ASYMPTOTICS OF CLASSICAL SPIN NETWORKS
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With an appendix by Don Zagier

ABSTRACT. A spin network is a cubic ribbon graph labeled by representations of SU(2). Spin networks
are important in various areas of Mathematics (3-dimensional Quantum Topology), Physics (Angular Mo-
mentum, Classical and Quantum Gravity) and Chemistry (Atomic Spectroscopy). The evaluation of a spin
network is an integer number. The main results of our paper are: (a) an existence theorem for the asymp-
totics of evaluations of arbitrary spin networks (using the theory of G-functions), (b) a rationality property
of the generating series of all evaluations with a fixed underlying graph (using the combinatorics of the chro-
matic evaluation of a spin network), (c) rigorous effective computations of our results for some 6j-symbols
using the Wilf-Zeilberger theory, and (d) a complete analysis of the regular Cube 125 spin network (including
a non-rigorous guess of its Stokes constants), in the appendix.
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1. INTRODUCTION

1.1. Spin networks in mathematics, physics and chemistry. A (classical) spin network (I',v) consists
of a cubic ribbon graph T (i.e., an abstract trivalent graph with a cyclic ordering of the edges at each vertex)
and a coloring «y of its set of edges by natural numbers. According to Penrose, spin networks correspond
to a diagrammatic description of tensors of representations of SU(2). Here a color k on an edge indicates
the k + 1 dimensional irreducible representation of SU(2), and their evaluation is a contraction of the
above tensors. Spin networks originated in work by Racah and Wigner in atomic spectroscopy in the late
forties [Rac46, Rac42a, Rac42b, Rac49, Wigd1]. Exact or asymptotic evaluations of spin networks is a useful
and interesting topic studied by Ponzano-Regge, Biedenharn-Louck and many others; see [BL81a, BL81b,
PR68,VMKSS]. In the past three decades, spin networks have been used in relation to classical and quantum
gravity and angular momentum in 3-dimensions; see [EPR08, Pen71a, Pen71b, RS95]. In mathematics, ¢-
deformations of spin networks (so called quantum spin networks) appeared in the eighties in the work of
Kirillov-Reshetikhin [KR89]. Quantum spin networks are knotted framed trivalent graphs embedded in 3-
space with a cyclic ordering of the edges near every vertex, and their evaluations are rational functions of a
variable q. The quantum theta and 6j-symbols are the building blocks for topological invariants of closed
3-manifolds in the work of Turaev-Viro [TV92, Tur94]. Quantum spin networks are closely related to a
famous invariant of knotted 3-dimensional objects, the celebrated Jones polynomial, [Jon87]. A thorough
discussion of quantum spin networks and their relation to the Jones polynomial and the Kauffman bracket
is given in [KL94] and [CFS95]. Recent papers on asymptotics of spin networks in physics and mathematics
include: [AHHT09], [LY11] and [CM11]. Aside from the appearances of spin networks in the above mentioned
areas, their evaluations and their asymptotics lead to challenging questions even for simple networks such as
the cube, discussed in detail in the appendix. Some examples of spin networks that will be discussed in the
paper are shown in Figure 1.
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Figure 1. From left to right: The theta, the tetrahedron or 6j-symbol, the Cube, the 5-sided prism
and the complete bipartite graph K33 or 9j-symbol. The cyclic order of the edges around each vertex is
counterclockwise. The left three spin networks are admissible, and the right two are not.

1.2. The evaluation of a spin network.

Definition 1.1. (a) We say a spin network is admissible when the sum of the three colors a,b, ¢ around
every vertex is even and a, b, ¢ satisfy the triangle inequalities: |a — b| < ¢ < a+b.

(b) The Penrose evaluation (I',7)¥ of a spin network (I',v) is defined to be zero if it is not admissible. If it
is admissible, its evaluation is given by the following algorithm.

e Use the cyclic ordering to thicken the vertices into disks and the edges into untwisted bands.
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e Replace the vertices and edges by the linear combinations of arcs as follows:

(1) )\ — / K T — X,sen(o)
b c\\/—\/b =

e Finally the resulting linear combination of closed loops is evaluated by assigning the value (—2)" to
a term containing n loops.

In the above definition the summation is over all permutations o of the a arcs at an edge colored a. The
Penrose evaluation (I, )" of a spin network is always an integer. Note that the admissibility condition
is equivalent to saying that the strands can be connected at each vertex as in Figure 1. Note also that
cubic ribbon graphs I' are allowed to have multiple edges, loops and several connected components including
components that contain no vertices. In addition, I" is allowed to be non-planar (contrary to the requirement
of many authors [Wes98, Mou79, KL94]), as long as one fixes a cyclic ordering of the edges at each vertex.
The latter condition is implicit in [Pen71al]. It turns out that changing the cyclic ordering at a vertex of a
spin network changes its evaluation by a single sign; see Lemma 2.1 below.

1.3. Three fundamental problems. It is easy to see that if (I',) is an admissible spin network and n
is a natural number, then (I',nv) is also admissible. A fundamental problem is to study the asymptotic
behavior of the sequence of evaluations (I', ny)? when n is large. This problem actually consists of separate
parts. Fix an admissible spin network (I, ).

)P

Problem 1.2. Prove the existence of an asymptotic expansion of the sequence (I', ny)" when n is large.

Problem 1.3. Compute the asymptotic expansion of the sequence (I',ny)¥ to all orders in n effectively.

Problem 1.4. Identify the terms in the asymptotic expansion of (I', ny)" with geometric invariants of the
spin network.

These problems are motivated by the belief that the quantum mechanics of particles with large spin
will approximate the classical theory. To the best of our knowledge, the literature for Problem 1.2 is
relatively new and short and concerns only thetas and 6j-symbols with certain labellings. For Problem
1.3, it should be noted that even for the 6j-symbols not much is known about the subleading terms in
the asymptotic expansion. Some terms are found in [DL09] but no general algorithm is given. As for the
geometric interpretation in Problem 1.4 there is a well known conjecture in the case of the 6j-symbol [PR6S].
Roberts used geometric quantization techniques to prove this conjecture on the leading asymptotic behavior
of 6j-symbols in the so-called Euclidean case [Rob99,Rob02]. Some results on the 9j-symbol have been found
in [HL10]. Finally a more general interpretation for the leading order asymptotics appears in [CM11] however
this assumes a hypothesis that has not been shown to hold in cases other than the 6j-symbol. Problems
1.2-1.4 can also be viewed as the classical analogue of the problem of understanding the asymptotics of
quantum spin networks and quantum invariants. Even less is known in the quantum case but see [GvdV11]
and a well known conjecture in this context is the volume conjecture [Kas97], [MMO1].

1.4. A solution to Problem 1.2. In this paper we give a complete solution to Problem 1.2 in full generality.
A convenient role is played by the following normalization of the spin network evaluation. This normalization
was introduced independently in [Cos09] in the g-deformed case.

Definition 1.5. We define the standard normalization of a spin network evaluation to be

1

(2) <F77> = ﬁ<F77>P
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where Z! is defined to be the product

— o b'u v v_b'u v v b'u_'u
3) T H ( a—|—2 +c>!(a 2+c>!(a +2 c>!

veV (T')

where a,, by, ¢, are the colors of the edges adjacent to vertex v, and V(I") is the set of vertices of I".

The standard normalization has a number of useful properties (see Theorem 1.7 below) that can be stated
conveniently in terms of a generating function that we now define. If we fix a cubic ribbon graph I' one can
consider many spin network evaluations, one for each admissible labeling v of I'. " We organize these in a
generating function by taking a formal variable for every edge and encoding v in the exponents of monomials
in these variables.

Definition 1.6. Given a cubic ribbon graph I' define a formal power series in the variables z = (2¢)cep(r)
by

Fr(z) = Z(I‘, )27

v=>0
where 27 = [[.cp(r) 209 and E(T) denotes the set of edges of T.

By virtue of our use of the standard normalization we can prove the following theorem about our generating
function Fr.

Theorem 1.7. (1) For all spin networks (T',7), the standard evaluation (T',7) is an integer.
(2) The sequence (I',nv) is exponentially bounded.
(3) For any cubic ribbon graph T the generating series Fr is a rational function explicitly defined in
terms of T'.

To illustrate the last part of the theorem let us mention the special case in which I' is planar with the
counterclockwise orientation. In this case a result from [Wes98] that states that
1
B =——
r (Z) Pr (2)2
where Pr(z) = ) .cc, 2 and Cr is the set of 2-regular subgraphs of I'. Our theorem generalizes this result
to arbitrary I', the precise statement can be found in Theorem 2.9. The next result gives a complete answer
to Problem 1.2. To state it, we need to recall a useful type of sequence; see [Gar09, Garll].

Definition 1.8. We say that a sequence (a,,) is of Nilsson type if it has an asymptotic exzpansion of the form

(4) Ay ~ Z N (logn)? Sy a.pha.a.s(1/n)
Ao,

where

the summation is over a finite set of triples (A, , 3),

the growth rates A are algebraic numbers of equal magnitude,

the exponents o are rational and the nilpotency exponents 3 are natural numbers,

the Stokes constants Sy . 3 are complex numbers,

the hy,q p(x) are formal power series with coefficients in a number field K such that the coefficient
of 2™ is bounded by C™n! for some C' > 0 and the constant coefficient is 1.

