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Abstract. Some years ago, it was conjectured by the first author that the Chern–Simons
perturbation theory of a 3-manifold at the trivial flat connection is a resurgent power series.
We describe completely the resurgent structure of the above series (including the location
of the singularities and their Stokes constants) in the case of a hyperbolic knot complement
in terms of an extended square matrix (x, q)-series whose rows are indexed by the boundary
parabolic SL2(C)-flat connections, including the trivial one. We use our extended matrix to
describe the Stokes constants of the above series, to define explicitly their Borel transform
and to identify it with state–integrals. Along the way, we use our matrix to give an analytic
extension of the Kashaev invariant and of the colored Jones polynomial and to complete
the matrix valued holomorphic quantum modular forms as well as to give an exact version
of the refined quantum modularity conjecture of Zagier and the first author. Finally, our
matrix provides an extension of the 3D-index in a sector of the trivial flat connection. We
illustrate our definitions, theorems, numerical calculations and conjectures with the two
simplest hyperbolic knots.
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1. Introduction

1.1. Resurgence of Chern–Simons perturbation theory. Quantum Topology origi-
nated by Jones’s discovery of the famous polynomial invariant of a knot [Jon87], followed by
Witten’s 3-dimensional interpretation of the Jones polynomial by means of a gauge theory
with a topological (i.e., metric independent) Chern–Simons action [Wit89]. The connection
between this topological quantum field theory and the Jones polynomial appears both on the
level of the exact partition function and its perturbative expansion which both determine,
and are determined by, the (colored) Jones polynomial. Indeed, the exact partition func-
tion on the complement of a knot colored by the defining representation of the gauge group
SU(2) at level k coincides with the value of the Jones polynomial at the complex root of unity
e2πi/(k+2). On the other hand, the perturbative expansion along the trivial flat connection
σ0 is a formal power series Φ(σ0)(h) ∈ Q[[h]] whose coefficients are Vassiliev knot invariants
which are determined by the colored Jones polynomial of a knot expanded as a power series
in h where q = eh [BN95]. More generally, the loop expansion of the colored Jones poly-
nomial is a formal power series Φ(σ0)(x, h) ∈ Q(x)[[h]] introduced by Rozansky [Roz98] and
further studied by Kricker [Kri, GK04], where x = qn plays the role of the monodromy of the
meridian. An important feature of the power series Φ(σ0)(x, h) is that it is determined by (but
also uniquely determines) the colored Jones polynomial. Likewise, the power series Φ(σ0)(h)
is determined by (and determines) the Kashaev invariant of a knot [Kas95], interpreted as
an element of the Habiro ring [Hab08].

In [Gar08a] the first author conjectured that the factorially divergent formal power series
Φ(σ0)(h) is resurgent, whose Borel transform has singularities arranged in a peacock pat-
tern, and can be re-expanded in terms of the perturbative series Φ(σ)(h) corresponding to
the remaining non-trivial flat connections of the Chern-Simons action. Although this is a
well-defined statement, resurgence was a bit of the surprise and a mystery. We should point
out that the above series are well-defined (for σ ̸= σ0 via formal Gaussian integration using
as input an ideal triangulation of a 3-manifold [DG13], and for σ = σ0 using the Kashaev
invariant itself) and their coefficients are (up to multiplication by a power of 2πi) algebraic
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numbers. However a numerical computation of their coefficients is difficult (about 280 coef-
ficients can be obtained for the simplest hyperbolic knot), hence it is difficult to numerically
study them beyond the nearest to the origin singularity of their Borel transform.

The resurgence question has attracted a lot of attention in mathematics and mathematical
physics and some aspects of it were discussed by Jones [Jon09], Witten [Wit11], Gukov,
Putrov and the third author [GMnP], Costin and the first author [CG11] and Sauzin [Sau15].
Further aspects of resurgence in Chern–Simons theory were studied in [Mn14, GMnP, GH18,
GZ23, GZ24].

When σ ̸= σ0, the resurgence structure of the series Φ(σ)(h) was given explicitly in [GGMn21],
where it was found that the location of the singularities was arranged in a peacock pattern,
and the Stokes constants were integers. The latter were fully described by an r × r ma-
trix Jred(q). The passage from a vector (Φ(σ)(h))σ of power series to a matrix Jred(q) is
inevitable, and points out to the possibility that the non-perturbative partition function of a
theory yet-to-be defined and its corresponding perturbative expansion is matrix-valued and
not vector-valued, as was discussed in detail in [GZ24] and [GZ23]. Let us summarise some
key properties of the matrix Jred(q).
Linear q-difference equation. The entries of Jred(q) are q-series with integer coefficients
defined for |q| ̸= 1. The matrix Jred(q) is a fundamental solution of a linear q-difference
equation of order r, and its rows are labeled by the set of nontrivial σ.
Asymptotics in sectors: q-Stokes phenomenon. The function Jred(e2πiτ ) as τ ap-
proaches zero in a fixed cone, has a full asymptotic expansion as a sum of power series in
τ , times power series in e−2πi/τ . However, passing from one cone to an adjacent one changes
the e−2πi/τ -series. The dependence of the asymptotics on the cone is the q-Stokes phenom-
enon, analogous to the well-studied Stokes phenomenon in the theory of linear differential
equations with polynomial coefficients (see, e.g., [Sib90]). In our case, the q-Stokes phenom-
enon is a consequence of the fact that Jred(q) is a fundamental matrix solution to a linear
q-difference equation.
Analyticity. The product W (τ) of Jred(q̃) with a diagonal automorphy factor and with
Jred(q), when q = e2πiτ and q̃ = e−2πi/τ , although defined for τ ∈ C\R, equals to a matrix of
state-integrals and hence it analytically extends to τ in the cut plane C′ = C \ (−∞, 0]. A
distinguished (σ1, σ1) entry of W (τ), where σ1 is the geometric representation of a hyperbolic
3-manifold, is the Andersen–Kashaev state-integral [AK14]. The latter is often identified with
the unknown partition function of complex Chern–Simons theory. Thus, analyticity of W is
interpreted as a factorisation property of state-integrals, or as a matrix-valued holomorphic
quantum modular form [GZ24, Zagb].
Borel resummation. The matrix W (τ) coincides (in a suitable ray) to the Borel resum-
mation of the matrix of perturbative series. In particular, the Borel resummation of the
perturbative series is not a q-series as has been claimed repeatedly in some physics litera-
ture, but rather a bilinear combination of q-series and q̃-series.1
Relation with the 3D-index. The 3D-index of Dimofte–Gaiotto–Gukov can be expressed
bilinearly in terms of Jred(q) and Jred(q−1). A detailed conjecture is given in see [GGMn23,
Conj.4].

1A similar phenomenon was observed by Hatsuda–Okuyama [HO15].
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x-extension. There is an extension of the above invariants by a nonzero complex number
x, which measures the monodromy of the meridian in the case of a knot complement, and
extends the q-series to functions of (x, q), where x behaves like a Jacobi variable. This results
in a matrix Jred(x, q) whose properties extend those of the matrix Jred(q) and were studied
in detail in [GGMn23].

1.2. A summary of our results. Our goal is to describe the Stokes constants and the
resurgent structure of the missing asymptotic series Φ(σ0)(h) in terms of completing the
matrix Jred(x, q) to a square matrix with one extra row (namely (1, 0, . . . , 0)T ) and col-
umn, whose distinguished (σ0, σ1) entry is conjecturally the Gukov–Manolescu series [GM21]
(evaluated at x = 1), and the remaining series in the top row are the descendants of the
Gukov-Manolescu series.

Along the way of solving the resurgence problem for the Φ(σ0)(h) series, we solve several
related problems, which we now discuss.
• A q-series that sees Φ(σ0)(h). This is a problem raised by Gukov and his collaborators
(see e.g. [GPPV20, GM21]). More precisely, our Resurgence Conjecture 5 implies that the
asymptotics as q = e2πiτ and τ → 0 in a sector of each of the q-series of the top row of the
matrix J(q) is a linear combination of the Φ(σ)(h) series which includes the Φ(σ0)(h) series.
• A matrix-valued holomorphic quantum modular form. In [GZ23] the first author
and Don Zagier studied a matrix Jred(q) of q-series with rows indexed by nontrivial flat
connections, and conjectured that the corresponding value of the cocycle J(q̃)−1∆(τ)J(q)2

at S =
(
0 −1
1 0

)
∈ SL2(Z), which a priori is an analytic function on C \ R, actually extends

to the cut plane C′. A problem posed was to find an extension of the matrix Jred(q) which
includes the trivial flat connection. We do so in Sections 2.2, 3.2 and 4.1 for the 41 and 52

knots.
• An exact form of the Refined Quantum Modularity Conjecture. In [GZ24] a
Refined Quantum Modularity Conjecture was formulated. The conjecture was numerically
motivated by a smoothed optimal summation of the divergent series Φσ)(τ), and the final
result was a matrix-valued periodic function defined at the rational numbers. We conjecture
that if we replace the smoothed optimal truncation by the median Borel resummation, all
asymptotic statements in [GZ24] become exact equalities, valid for finite (and not necessarily
large) range of the parameters.
• An analytic extension of the Kashaev invariant and of the colored Jones poly-
nomial. A consequence of the above conjecture is an exact formula for the Kashaev invariant
at rational points as a linear combinations of three smooth functions, multiplied by the top
row of J.

Conjecture 1. For every knot K and every natural number N we have:

⟨K⟩N =
∑
σ

cKσ N
δσsmed(Φ

(K,σ))( 1
N
) (1)

where δσ = 3/2 for σ ̸= σ0 and δσ0 = 0 (as in [GZ24, Eqn.(3.7)]) and (cKσ ) is a vector of
elements of the Habiro ring (tensor Q) evaluated at q = 1, with cKσ1

= cKσ0
= 1.

2for a suitable diagonal matrix ∆(τ) of weights
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The vector (cσ) for the 41 knot appears in Sec.4.2 of [GZ24] and also as the top row of
the matrix of Eqn.(92), and for the 52 knot it appears in Section 4.3 as well as the top row
of the matrix of Eqn.(104) of ibid.

For the 41 and the 52 knots, we find numerically that c41
σ2

= 0, c52
σ2

= 0 and c52
σ3

= −2 in
complete agreement with the results of [GZ24]. A corollary of (1) is the Volume Conjecture
⟨K⟩N ∼ N3/2Φ(K,σ)( 1

N
) to all orders in 1/N as N →∞.

Conjecture 2. For every knot K, there is a neighborhood UK of 0 in the complex plane,
such that for every natural number N and for u ∈ UK , we have

JK
N (e

2πi
N

+ u
N ) =

∑
σ

δσ(u,N)cKσ (x̃)smed(Φ
(K,σ))(eu; τ) (2)

where δσ(u,N) = τ−1/2 x̃
1/2−x̃−1/2

x1/2−x−1/2 for σ ̸= σ0 and δσ0(x, τ) = 1, where x = eu, x̃ = eu/x,
τ = u

2πiN
+ 1

N
, and cKσ (x̃) ∈ Q[x̃±1] with cKσ1

(x̃) = cKσ0
(x̃) = 1.

For the 41 and the 52 knots, we find numerically that c41
σ2
(x̃) = − x̃−x̃−1

2
, c52

σ2
(x̃) = − x̃−x̃−1

2

and c52
σ3
(x̃) = −1− x̃.

Since limu→0 δσ(N, u) = N δs , the above conjecture specialises to Conjecture 1 when
u → 0. Note also that the above conjecture implies the Generalised Volume Conjecture
when u ̸∈ πiQ is fixed and N → ∞. Indeed, δ(N, u) is nonzero and JK

N (e(2πi+u)/N) ∼
δ(N, u)Φ(σ1)(eu; τ). Note finally that the above conjecture explains the failure of exponential
growth when u is a rational multiple of 2πi, known for all knots from theorems 1.10 and
1.11 of [GL11], and theorem 5.3 of [Mur11] valid for the 41 knot. Indeed, when u = 2πir/s
for integers r and s with r/s near zero, then JK

N (e(2πi+u)/N) is a periodic function of N
(see [Hab02a]), and so is δ(N, u) since eu/τ = e2πiNr/(r+s). Moreover, δ(N, u) = 0 when N is
a multiple of r + s which explains why in that case the colored Jones polynomial does not
grow exponentially.
•An extension of the 3D-index. Our completed matrix proposes a computable extension
of the 3D-index in the sector of the trivial connection σ0, whose mathematical or physical
definition is yet-to-be given.

1.3. Challenges. Our solution to the above problems brings a new challenge: namely, the
new square matrix is actually a submatrix of a larger matrix J(x, q), one with block triangular
form which is a fundamental solution to the linear q-difference equation satisfied by the
descendants of the colored Jones polynomials [GK23]. Already for the case of the 52 knot,
one obtains a 6× 6 matrix instead of the original 3× 3 matrix Jred(x, q), or of the completed
4× 4 matrix.

A second challenge is to interpret the integers appearing in the new Stokes constants
associated to the trivial flat connection as BPS indices in the dual 3d super conformal field
theory. Incorporating the trivial connection in the 3d/3d correspondence of [DGG14] is
subtle, but we expect our explicit results to give hints on this problem.

We should point out that although a proof of resurgence of the asymptotic series Φ(σ)(h)
is still missing, the current paper (as well as the prior ones [GGMn21, GGMn23]) provide a
complete description of their resurgent structure (namely the location of the singularities and
a calculation of the Stokes constants) with precise statements, complemented by extensive
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numerical computations (including a numerical computation of the Stokes constants). In
addition, we provide proofs of the algebraic properties of the matrices of q-series and (x, q)-
series.

1.4. Illustration with the two simplest hyperbolic knots. We will illustrate our ideas
by giving a detailed description of these matrices and of their algebraic, analytic and asymp-
totic properties for the case of the two simplest hyperbolic knots, the 41 and the 52 knots.
Let us summarise our findings for the 41 knot.

• We complete the 2× 2 matrix Jred(x, q) of (x, q)-series to the 3× 3 matrix J(x, q) by
adding the trivial flat connection. Our completed matrix is a fundamental solution
of a third order linear q-difference equation.
• A distinguished entry of J(x, q) is the Gukov–Manolescu series.
• The matrix J(x, q) determines explicitly (but conjecturally) the Stokes constants and

hence the resurgence structure of the three perturbative formal power series.
• The matrix J(x, q) conjecturally computes an extension of the 3D-index in a sector

of the trivial flat connection.
• We complete the 2× 2 matrix of descendant Andersen–Kashaev state-integrals to a
3×3 matrix by adding new state-integrals which are implicit in work of Kashaev and
show their bilinear factorisation property.

As a second example, we present our results for the 52 knot. In this case, we complete the
3× 3 matrix Jred(q) to a 4× 4 one, and use it to describe explicitly the Stokes constants of
the 4 asymptotic series in half of the complex plane, thus completing the resurgence question
of those asymptotic series. However, the 52 knot reveals a new puzzle: the 4 × 4 matrix
is a block of a 6 × 6 matrix whose rows are a fundamental solution to a sixth order linear
q-difference equation, namely the one satisfied by the descendant colored Jones polynomial
of the 52 knot [GK23, Eqn.14]. Although the homogeneous linear q-difference equation
for the colored Jones polynomial is fourth order, the one for the descendant colored Jones
polynomial is sixth order, and both equations are knot invariants. In the case of the 52

knot, the extra 2× 2 block is a matrix of modular functions, in fact of the famous Rogers–
Ramanujan modular q-hypergeometric series. We do not understand the labeling of the two
excess rows and columns (e.g., in terms of SL2(C)-flat connections). Since the formulas for
the 6 × 6 matrix appear rather complicated, we will not give the x-deformation here, and
postpone to a future publication a systematic definition of the matrix of (x, q)-series for all
knots.

We should point out that the definition of the top row of the 3×3 matrices for the 41 knot,
and the 6× 6 matrix for the 52 knot, as well as an extension of the above results to the case
of closed hyperbolic 3-manifolds have been taken from the thesis of the last author [Whe23].
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2. The 41 knot

2.1. A 2 × 2 matrix of q-series. In this section we recall in detail what is known about
the resurgence of the two asymptotic series of the 41 knot, labeled by the geometric and
the complex-conjugate flat connections. As explained in the introduction, the answer is
determined by a 2× 2 matrix of q-series which was discovered in a long story and in several
stages in a series of papers [GZ23, GK17, GGMn21, GGMn23]. A detailed description of the
numerical discoveries and coincidences is given in [GZ23] and will not be repeated here. In
that paper, the following pair of q-series G(j)(q) for j = 0, 1 was introduced and studied by
the first author and Zagier [GZ23]

G(0)(q) =
∑
n≥0

(−1)n q
n(n+1)/2

(q; q)2n

G(1)(q) =
∑
n≥0

(
n+

1

2
− 2E

(n)
1 (q)

)
(−1)n q

n(n+1)/2

(q; q)2n

(3)

where

E
(n)
k (q) =

∞∑
s=1

sk−1
qs(n+1)

1− qs
. (4)

These series were found to be connected to the 41 knot in at least two ways, discussed in
detail in [GZ23]. On the one hand, they express bilinearly the Andersen-Kashaev state-
integral [GK17] and the total 3D-index of Dimofte-Gaiotto-Gukov [DGG13]. On the other
hand, their radial asymptotics as q = e2πiτ → 1 (where τ is in a ray in the upper half-plane)
is a linear combination of the two asymptotic series Φ(σ1)(τ) and Φ(σ2)(τ) of the Kashaev
invariant, where σ1 is the geometric representation of the fundamental group of the knot
complement and σ2 is the complex conjugate. The resurgence of the factorially divergent
asymptotic series Φ(σ1)(τ) and Φ(σ2)(τ), including a complete description of the Stokes au-
tomorphism and the Borel resummation was given by the first three authors in [GGMn21].
Surprisingly, the Stokes matrices were expressed bilinearly in terms of a 2 × 2 matrix of
explicit descendant q-series whose definition we now give. Consider the linear q-difference
equation

fm(q) + (qm+1 − 2)fm+1(q) + fm+2(q) = 0 (m ∈ Z) . (5)
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In [GGMn21] it was shown that it has a basis of solutions G
(j)
m (q) for j = 1, 2 given by 3

G(0)
m (q) =

∑
n≥0

(−1)n q
n(n+1)/2

(q; q)2n
qmn

G(1)
m (q) =

∑
n≥0

(
n+m+

1

2
− 2E

(n)
1 (q)

)
(−1)n q

n(n+1)/2

(q; q)2n
qmn

(6)

where E
(n)
k (q) are as in Equation (4). Note that G(j)

0 (q) = G(j)(q), and that G(j)
m (q) ∈ Z((q))

are Laurent series in q (with finitely many negative powers of q), meromorphic on |q| < 1
with only possible pole at q = 0. We will extend them to analytic functions on |q| ≠ 1 by

G(j)
m (q−1) = (−1)iG(j)

−m(q), j = 0, 1. (7)

The 2× 2 matrix is given by Jred(q) = Jred
−1 (q)

(
0 −2
1 −1

)
where

Jred
m (q) =

(
G

(1)
m (q) G

(1)
m+1(q)

G
(0)
m (q) G

(0)
m+1(q)

)
(8)

coincides with the transpose of the matrix Wm(q) of [GGMn23, Eqn.(48)] after interchanging
of the two rows. A complete description of the resurgent structure of the series Φ(σj)(τ) for
j = 0, 1, of their Borel resummation and their expression in terms of a 2× 2 matrix of state-
integrals (with one distinguished entry being the Andersen–Kashaev state-integral [AK14])
was given in [GGMn21, GGMn23].

