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Abstract. Building further on work of Marin and Wagner, we give a braid-type skein
theory of the Links–Gould polynomial invariant of oriented links, prove that it can be
used to evaluate any oriented link and prove that it is also shared by the V1-polynomial
defined by two of the authors, deducing the equality of the two link polynomials. This
implies specialization properties of the V1-polynomial to the Alexander polynomial and to
the ADO3-invariant, the fact that it is a Vassiliev power series invariant, as well as a Seifert
genus bound for knots.
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1. Introduction

1.1. Multivariable knot polynomials. Recently, a systematic way to define and effec-
tively compute multivariable knot polynomials was introduced in [GK], using as input a
finite dimensional Nichols algebra (or a finite-dimensional Drienfeld–Yetter module of it)
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with an automorphism. From such an algebra, one can define a rigid R-matrix and con-
struct a state-sum invariant of long knots by applying the well-known Reshetikhin–Turaev
functor.

Nichols algebras are easy to describe, and in the simplest case of rank 1, such an algebra
is uniquely determined by the data

basispV q “ txu, ∆pxq “ x b 1 ` 1 b x, τpx b xq “ qx b x, ϕpxq “ tx . (1)

In [GK], it was shown that the corresponding invariants are the ADO invariants of a
knot [ADO92], and the colored Jones polynomials of a knot [RT90, Tur88].

The next case of a Nichols algebra of rank 2 leads to a family of 2-variable polynomials
Λωpt0, t1q at each root of unity ω and a sequence Vnpt, qq of 2-variable polynomials, where
n ě 1 is an integer.
The above polynomials are defined for oriented long knots, but the construction can often

be extended to polynomial invariants of framed, oriented links in 3-space. Whereas a general
theorem is not known for all finite dimensional Nichols algebras with automorphisms, it was
shown in [GHK`] that the long knot V1, Λ1, and Λ´1 polynomials do extend to framed,
oriented links (and that they are independent of the framing), and two of them were identified
with the Alexander polynomial and the sl3-link polynomial of [Har]

Λ1,Lpt0, t1q “ ∆Lpt0q∆Lpt1q, Λ´1,Lpt´2, s´2
q “ ∆sl3,Lpt, sq (2)

as was conjectured in [GK]. Our goal is to identify the V1 polynomial of [GK] with the
Links–Gould polynomial [LG92], as was conjectured in [GK].

1.2. V1 “ LG via skein theory. Throughout the paper, all links will be oriented and
considered up to ambient isotopy in 3-space.

Theorem 1.1. For all links L we have:

V1,Lpt0, t1q “ LGLpt0, t1q P Zrt˘1
0 , t˘1

1 s . (3)

Whereas both polynomial invariants V1 and LG are defined by 4-dimensional R-matrices,
we were unable to show that these are conjugate or braid-conjugate (borrowing terminology
from [GHK`]), and hence we could not use the methods of [GHK`] to deduce the above
theorem.

Instead, we prove the above theorem by showing that both invariants satisfy a common
skein theory that uniquely determines them, hence equality follows. This common skein
theory that we shortly discuss does not describe a presentation of the braided monoidal
category of representations of Uqpslp2|1qq, but instead is tailored to relations on the braid-
group representations of these invariants, and ultimately to polynomial equations satisfied
by the R-matrices of both the V1 and the the LG invariants.

To describe these rather complicated skein relations, we choose to present braids alge-
braically rather than pictorially, as words in the standard generators si and their inverses si
for i “ 1, . . . , n ´ 1 of the Artin braid group Bn [Art47] shown in Figure 1.

There is a natural inclusion of Bn Ñ Bn`1 obtained by adding a vertical strand on the
right, and as is customary in the literature (see e.g., [FM12] and references therein), we
denote by si the corresponding elements in Bn and in Bn`1.
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si “

1 n

¨ ¨ ¨ ¨ ¨ ¨

i i ` 1

si “

1 n

¨ ¨ ¨ ¨ ¨ ¨

i i ` 1

Figure 1. The standard generators si of the braid group Bn and their inverses
si for i “ 1, . . . , n ´ 1.

Lemma 1.2. Both V1 and LG satisfy the skein relations in Bn and i, j, k “ 1, . . . , n ´ 1:

s2i ` p1 ´ t0 ´ t1q si ` pt0t1 ´ t0 ´ t1q 1 ` pt0t1q si “ 0 , (R1)

sisjsi ´ sisjsi ´ sisjsi ` sisjsi “ sisj ´ sisj ´ sisj ` sisj ´ sjsi ` sjsi ` sjsi ´ sjsi (R2)

for |i ´ j| “ 1,

sisksjsk ´ sksjsksi “

78
ÿ

ℓ“1

aℓwℓ (R3)

for k ´ 2 “ j ´ 1 “ i, where w is

w “psisj , sisj , sjsi, sjsi, sksj , sksj , sksj , sksj , sjsk, sjsk, sjsk, sjsk, sisksj , sisksj , sisksj ,

sisksj , sisksj , sisksj , sisksj , sisksj , sisjsk, sisjsk, sisjsk, sisjsk, sisjsk, sisjsk, sisjsk,

sisjsk, sjsisk, sjsisk, sjsisk, sjsisk, sjsisk, sjsisk, sjsisk, sjsisk, sksjsi, sksjsi, sksjsi,

sksjsi, sksjsi, sksjsi, sksjsi, sksjsi, sksisjsi, sksisjsi, sksisjsi, sksisjsi, sksisjsi, sksisjsi,

sksisjsi, sksisjsi, sksisjsi, sksisjsi, sksisjsi, sksisjsi, sisjsisk, sisjsisk, sisjsisk, sisjsisk,

sisjsisk, sisjsisk, sisjsisk, sisjsisk, sisjsisk, sisjsisk, sisjsisk, sisjsisk, sisjsksj , sisjsksj ,

sisjsksj , sisjsksj , sisjsksj , sjsksjsi, sjsksjsi, sjsksjsi, sjsksjsi, sjsksjsiq

(4)

and the coefficients al P Qpt0, t1q for l “ 1, . . . , 78 are given explicitly in Appendix B.

The relation (R1) is derived from the R-matrix RLG given in Appendix A whose minimal
polynomial is cubic with roots 1, t0, t1. The relation (R2) was discovered by Ishii [Ish04b].
The existence of a relation (R3) was proven by Marin–Wagner [MW13, Sec.6.2, Sec.6.3] with
no explicit description. Since the support of (R3) is important in the reduction algorithm
of Theorem 1.3 below, we give its coefficients explicitly, and explain in Section (2.4) how it
was found.

Note that (R1), (R2) and (R3) come from relations in the braid groups B2, B3, and B4

involving 2, 3, and 4 braid strands respectively.
The proof of the above lemma follows from the fact that the R-matrices for V1 and LG

given in the appendix satisfy the polynomial identities (R1), (R2) and (R3), a fact certified
by a computer calculation.

An important complement of the above skein relations is their completeness, that is they
allow the computation of the invariant for every link. This is achieved by an effective
reduction algorithm given in Theorem 1.3 below. To phrase it, consider the quotient

Cn “ Qpt0, t1qrBns{pR1, R2, R3q (5)

of the group-algebra Qpt0, t1qrBns of the braid group Bn by the 2-sided ideal pR1, R2, R3q.
Cn is an associative, non-commutative unital algebra over the field Qpt0, t1q.
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Note that if c P Cm for m ă n and and β P Bn, then βc, cβ P Cn. In particular, there is a
natural map Cm Ñ Cn obtained from the braid group inclusion Bm Ñ Bn.

Theorem 1.3. For every n ě 3, there is a reduction algorithm that implies an equality

Cn “ Cn´1 ` Cn´1sn´1Cn´1 ` Cn´1sn´1Cn´1 ` Cn´2sn´1sn´2sn´1 (6)

of Qpt0, t1q-vector spaces.

In other words, the theorem above asserts that for n ě 3, every braid β P Bn can be
reduced to an element of the right hand side of Equation (6).

Theorem 1.3 is an effective version of Theorem 5.4 (ii) and Theorem 6.1 (after fixing a
typo) of Marin–Wagner [MW13].

The next remark is important for specialization of this skein theory, e.g., to the case of
ADOω.

Remark 1.4. Although Cn is a Qpt0, t1q-algebra and the relations (R1), (R2) and (R3) as
well as the proof of Theorem 1.3 involve denominators, the statement and the proof are valid
if we replace the field Qpt0, t1q with the ring

Zrt0, t1, δpt0, t1q
´1

s (7)

where

δpt0, t1q “ t0t1pt0 ` t1qpt0t1 `1qpt0t1 ´1qp1` t0qp1` t1qpt0 ` t1 ´1qp1` t0t1 ` t20t1 ` t0t
2
1q . (8)

The next remark concerns the dimension of Cn.

Remark 1.5. A corollary of Theorem 1.3 is that Cn is a finite-dimensional Qpt0, t1q-vector
space. In fact, it is conjectured in [MW13] and in analogous algebras studied in [Ang21],
that

dimpCnq “
p2n ´ 2q!p2n ´ 1q!

ppn ´ 1q!n!q2
(9)

with the first few values for n “ 3, . . . , 10 given by

3, 20, 175, 1764, 19404, 226512, 2760615, 34763300 . (10)

Unfortunately, Equation (6) for n “ 3 gives only the bound dimpC3q ď 22, and in this case
it can be improved to an explicit spanning set of 20 elements which is linearly independent,
hence deducing dimpC3q “ 20; see Corollary 2.5 below. But beyond that, although Theo-
rem 1.3 constructs explicit spanning sets for Cn, it does not give sharp bounds for dimpCnq

for n ą 3.

A straightforward consequence of Theorem 1.3 is the following.

Corollary 1.6. A link invariant that satisfies the skein relations (R1), (R2) and (R3) and
vanishes on split links is uniquely determined by its value on the unknot.

This corollary combined with Lemma 1.2 and Lemma 3.2 below implies Theorem 1.1.
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Corollary 1.6 has an alternative formulation that swaps the global condition of vanishing
on diagrams of split links for an extra local skein relation that involves tangles (as opposed
to braids). Consider the relation (S2) introduced by Ishii [Ish04a]:

´ pt0t1 ` 1q ` t0t1 ` 2pt0 ´ 1qpt1 ´ 1q “ 0 . (S2)

In [Ish04a, Prop.3.3], Ishii shows that a link invariant that satisfies (R1) and (S2) vanishes
on split links. Therefore Corollary 1.6 implies the following result.

Corollary 1.7. A link invariant that satisfies the skein relations (R1), (R2), (S2) and (R3)
is uniquely determined by its value on the unknot.

Another consequence of Corollary 1.6 is that a rank 1 Nichols algebra invariant, namely
ADOω, is equal to a specialization of a rank 2 Nichols algebra invariant, namely the LG
invariant, as conjectured by Geer and Patureau-Mirand [GPM08, Conj.4.7] and by [GK].