Note that a sequence of Nilsson type uniquely determines its asymptotic expansion (4) as was explained
in detail in [Garl1]. Using the theory of G-functions, (discussed in Section 3.2), we prove:

Theorem 1.9. For any spin network (I',~) the sequence (I',ny) is of Nilsson type.
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1.5. A partial solution to Problem 1.3. Regarding Problem 1.3, we introduce a new method (the Wilf-
Zeilberger theory) which

e computes a linear recursion for the sequence (I', nvy),

e given a linear recursion, effectively computes the corresponding triples (), , 3), the number field K
and any number of terms of the power series hy qp(2) € 1 + 2K [[z]] in Definition 1.8,

e numerically computes the Stokes constants Sy 3.

Given this information, one may guess exact values of the Stokes constants. In some cases, we obtain an
alternative exact computation of the Stokes constants, too. As an illustration of the theorem we will present
computations of the asymptotic expansions of three representative 6j-symbols up to high order using the
Wilf-Zeilberger method in Section 4.1. In the appendix we will present additional numerical results on
the asymptotic expansion of the case of the cube spin network. About 20 more examples of spin network
evaluations (including the s-sided prisms for s = 2,...,7 and the twisted s-sided prisms for s = 2,...,5)
have been computed, and the data is available from the first author upon request.

1.6. A conjecture regarding Problem 1.4. The example of the cube spin network also provides evidence
for the following conjecture on the growth rates A in the Nilsson type expansion. The conjecture connects the
growth rates of suitable spin networks to the total mean curvature of a related Euclidean polyhedron. Let
P be a convex polyhedron in three dimensional Euclidean space. Denote by M (P) the total mean curvature
of P. Recall that M(P) = % > lede, where ¢, is the exterior dihedral angle at edge e and /. is the length
of the edge.

Conjecture 1.10. Let (T',7) be a planar spin network such that the dual of T is realized as the 1-skeleton
of a convex Euclidean polyhedron P with edge lengths given by ~. The numbers e="M(P) are growth rates
in the asymptotic expansion of the unitary evaluations of (I',ny)Y.

In the conjecture we are using the so called unitary evaluation of a spin network defined in Section 4.
This evaluation is still of Nilsson type since it differs from the standard one by an explicit factor.

After this work was completed, an approach to Problems 1.2-1.4 was proposed by Costantino-Marche,
[CM11] using generating functions. Their approach requires certain nondegeneracy conditions, and in par-
ticular does not give a solution to Problem 1.2 or Problem 1.3 for the regular cube spin network, see the
Appendix.

1.7. Acknowledgement. The results were conceived in a workshop in Aarhus, Denmark, and presented in
HaNoi, Vietnam and Strasbourg, France in the summer of 2007. The authors wish to thank the organizers
for their hospitality. S.G. wishes to thank C. Koutschan, D. Zeilberger and D. Zagier for many enlightening
conversations.

2. EVALUATION OF SPIN NETWORKS

In this section we treat two ways of calculating the evaluation of a spin network. The first is by recoupling
theory and leads to practical but non-canonical formulas for the evaluations as multi-sums. The second way
is the method of chromatic evaluation. This leads to the proof of the generating function result, Theorem
1.7 announced above.

We start by recording some elementary facts about spin network evaluations. First of all our definition
of the standard evaluation assumes that there are no edges without vertices. By definition we will add an
(a,a,0) colored vertex to any a-colored component that has none. This makes sense because of part (a) of
the following.

Lemma 2.1. Let (T, ) be a spin network and consider the standard evaluation.

(a) Inserting a vertex colored (0,a,a) in the interior of an edge of I' colored a does not change the
standard evaluation of the spin network.

(b) Changing the cyclic ordering at a vertex whose edges are colored a, b, ¢ changes the evaluation by a
sign (_1)(a(a—l)+b(b—1)+c(c—l))/2
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Proof. (a) The chosen normalization introduces an extra factor 1/a! for the new vertex labeled (0,a,a),
while it follows from the definition that one also inserts an extraneous summation over permutations in the
pre-existing edge labeled a. Since

Z Z sgn(o)o sgn(7)r = a! Z sen(o)o

0€Sa TES, oc€S,

the evaluation is unchanged.

(b) Changing the cyclic order at a vertex with edge labels a, b, ¢ has the following effect. The alternating
sum at each of the adjacent edges is multiplied by the permutation that turns the arcs in the edge by 180
degrees. This element has sign a(a —1)/2 in S,. O

As a consequence of part (a) of the above lemma, an edge labeled 0 in a spin network can be removed
without affecting the evaluation. There is an alternative bracket normalization (I',v)? of the evaluation of
a spin network (T",v) which agrees with a specialization of the Jones polynomial or Kauffman bracket.

Definition 2.2. The bracket normalization of a spin network (I',~y) is defined by

(5) <F77>B = §<1—‘77>P

where

(6) &l = H ~(e)!
ecE(T)

This normalization has the property that it coincides with the Kauffman bracket (Jones polynomial) of a
quantum spin network evaluated at A = —1 [KL94]. However, (I',7)? is not necessarily an integer number,
and the analogous generating series does not satisfy the rationality property of Theorem 1.7.

2.1. Evaluation of spin networks by recoupling. In this subsection we describe a way of evaluating
spin networks by recoupling. We will reduce the evaluation of spin networks to multi-dimensional sums of
6 and theta-symbols. The value of the 65 and theta-symbols is given by the following lemma of [KL94]
and [Wes98], using our normalization. The choice of letters in coloring the 6j-symbol is traditional following
for example [KL94].

Lemma 2.3. (a) Let ( A\, 7) denote a tetrahedron colored and oriented as in Figure 1 with v = (a,b,¢,d, ¢, f).
Its standard evaluation is given by

min S;

k
_ _1\k
(7) (A= 2 (D (k+1)(81—k,Sz—k,Sg—k,k—Tl,k—Tg,k—Tg,k—T)

k=maxT;
( a ) al
a1,a2,...,0, ar!...a,!

denotes the multinomial coefficient when ay + - -+ + a,, = a, and S; are the half sums of the colors in the
three quadrangular curves in the tetrahedron and Tj are the half sums of the colors of the edges adjacent to
a given vertex. In other words, the S; and T} are given by

where, as usual

1 1 1

() Slzi(a+d+b+c) ngi(a—i—d—i—e—i—f) S3=§(b+c+e+f)

1 1 1 1
9) T1:§(a+b+e) T2:§(a+c—|—f) T3:§(c+d+e) T4:§(b+d+f).
(b) Let (©,7) denote the O spin network of Figure 1 admissibly colored by v = (a, b, ¢). Then we have

atbtc a + b +c atbie
(10) <®77> = (_1) 2 (T + 1) (—a-l—b-l—c a—2b+c a+b—c)
2 02 2
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Finally note that the evaluation of an n-labeled unknot is equal to (—1)™(n + 1).

Recoupling is a way to modify a spin network locally, while preserving its evaluation. This is done as
in Figure 2. The topmost formula is called the recoupling formula and follows from the recoupling formula
in [KL94], using our conventions. The other two pictures in the figure show the bubble formula and the
triangle formula. The bubble formula shown on the left of Figure 2 serves to remove all bigon faces. Likewise

Ced
DO v
D
> k
admissible k k

a b
>+ -
C d

k a@ B a
b C
(o = s, ’ ‘
| O ICD) ;
c

Figure 2. The recoupling formula (top), the bubble formula (left) and the triangle formula (right). The
sum is over all k for which the network is admissible, and d,; is the Kronecker delta function.

the triangle formula can be used to remove triangles. The recoupling and bubble formulas suffice to write
any spin network as a multi-sum of products of 6j-symbols divided by thetas. To see why, we argue by
induction on the number of edges. Applying the recoupling formula to a cycle in the graph reduces its length
by one and preserves the number of edges. Keep going until you get a multiple edge which can then be
removed by the bubble formula.

Although the triangle formula follows quickly from the bubble formula and the recoupling formula it is
important enough to state on its own. For example the triangle formula shows that the evaluation of the
class of triangular networks is especially simple. The triangular networks are the planar graphs that can be
obtained from the tetrahedron by repeatedly replacing a vertex by a triangle. By the triangle formula the
evaluation of any triangular network is simply a product of 6j-symbols divided by thetas. No extraneous
summation will be introduced.

To illustrate how recoupling theory works, let us evaluate the regular s-sided prism and K3 3. Consider
the s-sided prism network as shown in Equation (11) (for s = 5) where every edge is colored by the integer
n. In the figure we have left out most of the labels n for clarity. By convention unlabeled edges are colored
by n. Performing the recoupling move on every inward pointing edge we transform the prism into a string

of bubbles that is readily evaluated.
k
- 3 K

K k

k admissible ek @k k admissible @k

Observing that if n is odd the network is not admissible (and thus evaluates to zero), and denoting the
tetrahedron and the theta with one edge colored by k and the others by n by S(n, k) and 6(n, k) we conclude
the following formula for the n-colored s-sided prism.

