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Abstract. Torsion polynomials connect the genus of a hyperbolic knot (a topological in-
variant) with the discrete faithful representation (a geometric invariant). Using a new combi-
natorial structure of an ideal triangulation of a 3-manifold that involves edges as well as faces,
we associate a polynomial to a cusped hyperbolic manifold that conjecturally agrees with the
C2-torsion polynomial, which conjecturally detects the genus of the knot. The new combina-
torics is motivated by super-geometry in dimension 3, and more precisely by super-Ptolemy
assignments of ideally triangulated 3-manifolds and their OSp2|1(C)-representations.
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1. Introduction

1.1. Overview. A well-known topic in geometry and topology is the study of representa-
tions of surface groups into simple Lie groups. Recently, this topic has been extended by
replacing simple Lie groups (such as SL2(C)) with super-Lie groups, most notably by the or-
thosymplectic group OSp2|1(C). These representations have been studied from at least three
different points of view: as character varieties, as cluster algebras, and as super-Teichmüller
space. See, for instance, [PZ19, IPZ18, MOZ, She] as well as [Wit].

In our paper, we extend this study on surfaces to the context of 3-manifolds equipped
with an ideal triangulation. Explicitly,

• We introduce super-Ptolemy coordinates for 3-dimensional triangulations that pa-
rametrize OSp2|1(C)-representations of 3-manifold groups (see Section 2).

• We introduce a new 1-loop polynomial, using defining equations of super-Ptolemy
coordinates (see Section 3).

Regarding our 1-loop polynomial,

• We show that it is a topological invariant (Theorem 3.4).
• We show that an SL2(C)-representation lifts to an OSp2|1(C)-representation if and
only if the 1-loop polynomial evaluated at t = 1 vanishes (Theorem 3.6).

• We conjecture that our 1-loop polynomial coincides with the C2-torsion polynomial
(Conjecture 3.7).

Both the 1-loop and the C2-torsion polynomials have coefficients in the trace field and can
be exactly computed. Doing so, we will confirm our conjecture for the 41 knot.

1.2. Torsion polynomials: a Thurstonian connection. The complement M = S3 \K
of a hyperbolic knot K in S3 has two interesting invariants, both defined by Thurston

• the genus, i.e., the minimal genus of all spanning surfaces of K [Thu86],
• the discrete faithful representation π1(M) → PSL2(C) [Thu97].

These two invariants, one topological and the other geometric, are beautifully linked to each
other via torsion polynomials, revealing a “remarkable Thurstonian connection between the
topology and geometry of 3-manifolds”, to quote Agol–Dunfield [AD20]. Torsion polyno-
mials are twisted versions of the Alexander polynomial, where one twists the homology of
the infinite cyclic cover of M using an SL2(C)-lift ρ of the geometric representation, or a
symmetric power Symn−1(ρ) of it, the corresponding polynomial being denoted by τM,ρ,n(t).
These geometric invariants are Laurent polynomials in t with coefficients in the trace field
of M , and a key feature is that their degrees give bounds for the genus of the knot. More
precisely, one has

2 · genus(K)− 1 ≥ 1

n
deg τM,ρ,n(t) (1)

for all n ≥ 2. When n = 3, examples show that the above bound is not sharp, but when
n = 2, it was conjectured in [DFJ12], for reasons that are not entirely clear, and proven in
several families that the inequality in (1) becomes an equality [AD20]. As Agol–Dunfield
state, this is a remarkable Thurstonian connection between the topology and geometry of
3-manifolds.
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1.3. 1-loop polynomial from super-Ptolemy coordinates. Our paper is motivated by
the following problem, which asks about the relation of torsion polynomials with ideal tri-
angulations, another development by Thurston [Thu97].

Problem 1. Can one compute the Cn-torsion polynomial τM,ρ,n(t) from an ideal triangula-
tion T of M?

In this paper, we address the problem for n = 2, which is the most interesting case as
explained in the previous section. Our answer begins by introducing super-Ptolemy assign-
ments for T , which parametrize OSp2|1(C)-representations of π1(M). It may seem unrelated
to the problem, but we bulid an unexpected connection as follows. Super-Ptolemy assign-
ments lead new combinatorics of an ideal triangulation beyond the well-known Neumann–
Zagier matrices. This newly found combinatorics involves linear equations associated to
faces and tetrahedra. Using these linear equations, we introduce a new 1-loop polynomial
and conjecture that our 1-loop polynomial equals to the C2-torsion polynomial, thereby giv-
ing a (conjectural) solution to the problem for n = 2. In subsequent work with Dunfield,
this conjecture is proven for all fibered manifolds and numerically verified for thousands of
non-fibered manifolds [DGY].

Before delving into the details, we briefly outline the construction of our 1-loop polynomial
from super-Ptolemy assignments in dimension 3, postponing precise definitions, notations
and properties for later.

A Ptolemy assignment c assigns a nonzero complex number to each edge of T satisfying
the equation

c01c23 − c02c13 + c03c12 = 0 (2)

for each tetrahedron, where cij := c(eij) and eij is the (i, j)-edge of a tetrahedron [GTZ15].
On the other hand, a super-Ptolemy assignment is a pair of assignments (c, θ) that assign
an invertible even element of a Grassmann algebra to each edge and an odd element to each
face. Instead of Equation (2), a super-Ptolemy assignment satisfies one equation

c01c23 − c02c13 + c03c12 + c01c03c12c13c23θ0θ2 = 0 (3)

for each tetrahedron as well as one equation for each face

c12θ0 − c02θ1 + c01θ2 = 0 c13θ0 − c03θ1 + c01θ3 = 0

c23θ0 − c03θ2 + c02θ3 = 0 c23θ1 − c13θ2 + c12θ3 = 0
(4)

of each tetrahedron. Here cij := c(eij) and θk := θ(fk) where eij is the edge (i, j) and fk
is the face opposite to the vertex k as in Figure 3. Super-Ptolemy assignments lead to a
fundamental correspondence described by a pair of bijections{

Generically decorated
(OSp2|1(C), N)-reps on M

}
oo
1−1
// P2|1(T ) oo

1−1
//

{
Natural (OSp2|1(C), N)-

cocycles on T̊

}
(5)

which are given explicitly in Figures 1 and 2; see Section 2 for details.
As written in (4), a super-Ptolemy assignment (c, θ) satisfies linear equations in θ. It turns

out that these linear equations can be written in a matrix form

Fc θ = 0 (6)
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giN gjN

gkN

cjk

cij

cki
cij = ⟨giN, gjN⟩

θijk =
[giN,gjN,gkN ]

⟨giN,gjN⟩⟨gjN,gkN⟩⟨gkN,giN⟩θijk

i j

k

Figure 1. From decorated representations to Ptolemy assignments, with the
bilinear and trilinear forms as in (26) and (27).

ejk

ekji

i j

k

eij

eki

eikj ejik

cjk

cij

cki
θijk

φ(eij) =

 0 −c−1
ij 0

cij 0 0

0 0 1


φ(ekji) =

1 − cij
cjkcki

cijθijk

0 1 0

0 −cijθijk 1


i j

k

Figure 2. From Ptolemy assignments to natural cocycles.

where Fc is a sqaure matrix whose entries are given by the Ptolemy variable c with some
signs. Obviously, we are interested in the case of Fc being singular; otherwise, θ should be
trivial. This motivates the definition of a 1-loop invariant

δT ,c,2 =

(∏
e

1

c(e)

∏
∆

1

c(e∆)

)
detFc (7)

given in terms of the determinant of Fc with some normalizations multified. What’s more,
it motivates the definition of a 1-loop polynomial

δT ,c,2(t) =

(∏
e

1

c(e)

∏
∆

1

c(e∆)

)
detFc(t) (8)

given in terms of the determinant of a t-twisted version Fc(t) of Fc; see Section 3 for details.
Regarding the 1-loop polynomial δT ,c,2(t), we will prove two important features:

• it is unchanged under Pachner 2–3 moves (see Theorem 3.4);
• its value δT ,c,2(1) at t = 1 determines whether the SL2(C)-representation of π1(M)
corresponding to the Ptolemy assignment c admits an OSp2|1(C)-lift or not (see
Theorem 3.6).

