
DOES THE JONES POLYNOMIAL DETERMINE THE SIGNATURE OF A KNOT?

STAVROS GAROUFALIDIS

Abstract. The signature function of a knot is an integer valued step function defined on the unit circle.
The jumps (i.e., the discontinuities) of the signature function can occur only at the roots of the Alexander
polynomial on the unit circle. The latter are important in deforming U(1) representations of knot groups

to irreducible SU(2) representations. Under the assumption that these roots are simple, we formulate a
conjecture that explicitly computes the jumps of the signature function in terms of the Jones polynomial
of a knot and its parallels. As evidence, we prove our conjecture for torus knots, and also (using computer
calculations) for knots with at most 8 crossings. We also give a formula for the jump function at simple
roots in terms of relative signs of Alexander polynomials.
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1. Introduction

1.1. The signature function of a knot. A celebrated invariant of a knot K in 3-space is its σignature
function

σ(K) : S1 −→ Z,

defined for complex numbers of absolute value 1, and taking values in the set of integers. The signature
function of a knot is a concordance invariant, and plays a key role in the study of knots via surgery theory,
[L1].

It turns out that the signature function is a step function with possible jumps on the set

Div∆(K) = {ρ ∈ S1 |∆(K)(ρ) = 0}
of roots of the Alexander polynomial on the unit circle. In view of this, the interesting part of the signature
function is its jumping behavior on the set Div∆(K).
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In other words, we may consider the associated jump function

j(K) : Div∆(K) −→ Z

defined by jρ0 (K) = limρ→ρ+
0

σρ(K)− limρ→ρ−0
σρ(K).

Considering the roots of the Alexander polynomial on the unit circle with multiplicities, we may identify
the jump function with a jump divisor

∑
ρ∈Div∆(K)

jρ(K)[ρ] in S1.
Since 1 6∈ Div∆(K) and σ1(K) = 0, it follows that the jump function uniquely determines the signature

function away from the set Div∆(K). Since −1 6∈ Div∆(K), it follows in particular that j(K) determines the
σignature of the knot σ−1(K).

The signature of a knot may be defined using a Seifert surface of a knot (see Section 2.1 below). An
intrinsic definition of the jump function of a knot was given by Milnor [M1, M2], using the Blanchfield
pairing of the universal abelian cover of a knot. This definition, among other things, makes evident the role
played by the roots of the Alexander polynomial on the unit circle (as opposed to the rest of the roots of
the Alexander polynomial, which are ignored).

From the point of view of gauge theory and mathematical physics, the signature function of a knot may
be identified with the spectral flow of a 1-parameter family of the signature operator, twisted along abelian
(that is, U(1)-valued) representations of the knot complement.

The moduli space of U(1) representations of the knot complement is well understood; it may be identified
with the unit circle. On the other hand, the moduli space of SU(2) representations is less understood, and
carries nontrivial topological information about the knot and its Dehn fillings, as was originally discovered
by Casson (see [AM]) and also by X-S. Lin; see [Li].

One may ask to identify the U(1) representations which deform to irreducible SU(2) representations. Using
a linearization argument, Klassen and Frohman showed that a necessary condition for a U(1) representation
ρ to deform is that ∆(K)(ρ2) = 0. This brings us to the (square of the) set Div∆(K). Conversely, Frohman-
Klassen proved sufficiency provided that the Alexander polynomial has simple roots on the unit circle; see
[FK]. Herald proved sufficiency under the (more relaxed condition that) the jump function vanishes nowhere;
see [H1, H2].

It is unknown at present whether sufficiency holds without any further assumptions.
Let us summarize the two key properties of the jump divisor Div∆(K)(K), in the spirit of Mazur (see

[Ma]):
• The jump divisor controls the signature function of a knot.
• The jump divisor controls (infinitesimally) deformations of U(1) representations of the knot comple-

ment to irreducible SU(2) representations.

1.2. The colored Jones function of a knot. It is a long standing problem to find a formula for the
σignature function of a knot in terms of its colored Jones function. The latter is a sequence of Jones
polynomials associated to a knot. Recall that given a knot K and a positive integer n (which corresponds
to an n-dimensional irreducible representation of sl2), one can define a Laurrent polynomial Jn(K) ∈ Z[q±].