(11)
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Proposition 2.4. If n = 2N is even we have

2N

(Prismg, 2N) = > "(2j + 1) (

J=0

S(2N,25)\°
0(2N, 2j))

and if n is odd we have (Prismg, n) = 0.

For small values of s the prism can be evaluated in a more straightforward way, thus providing some
well known identities of 6j-symbols. Namely when s = 1 we get zero, when s = 2 we find some thetas and
when s = 3 we have by the triangle formula a product of two 6j-symbols thus giving a special case of the
Biedenharn-Elliott identity [KL94]. For s = 4 we find a formula for the regular cube, that will be used in
the appendix. We know of no easier expression for the evaluation in this case. A similar computation for
K3 3 cyclically ordered as a plane hexagon with its three diagonals gives the following.

Proposition 2.5. If n = 2N is even we have

o S(2N,25)\*
(Ks3,2N) = ;0(—1) (2 +1) (W)

and if n is odd we have (K33,n) = 0.

Note the similarity between Prisms and Kj33. The only difference is the sign that comes up in the
calculation when one needs to change the cyclic order. The extra sign makes (K3 3,2N) = 0 for all odd N.
This is because changing the cyclic ordering at a vertex takes the graph into itself, while it produces a sign
(—1)" when all edges are colored 2N .

2.2. Generating series and chromatic evaluation. Recall the generating function Fr(z) for all spin
network evaluations with the same underlying graph I' from Definition 1.6. We are using variables z =
(ze)eeE(p), one for each edge, and abbreviate monomials HBGE(F) Z;Y(e) as z7. Our goal is to express Fr

explicitly in terms of I'. To do so we need a couple of definitions.

Definition 2.6. Given a cubic ribbon graph I' define a cycle to be a (possibly disconnected) 2-regular
subgraph of I". The set of all cycles is denoted by Cf.

In other words, a cycle is a subgraph such that at any vertex an even number of edges meet. In terms of
the cycles we define a polynomial and a quadratic form.

Definition 2.7. Given a cubic ribbon graph I' and X C Cr we define

(12) PF)X(Z) = Z Ex(C)Hze

ceCr ecc

where ex(c¢) = —1 (resp. 1) when ¢ € X (resp. ¢ € X). Also define the function Qr on the subsets of Cr as
follows. Let Qr(X) be the number of unordered pairs {c,¢'} C X with the property that ¢ and ¢’ intersect
in an odd number of places when drawn on the thickening of T'.

Note that the cyclic orientation of I' defines a unique thickening. We will call Pr = Pr gy the cycle
polynomial of I". It is independent of the cyclic orientation of I'. Notice how the other Pr x only differ from
the cycle polynomial in the signs of the individual monomials. In particular, the polynomials Pr x all have
constant coefficient 1.

It is interesting to remark that the cycle polynomial determines the cubic graph, up to a well-determined
ambiguity. First of all we can restrict to connected graphs since the cycle polynomial is multiplicative under
disjoint union. For connected graphs we will make use of a classic theorem of Whitney, which we quote for
the benefit of the reader. Recall that a connected graph I' is 2-connected (resp. 3-connected) if it remains
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connected after removing any one (resp. any two) vertices of I'. A Whitney flip is the following move on a
graph (where R and L contain at least two edges):

QO-JC

A Whitney flip is the graph-theoretic analogue of a knot mutation (see [Ada94]) and can only be applied to
graphs which are not 3-connected.

Proposition 2.8. [Whi33] (a) Let I'1,T'2 be two 2-connected cubic graphs with same cycle polynomial.
Then I'; is obtained from I'; by a sequence of Whitney flips.
(b) Let I" be a 3-connected cubic graph. The cycle polynomial Pr uniquely determines I'.

Proof. Since I'y and I's have the same cycle polynomial we have a bijection on the sets of edges preserving
the set of cycles. We can extend this bijection to a bijection on the set of vertices so that the result follows
from a more general theorem of Whitney [Whi33| that states the following. Two finite 2-connected graphs
with a bijection on the set of vertices that preserves the set of cycles are related by a sequence of Whitney
flips. This also works for non-cubic graphs if we define a cycle C of a finite graph I' to be a subgraph of I"
with the same vertex set as I' such that every vertex of C' has even valency. In case I' is a cubic graph, a
cycle of T in the above sense exactly coincides with Definition 2.6. Thus, part (a) follows.

Part (b) follows from (a) and the fact that 3-connected graphs cannot be Whitney flipped. O

With the definitions in place we can finally state the precise version of the last part of Theorem 1.7:

Theorem 2.9. For every cubic ribbon graph T' we have
ax
(13) Fr(z)= > p7- € ZHINQ().
XCCr rXx
where the coefficients are given by

g 3 (e
21=r YCCr

ax =

Corollary 2.10. For every spin network (I',v), the evaluation (T',7) is an integer number and (I', ny) is
exponentially bounded.

In particular Theorem 1.7 reduces to Theorem 2.9 above. To see how the particular case of planar spin
networks comes about we note that

Corollary 2.11. When I is planar with the counterclockwise orientation, then all cycles intersect an even
number of times so (—1)9(X) = 1 and hence only ay is non-zero. It follows that

1
Fr=——
PRy
recovering an earlier theorem by Westbury [Wes98].

The proof of this theorem uses the chromatic evaluation method which goes back to [Pen71b]. Our proof
builds on earlier work by [Wes98] and [KL94] on planar spin networks and will be given in the next subsection.

2.3. Chromatic evaluation.

Definition 2.12. For N € Z define the evaluation (I',v)% just as in Definition 1.1 except that the value of
a loop is now IV instead of —2.
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Note that by definition (T',7)f, = (T,7)f. However for positive N the evaluations are easier to work
with combinatorially. Also since the evaluations depend polynomially on IV, the values of the evaluations at
positive N will together determine the original evaluation at N = —2.

Definition 2.13. Define a cycle configuration to be a function L : Cr — N such that L()) = 0. A cycle
configuration L defines a coloring (L) as follows

L) e)= > L(c) and |L|= > L(¢) and L'= [] L(c)!
ceCr:e€c ceCr ceCr
Finally define the quadratic form Qr on cycle configurations as Qr(L) = >_y, 51 L(c)L(d), where {c,d} C C

runs over the unordered pairs of cycles that intersect in an odd number of places.

Viewing a (non-empty) subset X C Cr as the cycle configuration that is 1 on X and 0 elsewhere, this
definition of Qr coincides with the one given in Definition 2.7. We can now state and prove the main lemma
that expresses the evaluation for positive N in terms of cycle configurations.

Lemma 2.14. For positive integers N we have
N
rak= ¥ e (Y)n
Liy(L)=v

Here (JZ) is defined as N(N_l)"'L(!N_ILIH) and recall Z! is the normalization factor from Definition 1.5.

Proof. For convenience the proof is summarised in the following string of equalities. We will comment on
each step in turn, introducing new notations as they come up.

(14) TN = D sen(o)NV/?
o€S,

(15) = > sen(0) ) (o))
oeS, f:U—B

(16) = > > sen(o)(o, f)
good f ©

(17) — Z Z (—1)Q®)

L:y(L)=v f:Ly=L

(N
> (=t ><L>Z!
Liy(L)=v

In (14) we have made precise the process of the evaluation of a spin network. Recall that we replace each
vertex by a system of arcs, see Figure 1. Let U be the set of all such arcs. Next these arcs are connected at
the edges of the graph by permutations in the product of symmetric groups Sy =[], B(I) S, (e)- An element
o € S, gives rise to an equivalence relation on the set of arcs U indicating which arcs are connected. We
used the notation U/o to mean the number of equivalence classes under this relation (i.e. the number of
closed loops).

The next equaltiy (15) is a reformulation of NU/¢ in terms of maps f : U — B where B is an abstract
N-element set. Define (o, f) to be 1 if o only connects arcs of U with the same value of f and define
(0, f) = 0 otherwise. By definition we then have NU/7 = > ru—plof)

The next step (16) is merely an interchange of the two summations. This is important because in the
innermost sum all terms cancel out except for the good f that we will define now. Let us call a function
f:U — B good if there exists a o such that (o, f) =1 and for every vertex of I' it assigns distinct elements
of B to all arcs at that vertex. To see why only the good f contribute, suppose f is not good so there will
be an edge at which two arcs u, u’ satisfy f(u) = f(u'). If (o, f) = 1 then composing o with a transposition
exchanging « and u’ produces a term (o', f) = 1 such that the signs of o and ¢’ are opposite.

(18)
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Notice that a good f determines a unique o such that (o, f) = 1, since the values of f must all be distinct
at each edge. f also determines uniquely a cycle configuration L defined for ¢ € Cr by

Ly(c) =#{be B|f7'(b) € ¢}

Here f~1(b) € c means that the arcs in the inverse image of b trace out the cycle ¢ of T.