Furthermore, based on the analogy of our previous work [GY23], we conjecture that the 1-
loop polynomial δT ,c,2(t) equals to the C2-torsion polynomial τM,ρ,2(t) (see Conjecture 3.7).
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2. OSp2|1(C)-representations of 3-manifolds

2.1. The orthosymplectic group. In this section, we recall the definition of the orthosym-
plectic group OSp2|1(C). For a detailed description of super-manifolds and super-Lie groups
we refer the reader to [Ber87, Man91, CR88].

Let G(C) be the Grassmann algebra over the complex numbers with unit 1 generated by
ϵi for i ∈ N:

G(C) = C⟨1, ϵ1, ϵ2, . . . | 1ϵi = ϵi = ϵi1, ϵiϵj = −ϵjϵi for all i, j ∈ N⟩ . (9)

It is a Z/2Z-graded algebra with the unit having degree 0 and each ϵi having degree 1. We
denote by G0(C) and G1(C) its even and odd part, respectively, and by G∗

0(C) the set of
invertible elements in G0(C). There is an algebra epimorphism ♯ : G(C) → C sending all ϵi
to 0, hence an element e ∈ G(C) is invertible if and only if ♯(e) ̸= 0. We write ♯(e) simply
as e♯ and call it the body of e.

An even n|m× n|m-matrix g is of the form

g =

(
A B
C D

)
(10)

where A ∈ Mn,n(G0(C)), B ∈ Mn,m(G1(C)), C ∈ Mm,n(G1(C)), and D ∈ Mm,m(G0(C)).
The super-transpose of g is given by

gst =

(
At Ct

−Bt Dt

)
(11)

and the Berezinian (or super-determinant) of g is defined as

Ber(g) = det(A−BD−1C) det(D)−1 (12)

provided that A and D are invertible.
The orthosymplectic group OSp2|1(C) is the group of even 2|1× 2|1-matrices g satisfying

gst

 0 1 0
−1 0 0
0 0 −1

 g =

 0 1 0
−1 0 0
0 0 −1

 (13)

and Ber(g) = 1. Writing an even 2|1× 2|1-matrix explicitly as

g =

a b α
c d β
γ δ e

 for a, b, c, d, e ∈ G0(C), α, β, γ, δ ∈ G1(C), (14)

the defining equations (13) of OSp2|1(C) are

ad− bc− γδ = e2 + 2αβ = 1, aβ − cα− eγ = bβ − dα− eδ = 0 (15)

together with

Ber(g) = (ad− bc)(1− 2αβe−2)e−1 = 1 . (16)
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Note that these equations imply that e±1 = 1∓ γδ; in particular, e♯ = 1. Note also that the
inverse of g as in (14) is given by

g−1 =

 d −b δ
−c a −γ
−β α e

 . (17)

The special linear group SL2(C) embeds in OSp2|1(C) in an obvious way:

SL2(C) ↪→ OSp2|1(C),

(
a b
c d

)
7→

a b 0
c d 0
0 0 1

 . (18)

Conversely, applying the epimorphism ♯ entrywise, we obtain an epimorphism

OSp2|1(C) ↠ SL2(C),

a b α
c d β
γ δ e

 7→
(
a♯ b♯

c♯ d♯

)
. (19)

Abusing notation, we also denote by ♯ the above epimorphism and refer to ♯(g) = g♯ as the
body of g ∈ OSp2|1(C). It follows from (18) and (19) that for any group G the epimorphism
♯ induces a surjective map

Hom(G,OSp2|1(C))/∼
♯
↠ Hom(G, SL2(C))/∼ (20)

where the quotient ∼ is given by conjugation.

Remark 2.1. For full generality we use the Grassmann algebra with infinitely many gener-
ators as in (9), but one may use one with finitely many generators. In particular, if we use
the Grassmann algebra with one odd generator

C⟨1, ϵ | 1ϵ = ϵ = ϵ1, ϵ2 = 0⟩ = C[ϵ]/(ϵ2), (21)

then its even and odd parts are C and Cϵ, respectively, and the orthosymplectic group
OSp2|1(C) reduces to the special affine transformation group SL2(C) ⋉C2. Indeed, for the
case of one odd generator, the map

OSp2|1(C) → SL2(C)⋉C2,

 a b αϵ
c d βϵ
γϵ δϵ 1

 7→
((

a b
c d

)
,

(
α
β

))
(22)

is an isomorphism. This may seem to simplify things too much but, in fact, will be sufficient
for our 1-loop invariants–see Section 3 below.

2.2. The unipotent subgroup and pairings. Since the body g♯ of g ∈ OSp2|1(C) is in

SL2(C), the natural action of OSp2|1(C) on G0(C)
2 ⊕ G1(C) restricts to an action on A2|1,

the pre-image of C2 \ {(0, 0)t} under the map

G0(C)
2 ⊕G1(C) → C

2, (a, b, α)t 7→ (a♯, b♯)t. (23)
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The induced action is transitive, and the stabilizer group at (1, 0, 0)t ∈ A2|1 is the unipotent
subgroup of OSp2|1(C):

N =


1 b α
0 1 0
0 −α 1

 ∣∣∣∣∣ b ∈ G0(C), α ∈ G1(C)

 . (24)

This induces a bijection

OSp2|1(C)/N ↔ A2|1, gN ↔ left column of g . (25)

The space A2|1 ≃ OSp2|1(C)/N comes equipped with an even-valued bilinear pairing

⟨·, ·⟩ : A2|1 × A2|1 → G0(C),

〈ab
α

 ,

cd
β

〉 := ad− bc− αβ (26)

and an odd-valued trilinear pairing

[·, ·, ·] : A2|1 × A2|1 × A2|1 → G1(C),

ab
α

 ,

bc
β

 ,

ef
γ

 := det

a b e
b c f
α β γ

− 2αβγ .

(27)
Both pairings are skew-symmetric and OSp2|1(C)-invariant

⟨v, w⟩ = ⟨gv, gw⟩, [u, v, w] = [gu, gv, gw], g ∈ OSp2|1(C) . (28)

2.3. Super-Ptolemy assignments. LetM be a compact 3-manifold with non-empty bound-
ary and T be an ideal triangulation of its interior. We denote by T 1 and T 2 the sets of
oriented edges and unoriented faces of T , respectively. We first consider the case when T is
ordered, i.e., each tetrahedron of T has a vertex-ordering respecting the face-gluing. This
condition will be relaxed in Section 2.8.

