ◦ ν is the identity on H2(J g).

Proof. By Proposition 6.11, one may represent a class in H2(J g) by a linear combination x
of edge points. Since α∗(x) = 0, x must be a linear combination of elements of the form

(6.25) σ =
l∑

i=1

(
µk(e2i)− µn−k(e2i−1)

)
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t2 = 01

−1

1 t1 = t2

t0 = t1−1
−1

1

1

−1 −1

1−1

1

2

−1

−1

t0 = t1

t1 = t2

t2 = 0

−2

1

2

−1

−2

1

Figure 22. Driving terms up by adding long

hexagon relations.

Figure 23. Final config-

uration.

This follows from the well known fact that the cycles in C1(M̂) are generated by edge loops.
We now have

(6.26) µ ◦ ν(σ) = µ
(
(e1 + · · ·+ e2l)⊗ k

)
= µk(e1 + · · ·+ e2l) = σ,

where the first equality follows from (6.19), and the third from Lemma 6.5. �

The following now follows from Lemma 6.9 and Corollary 6.12.

Proposition 6.13. We have an isomorphism H2(J g) ∼= H1(M̂ ; Z/nZ). �

6.3. Computation of H4(J g) and H5(J g). Since J g is self dual, the universal coefficient
theorem implies that

(6.27) Hk(J g) = H6−k((J g)∗) ∼= Hom(H6−k(J g),Z)⊕ Ext(H6−k−1(J g),Z).

It thus follows from Propositions 6.1 and 6.13 that H5(J g) = 0 and that H4(J g) = Z/nZ.

Remark 6.14. One can show that the sum τ of all integral points of T generates H4(J g) =
Z/nZ. If M has a single boundary component, corresponding to the 0-cell x of T , we have

(6.28) nτ = α
( n−1∑
i=1

ix⊗ ei
)
.

We shall not need this, so we leave the proof to the reader.

7. The middle homology group

By (6.27) and Proposition 6.13, the torsion in H3(J g) equals Ext(H1(M̂ ; Z/nZ)), which

is isomorphic to H1(M̂ ; Z/nZ). We now analyze the free part. Following Neumann [17,
Section 4], the idea is to construct maps

(7.1) δ : H1(∂M ; Zn−1)→ H3(J g), γ : H3(J g)→ H1(∂M ; Zn−1),

which are adjoint with respect to the intersection form w on H1(∂M ; Zn−1) and the form Ω
on H3(J g). When n = 2, our δ and γ agree with those of [17].
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7.1. Cellular decompositions of the boundary. The ideal triangulation T of M induces
a decomposition of M into truncated simplices such that the cut-off triangles triangulate the
boundary of M . We call this decomposition of ∂M the standard decomposition and denote it
by T ∆

∂M . The superscript ∆ is to stress that the 2-cells are triangles. We shall also consider

another decomposition of ∂M , the polygonal decomposition T D
∂M , which is obtained from

T ∆
∂M by replacing the link of each vertex v of T ∆

∂M with the polygon whose vertices are the
midpoints of the edges incident to v. The polygonal decomposition thus has a vertex for
each edge of T ∆

∂M , 3 edges for each face of T ∆
∂M , and 2 types of faces; a triangular face for

each face of T ∆
∂M , and a polygonal face (which may or may not be a triangle) for each vertex

of T ∆
∂M .

Figure 24. The standard decomposi-

tion.

Figure 25. The polyhedral decompo-

sition.

We denote the cellular chain complexes corresponding to the two decompositions by

C∗(T ∆
∂M) and C∗(T D

∂M), respectively. Hence, we have canonical isomorphisms

(7.2) H∗
(
C∗(T D

∂M)
)

= H∗
(
C∗(T ∆

∂M)
)

= H∗(∂M).

7.1.1. Labeling and orientation conventions. We orient ∂M with the counter-clockwise ori-

entation as viewed from an ideal point. The edges of T D
∂M each lie in a unique simplex of T

and we orient them in the unique way that agrees with the counter-clockwise orientation for
a polygonal face, and the clockwise orientation for a triangular face. The triangular faces

of T D
∂M are thus oriented opposite to the orientation inherited from ∂M . An edge of T ∆

∂M is
only naturally oriented after specifying which simplex it belongs to.

