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What is a sequence of Nilsson type?

Stavros Garoufalidis

Abstract. Sequences of Nilsson type appear in abundance in Algebraic Ge-
ometry, Enumerative Combinatorics, Mathematical Physics and Quantum To-
pology. We give an elementary introduction on this subject, including the
definition of sequences of Nilsson type and the uniqueness, existence, and ef-
fective computation of their asymptotic expansion.

1. Sequences of Nilsson type: definition

Sequences of Nilsson type are the ones that are asymptotic to power series
in powers of 1/n and log n. They appear in abundance Analysis (in asymptotic
expansions of integrals), in Mathematical Physics and in Algebraic Geometry (in
relation to the Gauss-Manin connection); see for example [An2, M1, M2, Ph, Sa].
They also appear in Enumerative Combinatorics (see [FS, WZ2, Ga2]) and in
Quantum Topology. For instance, the Witten-Reshetikhin-Turaev invariant of a
closed 3-manifold is a sequence of complex numbers that depends on the level,
and it is expected to be of Nilsson type; see [Wi, FG, Ga3, Ro, LR, AH]. In
addition, the Kashaev invariant of a knot is expected to be a sequence of Nilsson
type; see [KT, AH, CG]. The quantum spin network evaluation at a fixed root of
unity is known to be a sequence of Nilsson type; see [GV1, GV2]. For a general
discussion of perturbative and non-perturbative invariants of knotted objects that
are expected to be sequences of Nilsson type, see [Ga1].

There is a close connection between sequences of Nilsson type and multivalued
analytic functions with quasi-unipotent monodromy; see for example Theorem 4.1
below.

Several people familiar with the ideas of Quantum Topology have asked for
a self-contained definition of sequences of Nilsson type and their asymptotics, its
uniqueness, existence and effective computation.

Asymptotics of sequences is a well-studied subject of analysis that goes back at
least to Poincare; see for example [O, C, M1]. Since we could not find a reference
for sequences of Nilsson type in the existing literature, we decided to write this
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2 STAVROS GAROUFALIDIS

introductory article. It concerns the asymptotic expansion of sequences which are
relevant in Quantum Topology, and may serve as an elementary introduction to
asymptotics. We claim no original results in this survey paper.

In order to define sequences of Nilsson type, we need to introduce Nilsson
monomials hω(n) indexed by a well-ordered set Ω, and a finite set Λ of complex
numbers of equal magnitude.

For a natural number d ∈ N, a finite subset S of the rational numbers consider
the well-ordered set Ω = (S + N)× {0, 1, . . . , d} indexed by (α, β) < (α′, β′) if and
only if α < α′ or α = α′ and β′ < β. Ω has the order type of the natural numbers.
In particular, for every ω ∈ Ω, the set of elements strictly smaller than ω is finite.
Consider the Ω-indexed family of monomials of Nilsson type given by:

(1) hω(n) =
(logn)β

nα

for ω = (α, β) ∈ Ω. It is easy to see that limn hω′(n)/hω(n) = 0 (abbreviated by
hω′(n)/hω(n) = o(1), and also by hω(n) � hω′(n)) if and only if ω < ω′. This and
all limits below are taken when n goes to infinity.

Fix a finite set Λ of nonzero complex numbers of magnitude r > 0. Let cω,λ be
a collection of complex numbers indexed by Ω× Λ.

Definition 1.1. (a) With the above notation, for a complex-valued sequence
(an) the expression

(2) an ∼
∑

ω∈Ω

hω(n)
∑

λ∈Λ

cω,λλ
n

means that

• for every ω ∈ Ω we have:

(3)

⎛

⎝anr
−n −

∑

ω′≤ω

hω′(n)
∑

λ∈Λ

cω′,λ(λr
−1)n

⎞

⎠ 1

hω(n)
= o(1)

• cω,λ �= 0 for some (ω, λ) ∈ Ω× Λ.

(b) We say that a sequence (an) is of Nilsson type if there exist Ω,Λ and cω,λ such
that (2) holds.

We will say that an asymptotic expansion (2) is Ω× Λ-minimal if

• For every λ ∈ Λ there exists ω ∈ Ω such that cω,λ �= 0.
• For every ω ∈ Ω there exists λ ∈ Λ such that cω,λ �= 0.