Definition 2.2. A super-Ptolemy assignment on T is a pair of maps

c : T 1 → G∗
0(C), θ : T 2 → G1(C) (29)

satisfying c(−e) = −c(e) for all e ∈ T 1 and

c01c23 − c02c13 + c03c12 + c01c03c12c13c23θ0θ2 = 0 (30)

as well as

E∆,f3 : c12θ0 − c02θ1 + c01θ2 = 0 E∆,f2 : c13θ0 − c03θ1 + c01θ3 = 0

E∆,f1 : c23θ0 − c03θ2 + c02θ3 = 0 E∆,f0 : c23θ1 − c13θ2 + c12θ3 = 0
(31)

for each tetrahedron ∆ of T . Here cij = c(eij) where eij is the oriented edge [i, j] of ∆ and
θk = θ(fk) where fk is the face of ∆ opposite to the vertex k as in Figure 3.

Lemma 2.3. If any two of (31) together with (30) are satisfied, then so are the other two.
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0

1

2

3

e01 e12

e23
e03

e02 e13

f1

f0

f3

f2

Figure 3. Edge and face labels for a tetrahedron.

Proof. Multiplying the first equation in (31) by θ0 implies that c01θ0θ2 = c02θ0θ1. Similarly,
we deduce that c−1

ij θiθj does not depend on a choice of i ̸= j. It follows that Equation (30)
is equivalent to

c01c23 − c02c13 + c03c12 + c01c02c03c12c13c23 c
−1
ij θiθj = 0 for i ̸= j. (32)

This implies that (c01c23 − c02c13 + c03c12)θi = 0 for all i. Then one easily checks that any
three out of the four equations in (31) are linearly dependent. For instance,

c01E∆,f1 − c02E∆,f2 + c03E∆,f3 = 0 . (33)

This completes the proof. □

Remark 2.4. Each equation in (31) corresponds to a face of a tetrahedron ∆. It follows
that

E∆,f0 = 0
−E∆,f1 = 0
E∆,f2 = 0

−E∆,f3 = 0

⇔ F∆,c


θ0
θ1
θ2
θ3

 = 0 (34)

where F∆,c is a 4 × 4 matrix whose rows and columns are indexed by the faces of ∆, given
explicitly by

F∆,c =


0 c23 −c13 c12

−c23 0 c03 −c02
c13 −c03 0 c01
−c12 c02 −c01 0

 . (35)

Note that F∆,c is a skew-symmetric matrix whose (i, j)-entry for i ̸= j is, up to a sign, the

Ptolemy variable of the edge fi ∩ fj. Note also that F∆,c has rank 3, whereas its body F ♯
∆,c

(the matrix obtained by applying the epimorphism ♯ to all entries of F∆,c) has rank 2.

Let P2|1(T ) be the set of all super-Ptolemy assignments on T . Composing the epimorphism
♯ : G(C) → C with a super-Ptolemy assignment (c, θ), we obtain a Ptolemy assignment
c♯ : T 1 → C

∗ (note that θ vanishes if we apply ♯). That is, c♯ satisfies

c♯01c
♯
23 − c♯02c

♯
13 + c♯03c

♯
12 = 0 (36)
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for each tetrahedron of T [GTZ15]. On the other hand, any Ptolemy assignment on T forms
a super-Ptolemy assignment with the trivial map T 2 → G1(C), assigning 0 to all faces.
Therefore, the epimorphism ♯ induces a surjective map

P2|1(T )
♯
↠ P2(T ) (37)

where P2(T ) is the set of all Ptolemy assignments on T .

2.4. Natural cocycles. After truncating the ideal tetrahedra of T , one obtains a cell de-
composition T̊ of M ; see Figure 4. We denote by T̊ 1 and T̊ 2 the sets of oriented edges and
unoriented faces of T̊ , respectively. An edge of T̊ is either long or short, and a face is either
hexagal or triangular; short edges are ones in the boundary of a triangular face. The trian-
gles of T̊ form a triangulation of the boundary ∂M of M , and the 2-skeleton of T̊ defines a
natural groupoid associated to T , whose generators are the edges of T̊ and relations are the
faces of T̊ .

0

1

2

3

e01

e12

e23

e02

e03
e13

e01

e12

e23

e02

e03

e13

e013

e102

e213

e302

Figure 4. Truncating an ideal tetrahedron.

Definition 2.5. A natural (OSp2|1(C), N)-cocycle, or simply natural cocycle, on T̊ is a map

φ : T̊ 1 → OSp2|1(C) of the form

φ(short) =

1 a θ
0 1 0
0 −θ 1

 , φ(long) =

0 −b−1 0
b 0 0
0 0 1

 (38)

that maps the hexagons and the triangles to the identity. In other words, a natural cocycle
is an OSp2|1(C)-representation of the groupoid of T whose generators have the form (38).

Given a natural cocycle φ, let us denote

φ0(short) := φ(short)1,2 ∈ G0(C), φ0(long) := φ(long)2,1 ∈ G∗
0(C),

φ1(short) := φ(short)1,3 ∈ G1(C) .

We now express the cocycle condition for φ explicitly in terms of φ0 and φ1. Note that
φ(−e) = φ(e)−1 for e ∈ T̊ 1 if and only if φi(−e) = −φi(e) for i = 0, 1; see Equation (17).
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Lemma 2.6. φ satisfies the cocycle condition for a hexagon if and only if

φ0(e
k
ji) = − φ0(eij)

φ0(ejk)φ0(eki)
(39)

for all cyclic permutations (i, j, k) of (0, 1, 2) and

φ1(e
2
10)

φ0(e01)
=
φ1(e

0
21)

φ0(e12)
=
φ1(e

1
02)

φ0(e20)
(40)

where eij and e
k
ij denote the edges of the hexagon as in Figure 5.

e12

e210

0 1

2

e01

e20

e021 e102

Figure 5. A hexagonal face.

Proof. The proof follows from a straightforward computation for the cocycle condition, i.e.,
comparing the entries of φ(e021)φ(e01)φ(e

1
02) = φ(e20)

−1φ(e210)
−1φ(e12)

−1. □

Equation (40) is an equality of odd elements, and we denote its value by θ ∈ G1(C).
Lemma 2.6 shows that the φ0 and φ1-values on the short edges are determined by the φ0-
values on the long edges, together with θ. Precisely, we have

φ(ekji) =

1 − φ0(eij)

φ0(ejk)φ0(eki)
φ0(eij)θ

0 1 0
0 −φ0(eij)θ 1

 (41)

for any cyclic permutations (i, j, k) of (0, 1, 2). Identifying each long edge of T̊ with an edge

of T and placing the odd element θ to the corresponding hexagonal face of T̊ , or equivalently,
to the corresponding face of T , we deduce that a natural cocycle φ is determined by two
maps

c : T 1 → G∗
0(C), θ : T 2 → G1(C)

where c is the restriction of φ0 to the long edges.

Lemma 2.7. φ satisfies the cocycle condition for all triangular faces of T̊ if and only if the
pair (c, θ) defined above is a super-Ptolemy assignment, i.e., satisfies (30) and (31) for all
tetrahedra of T .
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Proof. Labeling the vertices of a tetrahedron with {0, 1, 2, 3} and using the same nota-
tion as in Lemma 2.6, the cocycle condition for the triangular faces has the form φ(eijl) =

φ(eijk)φ(e
i
kl). For instance, the triangular face near the vertex 0 gives φ(e031) = φ(e032)φ(e

0
21):1 − c13

c30c01
c13θ2

0 1 0
0 −c13θ2 1

 =

1 − c23
c30c02

c23θ1
0 1 0
0 −c23θ1 1

1 − c12
c20c01

c12θ3
0 1 0
0 −c12θ3 1

 . (42)

Comparing the entries of the above equation, we obtain (30) and the first equation in (31).
We obtain the other three equations of (31) similarly from the other triangular faces. □

Lemmas 2.6 and 2.7 imply a one-to-one correspondence

P2|1(T ) oo
1−1
//

{
Natural (OSp2|1(C), N)-

cocycles on T̊

}
, (43)

the second bijection in the fundamental correspondence (5), where its explicit formula is
summarized in Figure 2.