Theorem 1.8. For every link L we have

ADOω,Lptq “ LGLpt2, ω2t´2
q, (11)

where ω “ e2πi{6.

This follows from the fact that the R-matrix for ADOω satisfies the pt0, t1q “ pt2, ω2t´2q

specialization of (R1), (R2) and (R3) and Remark 1.4.
A partial case of the above theorem for links that come from closures of 5-strand braids

was given by Takenov [Tak].
Note that the multi-color version of the Geer–Patureau-Mirand conjecture remains open.
Interestingly, Theorem 1.8 gives an example of two R matrices on a 3 and a 4-dimensional

vector space with the same knot polynomial invariant. Any connection between these two
R-matrices remains to be investigated.

Remark 1.9. The effective proof of Theorem 1.3, which leads to an effective computation of
the V1 “ LG-polynomials, is by no means comparable in speed to the tangle computation of
these invariants given in [GL]. Indeed, skein theory computations have apparent exponential
complexity whereas tangle computations tend to have polynomial complexity.

1.3. Specialization, Vassiliev invariants and genus bounds for V1. We now discuss
some applications of our main Theorem 1.1.

Using the variables pt0, t1q, the equality of LG and V1 and previously known results for
LG [DWIL05, Ish06, Koh16, KPM17] imply the following corollaries conjectured in [GK].

Corollary 1.10. The V1 polynomial of a link L satisfies the specializations

V1,Lpt0, t
´1
0 q “ ∆Lpt0q

2, V1,Lpt0,´t´1
0 q “ ∆Lpt20q, V1,Lpt0, 1q “ V1,Lp1, t1q “ 1 (12)

The genus bounds for LG from [KT] imply the following.

Corollary 1.11. For a knot K, we have the bound

degtV1,Kpt, qq ď 4 genuspKq , (13)
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where degt of a Laurent polynomial in t is the difference between the highest and the lowest
power of t and genuspKq is the minimal genus of an embedded oriented surface spanning K.

Vassiliev power series invariants were introduced in [BNG96]. Geer [Gee05] showed that
the Links–Gould polynomial is obtained from the evaluation of the Kontsevich integral under
the slp2|1q weight-system.

Corollary 1.12. The oriented link polynomial V1 is a Vassiliev power series invariant.

Remark 1.13. Note that there are three sets of variables used in the literature, namely
pt0, t1q introduced by Ishii [Ish06], pqα, qq used in the context of representation theory e.g. to
study LG [LG92, KT] and pt, q̃q used in [GK]. This is a point that leads to much confusion.
The relations between these different sets of variables are

pt0, t1q “ ptq̃´n{2, t´1q̃´n{2
q, pqα, qq “ pt´1{2q̃1{4, q̃´1{2

q . (14)

In this work we mostly use the known properties of LG to deduce similar results for the
V1-polynomial, but we can also do the converse. A corollary of Theorem 1.1 is the following
nontrivial symmetry of the LG-polynomial due to Ishii.

Corollary 1.14 ([Ish06, Thm.1]). For any link L, we have

LGLpt0, t1q P Zrt˘1
0 , t˘1

1 s . (15)

We end this section with a caution regarding deducing statements by specialization of
skein-theory.

Remark 1.15. Although the Alexander polynomial comes from an enhanced R-matrix, the
skein theory approach that proves Theorem 1.1 cannot be used to provide novel proofs of
either of the known specializations

LGLpt0, t
´1
0 q “ ∆Lpt0q

2, LGLpt0,´t´1
0 q “ ∆Lpt20q (16)

of [DWIL05, Ish06, Koh16, KPM17]. This is because the left side of the (R3) relation vanishes
under these specializations and thus, the reduction algorithm does not apply. However, the
symmetry of the relations (R1), (R2), (R3) in t0 and t1 give an alternative proof of the fact

LGLpt0, t1q “ LGLpt1, t0q . (17)

1.4. Organization of the paper. In Section 2 we introduce the main properties of skein
relations based on the braid group and use them to prove Theorem 1.3. In Section 3 we
recall briefly the definition and common properties of the three link polynomials LG, V1 and
ADOω that are the focus of our paper. We also explain how we found the explicit relation
(R3).

In Appendix A we give the R-matrices of the three polynomial invariants that we study,
and in Appendix B we give the lengthy coefficients of the skein relation (R3). Appendices C
and D are dedicated to the proof of two technical results used in the proof of Theorem 1.3.

Acknowledgements. The authors would like to thank Ivan Marin and Emmanuel Wagner
for enlightening conversations.
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2. Skein theory for the LG polynomial

In this section we prove Theorem 1.3 with a reduction algorithm. Recall that the braid
group Bn has standard generators si with inverses si for i “ 1, . . . , n ´ 1 shown in Figure 1.
They satisfy the relations

sisjsi “ sjsisj for |i ´ j| “ 1, sisj “ sjsi for |i ´ j| ą 1 . (18)

Fix a braid β P Bn for n ě 2. We will prove that it can be reduced to belong to the
Qpt0, t1q-vector space on the right hand side of Equation (6).

Note that if n “ 2, it follows from (R1) that every braid in B2 can be reduced to a linear
combination of 1, s1, s1.
We will first prove Theorem 1.3 for n “ 3, 4, which are the hardest cases. Then we prove

the result by induction on n ě 5.

2.1. The n “ 3 case. Let β P B3. By applying (R1), reduce it to the case

β “ sε11 sε22 sε31 . . . or β “ sε12 sε21 sε32 . . . , εi “ ˘1. (19)

Lemma 2.1 (Equivalent formulation of (R2)). The following relation is equivalent to relation
(R2) modulo relation (R1). For 1 ď i ď n ´ 2 and j “ i ` 1:

sjsisj “ pt0t1 ` 1 ´ t0 ´ t1q si ` pt0 ` t1 ´ t0t1 ´ 1q si

´ pt0 ` t1 ´ 1q sisj ` pt0 ` t1 ´ 1q sisj ` t0t1 sisj ´ t0t1 sisj

` sjsi ´ sjsi ´ pt0 ` t1 ´ t0t1q sjsi ` pt0 ` t1 ´ t0t1q sjsi

´ pt0 ` t1q sisjsi ` pt0 ` t1q sisjsi ` sisjsi ´ t0t1 sisjsi ` t0t1 sjsisj .

(20)

Proof. We start by writing (R2) ¨ sj :

psjsiqsj “ psisjsiqsj ´ psisjsiqsj ´ psisjsiqsj ` psisjsiqsj ´ psisjqsj ` psisjqsj

` psisjqsj ´ psisjqsj ` psjsiqsj ´ psjsiqsj ` psjsiqsj

“ sipsisjsiq ´ sjsisjsj ´ sjsisjsj ` sisisjsi ´ sippt0 ` t1 ´ 1q sj

` pt0 ` t1 ´ t0t1q 1 ´ t0t1 sjq ` si

` sippt0 ` t1 ´ 1q sj ` pt0 ` t1 ´ t0t1q 1 ´ t0t1 sjq ´ si ` sisjsi ´ sisjsi ` sisjsi

“ sjsi ´ sjsippt0 ` t1 ´ 1q sj ` pt0 ` t1 ´ t0t1q 1 ´ t0t1 sjq ´ sjsi

` ppt0 ` t1 ´ 1q si ` pt0 ` t1 ´ t0t1q 1 ´ t0t1 siqsjsi

´ pt0 ` t1 ´ 1q sisj ´ pt0 ` t1 ´ t0t1q si ` t0t1 sisj ` si

` pt0 ` t1 ´ 1q sisj ` pt0 ` t1 ´ t0t1q si ´ t0t1 sisj ´ si ` sisjsi ´ sisjsi ` sisjsi

“ sjsi ´ pt0 ` t1 ´ 1q sisjsi ´ pt0 ` t1 ´ t0t1q sjsi ` t0t1 sjsisj

´ sjsi ` pt0 ` t1 ´ 1q sisjsi ` pt0 ` t1 ´ t0t1q sjsi ´ t0t1 sisjsi

´ pt0 ` t1 ´ 1q sisj ´ pt0 ` t1 ´ t0t1q si ` t0t1 sisj ` si

` pt0 ` t1 ´ 1q sisj ` pt0 ` t1 ´ t0t1q si ´ t0t1 sisj ´ si ` sisjsi ´ sisjsi ` sisjsi

“ pt0t1 ` 1 ´ t0 ´ t1q si ` pt0 ` t1 ´ t0t1 ´ 1q si ´ pt0 ` t1 ´ 1q sisj

` pt0 ` t1 ´ 1q sisj ` t0t1 sisj ´ t0t1 sisj ` sjsi ´ sjsi ´ pt0 ` t1 ´ t0t1q sjsi
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` pt0 ` t1 ´ t0t1q sjsi ´ pt0 ` t1q sisjsi ` pt0 ` t1q sisjsi ` sisjsi ´ t0t1 sisjsi

` t0t1 sjsisj .

□

We now consider the inner automorphism b ÞÑ b̌ of the braid group Bn defined by

b̌n “ g´1
n bgn (21)

where gn “ ps1s2 . . . sn´1q . . . ps1s2s3qps1s2qps1q is a half twist in n strands. Topologically, b̌
is braid b “looked at from behind”. It is easy to show the following.

Lemma 2.2. The following hold true:

‚ for all k “ 1, . . . , n ´ 1, we have qsk “ sn´k,

‚ for all b, c P Bn, qbc “ b̌č,
‚ for all b P Bn, braids b and b̌ have the same link closure.

This automorphism will be used in the proof of Lemma 2.3 below as well as in numerous
locations in the Appendix C and D. In addition, applying this automorphism shows that
(20) of Lemma 2.1 is also true if you exchange the roles of i and j, even though they do not
play symmetric roles in the relation.

Lemma 2.3. The following relations hold in Cn. In each ℓ-letter relation, we assume 1 ď

i ď n ´ ℓ, j “ i ` 1, and k “ i ` 2.
1-letter relations

‚ Inverse relation:
sisi “ sisi “ 1 , (22)

‚ Relation (R1) and its equivalent version:

s2i “ pt0 ` t1 ´ 1q si ` pt0 ` t1 ´ t0t1q 1 ´ pt0t1q si ,

s2i “ pt´1
0 ` t´1

1 ´ 1q si ` pt´1
0 ` t´1

1 ´ t´1
0 t´1

1 q 1 ´ pt´1
0 t´1

1 q si .
(23)

2-letter relations

‚ Far commutativity:

s˘1
l s˘1

m “ s˘1
m s˘1

l for |l ´ m| ě 2 , (24)

‚ The braid relation and its equivalent formulations:

sisjsi “ sjsisj ,

psajs
a
i qsbj “ sbips

a
js

a
i q and psai s

a
j qsbi “ sbjps

a
i s

a
j q for a, b “ ˘1,

(25)

for |i ´ j| “ 1.
‚ Relation (R2) and its equivalent version:

sisjsi ´ sisjsi ´ sisjsi ` sisjsi “

sisj ´ sisj ´ sisj ` sisj ´ sjsi ` sjsi ` sjsi ´ sjsi ,
(26)

sjsisj ´ sjsisj ´ sjsisj ` sjsisj “

sjsi ´ sjsi ´ sjsi ` sjsi ´ sisj ` sisj ` sisj ´ sisj .
(27)
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3-letter relations

‚ Relations implied by (R3):

s˘1
i sksjsk “ sksjsks

˘1
i ` α , s˘1

i sksjsk “ sksjsks
˘1
i ` γ ,

s˘1
k sisjsi “ sisjsis

˘1
k ` δ , s˘1

k sisjsi “ sisjsis
˘1
k ` η ,

(28)

where α, γ are Qpt0, t1q-linear combinations of braid words with at most 4 letters and at
most one s˘1

k , and δ, η are Qpt0, t1q-linear combinations of braid words with at most 4 letters
and at most one s˘1

i .