The vertex of T D
∂M near the ith vertex of ∆ on the face opposite the jth vertex is denoted

by vij∆, and the vertex of T ∆
∂M near the ith vertex on the edge ij is denoted by V ij

∆ . The

(oriented) edge of T D
∂M near vertex i and perpendicular to edge ij of ∆ is denoted by eij∆,

and the (oriented) edge of T ∆
∂M near vertex i and parallel to the edge jk of ∆ is denoted

by Eijk
∆ . The triangular 2-faces of T D

∂M and T ∆
∂M are denoted by by τ i∆ and T i∆, respectively,

where i is the nearest vertex of ∆. The polygonal 2-face of T D
∂M whose boundary edges are

eiljl∆l
is denoted by p{il,jl}. The subscript ∆ will occasionally be omitted (e.g. when only one

simplex is involved).
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1

20

3

v13
e10

τ1

V 21

T 2

E231

Figure 26. Labeling of vertices, edges and faces of T ∆
∂M and T D

∂M .

7.2. The intersection form ω. Let ι denote the intersection form on H1(∂M) and let 〈, 〉
denote the canonical inner product on Zn−1. Consider the pairing

(7.3) ω : H1(∂M ; Zn−1)×H1(∂M ; Zn−1)→ Z, (λ⊗ v, µ⊗ w) 7→ ι(λ, µ)〈v, w〉

where λ and µ are in H1(∂M). and v and w in Zn−1. We shall refer to ω as the intersection
form on H1(∂M ; Zn−1).

7.3. Definition of δ. Define

(7.4) δ : C1(T D
∂M ; Zn−1)→ Jg(T ), eij∆ ⊗ er 7→

∑
ti=r

∑
s+e=t

tj(s, e)∆.

Remark 7.1. In (7.4) and in many other places, the symbol
∑

ti=k
means a sum over terms

t = (t0, t1, t2, t3) ∈ ∆3
n(Z) with ti = k. Similarly, the symbol

∑
si=k

means a sum over

subsimplices s ∈ ∆3
n−2 with si = k.

2

eij

5

4

3

2

1

42 31

Figure 27. δ(eij⊗e2) for n = 7. Each dot represents an integral point t contributing a term∑
s+e=t(s, e). Interior terms are not shown, c.f. Remark 7.3.

Note that δ preserves rotational symmetry, i.e. it is a map of Z[A4]-modules, where A4

acts trivially on Zn−1.



24 STAVROS GAROUFALIDIS AND CHRISTIAN K. ZICKERT
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τ i

5

5

5

5

5

55 555

5
5

5
5

5

2
5

4

3

2

1

42 31

∆l
T il

p{iljl}

jl

il

Figure 28. δ2(τ i ⊗ e2) for n = 7.

Interior terms not shown.
Figure 29. δ2(p{iljl} ⊗ e2) for n = 7.

Interior terms not shown.

Proposition 7.2. The map δ induces a map

(7.5) δ : H1(∂M ; Zn−1)→ H3(J g).

Proof. The result will follow by proving that there is a commutative diagram

(7.6)

C2(T D
∂M ; Zn−1)

∂ //

δ2
��

C1(T D
∂M ; Zn−1)

∂ //

δ

��

C0(T D
∂M ; Zn−1)

δ0
��

Cg
1(T )

β // Jg(T )
β∗ // Cg

1(T ).

Define δ2 by

(7.7) p{iljl} ⊗ er 7→
m∑
l=1

∑
til=r

tjl [(t,∆l)], τ i∆ ⊗ er 7→
∑
ti=r

(n− r)[t,∆].