In (17) we have arranged all the good f according to what cycle configuration they represent. Note
that the sign of the permutation o corresponding to the good f only depends on L; and actually equals
(—=1)@Ls), This follows directly from the interpretation of the sign as sgn(o) = (—1)#ecrossings,

The final step (18) consists of counting the number of good f corresponding to a given cycle configuration
L. To obtain such an f from L we first assign disjoint unordered L(c)-tuples of distinct elements of B to all
cycles ¢ € Cp. This can be done in (JZ ) ways. Finally we have to fix an ordering of the chosen elements of B
at the arcs at each side of every vertex. By the arcs at a side of a vertex we mean the arcs that run between

a fixed pair of half edges at the vertex. This ordering can be fixed in Z! ways so the proof is complete. [

Since the evaluation <F,*y>]13 is a polynomial in N, the conclusion of the previous Lemma 2.14 actually
holds for all N, in particular N = —2. We record this for future use as the following corollary, where we
have switched back to the standard normalization.

Corollary 2.15.

ray= ¥ oo ()

Liy(L)=y

2.4. Proof of Theorem 2.9. To find a generating function for these evaluations, we first need to expand
the sign (—1)9r(%) in terms of characters. That is we use Fourier analysis on the group (Z/2Z)I°r!. We
often write elements of this group as subsets of Cr. For every fixed X € Cr we have a character (—1)X(F) =
(—1)EIEX L) In case L is a cycle configuration we extend the character to a Dirichlet character. So for

some coefficients ax we have
()& B = 3 ax(-1)¥®
XcCr
Taking inner products, the coeflicients are given by

1
= _ N\Qr(Y)+|XnY|
aX_Q\CF\ Z ( 1) :
YCCr

To rewrite the generating function let us introduce a variable for each cycle: w = (w)cec, and set w. =
[l.c.ze. If v(L) = ~ then the color of an edge is the sum of the number of cycles (with multiplicity)

ecc ~¢
containing that edge, hence

(=X = ()X Pt = T (ex(e)we) ™)
ceCr

were ex(c) is the function that is 1 if ¢ ¢ X and —1 if ¢ € X. Recall the cycle polynomial Pr x(z) =
> ey €x(c)we so we can compute

> 5 (D)er @ =3 () M) -0+ 3 extou)’ =R
Y Liy(L)=v L ceCr 0#ceCr

Now setting N = —2 everywhere and applying Corollary 2.15 we can finish the proof

Fr(s) =302 = 3 axPrk

Y XCCr
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3. ASYMPTOTIC EXPANSIONS

The goal of this section is to prove Theorem 1.9 that provides a Nilsson type asymptotic expansion for
spin network evaluations. The general idea is to define the following (single variable) generating function.

Definition 3.1. Let (T',7) be a spin network. The single variable generating function Fr , is the formal
power series

(19) Fr(z) = Z(I‘, ny)z"

Our goal is to show that this function is a G-function (defined in Section 3.2 below). It then follows from
the theory of G-functions that the sequence (I, ny) is of Nilsson type. Before doing so we first make some
comments on Nilsson type sequences in general.

3.1. Sequences of Nilsson type. Recall from Definition 1.8 that a Nilsson type sequence (a,) has the
following asymptotic expansion as n — oo

an ~ Y A"n®(logn)’Sx a.phxas(1/n)
Ao, 3
The meaning of this expansion is entirely analogous to the more familiar special case where there is only one
growth rate:

0 m
 ~ A% (1 16] Pr
a n*(logn) kgo e

(which goes back to Poincaré, [O1v97]). In this case the meaning is that for every r € N we have

r—1
lim n" <an)\_"n_°‘(logn)_5 - M—Z) = liy.
n—00 n

k=0
The general case is similar but to express it we would need more notation see [Garll]. It can be shown that
a Nilsson type sequence has a unique asymptotic expansion [Garll].

An important source of Nilsson type sequences are G-functions that we will introduce next.

3.2. G-functions. In this section we recall the notion of a G-function, introduced by Siegel [Sie29] in
relation to transcendence problems in number theory. Many of their arithmetic and algebraic properties
were established by André in [And00]. G-functions appear naturally in Geometry (as Variations of Mixed
Hodge Structures), in Arithmetic and most recently in Enumerative Combinatorics. For a detailed discussion,
see [And00, Gar09] and references therein.

Definition 3.2. We say that a series G(z) = Y.~ janz" is a G-function if

(a) the coefficients a,, are algebraic numbers,

(b) there exists a constant C' > 0 so that for every n > 1 the absolute value of every conjugate of ay, is
less than or equal to C",

(¢) the common denominator of the algebraic numbers aq, ..., a, is less than or equal to C",

(d) G(z) is holonomic, i.e., it satisfies a linear differential equation with coefficients polynomials in z.

For the purposes of this paper the most important property of G-functions is expressed in the following
lemma.

Lemma 3.3. [Gar09, Prop.2.5] [Garll, Thm.4.1] The sequence of Taylor coefficients of a G-function at
z = 0 is a sequence of Nilsson type.

With the help of Lemma 3.3 we can now reduce the proof of Theorem 1.9 to the following lemma
Lemma 3.4. For any admissible spin network (I',y) the generating function Fr ,(z) is a G-function.

In the next subsection we will give a proof of Lemma 3.4.
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3.3. Hypergeometric terms. In this subsection we prove Lemma 3.4 (and hence Theorem 1.9) by showing
that the standard evaluations of spin networks are a certain type of hypergeometric multisums that we will
first describe in general.

Definition 3.5. An r-dimensional balanced hypergeometric datum t (in short, balanced datum) in variables
(n,k), where n € N and k = (ky,...,k.) € N", is
(a) a finite list {(ej, Aj(n,k))|j € J} where 4; : N'™! — 7Z is a linear form in (n,k) and ¢; € {—1,1}
for all j € J.
(b) a vector (Cy,...,C,) of algebraic numbers, and
(c) a polynomial p(n, k) € Q[n, k],

that satisfies the balancing condition

J
(20) D €A =0
j=1

and moreover, the set
(21) Pi={z € Ry, |A;(1,z) > Ofor allj € J}
is a compact rational convex polytope.

A balanced datum t gives rise to a balanced term t(n,%) (defined for n € N and k € Z" N nP,), to a
sequence (a¢,) and to a generating series G¢(z) defined by:

r J
co [T Cr TT Ain k) p(n, k)

(22) t(n,k) =
i=1 =1
(23) Qypn = Z t(nv k)
kEZ™Nn Py

(24) Gi(z) = Zat,nz"
n=0

We will call the sequences (ay,y,) balanced multisums. The connection between balanced multisum sequences
and their asymptotics was given in [Gar09] using the theory of G-functions. More precisely,

Lemma 3.6. [Gar09, Thm.2] If t is a balanced datum, then the corresponding series G(z) is a G-function.

Using this Lemma we can now easily prove Lemma 3.4.

Proof. (of Lemma 3.4) Using the recoupling formulae from Section 2.1 we can write (I',) as a multi-
dimensional sum of products of 6j-symbols, theta-symbols and unknots (i.e., 1j-symbols) with a denominator
consisting of theta-symbols. It follows from Equations (7) and (10) that the 6j-symbols (resp. theta-symbols)
are balanced 1-dimensional (resp. 0-dimensional) sums, thus the ratio of the product of the theta-symbols
by the product of the theta-symbols is a balanced multi-dimensional sum. The unknots can be written as
(=1)*(k + 1)!/k! and are therefore balanced as well. It is easy to check that admissibility guarantees that
the multi-dimensional sum has finite range. O

Beware that the term t(n, k) constructed in the above proof is neither unique nor canonical in any sense.

3.4. Integral representation of spin network evaluations. In this final subsection we comment on the
connection between Lemma 3.4 and Theorem 1.7 on the rationality of the multivariate generating function.
The idea is that the single variable generating function Fr , is a diagonal of the multivariate generating
function Fr, where the diagonal is defined as follows.
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Definition 3.7. Given a power series f(z1,...,2,) € Q[[z1,...,2,]| and an exponent J = (j1,...,J,) € N,
we define the J-diagonal of f by

oo

(25) (Asf)(z) = [z"](£)2" € Q[[2]]

n=0
where [2"7](f) denotes the coefficient of 7" ... 27" in f.
For every spin network (T, ) we have
(26) FI‘,V = A'yFF

Consequently, the G-function Fr ,(z) is the diagonal of a rational function, and thus it comes from geometry
in the following sense. Fix a power series f(x1,...,2,) € Q[[z1,...,x,]] convergent at the origin and an
exponent J = (ji,...,7,) € N and consider the diagonal (A;f)(z) € Q[[2]] as in Definition 3.7. Let C
denote a small real r-dimensional torus around the origin. Then we have the following.

Lemma 3.8. With the above assumptions,

)

z

1 flz,. . x, A A d
(27) (Asf)(z) = (27ri)r/cx{1...x£r_ dzy A+ Ada,.

Proof. With the notation of Definition 25, an application of Cauchy’s theorem gives for every natural number
n

@)(f) = — /C(fm,...},m oy Ao Ada.