Proof. The only non-obvious relations are the 3-letter relations. The first of these four
relations is (R3) in the case of the positive exponents. In the case of the negative exponents,
the first relation is obtained from (R3) by writing s´1

i ¨ (R3) ¨ s´1
i . The two versions of the

second relation follow from the two versions of the first relation and from Lemma 2.1:

s˘1
i psksjskq “ t0t1 s

˘1
i psksjskq ` words with at most 4 letters and at most one s˘1

k , (29)

and

psksjskqs˘1
i “ t0t1 psksjskqs˘1

i ` words with at most 4 letters and at most one s˘1
k . (30)

Replacing s˘1
i psksjskq and psksjskqs˘1

i in the different versions of (R3) using these two iden-
tities, we get both versions of the second 3 letter identity of Lemma 2.3. Finally, the third
and fourth 3-letter relations are obtained from the first two relations by applying the inner
automorphism defined through Equation (21). □

Lemma 2.4. In C3, any word β P B3 is a linear combination of at most 3 letter words, each
of which:

‚ either has at most one s˘1
2 ,

‚ or is s2s1s2.

We prove Lemma 2.4 in Appendix C. This implies Theorem 1.3 in the three strand case
n “ 3. Actually it implies an enhancement of Equation (6) for n “ 3 given in the next
corollary.

Corollary 2.5. The following set is a Qpt0, t1q-linear basis of C3:

t1, s1, s1, s2, s2, s2s1, s2s1, s2s1, s2s1, s1s2, s1s2, s1s2, s1s2, s1s2s1, s1s2s1,

s1s2s1, s1s2s1, s1s2s1, s1s2s1 (or s1s2s1), s2s1s2u ,
(31)

hence the dimension of C3 is 20.

Proof. Using Lemma 2.4, the following set is a Qpt0, t1q-generating set of C3:

t1, s1, s1, s2, s2, s2s1, s2s1, s2s1, s2s1, s1s2, s1s2, s1s2, s1s2, s1s2s1, s1s2s1,

s1s2s1, s1s2s1, s1s2s1, s1s2s1, s1s2s1, s1s2s1, s2s1s2u .
(32)

Relation (R2) shows that the vector s1s2s1 can be expressed in terms of the other vectors
of the family. Once that vector is removed, (20) shows that s1s2s1 (or s1s2s1) can also be
removed. Thus we have a generating set for C3 with 20 elements.
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Just as Marin–Wagner did in [MW13, Thm.1.1], we can prove that this set of 20 elements
is linearly independent over Qpt0, t1q by using the map ρLG : C3 Ñ EndpV b3q on a 4-
dimensional vector space V and check that the system of 46 “ 4096 linear equations in 20
unknowns with coefficients in the field Qpt0, t1q has a unique solution, namely zero. □

2.2. The n “ 4 case. We prove Theorem 1.3 for words β P B4 inductively on #3pβq, where
#3pβq is the sum of the number of s3 and of the number of s3 that appear in the expression
of β in terms Artin generators. Moreover, like in the three strand case, because of (R1), we
need only to consider

β “ sε1i1 s
ε2
i2
sε3i3 . . . , εi “ ˘1. (33)

The base case of the induction – where the result is obviously true – is when #3pβq ď 1.
Now consider a word β such that #3pβq ě 2. We can write β “ xs˘1

3 ws˘1
3 y with w, y P

xs1, s2y – B3 and x P B4. Since w P B3, we may express it in the generating set of Lemma 2.4:

‚ either w has at most one s˘1
2 ,

‚ or w “ s2s1s2.�� ��Case 1: #2pwq “ 0. In this case, w is a power of s1 and β “ xs˘1
3 ws˘1

3 y “ xws˘1
3 s˘1

3 y. The

number of s˘1
3 used to write β decreases thanks to (R2) or a straightforward simplification

of inverses. So we have the result in this case inductively.�� ��Case 2: #2pwq “ 1. We can write w “ sε1s
˘1
2 sγ1 for some ε, γ P t´1, 0, 1u. Then β “

x1s˘1
3 s˘1

2 s˘1
3 y1 with y1 P xs1, s2y and x1 P B4. We apply Lemma 2.4 to s˘1

3 s˘1
2 s˘1

3 P xs2, s3y –

B3, then modulo terms with fewer s˘1
3 ,

β “ x1s3s2s3y
2 for some y2 P xs1, s2y. (34)

If the left-most letter in y2 is s˘1
1 , then that letter commutes with s3s2s3 modulo words with

fewer s˘1
3 by applications of (R3). If the left-most letter is s˘1

2 , then we may apply Lemma
2.4 once again. The sub-word s3s2s3s

˘1
2 reduces in xs2, s3y – B3 to s3s2s3 modulo words with

fewer s˘1
3 and we have removed the left-most letter from y1. Thus, an inductive argument

on length of y1 shows

β “ x2s3s2s3 for some x2 P B4 (35)

modulo words with fewer s˘1
3 . Note that

#3px
2s3s2s3q “ #3pxs3ws3yq and #3px

2
q ă #3pxs3ws3yq. (36)

Thus, using the inductive hypothesis on x2, it can be written as a linear combination of
words as described in Theorem 1.3. The different elements in the sum can be considered
independently.
Sub-case 2.1: Suppose x2 P xs1, s2y – B3. In this instance, x2 can itself be reduced using
Lemma 2.4. If x2 “ sε11 sε22 sε31 for εi P t´1, 0, 1u, then modulo words with fewer s˘1

3 and up
to a scalar,

β “ sε11 sε22 psε31 s3s2s3q
(R3)
“ sε11 psε22 s3s2s3qsε31

2.4
“ sε11 ps3s2s3qs

ε3
1 “ sε11 ps3s2s3s

ε3
1 q

(R3)
“ sε1`ε3

1 s3s2s3.
(37)
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Now β is expressed in the desired form.
If on the other hand x2 “ s2s1s2, then modulo words with fewer s˘1

3 and up to a scalar,

β “ s2s1ps2s3s2s3q
2.4
“ s2s1ps3s2s3q, (38)

which now expresses x2ps3s2s3q in the form s01s
´1
2 s11ps3s2s3q considered previously.

Sub-case 2.2: Suppose #3px
2q “ 1. This time x2 “ us˘1

3 v, with u, v P xs1, s2y. Modulo terms
with fewer s˘1

3 and up to a scalar we write:

β “ us˘1
3 pvs3s2s3q

Sub-case 2.1
“ us˘1

3 sε1s3s2s3 “ usε1s
˘1
3 s3s2s3

“ usε1ps
˘1
3 s3s2s3q

2.4
“ usε1s3s2s3

Sub-case 2.1
“ sγ1s3s2s3.

(39)

The expression for β completes the proof in this sub-case.
Sub-case 2.3: Next assume x2 “ sδ1s3s2s3 with δ P t´1, 0, 1u. Again, modulo terms with
fewer s˘1

3 we have, up to a scalar:

β “ sδ1ps3s2s3s3s2s3q
2.4
“ sδ1s3s2s3. (40)

And we get the result in this case by structural induction.�� ��Case 3: w “ s2s1s2. Then β “ xs˘1
3 s2s1s2s

˘1
3 y with y P xs1, s2y – B3. We need to be able

to reduce s˘1
3 s2s1s2s

˘1
3 in order to conclude in this case. The following lemma is proven in

Appendix D and does just that.

Lemma 2.6. In C4, the four words s
˘1
3 s2s1s2s

˘1
3 P B4 can be reduced to linear combinations

of words of one of the following types:

‚ words with at most one s˘1
3 ,

‚ s3s2s3, s1s3s2s3 or s1s3s2s3.

Using Lemma 2.6, β reduces modulo words with fewer s˘1
3 and up to a scalar to:

β
2.6
“ xsε1s3s2s3y. (41)

Here we have β given in the form of Case 2 (34). Case 3 is now proven in the same way.
This proves Theorem 1.3 in the four strand case n “ 4.

2.3. The n ě 5 case. We suppose that Theorem 1.3 is true for some n ě 5. Let us prove
that then it is also true for Bn`1. Because of (R1), we need only to prove the result for
β P Bn`1 that can be written:

β “ sε1i1 s
ε2
i2
sε3i3 . . . , εi “ ˘1. (42)

Like in the four strand case, we prove the result for words by structural induction on #npβq.
The result is clearly true when #npβq ď 1. For β such that #npβq ě 2, we can write

β “ xs˘1
n ws˘1

n y with w, y P xs1, s2, . . . , sn´1y – Bn. Using the induction hypothesis, w is a
Qpt0, t1q-linear combination of words in the form prescribed by Theorem 1.3. In the following
we assume that w is given in the form of one of these spanning words.�� ��Case 1: #npwq ď 1. Like in the four strand case, we can write w “ asεn´1b with ε P t´1, 0, 1u

and a, b P xs1, ..., sn´2y. Therefore

β “ x1s˘1
n sεn´1s

˘1
n y1 with y1 P xs1, s2, . . . , sn´1y and x1 P Bn`1. (43)
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Again following the ideas of the B4 case, this word reduces to match the description of it
given in Theorem 1.3. The proof is completely similar because s1, s2, . . . , sn´3 commute with
sn´1 and sn.�� ��Case 2: w “ usn´1sn´2sn´1, u P xs1, . . . , sn´3y. In this case we can write:

β “ x1s˘1
n sn´1sn´2sn´1s

˘1
n y for some x1 P xs1, s2, . . . , sn´1y. (44)

The conclusion follows like in the B4 case. This concludes the proof of Theorem 1.3. □

2.4. How (R3) was found. Once (R3) is found, Lemma 1.2 follows by a machine compu-
tation. But this also gives a method to find an (R3). Namely, (R3) is derived from the
realization of s1s3s2s3 ´ s3s2s3s1 P C4 as a Qpt0, t1q-linear combination of the 175 words in a
spanning set for a version of C4 given in [MW13]. We can use the explicit R-matrices of LG
or V1 and the corresponding Qpt0, t1q-linear map C4 Ñ EndpV b4q for a 4-dimensional vector
space V to reduce this to a linear algebra question over Qpt0, t1q. This results in solving a
system of 48 “ 65536 sparse linear equations in 175 variables.
To reduce the complexity of the task we used the R-matrix RV for V1 rather than RLG since

the former appeared to have simpler coefficients. Then, we solved the sparse linear system
of equations for a sample of 20 different values of the pair pt0, t1q. Doing this, we found that
only 78 of the 175 unknown variables are rational functions with nonzero specializations,
which reflects the sparsity of the system, and moreover, the set of these 78 variables was the
same for all attempted specializations. We thus reduced the system of unknowns from 175 to
the 78 ones found above, and then by the use of a computer and some by-hand eliminations,
we found the unique solution given in the appendix.