In [R2], Rozansky considered a repackaging of the sequence {Jn(K)}. Namely, he defined a sequence of
rational functions Qk(K) ∈ Q(q) for k ≥ 0 with the following properties:

• Qk(K) = Pk(K)/∆2k+1(K) for some polynomials Pk(K) ∈ Z[q, q−1] with P0(K) = 1 and such that
Pk(K)(q) = Pk(K)(q−1).

• For every n we have:

(1)
Jn(K)(q)

Jn(unknot)(q)
=

∞∑
k=0

Qk(qn)(q − 1)k ∈ Q[[q − 1]]

where Q[[q − 1]] is the ring of formal power series in q − 1 with rational coefficients
Equation (1) is often called the Euler expansion of the colored Jones function. In physical terms, the

above expansion is an asymptotic expansion of the Chern-Simons path integral of the knot complement,
expanded around a background U(1) flat connection. Thus, philosophically, it should not be a surprise to
discover that this expansion has something to do with the signature of the knot.

For the curious reader, let us point out that Rozansky conjectured such an expansion for the full Kontsevich
integral of a knot, graded by the negative Euler characteristic of graphs (thus the name, Euler expansion).
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This conjecture was proven by Kricker and the author; [GK1]. Furthermore, a close relation was discovered
between residues of the rational functions Qk at roots of unity and the LMO invariant of cyclic branched
coverings of the knot; [GK2]. In an attempt to understand the Euler expansion, a theory of finite type
invariants of knots (different from the usual theory of Vassiliev invariants) was proposed in [GR]. According
to that theory, two knots are 0-equivalent iff they are S-equivalent; [GR]. Moreover, Qk is a finite type
invariant of type 2k.

Technically, the Euler expansion of the colored Jones function is an integrality statement. Namely, it is
easy to see that there exist unique sequence of power series Qk(K)(q) ∈ Q[[q − 1]] for k ≥ 0 that satisfies
Equation (1). The hard part is to show that these power series are Taylor series expansions of rational
functions with integer coefficients and prescribed denominators.

The statement P0(K) = 1 in the leading term of the Euler expansion is nothing but the Melvin-Morton-
Rozansky conjecture, proven by Bar-Natan and the author in [BG]. Thus, the leading order term in the
Euler expansion is a well-understood topological invariant of knots. Ever since the Euler expansion was
established, it has been a question to establish a topological understanding of the lower order terms.

1.3. The conjecture. Consider Q(K)(t) = P (K)(t)
∆2(K)(t) ∈ Q(t) where P (K) = P1(K). We will think of Q(K)

as a function (with singularities) defined on the unit circle.
If ρ = eiθ0 is a root of the Alexander polynomial on S1, we may expand Q(K)(eiθ) around θ = θ0. The

result is a power series with lowest term cρ(θ − θ0)mρ , for some integer mρ and some nonzero real number
cρ.

Definition 1.1. Let us define the Jones jump function of a knot K

jj(K) : Div∆(K) −→ Z

by
jjρ(K) = sgn(cρ) max{0,−mρ} sgn(Im(ρ))

where Im(z) is the imaginary part of a complex number z and sgn(x) is the sign of a real number x is defined
by sgn(x) = +1, 0 or −1 according to x > 0, x = 0 or x < 0 respectively.

In other words, for ρ ∈ Div∆(K) on the upper semicircle, jjρ(K) is nonzero only if Q(K) has a singularity
at ρ. In that case, the absolute value |jjρ(K)| is determined by the order of the singularity of Q(K), and the
jump is determined by the sign of the coefficient of the most singular term in a series expansion of Q(K)
around ρ.

Definition 1.2. We say that a knot K is simple if its Alexander polynomial ∆(K) has simple roots on the
unit circle.

Conjecture 1. If K is simple, then j(K) = jj(K).

A modest corollary is:

Corollary 1.3. If K is simple, Conjecture 1 implies that the colored Jones function of K determines the
signature σ−1(K).

Remark 1.4. Notice that jρ(K) = −jρ̄(K) and jjρ(K) = −jjρ̄(K). Thus, it suffices to check the conjecture
on the upper semicircle.
Remark 1.5. The conjecture is false if ∆(K) has multiple roots (of odd or even multiplicity). For example,
consider the connected sum ]nK of n right trefoils. Then, Q(]nK) = nQ(K) and ∆(]K) = ∆(K)n.

We present the following evidence for the conjecture:

Theorem 1. (a) Conjecture 1 is true for torus knots, and for knots with at most 8 crossings.
(b) The Conjecture is compatible with the operations of mirror image, connected sum (assuming the resulting
knot is simple) and (n, 1) parallels of knots.