2.2. A 3 × 3 matrix of q-series. In this section we define the promised 3 × 3 matrix of
q-series Jred

m (q) and give several algebraic properties thereof. In his thesis [Whe23], the fourth
author introduced the series G(2)(q)

G(2)(q) =
∑
n≥0

(
1

2

(
n+

1

2
− 2E

(n)
1 (q)

)2

− E
(n)
2 (q)− 1

24
E2(q)

)
(−1)n q

n(n+1)/2

(q; q)2n
(9)

which is the coefficient of ε2 in the ε-deformed q-series

G(q, ε) = e−ε
2 E2(q)

24

∞∑
n=0

(−1)n q
n(n+1)/2e(n+1/2)ε

(qeε; q)2n
=
∞∑
k=0

G(k)(q)εk (10)

which appears in [GZ23]. Here, E2(q) = 1 − 24E
(0)
2 (q). Adding the descendant variable

m ∈ Z, leads to the q-series

G(2)
m (q) =

∑
n≥0

(
1

2

(
n+m+

1

2
− 2E

(n)
1 (q)

)2

− E
(n)
2 (q)− 1

24
E2(q)

)
(−1)n q

n(n+1)/2

(q; q)2n
qmn

(11)
As in the case of G

(j)
m (q) for j = 0, 1, it is a meromorphic function on |q| < 1 with only

possible pole at q = 0, and extends to an analytic function on |q| > 1 satisfying (7) with
j = 2.

3G
(1)
m (q) defined here is one half of G1

m(q) in [GGMn21].



RESURGENCE OF CHERN–SIMONS THEORY AT THE TRIVIAL FLAT CONNECTION 9

The sequence G
(2)
m (q) is a solution of the inhomogenous equation obtained by replacing

the right hand side of (5) by 1. This follows easily by using creative telescoping of the theory
of q-holonomic functions implemented by Koutschan [Kou10].

We can assemble the three sequences of q-series into a matrix

Jm(q) =

1 G
(2)
m (q) G

(2)
m+1(q)

0 G
(1)
m (q) G

(1)
m+1(q)

0 G
(0)
m (q) G

(0)
m+1(q)

 (12)

whose bottom-right 2× 2 matrix is Jred
m (q). The next theorem summarises the properties of

Jm(q).

Theorem 3. The matrix Jm(q) is a fundamental solution to the linear q-difference equation

Jm+1(q) = Jm(q)A(q
m, q), A(qm, q) =

1 0 1
0 0 −1
0 1 2− qm+1

 , (13)

has det(Jm(q)) = −1 and satisfies the analytic extension

Jm(q
−1) =

1 0 0
0 −1 0
0 0 1

J−m−1(q)

1 0 0
0 0 1
0 1 0

 . (14)

Proof. Equation (13) follows from the fact the last two rows of Jm(q) are solutions of the q-
difference equation (5) and the first is a solution of the corresponding inhomogenous equation.
Moreover, the block form of Jm(q) implies that det(Jm(q)) = det(Jred

m (q)) = −1 where the
last equality follows from [GGMn21, eq. (14)]. Equation (14) follows from the fact that all
three sequences of q-series satisfy (7). □

We now give the inverse matrix of Jm(q) in terms of Appell-Lerch like sums. The lat-
ter appear curiously in the mock modular forms and the meromorphic Jacobi forms of
Zwegers [Zwe01], and in [DMZ].

Theorem 4. We have

Jm(q)
−1 =

1 L
(0)
m (q) −L(1)

m (q)

0 −G(0)
m+1(q) G

(1)
m+1(q)

0 G
(0)
m (q) −G(1)

m (q)

 (15)

for the q-series L
(j)
m (q) (j = 0, 1) defined by

L(0)
m (q) = G

(0)
m+1(q)G

(2)
m (q)−G(0)

m (q)G
(2)
m+1(q)

L(1)
m (q) = G

(1)
m+1(q)G

(2)
m (q)−G(1)

m (q)G
(2)
m+1(q) .

(16)
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The q-series L
(j)
m (q) are expressed in terms of Appell-Lerch type sums:

L(0)
m (q) = 2E

(0)
1 (q)− 1−m+

∞∑
n=1

(−1)n q
n(n+1)/2

(q; q)2n

qmn+n

1− qn

L(1)
m (q) = −3

8
− 2E

(0)
1 (q)2 + 2E

(0)
1 (q)− E

(0)
2 (q)− 1

24
E2(q) + 2mE

(0)
1 (q)−m− m2

2

+
∞∑
n=1

(−1)n q
n(n+1)/2

(q)2n

qmn+n

1− qn

(
n+m+

1

2
− 2E

(n)
1 (q) +

1

1− qn

)
.

(17)

Proof. Since Jred
m (q) is a 2×2 matrix with determinant −1, it follows that the inverse matrix

Jm(q)
−1 is given by (15) for the q-series L

(j)
m (q) (j = 0, 1) given by (16).

Observe that A(qm, q) has first column (1, 0, 0)t, first row (1, 0, 1), and the remaining part
is a companion matrix. It follows that its inverse matrix has first column (1, 0, 0)t and first
row (1, 1, 0). This, together with (13) implies that

Jm+1(q)
−1 = A(qm, q)−1Jm(q)

−1 =

1 1 0
0 2− qm+1 1
0 −1 0

Jm(q)
−1 . (18)

It follows that L
(j)
m (q) satisfy the first order inhomogeneous linear q-difference equation

L
(j)
m−1(q)− L(j)

m (q) = G(j)
m (q) (j = 0, 1) . (19)

Let L(0)
m (q) denote the right hand side of the top Equation (17). Then we have

L(0)
m−1(q)− L(0)

m (q) = 1 +
∞∑
n=1

(−1)n q
n(n+1)/2

(q)2n

qmn − qmn+n

1− qn
= G(0)

m (q).

Therefore L(0)
m (q) − L

(0)
m (q) is independent of m. Moreover, limm→∞ L(0)

m (q) − L
(0)
m (q) = 0.

The top part of Equation (17) follows.
Likewise, let L(1)

m (q) denote the right hand side of the bottom part of Equation (17). Then
we have

L(1)
m−1(q)− L(1)

m (q) =
∞∑
n=1

(−1)n q
n(n+1)/2

(q)2n

qmn − qmn+n

1− qn

(
n+m+

1

2
− 2E

(n)
1 (q) +

1

1− qn

)

−
∞∑
n=1

(−1)n q
n(n+1)/2

(q)2n

qmn

1− qn
+m+

1

2
− 2E

(0)
1 (q)

=G(1)
m (q) .

Therefore L(1)
m (q) − L

(1)
m (q) is independent of m. Moreover, limm→∞ L(1)

m (q) − L
(1)
m (q) = 0.

Equation (17) follows. □
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2.3. The Φ(σ0)(τ) asymptotic series. The 41 knot has three asymptotic series Φ(σj)(τ) for
j = 0, 1, 2 corresponding to the trivial flat connection σ0, the geometric flat connection σ1

and its complex conjugate σ2. The asymptotic series Φ(σj)(τ) for j = 1, 2 are defined in terms
of perturbation theory of a state-integral [DG13] and can be computed via formal Gaussian
integration in a way that was explained in detail in [GGMn21] and in [GZ24] and will not
be repeated here. They have the form

Φ(σj)(τ) = e
V (σj)

2πiτ φ(σj)(τ), j = 1, 2, (20)

where
V (σ1) = −V (σ2) = iVol(41) = i2ImLi2(e

iπ/3) = i2.029883 . . . , (21)
with Vol(41) being the hyperbolic volume of S3\41, and φ(σ1)( h

2πi
) with h = 2πiτ is a power

series with algebraic coefficients with first few terms

φ(σ1)( h
2πi

) = 3−1/4
(
1 +

11h

72
√
−3 +

697h2

2(72
√
−3)2 + . . .

)
(22)

(a total of 280 terms have been computed), while φ(σ2)(τ) = iφ(σ1)(−τ).
We now discuss the new series φ(σ0)(τ) ∈ Q[[τ ]] corresponding to the zero volume V (σ0) =

0 trivial flat connection. This series can be defined and computed (for any knot) using either
the colored Jones polynomial or the Kashaev invariant. Let us recall how this works.

Let Jn(q) ∈ Z[q±1] denotes the Jones polynomial colored by the n-dimensional irreducible
representation of sl2, and normalised to 1 at the unknot. Setting q = eh, one obtains a power
series in h, whose coefficient of hk is a polynomial in n of degree at most k. In other words,
we have

Jn(e
h) =

∞∑
i=0

i∑
j=0

ai,jn
jhi ∈ Q[[n, h]] (23)

where ai,j depends on the knot and, as the knot varies, defines a Vassiliev invariant of type
(i.e., degree) i [BN95]. Then, the perturbative series φ(σ0)(τ) is given by

φ(σ0)( h
2πi

) =
∞∑
i=0

ai,0h
i . (24)

With this definition, to compute the coefficient of τ k in φ(σ0)(τ), one needs to compute
the first k colored Jones polynomials Jn(e

h) for k = 1, . . . , n up to O(hk+1), polynomially
interpolate and extract the coefficient ak,0. An efficient computation of the colored Jones
polynomial is possible if one knows a recursion relation with respect to n (such a relation
always exists [GL05]) together with some initial conditions. This gives a polynomial time
algorithm to compute Jn(e

h) +O(hk+1).
An alternative method is the so-called loop expansion of the colored Jones polynomial

Jn(e
h) =

∞∑
ℓ=0

Pℓ(x)

∆(x)2ℓ+1
hℓ ∈ Z[x±1,∆(x)−1][[h]] (25)

where x = qn = enh and ∆(x) ∈ Z[x±1] is the Alexander polynomial of the knot. This
expansion was introduced by Rozansky [Roz98] (see also Kricker [Kri] and [GK04]) and it is
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related to the Vassiliev power series expansion (23) by
∞∑
k=0

aℓ+k,kh
k =

Pℓ(e
h)

∆(eh)2ℓ+1
. (26)

Then the perturbative series φ(σ0)(τ) is given in terms of the loop expansion by

φ(σ0)( h
2πi

) =
∞∑
ℓ=0

Pℓ(1)h
ℓ (27)

as follows from the above equations together with the fact that ∆(1) = 1.
A third method uses a theorem of Habiro [Hab02b, Hab08] which lifts the Kashaev in-

variant of a knot to an element of the Habiro ring Ẑ[q] = lim←− Z[q]/((q; q)n). There is
a canonical ring homomorphism Ẑ[q] → Z[[h]] defined by q 7→ eh, which sends (q; q)n to
(−1)nhn + O(hn+1) and the image of the lifted element of the Habiro ring under this ho-
momorphism equals to the series φ(σ0)(h). For the case of the 41 knot, the corresponding
element of the Habiro ring is given by

∞∑
n=0

(q; q)n(q
−1; q−1)n (28)

and its expansion when q = eh gives the power series with first few terms

φ(σ0)( h
2πi

) = 1− h2 +
47

12
h4 + . . . . (29)

We end this section with a comment. Going back to the case of a general knot, it was shown
in [GK23] that the colored Jones polynomial is equivalent (in the sense of knot invariants) to
a descendant sequence of colored Jones polynomials and of Kashaev invariants (indexed by
the integers) which is q-holonomic. These descendant Kashaev invariants play a key role in
extending matrices of periodic functions whose rows and columns are indexed by nonrtivial
flat connections to a matrix that includes the trivial flat connection. This is explained in
detail in [GZ24].

2.4. Borel resummation and Stokes constants. In this section we discuss the asymp-
totic expansion as q = e2πiτ → 1 of the vector G(q) of q-series and relate it to the vector
Φ(τ) of the asymptotic series, where

G(q) =

G(2)(q)
G(1)(q)
G(0)(q)

 , Φ(τ) =

Φ(σ0)(τ)
Φ(σ1)(τ)
Φ(σ2)(τ)

 (30)

with G(0)(q), G(1)(q) given in (3), and the additional series G(2)(q) given in (9).
The three power series Φ(σj)(τ), j = 0, 1, 2 can be resummed by Borel resummation. On

the other hand, according to the resurgence theory, the value of the Borel resummation of
an asymptotic power series depends crucially on the argument of the expansion variable. If
the Borel transform of the power series has a singular point located at ι, the values of the
Borel resummation of the power series whose expansion variable has an argument slightly
greater and less than the angle θ = arg ι differ by an exponentially small quantity, called
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ι1,2

ϕ(σ1)(τ )

Λ(σ1)

ι2,1

ϕ(σ2)(τ )

Λ(σ2)

ι0,2ι0,1

ϕ(σ0)(τ )

Λ(σ0)

Figure 1. Singularities of the Borel transforms of φ(σj)(τ) for j = 0, 1, 2 of
the knot 41. Red lines are (some) Stokes rays.

the Stokes discontinuity. Usually the difference is identical with the Borel resummation of
another power series in the theory, a phenomenon called the Stokes automorphism.

In the case of the power series Φ(σj)(τ), j = 0, 1, 2, the singularities of the Borel transforms
of Φ(σj)(τ), j = 1, 2 were already studied in [GGMn21, GGMn23], and they are located at

Λ(σj) = {ιj,i + 2πik | i = 1, 2, i ̸= j, k ∈ Z} ∪ {2πik | k ∈ Z̸=0}, j = 1, 2, (31)

as shown in the middle and the right panels of Fig. 1, while the singularities of the Borel
transform of Φ(σ0)(τ) are located at (see also [Gar08a, Conj. 4])

Λ(σ0) = {ι0,i + 2πik | i = 1, 2, k ∈ Z}, (32)

as shown in the left panel of Fig. 1, where

ιj,i =
V (σj)− V (σi)

2πi
, i, j = 0, 1, 2. (33)

All the rays ρθ (Stokes rays) passing through the singularities in the union

Λ = ∪j=0,1,2Λ
(σj), (34)

form a peacock pattern, cf. Fig. 2, and they divide the complex plane of Borel transform
into infinitely many cones. The Borel resummation of the vector Φ(τ) is only well-defined
within one of these cones.

Recall that the Borel transform φ̂(ζ) of a Gevrey-1 power series φ(τ)

φ(τ) =
∞∑
n=0

anτ
n, an = O(Cnn!), (35)

is defined by

φ̂(ζ) =
∞∑
n=0

an
n!

ζn. (36)
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III

III IV

Figure 2. Stokes rays and cones in the τ -plane for the 3-vector Φ(τ) of as-
ymptotic series of the knot 41. Red lines are (some) Stokes rays.

If it analytically continues to an L1-analytic function along the ray ρθ := eiθR+ where
θ = arg τ , we define the Borel resummation by the Laplace integral

sθ(φ)(τ) =

∫ ∞
0

φ̂(τζ)e−ζdζ =
1

τ

∫
ρθ

φ̂(ζ)e−ζ/τdζ. (37)

The Borel resummation of the trans-series Φ(τ) = e
V

2πiτ φ(τ) is defined to be

sθ(Φ)(τ) = e
V

2πiτ sθ(φ)(τ). (38)

In the following we will also use the notation sR(Φ)(τ) when the argument of τ is in the cone
R and it is a continuous function of τ .

Coming back to the vector of q-series G(q), we find that the asymptotic expansion of G(q)
when q = e2πiτ and τ → 0 in a cone R can be expressed in terms of Φ(τ). Moreover, this
asymptotic expansion can be lifted to an exact identity between q-series G(j)(q) and linear
combinations of Borel resummation of Φ(σj)(τ) multiplied by power series in q̃ = e−2πiτ

−1

(thought of as exponentially small corrections) with integer coefficients. This is the content
of the following conjecture.

Conjecture 5. For every cone R ⊂ C \ Λ and every τ ∈ R, we have

∆′(τ)G(q) = MR(q̃)∆(τ)sR(Φ)(τ), (39)

where
∆′(τ) = diag(τ 3/2, τ 1/2, τ−1/2), ∆(τ) = diag(τ 3/2, 1, 1), (40)

and MR(q̃) is a 3× 3 matrix of q̃ (resp., q̃−1)-series if Imτ > 0 (resp., Imτ < 0) with integer
coefficients that depend on R.
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As in [GGMn21, GGMn23], we pick out in particular four of these cones, located slightly
above and below the positive or the negative real axis, labeled in clockwise direction by
I, II, III, IV as indicated in Fig. 2. We work out the exact matrices MR(q̃) in these four
cones.

Conjecture 6. Equation (39) holds in the cones R = I, II, III, IV where the matrices
MR(q̃) are given in terms of J−1(q̃) as follows

MI(q̃) = J−1(q̃)

1 0 0
0 0 −1
0 1 −1

 , |q̃| < 1, (41a)

MII(q̃) =

1 0 0
0 −1 0
0 0 1

J−1(q̃)

1 0 0
0 1 0
0 1 −1

 , |q̃| < 1, (41b)

MIII(q̃) =

1 0 0
0 −1 0
0 0 1

J−1(q̃)

1 1 0
0 −1 0
0 2 1

 , |q̃| > 1, (41c)

MIV (q̃) = J−1(q̃)

1 0 1
0 0 −1
0 1 2

 , |q̃| > 1. (41d)

We now discuss the Stokes automorphism. To any singularity in the Borel plane located
at ι

(k)
i,j := ιi,j + 2πik, we can associate a local Stokes matrix

S
ι
(k)
i,j
(q̃) = I + S(k)

i,j q̃
kEi,j, S(k)

i,j ∈ Z, (42)

where Ei,j is the elementary matrix with (i, j)-entry 1 (i, j = 0, 1, 2) and all other entries
zero, and S(k)

i,j is the Stokes constant. Let us assume the locality condition that no two Borel
singularities share the same argument, or if there are, their Stokes matrices commute. This
is indeed the case in our example. Then for any ray of angle θ, the Borel resummations of
Φ(τ) with τ whose argument is raised slight above (θ+) or lowered sightly below (θ−) θ are
related by the following formula of Stokes automorphism

∆(τ)sθ+(Φ)(τ) = Sθ(q̃)∆(τ)sθ−(Φ)(τ), Sθ(q̃) =
∏

arg ι=θ

Sι(q̃). (43)

Because of the locality condition, we don’t have to worry about the order of the product of
local Stokes matrices.