This produced a potential 80-term (R3) skein relation that we then checked was satisfied
for both R-matrices involved.

A Mathematica program that includes theR-matrices of the LG, V1 and ADOω-polynomials
and checks that they satisfy the skein relations is given in [Gar].

3. Basics of the LG, V1 and ADOω link invariants

The three polynomial invariants of links that we study in our paper, namely the LG,
V1 and ADOω come from the well-known Reshetikhin–Turaev construction [RT90, Tur94]
applied to enhanced matrices given below.

Instead of repeating definitions and notations from previous works and arguments that
we will not use, we comment briefly how these invariants are defined following [GHK`] and
references therein.

A rigid R-matrix leads to invariants of long knots [Kas23] and Nichols algebras with
automorphisms (or suitable finite dimensional quotients thereof) produce rigid R-matrices
and hence invariants of long knots [GK].

All three polynomial invariants come from rigid R-matrices, and in fact from enhanced
ones, in the sense of Ohtsuki and Turaev [Oht02, Tur88]. For a precise definition see [GHK`,
Sec.2], where an extension to tangles is given, and a comparison of the various definitions is
also discussed.
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A common feature of the invariants of tangles given by the three polynomials that we study
is that they vanish when evaluated to closed links, since in a sense all three are fermionic
invariants.

To overcome this problem and define a nontrivial invariant of oriented links, one cuts
one component to obtain a p1, 1q-tangle, and then shows that the invariant of p1, 1q-tangles
is a scalar (so-called property pP1q in [GHK`, Sec.1.1]), and then that an invariant of a
p2, 2q-tangle is unchanged if we close it on one or the other side (property pP2q).
All three tangle invariants satisfy properties pP1q and pP2q and consequently give well-

defined invariants of oriented links. Although these link invariants are highly nontrivial,
they do vanish on split links.

Note that in dealing with the Links–Gould invariant of links, we stick to conventions used
by Ishii for example in [Ish06]. In doing so, LGLpp´2, p2q2q with p “ qα coincides with the
Links-Gould invariant from [DWLK99].

Having discussed the basic properties of the three invariants of interest, we give their
R-matrices in Appendix A, and their enhancements here:

hLG “ diagpt´1
0 ,´t1,´t´1

0 , t1q P EndpW q

hV “ diagp´1, 1, 1,´1q P EndpV q

hADO “ diagpt2, ω2t2, ω4t2q P EndpXq .

(45)

Lemma 3.1. pRLG, hLGq, pRV , hV q and pRADO, hADOq are enhanced R-matrices and satisfy
properties pP1q and pP2q of [GHK`, Sec.1.1].

The statement about enhancement follows by an explicit computation. Regarding proper-
ties pP1q and pP2q, pRV , hV q satisfies them as was shown in [GHK`, Sec.3]. So do pRLG, hLGq

and pRADO, hADOq since they are defined representation theoretically via a ribbon cate-
gory and the tangle invariants are colored by a simple ambidextrous object in the sense
of [GPMT09].

The link invariants can be computed in terms of a braid presentation β P Bn of an oriented
link L as stated in [GHK`, Rem.2.3] and for the convenience of the reader, we reproduce
here:

FLcut “ tr2,...,n
`

pidV b hbpn´1q
q ˝ ρRpβq

˘

P EndpV q

xFLcuty “
1

dimpV q
tr

`

pidV b hbpn´1q
q ˝ ρRpβq

˘

.
(46)

As mentioned before, all three link invariants thus defined have the following common
feature.

Lemma 3.2. The LG, V1 and ADOω polynomials vanish on split links, and are equal to 1
on the unknot.

Proof. The vanishing on split links follows from the definition of the invariants and the fact
that the diagonal matrices hLG, hV and hADO have trace zero. The value of the unknot,
whose long version is a single vertical strand, is obvious. □
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Appendix A. The R-matrices for the Links–Gould, ADOω and V1 polynomials

In this appendix we write the three R-matrices that we need in the paper.
Since all three R-matrices are sparse, we present them in the following way. Suppose V is a

vector space over a field k with an ordered basis pv1, . . . , vnq and an Rmatrix R P EndpV bV q.
Abbreviating vij “ vi b vj for i, j “ 1, . . . n, the n2 ˆ n2 matrix R can be presented as an
n ˆ n matrix R :“ pRpxijqq1ďi,jďn whose entries are k-linear combinations of vij.
We now give the three R-matrices, beginning with the Links–Gould polynomial whose

R-matrix is defined as follows. Consider a 4-dimensional Qpt0, t1q-vector space W with
ordered basis pw1, w2, w3, w4q. Abbreviating wij “ wi b wj for i, j “ 1, . . . 4, the R-matrix
RLG :“ ppRLGqpwijqq1ďi,jď4 is given by

RLG “

¨

˚

˚

˚

˝

t0w11 t
1{2
0 w21 t

1{2
0 w31 w41

t
1{2
0 w12 ` pt0 ´ 1qw21 ´w22 pt0t1 ´ 1qw23 ´ t

1{2
0 t

1{2
1 w32 ´ t

1{2
0 t

1{2
1 Y w41 t

1{2
1 w42

t
1{2
0 w13 ` pt0 ´ 1qw31 ´t

1{2
0 t

1{2
1 w23 ` Y w41 ´w33 t

1{2
1 w43

w14 ´ t
1{2
0 t

1{2
1 Y w23 ` Y w32 ` Y 2w41 t

1{2
1 w24 ` pt1 ´ 1qw42 t

1{2
1 w34 ` pt1 ´ 1qw43 t1w44

˛

‹

‹

‹

‚

with Y “
a

pt0 ´ 1qp1 ´ t1q. Actually, the entries in the above matrix are in the quadratic
extensionQpt0, t1qrY s of the fieldQpt0, t1q but this plays no important role in our arguments.

Next we give the R-matrix of the V1-polynomial whose explicit computation was discussed
in [GK] and further studied in [GHK`]. We consider a 4-dimensional Qpt0, t1q-vector space
V with ordered basis pv1, v2, v3, v4q. As before, with vij “ vi b vj, the R-matrix RV,r :“
pRV,rpvijqq1ďi,jď4 is given by

RV,r “

¨

˚

˚

˚

˚

˝

´v11 ´t0v21 ´t1v31 ´t0t1v41
´v12 ` pt0 ´ 1qv21 t0v22 ´rt1v32 ` pt0 ´ 1qt1v41 rt0t1v42
´v13 ` pt1 ´ 1qv31 ´r´1t´1

1 v23 ` r´1p1 ´ t0qv41 t1v33 r´1v43
„

´v14 ` pt´1
1 ´ 1qv23

`rpt1 ´ 1qv32 ` pt0 ` t1 ´ 2qv41

ȷ

r´1t´1
1 v24 ` pt0 ´ 1qv42 rt1v34 ` pt1 ´ 1qv43 ´v44

˛

‹

‹

‹

‹

‚

.

Taking r “ 1, the R-matrix RV :“ RV,1 has an enhancement as was explained in [GHK`,
Sec.3].

Lastly, we give the R-matrix used to define the ADOω invariant of links. With ω “ e2πi{6,
consider a 3-dimensional Qpω, tq-vector space X with an ordered basis px0, x1, x2q. With
xij “ xi b xj, the 3 ˆ 3 R-matrix RADO :“ pRADOpxijqq1ďi,jď3 is given by

RADO “

¨

˝

t2x00 pt2 ´ 1qx01 ` tx10 pt2 ´ 1qp1 ´ ω2t´2qx02 ` pt´1 ` ωtqx11 ` x20

tx01 pt ´ t´1qx02 ` ω2x11 pω2t´2 ´ 1qx12 ` ´ωt´1x21

x02 ´ωt´1x12 ω2t´2x22

˛

‚.

Appendix B. The coefficients of the (R3) skein relation

In this section we give the coefficients of the (R3)-skein relation.

a1 “ ´
pt1 ´ 1qpt0 ´ 1qp´t1 ´ t0 ´ 2t1t0 ´ t21t0 ´ t1t20 ` t31t

2
0 ` t21t

3
0q

t1t0pt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a2 “ ´
pt1 ´ 1qpt0 ´ 1qpt1 ` t0 ` 2t1t0q

pt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,
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a3 “
pt1 ´ 1qpt0 ´ 1qp´t1 ´ t0 ´ 2t1t0 ´ t21t0 ´ t1t20 ` t31t

2
0 ` t21t

3
0q

t1t0pt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a4 “
pt1 ´ 1qpt0 ´ 1qpt1 ` t0 ` 2t1t0q

pt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a5 “
1 ` t1t0 ` t21t0 ` t1t20

t1p1 ` t1qt0p1 ` t0qp1 ` t1t0q
,

a6 “ ´
t1 ` t0 ` t1t0 ` t21t

2
0

t1p1 ` t1qt0p1 ` t0qp1 ` t1t0q
,

a7 “ ´
p1 ` t1t0 ` t21t0 ` t1t20qpt1 ´ t21 ` t0 ´ t1t0 ` t21t0 ´ t20 ` t1t20 ` t21t

2
0q

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qp1 ` t1t0q
,

a8 “
pt1 ` t0 ` t1t0 ` t21t

2
0qpt1 ´ t21 ` t0 ´ t1t0 ` t21t0 ´ t20 ` t1t20 ` t21t

2
0q

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qp1 ` t1t0q
,

a9 “ ´
1 ` t1t0 ` t21t0 ` t1t20

t1p1 ` t1qt0p1 ` t0qp1 ` t1t0q
,

a10 “
p1 ` t1t0 ` t21t0 ` t1t20qpt1 ´ t21 ` t0 ´ t1t0 ` t21t0 ´ t20 ` t1t20 ` t21t