En route to establish our results, we give a skein formula that uniquely characterizes the jump function
of simple knots; see Theorem 3.

Let us compare Conjecture 1 with existing conjectures about the structure of the colored Jones function.
At the time of the writing, there are two conjectures that relate the colored Jones function to hyperbolic
geometry. Namely,
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• The Hyperbolic Volume Conjecture, after Kashaev and J&J.Murakami, which states that for a hy-
perbolic knot K,

lim
n→∞

log |J ′n(K)(e2πi/n)|
n

= c vol(S3 −K)

where J ′n(K) = Jn(K)/Jn(unknot).
• The Characteristic equals deformation variety Conjecture, due to the author, which compares the

deformation curve of SL2(C) representations of a knot complement (viewed from the boundary) with
a complex curve which is defined using the recursion relations (with respect to n) of the sequence
{Jn(K)}; see [GL] and [Ga3].

The Hyperbolic Volume Conjecture is an analytic statement, which involves the existence and identifica-
tion of a sequence of real numbers.

On the other hand, the Characteristic equals Deformation Variety conjecture is an algebraic statement,
since it is equivalent to the equality of two polynomials with integer coefficients, one of which is obtained by
noncommutative elimination, and the other obtained by commutative elimination.

Conjecture 1 appears to be an analytic conjecture, since its basic ingredients are signs of real numbers.
In the field of Quantum Topology, analytic conjectures have held the longest.

Let us end the introduction with the following

Question 1. Understand the underlying geometry and perturbative quantum field theory behind the Taylor
expansion of the Q function (and more generally, Euler expansion (1) of the colored Jones function). In
particular, use the higher order terms Qk in the expansion (1) to formulate a conjecture for the jump
function of all knots.

1.4. Acknowledgement. The author wishes to thank S. Orevkov, L. Rozansky and A. Stoimenov, and
especially J. Levine for helpful conversations.

2. The signature and the jump function

2.1. Symmetries of the jump function. Given a Seifert matrix V of a knot K, consider the Hermitian
matrix B(t) = (1 − t)V + (1 − t−1)V T , for t ∈ S1. The eigenvalues of B(t) are real, and we define
σt(K) = σ(B(t)), where σ(M) denotes the signature of a Hermitian matrix M . It turns out that σ(K) is
independent of the Seifert surface V chosen. Since B(t) = (t1/2− t−1/2)A(t), where A(t) = t1/2V − t−1/2V T ,
and det(A(t)) = D(K)(t) is the symmetrized Alexander polynomial of K, it follows that σ(K) is a step
function with possible jumps along the set Div∆(K).

It turns out that the signature function and the Alexander polynomial of K are independent of the Seifert
matrix V of K.

The next lemma summarizes the symmetries of the jump function.

Lemma 2.1. If ρ is a root of the Alexander polynomial on S1, then |jρ(K)| = 2 aρ, where

(a) αρ is an integer
(b) aρ ≤ mult(ρ, ∆(K)), where mult(ρ, ∆(K)) is the multiplicity of ρ in ∆(K), and
(c) αρ ≡ mult(ρ, ∆(K)) mod 2.
(d) jρ(K) = −jρ̄(K).

Proof. Fix a knot K and a Seifert matrix V of K. Up to S-equivalence, (which does not change the
Blanchfield pairing, and therefore does not change the Alexander polynomial and the signature function),
we may assume that V is nonsingular, i.e., that det(V ) 6= 0; see [Tr, p.484], [L2, p.195] and [Go, p.28]. In
that case, V is a square matrix of size 2n = deg ∆(K). Consider the 2n by 2n Hermitian matrix B(ρ) as
above for ρ = eiθ and let ρ0 = eiθ0 ∈ Div∆(K).

Let p(ρ), n(ρ) and z(ρ) denote the number of positive, negative and zero eigenvalues of B(ρ).
Since B(ρ−0 ) is nonsingular, it follows that 2n = p(ρ−0 )+n(ρ−0 ) and σρ−0

(K) = p(ρ−0 )−n(ρ−0 ) = 2n−2n(ρ−0 ).
Similarly, σρ+

0
(K) = p(ρ+

0 ) − n(ρ+
0 ) = 2n − 2n(ρ+

0 ), and jρ0(K) = 2(n(ρ+
0 ) − n(ρ−0 )). Thus, aρ0 = n(ρ+

0 ) −
n(ρ−0 ), which proves (a).
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Choose analytic branches λ1(ρ), . . . , λ2n(ρ) for the eigenvalues of B(ρ). Since det(B(t)) = (t1/2 −
t−1/2)2n∆(K)(t), it follows that

(2) λ1(ρ) . . . λ2n(ρ) = det(B(ρ)) = (ρ1/2 − ρ−1/2)2n∆(K)(ρ)

and expanding around ρ = ρ0, it follows that z(ρ0) = multρ0∆(K).
By the continuity of the analytic functions λi(ρ), it follows that

|n(ρ+
0 )− n(ρ−0 )| ≤ z(ρ0).