Commutativity of the lefthand square can be proved geometrically by inspecting Figures 27,
28 and 29. An algebraic proof for triangular faces follows from

(7.8)

δ ◦ ∂(τ i∆ ⊗ er) =
∑
j 6=i

δ(eij∆ ⊗ er)

=
∑
ti=r

∑
s+e=t

∑
j 6=i

tj(s, e)

=
∑
ti=r

∑
s+e=t

(n− ti)(s, e)

=β ◦ δ2(τ i∆ ⊗ er).
Note that β∗ ◦ δ(eij ⊗ er) =

∑
ti=r

tjβ
∗(
∑

s+e(s, e)), which is a sum of hexagon relations
(interior terms cancel). These involve only points on the faces determined by the start and
end point of e, proving the existence of δ0. �

Remark 7.3. In the formula for δ interior points may be ignored. This is because if t is an
interior point, then

∑
s+e=t tj(s, e) = tjβ(t) ∈ Im(β).
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7.4. Definition of γ. The group A4 acts transitively on the set of pairs of opposite edges
of a simplex with stabilizer

(7.9) D4 = 〈id, (01)(23), (02)(13), (03)(12)〉 ⊂ A4.

Hence, there is a one-one correspondence between D4-cosets in A4 and pairs of opposite
edges. Explicitly,

(7.10)
Φ: A4

/
D4 →

{
{ε01, ε23}, {ε12, ε03}, {ε02, ε13}

}
D4 7→ {ε01, ε23}, (012)D4 7→ {ε12, ε03}, (021)D4 7→ {ε02, ε13}.

Consider the map

(7.11)

γ : Jg(T )→ C1(T ∆
∂M ; Zn−1)

(s, e) 7→
∑

σ∈Φ−1({e,ē})

Eσ(1)σ(2)σ(3) ⊗ vs,σ(1), vs,i = esi+1 − esi

The map γ is illustrated in Figures 30, 31, and 32. For example, we have

(7.12) γ(s, ε01) = γ(s, ε23) = E032 ⊗ vs,0 + E123 ⊗ vs,1 + E210 ⊗ vs,2 + E301 ⊗ vs,3.

0

1
3

2

⊗vs,1

⊗vs,0
⊗vs,2

⊗vs,3

0

1
3

2

⊗vs,1

⊗vs,0
⊗vs,2

⊗vs,3

0

1
3

2

⊗vs,1

⊗vs,0
⊗vs,2

⊗vs,3

Figure 30. γ(s, ε01). Figure 31. γ(s, ε12). Figure 32. γ(s, ε02).

To see that γ is well defined, note that (s, ε01) + (s, ε12) + (s, ε02) maps to the boundary
of
∑3

i=0 T
i ⊗ vs,i.

Lemma 7.4. γ takes cycles to cycles and boundaries to boundaries.

Proof. We wish to show that γ fits in a commutative diagram

(7.13)

Cg
1(T )

β //

γ2

��

Jg(T )
β∗ //

γ

��

Cg
1(T )

γ0

��
C2(T ∆

∂M ; Zn−1)
∂ // C1(T ∆

∂M ; Zn−1)
∂ // C0(T ∆

∂M ; Zn−1),
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where γ2 and γ0 are defined by
(7.14)

γ2(p) =



∑
(t,∆)∈p

∑
i|ti>0

T i∆ ⊗ (eti − eti−1) p = edge point∑
(t,∆)∈p

∑
i

T i∆ ⊗ (eti − eti−1) p = face point∑
(t,∆)∈p

∑
i

T i∆ ⊗ (eti+1
− eti−1) p = interior point

, γ0(p) = −
∑
i,j

tjV
ij

∆ ⊗ eti .

In the formula for γ0, (t,∆) is any representative of p. Commutativity of the lefthand side
is shown for edge points in Figure 33. On the left, the 6 Eijk edges parallel to the edge
containg p cancel, and on the right, identified edges cancel. The remaining terms are thus
the same on the left and on the right. We leave the similar geometric proofs for face points
and interior points to the reader. To prove commutativity of the righthand side it is by
rotational symmetry enough to consider (s, ε01). We have

(7.15) ∂ ◦ γ(s, ε01) = (V 02 − V 03)⊗ (es0+1 − es0) + (V 13 − V 12)⊗ (es1+1 − es1)+

(V 13 − V 12)⊗ (es2+1 − es2) + (V 31 − V 30)⊗ (es3+1 − es3).