2
0q

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qp1 ` t1t0q
,

a11 “
t1 ` t0 ` t1t0 ` t21t

2
0

t1p1 ` t1qt0p1 ` t0qp1 ` t1t0q
,

a12 “ ´
pt1 ` t0 ` t1t0 ` t21t

2
0qpt1 ´ t21 ` t0 ´ t1t0 ` t21t0 ´ t20 ` t1t20 ` t21t

2
0q

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qp1 ` t1t0q
,

a13 “
´t21 ´ t1t0 ´ t21t0 ´ t20 ´ t1t20 ` t21t

2
0

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qp1 ` t1t0q
,

a14 “
´t1 ` t21 ´ t0 ` t1t0 ` t21t0 ` t20 ` t1t20 ´ t21t

2
0 ` 2t31t

2
0 ` t41t

2
0 ` 2t21t

3
0 ` 2t31t

3
0 ` t41t

3
0 ` t21t

4
0 ` t31t

4
0

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qp1 ` t1t0q
,

a15 “ ´
´t31 ´ t1t0 ´ t41t0 ´ t21t

2
0 ´ t30 ` t41t

3
0 ´ t1t40 ` t31t

4
0

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qp1 ` t1t0q
,

a16 “ ´
´t21 ` t31 ´ t1t0 ` t21t0 ` t31t0 ´ t20 ` t1t20 ` 3t21t

2
0 ` t41t

2
0 ` t30 ` t1t30 ` 2t31t

3
0 ` t41t

3
0 ` t21t

4
0 ` t31t

4
0

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qp1 ` t1t0q
,

a17 “ ´
1 ` t1t0 ` t21t0 ` t1t20

p1 ` t1qp1 ` t0qpt1 ` t0qp1 ` t1t0q
,

a18 “ ´
pt1 ` t0 ´ 1qp1 ` t1t0 ` t21t0 ` t1t20q

p1 ` t1qp1 ` t0qpt1 ` t0qp1 ` t1t0q
,

a19 “
t1 ` t0 ` t1t0 ` t21t

2
0

p1 ` t1qp1 ` t0qpt1 ` t0qp1 ` t1t0q
,

a20 “
pt1 ` t0 ´ 1qpt1 ` t0 ` t1t0 ` t21t

2
0q

p1 ` t1qp1 ` t0qpt1 ` t0qp1 ` t1t0q
,

a21 “ ´
t1 ` t0 ` t1t0 ` t21t

2
0

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qp1 ` t1t0q
,

a22 “ ´
´t21 ´ t1t0 ´ t41t0 ´ t20 ` t21t

2
0 ´ t31t

2
0 ´ t21t

3
0 ` t41t

3
0 ´ t1t40 ` t31t

4
0

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qp1 ` t1t0q
,

a23 “
t1 ´ t21 ` t0 ´ t1t0 ´ t41t0 ´ t20 ` t21t

2
0 ´ 2t31t

2
0 ´ 2t21t

3
0 ` t41t

3
0 ´ t1t40 ` t31t

4
0

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qp1 ` t1t0q
,

a24 “ ´
pt1 ` t0 ´ 1qp´t21 ´ t1t0 ´ t21t0 ´ t20 ´ t1t20 ` t21t

2
0q

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qp1 ` t1t0q
,

a25 “
1 ` t1t0 ` t21t0 ` t1t20

p1 ` t1qp1 ` t0qpt1 ` t0qp1 ` t1t0q
,

a26 “ ´
t1 ` t0 ` t1t0 ` t21t

2
0

p1 ` t1qp1 ` t0qpt1 ` t0qp1 ` t1t0q
,

a27 “
pt1 ` t0 ´ 1qp1 ` t1t0 ` t21t0 ` t1t20q

p1 ` t1qp1 ` t0qpt1 ` t0qp1 ` t1t0q
,
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a28 “ ´
pt1 ` t0 ´ 1qpt1 ` t0 ` t1t0 ` t21t

2
0q

p1 ` t1qp1 ` t0qpt1 ` t0qp1 ` t1t0q
,

a29 “
p1 ` t1qp1 ` t0q

pt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a30 “
´1 ´ 2t1 ` t21 ´ 2t0 ` t1t0 ´ t31t0 ` t20 ´ 2t21t

2
0 ` t31t

2
0 ´ t1t30 ` t21t

3
0

pt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a31 “
p1 ` t1t0 ` t21t0 ` t1t20qp´t21 ´ t1t0 ´ t21t0 ´ t20 ´ t1t20 ` t21t

2
0q

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a32 “ ´
pt1 ` t0 ` t1t0 ` t21t

2
0qp´t21 ´ t1t0 ´ t21t0 ´ t20 ´ t1t20 ` t21t

2
0q

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a33 “ ´
t1 ` t0 ` t1t0 ` t21t0 ` t31t0 ` t1t20 ` 4t21t

2
0 ´ t41t

2
0 ` t1t30 ´ t31t

3
0 ` t41t

3
0 ` t51t

3
0 ´ t21t

4
0 ` t31t

4
0 ` 2t41t

4
0 ` t51t

4
0 ` t31t

5
0 ` t41t

5
0

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a34 “
t21 ` 3t1t0 ` 2t21t0 ´ t31t0 ` t20 ` 2t1t20 ` t31t

2
0 ´ t1t30 ` t21t

3
0 ` t31t

3
0 ` t51t

3
0 ` 2t41t

4
0 ` t51t

4
0 ` t31t

5
0 ` t41t

5
0

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a35 “
p1 ` t1t0 ` t21t0 ` t1t20qpt21 ` t1t0 ` t20 ´ t21t

2
0 ` t31t

2
0 ` t21t

3
0q

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a36 “ ´
pt1 ` t0 ` t1t0 ` t21t

2
0qpt21 ` t1t0 ` t20 ´ t21t

2
0 ` t31t

2
0 ` t21t

3
0q

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a37 “ ´
t1 ` t0 ` t1t0 ` t21t

2
0

t1t0pt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a38 “ ´
p1 ` t1t0 ` t21t0 ` t1t20qp´t21 ´ t1t0 ´ t21t0 ´ t20 ´ t1t20 ` t21t

2
0q

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a39 “
t1 ` t0 ` t1t0 ` 2t21t0 ` t31t0 ´ t41t0 ` 2t1t20 ` 4t21t

2
0 ´ t31t

2
0 ` t51t

2
0 ` t1t30 ´ t21t

3
0 ` t31t

3
0 ` 3t41t

3
0 ´ t1t40 ` 3t31t

4
0 ´ t51t

4
0 ` t21t

5
0 ´ t41t

5
0

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a40 “ ´
p1 ` t1t0 ` t21t0 ` t1t20qpt21 ` t1t0 ` t20 ´ t21t

2
0 ` t31t

2
0 ` t21t

3
0q

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a41 “
t21 ` 3t1t0 ´ t21t0 ` t20 ´ t1t20 ` t21t

2
0 ` t31t

2
0 ´ t41t

2
0 ` t21t

3
0 ´ 2t31t

3
0 ` t41t

3
0 ´ t21t

4
0 ` t31t

4
0

t1t0pt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a42 “
pt1 ` t0 ` t1t0 ` t21t

2
0qp´t21 ´ t1t0 ´ t21t0 ´ t20 ´ t1t20 ` t21t

2
0q

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a43 “ ´
t21 ` 3t1t0 ` 2t21t0 ´ t31t0 ` t20 ` 2t1t20 ` 2t31t

2
0 ` t41t

2
0 ´ t1t30 ` 2t21t

3
0 ` 3t31t

3
0 ` t21t

4
0

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a44 “
pt1 ` t0 ` t1t0 ` t21t

2
0qpt21 ` t1t0 ` t20 ´ t21t

2
0 ` t31t

2
0 ` t21t

3
0q

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a45 “
p1 ` t1t0 ` t21t0 ` t1t20qpt1 ` t0 ` t1t0 ` t21t

2
0q

p1 ` t1qp1 ` t0qpt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a46 “ ´
pt1 ` t0 ` t1t0 ` t21t

2
0q2

p1 ` t1qp1 ` t0qpt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a47 “
1 ` t1t0 ` t21t0 ` t1t20

p1 ` t1qp1 ` t0qpt1 ` t0qp1 ` t1t0q
,

a48 “ ´
t1 ` t0 ` t1t0 ` t21t

2
0

p1 ` t1qp1 ` t0qpt1 ` t0qp1 ` t1t0q
,

a49 “ ´
pt1 ` t0 ` 2t1t0qp1 ` t1t0 ` t21t0 ` t1t20q

p1 ` t1qp1 ` t0qpt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a50 “
pt1 ` t0 ` 2t1t0qpt1 ` t0 ` t1t0 ` t21t

2
0q

p1 ` t1qp1 ` t0qpt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a51 “
p1 ` t1t0 ` t21t0 ` t1t20qp´t21 ´ t1t0 ´ t21t0 ´ t20 ´ t1t20 ` t21t

2
0q

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a52 “ ´
pt1 ` t0 ` t1t0 ` t21t

2
0qp´t21 ´ t1t0 ´ t21t0 ´ t20 ´ t1t20 ` t21t

2
0q

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,
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a53 “ ´
pt1 ` t0 ` t1t0qp1 ` t1t0 ` t21t0 ` t1t20q

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qp1 ` t1t0q
,

a54 “
pt1 ` t0 ` t1t0qpt1 ` t0 ` t1t0 ` t21t

2
0q

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qp1 ` t1t0q
,

a55 “
p1 ` t1t0 ` t21t0 ` t1t20qpt21 ` t21t0 ` t20 ` t1t20q

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a56 “ ´
pt21 ` t21t0 ` t20 ` t1t20qpt1 ` t0 ` t1t0 ` t21t

2
0q

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a57 “ ´
p1 ` t1t0 ` t21t0 ` t1t20qpt1 ` t0 ` t1t0 ` t21t

2
0q

p1 ` t1qp1 ` t0qpt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a58 “
pt1 ` t0 ` t1t0 ` t21t

2
0q2

p1 ` t1qp1 ` t0qpt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a59 “ ´
1 ` t1t0 ` t21t0 ` t1t20

p1 ` t1qp1 ` t0qpt1 ` t0qp1 ` t1t0q
,

a60 “
t1 ` t0 ` t1t0 ` t21t

2
0

p1 ` t1qp1 ` t0qpt1 ` t0qp1 ` t1t0q
,

a61 “
pt1 ` t0 ` 2t1t0qp1 ` t1t0 ` t21t0 ` t1t20q

p1 ` t1qp1 ` t0qpt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a62 “ ´
pt1 ` t0 ` 2t1t0qpt1 ` t0 ` t1t0 ` t21t

2
0q

p1 ` t1qp1 ` t0qpt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a63 “ ´
p1 ` t1t0 ` t21t0 ` t1t20qp´t21 ´ t1t0 ´ t21t0 ´ t20 ´ t1t20 ` t21t

2
0q

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a64 “
pt1 ` t0 ` t1t0 ` t21t

2
0qp´t21 ´ t1t0 ´ t21t0 ´ t20 ´ t1t20 ` t21t

2
0q

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a65 “
pt1 ` t0 ` t1t0qp1 ` t1t0 ` t21t0 ` t1t20q

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qp1 ` t1t0q
,

a66 “ ´
pt1 ` t0 ` t1t0qpt1 ` t0 ` t1t0 ` t21t

2
0q

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qp1 ` t1t0q
,

a67 “ ´
p1 ` t1t0 ` t21t0 ` t1t20qpt21 ` t21t0 ` t20 ` t1t20q

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a68 “
pt21 ` t21t0 ` t20 ` t1t20qpt1 ` t0 ` t1t0 ` t21t

2
0q

t1p1 ` t1qt0p1 ` t0qpt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a69 “
1

t1 ` t0
,

a70 “
t1t0

1 ` t1t0
,

a71 “
pt1 ´ 1qp1 ` t1qpt0 ´ 1qp1 ` t0q

pt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a72 “ ´
1

1 ` t1t0
,

a73 “
t21 ` t20 ´ 2

pt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a74 “ ´
1

t1 ` t0
,

a75 “ ´
t1t0

1 ` t1t0
,

a76 “ ´
pt1 ´ 1qp1 ` t1qpt0 ´ 1qp1 ` t0q

pt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
,

a77 “
1

1 ` t1t0
,
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a78 “ ´
t21 ` t20 ´ 2

pt1 ` t0qpt1t0 ´ 1qp1 ` t1t0q
.