Thus, aρ0 ≤ multρ0∆(K), which proves (b).
It follows from Equation (2) that the number of negative eigenvalues λi(ρ) that change sign when they

cross ρ0 is odd (resp. even) if multρ0∆(K) is odd (resp. even). Since this number is n(ρ+
0 ) − n(ρ−0 ), this

concludes part (c).
The reader may compare (c) with the proof of [H1, Corollary 2].
Since M(t) = M(t−1) by the definition of M(t), it implies part (d). �
In particular, if K is simple, j(K) takes values in the set {−2, 2}. For a precise formula for the jump

function in that case, see Theorem 2.

2.2. A skein theory for the signature and the jump function. Let us begin with a useful definition.
A triple of links (L+, L−, L0) is called bordered if there is an embedded ball D3 in S3 that locally intersects
them as in figure 1.

+ − 0LLL

Figure 1. A bordered triple of links (L+, L−, L0).

If we choose planar projection and a crossing, then a bordered triple corresponds to replacing the crossing
by a positive, negative or smoothening. Notice that if L+ is a link with 1 component, then L− and L0 are
links with 1 and 2 components respectively.

The next lemma computes the change of the signature function with respect to the change of a crossing,
in terms of the sign of the Alexander polynomials.
Lemma 2.2. If K is a knot, ρ = eiθ ∈ S1 such that ∆(K+)(ρ)∆(K−)(ρ) 6= 0, then

(3) σρ(K−)− σρ(K+) =

{
2 if ∆(K+)(ρ)∆(K−)(ρ) < 0
0 if ∆(K+)(ρ)∆(K−)(ρ) > 0.

Proof. We can choose Seifert surfaces (V+, V−, V0) for (K+, K−, K0) such that

V+ =
(

a v1

vT
2 V0

)
V− =

(
a + 1 v1

vT
2 V0

)
where v1 and v2 are some row vectors. Hermitianizing, we get:

B+ =
(

2a v
vT B0

)
B− =

(
2a + 2− 2 cos θ v

vT B0

)
.

Let us call a triple of Hermitian matrices (A+, A−, A0) ρ-bordered if

A+ =
(

a v
vT A0

)
A− =

(
a + 2− 2 cos θ v

vT A0

)
,

for ρ = eiθ and some row vector v. Using Lemma 2.3 the result follows. �
Lemma 2.3. If (A+, A−, A0) is a ρ-bordered triple, and det(A+) det(A−) 6= 0, then

σ(A−)− σ(A+) =

{
2 if det(A+) det(A−) < 0
0 if det(A+) det(A−) > 0.
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Proof. This is well-known for ρ = 1; [C] and also [Ga1, Lemma 3.1]. We give a proof here for all ρ.
By a similarity transformation (that is a replacement of B by P ?BP where P is an invertible matrix, and

P ? is the conjugate transpose of P ), we can assume that

A+ =
(

a v
vT 0

)
⊕D A− =

(
a + 2− 2 cos θ v

vT 0

)
⊕D, A0 = [0]r ⊕D,

where D is a nonsingular diagonal matrix, [0]r is the zero r × r matrix, v is a 1 × r vector and a a real
number.

Since the nullity (that is, the dimension of the kernel) and the signature of the matrix
(

b v
vT 0

)
are given

by:

v = b = 0 v = 0, b 6= 0 v 6= 0
nullity r + 1 r r − 1
signature 0 sgn(a) 0

the result follows by a case-by-case argument. �

The next theorem computes the jump function of a simple knot in terms of a relative sign of Alexander
polynomials. First, a preliminary definition.
Definition 2.4. If f(x) is a real-valued analytic function of x in a neighborhood of a, we define the sign of
f at a sgn(f, a) to be the sign of the first nonvanishing Taylor series coefficient (around a), if there is such,
and zero otherwise. In other words, if f 6= 0, we have:

sgn(f, a) = sgn(f (n)(a)) ∈ {−1, 1},
where f (k)(a) = 0 for k < n and f (n)(a) 6= 0.
Remark 2.5. Notice that if f(a) 6= 0, then sgn(f, a) = sgn(f(a)), and that if a is a simple root, then
sgn(f, a) = sgn(f(a + δ)) = − sgn(f(a− δ)) where δ is sufficiently small and positive.