When expanding γ0 ◦ β∗(s, ε01), one gets a sum of 12 (possibly vanishing) terms of the
form CijV

ij ⊗ wij, where Cij ∈ Z, wij ∈ Zn−1, and one must check that the terms agree
with (7.15) (for example, we must have C03 = 1, w03 = es0+1 − es0). We check this for the
terms involving V 01 and V 02, and leave the verification of the other terms to the reader.
Since, β∗(s, ε01) = [s+ ε03] + [s+ ε12]− [s+ ε02]− [s+ ε13], the term of γ0 ◦β∗(s, e) involving
V 01 equals

(7.16) s1V
01 ⊗ es0+1 + (s1 + 1)V 01 ⊗ es0 − s1V

01 ⊗ es0+1 − (s1 + 1)V 01 ⊗ es0 = 0.

Similarly, the term involving V 02 equals

(7.17) −s2V
02⊗es0+1−(s2+1)V 02es0 +(s2+1)V 02⊗es0+1+s2V

02⊗es0 = V 02⊗(es0+1−es0).

This proves the result. �

Hence, we have

(7.18) γ : H3(Jg)→ H1(∂M ; Zn−1).

Proposition 7.5. The maps δ and γ are adjoint, i.e. we have

(7.19) Ω
(
δ(λ⊗ er), κ

)
= ω

(
λ⊗ er, γ(κ)

)
,

where λ ∈ H1(∂M) and κ ∈ H3(J g).

Proof. Clearly, Ω
(
δ(λ ⊗ er), κ

)
is a sum of local contributions Ω

(
δ(eij ⊗ er), (s, ε01)

)
. By

rotational symmetry it is enough to consider e = ε01. We have

(7.20) Ω
(
δ(eij ⊗ er), (s, ε01)

)
= Ω

(∑
ti=r

∑
s+ε=t

tj(s, ε), (s, ε01)
)
.
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p

p

p

0

1
3

2

E123

λ

Figure 33. γ ◦ β(p) and ∂ ◦ γ2(p)
for an edge point p.

Figure 34. ι(λ,E123) = −1 = Ω(ε12, ε01).

Since Ω
(
(s′, e′), (s, e)

)
= 0 when s 6= s′, it follows that

(7.21) Ω
(
δ(eij ⊗ er), (s, ε01)

)
=


Ω
(∑
εi=0

(sj + εj)(s, ε), (s, ε01)
)

si = r

Ω
(∑
εi=1

(sj + εj)(s, ε), (s, ε01)
)

si = r − 1

0 otherwise.

An inspection of Figure 2 shows that this further simplifies to

(7.22) Ω
(
δ(eij ⊗ er), (s, ε01)

)
= Ω(εij, ε01)〈er, vs,i〉.

As illustrated in Figure 34, it is now easy to see that the local contributions add up to
ω(λ⊗ er, γ(κ)). This proves the result. �

It will be convenient to rewrite the formula for δ.

Lemma 7.6. We have

(7.23) δ(eij ⊗ er) =
∑

si=r−1

(s, εij)−
∑
si=r

(s, εkl),

where k and l are such that {i, j, k, l} = {0, 1, 2, 3}.
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Proof. By rotational symmetry, we may assume that i = 0 and j = 1. Using the rela-
tions (4.2) and (4.3), we have

(7.24)

δ(e01 ⊗ er) =
∑
t0=r

∑
s+e=t

t1(s, e)

=
∑

s0=r−1

(s1 + 1)(s, ε01) +
∑
s0=r

s1(s, ε23)+∑
s0=r−1

s1(s, ε02) +
∑
s0=r

(s1 + 1)(s, ε13)+∑
s0=r−1

s1(s, ε03) +
∑
s0=r

(s1 + 1)(s, ε12)

=
∑

s0=r−1

(s, ε01)−
∑
s0=r

(s, ε23).

This proves the result. �

Lemma 7.7. Let D = diag(n− 1, n− 2, . . . , 1) and let Ag denote the Cartan matrix of g.