More generally, consider two rays ρθ+ and ρθ− whose arguments satsify 0 < θ+ − θ− ≤ π,
we define the global Stokes automorphism

∆(τ)sθ+(Φ)(τ) = Sθ−→θ+(q̃)∆(τ)sθ−(Φ)(τ), (44)
where both sides are analytically continued smoothly to the same value of τ . The global
Stokes matrix Sθ−→θ+(q̃) satisfies the factorisation property [GGMn21, GGMn23]

Sθ−→θ+(q̃) =
←∏

θ−<θ<θ+

Sθ(q̃), (45)
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where the ordered product is taken over all the local Stokes matrices whose arguments are
sandwiched between θ−, θ+ and they are ordered with rising arguments from right to left.

Given (39) with explicit values of MR(q̃) for R = I, II, III, IV , in general we can calculate
the global Stokes matrix via

SR→R′(q̃) = MR′(q̃)−1 ·MR(q̃). (46)

Here in the subscript of the global Stokes matrix on the left hand side, R stands for any ray
in the cone. For instance, we find that the global Stokes matrix from cone I anti-clockwise
to cone II is

SI→II(q̃) =

1 0 0
0 1 0
0 1 −1

J−1(q̃)
−1

1 0 0
0 −1 0
0 0 1

J−1(q̃)

1 0 0
0 0 −1
0 1 −1

 , |q̃| < 1. (47)

This Stokes matrix has the block upper triangular form1 ∗ ∗
0 ∗ ∗
0 ∗ ∗

 . (48)

Let us note that this form implies that Φ(σj)(τ) (j = 1, 2) form a closed subset under
Stokes automorphisms (this was called in [GMn] a “minimal resurgent structure”). They are
controled by the 2× 2 submatrix of SI→II(q̃) in the bottom right and one can verity that it
is indeed the Stokes matrix in [GGMn21]. In addition we can also extract Stokes constants
S(k)
0,j (j = 1, 2, k = 1, 2, . . .) responsible for Stokes automorphisms into Φ(σ0)(τ) from Borel

singularities in the upper half plane, and collect them in the generating series

S+
0,j(q̃) =

∞∑
k=1

S(k)
0,j q̃

k, j = 1, 2. (49)

We find

S+
0,1(q̃) = S+

0,2(q̃) =−G
(2)
0 (q̃)−G

(2)
1 (q̃) +

(
G

(0)
0 (q̃) +G

(0)
1 (q̃)

)
G

(2)
0 (q̃)/G

(0)
0 (q̃)

=− q̃ − 2q̃2 − 3q̃3 − 7q̃4 − 14q̃5 − 34q̃6 + . . . . (50)

Similarly, we find that the global Stokes matrix from cone III anti-clockwise to cone IV
is

SIII→IV (q̃) =

1 0 0
0 −1 1
0 1 0

 · J−1(q̃−1)−1 ·
1 0 0
0 −1 0
0 0 1

 · J−1(q̃−1) ·
1 0 0
0 1 0
0 1 1

 , |q̃| > 1.

(51)
It also has the form as (48), and the 2 × 2 submatrix of SIII→IV (q̃) in the bottom right
is the Stokes matrix given in [GGMn21]. We also extract Stokes constants S(k)

0,j (j = 1, 2,
k = −1,−2, . . .) responsible for Stokes automorphisms into Φ(σ0)(τ) from Borel singularities
in the lower half plane, and collect them in the generating series

S−0,j(q̃) =
−∞∑
k=−1

S(k)
0,j q̃

k, j = 1, 2. (52)
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We find

S−0,2(q̃) = −S−0,1(q̃) = S+
0,1(q̃

−1). (53)

We can also use (46) to compute the global Stokes matrix SIV→I(q̃) and we find

SIV→I =

1 0 1
0 1 3
0 0 1

 . (54)

Note that this can be identified as S0 associated to the ray ρ0 and it can be factorised as

S0 = Sι0,2Sι1,2 , Sι0,2 =

1 0 1
0 1 0
0 0 1

 , Sι1,2 =

1 0 0
0 1 3
0 0 1

 . (55)

Since the local Stokes matrices Sι0,2 and Sι1,2 commute, the locality condition is satisfied.
We read off the Stoke discontinuity formulas

disc0Φ(0)(τ) = τ−3/2s(Φ(s2))(τ),

disc0Φ(1)(τ) = 3s(Φ(s2))(τ),
(56)

with
discθΦ(τ) = sθ+(Φ)(τ)− sθ−(Φ)(τ), (57)

and the second identity has already appeared in [GH18, GGMn21].
Finally, in order to compute the global Stokes matrix SII→III(q̃), we need to take into

account that the odd powers of τ 1/2 on both sides of (39) give rise to additional −1 factors
when one crosses the branch cut at the negative real axis, and (46) should be modified by

SII→III(q̃) = diag(1,−1,−1)MIII(q̃)
−1 ·MII(q̃), (58)

and we find

SII→III =

1 1 0
0 1 0
0 −3 1

 . (59)

Similarly this can be identified as Sπ associated to the ray ρπ and it can be factorised as

Sπ = Sι0,1Sι2,1 , Sι0,1 =

1 1 0
0 1 0
0 0 1

 , Sι2,1 =

1 0 0
0 1 0
0 −3 1

 . (60)

Note that the local Stokes matrices Sι0,1 and Sι2,1 also commute. We read off the Stokes
discontinuity formulas

discπΦ(0)(τ) = τ−3/2s(Φ(s1))(τ),

discπΦ(2)(τ) = −3s(Φ(s1))(τ),
(61)

where the second identity has already appeared in [GGMn21].
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2.5. The Andersen–Kashaev state-integral. In this section we briefly recall the prop-
erties of the state-integral of Andersen–Kashaev for the 41 knot [AK14, Sec.11.4], defined
by

Z41(τ) =

∫
R+i0

Φb(v)
2 e−πiv

2

dv, (τ =
√
b) . (62)

Here, Φb(z) is Faddeev’s quantum dilogarithm [Fad95], in the conventions of e.g. [AK14,
Appendix A]. With this choice of contour, the integrand is exponentially decaying at ±∞
hence the integral is absolutely convergent. State-integrals have several key features:

• They are analytic functions in C′.
• Their restriction to C \R factorises bilinearly as finite sum of a product of a q-series

and a q̃-series, where q = e(τ) and q̃ = e(−1/τ); see [BDP14, Pas12, GK17].
• Their evaluation at positive rational numbers also factorises bilinearly as a finite sum

of a product of a periodic function of τ and a periodic function of −1/τ ; see [GK15].
• State-integrals are equal to linear combinations of the median Borel summation of

asymptotic series.
• State-integrals come with a descendant version which satisfies a linear q-difference

equation.
Let us explain these properties for the state-integral (62). The integrand is a quasi-periodic
meromorphic function with explicit poles and residues. Moving the contour of integration
above, summing up the residue contributions, and using the fact that there are no contribu-
tions from infinity, one finds that [GK17, Cor.1.7]

Z(τ) = −i
(
q

q̃

) 1
24 (

τ 1/2G(1)(q)G(0)(q̃)− τ−1/2G(0)(q)G(1)(q̃)
)
, (τ ∈ C \R). (63)

When τ is a positive rational number, the quasi-periodicity of the integrand, together with a
residue calculation leads to a formula for Z(τ) given in [GK15]. More generally, in [GGMn21]
we considered the descendant integral

Zλ,µ(τ) =

∫
D
Φb(v)

2e−πiv
2+2π(λb−µb−1)vdv, (64)

where λ, µ ∈ Z and the contour D is asymptotic at infinity to the horizontal line Im(v) = v0
where v0 > |Re(λb − µb−1)| but is deformed near the origin so that all the poles of the
quantum dilogarithm located at

cb + ibm+ ib−1n, m, n ∈ Z≥0, (65)

are above the contour. These integrals factorise as follows:

Zλ,µ(τ) = (−1)λ−µ+1iq
λ
2 q̃

µ
2

(
q

q̃

) 1
24 (

τ 1/2G
(1)
λ (q)G(0)

µ (q̃)− τ−1/2G
(0)
λ (q)G(1)

µ (q̃)
)
. (66)

The above factorisation can be expressed neatly in matrix form. Indeed, let us define

W red
S,λ,µ(τ) = Jred

λ (q̃)−1diag(τ 3/2, τ 1/2, τ−1/2)Jred
µ (q) . (67)

Using the q-difference equation (13), it is easy to see that W red
S,λ+1,µ(τ) = A−1(−1/τ)W red

S,λ,µ(τ)

and W red
S,λ,µ+1(τ) = W red

S,λ,µ(τ)A(τ) hence the domain of W red
S,λ,µ is independent of the integers
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λ and µ. Equation (66) implies that W red
S,λ,µ(τ) are given by the matrix (Zλ+i,µ+j(τ)) (for

i, j = 0, 1), up to left-multiplication by a matrix of automorphy factors.
Finally we discuss the relation between the Borel summation of the two asymptotic series

Φ(σj)(h) for j = 1, 2 and the descendant state-integrals. Since the Borel transform of those
series may have singularities at the positive real axis, we denote by smed their median re-
summation given by the average of the two Laplace transforms to the left and to the right
of the positive real axis. Then, we have

smed(Φ
(σ1))(τ) =i(q̃/q)1/24

(
−1

2
Z0,0(τ)− q̃1/2Z0,−1(τ)

)
,

smed(Φ
(σ2))(τ) =i(q̃/q)1/24Z0,0(τ) .

(68)

2.6. A new state-integral. In the previous section, we saw how the matrix W red(τ) of
products of q-series and q̃-series (6) coincides with a matrix of state-integrals. Having found
the q-series (9) which complement the series (6), it is natural to search for a new state-integral
which factorises in terms of all three q-series G(j)

m (q) for j = 0, 1, 2 and their q̃-versions. Upon
looking carefully, the series G

(j)
m (q) for j = 0, 1 were produced from the Andersen–Kashaev

state-integral because its integrand had a double pole, hence the contributions came from
expanding (10) up to O(ε2). If we expanded up to O(ε3), we would capture the new series
G(2)(q). Hence the problem is to find a state-integral of the 41 whose integrand has poles of
order 3. After doing so, one needs to understand how this story, which seems a bit ad hoc and
coincidental to the 41 knot, can generalise to all knots. It turns out that such a state-integral
existed in the literature for many years, and in fact was devised by Kashaev [Kas97] as a
method to convert the state-sums of the Kashaev invariants into state-integrals, using as a
building block the Faddeev quantum dilogarithm function at rational numbers, multiplied
by 1/ sinhx. Incidentally, similar integrals have appeared in [KMn16] and more recently in
the work of two of the authors on the topological string on local P2; see [GMn, Eqn.3.141].
The integrand of such state-integrals are meromorphic functions with the usual pole struc-
ture coming from the Faddeev quantum dilogarithm function, together with the extra poles
coming from 1/ sinhx. The residues of the former give rise to products of q-series times
q̃-series, but the presence of of 1/ sinhx has two effects. On the one hand, it produces, in
an asymmetric fashion, poles of the integrand of one order higher, contributing to sums of
q-series or q̃-series. On the other hand, the produced q and q̃-series look like multidimen-
sional Appell-Lerch sums. An original motivation for converting state-sum formulas for the
Kashaev invariants into state-integral formulas was to use such an integral expression for a
proof of the Volume Conjecture.

There are two examples that convert state-sums into state-integrals, one given by Kashaev
in [Kas97] for the 41 knot and further studied by Andersen–Hansen [AH06], and one in
Kashaev–Yokota [KY] for the 52 knot. In the case of the 41 knot, the integral considered
in [Kas97, AH06] is

⟨41⟩N = − i

2b3

∫
AN

tanh
(πy
b

) Φb

(
−y + i

2b

)
Φb

(
y − i

2b

) dy. (69)
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Figure 3. The contour AN appears in the integral formula (69) for the
Kashaev invariant of the 41 knot, and it encircles the N poles (71). By doing
the integral along the contour C and picking the poles in the lower half plane,
one obtains a new state-integral with information about the trivial connection.

For generic b2 ∈ C′ so that Re b > 0, the integrand has the following poles and zeros, all in
the imaginary axis:

simple poles :
{
ib

(
1

2
+m

) ∣∣m = 0, 1, 2, . . .

}
,

double poles :
{
−ib

(
1

2
+m

)
− ib−1(1 + n)

∣∣m,n = 0, 1, 2, . . .

}
,

triple poles :
{
−ib

(
1

2
+m

) ∣∣m = 0, 1, 2, . . .

}
,

double zeros :
{
ib

(
1

2
+m

)
+ ib−1(1 + n)

∣∣m,n = 0, 1, 2, . . .

}
.

(70)

In the special case where b2 = N−1 where N ∈ Z>0, which is the case where (69) is well-
defined, the poles and zeros in the upper half plane conspire so that there are only finite
many simple poles located at

ym = ib

(
m+

1

2

)
, m = 0, · · · , N − 1, (71)

and we can define the contour AN encircling these points as in Fig. 3 (left). An application
of the residue theorem gives that this integral calculates the Kashaev invariant of the 41

knot,

⟨41⟩N =
N−1∑
m=0

(−1)mξ−m(m+1)/2

m∏
ℓ=1

(1− ξℓ)2, ξ = e
2πi
N . (72)
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Now, we can define a new analytic function by changing the contour of integration from AN

to the horizontal contour C slightly below the horizontal line Im(y) = Re(b−1)/2,

Z(τ) = − i

2b3

∫
C
tanh

(πy
b

) Φb

(
−y + i

2b

)
Φb

(
y − i

2b

) dy. (73)

This is now defined for τ = b2 ∈ C′. Although both (69) and (73) share the same integrand,
it has significant contributions from infinity in the upper half plane, so that we cannot deform
the contour AN smoothly to the contour C, and (69) and (73) are really different. On the
other hand, the integrand does have vanishing contributions from infinity in the lower half
plane. Consequently we can smoothly deform the new controur C downwards, and collect the
residues of the integrand on the lower half-plane, as shown in Fig. 3 (right). This integral,
in contrast to the Andersen–Kashaev state-integral, contains information about the trivial
connection. In particular, we conjecture that, in the region of the complex τ -plane slightly
above the positive real axis, the all-orders asymptotic of Z(τ) at τ = 0 is given by

Z(τ) ∼ Φ(σ0)(τ). (74)

Moreover, this can be upgraded to an exact asymptotic formula by using Borel resummation
in the same region, and one has

Z(τ) = s(Φ(σ0))(τ)− i

2
τ−3/2s(Φ(σ2))(τ). (75)

It turns out that the change of contour in Fig. 3 implements the inversion of the Habiro series
recently studied in [Par]: the integral over the contour AN leads to the Habiro series, while
the integral over C gives the “inverted” Habiro series, see also Section 3.4. This inversion
between q-series and elements of the Habiro ring was observed 10 years ago by the first
author in his joint work with Zagier [GZ23], under the informal name “upside-down cake”.

2.7. A 3× 3 matrix of state-integrals. Having found a new state-integral whose asymp-
totics sees the asymptotic series Φ(σ0)(τ), we now consider its descendants, and their factori-
sations to complete the story. The new state-integrals Zλ,µ(τ) are defined as follows:

Zλ,µ(τ) = −
i

2b3

∫
C
tanh

(πy
b

) Φb

(
−y + i

2b

)
Φb

(
y − i

2b

) e−2π(λb−µb
−1)ydy, (76)

where b is related to τ by τ = b2 and λ, µ ∈ Z. The integration contour C is chosen so that,
at infinity, it is asymptotic to the line Im(y) = y2, where y2 satisfies

y2 <
1
2
Re b−1 − |Re(λb− µb−1)|. (77)

This guarantees convergence of the integral. We choose C so that all poles of the integrand
in the lower half plane are below C. Note that Z0,0(τ) = Z(τ) is the integral introduced in
(73), so that the state-integrals with general λ, µ are descendants of Z(τ).



22 STAVROS GAROUFALIDIS, JIE GU, MARCOS MARIÑO, AND CAMPBELL WHEELER

Theorem 7. The descendant state-integral (76) can be expressed in terms of the series (6),
(11) as follows:

Zλ,µ(τ) = qλ/2(−1)µ
(
G

(2)
λ (q) + τ−1G

(1)
λ (q)L(0)

µ (q̃)− τ−2G
(0)
λ (q)L(1)

µ (q̃)
)

+
1

2
qλ/2(−1)µ

(
τ−1G

(1)
λ (q)G(0)

µ (q̃)− τ−2G
(0)
λ (q)G(1)

µ (q̃)
) (78)

Proof. This follows by applying the residue theorem to the state-integral (76), along the lines
of the proof of Theorem 1.1 in [GK17]. One closes the contour to encircle the poles in the
lower half-plane, located at

ym,n = − ib

2
− imb− inb−1, m, n ≥ 0. (79)

The poles of the integrand come the poles and the zeros of the quantum dilogarithm as
well as from the tanh function. When n = 0 they are triple (a double pole comes from
the quantum dilogarithm and a simple pole from tanh), while those with n > 0 are double,
coming only from the quantum dilogarithm. The triple poles lead to the series G

(2)
λ (q). In

order to obtain the final result, one also has to use the properties of E2(q) under modular
transformations, i.e.

E2(q̃) = τ 2
(
E2(q) +

12

2πiτ

)
. (80)

□

Remark 8. The state-integral (76) can be evaluated for arbitrary rational values of τ by
using the techniques of [GK15]. One finds for example, for b2 = 1,

Z(1) = −2 sinh2

(
V

4π

)
, (81)

where V is the hyperbolic volume of 41.

Remark 9. Equation (75) can be written as

Z(τ) = smed(Φ
(σ0))(τ), τ > 0. (82)

We now discuss an important analytic extension of the matrix Jµ(q) defined for |q| ̸= 1.
We define

WS,λ,µ(τ) = Jλ(q̃)
−1diag(τ 3/2, τ 1/2, τ−1/2)Jµ(q) (τ ∈ C \R) . (83)

As in Section 2.5, we find that the domain of WS,λ,µ is independent of the integers λ and µ.

Theorem 10. WS,λ,µ(τ) extends to a holomorphic function on C′ and equals to the matrix
(Zλ+i,µ+j(τ)) (for i, j = 0, 1, 2), up to left-multiplication by a matrix of automorphy factors.