By considering a subset of Λ or Ω if necessary, it is easy to see that every asymptotic
expansion has a minimal representative.

2. Uniqueness

Our first task is to show that a sequence of Nilsson type uniquely determines
Ω, Λ and the coefficients cω,λ. The key idea is the following elementary lemma.

Lemma 2.1. If Λ is a finite subset of the unit circle and

(4)
∑

λ∈Λ

cλλ
n = o(1)

holds for some complex numbers cλ, then cλ = 0 for all λ ∈ Λ.
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WHAT IS A SEQUENCE OF NILSSON TYPE? 3

Proof. Divide (4) by λn
1 for some λ1 ∈ Λ. Then we have

cλ1
+

∑

λ �=λ1

cλ(λ/λ1)
n = o(1)

where λ/λ1 �= 1. So,

1

n

n∑

k=1

⎛

⎝cλ1
+

∑

λ �=λ1

cλ(λ/λ1)
k

⎞

⎠ = o(1).

By averaging, it follows that

cλ1
+

1

n

∑

λ �=λ1

cλ
1− (λ/λ1)

n+1

1− λ/λ1
= o(1).

Thus, cλ1
= 0. Since λ1 was an arbitrary element of Λ, the result follows. �

Lemma 2.2. If (an) satisfies (2) then

(5) lim sup
n

|an|1/n = r.

Proof. Since cω,λ �= 0 for some (ω, λ) ∈ Ω × Λ, without loss of generality
assume that cω0,λ �= 0 for some λ ∈ Λ where ω0 is the smallest element of Ω.
Equation (2) for ω = ω0 gives that

(6)
anr

−n

hω0
(n)

−
∑

λ∈Λ

cω0,λ(λr
−1)n = o(1)

Now λr−1 are on the unit circle. It follows that∣∣
∣∣
anr

−n

hω0
(n)

∣∣
∣∣ < C

for some C > 0. Since limn hω(n)
1/n = 1 for all ω ∈ Ω, it follows that

lim sup
n

|an|1/n ≤ r

Since some cω0,λ is nonzero and λr−1 are on the unit circle, Lemma 2.1 implies that
limn

∑
λ∈Λ cω0,λ(λr

−1)n �= 0. Since the sequence is bounded, it follows that there
exists a subsequence nk such that

lim
nk

∑

λ∈Λ

cω0,λ(λr
−1)nk = C ′ �= 0

Combined with Equation (6), it follows that

lim
nk

|ank
|1/nk = r

The result follows. �
Lemma 2.2 implies that sequences of Nilsson type satisfy lim supn |an|1/n > 0.

Proposition 2.1. Suppose that

(7) an ∼
∑

ω∈Ω

hω(n)
∑

λ∈Λ

cω,λλ
n

and

(8) an ∼
∑

ω′∈Ω′

hω′(n)
∑

λ′∈Λ′

c′ω′,λ′λ′n
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4 STAVROS GAROUFALIDIS

are Ω × Λ-minimal and Ω′ × Λ′-minimal asymptotic expansions. Then Ω = Ω′,
Λ = Λ′. Moreover, for all (ω, λ) ∈ Ω× Λ we have cω,λ = c′ω,λ.

Proof. Let ω0 and ω′
0 denote the smallest elements of Ω and Ω′. Lemma 2.2

implies that r = r′ where r and r′ are the magnitudes of the elements of Λ and Λ′

respectively. Equation (3) for ω0 and ω′
0 implies that

(9)
anr

−n

hω0
(n)

−
∑

λ∈Λ

cω0,λ(λr
−1)n = o(1),

anr
−n

hω′
0
(n)

−
∑

λ′∈Λ′

c′ω′
0,λ

′(λ′r−1)n = o(1)

If ω0 �= ω′
0, we may assume that ω0 < ω′

0. In that case, observe that hω′
0
(n)/hω0

(n) =
o(1). Multiply the second equation above by hω′

0
(n)/hω0

(n) and subtract from the
first. It follows that

−
∑

λ∈Λ

cω0,λ(λr
−1)n +

hω′
0
(n)

hω0
(n)

∑

λ′∈Λ′

c′ω′
0,λ

′(λ′r−1)n = o(1)