(2mi)" :v{l A an

Multiplying by 2™ and summing up for n and interchanging summation and integration concludes the proof.
O

If in addition f(z1,...,x,) is a rational function, then the singularities of the analytic continuation of the
right hand-side of (27) can be analyzed by deforming the integration cycle C and studying the corresponding
variation of Mixed Hodge Structure as in [BK08]. Such G-functions come from geometry; see [And00, BK08].

4. EXAMPLES AND A CONJECTURE ON GROWTH RATES

In this section we illustrate the result of Theorem 1.9 on the asymptotic expansions in the case of the
6j-symbol. We also review the well known geometric interpretation of the leading asymptotics in this case.
Finally we formulate a conjecture on the geometric meaning of the growth rates in the asymptotic expansion
of more general spin networks. To discuss the geometric aspects of the asymptotics of spin networks it is
convenient to introduce one more normalization of spin network evaluations.

Definition 4.1. We define the unitary normalization (I',)Y of a spin network evaluation (T',7) to be

(L)Y = (T, )

o(7)

where

0 = [ VI(©.a b, c)
veV(T)

and a,, by, ¢, are the colors of the edges at vertex v.

Since the asymptotics of the normalization factor O(y) is of Nilsson type by Stirling’s formula [O1v97],
we see that (I',ny)Y is still of Nilsson type.
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4.1. The 6j-symbol and the tetrahedron. The special case of the tetrahedral spin network or 6;-symbol
motivates much of the questions we asked in the introduction. There is a well known interpretation of the
leading asymptotics in terms of a metric tetrahedron T' dual to T' such that the length of a (dual) edge e
is given by ~(e) [PR68]. Provided the 65 symbol is admissible, such a tetrahedron T' can always be found
uniquely in either R3, R? or Minkowski space R%! [Blu70, Ch.8]. We say the 6j-symbol is Euclidean, Plane
or Minkowskian depending on the type of T'. The type is determined by the sign of the Cayley-Menger
determinant of 7". Let us be more specific in the Euclidean case. Denote by ¢, is the exterior dihedral angle
of T  at edge e.

Theorem 4.2. Let (I',7) be a Euclidean 65 symbol. The sequence (I',ny)V is of Nilsson type where the
growth rates, Stokes constants and powers of n and logn are:

(P in
P AN B
67 Vol(T) 2

These formulae have been proven in [Rob99]. By analytically continuing the Euclidean formula for dihedral
angles in terms of edge lengths, the results can be extended to the Minkowskian case. This will be postponed
to a future publication. The Plane case must be different since the volume vanishes in this case. Also any
interpretation of the terms in the asymptotic expansion of the 6j-symbol beyond the ones just given is very
much an open problem [DL09]. This warrants a detailed and exact investigation of the asymptotics of three
representative 6j-symbols using the Wilf-Zeilberger method. In this method we compute a recursion for the
sequence from which all terms in the asymptotic expansion except for the Stokes constants may be computed.

We have chosen the simplest examples of a Euclidean 6j-symbol, a Plane one and a Minkowskian 6;-
symbol. Their colorings are given by

YEuclidean = (27272727272)7 YPlane = (37474737575)7 YMinkowskian = (47474747676)'

Using the unitary evaluation (Definition 4.1) we thus consider the sequences (ay,), (b,) and (¢y,)

nf N (DR + 1)
Bn+ 1) = (k—3n)!*(4n — k)P

n12(2n)12(3n)12 1)k + 1)
b, = <A,n7Plane>U: ( ) ( ) Z (k—6n)'4(( ) ( i )

ap = <A, n 7Euclidcan>U

(6n +1)!2 = ™ —k)!(8n — k)!(In — k)!
o ' U n!?(3n)! —1)*(k+1)!
Cp = <A; n7M1nkowsk1an> 7TL + 1 |2 k 7TL '4 8n — k)(lOn — k)'2

In what follows we denote by det(C) the Cayley—Menger determinant and by K the field generated by the
coefficients of the power series h) «,3 in the asymptotic expansion. The command

<< zb.m
loads the package of [PR] into Mathematica. The command
teucl [n_, k_]1:=n176/@Bn+1)1"2 (-1)"k (k+1)11/(@4n-k)!*"3 (k-3n)174)
defines the summand of the sequence (a,,), and the command
Zb[teucl [n, k], {k, 3n, 4n}, n, 2]
computes the following second order linear recursion relation for the sequence (ay,)

-9 (1+n) (2+3n)% (4+3n)? (451+460n+115n%) a[n]
(3+2n) (319212 +1427658n + 2578232 n% + 2423109 n® + 1255139 n* + 340515 n° + 37835n°) a[l+n] -
9 (2+n) (5+3m)% (7+3n)% (106 +230n +115n?) a[2 + n] =
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This linear recursion has two formal power series solutions of the form

1., —432 4+ 31iv/2 109847 F 22320iv/2  —18649008 + 4914305iv/2
a:t_’n = —A:t 1 +
n3/2 576n 331776n2 573308928n3

14721750481 + 455783889607 +/2 n —83614134803760 + 7532932167923i1/2
660451885056n* 380420285792256n°

—31784729861796581 T 212040612888146640i+/2 1
+ +0(=

657366253849018368n°

where

_ 329 F 4607’\/5 _ e:Fiﬁ arccos(1/3)

B 729 -

are two complex numbers of absolute value 1. Notice the growth rates indeed match the interpretation in
terms of dihedral angles of the regular tetrahedron predicted in Theorem 4.2. The coeflicients of the formal
power series ay. ,, are in the number field K = Q(v/—2) and the Cayley-Menger determinant is det(C) = 2°.
More is actually true. Namely, the sequence (a,,) generates two new sequences (g4 ) and (pi— ,,) defined by

Ap

(o]

1 Pt 1

- n y

A+n = 372 AL E : ™
1=0

where 1o = 1. Each of the sequences (u4 ) are factorially divergent. However, the generating series
Yoo o 2" it g1 /0! are G-functions (as follows from [And00]), and the sequences (g4 ,41/n!) are of Nilsson
type, with exponential growth rates A+ — A. The asymptotics of each sequence (p4 ,41/n!) gives rise
to finitely many new sequences, and so on. All those sequences span a finite dimensional vector space,
canonically attached to the sequence (a,). This is an instance of resurgence, and is explained in detail
in [GM10, Sec.4]. The second order recursion relation for the Plane and the Minkowskian examples has
lengthy coefficients, and leads to the following sequences (bx ,,) and (¢4 ;)

b, _ LA” (1_i+ 3713 25427 " 9063361 109895165
" nd/3° Tt 3n  46656n%  2239488n3 = 17414258688n*  104485552128n°
1927530983327
2437438960041984n5 T )
b _ RN n<1_£+ 3883 13129 5700973 14855978561
o nd/3° "~ 96n  46656n2  4478976n3  8707129344n*  3343537668096n°
2862335448661
2437438960041984n5 T )

. 1 A (14 336 F 13692 1769489 F 8317922 67925105712 F 66827896993+1/2
tn T E2TE 4032n 180633612 2184944025613

5075437500833257 F 2589265090380768+/2
* 176193886224384n*
100978405759997442992 F 98904713360431641651+/2
* 552544027199668224n5

" 685103512739058526 758457 F 349782631602887151717776+/2 " )

247539724185451364352n6

where in the Plane case we have

Al=Ar=-1, K=0Q, det(C)=0
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and in the Minkowskian case we have
696321931873 — 111529584108+/2

A, = — 0.794127 . ..

+ 678223072849 0-794127

A _ 096321931873+ 111529584108\/521.25924“
678223072849

K = QW2), det(C)=-23"

Again as in the Euclidean case the growth rates may be interpreted in terms of dihedral angles. Finally note
that the growth rates Ay have norm 1 in Q(v/2).

4.2. A conjecture on growth rates. In the special case where (I', ) is an admissible tetrahedron, we have
seen a geometric interpretation for the growth rates of (I',ny)Y. We can reformulate this more concisely
using mean curvature. Recall that for a convex Euclidean polyhedron P in R? the mean curvature is defined
by M(P) = £ >, lege, where ¢, is the exterior dihedral angle at edge e and /. is the length of the edge. So in
the case of the tetrahedron Theorem 4.2 says that if there exists a Euclidean tetrahedron T" whose 1-skeleton
is dual to I' and whose edge lengths are given by ~, then the growth rates are given by: {e* ()} We
would like to conjecture that the growth rates of a spin network always include a growth rate corresponding
to the mean curvature of the dual polyhedron. For simplicity we formulate the conjecture for planar spin
networks only.

Conjecture 4.3. Let (T',7) be a planar spin network with the counterclockwise orientation. Suppose that T
is 3-connected and that its dual can be viewed as the 1-skeleton of a convex Euclidean polyhedron P whose
edge lengths are given by . The set of growth rates of the Nilsson type sequence (I', ny)V contains e**M ),

By Cauchy’s theorem the dual polyhedron P is determined up to isometry by its 1-skeleton and its edge
lengths, i.e. by (T',7). This follows from the fact that P has only triangular faces and is convex.