Appendix C. Proof of Lemma 2.4

Here we prove Lemma 2.4. Note that it is enough to prove the result when the word has
at most 4 letters. The general case follows by induction on the length of the word. Now,
recall that for β P B3, because of (R1), we need only to consider

β “ sε11 sε22 sε31 . . . or β “ sε12 sε21 sε32 . . . , εi “ ˘1.

So, taking all reductions into account, it is enough to prove the statement for the following
list of 16 ` 16 ` 8 “ 40 words:

s˘1
1 s˘1

2 s˘1
1 s˘1

2 ; s˘1
2 s˘1

1 s˘1
2 s˘1

1 ; s˘1
2 s˘1

1 s˘1
2 .

We will express these words as linear combinations of:

‚ words of length at most 3 with at most one s˘1
2 ,

‚ s2s1s2.

To do that we can use the one and two letter relations from Lemmas 2.1 and 2.3. Starting
with the 32 four letter words, let us see which ones reduce obviously to a linear combination
of words with at most one s˘1

2 and fewer letter words.

s1ps2s1s2q: reduces modulo braid relation and (R1),

ps1s2s1qs2: reduces modulo braid relation,

ps1s2s1qs2: reduces modulo braid relation and (R1),

ps1s2s1qs2: reduces modulo braid relation,

s1ps2s1s2q: reduces modulo braid relation and (R1),

s1s2s1s2 : harder, must be studied separately,

ps1s2s1qs2: reduces modulo braid relation and (R1),

ps1s2s1qs2: reduces modulo braid relation,

ps1s2s1qs2: reduces modulo braid relation,

ps1s2s1qs2: reduces modulo braid relation and (R1),

s1s2s1s2 : harder, must be studied separately,

s1ps2s1s2q: reduces modulo braid relation and (R1),

s1ps2s1s2q: reduces modulo braid relation,

ps1s2s1qs2: reduces modulo braid relation and (R1),

ps1s2s1qs2: reduces modulo braid relation,

ps1s2s1qs2: reduces modulo braid relation and (R1),

ps2s1s2qs1: reduces modulo braid relation and (R1),

s2ps1s2s1q: reduces modulo braid relation,

ps2s1s2qs1: reduces modulo braid relation and (R1),

s2ps1s2s1q: reduces modulo braid relation,

s2ps1s2s1q: reduces modulo braid relation and (R1),

s2s1s2s1 : harder, must be studied separately,

ps2s1s2qs1: reduces modulo braid relation and (R1),

ps2s1s2qs1: reduces modulo braid relation,

ps2s1s2qs1: reduces modulo braid relation,

ps2s1s2qs1: reduces modulo braid relation and (R1),

s2s1s2s1 : harder, must be studied separately,

s2ps1s2s1q: reduces modulo braid relation and (R1),

s2ps1s2s1q: reduces modulo braid relation,

ps2s1s2qs1: reduces modulo braid relation and (R1),

s2ps1s2s1q: reduces modulo braid relation,

ps2s1s2qs1: reduces modulo braid relation and (R1).

For the 8 three letter words, let us similarly see which ones reduce directly.

s2s1s2 : reduces modulo braid relation,

s2s1s2 : reduces modulo braid relation,

s2s1s2 : reduces using the equivalent version of (R2) expressed in Lemma 2.1,

s2s1s2 : reduces modulo braid relation,
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s2s1s2 : reduces modulo braid relation,

s2s1s2 : reduced already,

s2s1s2 : reduces modulo braid relation,

s2s1s2 : reduces modulo braid relation.

So 4 words remain to be studied more precisely:

s1s2s1s2 ; s1s2s1s2 ; s2s1s2s1 ; s2s1s2s1.

‚
�� ��Case of s1s2s1s2. Let us compute s1s2 ¨ (R2) :

s1s2ps1s2q “ ´s1s2ps1s2s1q ` s1s2ps1s2s1q ` s1s2ps1s2q ´ s1s2ps1s2q

` s1s2ps1s2q ´ s1s2ps2s1q ` s1s2ps2s1q ` s1s2ps2s1q ´ s1s2ps2s1q

` s1s2ps1s2s1q ´ s1s2ps1s2s1q

“ ´ps1s1qs2ps1s1q ` s1ps2s2qs1s2 ` ps1s1qs2s1 ´ ps1s1qs2s1

` ps1s1qs2s1 ´ ps1s1q ` 1

` s1ppt´1
0 ` t´1

1 ´ 1q s2 ` pt´1
0 ` t´1

1 ´ t´1
0 t´1

1 q 1 ´ t´1
0 t´1

1 s2q s1

´ s1ppt´1
0 ` t´1

1 ´ 1q s2 ` pt´1
0 ` t´1

1 ´ t´1
0 t´1

1 q 1 ´ t´1
0 t´1

1 s2q s1

` ps1s1qs2ps1s1q ´ s1ps2s2qs1s2

“ ´ppt0 ` t1 ´ 1q s1 ` pt0 ` t1 ´ t0t1q 1 ´ t0t1 s1q s2

` s1ppt´1
0 ` t´1

1 ´ 1q s2 ` pt´1
0 ` t´1

1 ´ t´1
0 t´1

1 q 1 ´ t´1
0 t´1

1 s2q s1s2

` ppt0 ` t1 ´ 1q s1 ` pt0 ` t1 ´ t0t1q 1 ´ t0t1 s1q s2s1

´ ppt0 ` t1 ´ 1q s1 ` pt0 ` t1 ´ t0t1q 1 ´ t0t1 s1q s2s1

` s2s1 ´ ppt0 ` t1 ´ 1q s1 ` pt0 ` t1 ´ t0t1q 1 ´ t0t1 s1q

` 1 ` pt´1
0 ` t´1

1 ´ 1q s1s2s1 ` pt´1
0 ` t´1

1 ´ t´1
0 t´1

1 q s1s1 ´ t´1
0 t´1

1 s1s2s1

´ pt´1
0 ` t´1

1 ´ 1q s1s2s1 ´ pt´1
0 ` t´1

1 ´ t´1
0 t´1

1 q 1 ` t´1
0 t´1

1 s1s2s1

´ s2 ´ s1ppt´1
0 ` t´1

1 ´ 1q s2 ` pt´1
0 ` t´1

1 ´ t´1
0 t´1

1 q 1 ´ t´1
0 t´1

1 s2q s1s2

“ ´pt0 ` t1 ´ 1q s1s2 ´ pt0 ` t1 ´ t0t1q s2 ` t0t1 s1s2

` pt´1
0 ` t´1

1 ´ 1q s1ps2s1s2q ` pt´1
0 ` t´1

1 ´ t´1
0 t´1

1 q ps1s1qs2 ´ t´1
0 t´1

1 s1ps2s1s2q

` pt0 ` t1 ´ 1q s1s2s1 ` pt0 ` t1 ´ t0t1q s2s1 ´ t0t1 s1s2s1

´ pt0 ` t1 ´ 1q s1s2s1 ´ pt0 ` t1 ´ t0t1q s2s1 ` t0t1 s1s2s1 ` s2s1

´ pt0 ` t1 ´ 1q s1 ´ pt0 ` t1 ´ t0t1q 1 ` t0t1 s1 ` 1 ` pt´1
0 ` t´1

1 ´ 1q s1s2s1

` pt´1
0 ` t´1

1 ´ t´1
0 t´1

1 qppt0 ` t1 ´ 1q s1 ` pt0 ` t1 ´ t0t1q 1 ´ t0t1 s1q

´ t´1
0 t´1

1 s1s2s1 ´ pt´1
0 ` t´1

1 ´ 1q s1s2s1 ´ pt´1
0 ` t´1

1 ´ t´1
0 t´1

1 q 1

` t´1
0 t´1

1 s1s2s1 ` s2 ´ pt´1
0 ` t´1

1 ´ 1q s1ps2s1s2q

´ pt´1
0 ` t´1

1 ´ t´1
0 t´1

1 q s2 ` t´1
0 t´1

1 ps1s2s1qs2 .
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If we then expand all the terms in the sum and group together those that are multiples of
the same braid word, we find that:

s1s2ps1s2q “ pt0 ` t1 ´ t0t1 ´ 1qpt´1
0 ` t´1

1 ´ t´1
0 t´1

1 ´ 1q 1

` pt0 ` t1 ´ 1qpt´1
0 ` t´1

1 ´ t´1
0 t´1

1 ´ 1q s1 ` pt0 ` t1 ´ t0t1 ´ 1qpt´1
0 ` t´1

1 ´ t´1
0 t´1

1 q s2

´ pt0 ` t1 ´ t0t1 ´ 1q s1 ´ pt0 ` t1 ´ t0t1 ´ 1q s2

` pt0 ` t1 ´ 1qpt´1
0 ` t´1

1 ´ t´1
0 t´1

1 q s1s2 ´ pt0 ` t1 ´ 1q s1s2 ´ pt0 ` t1 ´ 1q s1s2

` t0t1 s1s2 ´ pt´1
0 ` t´1

1 ´ 1q s2s1 ` pt´1
0 ` t´1

1 qpt0 ` t1 ´ t0t1q s2s1

` pt´1
0 ` t´1

1 ´ 1q s2s1 ` pt0 ` t1 ´ t0t
´1
1 ´ t´1

0 t1 ´ 1q s2s1 ´ pt´1
0 ` t´1

1 q s1s2s1

` pt0 ` t1qpt´1
0 ` t´1

1 q s1s2s1 ` pt´1
0 ` t´1

1 ´ 1q s1s2s1 ´ pt´1
0 t1 ` t0t

´1
1 ` 1q s1s2s1

` s1s2s1 ´ pt0 ` t1q s1s2s1 ` pt0 ` t1q s1s2s1 ´ s2s1s2 .