Remark 2.8. Applying the epimorphism ♯ : OSp2|1(C) → SL2(C) to both sides of (43),
the correspondence (43) reduces to the bijection between P2(T ) and the set of natural
(SL2(C), N2)-cocycles [GGZ15b, Sec.1.2]. Here N2 is the set of unipotent matrices in SL2(C).
Namely, there is a commutative diagram

P2|1(T )

{
Natural (OSp2|1(C), N)-

cocycles on T̊

}

P2(T )

{
Natural (SL2(C), N2)-

cocycles on T̊

}♯

1−1

♯

1−1

(44)

2.5. Decorations. Let M̃ be the universal cover of M and T̃ be the ideal triangulation of

its interior induced from T . We denote by T̃ 0 the set of (ideal) vertices of T̃ and use similar

notations for T̊ .

Definition 2.9. (a) An (OSp2|1(C), N)-representation is an OSp2|1(C)-representation ρ of
π1(M) such that ρ(π1(∂M)) lies in the unipotent subgroup N up to conjugation.
(b) A decoration of an (OSp2|1(C), N)-representation ρ is a map

D : T̃ 0 → OSp2|1(C)/N (45)

such that D(γ · v) = ρ(γ)D(v) for γ ∈ π1(M) and v ∈ T̃ 0. We say that a decoration is

generic if for all vertices v0 and v1 joined by an edge of T̃ , we have

⟨D(v0), D(v1)⟩♯ ̸= 0 . (46)

Here we use the identification (25) and the bilinear pairing (26).
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In what follows, by a generically decorated representation we mean an (OSp2|1(C), N)-
representation with a generic decoration. For simplicity we identify a generically decorated
representation (ρ,D) with (gρg−1, gD) for all g ∈ OSp2|1(C). Note that if D is a generic

decoration of ρ, then gD is a generic decoration of gρg−1.

Lemma 2.10. For N -cosets gN and hN with ⟨gN, hN⟩♯ ̸= 0, there is a unique pair of
coset-representatives g′ ∈ gN and h′ ∈ hN such that (g′)−1h′ is of the form

(g′)−1h′ =

0 −c−1 0
c 0 0
0 0 1

 . (47)

Moreover, c = ⟨gN, hN⟩.

Proof. We may assume that gN = N and hN corresponds to (a, c, γ)t ∈ A2|1 with c♯ ̸= 0.
Then a straightforward computation1 f ϵ

0 1 0
0 −ϵ 1

−1a b α
c d β
γ δ e

 =

a− cf − ϵγ b− df − ϵδ α− eϵ
c d β

cϵ+ γ dϵ+ δ ϵβ + e

 (48)

shows that the right-hand side has the form (47) only if ϵ = −γ/c, f = a/c and d = β = 0.
Then it follows from the defining equations of OSp2|1(C) that δ = 0, e = 1, b = −1/c and
α = −γ/c. This proves that the desired pair of coset-representatives exists and is unique. □

For a generically decorated representation (ρ,D), Lemma 2.10 implies that there is a
unique map

ψ :
˚̃T

0

→ OSp2|1(C) (49)

such that

• ψ(v) ∈ D(w) if v is in the boundary component of M̃ corresponding to w ∈ T̃ 0;
• ψ(v0)−1ψ(v1) is a matrix of the form (47) if v0 and v1 are joined by a long edge.

From the definition of a decoration, we have ψ(γ · v) = ρ(γ)ψ(v) for γ ∈ π1(M), hence

ψ(γ · v0)−1ψ(γ · v1) = ψ(v0)
−1ψ(v1) (50)

for any vertices v0 and v1. Therefore, if we define

φ : T̊ 1 → OSp2|1(C), φ(e) := ψ(v0)
−1ψ(v1) (51)

for any lift [v0, v1] of an edge e ∈ T̊ 1, then φ is well-defined and by definition is a natural
cocycle. This construction induces a one-to-one correspondence{

Natural (OSp2|1(C), N)-

cocycles on T̊

}
oo
1−1
//

{
Generically decorated

(OSp2|1(C), N)-reps on M

}
. (52)

Remark 2.11. Applying the epimoprhism ♯ : OSp2|1(C) → SL2(C) to both sides of (52),
the correspondence (52) reduces to the bijection between natural (SL2(C), N2)-cocycles and
generically decorated (SL2(C), N2)-representations; see [GGZ15b, Sec 1.2].
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Combining the correspondences (43) and (52), we obtain{
Generically decorated

(OSp2|1(C), N)-reps on M

}
oo
1−1
// P2|1(T ) , (53)

the first bijection in the fundamental correspondence (5), where its explicit formula is sum-
marized in Figure 1:

c(eij) = ⟨giN, gjN⟩, θ(fijk) =
[giN, gjN, gkN ]

⟨giN, gjN⟩⟨gjN, gkN⟩⟨gkN, giN⟩
. (54)

Here we use the identification (25) and the bilinear and trilinear pairings (26) and (27).
The next theorem is a direct consequence of the fundamental correspondence (5) (see also

the diagram (44)).

Theorem 2.12. There is a map P2|1(T ) → Hom(π1(M),OSp2|1(C))/∼ which fits into a
commutative diagram

P2|1(T ) Hom(π1(M),OSp2|1(C))/∼

P2(T ) Hom(π1(M), SL2(C))/∼

♯ ♯ (55)

and whose image is the set of all conjugacy classes of (OSp2|1(C), N)-representations admit-
ting a generic decoration.

2.6. Action on P2|1(T ). Let h be the the number of (ideal) vertices of T . There is an action
of G∗

0(C)
h on P2|1(T )

G∗
0(C)

h × P2|1(T ) → P2|1(T ), (x, (c, θ)) 7→ x · (c, θ) = (x · c, x · θ) (56)

where x · c and x · θ are defined as follows. Regarding that x = (x1, . . . , xh) is assigned to
the vertices of T ,

x · c : T 1 → G∗
0(C), e 7→ xixjc(e) (57)

where xi and xj are assigned to the vertices of e, and

x · θ : T 2 → G1(C), f 7→ (xixjxk)
−1θ(f) (58)

where xi, xj, and xk are assigned to the vertices of f . One easily checks that x · (c, θ) satisfies
Equations (30) and (31), i.e., x · (c, θ) ∈ P2|1(T ). This action reduces to the (C∗)h-action on
P2(T ) described in [GGZ15b, §4] if we forget θ and restrict x to (C∗)h.

Theorem 2.13. The super-Ptolemy assignments (c, θ) and x · (c, θ) determine up to conju-
gation the same representation.

Proof. Let (ρ,D) be a generically decorated representation corresponding to (c, θ) ∈ P2|1(T ).
Regarding x = (x1, . . . , xh) is assigned to the vertices of T , we define

x ·D : T̃ 0 → OSp2|1(C)/N, v 7→ xiD(v) (59)
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if v is a lift of the i-th vertex of T . Here we use the identification OSp2|1(C)/N ≃ A2|1,
hence the scalar multiplication is well-defined. Then x ·D is also a generic decoration of ρ,
and Equation (54) implies that (ρ, x ·D) corresponds to (x · c, x · θ). □

Remark 2.14. For k ∈ G∗
0(C) we have (k, . . . , k) · (c, θ) = (k2c, k−3θ). In particular, (c, θ)

and (c,−θ) determine the same representation, up to conjugation.