As a first test of the conjecture we show that it behaves well under the triangle formula on spin networks
defined in Section 2.1. In particular this will verify the conjecture for all triangular networks as defined in
Section 2.1. Let (T',~) and (I”,~’) be two spin networks that both satisfy the hypotheses of Conjecture 4.3
and denote their dual polyhedra by P and P’. Furthermore, suppose that (I',~) is obtained from (T',~)
by replacing a vertex v € I' by a triangle. Dually this implies that P’ can be produced by attaching a
tetrahedron to a (triangular) face of P.

Lemma 4.4. If Conjecture 4.3 is true for (I',7) then it is also true for (I',~").

Proof. Let the labels around the vertex v be a, b, c and call the labels of the edges of new triangle A, B,C
as in Figure 2 (lower right) and denote by ( A\, %) the tetrahedron spin network with labels a,b,c, A, B,C
that shows up in the triangle formula. This formula shows that

(I, ny)V = (-1) (A ) (D, )Y
since the theta only contributes a sign in the unitary evaluation. We already know Conjecture 4.3 holds

for tetrahedra with Euclidean duals, including ( A\,v). Let us call the dual Euclidean tetrahedron T
Multiplying the asymptotic expansions on the right hand side we see that the growth rates will include

n(a+b+c)
2

(_UWeﬂ(M(PHM(T)) — EiM(P")

To see why the equality holds note that we can dissect P’ into P and T along the triangle with labels
a,b, c that is dual to the vertex v. The minus sign coming from the theta accounts for the fact that we are
working with exterior dihedral angles and these add an additional factor of 7 when comparing the angles in
a dissection. U

The Euclidean volume also appears in the asymptotic expansion of the tetrahedral spin network, as part
of the Stokes constants, see Section 4.1. However this does not generalize well to larger networks since the
volumes do not add under the triangle formula. In the appendix we will see a less trivial confirmation of the
above conjecture for the cube spin network.
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5. CHALLENGES AND FUTURE DIRECTIONS

In this section we list some challenges and future directions. Our first problem concerns a bound on the
unitary evaluations.

Problem 5.1. Show that the unitary evaluation of a spin network (I',y) satisfies
(rf <t

This problem may be solved using unitarity and locality in a way similar to the proof that the Reshetikhin-
Turaev invariants of a closed 3-manifold grow at most polynomially with respect to the level; see [Gar98,
Thm.2.2]. Our next problem is a version of the Volume Conjecture for classical spin networks with all edges
colored by 2. Problem 5.1 also suggests that the growth rates must be < 1. In case v = 2n more seems to
be true.

Problem 5.2. The growth rates of the sequence (I',2n)Y are on the unit circle.

A positive solution to this problem is known for the following ribbon graphs: the O, the tetrahedron, the
3-faced prism and more generally for the infinite family of drums; see [Abd10]. More generally one may pose
the following

Problem 5.3. Give a geometric meaning to the set of growth rates of a spin network.

We have formulated Conjecture 4.3 as a partial answer to this question but that concerns only a single
special growth rate among many. Along the same lines one may ask for an interpretation of the rest of the
asymptotic expansion. Looking at the case of the 6j-symbol it seems reasonable to consider the number
field Kt generated by the coefficients of the power series hy o3 in the Nilsson type asymptotic expansion
of (T',ny)Y.

Problem 5.4. Give a geometric interpretation of the number field Kr , of a spin network (I", ).
Also the Stokes constant might have a geometric meaning as it does in the case of the tetrahedron.
Problem 5.5. Give a geometric meaning to the Stokes constants of the sequence (I',ny)Y.

The next problem is a computational challenge to all the known asymptotic methods, and shows their
practical limitations.

Problem 5.6. Compute the asymptotics of the evaluation (K3 3,2n) (given explicitly in Proposition 2.5)
and (Cube, 2n).

The next problem is formulated by looking at the examples from Section 4.1.

Problem 5.7. Prove that for every coloring y of the tetrahedron spin network ( A\, ), the sequence { A\, n)
satisfies a second order recursion relation with coefficients polynomials in n. Can you compute the coefficients
of this recursion from v alone?

Let us end this section with a remark. The main results of our paper can be extended to evaluations of
spin networks corresponding to higher rank Lie groups. This will be discussed in a later publication.

APPENDIX A. ASYMPTOTICS OF THE REGULAR CUBE

by Don Zagier

We give the asymptotic expansion of the standard evaluation a,, of the 1-skeleton of the 3-dimensional
cube, with all edges colored by 2n. Proposition 2.4 implies that (a,) is given by

2n

(28) an =Y (2k+1)aj},
k=0
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ok N\ [(2n—k j+1
_ _1)i
k= _(~1) (j—3n) (4n—j) (2n+k+1)’

J

with

making it clear that the numbers (a,,) are integral and positive. The first few values of a,, are given by

apgp = 1,

a; = 6144,

az = 505197000,

az = 77414400000000),

as = 13937620296600000000 ,

as 3685480142898164744060928 ,

ae 1038107879077276408534853271552 ,

a7 = 297223547548257752224492840550400000 ,

ag 10419329793415942148514983084 7575156250000 ,

ag = 35577316035253000096415678610598379040000000000 ,

a0 = 12357485751601160513255660198337121351402277161410240 .

We first look for a recursion of the form

(20) ¢j(n) sy = 0

J
§=0
with J not too large and ¢;(n) polynomials of n of some not too large degree d. Using the first few hundred

values of (a,), we find experimentally a recursion of this form with J =4, d = 61 and with ¢;(n) given by

co(n) = 3% 2n+7)Bn+2)8Bn+4)8Bn+5)" (3n+7)7 (3n +8) (3n + 10) (4n + 3) (4n + 5) Po(n + 3),

ci(n) = —=2-3%(n+1°2n+3)2n+7)Bn+5)"Bn+17)" (3n+8) (3n + 10) Pi(n),
ca(n) = —2-3*(n+1)°(n+2)" (2n+5) (3n + 8) (3n + 10) Pa(n),

cs(n) = =2-(n+1)°n+2)"(n+3)°2n+3)(2n+7) Pi(—n —5),

can) = (n+1)(n+2)"(n+3)° (n+4)" (2n+3) (4n + 15) (4n + 17) Py(n + 2),

where Py, P; and P; are irreducible polynomials (normalized to have integral coefficients with no common
factor) with leading terms

Py(n) = 2'137597.23°47 (n*® + O(n?)),
Pi(n) = 2'237557%23°47% (n®® + 940" + O(n%)),
Py(n) = 2'°3¥5°7.19.23°47-71-73 (n'® + 1150"° + O(n*))

as n — 00, and with the polynomial Py being even. The full values are given at the end of the appendix. To

analyze the asymptotics of the solutions of the above recursion, we will use the standard Frobenius theory
(see e.g. [Mil06,01lv97, Was87, WZ85]). If C; denotes the top coefficient of the polynomial ¢;(n), then we find
that Z?:O C;N factors as (A — 312)2 (X — (1++v/=2)*") (A — (1 — v/=2)%) and that the indicial equation
of the root 3'2 has a double root at —9/2, while the indicial equations of the roots (1 4= v/—2)?* both have
root —4. This implies that (a,) has an asymptotic expansion

((logn+c) Ml(%) + M2(%)) + g%(Sl (14—7\/__2)24”]\43(%))

n9/2

312n
(30) Ap ~~ SQ

nt

for some constants Sy, ¢ € R, S; € C and power series Mi(z), Ms(z) € Q[[z]], Ms(z) € Q[v/-2][[z]],
normalized by requiring that M; and M3 have constant term 1. Notice that the three roots 3'2, (1++/—2)%4
have the same absolute value, so that the different terms of this expansion all have the same order of
magnitude up to powers of n. Using the acceleration method! described at [Zag01, p.954] and in Section 4

LThis method is equivalent to the Richardson transform, explained in detail in [GIKM, Sec.5.2], and also in [BO99].
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of [GMO8], applied to the values of a,, for n = 1000, ...,1050, we find the numerical values of the constants
S; and c and the first few coefficients of the power series M;. The former are then recognized as

35 7 (1414)(1+v=2)"?