Fix a simple knot K and a complex number ρ = eiθ ∈ Div∆(K). Choose a planar projection of K and a
crossing (positive or negative). Then, K = Kε, where ε ∈ {+,−} is the sign of the chosen crossing. Suppose
that ∆(K−ε)(ρ) 6= 0. Such a projection and choice of crossing will be called (ρ, K)-good.
Theorem 2. Fix (ρ, K) as above. For every (ρ, K)-good projection, we have

jρ(K) = 2ε sgn(∆(K+), θ) sgn(∆(K−), θ) ∈ {−2, 2}.
Proof. Without loss of generality, let us assume K = K−, that is ε = −1. We will apply Lemma 2.2 twice
to ρ′ = ei(θ+δ) and ρ′′ = ei(θ−δ) for sufficiently small positive δ.

Under these assumptions, we have that ∆(K−)(ρ′) 6= 0 (since ρ is an isolated root of a polynomial) and
∆(K+)(ρ′) 6= 0 (since ∆(K+)(ρ) 6= 0 by assumption), and similarly for ρ′′. Thus, the hypothesis of Lemma
2.2 are satisfied. Applying Lemma 2.2 twice, we get

σρ′(K−)− σρ′(K+) =

{
2 if ∆(K+)(ρ′)∆(K−)(ρ′) < 0
0 if ∆(K+)(ρ′)∆(K−)(ρ′) > 0

and

σρ′′(K−)− σρ′′(K+) =

{
2 if ∆(K+)(ρ′′)∆(K−)(ρ′′) < 0
0 if ∆(K+)(ρ′′)∆(K−)(ρ′′) > 0

Now, subtract and remember that σ(K+) is continuous at ρ since ∆(K+)(ρ) 6= 0. We get

jρ(K−) =

{
2 if ∆(K+)(ρ′)∆(K−)(ρ′) < 0
0 if ∆(K+)(ρ′)∆(K−)(ρ′) > 0

−
{

2 if ∆(K+)(ρ′′)∆(K−)(ρ′′) < 0
0 if ∆(K+)(ρ′′)∆(K−)(ρ′′) > 0

Since K is simple, it follows that ∆(K−)(ρ′)∆(K−)(ρ′′) < 0, thus the cases 2 − 2 or 0 − 0 do not occur
above. Thus,

jρ(K−) =

{
2 if ∆(K+)(ρ′)∆(K−)(ρ′) < 0
−2 if ∆(K+)(ρ′′)∆(K−)(ρ′′) < 0
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The result follows using Remark 2.5. Indeed, sgn(∆(K+), ρ) = sgn(∆(K+)(ρ)) and sgn(∆(K−), ρ) =
sgn(∆(K−)(ρ′′)) = − sgn(∆(K−)(ρ′)). �

Theorem 3. There is a unique invariant j defined for a simple knot K and ρ ∈ Div∆(K) such that for every
(ρ, K)-good projection we have:

jρ(K) = 2ε sgn(∆(K+), θ) sgn(∆(K−), θ).

Proof. In view of Theorem 2, we need to prove that there is at most one such invariant.
Fix a simple knot K and a complex number ρ = eiθ ∈ Div∆(K). We need to prove that there exists a

(ρ, K)-good projection.
Start with any planar projection of K and a crossing. If it is not good, apply Reidemaster moves II, which

Frohman-Klassen call threading and improve it to be good, using the proof of [FK, Theorem 6.2]. �

Thus, Conjecture 1 is equivalent to the following:
Conjecture 2. (a) For every simple knot K, and every ρ = eiθ ∈ Div∆(K), we have P (K)(ρ) 6= 0.
(b) Moreover, for every (ρ, K)-good projection we have:

sgn(P (K), θ) = ε sgn(∆(K+), θ) sgn(∆(K−), θ).

3. Evidence

3.1. Torus knots. In this Section we will prove Conjecture 1 for torus knots. Let Ta,b denote the (a, b)
torus knot, where a, b are coprime natural numbers. For example, T (2, 3) is the right-hand trefoil.