Proof. For the bottom block of four entries, this result is already known from [GGMn21,
GGMn23], and it follows from (66) as was discussed in Section 2.5. The top two non-trivial
entries (σ0, σj) of WS,λ,µ(τ) for j = 1, 2 are given by

τ 3/2
(
G

(2)
µ−1+j(q) + τ−1G

(1)
µ−1+j(q)L

(0)
λ (q̃)− τ−2G

(0)
µ−1+j(q)L

(1)
λ (q̃)

)
. (84)
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In view of Theorem 7 and (66) they can be written as a sum of state-integrals Zλ,µ(τ) and
Zλ,µ+1(τ), multiplied by holomorphic factors. This proves the theorem. □

3. The x-variable

In this section we discuss an extension of the results of Section 2 adding an x-variable. In
the context of the nth colored Jones polynomial, x = qn corresponds to an eigenvalue of the
meridian in the asymptotic expansion of the Chern–Simons path integral around an abelian
representation of a knot complement. In the context of the state-integral of Andersen-
Kashaev [AK14], the x-variable is the monodromy of a peripheral curve. The corresponding
state-integral factorises bilinearly into holomorphic blocks, which are functions of (x, q) and
(x̃, q̃) [BDP14]. In the context of quantum modular forms, x plays the role of a Jacobi
variable.

The corresponding perturbative series are now x-deformed (see [GGMn23, Sec.5.1]), but
there are some tricky aspects of this deformation that we now discuss. The critical points of
the action, after exponentiation, lie in a plane curve S in (C∗)2 (the so-called spectral curve)
defined over the rational numbers, where (C∗)2 is equipped with coordinate functions x and
y. The field Q(S) of rational functions of S (assuming S is irreducible, or working with
one component of S at a time) can be identified with Q(x)[y]/(p(x, y)) where p(x, y) = 0
is the defining polynomial of S. The coefficients of the perturbative series are elements of
(Q(S)∗)−1/2Q(S) and the perturbative series are labeled by the branches of the projection
S → C∗ corresponding to (x, y) 7→ y (with discriminant δ, a rational function on S). Each
such branch σ defines locally an algebraic function y = yσ = yσ(x) ∈ Q(x) satisfying the
equation p(x, yσ(x)) = 0, which gives rise to an embedding of the field of Q(S) to the field
Q(x) of algebraic functions obtained by replacing y by yσ(x). For each such branch σ, the
perturbative series has the form

Φ(σ)(x, τ) = e
V σ(x)
2πiτ φ(σ)(x, τ) (85)

where φ(σ)(x, τ) ∈ 1√
iδσ(x)

Q(x)[[2πiτ ]]. The volume V σ(x) is also a function of x given

explicitly as a sum of dilogarithms and products of logarithms.
In the above discussion it is important to keep in mind that the asymptotic series (85)

are labeled by branches of the finite ramified covering S → C∗. Going around a loop in x-
space that avoids the finitely many ramified points will change the labeling of the y = y(x)
branches, and correspondingly of the asymptotic series. In the present paper (as well as
in [GGMn23]), we define the asymptotic series in a neighborhood of x ∼ 1 of the geometric
representation, and we do not discuss the x-monodromy question.

In the case of the 41 knot, the asymptotic series associated to the geometric, and the
conjugate flat connections are given by

φ(σ1)(x; h
2πi

) =
1√
δ(x)

(
1− i(x−3 − x−2 − 2x−1 + 15− 2x− x2 + x3)

24δ(x)3
h+ . . .

)
φ(σ2)(x; h

2πi
) =

i√
δ(x)

(
1 +

i(x−3 − x−2 − 2x−1 + 15− 2x− x2 + x3)

24δ(x)3
h+ . . .

) (86)
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with h = 2πiτ and
δ(x) =

√
−x−2 + 2x−1 + 1 + 2x− x2. (87)

The corresponding perturbative series are defined by

Φ(σ1)(x; τ) =e
A(x)
2πiτ φ(σ1)(x; τ),

Φ(σ2)(x; τ) =e−
A(x)
2πiτ φ(σ2)(x; τ),

(88)

where

A(x) =
1

2
log(t)2 + 2 log(t) log(x) + log(x)2 + Li2(−tx) + Li2(−t) +

π2

6
+ πi log(x), (89)

with t(x) = −1−x−1+x−iδ(x)
2

being a solution to the equation (t+x−1)+(t+x−1)−1 = x+x−1−1.
Note that when x = 1, δ(1) =

√
3, t(1) = −1+i

√
3

2
and Φ(σj)(1; τ) = Φ(σj)(τ), the latter defined

in Section 2.3.

3.1. The Φ(σ0)(x, τ) series. We begin by discussing the perturbative series φ(σ0)(x, τ) which
is a formal power series in 2πiτ whose coefficients are rational functions of x with rational
coefficients. The series is defined by the right hand side of Equation (25) after setting
h = 2πiτ . One way to compute the ℓ-th coefficient of that series is by computing the colored
Jones polynomial, expanding in n and h as in (23) and then resumming as in (26), taking
into account the fact that the latter sum is a rational function. An alternative way is by
using Habiro’s expansion of the colored Jones polynomials [Hab02b] (see also [Hab08])

JK(x, q) =
∞∑
k=0

ck(x, q)H
K
k (q), ck(x, q) = x−k(qx; q)k(q

−1x; q−1)k (90)

where HK
k (q) ∈ Z[q±] are the Habiro polynomials of the knot K and JK(qn, q) is the nth

colored Jones polynomial. The latter can be efficiently computed using a recursion (which
always exists [GL05]) together with initial conditions. This is analogous to applying the
WKB method to a corresponding linear q-difference equation [DGLZ09, Gar08b]. We com-
ment that the colored Jones polynomials of a knot K have a descendant version defined
by [GK23]

DJK,(m)(x, q) =
∞∑
k=0

ck(x, q)H
K
k (q) qkm, (m ∈ Z) . (91)

Correspondingly, the Kashaev invariant has a descendant version DJK,(m)(1, q) (an element
of the Habiro ring) and the asymptotic series Φ(σ0)(x, τ) have a descendant version Φ

(σ0)
m (x, τ)

defined for all integers m in [GK23], which we will not use in the present paper.
Going back to the case of the 41 knot, we have

φ(σ0)(x; h
2πi

) = − 1

x−1 − 3 + x
− x−1 − 1 + x

(x−1 − 3 + x)4
h2 (92)

− x−4 + 14x−3 + 64x−2 − 156x−1 + 201− 156x+ 64x2 + 14x3 + x4

12(x−1 − 3 + x)7
h4 + . . .

(93)
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and the corresponding perturbative series is given by Φ(σ0)(x; τ) = φ(σ0)(x; τ).

3.2. A 3×3 matrix of (x, q)-series. We now extend the results of Section 2.2 by including
the Jacobi variable x which, on the representation side, determines the monodromy of the
meridian of an SL2(C) representation σ.

Our first task is to define the 3× 3 matrix Jm(x, q). For |q| ≠ 1, we define

Cm(x, q) =
∞∑
k=0

(−1)k qk(k+1)/2+km

(x−1; q)k+1(x; q)k+1

Am(x, q) =
∞∑
k=0

(−1)k q
k(k+1)/2+kmxk+m

(q; q)k(x2q; q)k

Bm(x, q) = Am(x
−1, q).

(94)

Our series Cm(x, q) contain as a special case the series F41(x, q) in [GM21, Par20, Par]

F41(x, q) = (x1/2 − x−1/2)C0(x, q). (95)

We assemble these (x, q)-series into a matrix

Jm(x, q) =

1 Cm(x, q) Cm+1(x, q)
0 Am(x, q) Am+1(x, q)
0 Bm(x, q) Bm+1(x, q)

 (96)

whose bottom-right 2× 2 matrix is Jred
m (x, q). The properties of Jm(x, q) are summarised in

the next theorem.

Theorem 11. The matrix Jm(x, q) is a fundamental solution to the linear q-difference equa-
tion

Jm+1(x, q) = Jm(x, q)A(x, q
m, q), A(x, qm, q) =

1 0 1
0 0 −1
0 1 x−1 + x− qm+1

 , (97)

has det(Jm(x, q)) = x−1 − x and satisfies the analytic extension

Jm(x, q
−1) =

1 0 0
0 0 1
0 1 0

J−m−1(x, q)

1 0 0
0 0 1
0 1 0

 . (98)

Proof. The proof is analogous to the proof of Theorem 3. Equation (97) follows quickly using
the q-hypergeometric expressions and noting that Cm(x, q) has a boundary term so satisfies
an inhomogenous version. The block form again reduces the calculation of the determinant of
Jm(x, q) to a calculation of the determinant of Jred

m (x, q) given in [GGMn23]. Equation (98)
follows from the symmetry of the q-hypergeometric functions

Cm(x, q
−1) = C−m(x, q)

Am(x, q
−1) = B−m(x, q)

Bm(x, q
−1) = A−m(x, q).

(99)

□
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The Appell-Lerch like sums again appear in the inverse of Jm(x, q). The proof is again
completely analogous to the proof of Theorem 4.

Theorem 12. We have

Jm(x, q)
−1 =

1

x−1 − x

x−1 − x −LBm(x, q) LAm(x, q)
0 Bm+1(x, q) −Am+1(x, q)
0 −Bm(x, q) Am(x, q)

 (100)

for the q-series LAm(x, q), LBm(x, q) defined by

LAm(x, q) = Am+1(x, q)Cm(x, q)− Am(x, q)Cm+1(x, q)

LBm(x, q) = Bm+1(x, q)Cm(x, q)−Bm(x, q)Cm+1(x, q)
(101)

The q-series LAm(x, q), LBm(x, q) are expressed in terms of Appell-Lerch type sums:

LAm(x, q) =
∞∑
k=0

(−1)k qk(k+1)/2+km+kxk+m+1

(q; q)k(x2q; q)k(1− xqk)

LBm(x, q) = LAm(x
−1, q) .

(102)

Proof. Given the block form of Jm(x, q) and the determinant calculated previously in Theo-
rem 11, Equation (101) follows from taking the matrix inverse. Observe that again A(x; qm, q)
has first column (1, 0, 0)t and first row (1, 0, 1). It follows that its inverse matrix has first
column (1, 0, 0)t and first row (1, 1, 0). This, together with (97), implies that

Jm+1(x, q)
−1 = A(x, qm, q)−1Jm(x, q)

−1

=

1 1 0
0 x+ x−1 − qm+1 1
0 −1 0

Jm(x, q)
−1 (103)

which implies that LAm(x, q), LBm(x, q) satisfy the first order inhomogeneous linear q-
difference equation

LAm−1(x, q)− LAm(x, q) = Am(x, q),

LBm−1(x, q)− LBm(x, q) = Bm(x, q) .
(104)

Let LAm(x, q) denote the right-hand side of the first Equation (102). Then we have

LAm−1(x, q)− LAm(x, q) =
∞∑
k=0

(−1)k q
k(k+1)/2+kmxk+m(1− xqk)

(q; q)k(x2q; q)k(1− xqk)
= Am(x, q).

Therefore LAm(x, q) − LAm(x, q) is independent of m. Moreover, limm→∞ LAm(x, q) −
LA

(0)
m (x, q) = 0 for |q|, |x| < 1 or limm→−∞ LAm(x, q) − LA

(0)
m (x, q) = 0 for |q|, |x| > 1.

Equations (102) follows from analytic continuation. □

Now if we take the inverse of Jm(x, q)
−1 we can get similar identities for Cm(x, q).
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Corollary 13.

Cm(x, q) =
1

x−1 − x
(Am(x, q)LBm(x, q)−Bm(x, q)LAm(x, q)) (105)

Cm+1(x, q) =
1

x−1 − x
(Am+1(x, q)LBm(x, q)−Bm+1(x, q)LAm(x, q)) . (106)

3.3. Borel resummation and Stokes constants. In this section we extend the discussion
in Section 2.4 to include x-deformation. We analyse the asymptotic expansion as q = e2πiτ

and τ → 0 of the (x, q)-series presented in Section 3.2 and relate them to the (x, τ)-asymptotic
series given in Section 3.1. For this purpose, it is more convenient to introduce the decorated
(x, q)-series

Cm(x, q) =Cm(x, q),

Am(x, q) =
(qx2; q)∞

θ(−q1/2x, q)Am(x, q),

Bm(x, q) =x
(qx−2; q)∞

θ(−q1/2x−1, q)Bm(x, q),

(107)

where
θ(x, q) = (−q1/2x; q)∞(−q1/2x−1; q)∞. (108)

They satisfy the recursion relation in m

Fm+1(x, q) + (qm − x− x−1)Fm(x, q) + Fm−1(x, q) = δC, (109)

where F = A,B, C and δC means the inhomogeneous term is only present for F = C. In
addition, Am(x, q),Bm(x, q) as well as Cm(x, q) = (1−x)Cm(x, q) also satisfy the q-difference
equations with respect to x

qmx2(1− q−1x2)Fm(qx, q) + qmx2(1− qx2)Fm(q
−1x, q)

−(1− x)(1 + x)(1 + x4 − qm(x+ x3)− (q−1 + q)x2)Fm(x, q) =

δCx(1 + x)(1− qx2)(1− q−1x2), (110)

where F = A,B,C and δC means the inhomogeneous term is only present for F = C. Note
that when m = 0, (110) reduces to the inhomogeneous Â-polynomial in [GGMn23]. The
associated decorated matrix J (x, q) is given by

Jm(x, q) =

1 Cm(x, q) Cm+1(x, q)
0 Am(x, q) Am+1(x, q)
0 Bm(x, q) Bm+1(x, q)


=

1 0 0

0 (qx2;q)∞
θ(−q1/2x;q)2 0

0 0 x (qx−2;q)∞
θ(−q1/2x−1;q)2

Jm(x, q) (111)

and it has

detJ (x, q) := detJm(x, q) = θ(−q−1/2x2, q)θ(−q1/2x; q)−2θ(−q1/2x−1, q)−2. (112)
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We will focus on the vector B(x, q) of (x, q)-series

B(x, q) =

C0(x, q)A0(x, q)
B0(x, q)

 , (113)

which is defined for |q| ≠ 1 and satisfies by

B(x, q−1) =

1 0 0
0 0 x detJ (x, q)−1
0 −x detJ (x, q)−1 0

B(x, q). (114)

We will write
q = e2πiτ , x = eu (115)

and we will show that the asymptotic expansion of B(x, q) in the limit τ → 0 is related to
the vector Φ(x, τ) of (x, τ) asymptotic series

Φ(x, τ) =

Φ(σ0)(x, τ)
Φ(σ1)(x, τ)
Φ(σ2)(x, τ)

 (116)

with corrections given by B(x̃, q̃) where

q̃ = e−2πi/τ , x̃ = eu/τ . (117)

ϕ(σ0)(x, τ )

(a)
Λσ0(x)

ϕ(σ1)(x, τ )

(b)
Λσ1(x)

ϕ(σ2)(x, τ )

(c)
Λσ2(x)

Figure 4. Singularities of the Borel transforms of φ(σj)(x, τ) for j = 0, 1, 2 of
the knot 41. Here we take small and real x. Red lines are some Stokes rays.

The asymptotic series Φ(x, τ) can be resummed by Borel resummation. As we have ex-
plained in Section 2.4 the value of the Borel resummation depends on the singularities of
the Borel transform of Φ(x, τ). The positions of these singular points, denoted collectively
as Λ(x), are smooth functions of x, and in the limit x = 1 they are equal to Λ defined in
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(34). When x is near 1, which is the regime we will be interested in, each singular point ι(k)i,j

in Λ splits to a finite set of points located at ι(k,ℓ)i,j := ι
(k)
i,j + ℓ log(x), where ℓ takes value in a

finite subset of Z that depends on i, j, k. These singular points are aligned on a line and are
apart from each other by a distance log(x). We illustrate this schematically in Fig. 4. The
complex plane of τ is divided to infinitely many cones by rays passing through these singular
points, and the Borel resummation of Φ(x, τ), denoted by sR(Φ)(x, τ), is only well-defined
within a cone R.

We conjecture that the asymptotic expansion in the limit q → 1 of the vector of (x, q)-series
B(x, q) can be expressed in terms of sR(Φ)(x, τ). Furthermore, in each cone, the asymptotic
expansion can be upgraded to exact identities between B(x, q) and linear transformation of
Borel resummation of Φ(x, τ) up to exponentially small corrections characterised by q̃ and
x̃ = exp( log x

τ
).

Conjecture 14. For every x ∼ 1, every cone R ⊂ C \ Λ(x) and every τ ∈ R we have
∆′(x, τ)B(x, q) = MR(x̃, q̃)∆(x, τ)sR(Φ)(x, τ), (118)

where
∆′(x, τ) = diag(τ 1/2 x

1/2−x−1/2

x̃1/2−x̃−1/2 , (x̃/x)
1/2e

3πi
4
−πi

4
(τ+τ−1), (x̃/x)1/2e

3πi
4
−πi

4
(τ+τ−1)),

∆(x, τ) = diag(τ 1/2 x
1/2−x−1/2

x̃1/2−x̃−1/2 , 1, 1),
(119)

and MR(x̃, q̃) is a 3 × 3 matrix of q̃ (resp., q̃−1)-series if Imτ > 0 (resp., Imτ < 0) with
coefficients in Z[x̃±1] that depend on R.

III

III IV

Figure 5. Stokes rays and cones in the τ -plane for the 3-vector Φ(x, τ) of
asymptotic series of the knot 41. Here we take small and real x.

To illustrate examples of MR(x̃, q̃), we pick four of these cones, located slightly above and
below the positive or negative real axis, labeled in counterclockwise direction by I, II, III, IV ,
cf. Fig. 5.
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Conjecture 15. Equation (118) holds in the cones R = I, II, III, IV where the matrices
MR(x̃, q̃) are given in terms of J−1(x̃, q̃) as follows

MI(x̃, q̃) = J−1(x̃, q̃)

1 0 0
0 0 −1
0 1 −1

 , |q̃| < 1, (120a)

MII(x̃, q̃) =

1 0 0
0 0 1
0 1 0

J−1(x̃, q̃)
1 0 0
0 1 0
0 1 −1

 , |q̃| < 1, (120b)

MIII(x̃, q̃) =

1 0 0
0 0 −1
0 −1 0

J−1(x̃, q̃)
1 x̃−1 0
0 −1 0
0 x̃+ x̃−1 1

 , |q̃| > 1, (120c)

MIV (x̃, q̃) = J−1(x̃, q̃)

1 0 x̃−1

0 0 −1
0 1 x̃+ x̃−1

 , |q̃| > 1. (120d)

Remark 16. It is sometimes stated in the literature that the Gukov–Manolescu series is
obtained by “resumming” the perturbative series Φ(σ0)(x, τ) associated to the trivial connec-
tion, although it is not always clear what “resumming” means in that context. The above
conjecture shows that, generically, C0(x, q) involves the Borel resummation of all perturbative
series Φ(σj)(x, τ), j = 0, 1, 2, as well as non-perturbative corrections in q̃, x̃.