(31) So 216 ¢=17 log2 + log3 + 7, S1 = 931/4 ;11/2 ’
and the latter as
14 419 5659 84769
M S 2 - 3 4.
(@) 0" T 30" T gas” TG0zt

1 689 4771 3799441

M — —_ R — 2 3 — 4 o e
2(2) 27 T Rea” T 76" T 22394880 1 :

| 2080 — 43V=2 1985023 — 114208y/-2

1152 1327104

M3(!E) =

The acceleration method can give many more terms, but it is easier to simply substitute the Ansatz (30)
into the recursion for the a,,, thus obtaining as many terms as desired. The approximation works very well
in practice, e.g., the maximal relative error between a,, and the right-hand side of (30) with 50 terms of
the power series M;(1/n) is about one part in 10'%° for n between 900 and 1000. To first order, the above
formulas say that the asymptotics of a,, are given by

~ 312045 log(27/43n) + v + O(1//n)
w6 (2n)4 '

an

We end by giving the complete values of the polynomials P;(n) that appear in the recursion relation:

Po(n) = 29639019676089600000 n5 — 150687090646682256000 n>* + 306650022810104871540 n2?
— 331831776907297971277 n20 + 219414205267920364521 n'® — 96826696589802950226 n'¢
+ 20683042452642732342 n'? — 6233837158945489065 n'? + 868763697226715493 n'0 — 77173811768742984 n®

+ 4094153904684504 n® — 111886799053248 n? + 797085625600 n? + 17508556800 s

P;(n) = 51330514060153830297600000 n38 + 4825068321654460047974400000 n37
+ 219957552931873414824036864000 n36 + 6478694077195677171946040064000 n3°
+ 138596018058877517667573746466240 n34 + 2295022658488679405177615124025920 n>>
+ 30614929984046498162519595722728508 n 2 4 338072087836667419737764233439922530 n°
+ 3151590998989517431768295237323718623 n30 + 25169023605885819585932158912744414906 n29
+ 174146716308878486922546565722791225448 n?® 4 1053195250756920493731804102357697945572 n2"
+ 5606361750518381240594997946959656401095 n2® + 26414736794861925209673962053754850002124 n 2>
+ 110642699366898526542975775645886257667832 n2t + 413447345600050228521136991970449404260966 n?3
+ 1381980145537336658418260176761712507602933 n?? + 4140268295003002172648827386155584658850114 n2t
+ 11132423733718852590472537735822272877436592 120 + 26885849594024541421613060268809580068669016 n'°
+ 58334970199614352499186715966601305101299773 nt® + 113675657006866049496120543251199160823538984 nt?
+ 198774677991170902825182509342222362759066932 nto + 311443610656870193242629490576780944439111836 nt®
+ 436334419544283264503767964716530868856380648 nl4 + 545097336381579864877890591441121830311242864 n '3
+ 605044458481431111735014250352650750979996544 n'? + 594007313574579683774145689072368182659197376 n'!
+ 512886129222805060276163096656047277821413760 nto + 386709368743514690018446501443764021880730368 n®
+ 252342374226937131766477472379392715246649344 n® + 140888462647571785365811030970706748098760704 n’
+ 66312852042204808325857346405562441033596928 n° + 25796733254687036537088890539848097231134720 n”
+ 8069974595385074631605661061376909102284800 nt + 1950251347843211319569463651786279088128000 n?
+ 341555150844826683309630400427989401600000 n? + 38554163497112285346472887524366745600000 n

+ 2104728968892765569954334578933760000000 ,
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Py(n) = 34044436942851501889228800000 n4¢ + 3915110248427922717261312000000 n4®
+ 219662706791565782848926392832000 ' + 8013067972307054904678991211520000 n3
+ 213693214418431619419298087215485120 nt? + 4441366173640824819720536004281937600 ntt
+ 74894384718928871397218606262165524844 n*0 4+ 1053306557874097263334396534371665684400 n>°
+ 12603933341218324699775023159567066766967 n>S + 130270526199929371052793324163523141276865 n°"
+ 1176678761157600477488177183321806479261195 n36 + 9375125430920826953262133708501549064882175 n3®
+ 66383537873561799570407105177080643368970738 n34 + 420307309950545627790271278025374052312931480 n33
+ 2391581100396727961084015883784259869439400176 n>? + 12280714697778331715472758947513061657620945580 n>!
+ 57105561410677181109714147899130291409292461050 n30 + 241147151880727945569092590718565623964677498750 n29
+ 926919151084739302148924528551196602048329414090 n28 + 3249130587428846232389342739110375794038903230050 n27
+ 10401395584522433137223729045847274251204938831280 n>% + 30443078183785042173235936392545801110737278600700 n>®
+ 81523471295041101121702148739822166982527381249680 n24 + 199828567976168135158731196334605133971159536918300 n2>
+ 448394647578816808473555576099796146381767002557015 n?? + 920880328621349858197546061838422939683875830250825 n2t
+ 1730060383317082970163176773077295571528776228823811 n20 + 2970768265449411986606322605605748766920711781281175 n'?
+ 4657049644272293081174713334539070013552116895070038 n'® + 6654448413726919814684796853369712557012807014275460 n'”
+ 8650083204510826813891208265741376798744454496660220 nt6 + 10204350936081623227151423121609083529329974289414800 nt®
+ 10892578929911563608834673775127900025242488747892352 ntt + 10483723584809889429623667272318319527058201296732320 ntd
+ 9059104715506400545606048153659029802430897952414784 n'? + 6992047378850409545281115023066707881078577900939520 n 't
+ 4790327226399433431900479655636468590589446522365440 nto + 2891085435841974142824330005531725765542027596096000 n®
+ 1522663617068026467557018527073299284644425562419200 n® + 691604038146644417153727841870625107738881053184000 n’
+ 266822516520374901619621632554668192771563340800000 n® + 85697330246713152918864338753344668302045030400000 n°
+ 22287663074878779648397028175676823501117952000000 n* + 4507926265942350227509023190826979902899200000000 n>
+ 665045895624929293830598512362684841984000000000 n? + 63635282511747835599280673505876676608000000000 n

+ 2962949736504660768760707593463767040000000000

APPENDIX B. FURTHER COMMENTS ON THE ASYMPTOTICS OF THE REGULAR CUBE

The guessed recursion relation of the sequence (a,) from the previous section agrees with the result of
the independent guessing program Guess of Kauers; [Kau09a, Kau09b]. The recursion for (a,) was verified
for n = 0,...,2996, where the height (i.e., the number of digits) of azpgo is 17162. On the other hand, the
coefficients of the polynomials ¢ (n) are integers with a much smaller height 73. In addition, the root Ay of
the characteristic polynomial can be written in the form:

/\1 _ (1 + 7;\/5)24 _ 312612iarccos(71/3)

where e!27arccos(—=1/3) ig the exponentiated total mean curvature of the regular Euclidean octahedron (dual to
the regular Euclidean cube) with unit sides. This confirms Conjecture 4.3 on the asymptotics of evaluations of
classical spin networks. The factor 32 comes from the fact that we are considering the standard normalization
and not the unitary one as is done in the Conjecture.

The asymptotic expansion (30) is clearly of Nilsson type, with the presence of logarithms, and Stokes
constants which are no longer algebraic, up to rational powers of 7. This makes it unlikely that stationary
phase type methods will be able to obtain the asymptotic expansion for the regular cube.

REFERENCES

[Abd10] Abdelmalek Abdesselam, On the volume conjecture for classical spin networks, arXiv/1009.2811, 2010.

[Ada94] Colin C. Adams, The knot book, W. H. Freeman and Company, New York, 1994, An elementary introduction to the
mathematical theory of knots.

[AHHT09] Vincenzo Aquilanti, Hal M. Haggard, Austin Hedeman, Nadir Jeevanjee, Robert G. Littlejohn, and Liang Yu,
Semiclassical mechanics of the Wigner 65-symbol, arXiv/0904.1734, 2009.

[And00]  Yves André, Séries Gevrey de type arithmétique. I. Théorémes de pureté et de dualité, Ann. of Math. (2) 151
(2000), no. 2, 705-740.



22

[BKOS]

[BL81a]

[BL81b]

[Blu70]
[BO9Y]
[CFS95]
[CM11]

[Cos09]
[DLOY]

[EPROS]
[Gar9g]

[Gar09]
[Garll]

[GIKM]
[GMOS]
[GM10]
[GvdV11]
[HL10]
[Jon87]

[Kas97]
[Kau09a]

[Kau09b]
[KL94]

[KR89]

[LY11]
[Mil06]
[MMO1]
[Mou79]
[01v97]
[PenTl1a]

[PenT1b]

STAVROS GAROUFALIDIS AND ROLAND VAN DER VEEN

Spencer Bloch and Dirk Kreimer, Mized Hodge structures and renormalization in physics, Commun. Number Theory
Phys. 2 (2008), no. 4, 637-718.

L. C. Biedenharn and J. D. Louck, Angular momentum in quantum physics, Encyclopedia of Mathematics and
its Applications, vol. 8, Addison-Wesley Publishing Co., Reading, Mass., 1981, Theory and application, With a
foreword by Peter A. Carruthers.

Lawrence C. Biedenharn and James D. Louck, The Racah-Wigner algebra in quantum theory, Encyclopedia of
Mathematics and its Applications, vol. 9, Addison-Wesley Publishing Co., Reading, Mass., 1981, With a foreword
by Peter A. Carruthers, With an introduction by George W. Mackey.

Leonard M. Blumenthal, Theory and applications of distance geometry, Second edition, Chelsea Publishing Co.,
New York, 1970.

Carl M. Bender and Steven A. Orszag, Advanced mathematical methods for scientists and engineers. I, Springer-
Verlag, New York, 1999, Asymptotic methods and perturbation theory, Reprint of the 1978 original.

J. Scott Carter, Daniel E. Flath, and Masahico Saito, The classical and quantum 6j-symbols, Mathematical Notes,
vol. 43, Princeton University Press, Princeton, NJ, 1995.

Francesco Costantino and Julien Marché, Generating series and asymptotics of classical spin mnetworks,
arXiv:1103.5644, 2011.