Since hω′
0
(n)/hω0

(n) = o(1), it follows that
∑

λ∈Λ

cω0,λ(λr
−1)n = o(1)

Lemma 2.1 implies that cω0,λ = 0 for all λ contrary to our minimality assumption
of (7). It follows that ω0 = ω′

0. Subtracting, Equation (9) implies that

−
∑

λ∈Λ

cω0,λ(λr
−1)n +

∑

λ′∈Λ′

c′ω′
0,λ

′(λ′r−1)n = o(1)

Lemma 2.1 implies that if cω0,λ �= 0 for some λ ∈ Λ, then λ ∈ Λ′ and moreover
cω0,λ = c′ω0,λ′ .

An easy induction on ω ∈ Ω proves the following statement. For every ω ∈ Ω,
the following holds. If cω,λ �= 0 for some λ ∈ Λ, then λ ∈ Λ′ and ω ∈ Ω′ and
cω,λ = c′ω,λ.

The minimality assumption and the above statement implies that Ω = Ω′ and
Λ = Λ′ and cλ,ω = c′λ,ω for all (ω, λ) ∈ Ω× Λ. �

Remark 2.2. Proposition 2.1 proves uniqueness in a non-effective way. We
will come back to the problem of computing cω,λ later on.

3. Alternative expression for sequences of Nilsson type

If (an) is a sequence of Nilsson type, we can write (2) in the form:

(10) an ∼
∑

λ,α,β

λnnα(log n)βSλ,α,βgλ,α,β(1/n)

where

• the summation in (10) is over a finite set,
• the growth rates λ are complex numbers numbers of equal magnitude,
• the exponents α are rational numbers and the nilpotency exponents β are
natural numbers,

• the Stokes constants Sλ,α,β are complex numbers,
• gλ,α,β(x) ∈ C[[x]] are formal power series in x with complex coefficients
and leading term 1.
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WHAT IS A SEQUENCE OF NILSSON TYPE? 5

Remark 3.1. In the definition of a sequence of Nilsson type, we may addition-
ally require that

• Λ is a set of algebraic numbers,
• the formal power series gλ,α,β(x) is Gevrey-1, i.e., that the coefficient of
xk in gλ,α,β(x) is bounded by Ckk! for all k, where C depends on gλ,α,β ,

• the coefficients of the formal power series gλ,α,β(x) lie in a fixed number
field K,

These additional requirements hold for the evaluations of classical spin networks,
see [GV1], as well as Sections 4 and 6.1 below.

Example 3.1. For example, if d = 1 and S = {1, 3/2}, then Ω = (1 + N) ∪
(3/2 + N) and we have:

log n

n
� 1

n
� log n

n3/2
� 1

n3/2
� log n

n2
� 1

n2
� . . .

If Λ = {κ, μ, ν}, the asymptotic expansion (10) of a sequence of Nilsson type be-
comes:

an ∼ log n

n

∑

λ∈Λ

λnSλ,1gλ,1

(
1

n

)
+

log n

n3/2

∑

λ∈Λ

λn
j Sλ,2gλ,2

(
1

n

)

+
1

n

∑

λ∈Λ

λn
j Sλ,3gλ,3

(
1

n

)
+

1

n3/2

∑

λ∈Λ

λn
j Sλ,4gλ,4

(
1

n

)

where gλ,j(x) ∈ C[[x]] are formal power series in x and Sλ,j are complex numbers.

4. Existence

In this section we will prove that a sequence is of Nilsson type, under some
analytic continuation assumptions of its generating series. This is a well-known
argument (see for example, [C, CG, FS, GM, GIKM, M1]) that consists of the
following parts:

• apply Cauchy’s theorem to give an integral representation of the sequence,
• deform the contour of integration to localize the computation near the
singularities of the generating function,

• analyse the local computation using the local monodromy assumption of
the generating function.

Let us give the details of the above existence proof. Since sequences of Nilsson
type are exponentially bounded (as follows from Lemma 2.2), fix an exponentially
bounded sequence (an) and consider its generating series

(11) G(z) =
∞∑

n=0

anz
n

G(z) is an analytic function for all complex numbers z that satisfy |z| < 1/R.
Suppose now thatG has analytic continuation on a disk of radius r with singularities
at finitely many points κ, λ, μ, ν, . . . . Suppose also that G has further analytic
continuation on a disk of radius r+ε minus finitely many segments emanating from
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6 STAVROS GAROUFALIDIS

the singularities radially as in the following figure.