We now discuss the Stokes automorphism of the Borel resummation sR(Φ)(x, τ). The
discussion is similar to the one in Section 2.4. To any singular point of the Borel transform
of Φ(x, τ) locatd at ι

(k,ℓ)
i,j , we can associate a local Stokes matrix

S
ι
(k,ℓ)
i,j

= I + S(k,ℓ)
i,j q̃kx̃ℓEi,j, S(k,ℓ)

i,j ∈ Z, (121)

where Ei,j is the elementary matrix with (i, j)-entry 1 (i, j = 0, 1, 2) and all other entries
zero, and S(k,ℓ)

i,j is the Stokes constant. Let us again assume the locality condition. Then
for any ray of angle θ, the Borel resummations of Φ(x, τ) with τ whose argument is raised
slightly above θ (θ+) or sightly below (θ−) are related by the following formula of Stokes
automorphism

∆(x, τ)sθ+(Φ)(x, τ) = Sθ(x̃, q̃)∆(x, τ)sθ−(Φ)(x, τ), Sθ(x̃, q̃) =
∏

arg ι=θ

Sι(x̃, q̃). (122)

Because of the locality condition, we don’t have to worry about the order of product of local
Stokes matrices.

In addition, given two rays ρθ+ and ρθ− whose arguments satisfy 0 < θ+ − θ− ≤ π, we
define the global Stokes matrix Sθ−→θ+(x̃, q̃) by

∆(x, τ)sθ+(Φ)(x, τ) = Sθ−→θ+(x̃, q̃)∆(x, τ)sθ−(Φ)(x, τ), (123)
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where both sides are analytically continued smoothly to the same value of τ . The global
Stokes matrix Sθ−→θ+(x̃, q̃) satisfies the factorisation property [GGMn21, GGMn23]

Sθ−→θ+(x̃, q̃) =
←∏

θ−<θ<θ+

Sθ(x̃, q̃), (124)

where the ordered product is taken over all the local Stokes matrices whose arguments are
sandwiched between θ−, θ+ and they are ordered with rising arguments from right to left.

Given (118) with explicit values of MR(x̃, q̃) for R = I, II, III, IV , in general we can
calculate the global Stokes matrix via

SR→R′(x̃, q̃) = MR′(x̃, q̃)−1 ·MR(x̃, q̃). (125)

For instance, we find the global Stokes matrix from cone I anti-clockwise to cone II is

SI→II(x̃, q̃) =

1 0 0
0 1 0
0 1 −1

J−1(x̃, q̃)−1
1 0 0
0 0 1
0 1 0

J−1(x̃, q̃)
1 0 0
0 0 −1
0 1 −1

 , |q̃| < 1.

(126)
This Stokes matrix has the block upper triangular form1 ∗ ∗

0 ∗ ∗
0 ∗ ∗

 . (127)

One can verify that the 2×2 submatrix of SI→II(x̃, q̃) in the bottom right is the Stokes matrix
in [GGMn21]. In addition we can also extract Stokes constants S(k,ℓ)

0,j (j = 1, 2, k = 1, 2, . . .)
responsible for Stokes automorphisms into Φ(σ0)(x, τ) from Borel singularities in the upper
half plane, and collect them in the generating series

S+
0,j(x̃, q̃) =

∞∑
k=1

∑
ℓ

S(k,ℓ)
0,j x̃ℓq̃k, j = 1, 2. (128)

We find

S+
0,1(x̃, q̃) = S+

0,2(x̃, q̃) =x̃−1
(
−C−1(x̃, q̃) + C0(x̃, q̃)

A−1(x̃, q̃) + B−1(x̃, q̃)
A0(x̃, q̃) + B0(x̃, q̃)

)
=− q̃ − (x̃+ x̃−1)q̃2 − (x̃2 + 1 + x̃−2)q̃3 + . . . . (129)

Similarly, we find the global Stokes matrix from cone III anti-clockwise to cone IV is

SIII→IV (x̃, q̃) =

1 0 0
0 −1 1
0 1 0

·J−1(x̃, q̃−1)−1·
1 0 0
0 0 1
0 1 0

·J−1(x̃, q̃−1)·
1 0 0
0 1 0
0 1 1

 , |q̃| > 1.

(130)
It also has the form as (127). This, together with the same phenomenon in the upper
half plane, implies that Φ(sj)(x, τ) (j = 1, 2) form a minimal resurgent structure. The
2× 2 submatrix of SIII→IV (x̃, q̃) in the bottom right is identical to the Stokes matrix given
in [GGMn21]. We also extract Stokes constants S(k,ℓ)

0,j (j = 1, 2, k = −1,−2, . . .) responsible
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for Stokes automorphisms into Φ(σ0)(x, τ) from Borel singularities in the lower half plane,
and collect them in the generating series

S−0,j(x̃, q̃) =
−∞∑
k=−1

∑
ℓ

S(k,ℓ)
0,j x̃ℓq̃k, j = 1, 2. (131)

And we find

S−0,2(x̃, q̃) = −S−0,1(x̃, q̃) = S+
0,1(x̃, q̃

−1). (132)

We can also use (125) to compute the global Stokes matrix SIV→I(q̃) and we find

SIV→I =

1 0 1
0 1 x̃+ 1 + x̃−1

0 0 1

 . (133)

Note that this can be identified as S0, associated to the ray ρ0, and it can be factorised as

S0 = Sι0,2Sι1,2 , Sι0,2 =

1 0 1
0 1 0
0 0 1

 , Sι1,2 =

1 0 0
0 1 x̃+ 1 + x̃−1

0 0 1

 . (134)

Since the local Stokes matrices Sι0,2 and Sι1,2 commute, the locality condition is satisfied.
We read off the Stoke discontinuity formulas

disc0Φ(0)(x, τ) =
x̃1/2 − x̃−1/2

x1/2 − x−1/2
τ−1/2s(Φ(s2))(x, τ),

disc0Φ(1)(x, τ) = (x̃+ 1 + x̃−1)s(Φ(s2))(x, τ) .

(135)

They reduce properly to (56) in the x→ 1 limit, and the second identity has already appeared
in [GGMn21].

Finally, in order to compute the global Stokes matrix SII→III(q̃), we need to take into
account that the odd powers of τ 1/2 on both sides of (118) give rise to additional −1 factors
when one crosses the branch cut at the negative real axis, and (125) should be modified by

SII→III(q̃) = diag(−1, 1, 1)MIII(q̃)
−1diag(−1, 1, 1)MII(q̃), (136)

and we find

SII→III =

1 1 0
0 1 0
0 −x̃− 1− x̃−1 1

 . (137)

Similarly this can be identified as Sπ associated to the ray ρπ and it can be factorised as

Sπ = Sι0,1Sι2,1 , Sι0,1 =

1 1 0
0 1 0
0 0 1

 , Sι2,1 =

1 0 0
0 1 0
0 −x̃− 1− x̃−1 1

 . (138)
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Note that the local Stokes matrices Sι0,1 and Sι2,1 also commute. We read off the Stokes
discontinuity formulas

discπΦ(0)(x, τ) =
x̃1/2 − x̃−1/2

x1/2 − x−1/2
τ−1/2s(Φ(s1))(x, τ), (139)

discπΦ(2)(x, τ) = −(x̃+ 1 + x̃−1)s(Φ(s1))(x, τ). (140)

They reduce properly to (61) in the x→ 1 limit, and the second identity has already appeared
in [GGMn21].

3.4. (u, τ) state-integrals. In parallel to the discussion in Sections 2.6 and 2.7, we now
introduce a new state-integral which depends on τ , but also on a variable u. Let us consider
the state-integral

ZB(u, τ) = −
i

2b

sinh(πb−1u)

sinh(πbu)

∫
B
tanh(πb−1v)

Φb(−v + i
2
b−1 + u)

Φb(v − i
2
b−1 + u)

e2πiu(v−
i
2
b−1)dv, (141)

where the contour of integral B is not specified yet. The integrand reduces to that of (69) in
the limit u→ 0. For generic b2 ∈ C′ so that Re b > 0, the integrand has the following poles
and zeros

Poles :
{
±ib

(
1

2
+m

)
, ±u− ib

(
1

2
+m

)
− ib−1n

∣∣ m,n = 0, 1, 2, . . .

}
Zeros :

{
±u+ ib

(
1

2
+m

)
+ ib−1(1 + n)

∣∣ m,n = 0, 1, 2, . . .

}
.

(142)

We can choose for the integral the contour AN in the upper half plane that wraps the
following poles, as in the left panel of Fig. 3,

vm = ib

(
1

2
+m

)
, m = 0, 1, 2, . . . , N − 1. (143)

By summing over the residues of these poles, the integral evaluates as follows

ZAN
(ub, τ) =

N−1∑
n=0

(−1)nq−n(n+1)/2(qx; q)n(qx
−1; q)n, x = eu, q = e2πiτ , (144)

where we defined ub = u/(2πb), as in [GGMn23, Eqn.(2)]. When x = qN this is none other
than the colored Jones polynomial of the knot 41

ZAN
(iNb, b2) = J41

N (q) =
N−1∑
n=0

(−1)nq−n(n+1)/2(q1+N ; q)n(q
1−N ; q)n. (145)

Alternatively, we can choose for the integral the contour C as in the right panel of Fig. 3,
which is asymptotic to a horizontal line slightly below Im(v) = Re(b−1), but deformed near
the origin in such a way that all the poles

v±m,n = ±u− ib

(
1

2
+m

)
− ib−1n, m, n = 0, 1, 2, . . . (146)

are below the contour C. Let Z(u, τ) := ZC(u, τ) denote the corresponding state-integral.
Similar to the discussion in Section 2.6, as the integrand has non-trivial contributions from
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infinity in the upper half plane, the two integrals ZAN
(u, τ) and Z(u, τ) are different. On

the other hand, since the integrand does have vanishing contributions from infinity in the
lower half plane, we can smoothly deform the contour C downwards so that Z(u, τ) can be
evaluated by summing over residues at the poles v±m,n, and we find

Z(u, τ) =C0(x, q) +
e

3πi
4
−πi

4
(τ+τ−1)

τ 1/2
x̃−1 − 1

1− x
A0(x, q)

(
LA0(x̃, q̃

−1) +
1

2
A0(x̃, q̃

−1)

)
+

e
3πi
4
−πi

4
(τ+τ−1)

τ 1/2
x̃−1 − 1

1− x
B0(x, q)

(
LB0(x̃, q̃−1) +

1

2
B0(x̃, q̃−1)

)
, (147)

where LAµ(x, q), LBµ(x, q) are defined as in (101) with Roman letters A,B,C replaced by
caligraphic letters A,B, C. As mentioned above, the change of integration contour imple-
ments the Habiro inversion of [Par]: the integration over AN gives the Habiro series (145),
while the integration over C involves C0(x, q), which was interpreted in [Par] as an inverted
Habiro series. This contribution comes from the poles −vm in the lower half-plane.

The integral Z(u, τ) can also be identified with the Borel resummation of the perturbative
series Φ(σj)(x; τ) for j = 0, 1, 2. By inverting the matrix MR(x̃, q̃) in (118), we can also
express the Borel resummation sR(Φ)(x, τ) in any cone R in terms of combinations of (x, q)-
and (x̃, q̃)-series, and they can be then compared with the right hand side of (147). For
instance, in the cones I and IV respectively, we find

Z(u, τ) =sI(Φ
(σ0))(x; τ)− x̃1/2 − x̃−1/2

2(x1/2 − x−1/2)
τ−1/2sI(Φ

(σ2))(x; τ), (148a)

=sIV (Φ
(σ0))(x; τ) +

x̃1/2 − x̃−1/2

2(x1/2 − x−1/2)
τ−1/2sIV (Φ

(σ2))(x; τ). (148b)

This also implies that for positive real τ ,

Z(u, τ) = smed(Φ
(σ0))(x; τ) . (149)

Finally, we can introduce the descendants of the integral Z(u, τ) as follows

Zλ,µ(u, τ) = −
i

2b

sinh(πb−1u)

sinh(πbu)

∫
C
tanh(πb−1v)

Φb(−v + i
2
b−1 + u)

Φb(v − i
2
b−1 + u)

e2πiu(v−
i
2
b−1)−2π(λb−µb−1)vdv.

(150)
The integrand has the same poles and zeros as in (142). To ensure convergence, the contour
C needs slight modification: it is asymptotic to a horizontal line slightly below Im(v) =
1
2
Re(b−1) − |Re(λb − µb−1)|, and it is deformed near the origin in such a way that all

the poles (146) are below the contour C. Similarly, by smoothly deforming the contour
downwards we can evaluate this integral by summing up residues of all the poles in the lower
half plane, and we find

Zλ,µ(u, τ) =(−1)µqλ/2
(
Cλ(x, q) +

e
3πi
4
−πi

4
(τ+τ−1)

τ 1/2
x̃−1 − 1

1− x
Aλ(x, q)

(
LA−µ(x̃, q̃−1) +

1

2
A−µ(x̃, q̃−1)

)

+
e

3πi
4
−πi

4
(τ+τ−1)

τ 1/2
x̃−1 − 1

1− x
Bλ(x, q)

(
LB−µ(x̃, q̃−1) +

1

2
B−µ(x̃, q̃−1)

))
. (151)



RESURGENCE OF CHERN–SIMONS THEORY AT THE TRIVIAL FLAT CONNECTION 35

3.5. An analytic extension of the colored Jones polynomial. In this section we discuss
a Borel resummation formula for the colored Jones polynomial of the 41 knot. The latter is
defined by

J41
N (q) =

N−1∑
k=0

(−1)kq−k(k+1)/2(q1+N ; q)k(q
1−N ; q)k . (152)

Let u ∼ 0 be in a small neighborhood of the origin in the complex plane. It is related to
x = qN and τ by

x = eu, τ =
u

2πiN
+

1

N
. (153)

Then u is near 0, then x is close to 1, which is the regime that we studied in Section 3.3,
and τ is close to 1/N . Note that Nτ = 1 + u

2πi
is the analogue of n/k in [Guk05], and here

we are considering a deformation from the case of n/k = 1.
Experimentally, we found that in cones I and IV respectively, we have

J41
N (q) =sI(Φ

(σ0))(x; τ) +
x̃1/2 − x̃−1/2

x1/2 − x−1/2
τ−1/2sI(Φ

(σ1))(x; τ)

− (1 + x̃)
x̃1/2 − x̃−1/2

x1/2 − x−1/2
τ−1/2sI(Φ

(σ2))(x; τ) (154a)

=sIV (Φ
(σ0))(x; τ) +

x̃1/2 − x̃−1/2

x1/2 − x−1/2
τ−1/2sIV (Φ

(σ1))(x; τ)

+ (1 + x̃−1)
x̃1/2 − x̃−1/2

x1/2 − x−1/2
τ−1/2sIV (Φ

(σ2))(x; τ) (154b)

where x̃ = eu/τ = e2πiNu/(u+2πi). This, together with Conjecture 6 implies

J41
N (q) =smed(Φ

(σ0))(x; τ) +
x̃1/2 − x̃−1/2

x1/2 − x−1/2
τ−1/2smed(Φ

(σ1))(x; τ)

− x̃− x̃−1

2

x̃1/2 − x̃−1/2

x1/2 − x−1/2
τ−1/2smed(Φ

(σ2))(x; τ), (155)

which is Conjecture 2 for the 41 knot.
We now make several consistency checks of the above conjecture. The first is that equa-

tion (155) is invariant under complex conjugation which moves τ from cone I to cone IV .
The second is that the conjecture implies the Generalised Volume Conjecture. Indeed, in
the limit

N →∞, τ → 0, log(x) = 2πiNτ finite (156)
the right hand side of (154a),(154b) are dominated by the first term. If we keep only the
exponential, this is the generalised Volume Conjecture [Mur11, Guk05]. Recall from [Mur11],
the generalised Volume Conjecture reads, for u in a small neighborhood of origin such that
u ̸∈ πiQ,

lim
N→∞

log JK
N (exp((u+ 2πi)/N))

N
=

H(y, x)

u+ 2πi
, (157)

where x = exp(u + 2πi) and H(y, x) = Li2(1/(xy)) − Li2(y/x) + log(x) log(y), with y a
solution to y + y−1 = x+ x−1 − 1. By the identification u+ 2πi = 2πi(Nτ) ∼ 2πi, and since
A(x) is identical with H(y, x) (up to ±1), one can check that (154a),(154b) imply (157).
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4. The 52-knot

4.1. A 3 × 3 matrix of q-series. The trace field of the 52 knot is the cubic field of dis-
criminant −23, with a distinguished complex embedding σ1 (corresponding to the geometric
representation of 52), its complex conjugate σ2 and a real embedding σ3. The 52 knot has
three boundary parabolic representations whose associated asymptotic series φ(σj)(h) for
j = 1, 2, 3 correspond to the three embeddings of the trace field. In [GGMn21] these asymp-
totic series were discussed, and a 3× 3 matrix Jred

m (q) of q-series was constructed to describe
the resurgence properties of the asymptotic series. The matrix Jred

m (q) is a fundamental
solution to the linear q-difference equation [GGMn21, Eqn.(23)]

fm(q)− 3fm+1(q) + (3− q2+m)fm+2(q)− fm+3(q) = 0 (158)

and it is defined by4

Jred
m (q) =

H
(2)
m (q) H

(2)
m+1(q) H

(2)
m+2(q)

H
(1)
m (q) H

(0)
m+1(q) H

(1)
m+2(q)

H
(0)
m (q) H

(0)
m+1(q) H

(0)
m+2(q)

 , (|q| ≠ 1) (160)

where for |q| < 1

H(0)
m (q) =

∞∑
n=0

qn(n+1)+nm

(q; q)3n
,

H(1)
m (q) =

∞∑
n=0

qn(n+1)+nm

(q; q)3n

(
1 + 2n+m− 3E

(n)
1 (q)

)
,

H(2)
m (q) =

∞∑
n=0

qn(n+1)+nm

(q; q)3n

(
(1 + 2n+m− 3E

(n)
1 (q))2 − 3E

(n)
2 (q)− 1

6
E2(q)

)
,

(161)

and

H
(0)
−m(q

−1) =
∞∑
n=0

(−1)n q
1
2
n(n+1)+nm

(q; q)3n
,

H
(1)
−m(q

−1) = −
∞∑
n=0

(−1)n q
1
2
n(n+1)+nm

(q; q)3n

(
1

2
+ n+m− 3E

(n)
1 (q)

)
,

H
(2)
−m(q

−1) =
∞∑
n=0

(−1)n q
1
2
n(n+1)+nm

(q; q)3n

((1
2
+ n+m− 3E

(n)
1 (q)

)2 − 3E
(n)
2 (q)− 1

12
E2(q)

)
.