2.7. (m, l)-deformation. One can generalize super-Ptolemy assignments and all previous
arguments to OSp2|1(C)-representations that may not (OSp2|1(C), N). This can be done

by considering the natural action of OSp2|1(C) on A2|1/G∗
0(C), instead of A2|1, where the

quotient is given by identifying (a, b, α)t and c(a, b, α)t for all c ∈ G∗
0(C). Note that the

stabilizer group of this action at [(1, 0, 0)t] is

B =


a b α
0 a−1 0
0 −a−1α 1

 ∣∣∣∣∣ a ∈ G∗
0(C), b ∈ G0(C), α ∈ G1(C)

 . (60)

To be preicse, we fix a cocycle σ that assigns an element of G∗
0(C) to each short edge of T̊

and consider representations ρ : π1(M) → OSp2|1(C) such that up to conjugation

ρ(γ) =

σ(γ) ∗ ∗
0 σ(γ)−1 0
0 ∗ 1

 for all γ ∈ π1(∂M) . (61)

Here we use the same notation σ for the cocycle and for the morphism π1(∂M) → G∗
0(C)

induced from it; hopefully this will cause no confusion. As a generalization of Definitions 2.2,
2.5, and 2.9, we define:

Definition 2.15. A σ-deformed super-Ptolemy assignment on T is a pair of maps

c : T 1 → G∗
0(C), θ : T 2 → G1(C) (62)

satisfying c(−e) = −c(e) for all e ∈ T 1 and

c01c23 −
σ2
03σ

3
12

σ1
03σ

0
12

c02c13 +
σ3
02σ

2
13

σ1
02σ

0
13

c03c12 +
σ3
02

σ1
02

c01c03c12c13c23θ0θ2 = 0 (63)

as well as

E∆,f3 :
σ1
23

σ0
23

c12θ0 − c02θ1 +
σ0
12

σ3
12

c01θ2 = 0 E∆,f2 : c13θ0 −
σ3
01

σ2
01

c03θ1 +
σ0
12

σ3
12

c01θ3 = 0

E∆,f1 :
σ1
03

σ2
03

c23θ0 −
σ3
01

σ2
01

c03θ2 + c02θ3 = 0 E∆,f0 :
σ1
03

σ2
03

c23θ1 − c13θ2 +
σ1
23

σ0
23

c12θ3 = 0

(64)

for each tetrahedron ∆ of T . Here σi
jk ∈ G∗

0(C) is the element assigned by σ at the short
edge that is near to the vertex i and parallel to the edge [j, k]; see Figure 5.

Definition 2.16. A σ-deformed natural cocycle on T̊ is map φ : T̊ 1 → OSp2|1(C) of the
form

φ(short) =

σ(short) a θ
0 σ(short)−1 0
0 −σ(short)−1θ 1

 , φ(long) =

0 −b−1 0
b 0 0
0 0 1

 (65)
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that maps the hexagons and the triangles to the identity. In other words, a natural cocycle
is an OSp2|1(C)-representation of the groupoid of T whose generators have the form (65).

Definition 2.17. (a) An (OSp2|1(C), B)-representation is an OSp2|1(C)-representation ρ of
π1(M) such that ρ(π1(∂M)) lies in the stabilizer group B up to conjugation.
(b) A decoration of an (OSp2|1(C), B)-representation ρ is a map

D : T̃ 0 → OSp2|1(C)/B (66)

such that D(γ · v) = ρ(γ)D(v) for γ ∈ π1(M) and v ∈ T̃ 0. We say that a decoration is

generic if for all vertices v0 and v1 joined by an edge of T̃ , we have

⟨D(v0), D(v1)⟩♯ ̸= 0 (67)

Note that this condition makes sense, even though ⟨D(v0), D(v1)⟩ can be only defined up to
G∗

0(C).

Repeating the same arguments in Sections 2.3–2.5 (see also [Yoo19, §2]), we obtain Generically decorated
(OSp2|1(C), B)-reps on M

satisfying (61)

 oo 1−1
// P σ

2|1(T ) oo
1−1
//

{
σ-deformed natural

cocycles on T̊

}
(68)

where P σ
2|1(T ) is the set of all σ-deformed super-Ptolemy assignments on T . We note that:

1. The same argument used in Lemma 2.3 shows that any three of (64) are linearly depen-
dent.

2. Composing the epimorphism ♯ : G(C) → C with (c, θ) ∈ P σ
2|1(T ), we obtain a σ♯-deformed

Ptolemy assignment c♯ : T 1 → C
∗. That is, c♯ satisfies

c♯01c
♯
23 −

(σ2
03)

♯(σ3
12)

♯

(σ1
03)

♯(σ0
12)

♯
c♯02c

♯
13 +

(σ3
02)

♯(σ2
13)

♯

(σ1
02)

♯(σ0
13)

♯
c♯03c12c

♯
01 = 0 (69)

for each tetrahedron of T [Yoo19]. This defines a map

P σ
2|1(T )

♯→ P σ♯

2 (T ) (70)

where P σ♯

2 (T ) is the set of all σ♯-deformed Ptolemy assignments on T . This map is surjective
if σ♯ = σ, i.e. σ takes values in C∗.

3. The σ-deformed natural cocycle φ corresponding to (c, θ) ∈ P σ
2|1(T ) is explicitly given by

φ(ekji) =

σk
ji − σj

ik

σi
kj

cij
cjkcki

cijθ/σ
i
kj

0 1/σk
ji 0

0 −cijθ/(σi
kjσ

k
ji) 1

 , φ(eij) =

 0 −c−1
ij 0

cij 0 0
0 0 1

 (71)

for Figure 5 where (i, j, k) is a cyclic permutation of (0, 1, 2).

4. There is a G∗
0(C)

h-action on P σ
2|1(T ) defined in the same way as that on P2|1(T ). Moreover,

Theorem 2.13 also holds for (c, θ) ∈ P σ
2|1(T ).

The next theorem is a direct consequence of the correspondence (68).
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Theorem 2.18. There is a map P σ
2|1(T ) → Hom(π1(M),OSp2|1(C))/∼ which fits into

P σ
2|1(T ) Hom(π1(M),OSp2|1(C))/∼

P σ♯

2 (T ) Hom(π1(M), SL2(C))/∼

♯ ♯ (72)

and whose image is the set of all conjugacy classes of (OSp2|1(C), B)-representations admit-
ting a generic decoration and satisfying (61).

2.8. Concrete triangulations. In Section 2.3, we defined the super-Ptolemy assignments
for ordered triangulations. In this section, we discuss how to define these assignments for
concrete triangulations, that is, for triangulations where each tetrahedron comes with a
bijection of its vertices with those of the standard 3-simplex. Concrete triangulations were
used in [GGZ15a] to define the gluing equations of PGLn(C) representations of π1(M), as well
as in [GGZ15b]. Note that all the triangulations in SnapPy and Regina are concrete [CDW,
Bur].

Recall that a super-Ptolemy assignment consists of two assignments: one assigns an in-
vertible even element to each oriented edge and the other assigns an odd element to each
unoriented face. The former deals with every edge with both orientations, satisfying that
reversing the orientation of an edge reverses the value of the assigned element. Therefore,
the former has no issues for concrete triangulations, where edges could be identified in an
orientation-reversed way. However, the latter may cause a problem, as it only deals with
unoriented faces. To prevent this problem, we simply consider both sides of a face with each
side having one odd element. Namely, we assign one odd element to each oriented face. This
seems to double the number of odd elements, but in fact, two odd elements θ and θ′ assigned
to the front and back sides of a face (as in Figure 6) should be related as follows.