The Alexander polynomial of torus knots is given by:

∆(Ta,b)(t) =
(tab/2 − t−ab/2)(t1/2 − t−1/2)
(ta/2 − t−a/2)(tb/2 − t−b/2)

.

The roots of ∆(Ta,b) on the unit circle are ab complex roots of unity which are not a or b order roots
of unity. They are all simple. Using a useful parametrization of them, following Kearton [K2, Sec.13], we
obtain that

Div∆(Ta,b) = {t(m, n) := e2πi(m/a+n/b) |0 < m < a, 0 < n < b}.
Since the jump function satisfies jρ(K) = −jρ̄(K), we need only compute the jump at the points t(m, n)
where 0 < m < a, 0 < n < b and m/a + n/b < 1. In [K2, p.177] Kearton computes the jump function of
torus knots by

jtm,n(Ta,b) =

{
2 if m/a + n/b < 1

2

−2 if 1
2 < m/a + n/b < 1.

In other words, we have:

jρ(Ta,b) =

{
−2 if Im(ρ) > 0
2 if Im(ρ) < 0.

Now we discuss the Q function of torus knots, which was originally computed by Rozansky (see [R1,
Eqn.(2.2)]), and most recently, it has been recomputed by Marché and Ohtsuki; see [Mr, Oh]. We understand
that Bar-Natan has unpublished computations of the Euler expansion of the Kontsevich integral of torus
knots.

According to [R1, Eqn.(2.2)], the Q function of torus knots is given by:

Q(Ta,b)(t) =
1
4

(
ab− a

b
− b

a

)
+

1
ab

∆(Ta,b)(t)
(t1/2 − t−1/2)

∂2

∂x2

∣∣∣
x=0

t1/2ex/2 − t−1/2e−x/2

∆(Ta,b)(tex)

Given an analytic function f(t) let us define

g(t) =
f(t)

(t1/2 − t−1/2)
∂2

∂x2

∣∣∣
x=0

t1/2ex/2 − t−1/2e−x/2

f(tex)
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We have that

g(t) =
1

8(t1/2 − t−1/2)
tf(t)2 − f(t)2 + 4t2f(t)f ′′(t)− 8t2f(t)f ′(t)− 4t3f(t)f ′′(t)− 8t2(f ′(t))2 + 8t3(f ′(t))2

t1/2f(t)2

When we expand g(eiθ) around a root ρ = eiθ0 , only the last two terms of the numerator contribute to the
coefficient of (θ − θ0)2. That is,

coeff(g(eiθ), (θ − θ0)2) =
1

8(t1/2 − t−1/2)
−8t2(f ′(t))2 + 8t3(f ′(t))2

t1/2f(t)2
∣∣
t=eiθ0

=
t2(f ′(t))2

f(t)2
∣∣
t=eiθ0

.

Now, suppose that f(t) is a Laurrent polynomial with real coefficients that satisfies f(t) = f(t−1). Then,
f(t) =

∑
k ak(tk + t−k). Thus,

t2(f ′(t))2 = t2

(∑
k

kak(tk−1 − t−k−1)

)2

=

(∑
k

kak(tk − t−k)

)2

and if we substitute t = eiθ0 , we get

t2(f ′(t))2
∣∣
t=eiθ0

= −4

(∑
k

kak sin kθ

)2

≤ 0.

If θ0 is a simple root of f(eiθ) on the unit circle (as is the case for the Alexander polynomial of torus knots),
then the above real number is negative.

This proves that

jjρ(Ta,b) =

{
−2 if Im(ρ) > 0
2 if Im(ρ) < 0

and confirms Conjecture 1 for torus knots.

3.2. Operations on knots that preserve Conjecture 1. Let f denote either the Q function or the
σignature function of a knot. The following list describes some well-known properties of f .

• If −K denote the knot K with opposite orientation, then f(−K) = f(K).
• If K ! denote the mirror image of K, then f(K !) = −f(K).
• If ] denotes the connected sum of knots, then f(K1]K2) = f(K1) + f(K2).
• If K(n) denote the (n, 1) parallel of a knot K with zero framing, then f(K(n))(t) = f(K)(tn).

The stated behavior of the signature function under (n, 1) parallel was proven by Kearton [K1], and for
the Q function was proven by Ohtsuki [Oh, Prop. 3.1].

From this, it follows that if Conjecture 1 is true for a simple knot K, then it is true for −K, K !, K(n)

(for all n). Furthermore, if K1]K2 is simple, and Conjecture 1 is true for K1 and K2, then it is also true for
K1]K2.