(162)

4The matrices Jred
m (q) are related to the Wronskians Wm(q) in [GGMn21, GGMn23] by

Jred
m (q) =

0 0 1
0 1 0
1 0 0

Wm(q)T . (159)
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4.2. The Habiro polynomials and the descendant Kashaev invariants. The addition
of the asymptotic series φ(σ0)(h) corresponding to the trivial flat connection requires a 4× 4
extension of the matrix Jred(q). This is consistent with the fact that the colored Jones
polynomial of 52 satisfies a third order inhomogenous linear q-difference equation, and hence
a 4th order homogeneous linear q-difference equation. However, the descendant colored Jones
polynomials of 52 satisfy a 5th order inhomogeneous recursion [GK23, Eqn.(14)], hence a
6th order homogeneous recursion. In view of this, we will give a 6× 6 matrix J(q) of q-series
and we will use its 4 × 4 block to describe the resurgent structure of the asymptotic series
φ(σ0)(h).

Let us recall the Habiro polynomials, the descendant colored Jones polynomials, the de-
scendant Kashaev invariants and their recursions. The Habiro polynomials H52

n (q) ∈ Z[q±1]
are given by terminating q-hypergeometric sums

H52
n (q) = (−1)nq 1

2
n(n+3)

n∑
k=0

qk(k+1)

(
n

k

)
q

(163)

(see Habiro [Hab02a] and also Masbaum [Mas03]) where
(
a
b

)
q
= (q; q)a/((q; q)b(q; q)b−a) is

the q-binomial function. In [GS06], it was shown that Hn = H52
n (q) satisfies the linear

q-difference equation

H52
n+2(q)+q3+n(1+q−q2+n+q4+2n)H52

n+1(q)−q6+2n(−1+q1+n)H52
n (q) = 0, (n ≥ 0) (164)

with initial conditions H52
n (q) = 0 for n < 0 and H52

0 (q) = 1. Actually, the above recursion
is valid for all integers if we replace the right hand side of it by δn+2,0. The recursion for
the Habiro polynomials of 52, together with Equation (91) and [Kou10], gives that DJ(m) =

DJ52,(m)(x, q), which is the descendant colored Jones polynomial defined by (91), satisfies
the linear q-difference equation

(−1 + q1+m)(−1 + q2+m)x2DJ(m) − q2+m(−1 + q2+m)x(1 + q + x+ (1 + q)x2)DJ(1+m)

+ q3+m(q3+m + (−1 + q2+m + q3+m)x+ (−2− q + q2+m + 2q3+m + q4+m)x2 + (−1 + q2+m + q3+m)x3 + q3+mx4)DJ(2+m)

− q4+m(q3+m + (−1 + q3+m + q4+m)x+ (−1 + q2+m + 2q3+m + q4+m)x2 + (−1 + q3+m + q4+m)x3 + q3+mx4)DJ(3+m)

+ q5+mx(q3+m + q4+m + (−1 + q4+m)x+ (q3+m + q4+m)x2)DJ(4+m) − q10+2mx2DJ(5+m)

= x(q2+m + q4+m + (1− q1+m − 2q3+m − q5+m)x+ (q2+m + q4+m)x2)H0(q) + qmx(1− xq−1)(1− qx)H1(q) . (165)

Using the values H52
0 (q) = 1, H52

1 (q) = −q2 − q4, it follows that the right hand side of the
above recursion is x2 for all m. Setting x = 1, and renaming DJ(m) by fm(q), we arrive
at the inhomogenous 5-th order q-difference equation satisfied by the descendant Kashaev
invariant [GK23, Eqn.(14)]

− q2m+10fm+5(q) + (3q2m+9 + 2q2m+8 − qm+5)fm+4(q) + (−3q2m+8 − 6q2m+7 − q2m+6 + 3qm+4)fm+3(q)

+(q2m+7+6q2m+6+3q2m+5−qm+4−4qm+3)fm+2(q)+(2qm+3+3qm+2)(1−qm+2)fm+1(q)+(1−qm+1)(1−qm+2)fm(q) = 1

(166)

valid for all integers m. Our aim is to define an explicit fundamental matrix solution to
the corresponding sixth order homogenous linear q-difference equation (166). To do so,
we define a 2-parameter family of deformations of the Habiro polynomials which satisfy a
one-parameter deformation of the recursion of the Habiro polynomials. Motivated by the
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q-hypergeometric expression (163) for the Habiro polynomials, we define deformations of the
Habiro polynomials, for |q| ≠ 1, with appropriate normalisations

Hn(ε, δ; q) =
(qeε−δ; q)∞(qe

δ; q)∞
(qeε; q)∞(q; q)∞

(−1)nqn(n+3)/2e(n+1)ε

e
1
12

ε2− 1
12

(εδ−δ2)E2(q)

∑
k∈Z

qk(k+1)e(2k+1)δ(qeε; q)n
(qeδ; q)k(qeε−δ; q)n−k

Hn(ε, δ; q
−1) =

(qeε+δ; q)∞
(qeδ; q)2∞

q−n(n+3)/2e(n+3/2)ε

(−1)n(e−δ; q)∞(q; q)∞
∑
k∈Z

(−1)kqk(k+1)/2eδk
(qeδ; q)k−1

(qeε+δ; q)k−n−1

(167)

where n ∈ Z and |q| < 1. These deformations satisfy the recursion

Hn+2(ε, δ; q) + eεqn+3(1+ q− eεqn+2 + e2εq2n+4)Hn+1(ε, δ; q) + e2εq2n+6(1− eεqn+1)Hn(ε, δ; q) = 0
(168)

obtained from (164) by replacing qn to eεqn. Note that when ε = 0, we cannot solve for H−1
in terms of Hn for n ≥ 0 as discussed in [Par]5. It follows that the function

Qm(ε, δ; q) = −e−ε(1− eε)2
−1∑

n=−∞

qmnemεHn(ε, δ; q)(qe
ε; q)n(q

−1e−ε; q−1)n

=
∞∑
n=0

q−mn−memεH−1−n(ε, δ; q)

(q−1eε; q−1)n(qe−ε; q)n

(169)

is an inhomogenous solution of Equation (166). In particular, for |q| < 1 we have

Qm(ε, δ; q) =
(qeε−δ; q)∞(qe

δ; q)∞(1− eε−δ)

(qeε; q)∞(q; q)∞e
1
12

ε2− 1
12

(εδ−δ2)E2(q)(1− eε)

×
∞∑
n=0

∑
k∈Z

(−1)nq(n+1)(n−2)/2−mn−m+k(k+1)e(m−n)ε+(2k+1)δ(q−1eε−δ; q−1)n+k

(q−1eε; q−1)2n(qe
ε; q)n(qeδ; q)k

Qm(ε, δ; q
−1) =

(qeε+δ; q)∞
(qeδ; q)2∞(e

−δ; q)∞(q; q)∞

×
∞∑
n=0

∑
k∈Z

(−1)n+k q
−(n+1)(n−2)/2+mn+m+k(k+1)/2e(m−n+1/2)ε+δk(qeδ; q)k−1

(qeε+δ; q)k+n(qeε; q)n(q−1e−ε; q−1)n
.

(170)
We see that Qm(ε, δ; q) is convergent for |q| < 1 and all m ∈ Z and for |q| > 1 and all m ∈
Z≥0. Moreover, εQm(ε, δ; q) ∈ Z((q))[[ε, δ]] for m ∈ Z and δ2Qm(ε, δ; q

−1) ∈ Z((q))[[ε, δ]] for
m ∈ Z≥0. Substituting Q for f in the LHS of Equation (166) gives a RHS of

e(m−1)ε(1− eε)2H0(ε, δ; q)− qm+4e(m+1)ε(1− q−1e−ε)(1− eε)3(1− q−1eε)H−1(ε, δ; q). (171)

5Our H−1(q) agrees with the one defined in [Par] when |q| < 1, however differs when |q| > 1.
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In particular, for |q| < 1 Equation (171) is

(qeε−δ; q)∞(qe
δ; q)∞

(qeε; q)∞(q; q)∞e
1
12

ε2− 1
12

(εδ−δ2)E2(q)

(
emε(1− eε)2

∑
k∈Z

qk(k+1)e(2k+1)δ

(qeδ; q)k(qeε−δ; q)−k

+qm+3e(m+1)ε(1− q−1e−ε)(1− eε)2(1− q−1eε)
∑
k∈Z

qk(k+1)e(2k+1)δ

(qeδ; q)k(qeε−δ; q)−1−k

)
= ε2(1 +O(δ)) +O(ε3)

(172)

and for |q| > 1 Equation (171) is
(q−1eε+δ; q−1)∞

(q−1eδ; q−1)2∞(e−δ; q−1)∞(q−1; q−1)∞

(
e(m+1/2)ε(1− eε)2

∑
k∈Z

(−1)kq−k(k+1)/2eδk
(q−1eδ; q−1)k−1
(q−1eε+δ; q−1)k−1

+qm+3e(m+3/2)ε(1− q−1e−ε)(1− eε)3(1− q−1eε)
∑
k∈Z

(−1)kq−k(k+1)/2eδk
(q−1eδ; q−1)k−1
(q−1eε+δ; q−1)k

)
= ε2 +O(ε3).

(173)

4.3. A 6 × 6 matrix of q-series. We now have all the ingredients to define the promised
6× 6 matrix Jm(q) of q-series for |q| ≠ 1. Let us denote by Q

(a,b)
m (q) the coefficient of εaδb in

the expansion of Qm(q). We now define

Jm(q) =



1 Q
(2,0)
m (q) Q

(2,0)
m+1(q) Q

(2,0)
m+2(q) Q

(2,0)
m+3(q) Q

(2,0)
m+4(q)

0 Q
(0,0)
m (q) Q

(0,0)
m+1(q) Q

(0,0)
m+2(q) Q

(0,0)
m+3(q) Q

(0,0)
m+4(q)

0 Q
(−1,2)
m (q) Q

(−1,2)
m+1 (q) Q

(−1,2)
m+2 (q) Q

(−1,2)
m+3 (q) Q

(−1,2)
m+4 (q)

0 Q
(0,2)
m (q) Q

(0,2)
m+1(q) Q

(0,2)
m+2(q) Q

(0,2)
m+3(q) Q

(0,2)
m+4(q)

0 Q
(1,0)
m (q) Q

(1,0)
m+1(q) Q

(1,0)
m+2(q) Q

(1,0)
m+3(q) Q

(1,0)
m+4(q)

0 Q
(1,2)
m (q) Q

(1,2)
m+1(q) Q

(1,2)
m+2(q) Q

(1,2)
m+3(q) Q

(1,2)
m+4(q)


(|q| < 1),

Jm(q) =



1 Q
(2,0)
m (q) Q

(2,0)
m+1(q) Q

(2,0)
m+2(q) Q

(2,0)
m+3(q) Q

(2,0)
m+4(q)

0 Q
(1,−2)
m (q) Q

(1,−2)
m+1 (q) Q

(1,−2)
m+2 (q) Q

(1,−2)
m+3 (q) Q

(1,−2)
m+4 (q)

0 Q
(2,−2)
m (q) Q

(2,−2)
m+1 (q) Q

(2,−2)
m+2 (q) Q

(2,−2)
m+3 (q) Q

(2,−2)
m+4 (q)

0 Q
(1,0)
m (q) Q

(1,0)
m+1(q) Q

(1,0)
m+2(q) Q

(1,0)
m+3(q) Q

(1,0)
m+4(q)

0 Q
(0,−2)
m (q) Q

(0,−2)
m+1 (q) Q

(0,−2)
m+2 (q) Q

(0,−2)
m+3 (q) Q

(0,−2)
m+4 (q)

0 Q
(0,0)
m (q) Q

(0,0)
m+1(q) Q

(0,0)
m+2(q) Q

(0,0)
m+3(q) Q

(0,0)
m+4(q)


(|q| > 1) .

(174)

The next theorem relates the above matrix to the linear q-difference equation (166).

Theorem 17. The matrix Jm(q) is a fundamental solution to the linear q-difference equation

Jm+1(q) = Jm(q)A(qm, q), A(qm, q) =


1 0 0 0 0 −q−2m−10
0 0 0 0 0 (1− qm+1)(1− qm+2)q−2m−10

0 1 0 0 0 (3 + 2q)(1− qm+1)q−m−8

0 0 1 0 0 (qm+4 + 6qm+3 + 3qm+2 − q − 4)q−m−7

0 0 0 1 0 (−3qm+4 − 6qm+3 − qm+2 + 3)q−m−6

0 0 0 0 1 (3qm+4 + 2qm+3 − 1)q−m−5

 .

(175)
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and has
det(Jm(q)) = q−20−7m(q; q)9∞(q

−m−1; q)∞(q
−m; q)∞ (|q| < 1),

det(Jm(q)) = q−20−7m(q−1; q−1)−9∞ (q−m−1; q−1)−1∞ (q−m−2; q−1)−1∞ (|q| > 1).
(176)

Proof. Equation (175) follows from Equations (172), (173). The determinant is calculated
using the determinant of A(qm, q) and by considering the limiting behavior in m. □

The construction of this matrix has used special q-hypergeometric formulae for the Habiro
polynomials. However, this construction can be carried out more generally and will be
developed in a later publication.

There is a similar, however more complicated, relation between J−m(q
−1) with the first

row replaced by Appell-Lerch type sums and Jm(q)
−1 as in Theorem 4. This indicates these

matrices could come from the factorisation of a state-integral. We will not give this relation,
since we do not need it for the purpose of resurgence. We will however, discuss an important
block property of the matrix J−2(q), after a gauge transformation. Namely, we define:

Jnorm(q) = J−2(q)


1 0 0 0 0 0
0 0 0 0 0 q−1 − 1
0 0 0 0 1 −3
0 −q q 3q2 0 2q
0 0 q2 q2 − 3q3 0 −q2
0 0 0 q4 0 0

 . (177)

The first few terms of the matrix Jnorm(q) +Q(q3) are given by

1 − 1
12

+ 25
12

q + 4q2 − 5
6
− 19

6
q − 95

12
q2 1

12
− 2q − 83

12
q2 − 5

12
+ 11

12
q − 3q2 5

12
− 1

2
q + 2q2

0 1− q −2 + 2q − q2 −1− q2 −1 + q 1

0 −1 + 4q + q2 1− 7q + 2q2 −q + q2 1− 3q − q2 q2

0 5
12
− 35

12
q + 13

2
q2 2

3
+ 4

3
q − 263

12
q2 1

12
− 5

2
q − 137

12
q2 − 17

12
+ 53

12
q − 13

2
q2 − 1

12
+ 4q + 11

2
q2

0 0 0 0 1− 2q −1 + q + 2q2

0 0 0 0 11
12
− 11

6
q + 10q2 1

12
− 61

12
q − 1

6
q2

 . (178)

We next discuss a block structure for the gauged-transform matrix (177).

Conjecture 18. When |q| < 1, the matrix Jnorm(q) has a block form1× 1 1× 3 1× 2
0 3× 3 3× 2
0 0 2× 2

 . (179)

Our next task is to identify the 3 × 3 and the 2 × 2 blocks of the matrix Jnorm(q). The
first observation is that the 3 × 3 block is related to the 3 × 3 matrix given in [GGMn21].
The second is that the 2 × 2 block is related to modular forms. This is the content of the
next conjecture.

Conjecture 19. The 3× 3 block for |q| < 1 of Jnorm(q) of (177) has the form

(q; q)∞J
red
−1 (q)

 0 0 1
−1 3 0
0 −1 0

 (180)
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(where Jred
m (q) is the 3× 3 matrix of [GGMn21] reviewed in Section 4.1) and the 2× 2 block

has the form

(q; q)2∞

(
H(q) G(q)
∗ ∗

)
(181)

where

H(q) =
∞∑
k=0

qk
2+k

(q; q)k
and G(q) =

∞∑
k=0

qk
2

(q; q)k
(182)

are the famous Rogers-Ramanujan functions.

The remaining two entries of the 2×2 block are higher weight vector-valued modular forms
associated to the same SL2(Z)-representation as the Rogers-Ramanujan functions, discussed
for example in [Whe23]. Part of this conjecture is proved in Appendix A.

This block decomposition fits nicely with the “dream” in [Zaga]. Here we do see the inter-
esting property that the 1× 2 and 3× 2 blocks contain some non-trivial gluing information.
This implies that the diagrammatic “short exact sequence” will not always “split”. The block
decomposition also implies that the resurgent structure of the asymptotic series associated
to the q-series in the 4 × 4 block in the top left does not depend on the other blocks. This
block and in-particular the second column of Jnorm will be the focus of Section 4.4.

We now consider the analytic properties of the function

W (τ) = Jnorm(e(τ))−1


τ 2 0 0 0 0 0
0 1 0 0 0 0
0 0 τ 0 0 0
0 0 0 τ 2 0 0
0 0 0 0 τ 0
0 0 0 0 0 τ 3

Jnorm(e(−1/τ)), (τ ∈ C \R) . (183)

If the work [GZ23] extended to the 6×6 matrix, it would imply that the function W extends
to an analytic function on C′. This would follow from an identification of W with a matrix
of state-integrals, as was done in Section 2.7 for the 41 knot. Although we do not know of
such a matrix of state-integrals, we can numerically evaluate W when τ is near the positive
real axis and test the extension hypothesis. Doing so for τ = 1 + i

100
we have

Jnorm(e(−1/τ))

=



1 1.9E9 + 3.8E8i −5.1E9 − 9.9E8i −4.5E9 − 8.8E8i −1.2E9 − 2.5E8i 2.9E9 + 5.7E8i

0 2.4E6 + 4.1E5i −6.1E6 − 1.0E6i −5.4E6 − 9.5E5i −1.5E6 − 2.7E5i 3.5E6 + 6.1E5i
0 −1.3E−20 + 1.0E−20i 1.7E−20 − 2.6E−20i −6.2E−22 − 5.1E−21i 9.1E−21 − 2.5E−21i −4.0E−21 + 3.8E−21i

0 1.9E9 + 3.8E8i −5.1E9 − 9.9E8i −4.5E9 − 8.8E8i −1.2E9 − 2.5E8i 2.9E9 + 5.7E8i
0 0 0 0 3.1E−17 − 1.3E−17i −5.0E−17 + 2.1E−17i
0 0 0 0 2.6E−14 − 1.0E−14i −4.2E−14 + 1.7E−14i


(184)

where e(x) = e2πix whereas

W (τ) =



0.99− 0.019i −0.10− 0.028i 0.24− 0.25i 0.060− 0.43i −0.064 + 0.059i −0.18− 0.094i

0 0.59− 1.0i 1.0 + 1.3i 0.19− 0.13i −0.60− 0.20i −0.48− 0.22i
0 −0.17− 0.17i 1.2− 0.30i 0.024− 0.31i −0.14− 0.0076i −0.17 + 0.030i

0 0.028− 0.31i 0.097 + 1.1i 1.0 + 0.46i −0.17 + 0.030i −0.12− 0.53i

0 0 0 0 0.17− 0.83i −0.44− 0.25i
0 0 0 0 −0.46− 0.26i 0.63− 0.56i

 . (185)
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4.4. Borel resummation and Stokes constants. The 52 knot has four asymptotic series
Φ(σj)(τ) for j = 0, 1, 2, 3 corresponding to the trivial, the geometric, the conjugate, and
the real flat connections respectively, denoted respectively by σj for j = 0, 1, 2, 3. Similar
to the 41 knot, the asymptotic series Φ(σj)(τ) for j = 1, 2, 3 can be defined in terms of a
perturbation theory of a state-integral [KLV16, AK14] using the standard formal Gaussian
integration as explained in [DGLZ09, GGMn21], and they have been computed in [GGMn21]
with more than 200 terms. Let ξj (j = 1, 2, 3) be the roots to the algebraic equation

(1− ξ)3 = ξ2 (186)

with numerical values

ξ1 = 0.78492 . . .+ 1.30714 . . . i, ξ2 = 0.78492 . . .− 1.30714 . . . i, ξ3 = 0.43016 . . . . (187)

The asymptotic series Φ(σj)(τ) for j = 1, 2, 3 have the universal form6

Φ(σj)(τ) =
e

3πi
4√
δj
e

Vj
2πiτ φ(σj)(τ), j = 1, 2, 3, (189)

where δj = 5− 3ξj + 3ξ2j and

V1 =3Li2(ξ1) + 3/2 log(ξ1) log(1− ξ1)− πi log(ξ1)−
π2

3

V2 =3Li2(ξ2) + 3/2 log(ξ2) log(1− ξ2) + πi log(ξ2)−
π2

3
,

V3 =3Li2(ξ3) + 3/2 log(ξ3) log(1− ξ3)−
π2

3
.