Recall from Equation (71) that for any cyclic permutation (i, j, k) of (0, 1, 2), we have

φ(ekji) =

σk
ji − σj

ik

σi
kj

cij
cjkcki

cijθ/σ
i
kj

0 1/σk
ji 0

0 −cijθ/(σi
kjσ

k
ji) 1

 . (73)

Applying the same formula to the back side of the face, we obtain

φ(ekij) =

σk
ij −σi

jk

σj
ki

cji
cikckj

cjiθ
′/σj

ki

0 1/σk
ij 0

0 −cjiθ′/(σj
kiσ

k
ij) 1

 . (74)

Note that cij = −cji and σi
jk = 1/σi

kj. Then a straightforward computation shows that

φ(ekji)φ(e
k
ij) = I if and only if

θ′ = σk
ijσ

i
jkσ

j
kiθ . (75)

This shows that super-Ptolemy assignments on a concrete triangulation are described by the
same equations (63) and (64) but some of θi may be replaced by θ′i, where θ0, . . . , θ3 in (64)
are assigned to the sides of f0, . . . , f3 that face front. Note that if a face-pairing preserves the
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orientation of the faces induced from the vertex-orderings, then only one of θi or θ
′
i appears

in the face equations, and otherwise, both θi and θ
′
i appear.

e12

e210

0 1

2

e01

e20

e021 e102

θ

e02

e201

1 0

2

e10

e21

e120 e012

θ′

flip

Figure 6. Front/back sides of a face

2.9. Example: the 41 knot. Let T be the standard ideal triangulation of the knot com-
plement of 41 obtained by the face-pairings of two ordered ideal tetrahedra ∆1 and ∆2 with
edges e1 and e2 and with faces f1, . . . , f4. See Figure 7. We choose a cocycle σ on the short
edges for m, ℓ ∈ G∗

0(C) as follows (see [Yoo19, Ex.2.8]):

σ(s2) = σ(s5) = σ(s8) = σ(s11) = m, σ(s6) = σ(s9) = σ(s12) = m−1 (76)

σ(s4) = σ(s7) = σ(s10) = 1, σ(s1) = ℓ−1m−2, σ(s3) = ℓm (77)

where s1, . . . , s12 are the short edges of T̊ as in Figure 7. Note that the morphism induced
by σ sends the meridian and canonical longitude of the knot to m and ℓ, respectively.

f3

f1

0 3

1

2

f2

f4

: e2

: e1
s8

s7

s9

s2

s1

s3

s4s5

s6

s10

s12

s11

f4

f1

2 1

0

3

f2

f3

s8

s4

s6

s2

s10

s12

s7s11

s9

s1

s3

s5

∆1 ∆2

Figure 7. The knot complement of 41.



18 STAVROS GAROUFALIDIS AND SEOKBEOM YOON

A σ-deformed super-Ptolemy assignments is a pair of maps c : {e1, e2} → G∗
0(C) and

θ : {f1, . . . , f4} → G1(C) satisfying

c22 − ℓm4c21 + lm2c1c2 +m2c31c
2
2θ2θ3 = 0

c21 − ℓ−1c22 + ℓ−1c1c2 + ℓ−1m−1c31c
2
2θ3θ2 = 0

(78)

and

E∆1,f4 : ℓ−1m−2c2θ2 −m−1c2θ3 + c1θ1 = 0

E∆1,f3 : c1θ2 −m−1c2θ4 +m−2c2θ1 = 0

E∆2,f4 : c2θ3 − c2θ1 + c1θ2 = 0

E∆2,f3 : ℓc1θ1 − c2θ2 + c2θ4 = 0

(79)

where ci := c(ei) and θi := θ(fi). Writing the equations in (79) in a matrix form, we have
m−2c2 c1 0 −m−1c2
c1 ℓ−1m−2c2 −m−1c2 0
−c2 c1 c2 0
ℓc1 −c2 0 c2



θ1
θ2
θ3
θ4

 =


0
0
0
0

 . (80)

We are interested in the case of the above 4× 4-matrix F being singular, as all θi should be
zero, otherwise. One computes that if detF = 0, then the kernel F is a free G1(C)-module
of rank 1:

(θ1, θ2, θ3, θ4) = η

(
c1 +

1
ℓm
c2

mc1 − c2
, 1, −

mc21 +
1
ℓm
c22

c2(mc1 − c2)
,
ℓc21 + (m+ 1

m
)c1c2 − c22

c2(mc1 − c2)

)
, η ∈ G1(C).

It follows that either detF = 0 or not, we have θiθj = 0 for any i, j and thus Equation (78)
is simplified to

c22 − ℓm4c21 + lm2c1c2 = 0

c21 − ℓ−1c22 + ℓ−1c1c2 = 0
(81)

with

detF = 2c11c
3
2m

−2(m+m−1 − 1) . (82)

This shows that a σ-deformed Ptolemy assignment (c, θ) with θ ̸= 0 exists if and only if
m+m−1 − 1 = 0. For instance, we restrict m and ℓ to complex numbers, then we have

m =
1±

√
−3

2
, ℓ = −1, (c1, c2) = k

(
1∓

√
−3

2
, 1

)
for k ∈ G∗

0(C) . (83)

Note that the C2-torsion 2(m+m−1−1) of the knot 41 appears as a factor of Equation (82).

3. 1-loop and C2-torsion polynomials

In this section, we define the 1-loop invariant, the 1-loop polynomial, and their (m, l)-
deformed version from an ideal triangulation.
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3.1. The face-matrix of an ideal triangulation. As mentioned in Remark 2.1, hence-
forth, we use the Grassmann algebra with one odd generator. Its even and odd part are both
isomorphic to C, and a product of any two odd elements is zero. In particular, Equation (30)
reduces to the ordinary Ptolemy equation

c01c23 − c02c13 + c03c12 = 0 . (84)

Therefore, a super-Ptolemy assignment (c, θ) on an ideal triangulation T is given by a pair
of a Ptolemy assignment c : T 1 → C

∗ with a map θ : T 2 → C satisfying Equation (31) for
each tetrahedron of T .

Suppose T has N tetrahedra. Then it has N edges and 2N faces. Hence a super-Ptolemy
assignment is represented by a tuple c = (c1, . . . , cN) of non-zero complex numbers satisfying
the Ptolemy equation (84) for each tetrahedron and a tuple θ = (θ1, . . . , θ2N)

t of complex
numbers satisfying four linear equations (31) for each tetrahedron. We call these linear
equations face-equations and write them in matrix form as

F 0
c

F 1
c

F 2
c

F 3
c

 θ = 0, θ = (θ1, . . . , θ2N)
t (85)

where F k
c for k = 0, 1, 2, 3 are N × 2N matrices whose rows and columns are indexed by the

tetrahedra and the faces of T , respectively. However, it was shown in Lemma 2.3 that at
each tetrahedron any three of the linear equations in (31) are dependent. Thus we choose
two equations from each tetrahedron ∆. Such a choice can be represented by an edge of
∆, as each equation in (31) corresponds to a face of ∆. More precisely, we choose an edge
e∆ for each tetrahedron ∆ of T and use two equations in (31) that correspond to the two
faces adjacent to e∆. This creates a 2N × 2N matrix Fc, called a face-matrix, so that the
face-equations for θ take the form

Fc θ = 0 . (86)

Note that Fc is a trimmed version of the 4N × 2N matrix of Equation (85) and that entries
of Fc are linear forms on c (in fact, the nonzero entries at up to sign, equal the value of c on
an edge, see Equation (35)).