(7.25) γ ◦ δ(eij ⊗ er) = Eikl ⊗ (
1

2
DAgDer) +

(
Ejlk + Ekij + Elji

)
⊗ en−r.

where k and l are such that the permutation taking ijkl to 0123 is negative.

Proof. We may assume that i = 0 and j = 1. Then k = 3 and l = 2. One thus has

(7.26)

γ ◦ δ(e01 ⊗ er) =
∑

s0=r−1

γ(s, ε01)−
∑
s0=r

γ(s, ε23)

=
∑

s0=r−1

E123 ⊗ (er − er−1)−
∑
s0=r

E123 ⊗ (er+1 − er)+∑
s0=r−1

E032 ⊗ (es1+1 − es1)−
∑
s0=r

E032 ⊗ (es1+1 − es1)+∑
s0=r−1

E210 ⊗ (es2+1 − es2)−
∑
s0=r

E210 ⊗ (es2+1 − es2)+∑
s0=r−1

E301 ⊗ (es3+1 − es3)−
∑
s0=r

E301 ⊗ (es3+1 − es3).

The number of subsimplices with s1 = c equals 1
2
(n− c)(n− c− 1). We thus have

(7.27)
∑

s0=r−1

(er − er−1)−
∑
s0=r

(er+1 − er) =

− 1

2
(n− r + 1)(n− r)er−1 + (n− r)2er −

1

2
(n− r)(n− r − 1)er+1 =

1

2
DAgDer.



THE SYMPLECTIC PROPERTIES OF THE PGL(n, C)-GLUING EQUATIONS 29

By telescoping, we have

(7.28)
∑

s0=r−1

Exyz ⊗ (esi+1 − esi)−
∑
s0=r

Exyz ⊗ (esi+1 − esi) =

Exyz ⊗
n−1−r∑
m=0

(em+1 − em) = Exyz ⊗ en−r.

Plugging (7.27) and (7.28) into (7.26) we end up with

(7.29) γ ◦ δ(e01 ⊗ er) = E032 ⊗ 1

2
DAgDer + E123 ⊗ en−r + E210 ⊗ en−r + E301 ⊗ en−r,

which proves the result. �

Proposition 7.8. The composition γ ◦ δ : H1(∂M ; Zn−1)→ H1(∂M ; Zn−1) is given by

(7.30) γ ◦ δ = id⊗DAgD.

Proof. Let α =
∑
ame

imjm
∆m

be a cycle in C1(T D
∂M). In the proof of [17, Lemma 4.3] (see also

Bergeron–Falbel–Guilloux [2, Figures 12,13]), Neumann proves that the “near contribution”

(7.31)
∑

amE
imkmlm

is homologous to 2α, whereas the “far contribution”

(7.32)
∑

am
(
Ejmlmkm + Ekmimjm + Elmjmim

)
is null-homologous. The result now follows from Lemma 7.7. �

Proposition 7.9. The groups H3(J g) and H1(∂M ; Zn−1) have equal rank.

Proof. Since all the outer homology groups have rank 0, the rank of H3(J ) is the Euler
characteristic χ(J ) of J . Let ν, ε, ψ, and τ denote the number of vertices, edges, faces and
tetrahedra, respectively, of T . By a simple counting argument we have

(7.33)
rank(Cg

0(T )) = (n− 1)ν, rank(J g(T )) = 2

(
n+ 1

3

)
τ,

rank(Cg
1(T )) = (n− 1)ε+

(n− 1)(n− 2)

2
ψ +

(n− 1)(n− 2)(n− 3)

6
τ.

Using the fact that ψ = 2τ we obtain

(7.34) χ(J ) = 2 rank(Cg
0(T ))− 2 rank(Cg

1(T )) + rank(Jg(T )) =

2(n− 1)(ν − ε+ τ) = 2(n− 1)(ν − ε+ ψ − τ) = 2(n− 1)χ(M̂).