(190)

Their numerical values are given by

V1 = 3.0241 . . .+ 2.8281 . . . i, V2 = 3.0241 . . .− 2.8281 . . . i, V3 = −1.1134 . . . . (191)

where the common absolute value of the imaginary parts of V1, V2 is the Vol(S3\52). Finally
the power series φ(σj)(h/(2πi) with h = 2πiτ have coefficients in the number field Q(ξj) and
their first few coefficients are given by

φ(σj)

(
h

2πi

)
= 1 +

1452ξ2j − 1254ξj + 15949

23 · 3 · 232 h+
2124948ξ2j − 2258148ξj + 11651375

27 · 32 · 233 h2 + . . .

(192)
The additional new series Φ(σ0)(τ) ∈ Q[[τ ]] corresponds to the zero volume (V (σ0) = 0)

trivial flat connection. As exlained in Section 2.3, it can be computed using the colored

6The series Φ(σj)(τ) (j = 1, 2, 3) are related to the series in [GGMn21, GGMn23], which we will denote
by Φ

(σj)
GGM(τ), by a common prefactor

Φ(σj)(τ) = ie−
πi
12 (τ+τ−1)−2πiτΦ

(σj)
GGM(τ), j = 1, 2, 3. (188)

The Stokes constants associated to the Borel resummation of Φ
(σj)
GGM(τ) are not changed. The additional

prefactor is introduced so that the Stokes automorphism between Φ(σ0)(τ) and Φ(σj)(τ) (j = 1, 2, 3) can be
presented in an elegant form, and is also dictated by positions of singularities of Borel transform of Φ(σ0)(τ).
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Jones polynomial or the Kashaev invariant. The first few terms are

Φ(σ0)( h
2πi

) = φ(σ0)( h
2πi

) = 1 + 2h2 + 6h3 +
157

6
h4 + . . . (193)

ι0,2ι0,1

ι0,3

ϕ(σ0)(τ )

(a)
Λ(σ0)

ι1,2
ι1,3

ϕ(σ1)(τ )

(b)
Λ(σ1)

ι2,1
ι2,3

ϕ(σ2)(τ )

(c)
Λ(σ2)

ι3,2ι3,1

ϕ(σ3)(τ )

(d)
Λ(σ3)

Figure 6. Singularities of Borel transforms of φ(σj)(τ) for j = 0, 1, 2, 3 of the
knot 52. Red lines are (some) Stokes rays.

We are interested in the Stokes automorphism of the Borel resummation of the 4-vector
Φ(τ) of asymptotic series

Φ(τ) =


Φ(σ0)(τ)
Φ(σ1)(τ)
Φ(σ2)(τ)
Φ(σ3)(τ)

 . (194)

First of all, the Borel transform of each asymptotic series Φ(σj)(τ) (j = 0, 1, 2, 3) has rich
patterns of singularities. Similar to the case of 41 knot discussed in Section 2.4, the Borel
transforms of Φ(σj)(τ), j = 1, 2, 3 have singularities located at

Λ(σj) = {ιj,i + 2πik | i = 1, 2, 3, i ̸= j, k ∈ Z} ∪ {2πik | k ∈ Z̸=0}, j = 1, 2, 3 (195)

as shown in the right three panels of Fig. 6, while the Borel transform of Φ(σ0)(τ) have
singularities located at (some of these singular points are actually missing as we will comment
in the end of the section.)

Λ(σ0) = {ι0,i + 2πik | i = 1, 2, 3, k ∈ Z}, (196)

as shown in the left most panel of Fig. 6, where

ιj,i =
Vj − Vi

2πi
, i, j = 0, 1, 2, 3. (197)
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To any singularity located at ι
(k)
i,j := ιi,j + 2πik in the union

Λ = ∪j=0,1,2,3Λ
(σj), (198)

we can associate a local Stokes matrix

S
ι
(k)
i,j
(q̃) = I + S(k)

i,j q̃
kEi,j, S(k)

i,j ∈ Z, (199)

where Ei,j is the 4 × 4 elementary matrix with (i, j)-entry 1 (i, j = 0, 1, 2, 3) and all other
entries zero, and S

(k)
i,j is the Stokes constant. Then the Borel resummation along the rays

ρθ± raised slight above and below the angle θ are related by the Stokes automorphism

∆(τ)sθ+(Φ)(τ) = Sθ(q̃)∆(τ)sθ−(τ), (200)

where
Sθ(q̃) =

∏
arg ι=θ

Sι(q̃), ∆(τ) = diag(τ 3/2, 1, 1, 1), (201)

and the locality condition is assumed.

III

IVIII

ι1,2ι2,1

ι3,2ι3,1

ι1,3ι2,3

ι0,2ι0,1

ι0,3

Figure 7. Stokes rays and cones in the τ -plane for the 4-vector Φ(τ) of as-
ymptotic series of the knot 52. Red lines are (some) Stokes rays.

More generally, for two rays ρθ+ and ρθ− whose arguments satisfy 0 < θ+ − θ− ≤ π, we
can define the global Stokes matrix Sθ−→θ+ as in (44), and it also satisfies the factorisation
property (45). Since the factorisation is unique [GGMn21, GGMn23], we only need to com-
pute finitely many global Stokes matrices in order to extract all the local Stokes matrices
associated to the infinitely many singularities in Λ and thus the corresponding Stokes con-
stants. In particular, we can choose four cones I, II, III, IV slightly above the positive and
the negative real axes as shown in Fig. 7, and compute the four global Stokes matrices

SI→II , SII→III , SIII→IV , SIV→I , (202)
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where a cone R in the subscript means any ray inside the cone.
On the other hand, each of the global Stokes matrices in (202) has the block upper trian-

gular form 
1 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 . (203)

The 3× 3 sub-matrices Sred
R→R′ in the right bottom have been worked out in [GGMn21]. For

later convenience, we write down two of the four reduced global Stokes matrices,

Sred
I→II(q̃) =

1

2

 0 1 0
0 1 1
−1 0 0

Jred
−1 (q̃

−1)T

0 0 1
0 −2 0
1 0 0

Jred
−1 (q̃)

0 0 −1
1 −3 0
0 1 0

 , |q̃| < 1,

(204a)

Sred
III→IV (q̃) =

1

2

1 −3 0
0 1 0
0 0 −1

Jred
−1 (q̃

−1)T

0 0 1
0 −2 0
1 0 0

Jred
−1 (q̃)

1 0 0
1 1 0
0 0 −1

 , |q̃| > 1.

(204b)

In addition, as seen from Fig. 6, there are no singularities along the positive and negative
real axes in Λ(σ0) relevant for Φ(σ0)(τ); all the singular points in Λ(σ0) are either in the upper
half plane beyond the cones I, II or in the lower half plane beneath the cones III, IV .
Consequently we only need to compute the first row of two Stokes matrices SI→II and
SIII→IV . For this purpose, we find the following.

Conjecture 20. For every cone R ⊂ C \ Λ and every τ ∈ R, we have

Q
(2,0)
0 (q) = sR(Φ

(σ0))(τ) + τ−3/2
3∑

j=1

MR,j(q̃)sR(Φ
(σj))(τ), (205)

where MR,j(q̃) (j = 1, 2, 3) are q̃ (resp., q̃−1)-series if Imτ > 0 (resp., Imτ < 0) with integer
coefficients that depend on R.

A more elegant way to present MR,j(q̃) is by the row vector MR(q̃) := (MR,1,MR,2,MR,3)(q̃),
and it can be expressed in terms of a 3× 3 matrix M

(σ0)
R (q̃)

MR(q̃) =
(
q̃Q

(2,0)
0 (q̃), q̃2Q

(2,0)
1 (q̃), q̃3Q

(2,0)
2 (q̃)

)
M

(σ0)
R (q̃). (206)
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Conjecture 21. Equation (205) holds in the cones R = I, II, III, IV where the q̃,q̃−1-series
MR,j(q̃) are given in terms of M (0)

R (q̃) through (237) which are as follows

M
(σ0)
I (q̃) =

1 −1 −3q̃
0 −1 −1 + 3q̃
0 0 −q̃

 , (207a)

M
(σ0)
II (q̃) =

−1 1 −3q̃
−1 0 −1 + 3q̃
0 0 −q̃

 , (207b)

M
(σ0)
III (q̃) =

 3 1 −3q̃
−1 0 −1 + 3q̃
0 0 −q̃

 , (207c)

M
(σ0)
IV (q̃) =

1 3 −3q̃
0 −1 −1 + 3q̃
0 0 −q̃

 . (207d)

Eqs. (205), together with the reduced Stokes matrices Sred
R→R′(q̃) for Φ(σj)(τ) (j = 1, 2, 3),

allow us to calculate entries in the first row of SI→II(q̃) and SIII→IV (q̃) by

SR→R′(q̃)0,j = MR,j(q̃)−
3∑

k=1

MR′,k(q̃)S
red
R→R′(q̃)k,j, j = 1, 2, 3. (208)

In the following we list the first few terms of these q̃ and q̃−1-series. In the upper half plane

SI→II(q̃)0,1 =− 1 + 13q̃ − 12q̃2 − 82q̃3 − 29q̃4 + 85q̃5 +O(q̃6), (209a)

SI→II(q̃)0,2 =1− 16q̃ + 42q̃2 + 135q̃3 − 54q̃4 − 346q̃5 +O(q̃6), (209b)

SI→II(q̃)0,3 =− q̃ + 10q̃2 + 18q̃3 − 31q̃4 − 92q̃5 +O(q̃6). (209c)

In the lower half plane

SIII→IV (q̃)0,1 =4q̃−1 − 4q̃−2 − 51q̃−3 − 62q̃−4 − 27q̃−5 +O(q̃−6), (210a)

SIII→IV (q̃)0,2 =3q̃−1 + 2q̃−2 − 26q̃−3 − 47q̃−4 − 64q̃−5 +O(q̃−6), (210b)

SIII→IV (q̃)0,3 =− 1 + q̃−2 + 18q̃−3 + 39q̃−4 + 73q̃−5 +O(q̃−6). (210c)

Finally, we can factorise the global Stokes matrices SI→II(q̃),SIII→IV (q̃) to obtain local
Stokes matrices associated to individual singular points in Λ and extract the associated Stokes
constants. The Stokes constants for Φ(σj)(τ) (j = 1, 2, 3) are already given in [GGMn21,
GGMn23]. We collect the Stokes contants for Φ(σ0)(τ) in the generating series

S+
0,j(q̃) =

∑
k≥0

S(k)
0,j q̃

k, S−0,j(q̃) =
∑
k≤0

S(k)
0,j q̃

k, j = 1, 2, 3. (211)
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And we find that in the upper half plane

S+
0,1(q̃) =− 1 + q̃ + 3q̃2 + 25q̃3 + 278q̃4 + 3067q̃5 +O(q̃6), (212a)

S+
0,2(q̃) =1− q̃ − 3q̃2 − 25q̃3 − 278q̃4 − 3067q̃5 +O(q̃6), (212b)

S+
0,3(q̃) =0, (212c)

while in the lower half plane

S−0,1(q̃) =3q̃−1 − 34q̃−2 + 391q̃−3 − 4622q̃−4 + 54388q̃−5 +O(q̃−6), (213a)

S−0,2(q̃) =3q̃−1 − 34q̃−2 + 391q̃−3 − 4622q̃−4 + 54388q̃−5 +O(q̃−6), (213b)

S−0,3(q̃) =− 1 + 9q̃−1 − 56q̃−2 + 705q̃−3 − 8378q̃−4 + 98379q̃−5 +O(q̃−6). (213c)

We comment that the results of S+
0,3(q̃) and S−0,3(q̃) indicate that there are actually no singular

points of the type ι(k)0,3 in the upper half plane, but they exist in the lower half plane. Also note
that the constant terms in S+

0,1(q̃), S
+
0,2(q̃) and S−0,3(q̃) are Stokes constants associated to the

singular points ι0,j (j = 1, 2, 3). The Stokes constants associated to ιi,j (i, j = 1, 2, 3, i ̸= j)
have already been computed in [GGMn21, GGMn23]. We can assemble all these Stokes
constants in a matrix 

0 −1 1 −1
0 0 4 3
0 −4 0 −3
0 −3 3 0

 (214)

which matches (after some changes of signs) the one appearing in [GZ24, Eq.(40)].

4.5. (x, q)-series. In this section we extend the results of Section 4.1 by including the Jacobi
variable x. Recall that the matrix Jred

m (x, q)7 is a fundamental solution to the linear q-
difference equation

fm(x, q)− (1 + x+ x−1)fm+1(x, q) + (1 + x+ x−1 − q2+m)fm+2(x, q)− fm+3(x, q) = 0 (216)

and it is defined by

Jred
m (x, q) =

Am(x, q) Am+1(x, q) Am+2(x, q)
Bm(x, q) Bm+1(x, q) Bm+2(x, q)
Cm(x, q) Cm+1(x, q) Cm+2(x, q)

 , |q| ≠ 1, (217)

where the holomorphic blocks are given by

Am(x, q) = H(x, x−1, qm; q), (218a)

Bm(x, q) = θ(−q1/2x; q)−2xmH(x, x2, qmx2; q), (218b)

Cm(x, q) = θ(−q−1/2x; q)−2x−mH(x−1, x−2, qmx−2; q), (218c)

7The matrices Jred
m (x, q) are related to the Wronskians Wm(x, q) in [GGMn21, GGMn23] by

Jred
m (x, q) = Wm(x, q)T . (215)
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where H(x, y, z; qε) := Hε(x, y, z; q) for |q| < 1 and ε = ± and

H+(x, y, z; q) = (qx; q)∞(qy; q)∞

∞∑
n=0

qn(n+1)zn

(q; q)n(qx; q)n(qy; q)n
, (219a)

H−(x, y, z; q) =
1

(x; q)∞(y; q)∞

∞∑
n=0

(−1)n q
1
2
n(n+1)x−ny−nzn

(q; q)n(qx−1; q)n(qy−1; q)n
, (219b)

θ(x; q) = (−q 1
2x; q)∞(−q

1
2x−1; q)∞. (219c)

To these series we wish to add an additional series which satisfies the inhomogenous q-
difference equations of the descendant coloured Jones polynomial (165). This can be easily
constructed using the deformations of the Habiro polynomials (167). We find a solution

Dm(x, q) = −
−1∑

n=−∞

qmnHn(q)x
−n(qx; q)n(q

−1x; q−1)n. (220)

(compare with Equation (91)) where |q| < 1 and m ∈ Z or |q| > 1 and m ∈ Z≥0, and Hn(q)
is the coefficient of ε0δ0 in the expansion of Hn(ϵ, δ; q). In particular, for |q| < 1 we have

Dm(x, q) = −
∞∑

n,k=0

(−1)kqn(n+1)+k(k+1)/2−nk−(m+1)(n+1) (q; q)n+k

(q; q)k(q; q)n(x−1; q)n+1(x; q)n+1

(221)
and we see the (x, q)-series D0(x, q) coincides with f52(x, q) in [Par20, Par].

This series can be included as the first row of a 6 × 6 matrix of (x, q)-series. The latter
might be related to the factorisation of the state integral proposed in Section 4.8.

However, we find that the matrices above and below the reals have different quantum
modular co-cycles related by inversion. This implies that to do a full discussion on resurgence
one needs to understand the monodromy of this q-holonomic system. Both these issue will
be explored in later publications. For now, we give a description of the Stokes matrices
restricted to τ in the upper half plane.

4.6. x-version of Borel resummation and Stokes constants. In this section we discuss
the x-deformation version of Section 4.4. The asymptotic series Φ(σj)(τ) for j = 0, 1, 2, 3 are
extended to series Φ(σj)(x; τ) with coefficients in Z(x±1). The series Φ(σj)(x; τ) for j = 1, 2, 3
are defined in terms of perturbation theory of a deformed state-integral [AK14] and they have
been computed with about 200 terms for many values of x in [GGMn23]. Let ξj (j = 1, 2, 3)
be three roots to the equation

(1− ξ)(1− xξ)(1− x−1ξ) = ξ2, (222)
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ordered such that they reduce to (187) in the limit x → 1. The series Φ(σj)(τ) (j = 1, 2, 3)
can be uniformly written as8

Φ(σj)(x; τ) =
e

3πi
4√

δj(x)
e

Vj(x)

2πiτ φ(σj)(x; τ) (224)

where δj(x) = ξj − sξ−1j + 2ξ−2j and

V1(x) = −Li2(ξ−11 )− Li2(xξ
−1
1 )− Li2(x

−1ξ−11 ) +
1

2
log2 x− 1

2
log2 ξ1 + πi log ξ1 +

2π2

3
,

V2(x) = −Li2(ξ−12 )− Li2(xξ
−1
2 )− Li2(x

−1ξ−12 ) +
1

2
log2 x− 1

2
log2 ξ2 − πi log ξ2 +

2π2

3
,

V3(x) = −Li2(ξ−13 )− Li2(xξ
−1
3 )− Li2(x

−1ξ−13 ) +
1

2
log2 x− 1

2
log2 ξ3 + 3πi log ξ3 +

2π2

3
.