3.2. 1-loop invariant. We now have all the ingredients to define the 1-loop invariant.

Definition 3.1. For a Ptolemy assignment c on T we define the 1-loop invariant by

δT ,c,2 :=

(∏
e

1

c(e)

∏
∆

1

c(e∆)

)
detFc (87)

where the products are taken over all edges e and all tetrahedra ∆ of T , respectively.

Note that the 1-loop invariant δT ,c,2 has degree 0 in c, i.e., is invariant under scaling c
to kc for all k ∈ C∗. It turns out that the 1-loop invariant does not depend on the choice
of edges e∆ and is invariant under 2–3 Pachner moves. This follows from the specialization
of Lemma 3.3 and Theorem 3.4 at t = 1 below. In addition, we conjecture that the 1-loop
invariant δT ,c,2 is equal to the C2-torsion τM,ρ,2 up to sign, where ρ : π1(M) → SL2(C) is a
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representation associated to the Ptolemy assignment c. This is the specialization at t = 1 of
Conjecture 3.7 below.

3.3. 1-loop polynomial. In this section, we upgrade our 1-loop invariant to the 1-loop
polynomial.

Suppose M has an infinite cyclic cover M̃ and let T̃ be the ideal triangulation of M̃

induced from T . We identify the deck transformation group of M̃ with {tk | k ∈ Z} for a

formal variable t and fix a lift of every cell of T to T̃ . Then a cell of T̃ is uniquely represented

by a cell of T with a monomial in t. For instance, a face of T̃ is represented by tk · f for a
face f of T and k ∈ Z.
Recall that a face-equation is of the form

cα θ(f0) + cβ θ(f1) + cγ θ(f2) = 0 (88)

where f0, f1, and f2 are three faces of a tetrahedron ∆. Since the lift of ∆ has three faces
that are represented by tki · fi for some ki ∈ Z, we can formally modify Equation (88) as

cαt
k0 θ(f0) + cβt

k1 θ(f1) + cγ t
k2 θ(f2) = 0 . (89)

The effect of this insertion of monomials in t leads to a t-twisted version Fc(t) of Fc.

Definition 3.2. For a Ptolemy assignment c on T we define the 1-loop polynomial by

δT ,c,2(t) :=

(∏
e

1

c(e)

∏
∆

1

c(e∆)

)
detFc(t) (90)

where the products are taken over all edges e and all tetrahedra ∆ of T , respectively.

It is clear from Fc = Fc(1) that the 1-loop invariant δT ,c,2 is the specialization δT ,c,2(1) at
t = 1. In addition, the 1-loop polynomial δT ,c,2(t) determines the 1-loop invariant δT (n),c,2

of all cyclic n-covers M (n) of M . This follows by arguments similar to the ones presented
in [GY23] (for the 1-loop polynomial δT ,c,3(t)) and will not be repeated here.

Lemma 3.3. The 1-loop polynomial δT ,c,2(t) does not depend on the choice of edge e∆.

Proof. It suffices to compare two different edge-choices for one tetrahedron ∆. Comparing
e∆ = [0, 1] and e∆ = [0, 2], we have from Equation (33)(

c02 −c03
0 1

)(
c13 −c03 0 c01
c12 −c02 c01 0

)
=

(
c01 0
0 1

)(
c23 0 −c03 c02
c12 −c02 c01 0

)
. (91)

It implies that the 1-loop invariant δT ,c,2 is unchanged even if we change e∆ = [0, 1] to
[0, 2]. The insertion of monomials in t affects on both sides of (91) by multiplying the
same diagonal matrix (with diagonal in monomials in t) on the right. Therefore, the 1-loop
polynomial δT ,c,2(t) is also unchanged. □

Theorem 3.4. The 1-loop polynomial δT ,c,2(t) is invariant under 2–3 Pachner moves.

Proof. Suppose that T has two tetrahedra [0, 2, 3, 4] and [1, 2, 3, 4] with a common face
[2, 3, 4] as in Figure 8. Let T ′ denote the ideal triangulation obtained by replacing these two
tetrahedra by [0, 1, 2, 3], [0, 1, 3, 4], and [0, 1, 2, 4].
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0

1

2
3

4

Figure 8. A 2–3 Pachner move.

Recall that the face equation of a face [i, j, k] of a tetrahedron [i, j, k, l] with i < j < k is
given by

El
ijk : cijθijl − cikθikl + cjkθjkl = 0 . (92)

For ∆ = [0, 2, 3, 4] and [1, 2, 3, 4] we choose e∆ = [2, 4]. Then the face-matrix FT ,c of T
contains a submatrix

θ234 others
E3

024 c24 R3
024

E0
234 R0

234

E3
124 c24 R3

124

E1
234 R1

234

(93)

where Rl
ijk is the row of El

ijk except the θ234-entry. Using an elementary row operation, we
can modify the face-matrix without changing its determinant as

θ234 others
E3

024 R3
024 −R3

124

E0
234 R0

234

E3
124 c24 R3

124

E1
234 R1

234

(94)
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For ∆ = [0, 1, 2, 3] (resp., [0, 1, 3, 4] and [0, 1, 2, 4]) we choose e∆ = [2, 3] (resp., [3, 4] and
[2, 4]). Then the face-matrix FT ′,c of T ′ contains a submatrix

θ012 θ013 θ014 others
E0

123 c12 −c13 R0
123

E1
023 c02 −c03 R1

023

E0
134 c13 −c14 R0

134

E1
034 c03 −c04 R1

034

E0
124 c12 −c14 R0

124

E1
024 c02 −c04 R1

024

(95)

Preserving the determinant, we apply elementary row operations to obtain:

θ012 θ013 θ014 other 6 faces
E0

123 R0
123 − c12

c02
R1

023 − c23
c02

c04
c34
R0

134 +
c23
c02

c14
c34
R1

034

E1
023 c02 −c03 R1

023

E0
134 − c34

c04
c01 R0

134 − c14
c04
R1

034

E1
034 c03 −c04 R1

034

E0
124 R0

124 −R0
134 −R0

123

E1
024 R1

024 −R1
034 −R1

023

(96)

On the other hand, one computes that

R0
234 = R0

124 −R0
134 −R0

123

R1
234 = R1

024 −R1
034 −R1

023

R3
024 −R3

124 =
c02
c23
R0

123 −
c12
c23
R1

023 −
c04
c34
R0

134 +
c14
c34
R1

034

(97)

It follows that (96) is equal to

θ012 θ013 θ014 others
E0

123
c23
c02

(R3
024 −R3

124)

E1
023 c02 −c03 R1

023

E0
134 − c34

c04
c01 R0

134 − c14
c04
R1

034

E1
034 c03 −c04 R1

034

E0
124 R0

234

E1
024 R1

234

(98)

Comparing (94) and (98), we have

detFT ,c =
c24

c01c23c34
detFT ′,c . (99)

The monomial factor in the right-hand side agrees with the difference coming from the
monomial term

∏
c(e)

∏
c(e∆) in (87). This proves that δT ,c,2 = δT ′,c,2. As the effect of the

insertion of monomials in t is separated from the above computation, this also proves that
δT ,c,2(t) = δT ′,c,2(t). □
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Remark 3.5. The proof of the above theorem contains the behavior of the Ptolemy variety
under Pachner 2–3 moves. This can be used to show that the determinant of the Jacobian
of the Ptolemy variety, suitable normalized, is invariant under 2–3 Pachner moves, and
conjecturally equal to the 1-loop invariant defined in [DG13]; see [Yoo].