The result now follows from the elementary fact (proved by an Euler characteristic count)

that χ(M̂) = 1/2 rank(H1(∂M)). �

Corollary 7.10. The groups H3(J g) and H1(∂M ; Zn−1) are isomorphic modulo torsion. �
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7.5. Proof of Theorem 2.9. We now conclude the proof of Theorem 2.9. All that re-
mains are the statements about the free part of H3(J g). We first show that γ and δ admit
factorizations

(7.35)
δ : H1(∂M ; Zn−1)

id⊗D // H1(∂M ; Zn−1)
δ′ // H3(J g)

γ : H3(J g)
γ′ // H1(∂M ; Zn−1)

id⊗D // H1(∂M ; Zn−1).

The factorization of δ is constructed in the next section (see Proposition 8.5), and the
factorization of γ thus follows from Proposition 7.5. By Proposition 7.8, we thus have

(7.36) γ′ ◦ δ′ = id⊗Ag.

Since det(Ag) = n, it follows that γ′ maps onto a subgroup of H1(∂M ; Zn−1) of index hn,
where h = 1

2
rank(H1(∂M)). This shows that δ′ induces an isomorphism

(7.37) H1(∂M ; Z[1/n]n−1)→ H3(J g)⊗ Z[1/n]

with inverse (id⊗A−1
g ) ◦ γ′. The fact that Ω corresponds to the form ωAg in (2.17) follows

from

(7.38) ωAg(α⊗v, β⊗w) = ω(λ⊗v, µ⊗Aw) = ω(λ⊗v, γ′◦δ′(µ⊗w)) = Ω
(
δ′(λ⊗v), δ′(µ⊗w)

)
,

where λ and µ are in H1(∂M), and v and w in Zn−1.

8. Cusp equations and rank

We express the cusp equations in terms of yet another decomposition of ∂M . This decom-
position was introduced in Garoufalidis–Goerner–Zickert [12], and is the induced decompo-
sition on ∂M induced by the decomposition of M obtained by truncating both vertices and
edges. We call it the doubly truncated decomposition and denote it by T 7

∂M . As in [12], we
label the edges by γijk and βijk. The superscript ijk of an edge indicates the initial vertex
(denoted by vijk) of the edge, i being the nearest vertex of ∆, ij, the nearest edge and ijk
the nearest face. As in Section 7.1.1, we label the hexagonal faces by τ i and the polygonal
faces by p{il,jl}.

0

1

3

2

β132

γ123

τ2

Figure 35. Doubly truncated decom-

position of ∂M .

Figure 36. Labeling conventions.
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8.1. Cusp equations. For a shape assignment z consider the map

(8.1)

C(z) : C1(T 7
∂M ; Zn−1)→ C∗,

γijk ⊗ er 7→ (z
εij
(r−1)vi+(n−r−1)vj

)−ε
ijk
	 , βijk ⊗ er 7→

∏
t∈face(ijk)

ti=r

(Xt)
εijk	 ,

where εijk	 is the sign of the permutation taking ijkl to 0123, and the Xt’s are X-coordinates
(Definition 3.7). It follows from [12, Section 13] that C(z) is a cocycle (it is the ratio of
consecutive diagonal entries in the natural cocycle [12] associated to z). Hence, C(z) may
be regarded as a cohomology class C(z) ∈ H1(∂M ; (C∗)n−1). This class vanishes if an only
if for each generator λ of H1(∂M), we have

(8.2) C(z)(λ⊗ er) = 1.

We refer to (8.2) as the cusp equation for λ⊗ er. The above discussion is summarized in the
result below.

Theorem 8.1 (Garoufalidis–Goerner–Zickert [12]). The PGL(n,C)-representation deter-
mined by a shape assignment z is boundary-unipotent if and only if all cusp equations are
satisfied. Equivalently, if and only if C(z) is trivial in H1(∂M ; (C∗)n−1). �

By (8.1), the cusp equation for λ⊗ er can be written in the form

(8.3)
∏
s,∆

z
Acusp
λ⊗er,(s,∆)

s,∆

∏
s,∆

(1− zs,∆)B
cusp
λ⊗er,(s,∆) = ±1.