(225)
The power series φ(σj)(x; τ) are

φ(σj)(x; h
2πi

) =1 +
h

12δj(x)

(
(−397− 94s− 114s2 + 390s3 − 278s4 + 81s5 − 10s6)

+ (−381 + 623s− 124s2 − 328s3 + 268s4 − 81s5 + 10s6)ξj

+ (−270 + 137s+ 182s2 − 207s3 + 71s4 − 10s5)ξ2j
)
+ . . . (226)

with h = 2πiτ and
s = s(x) = x−1 + 1 + x. (227)

The additional series Φ(σ0)(x; τ), as in Section 3.1, can be computed either from the colored
Jones polynomial or by using Habiro’s expansion of the colored Jones polynomials. We find

Φ(σ0)(x; τ) = φ(σ0)(x; τ), (228)

where the power series φ(σ0)(x; τ) reads

ϕ(σ0)(x; h
2πi

) =
1

2x+ 2x−1 − 3
− (x1/2 − x−1/2)2(5x+ 5x−1 − 4)

(2x+ 2x−1 − 3)3
h+ . . . , (229)

We are interested in the Stokes automorphisms in the upper half plane of the Borel re-
summation of the 4-vector Φ(x; τ) of asymptotic series

Φ(x; τ) =


Φ(σ0)(x; τ)
Φ(σ1)(x; τ)
Φ(σ2)(x; τ)
Φ(σ3)(x; τ)

 , (230)

when x is close to 1. The singular points of the Borel transform of Φ(x; τ), collectively
denoted as Λ(x), are smooth functions of x and they are equal to Λ in (198) in the limit

8The series Φ(σj)(x; τ) (j = 1, 2, 3) are related to the series in [GGMn21, GGMn23], which we will denote
by Φ

(σj)
GGM(x; τ), by a common prefactor

Φ(σj)(x; τ) = ie−
πi
12 (τ+τ−1)−2πiτΦ

(σj)
GGM(x; τ), j = 1, 2, 3. (223)

The Stokes constants associated to the Borel resummation of Φ(σj)
GGM(τ) are not changed.
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ϕ(σ0)(x, τ )

(a)
Λ(σ0)

ϕ(σ1)(x, τ )

(b)
Λ(σ1)

ϕ(σ2)(x, τ )

(c)
Λ(σ2)

ϕ(σ3)(x, τ )

(d) Λ(σ3)

Figure 8. Singularities of Borel transforms of φ(σj)(x, τ) for j = 0, 1, 2, 3 of
the knot 52. Here we take small and real x. Red lines are (some) Stokes rays.

x→ 1. When x is slightly away from 1, each singular point ι
(k)
i,j in Λ splits to a finite set of

points located at ι(k,ℓ)i,j := ι
(k)
i,j +ℓ log(x), ℓ ∈ Z. We illustrate this schematically in Fig. 8. The

complex plane of τ is divided by rays passing through these singular points into infinitely
many cones. We will then pick the cones I and II located slightly above the positive and
negative real axes, and compute the global Stokes matrix from cone I to cone II defined by

∆(x, τ)sII(x, τ) = SI→II(x̃, q̃)∆(x, τ)sI(x, τ), (231)

where

∆(x, τ) = diag

(
τ 1/2

x1/2 − x−1/2

x̃1/2 − x̃−1/2
, 1, 1, 1

)
. (232)

The global Stokes matrix SI→II(x̃, q̃) factorises uniquely into a product of local Stokes
automorphisms associated to each of the singular points in the upper half plane, from which
the individual Stokes constants can be read off.

The global Stokes matrix SI→II(x̃, q̃) in (231) also has the block upper triangular form
1 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 . (233)

The 3× 3 sub-matrices Sred
I→II in the right bottom have been worked out in [GGMn23], and

they are given by

Sred
I→II(x̃, q̃) =

1

2

 0 1 0
0 1 1
−1 0 0

Jred
−1 (x̃; q̃

−1)T

1 0 0
0 0 1
0 1 0

Jred
−1 (x̃; q̃)

0 0 −1
1 −s̃ 0
0 1 0

 , |q̃| < 1,

(234a)
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where
s̃ = s(x̃), (235)

and Jred(x, q) is given by (217). To calculate the first row of SI→II(x̃, q̃), we use the additional
holomorphic block Dm(x, q).

Conjecture 22. For every cone R ⊂ Λ(x) and every τ ∈ R, we have

D0(x, q) = sR(Φ
(σ0))(x; τ) + τ−1/2

x̃1/2 − x̃−1/2

x1/2 − x−1/2

3∑
j=1

MR,j(x̃, q̃)sR(Φ
(σj))(x; τ), (236)

where MR,j(x̃, q̃) (j = 1, 2, 3) are q̃-series with coefficients in Z(x̃±1) depending on the cone
R.

We present MR,j(x̃, q̃) in terms of the row vector MR(x̃, q̃) := (MR,1,MR,2,MR,3)(x̃, q̃), and
it can be expressed in terms of a 3× 3 matrix M

(σ0)
R (x̃, q̃)

MR(x̃, q̃) =
(
q̃D0(x̃, q̃), q̃

2D1(x̃, q̃), q̃
3D2(x̃, q̃)

)
M

(σ0)
R (x̃, q̃). (237)

Conjecture 23. Equation (205) holds in the cones R = I, II where the q̃-series MR,j(q̃) are
given in terms of M (0)

R (x̃, q̃) through (237) which are as follows

M
(σ0)
I (x̃, q̃) =

1 −1 −s̃ q̃
0 −1 −1 + s̃ q̃
0 0 −q̃

 , (238a)

M
(σ0)
II (x̃, q̃) =

−1 1 −s̃ q̃
−1 0 −1 + s̃ q̃
0 0 −q̃

 . (238b)

Eqs. (236), together with the reduced Stokes matrices Sred
I→II(x̃, q̃) for Φ(σj)(x; τ) (j =

1, 2, 3), allow us to calculate entries in the first row of SI→II(x̃, q̃) by

SI→II(x̃, q̃)0,j = MI,j(x̃, q̃)−
3∑

k=1

MII,k(x̃, q̃)S
red
I→II(x̃, q̃)k,j, j = 1, 2, 3. (239)

In the following we list the first few terms of these q̃-series.

SI→II(x̃, q̃)0,1 =− 1 + (1 + s̃+ s̃2)q̃ − (−2s̃− s̃2 + s̃3)q̃2 − (1 + s̃4)q̃3 +O(q̃4),

SI→II(x̃, q̃)0,2 =1− (1 + 2s̃+ s̃2)q̃ + (−s̃− s̃2 + 2s̃3)q̃2 + (3s̃2 + s̃3 + s̃4)s̃3 +O(q̃4),

SI→II(x̃, q̃)0,3 =− q̃ + (1 + s̃2)q̃2 + (3s̃+ s̃2)q̃3 +O(q̃4).

(240)

Finally, we can factorise the global Stokes matrices SI→II(x̃, q̃) to obtain local Stokes
matrices associated to individual singular points in Λ and extract the associated Stokes
constants. The Stokes constants for Φ(σj)(x; τ) (j = 1, 2, 3) are already given in [GGMn21,
GGMn23]. We collect the Stokes contants for Φ(σ0)(x; τ) in the generating series

S+
0,j(x̃, q̃) =

∑
k≥0

∑
ℓ

S(k,ℓ)
0,j x̃ℓq̃k, j = 1, 2, 3. (241)
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And we find that

S+
0,1(x̃, q̃) =− 1 + q̃ + s̃q̃2 + (−2 + 3s̃2)q̃3 + (2− s̃− 2s̃2 + 5s̃3 + 2s̃4)q̃4 +O(q̃5),

S+
0,2(x̃, q̃) =1− q̃ − s̃q̃2 − (−2 + 3s̃2)q̃3 + (2− s̃− 2s̃2 + 5s̃3 + 2s̃4)q̃4 +O(q̃5),

S+
0,3(x̃, q̃) =0.

(242)

4.7. An analytic extension of the Kashaev invariant and the colored Jones poly-
nomial. In this section we discuss an analytic extension of the Kashaev invariant and of
the colored Jones polynomial of the 52 knot, illustrating Conjectures 1 and 2.

Recall that the colored Jones polynomial of the 52 is given by

J52
N (q) =

N−1∑
k=0

(−1)kq−k(k+1)/2(q1+N ; q)k(q
1−N ; q)kHk(q), q = e2πiτ , (243)

where

Hk(q) = (−1)kqk(k+3)/2

ℓ∑
k=0

qℓ(ℓ+1) (q; q)k
(q; q)ℓ(q; q)k−ℓ

. (244)

Let u be in a small neighborhood of the origin. It is related to x = qN and τ by

x = eu+2πi = eu, τ =
u+ 2πi

2πiN
. (245)

Then x is close to 1 and τ is close to 1/N . Note that

Nτ = 1 +
u

2πi
(246)

is the analogue of n/k in [Guk05], and here we are considering a deformation from the case
of n/k = 1. We also have

x̃ = elog(x)/τ = exp

(
2πiNu

u+ 2πi

)
. (247)

When x is positive real, Φ(σ1)(x; τ) are not Borel summable along the positive real axis.
Depending on whether τ is in the first or the fourth quadrant, we have

J52
N (q) = sI(Φ

(σ0))(x; τ) + τ−1/2
x̃1/2 − x̃−1/2

x1/2 − x−1/2
(
sI(Φ

(σ1))(x; τ)− (1 + x̃)sI(Φ
(σ2))(x; τ)

− (1 + x̃)sI(Φ
(σ3))(x; τ)

)
(248a)

= sIV (Φ
(σ0))(x; τ) + τ−1/2

x̃1/2 − x̃−1/2

x1/2 − x−1/2
(
sIV (Φ

(σ1))(x; τ) + (1 + x̃−1)sIV (Φ
(σ2))(x; τ)

− (1 + x̃)sIV (Φ
(σ3))(x; τ)

)
. (248b)

The two equations (248a), (248b) are related by the Stokes discontinuity formula

disc0Φ(σ1)(x; τ) = sI(Φ
(σ1))(x; τ)− sIV (Φ

(σ1))(x; τ) = (2 + x̃+ x̃−1)s(Φ(σ2))(x; τ). (249)



RESURGENCE OF CHERN–SIMONS THEORY AT THE TRIVIAL FLAT CONNECTION 53

Combined, they imply

J52
N (q) = smed(Φ

(σ0))(x; τ) + τ−1/2
x̃1/2 − x̃−1/2

x1/2 − x−1/2
(
smed(Φ

(σ1))(x; τ)− (1 + x̃)smed(Φ
(σ3))(x; τ)

− x̃− x̃−1

2
smed(Φ

(σ2))(x; τ)
)

(250)

which is the assertion of Conjecture 2.

4.8. A new state-integral for the 52 knot? In the case of the figure eight knot, the
new state-integral was obtained by first writing down an integral formula for its colored
Jones polynomial, in Habiro form, and then changing the integration contour to pick the
contribution from the poles in the lower half plane. This led in particular to the “inverted”
Habiro series C0(x, q) in (147). Although we do not have a similar complete theory for the 52

knot, we can however write down an integral formula for its colored Jones polynomial which
lead, after a change of contour, to the corresponding inverted Habiro series. In fact, it is
possible to write such an integral for all twist knots Kp (the 52 knot corresponds to p = 2).

Let us then consider the colored Jones polynomial of the twist knot Kp in Habiro’s form
[Mas03]:

J
Kp

N (q;x) =
N−1∑
n=0

CKp
n (q)(qx; q)n(qx

−1; q)n, (251)

where

CKp
n (q) = −qn

n∑
k=0

(−1)kq(p+1/2)k(k+1)+k(q2k+1 − 1)
(q; q)n

(q; q)n+k+1(q; q)n−k
. (252)

It is easy to see that (251) can be written as a double contour integral∫
Az

∫
Aw

IKp(z, w)dzdw, (253)

where

IKp(z, w) = −Φ−1b

(
z − i

2b
+ u

)
Φ−1b

(
z − i

2b
− u

)
Φ−1b

(
z − i

2b

)
Φb

(
z − w +

ib

2
− i

2b

)
× Φb

(
z + w +

ib

2
− i

2b

)
e−2πi(p+1/2)(w+ i

2b
)2
(
e2πb(z+w) − e2πb(z−w)

)
tanh

(πz
b

)
tanh

(πw
b

)
,

(254)
and the contours Az,w encircle the poles of the form (71) in the upper complex planes of
the z and the w variables, respectively. We can now deform the contour to pick the poles in
the lower half planes of z, w. The contribution from the simple poles of the tanh functions
in those half planes can be easily computed, and one finds in this way the inverted Habiro
series,

CKp(q, x) =
1

(x
1
2 − x−

1
2 )2

∑
n≥0

qn(n+1)/2

(qx; q)n(qx−1; q)n

×
∑
k≥n

qn(n+1)/2+(p+1/2)k(k+1)−(n+k)(n+k+1)/2−n(qk − q−k−1)
(q; q)n+k

(q; q)n(q; q)k−n
.

(255)
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This gives a general formula for all twist knots which agrees with the results of [Par] for
p = 2 (the 52 knot) and p = 3 (the 72 knot).

It might be possible to find appropriate integration contours so that the integral of
IKp(z, w) converges and provides the sought-for new state-integral which sees the series
Φ(σ0)(x, τ), as it happened in the case of the 41 knot. In the case of the 52 knot, these
contours do exist and lead to a well-defined integral. We expect that an evaluation of such
an integral by summing over the appropriate set of residues will give the inverted Habiro
series (255), together with additional contributions, as in (147). However, the fact that the
integrals are two-dimensional makes them more difficult to analyze. We expect to come back
to this problem in the near future.

Appendix A. q-series identities

In this appendix we will sketch the proofs of some q-series identities that appear in Con-
jecture 19. Since this not one of the main themes of the paper, our presentation will be
rather brief. Our proofs of the q-hypergeometric identities will use the algorithmic approach
of the Wilf-Zeilberger theory (see [WZ92, PWZ96]) and the computer implementation by
Koutschan [Kou10]).

We outline part of the proof of Conjecture 19 for |q| < 1, namely

qQ
(0,0)
0 (q) = (q; q)∞

∞∑
n=0

qn(n+1)

(q; q)3n

qQ
(0,0)
1 (q) = (q; q)∞

∞∑
n=0

(2− qn)
qn(n+1)

(q; q)3n

qQ
(0,0)
2 (q) = (q; q)∞

∞∑
n=0

(
(3 + q−1)− (2 + 2q−1)qn + q2n−1

) qn(n+1)

(q; q)3n

(256)

Proof. The definition of Q(0,0)
m (q) gives that

qQ(0,0)
m (q) = f−m−1,0(q) (257)

where

fm,p(q) =
∞∑

n,k=0

(−1)kqn(n+1)+k(k+1)/2−nk+mn+pk (q; q)n+k

(q; q)3n(q; q)k

=
∞∑
k=0

fm,p,k(q)

(258)

with

fm,p,k(q) =
∞∑
n=0

(−1)kqn(n+1)+k(k+1)/2−nk+mn+pk (q; q)n+k

(q; q)3n(q; q)k
. (259)
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Likewise, we define

hm,p(q) = (q; q)∞

∞∑
n=0

qn(n+1)+pn+mn+mp

(q; q)2n+p(q; q)n

=
1

(q; q)∞

∞∑
n,k,ℓ=0

(−1)k+ℓ q
n(n+1)+k(k+1)/2+ℓ(ℓ+1)/2+pn+pm+pk+pℓ+nk+mn

(q; q)n(q; q)k(q; q)ℓ

=
∞∑
k=0

hm,p,k(q)

(260)

where

hm,p,k(q) =
1

(q; q)∞

∞∑
n+j+ℓ+m=k

(−1)j+ℓ q
n(n+1)+j(j+1)/2+ℓ(ℓ+1)/2+pn+pm+pj+pℓ+nj+mn

(q; q)n(q; q)j(q; q)ℓ
. (261)

Therefore, we have

f−1,0(q) = qQ
(0,0)
0 (q) and h0,0(q) = (q; q)∞

∞∑
n=0

qn(n+1)

(q; q)3n
. (262)

This implies that the first equality in (256) follows from the p = 0 specialization of

f−1,p(q) = h0,p(q), (p ∈ Z) . (263)

This in turn follows (using Equations (258) and (260)) from the following

f−1,p,k(q) = h0,p,k(q), (p ∈ Z, k ∈ N) . (264)

Equation (259) expresses the two-variable q-holonomic function f−1,p,k(q) as a one dimen-
sional sum of a three variable proper q-hypergeometric function. It follows from [Kou10]
that the annihilator ideal of Fk,p(q) := f−1,p,k(q) is generated by the recursion relations

−qkFp,k(q) + F1+p,k(q) = 0, (265)

q2+k+2p(−1+q1+k)2Fp,k(q)+q2+k+p(−3+q1+k+q2+k)Fp,1+k(q)+(−1+q2+k)Fp,2+k(q) = 0 (266)

This coincides with the annihilator ideal of h0,p,k(q). Thus, the equality (264) for p, k ∈ Z
with k ≥ 0 follows from the two special cases (p, k) = (0, 0) and (p, k) = (0, 1), that is from
the identities

∞∑
n=0

qn
2

(q; q)2n
=

1

(q; q)∞

1

1− q

∞∑
n=0

qn
2−n+1(qn+1 − 1)

(q; q)2n
=

q2 − 2q

(q; q)∞(1− q)

(267)

The first one of the above identities is due to Euler and can be derived using generating
functions of partitions. The second one follows from the q-holonomic system

gm(q) =
∞∑
n=0

qn
2+mn

(q; q)2n
with gm(q)− 2gm+1(q) + (1− qm+1)gm+2(q) = 0. (268)



56 STAVROS GAROUFALIDIS, JIE GU, MARCOS MARIÑO, AND CAMPBELL WHEELER

This concludes the proof of the first identity in (256). The remaining two identities follow
(using the above steps) from the following ones

f−2,p,k(q) = 2h0,p,k(q)− h1,p,k(q),

f−3,p,k(q) = (3 + q−1)h0,p,k(q)− (2 + 2q−1)h1,p,k(q) + q−1h2,p,k(q).
(269)

This concludes the sketch of the proof of (256). □

In the course of the proof, we came up with the following conjecture which expresses
fm,p(q) as Z[q±1]-linear combinations of hm,p(q).

Conjecture 24. For m ≥ 0 we have:

fm,p(q) =
∞∑

k,i=0

(−1)iqi(i+1)/2+k (q; q)m+k+i

(q; q)m(q; q)i(q; q)k
hk,p(q),

f−1−m,p(q) =
m∑
k=0

m−k∑
i=0

(−1)iqi(i+1)/2+k (q−1; q−1)m
(q−1; q−1)m−i−k(q; q)i(q; q)k

hk,p(q) .

(270)
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