‚
�� ��Case of s1s2s1s2. Like in the previous case, one can compute (R2) ¨ s1s2 to find that:

s1s2s1s2 “ pt0 ` t1 ´ t0t1 ´ 1qpt´1
0 ` t´1

1 ´ t´1
0 t´1

1 ´ 1q 1 ` p1 ´ t´1
0 t´1

1 qpt0 ` t1 ´ t0t1 ´ 1q s1

` pt´1
0 ` t´1

1 ´ 2qpt0 ` t1 ´ t0t1 ´ 1q s1 ` pt´1
0 ` t´1

1 ´ t´1
0 t´1

1 ´ 1qpt0 ` t1 ´ 1q s2

´ pt0 ` t1 ´ t0t1 ´ 1q s2 ` p1 ´ t´1
0 t´1

1 qpt0 ` t1 ´ 1q s1s2 ` p1 ´ t0t1q s1s2

` pt´1
0 ` t´1

1 ´ 2qpt0 ` t1 ´ 1q s1s2 ´ pt0 ` t1 ´ 2t0t1q s1s2 ` pt0 ` t1 ´ t0t1q s2s1

´ pt0 ` t1 ´ t0t1 ´ 1qs2s1 ´ s1s2s1 ` pt0 ` t1q s1s2s1 ´ pt0 ` t1 ´ 1q s1s2s1

` s1s2s1 ´ s1s2s1 ` t0t1 s1s2s1 ´ t0t1 s2s1s2 .

‚
�� ��Case of s2s1s2s1. If we simplify s2s1 ¨ (R2) we get the following expression:

s2s1s2s1 “ pt0 ` t1 ´ t0t1 ´ 1qpt´1
0 ` t´1

1 ´ t´1
0 t´1

1 ´ 1q 1 ` p1 ´ t´1
0 t´1

1 qpt0 ` t1 ´ t0t1 ´ 1q s1

` pt´1
0 ` t´1

1 ´ 2qpt0 ` t1 ´ t0t1 ´ 1q s1 ` pt´1
0 ` t´1

1 ´ t´1
0 t´1

1 ´ 1qpt0 ` t1 ´ 1q s2

´ pt0 ` t1 ´ t0t1 ´ 1q s2 ´ pt´1
0 ` t´1

1 ´ 1qpt0 ` t1q s1s2

` pt´1
0 ` t´1

1 ` 1qpt0 ` t1 ´ t0t1q s1s2 ` pt´1
0 ` t´1

1 ´ 1qpt0 ` t1q s1s2

` p1 ´ pt´1
0 ` t´1

1 ` 1qpt0 ` t1 ´ t0t1qq s1s2 ` p1 ` t´1
0 t1 ` t0t

´1
1 ´ t´1

0 ´ t´1
1 ` t´1

0 t´1
1 q s2s1

´ pt0 ` t´1
0 ` t1 ` t´1

1 ´ 2q s2s1 ´ p1 ` t´1
0 t1 ` t0t

´1
1 ´ t0 ´ t1 ` t0t1q s2s1

` t0t1p1 ` pt´1
0 ` t´1

1 ´ 1q
2
qs2s1 ´ s1s2s1 ` p1 ´ pt´1

0 ` t´1
1 ´ 1qpt0 ` t1qq s1s2s1

` pt´1
0 ` t´1

1 ´ 1qpt0 ` t1q s1s2s1 ` pt´1
0 ` t´1

1 qpt0 ` t1q s1s2s1 ´ s1s2s1

´ pt´1
0 t1 ` t0t

´1
1 ` 1qs1s2s1 ` t0t1 s1s2s1 ´ t0t1 s2s1s2 .

‚
�� ��Case of s2s1s2s1. Finally, if we write s2s1 ¨ (R2) we get:

s2s1s2s1 “ pt0 ` t1 ´ t0t1 ´ 1qpt´1
0 ` t´1

1 ´ t´1
0 t´1

1 ´ 1q 1 ` pt0 ` t1 ´ 1qpt´1
0 ` t´1

1 ´ t´1
0 t´1

1 ´ 1q s1

´ pt0 ` t1 ´ t0t1 ´ 1q s1 ´ pt´1
0 ` t´1

1 ´ t´1
0 t´1

1 ´ 1q s2

` pt0 ` t1 ´ t0t1 ´ 1qpt´1
0 ` t´1

1 ´ 1q s2 ` s1s2 ´ s1s2 ` s1s2

´ pt´1
0 ` t´1

1 ´ t´1
0 t´1

1 q s2s1 ` s2s1 ` pt0 ` t1 ´ 1qpt´1
0 ` t´1

1 ´ 1q s2s1
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´ pt0 ` t1 ´ t0t1qs2s1 ` s1s2s1 ´ s1s2s1 ` s1s2s1 ´ s2s1s2 .

This ends the proof of Lemma 2.4.

Appendix D. Proof of Lemma 2.6

Let us show that the following four words

s3s2s1s2s3 , s3s2s1s2s3 , s3s2s1s2s3 and s3s2s1s2s3 P B4

can be reduced to linear combinations of words of one of the following types:

‚ [Type 1] words with at most one s˘1
3 ,

‚ [Type 2] s3s2s3, s1s3s2s3 or s1s3s2s3.

To do so we write some equations that will be useful eventually.

Proposition D.1. The following equations are true in C4, modulo terms of Types 1 and 2:

s3s2s1s2s3 “ s3s2s1s2s3 ´ s2s3s2s1s2s3 ` s2s3s2s1s2s3, (47)

s3s2s1s2s3 “ s2s3s2s1s2s3 ´ s2s3s2s1s2s3 ` s3s2s1s2s3. (48)

Proof. We use relation (R2) on the first two letters of certain words to find Equations (47)
and (48). The following equalities are written modulo Type 1 and Type 2 terms.

ps3s2qs1s2s3 “ ´ps3s2s3qs1s2s3 ` ps3s2s3qs1s2s3 ` ps3s2qs1s2s3

´ ps3s2qs1s2s3 ` ps3s2qs1s2s3 ´ ps2s3qs1s2s3

` ps2s3qs1s2s3 ` ps2s3qs1s2s3 ´ ps2s3qs1s2s3

` ps3s2s3qs1s2s3 ´ ps3s2s3qs1s2s3 .

Some of the terms can be simplified modulo Type 1 and Type 2 terms:

ps3s2s3qs1s2s3 “ s2s3ps2s1s2qs3 “ s2s3s1s2s1s3 “ s2s1ps3s2s3qs1 “ s2s1s2s3s2s1 ,

s3ps2s2s2qs3 “ s3s1s2s1s3 “ s1ps3s2s3qs1 “ s1s2s3s2s1 ,

s3ps2s1s2qs3 “ s3s1s2s1s3 “ s1s3s2s3s1 “ s1s2s3s2s1 ,

s2s3s1s2s3 “ s2ps1s3s2s3q
(R3)
“ ps2s3s2s3qs1

reduction in xs2,s3y
“ s3s2s3s1

(R3)
“ s1s3s2s3 ,

s2s3s1s2s3 “ s2s1ps3s2s3q “ s2s1s2s3s2 ,

s2s3s1s2s3 “ s2ps1s3s2s3q
(R3)
“ ps2s3s2s3qs1

reduction in xs2,s3y
“ s3s2s3s1

(R3)
“ s1s3s2s3 ,

s2s3s1s2s3 “ s2s1ps3s2s3q “ s2s1s2s3s2 ,

ps3s2s3qs1s2s3 “ s2s3ps2s1s2qs3 “ s2s3s1s2s1s3 “ s2s1ps3s2s3qs1 “ s2s1s2s3s2s1 .

So

s3s2s1s2s3 “ ´ps3s2s3qs1s2s3 ` s3s2s1s2s3 ` ps3s2s3qs1s2s3

“ ´s2s3s2s1s2s3 ` s3s2s1s2s3 ` s2s3s2s1s2s3 .

This proves Equation (47).

ps3s2qs1s2s3 “ ´ps2s3s2qs1s2s3 ` ps2s3s2qs1s2s3 ` ps2s3qs1s2s3

´ ps2s3qs1s2s3 ´ ps2s3qs1s2s3 ` ps2s3qs1s2s3
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´ ps3s2qs1s2s3 ` ps3s2qs1s2s3 ` ps3s2qs1s2s3

` ps2s3s2qs1s2s3 ´ ps2s3s2qs1s2s3 .

Like in the previous case, most terms can be reduced to linear combinations of Type 1 and
Type 2 quantities: s2s3s2s1s2s3, s2s3s1s2s3, s2s3s1s2s3, s2s3s1s2s3, s2s3s1s2s3, s3s2s1s2s3,
s3s2s1s2s3 and s2s3s2s1s2s3. And we can write:

s3s2s1s2s3 “ s2s3s2s1s2s3 ` s3s2s1s2s3 ´ s2s3s2s1s2s3 .

So Equation (48) holds. □

Proposition D.2. The words s3s2s1s2s3 and s3s2s1s2s3 reduce.

Proof. Let us start by writing an identity that will be useful subsequently. All equalities
here are to be understood modulo Type 1 and Type 2 terms.

s2s3s2s1ps2s3q
(R2)
“ ´s2s3s2s1ps2s3s2q ` s2s3s2s1ps2s3s2q ` s2s3s2s1ps2s3q

´ s2s3s2s1ps2s3q ` s2s3s2s1ps2s3q ´ s2s3s2s1ps3s2q

` s2s3s2s1ps3s2q ` s2s3s2s1ps3s2q ´ s2s3s2s1ps3s2q

` s2s3s2s1ps2s3s2q ´ s2s3s2s1ps2s3s2q .

(49)

Some of the terms in the previous equality are linear combinations of Type 1 and Type 2
terms:

s2s3ps2s1s2qs3s2 “ s2s3s1s2s1s3s2 “ s2s1ps3s2s3qs1s2 “ s2s1s2s3s2s1s2 ,

s2s3ps2s1s2qs3 “ s2s3s1s2s1s3 “ s2s1ps3s2s3qs1 “ s2s1s2s3s2s1 ,

s2s3ps2s1s2qs3 “ s2s3s1s2s1s3 “ s2s1ps3s2s3qs1 “ s2s1s2s3s2s1 ,

s2s3s2s1s3s2 “ s2ps3s2s3s1qs2
(R3)
“ s2s1ps3s2s3s2q

reduction in xs2,s3y
“ s2ps1s3s2s3q

(R3)
“ ps2s3s2s3qs1

reduction in xs2,s3y
“ s3s2s3s1

(R3)
“ s1s3s2s3 ,

s2s3s2s1s3s2 “ s2ps3s2s3s1qs2
(R3)
“ s2s1ps3s2s3s2q

reduction in xs2,s3y
“ s2ps1s3s2s3q

(R3)
“ ps2s3s2s3qs1

reduction in xs2,s3y
“ s3s2s3s1

(R3)
“ s1s3s2s3 ,

s2s3s2s1s3s2 “ s2ps3s2s3qs1s2 “ s2s2s3s2s1s2 ,

s2s3s2s1s3s2 “ s2ps3s2s3qs1s2 “ s2s2s3s2s1s2 ,

s2s3ps2s1s2qs3s2 “ s2s3s1s2s1s3s2 “ s2s1ps3s2s3qs1s2 “ s2s1s2s3s2s1s2 .