3.3. Knots with at most 8 crossings. In this section we will verify Conjecture 1 by computer calculations.
Rozansky has written a Maple program that computes the Q function of a knot; see [R2]. We will use a

minor modification Qfunction.mws of Rozansky’s program, adopted for our needs.
In Qfunction.mws, the knot is described by a braid word. For example, [−1, 3, 3, 3, 2, 1, 1,−3, 2] rep-

resents the braid σ−1
1 σ3

3σ2σ
2
1σ−1

3 σ2 whose closure is the 72 knot in classical notation. The command
br1([−1, 3, 3, 3, 2, 1, 1,−3, 2]) gives a list whose first, second and third entries are the braid word, the poly-
nomials P (K) and ∆(K), where z = t1/2 − t−1/2. A sample output of the program is:
> # the right trefoil 3_1

> br1([1,1,1]);

>

2 2 4

[[1, 1, 1], 1 + z , 2 z + z ]

> # the 4_1 knot

> br1([1,-2,1,-2]);
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>

2

[[1, -2, 1, -2], 1 - z , 0]

> # the 7_2 knot

> br1([-1,3,3,3,2,1,1,-3,2]);

>

2 2 4

[[-1, 3, 3, 3, 2, 1, 1, -3, 2], 1 + 3 z , 12 z + 14 z ]

> # 7_3

> br1([1,1,2,-1,2,2,2,2]);

>

2 4

[[1, 1, 2, -1, 2, 2, 2, 2], 1 + 5 z + 2 z ,

2 4 6 8

22 z + 65 z + 46 z + 9 z ]

For example, for the right hand trefoil, we have:

∆(K) = 1 + z2 = t + t̄− 1
P (K) = 2z2 + z4 = t2 − 2t + 2− 2t̄ + t̄2

Q(K) =
2z2 + z4

(1 + z2)2
=

t2 − 2t + 2− 2t̄ + t̄2

(t + t̄− 1)2
.

where t̄ = t−1. The Mathematica program JJump.m computes the jj function. For example, we may launch
the JJump.m program from a Mathematica session.
(math100)/home/stavros: math

Mathematica 5.0 for Sun Solaris (UltraSPARC)

Copyright 1988-2003 Wolfram Research, Inc.

-- Motif graphics initialized --

In[1]:= << JJump.m

In[2]:= Poles[1+z^2,2z^2+z^4]

Solve::ifun: Inverse functions are being used by Solve, so some solutions may

not be found; use Reduce for complete solution information.

Out[2]= {{0.16666666666666666667, -0.00844343197019481429}}

We learn that the coefficient of (θ − θ0)−2 of Q(31)(e2πiθ) (where 31 is the right trefoil) around the root
θ0 = 0.1666666667, is −0.00844343197019481429. This computes that jje2πiθ0 (31) = −2, as needed.

Similarly,
In[4]:= Poles[1+5z^2+2z^4,22z^2+65z^4+46z^6+9z^8]

Solve::ifun: Inverse functions are being used by Solve, so some solutions may

not be found; use Reduce for complete solution information.

Out[4]= {{0.075216475230034463796, -0.00388836700144941422},

> {0.27241752919082620707, -0.00542424178920663095}}

We learn that the coefficient of (θ − θi)−2 of Q(73)(e2πiθ) around the roots θ0 = 0.0752164 and θ1 =
0.27241752 are−0.003888367 and−0.0054242417 respectively. This computes the jump function jje2πiθj (73) =
−2 for j = 0, 1.
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Now, let us compute the jump function of a knot. In [Or] Orevkov gives a Mathematica program sm.mat
which takes as input a braid presentation of a knot, and gives as output a Seifert surface of a knot. Launching
the Jump.m version of it in a Mathematica session produces
(math100)/home/stavros: math

Mathematica 5.0 for Sun Solaris (UltraSPARC)

Copyright 1988-2003 Wolfram Research, Inc.

-- Motif graphics initialized --

In[1]:= << Jump.m

In[2]:= Jump[{1,1,1}]

InverseFunction::ifun:

Inverse functions are being used. Values may be lost for multivalued

inverses.

Solve::ifun: Inverse functions are being used by Solve, so some solutions may

not be found; use Reduce for complete solution information.