8.2. Linearizing the cusp equations. Let

(8.4) v0 = (1, 0, 0, 0), v1 = (0, 1, 0, 0), v2 = (0, 0, 1, 0), v3 = (0, 0, 0, 1)

be the vertices of ∆3
1, and consider the map

(8.5)

δ′ : C1(T 7
∂M ; Zn−1)→ Jg(T )

γijk ⊗ er 7→ −εijk	

(
(r − 1)rvi + (n− r − 1)vj, εij

)
, βijk ⊗ er 7→ εijk	

∑
t∈face(ijk)

ti=r

∑
s+e=t

(s, e)

We may think of δ′ as a linear version of (8.1). We wish to prove that δ′ induces a map in
homology.

Lemma 8.2. Let ∆̊3
n(Z) ⊂ ∆3

n(Z) denote the interior points. For each r = 1, . . . , n− 1, we
have

(8.6)
∑

t∈∆̊3
n(Z),ti=r

β(t) = −
∑

t∈∂∆3
n(Z),ti=r

∑
s+e=t

(s, e).

Proof. Consider a slice of ∆3
n(Z) consisting of integral points with ti = r as shown in Figure 37

for n − r = 4. Each dot represents an integral point t and each vertex of each triangle
intersecting t represents an edge e of a subsimplex s with s + e = t. By (4.2) and (4.3) the
sum of the vertices (regarded as pairs (s, e)) of each triangle is zero. Using this it easily
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follows that the sum of all interior edges equals minus the sum of the boundary edges.
Figure 37 shows the proof for n− r = 4. �

+

+ +

=+++++
+

++++ ++++ ++++

---

--

--

--- -- --

--
-
--

--

-

- - -

-

-

- -
-

β

Figure 37. Proof of Lemma 8.2 for n− r = 4.

Proposition 8.3. The map δ′ induces a map on homology.

Proof. We wish to extend δ′ to a commutative diagram

(8.7)

C2(T 7
∂M ; Zn−1)

∂ //

δ′2
��

C1(T 7
∂M ; Zn−1)

∂ //

δ′

��

C0(T 7
∂M ; Zn−1)

δ′0
��

Cg
1(T )

β // Jg(T )
β∗ // Cg

1(T ).

Define

(8.8)

δ′2 : C2(T 7
∂M ; Zn−1)→ Cg

1(T )

τ i ⊗ er 7→ −
∑

t∈∆̊3
n(Z),ti=r

[t], p{iljl} 7→
∑
l

[(rvil + (n− r)vjl ,∆l)]

and

(8.9)

δ′0 : C0(T 7
∂M ; Zn−1)→ Cg

1(T ),

vijk ⊗ er 7→ [(r + 1)vi + (n− r − 1)vj]− [rvi + (n− r)vj]
+[(r − 1)vi + vk + (n− r)vj]− [rvi + vk + (n− r − 1)vj]

The fact that β ◦ δ′2(p{{iljl}⊗r) = δ′ ◦∂(p{iljl}⊗ er) is immediate, and the fact that β ◦ δ′2(τ i⊗
er) = δ′◦∂(τ i⊗er) follows from Lemma 8.2. The terms involved in δ′0◦∂(βijk⊗er) are the ones
involved in a long hexagon relation, and exactly correspond to the terms in β∗ ◦ δ′(βijk⊗ er),
which are a sum of hexagon relations. Finally, the equality β∗◦δ′(γijk⊗er) = δ′0◦∂(γijk⊗er)
follows from the fact that the four edge terms of δ′0◦∂(γijk⊗er) cancel out, and the remaining
4 terms are exactly those of β∗ ◦ δ′(γijk ⊗ er). �

Let z be a shape assignment on T . Since z1100
s,∆ z0110

s,∆ z1010
s,∆ = −1 for each subsimplex s of

each simplex ∆ of T , it follows that z defines an element z ∈ Hom(Jg(T ); C∗
/
{±1}), and

since the gluing equations are satisfied, we obtain an element z ∈ H3(J g; C∗
/
{±1}).