Francesco Costantino, Integrality of kauffman brackets of trivalent graphs, arXiv:0908.0542, 2009.

Ma"é Dupuis and Etera R. Livine, Pushing the asymptotics of the 6j-symbol further, Phys. Rev. D 80 (2009), no. 2,
024035.

Jonathan Engle, Roberto Pereira, and Carlo Rovelli, Flipped spinfoam vertex and loop gravity, Nuclear Phys. B 798
(2008), no. 1-2, 251-290.

Stavros Garoufalidis, Applications of quantum invariants in low-dimensional topology, Topology 37 (1998), no. 1,
219-224.

, G-functions and multisum versus holonomic sequences, Adv. Math. 220 (2009), no. 6, 1945-1955.

, What is a sequence of Nilsson type?, Interactions between hyperbolic geometry, quantum topology and
number theory, Contemp. Math., vol. 541, Amer. Math. Soc., Providence, RI, 2011, pp. 145-157.

Stavros Garoufalidis, A. Its, Andrei Kapaev, and Marcos Marino, Asymptotics of the instantons of painlevé i,
arXiv:1002.3634, Preprint 2010.

Daniel B. Griinberg and Pieter Moree, Sequences of enumerative geometry: congruences and asymptotics, Experi-
ment. Math. 17 (2008), no. 4, 409-426, With an appendix by Don Zagier.

Stavros Garoufalidis and Marcos Marino, Universality and asymptotics of graph counting problems in non-orientable
surfaces, J. Combin. Theory Ser. A 117 (2010), no. 6, 715-740.

Stavros Garoufalidis and Roland van der Veen, Asymptotics of quantum spin networks at a fived root of unity,
Mathematische Annalen (2011), 1-26, 10.1007/s00208-011-0662-3.

H. M. Haggard and R. G. Littlejohn, Asymptotics of the wigner 9j-symbol, Classical and Quantum Gravity 27
(2010), 135010.

V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987),
no. 2, 335-388.

Rinat Kashaev, The hyperbolic volume of knots from the quantum dilogarithm, Lett. Math. Phys 39 (1997), 296-275.
Manuel Kauers, Guessing handbook, Tech. Report 09-07, RISC Report Series, Johannes Kepler University Linz,
Austria, 2009.

, Mathematica software, 2009, http://www.risc.uni-1linz.ac.at/research/combinat/software/Guess/.
Louis H. Kauffman and Séstenes L. Lins, Temperley-Lieb recoupling theory and invariants of 3-manifolds, Annals
of Mathematics Studies, vol. 134, Princeton University Press, Princeton, NJ, 1994.

A. N. Kirillov and N. Yu. Reshetikhin, Representations of the algebra Uq4(sl(2)), q-orthogonal polynomials and
invariants of links, Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988), Adv. Ser. Math. Phys.,
vol. 7, World Sci. Publ., Teaneck, NJ, 1989, pp. 285-339.

Robert G. Littlejohn and Liang Yu, Semiclassical analysis of the wigner 9j-symbol with small and large angular
momenta, arXiv/1104.1499, To appear in Phys. Rev. A, 2011.

Peter D. Miller, Applied asymptotic analysis, Graduate Studies in Mathematics, vol. 75, American Mathematical
Society, Providence, RI, 2006.

Jun Murakami and Hitoshi Murakami, The colored jones polynomials and the simplicial volume of a knot, Acta
Math. 186 (2001), 85-104.

John P. Moussouris, The chromatic evaluation of strand networks, Advances in Twistor Theory (Ward Huston, ed.),
Research Notes in Mathematics, Pitman, 1979, pp. 308-312.

Frank W. J. Olver, Asymptotics and special functions, AKP Classics, A K Peters Ltd., Wellesley, MA, 1997, Reprint
of the 1974 original [Academic Press, New York; MR0435697 (55 #8655)].

Roger Penrose, Angular momentum: An approach to combinatorial space time, Quantum Theory and Beyond (Ted
Bastin, ed.), Research Notes in Mathematics, Cambridge University Press, 1971, pp. 151-180.

, Applications of negative dimensional tensors, Combinatorial Mathematics and its Applications (Proc. Conf.,
Oxford, 1969), Academic Press, London, 1971, pp. 221-244.



http://www.risc.uni-linz.ac.at/research/combinat/software/Guess/

[PR]
[PR68)

[Rac42a]
[Rac42b]
[Rac46]
[Rac49]
[Rob99)]
[Rob02]
[RS95]
[Sie29]
[Tur94]
[TV92]

[VMKSS]

[Was87]
[Wes98]
[Whi33]
[Wigd1]
[WZ85]

[ZagO1]

ASYMPTOTICS OF CLASSICAL SPIN NETWORKS 23

Peter Paule and Axel Riese, qZeil Mathematica software, http://wuw.risc.uni-1linz.ac.at.

G. Ponzano and T. Regge, Semiclassical limit of racah coefficients, Spectroscopic and group theoretical methods in
physics, Research Notes in Mathematics, North Holland, 1968, pp. 1-58.

Giulio Racah, Theory of complex spectra II, Physical Rev. (2) 61 (1942), 186-197.

, Theory of complex spectra III, Physical Rev. (2) 62 (1942), 438-462.

, Theory of complex spectra I, Physical Rev. (2) 61 (1946), 186-197.

, Theory of complex spectra IV, Physical Rev. (2) 76 (1949), 1352-1365.

Justin Roberts, Classical 6j-symbols and the tetrahedron, Geom. Topol. 3 (1999), 21-66 (electronic).

, Asymptotics and 6j-symbols, Invariants of knots and 3-manifolds (Kyoto, 2001), Geom. Topol. Monogr.,
vol. 4, Geom. Topol. Publ., Coventry, 2002, pp. 245-261 (electronic).

Carlo Rovelli and Lee Smolin, Discreteness of area and volume in quantum gravity, Nuclear Phys. B 442 (1995),
no. 3, 593-619.

C.L. Siegel, Uber einige anwendungen diophantischer approximationen, Tech. Report 1, Abh. Preuss. Akad. Wiss.,
1929, 1-70. Reprinted in Gesammelte Abhandlungen, vol. 1, no 16 (1966) 209-266.

V. G. Turaev, Quantum invariants of knots and 3-manifolds, de Gruyter Studies in Mathematics, vol. 18, Walter
de Gruyter & Co., Berlin, 1994.

V. G. Turaev and O. Ya. Viro, State sum invariants of 3-manifolds and quantum 6j-symbols, Topology 31 (1992),
no. 4, 865-902.

D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum theory of angular momentum, World Scientific
Publishing Co. Inc., Teaneck, NJ, 1988, Irreducible tensors, spherical harmonics, vector coupling coefficients, 3nj
symbols, Translated from the Russian.

Wolfgang Wasow, Asymptotic expansions for ordinary differential equations, Dover Publications Inc., New York,
1987, Reprint of the 1976 edition.

Bruce W. Westbury, A generating function for spin network evaluations, Knot theory (Warsaw, 1995), Banach
Center Publ., vol. 42, Polish Acad. Sci., Warsaw, 1998, pp. 447-456.

Hassler Whitney, 2-Isomorphic Graphs, Amer. J. Math. 55 (1933), no. 1-4, 245-254.

Eugene P. Wigner, On representations of certain finite groups, Amer. J. Math. 63 (1941), 57-63.

Jet Wimp and Doron Zeilberger, Resurrecting the asymptotics of linear recurrences, J. Math. Anal. Appl. 111
(1985), no. 1, 162-176.

Don Zagier, Vassiliev invariants and a strange identity related to the Dedekind eta-function, Topology 40 (2001),
no. 5, 945-960.

SCHOOL OF MATHEMATICS, GEORGIA INSTITUTE OF TECHNOLOGY, ATLANTA, GA 30332-0160, USA
http://www.math.gatech.edu/ stavros
E-mail address: stavros@math.gatech.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, BERKELEY, CA 94720-3840, USA
http://www.math.berkeley.edu/ roland
E-mail address: roland@math.berkeley.edu


http://www.risc.uni-linz.ac.at
http://www.math.gatech.edu/~stavros
http://www.math.berkeley.edu/~roland

	1. Introduction
	1.1. Spin networks in mathematics, physics and chemistry
	1.2. The evaluation of a spin network
	1.3. Three fundamental problems
	1.4. A solution to Problem 1.2
	1.5. A partial solution to Problem 1.3
	1.6. A conjecture regarding Problem 1.4
	1.7. Acknowledgement

	2. Evaluation of spin networks
	2.1. Evaluation of spin networks by recoupling
	2.2. Generating series and chromatic evaluation
	2.3. Chromatic evaluation
	2.4. Proof of Theorem 2.9

	3. Asymptotic expansions
	3.1. Sequences of Nilsson type
	3.2. G-functions
	3.3. Hypergeometric terms
	3.4. Integral representation of spin network evaluations

	4. Examples and a conjecture on growth rates
	4.1. The 6j-symbol and the tetrahedron
	4.2. A conjecture on growth rates

	5. Challenges and future directions
	Appendix A. Asymptotics of the regular cube
	Appendix B. Further comments on the asymptotics of the regular cube
	References