Out[2]= {-2}

which computes the jump function on the upper semicircle for the right trefoil 31.
In[3]:= Jump[{1,1,2,-1,2,2,2,2}]

InverseFunction::ifun:

Inverse functions are being used. Values may be lost for multivalued

inverses.

Solve::ifun: Inverse functions are being used by Solve, so some solutions may

not be found; use Reduce for complete solution information.

Out[3]= {-2, -2}

which computes the jump function on the upper semicircle for the 73 knot.
This confirms the conjecture for the 31 and 73 knots.
In the appendix, We give the source code of two Mathematica programs, Jump.m and JJump.m which

compute the j and the jj function of knots.

Appendix A. The JJump.m program

(* Poles[P,AP] computes the poles of the rational functions P/AP^2 *)

(* at the roots of AP=0 on the unit circle. P,AP are polynomials in z *)

(* Poles2[P,AP] lists the coefficients of the Taylor expansion at *)

(* (t-a)^{-2}. *)

(* Poles[P,AP] lists {a,coefficient of Taylor expansion at (t-a)^{-2}} *)

FF[x_]:=x[[2]];

Poles[AP_,P_]:=Module[

{quotient,APt,roots,poles,k},

quotient=Simplify[P/AP^2 /. (z->z^{1/2}) /. (z->2 Cos[2*Pi*t]-2 )];

APt= Simplify[AP /. (z->z^{1/2}) /. (z->2 Cos[2*Pi*t]-2 )];

roots=Select[Map[FF, Flatten[

NSolve[APt == 0, t, 20]] ],

1/2 > # > 0 &];

poles={};

Table[Flatten[{roots[[k]], Coefficient[Series[quotient,{t,roots[[k]],0}],

t-roots[[k]],-2]}], {k,Length[roots]}]
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]

(* For the 3_1 knot: Poles[1+z^2,2z^2+z^4] *)

(* For the 4_1 knot: Poles[1-z^2,0] *)

(* For the 7_2 knot: Poles[1+3z^2,12z^2+14z^4] *)

(* For the 7_3 knot: Poles[1+5z^2+2z^4,22z^2+65z^4+46z^6+9z^8] *)

Appendix B. The Jump.m program

(* Computing the signature and jump function of knots presented as *)

(* closures of braids. *)

(* The signature of the right trefoil is SignatureBraid[{1,1,1}]=-2 *)

(* SignatureM[A] of a matrix A is the signature of A+A^* *)

(* Jump[{1,1,1}] is the jumps of the signature of the right trefoil *)

<< LinearAlgebra‘MatrixManipulation‘

<< sm.mat;

SignatureM[A_]:=Module[

{eigen},

eigen=Eigenvalues[N[A+ Transpose[Conjugate @ A],20]];

Count[Sign @ eigen, 1]-Count[Sign @ eigen, -1]

]

SignatureBraid[brd_]:=Module[

{m,V,eigen},

m=Max[Abs @ brd]+1;

V=N[SeifertMatrix[m,brd],20];

SignatureM[V]

]

FF[x_]:=x[[2]];

Jump[brd_]:=Module[

{m,V,APs,hermitian,roots,k},

m=Max[Abs @ brd]+1;

V=N[SeifertMatrix[m,brd]];

hermitian=(1-Exp[2*Pi*I*s])V+(1-Exp[-2*Pi*I*s]) Transpose[V];

APs=N[Det[(Cos[2*Pi*s/2]+I Sin[2*Pi*s/2])V-(Cos[2*Pi*s/2]-I

Sin[2*Pi*s/2]) Transpose[V]],20];

roots=Select[Map[FF, Flatten[

NSolve[{APs == 0, Im[s]==0}, s, 15]] ], 1/2 > # > 0 &];

If[Length[roots]==0, {}, Flatten[Table[SignatureM[hermitian /.

s->(roots[[k]]+1/1000) ] -SignatureM[hermitian /.

s->(roots[[k]]-1/1000) ], {k,Length[roots]}]]]

]

(* 7_3 knot SignatureBraid[{1,1,2,-1,2,2,2,2}] *)

(* 7_5 knot SignatureBraid[{1,1,1,1,2,-1,2,2}] *)

(* 8_2 knot SignatureBraid[{-1,2,2,2,2,2,-1,2}] *)

(* 8_5 knot SignatureBraid[{1,1,1,-2,1,1,1,-2}] *)

(* 8_15 knot SignatureBraid[{1,1,-2,1,3,3,2,2,3}] *)

(* 7_3, 7_5, 8_2, 8_5, 8_15 have signature -4 *)
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