So Equation (49) can be written in a simpler way.

s2s3s2s1s2s3 “ ´s2s3s2s1s2s3s2 ` s2s3s2s1s2s3 ` s2s3s2s1s2s3s2 .

Let us reduce each of the three terms on the right hand side of the previous equality.

ps2s3s2qs1s2s3s2 “ s3s2s3s1s2s3s2 “ s3s2s1s3ps2s3s2q “ s3s2s1ps3s3qs2s3

“ pt0 ` t1 ´ 1q s3s2s1ps3s2s3q ` pt0 ` t1 ´ t0t1q s3ps2s1s2qs3 ´ t0t1 s3s2s1s3s2s3

“ pt0 ` t1 ´ 1q s3ps2s1s2qs3s2 ` pt0 ` t1 ´ t0t1q s3s1s2s1s3 ´ t0t1 s3s2s1s3s2s3

“ pt0 ` t1 ´ 1q s3s1s2s1s3s2 ` pt0 ` t1 ´ t0t1q s1s3s2s3s1 ´ t0t1 s3s2s1s3s2s3
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“ pt0 ` t1 ´ 1q s1s3s2s3s1s2 ` pt0 ` t1 ´ t0t1q s1s1s3s2s3 ´ t0t1 s3s2s1s3s2s3

“ pt0 ` t1 ´ 1q s1s2s3s2s1s2 ` pt0 ` t1 ´ t0t1qps1s1qs3s2s3 ´ t0t1 s3s2s1s3s2s3

“ ´t0t1 s3s2s1s3s2s3 .

Now continuing down the rabbit hole, we can use Lemma 2.1’s version of (R2) to write that:

s2s3s2s1s2s3s2 “ ´t0t1 s3s2s1ps3s2s3q
(R2)
“ ´pt0t1qpt´1

0 t´1
1 q s3s2s1ps3s2s3q ` λ

“ ´ps3s2s3qs1s2s3 ` λ “ ´s2s3s2s1s2s3 ` λ ,

where λ is a linear combination of the following words, all of which reduce:

s3s2s1ps2s3s2q “ s3ps2s1s2qs3s2 “ s3ps1s2s1qs3s2

“ s1ps3s2s3s1qs2
(R3)
“ ps1s1qps3s2s3s2q

reduction in xs2,s3y
“ s3s2s3 ,

s3s2s1ps2s3s2q “ s3ps2s1s2qs3s2 “ s3s1s2s1s3s2 “ s1ps3s2s3qs1s2 “ s1s2s3s2s1s2 ,

s3s2s1ps2s3s2q “ s3ps2s1s2qs3s2 “ s3s1s2s1s3s2

“ s1ps3s2s3s1qs2
(R3)
“ s1s1ps3s2s3s2q

reduction in xs2,s3y
“ s1s1ps3s2s3q ,

s3s2s1ps2s3s2q “ s3ps2s1s2qs3s2 “ s3ps1s2s1qs3s2 “ s1ps3s2s3qs1s2 “ s1s2s3s2s1s2 ,

s3s2s1ps3s2q “ ps3s2s3s1qs2
(R3)
“ s1ps3s2s3s2q

reduction in xs2,s3y
“ s1s3s2s3 ,

s3s2s1ps3s2q “ ps3s2s3s1qs2
(R3)
“ s1ps3s2s3s2q

reduction in xs2,s3y
“ s1s3s2s3 ,

s3s2s1ps3s2q “ s3s2s3s1s2 “ ps3s2s3qs1s2 “ s2s3s2s1s2 ,

s3s2s1ps3s2q “ s3s2s3s1s2 “ ps3s2s3qs1s2 “ s2s3s2s1s2 ,

s3s2s1ps2s3q “ s3ps2s1s2qs3 “ s3s1s2s1s3 “ s1ps3s2s3s1q
(R3)
“ s1s1s3s2s3 “ s3s2s3 ,

s3s2s1ps2s3q “ s3ps2s1s2qs3 “ s3s1s2s1s3 “ s1ps3s2s3s1q
(R3)
“ ps1s1qs3s2s3 ,

s3s2s1ps2s3q “ s3ps2s1s2qs3 “ s3s1s2s1s3 “ s1ps3s2s3qs1 “ s1s2s3s2s1 ,

s3s2s1ps2s3q “ s3ps2s1s2qs3 “ s3s1s2s1s3 “ s1ps3s2s3qs1 “ s1s2s3s2s1 ,

s3s2s1ps2q “ s3s2s1s2 ,

s3s2s1ps2q “ s3s2s1s2 .

This means that modulo Type 1 and Type 2 terms:

s2s3s2s1s2s3s2 “ ´s2s3s2s1s2s3 ,

and Equation (49) can be further simplified:

(((((((s2s3s2s1s2s3 “ (((((((((
´s2s3s2s1s2s3s2 ` s2s3s2s1s2s3 ` s2s3s2s1s2s3s2 .

Also:

s2s3s2s1ps2s3s2q “ s2s3s2s1s3s2s3 “ ps2s3s2qs3s1s2s3 “ s3s2ps3s3qs1s2s3
(R1)
“ pt0 ` t1 ´ 1q ps3s2s3qs1s2s3 ` pt0 ` t1 ´ t0t1q s3ps2s1s2qs3 ´ t0t1 s3s2s3s1s2s3

“ pt0 ` t1 ´ 1q s2s3s2s1s2s3 ` pt0 ` t1 ´ t0t1q s3s1s2s1s3 ´ t0t1 s3s2s1ps3s2s3q
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“ pt0 ` t1 ´ 1q s2s3s2s1s2s3 ` pt0 ` t1 ´ t0t1q s1ps3s2s3s1q ´ t0t1 s3ps2s1s2qs3s2
(R3)
“ pt0 ` t1 ´ 1q s2s3s2s1s2s3 ` pt0 ` t1 ´ t0t1q ps1s1qs3s2s3 ´ t0t1 s3s1s2s1s3s2

“ pt0 ` t1 ´ 1q s2s3s2s1s2s3 ` pt0 ` t1 ´ t0t1q s3s2s3 ´ t0t1 s1ps3s2s3s1qs2
(R3)
“ pt0 ` t1 ´ 1q s2s3s2s1s2s3 ´ t0t1 s1s1ps3s2s3s2q

“ pt0 ` t1 ´ 1q s2s3s2s1s2s3 ´ t0t1 s3s2s3s2

“ pt0 ` t1 ´ 1q s2s3s2s1s2s3 (reduction in xs2, s3y) .

So Equation (49) can now be written:

0 “ s2s3s2s1s2s3 ` pt0 ` t1 ´ 1q s2s3s2s1s2s3 , i.e. 0 “ pt0 ` t1q s2s3s2s1s2s3 .

So s2s3s2s1s2s3 reduces. And multiplying by s2 from the left, we deduce that s3s2s1s2s3
reduces as well. Indeed:

s2s3s2s1s2s3 “ aps1, s2q ` bps1, s2q s3 cps1, s2q ` dps1, s2q s3 eps1, s2q

` λ s3s2s3 ` µ s1s3s2s3 ` ν s1s3s2s3 ,

so

s3s2s1s2s3 “ s2 aps1, s2q ` s2 bps1, s2q s3 cps1, s2q ` s2 dps1, s2q s3 eps1, s2q

` λ s2s3s2s3 ` µ s2s1s3s2s3 ` ν s2s1s3s2s3

“ ãps1, s2q ` b̃ps1, s2q s3 cps1, s2q ` d̃ps1, s2q s3 eps1, s2q

` λ s3s2s3 ` µ s1ps2s3s2s3q ` ν s2ps1s3s2s3q (reduction in xs2, s3y)

“ ãps1, s2q ` b̃ps1, s2q s3 cps1, s2q ` d̃ps1, s2q s3 eps1, s2q

` λ s3s2s3 ` µ s1s3s2s3 ` ν ps2s3s2s3qs1 (reduction in xs2, s3y + (R3))

“ ãps1, s2q ` b̃ps1, s2q s3 cps1, s2q ` d̃ps1, s2q s3 eps1, s2q

` λ s3s2s3 ` µ s1s3s2s3 ` ν s3s2s3s1 (reduction in xs2, s3y)

“ ãps1, s2q ` b̃ps1, s2q s3 cps1, s2q ` d̃ps1, s2q s3 eps1, s2q

` λ s3s2s3 ` µ s1s3s2s3 ` ν s1s3s2s3 ((R3))

“ 0 .

Since s3s2s1s2s3 reduces, if we start the previous computation again writing everything
from right to left when it was written from left to right, we find in the same way that
s3s2s1s2s3 reduces. □

Proposition D.3. The words s3s2s1s2s3 and s3s2s1s2s3 reduce.

Proof. Using Proposition D.2, Equations (47) and (48) can be written in a simpler way:

(47) : s3s2s1s2s3 ` s2s3s2s1s2s3 “ 0 ,

(48) : s3s2s1s2s3 ` s2s3s2s1s2s3 “ 0 .
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To prove e.g. that s3s2s1s2s3 reduces, one way is to find a different equation involving
s3s2s1s2s3 and s2s3s2s1s2s3. To do so, we write down (R3) ¨ s2s3 explicitly and we find that
modulo Type 1 and Type 2 terms, it can be expressed as follows:

a78 ps2s3s2s1qs2s3 ` pa39 ´ a75 ´ a53 ´ a47q s3s2s1s2s3 “ 0 . (50)

Therefore the system

pΣq :

"

s3s2s1s2s3 ` s2s3s2s1s2s3 “ 0
a78 ps2s3s2s1qs2s3 ` pa39 ´ a75 ´ a53 ´ a47q s3s2s1s2s3 “ 0

has the following determinant:

detpΣq “

ˇ

ˇ

ˇ

ˇ

a39 ´ a75 ´ a53 ´ a47 1
a78 1

ˇ

ˇ

ˇ

ˇ

“ ´a78 ` a39 ´ a75 ´ a53 ´ a47

“
pt0 ` t1 ´ 1qp1 ` t0t1 ` t20t1 ` t0t

2
1q

pt0 ` t1qpt0t1 ` 1qpt0t1 ´ 1q
‰ 0 .

So pΣq is an invertible system. Thus s3s2s1s2s3 (and s2s3s2s1s2s3) can be reduced.
Similarly, we can prove that s3s2s1s2s3 (and s2s3s2s1s2s3) reduce by considering the system

comprised of the reduced version of Equation (48) and (R3) ¨ s2s3. □

Summing up, Lemma 2.6 is now proved.
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