Dual to δ′ we have δ′∗ : H3(J g; C∗) → H1(∂M ; (C∗)n−1). The following follows immedi-
ately from the definitions.
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Proposition 8.4. We have δ′∗(z) = C(z) ∈ H1(∂M ; (C∗
/
{±1})n−1). �

In particular, δ′∗ is given by

(8.10) δ′
∗
(z) : H1(M ; Zn−1)→ C∗

/
{±1}, λ⊗ er 7→

∏
(s,∆)

z
Aλ,(s,∆)

s,∆

∏
(s,∆)

(1− zs,∆)Bλ,(s,∆) .

For any abelian group A, we shall use the canonical identifications

(8.11) Hom(H1(∂M ; Zn−1), A) ∼=
(
Hom(H1(∂M), A)

)n−1 ∼= H1(∂M ;An−1).

If φ is an element of Hom(H1(∂M ; Zn−1), A) or H1(∂M ;An−1), we let φr : H1(∂M) → A
denote the rth coordinate function.

Proposition 8.5. We have

(8.12) δ = δ′ ◦ (id⊗D) ∈ Hom
(
H1(∂M ; Zn−1), H3(J g)

)
, D = diag(n− 1, n− 2, . . . , 1).

Equivalently, the coordinate functions of δ and δ′ satisfy δr = (n− r)δ′r.

Proof. We prove the second statement. Every class in H1(∂M) can be represented by a curve
λ which is a sequence of left and right turns as shown in Figure 38. We can represent λ in

C1(T D
∂M) and C1(T 7

∂M) as follows: The representation in C1(T D
∂M) is the natural one, and the

representation in C1(T 7
∂M) is obtained by replacing a left turn by a γ edge, and a right turn by

a concatenation of 3 edges of type β, γ and β (see Figure 39). The contribution to δ′r(λ) and
δr(λ) from a left and right turn are shown schematically in Figures 40 and 41 (the interior
points are ignored, c.f. Remark 7.3). Each dot represents an integral point t, contributing the
terms

∑
s+e=t(s, e). We wish to prove that δr(λ) = (n− r)δ′r(λ), whenever λ is a cycle. This

can be seen by inspecting Figures 42 and 43. Namely, the figures show that if we consider
two consecutive turns, the terms involved in the difference δ(λ ⊗ er) − (n − r)δ′(λ ⊗ er) lie
entirely on the faces containing the starting point and the ending point, respectively. The
fact that the middle terms cancel out follows from the fact that when two faces are paired,
the terms on each side differ by an element in the image of β. �

left

right

right

Figure 38. Left and right turns. Figure 39. Representing a curve in

C1(T D
∂M ) and C1(T 7

∂M ).
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4

3

2 13

2

1

1 −4

−3

−2 −1−3

−2

−1

−1

−1

−1 −1−1

−1

−1

Figure 40. δ and δ′ for a left turn. Figure 41. δ and δ′ for a right turn.

C(z)

4 12

3

2

1

−1

−2

−3
−1 −2 −3−4

3 1

−1

−1

−1
−1−1 −1−1

−1

−2

−3

−1

−2

−3
−1 −2 −3−4

−1

−1

−1

−1

−1

−1
−1 −1 −1−1

−4

−2

−1 −1

−1

−1
−3 −1

Figure 42. δ and δ′ for a left turn

followed by a right turn.

Figure 43. δ and δ′ for two right

turns.

8.3. Proof of Corollaries 2.11 and 2.12. By comparing the generalized gluing equa-
tion (3.5) with the definition (4.4) of β we obtain that

(8.13) β(p) =
∑
(s,∆)

Ap,(s,∆)(s, ε01)∆ +
∑
(s,∆)

Bp,(s,∆)(s, ε12)∆.

Also, by definition of δ′, we have

(8.14) δ′(p) =
∑
(s,∆)

Acusp
λ⊗er,(s,∆)(s, ε01)∆ +

∑
(s,∆)

Bcusp
λ⊗er,(s,∆)(s, ε12)∆,

and is in Ker(β∗). Since β∗◦β = 0, Ker(β∗) is orthogonal to Im(β) proving the first statement
of Corollary 2.11. The second statement follows from (7.38). Finally, Corollary 2.12 follows
immediately from the fact that H4(J g) is zero modulo torsion.
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