Theorem 3.6. A Ptolemy assignment c on T lifts to a super-Ptolemy assignment (c, θ) with
θ ̸= 0 if and only if δT ,c,2(1) = 0.

Proof. It is clear that if δT ,c,2(1) ̸= 0, or equivalently, if Fc = Fc(1) is non-singular, then θ
should be zero. Conversely, if δT ,c,2(1) = 0, then there is a nonzero vector v ∈ C2N with
Fc v = 0, and for any η ̸= 0 ∈ C the pair (c, ηv) is a super-Ptolemy assignment. □

Conjecture 3.7. The 1-loop polynomial is equal to the C2-torsion polynomial

δT ,c,2(t) = τM,ρ,2(t) (100)

up to multiplying signs and monomials in t. Here ρ : π1(M) → SL2(C) is a representation
associated to the Ptolemy assignment c.

3.4. (m, l)-deformation. In this section, we deform the 1-loop invariant as well as the 1-
loop polynomial.

We fix a cocycle σ that assigns a non-zero complex number to each short edge of T̊ . Recall
Equation (64) that the face-equations in (31) admit a deformation according to σ. As in
Section 3.1, we choose two face-equations in (64) by choosing an edge e∆ for each tetrahedron
∆ of T . This creates a 2N × 2N matrix F σ

c , so that the chosen face-equations take the form

F σ
c θ = 0 (101)

as well as its t-twisted version F σ
c (t), as explained in Section 3.3.

Definition 3.8. For a σ-deformed Ptolemy assignment c on T we define the 1-loop invariant
by

δT ,c,2 :=

(∏
e

1

c(e)

∏
∆

1

cσ(e∆)

)
detF σ

c (102)

and the 1-loop polynomial by

δT ,c,2(t) :=

(∏
e

1

c(e)

∏
∆

1

cσ(e∆)

)
detF σ

c (t) (103)

where cσ(e∆) is the value of c on the edge e∆ times its σ-coefficient in (64):

e∆ [0,1] [0,2] [0,3] [1,2] [1,3] [2,3]

cσ(e∆)
σ0
21

σ3
12
c01 c02

σ3
01

σ2
01
c03

σ1
23

σ0
23
c12 c13

σ1
03

σ2
03
c23

(104)

Repeating the same computation given in Sections 3.2 and 3.3, one can prove that (a) a
σ-deformed Ptolemy assignment c on T lifts to a super-Ptolemy assignment (c, θ) with θ ̸= 0
if and only if δT ,c,2 = 0; (b) the 1-loop polynomial δT ,c,2(t) does not depend on the choice of
edge e∆ and is invariant under 2–3 Pachner moves up to scalar multiplication by non-zero
complex numbers. In addition, we proposed the same conjecture (100) for σ-deformed ones,
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but up to multiplying non-zero complex numbers and monomials in t. Note that this scalar-
multiplication ambiguity is given by a product of complex numbers that σ assigns to short
edges. In particular, if σ takes values in {±1} (for instance, if M is hyperbolic and ρ is a lift
of the geometric representation), then we can replace this scalar-multiplication ambiguity by
sign-ambiguity as in Conjecture 3.7.

3.5. Example: the 41 knot continued. In this section we verify our conjecture for the 41
knot. With the notation of Section 2.9, we have e∆1 = [0, 3] and e∆2 = [1, 2], hence

cσ(e∆1) =
σ(s10)

−1

σ(s2)
c2 =

c2
m
, cσ(e∆2) =

σ(s5)
−1

σ(s6)
c2 = c2 (105)

As explained in Section 3.3 and [GY23, Sec.3.1], we insert monomials in t to the matrix in
Equation (80) to obtain

F σ
c (t) =


m−2c2 c1 0 −m−1c2
c1 ℓ−1m−2c2 −m−1c2 0
−c2 c1 c2t 0
ℓc1 −c2 0 c2t

 . (106)

Then, we have

δT ,c,2(t) =
1

c1c2

m

c22
detF σ

c (t) = m−1(t2 − 2(m+m−1)t+ 1) (107)

which agrees with the C2-torsion polynomial of 41 up to m−1.
In particular, for m = 1 (and l = −1), we obtain the C2-torsion polynomial

t2 − 4t+ 1 (108)

for an SL2(C)-lift of the geometric representation of the 41 knot, in agreement with SnapPy

1 snappy.Manifold(’4_1’).hyperbolic_SLN_torsion (2)

2 a^2 - 4.0000000000000000000000000000*a + 0.99999999999999999999999999999

4. Further discussion

In this paper and in our prior work [GY23], we introduced 1-loop polynomials δT ,2(t) and
δT ,3(t) determined, respectively, by the twisted face-matrix and twisted NZ-matrix of an ideal
triangulation T of a 3-manifold M , and conjectured to be equal to the torsion polynomials
τM,2(t) and τM,3(t). In this section we explain briefly how to derive 1-loop polynomials that
conjecturally equal to the torsion polynomials τM,n(t) for all n ≥ 2.

The torsion polynomials are closely related to the adjoint reprensentation of PGLn(C)
which decomposes

Ad(PGLn(C)) = ⊕n−1
i=1C

2i+1 (109)

into odd dimensional representations of SL2(C). This decomposition is not special to PGLn(C),
indeed every complex semisimple Lie group G has a canonical principal SL2(C) subgroup,
and decomposing the adjoint representation of G as an SL2(C)-representation

Ad(G) = ⊕r
i=1C

2ei+1 (110)
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one obtains only odd dimensional irreducible representations of SL2(C), where ei are the
exponents of G [Kos59]. Using the above decomposition (109), one can define for each n ≥ 2
the product

n−1∏
i=1

τM,2i+1(t) (111)

from which one can extract the odd torsion polynomials τM,odd(t), see e.g. [Por, Sec.5].
Using the fact that PGLn(C)-representations can be described by gluing equations asso-

ciated to PGLn(C)-type Neumann–Zagier matrices [GGZ15a], if one twists these matrices
by considering their lifts to an infinite cyclic cover as was done in [GY23], one can define a
1-loop polynomial δT ,PGLn(t) which would factor as

∏n−1
i=1 δM,2i+1(t) and would conjecturally

equal to the polynomial (111). Doing so, one can obtain the odd 1-loop polynomials that
conjecturally equal to the corresponding odd torsion polynomials.

Likewise, an extension of the decomposition (110) to high-dimensional orthosymplectic
groups, together with a construction of Neumann–Zagier matrices that describe representa-
tions of 3-manifold groups to orthosymplectic groups, along with their twisted version would
determine even 1-loop polynomials that conjecturally equal to the corresponding even torsion
polynomials.

Acknowledgments. S.G. wishes to thank Nathan Dunfield for enlightening conversations.
S.Y. wishes to thank Teruaki Kitano and Joan Porti for helpful conversations.

References

[AD20] Ian Agol and Nathan Dunfield, Certifying the Thurston norm via SL(2,C)-twisted homology,
What’s next?—the mathematical legacy of William P. Thurston, Ann. of Math. Stud., vol. 205,
Princeton Univ. Press, Princeton, NJ, 2020, pp. 1–20.

[Ber87] Felix Alexandrovich Berezin, Introduction to superanalysis, Mathematical Physics and Applied
Mathematics, vol. 9, D. Reidel Publishing Co., Dordrecht, 1987, Edited and with a foreword by
A. A. Kirillov, With an appendix by V. I. Ogievetsky, Translated from the Russian by J. Niederle
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