Assume in addition that G has quasi-unipotent local monodromy at each singularity
λ, μ, ν, κ on the circle of radius r (i.e., the eigenvalues of the local monodromy are
complex roots of unity).

Theorem 4.1. Under the above assumptions, the sequence (an) is of Nilsson
type.

Corollary 4.1. Suppose that G(z) =
∑∞

n=0 anz
n is a multivalued analytic

function on C \ Λ (where Λ ⊂ C is a finite set) which is regular at z = 0, and has
quasi-unipotent local monodromy. Then, (an) is a sequence of Nilsson type.

Remark 4.2. We know of at least three ways to show that a germ G(z) of an
analytic function can be analytically continued to the complex plane, namely

(a) G satisfies a linear differential equation, see for example [Ga2, Thm.1]
reviewed in Section 5.1 below. For examples that come from Quantum
Topology (specifically, spin networks) see [GV1, GV2].

(b) G satisfies a nonlinear differential equation. See for example the instanton
solutions of Painlevé I studied in detail in [GIKM] and the matrix models
of [GM].

(c) G is resurgent. See for example the Kontsevich-Zagier series studied in
detail in [CG], and more generally the arithmetic resurgence conjecture
of [Ga1] for sequences that appear in Quantum Topology.

Proof. (of Theorem 4.1) We begin by applying Cauchy’s theorem to give an
integral representation of (an). If γ is a circle of radius less than 1/R that contains
the origin, then we have:

(12) an =
1

2πi

∫

γ

G(z)

zn+1
dz

We can deform γ to a contour C which consists of a contour Hλ around each
singularity λ and finitely many arcs γr+ε of the circle of radius 1/(r + ε) as in the
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WHAT IS A SEQUENCE OF NILSSON TYPE? 7

following figure.

(13)

The contours Hλ are known as Hankel contours in Analysis (see [O]) and Lefschetz
thimbles in Algebraic Geometry (see [Ph, Sa]). Cauchy’s theorem implies that

(14) an =
1

2πi

∑

λ∈Λ

∫

Hλ

G(z)

zn+1
dz +

1

2πi

∫

γr+ε

G(z)

zn+1
dz

The above expression is exact, and decomposes the sequence (an) into a finite sum
of sequences (one per singularity) and an extra term. Of course, there is nothing
canonical about this decomposition, since the size of the Hankel contour and γr+ε

depends on ε. One could make the decomposition nearly canonical by using Hankel
contours that extend to infinity, but even so there are choices of directions to be
made, and we will not use them here.

The integral over γr,ε can be estimated by O((r + ε)−n) since G is uniformly
bounded on the arcs γr,ε. Since we assume that the local monodromy of G(z)
around a singularity is quasi-unipotent, it follows (see [M1]) that modulo germs of
holomorphic functions at zero, G(λ+ z) has a local expansion of the form

G(λ+ z) =
∑

α′,β′

zα
′
(log z)β

′
hα′,β′(z)

where the summation is over a finite set, α′ ∈ Q, β′ ∈ N and hα′,β′(z) are germs of
functions analytic at z = 0. For a germ f(z) of a multi-valued analytic function at
z = 0, let Δ0f denote its variation defined by

Δ0f(z) = lim
ε→1

f(e2πiεz)− lim
ε→0

f(e2πiεz)

(see [M1]) when z is restricted on a line segment [0, ε). The variation of the building
blocks zα and (log z)β are given by

Δ0(z
α) =

⎧
⎪⎨

⎪⎩

(e2πiα − 1)zα α ∈ Q \ Z
δ0 α ∈ Z \ N
0 α ∈ N

, Δ0(log z) = 2πi

where δ0 is the Dirac delta function (really, a distribution). For a singularity λ of
G(z), let ΔλG(z) denote the variation of G(λ+ z). It follows that for z in the line
segment of Figure (13), we have

(15) ΔλG(z) =
∑

α,β

zα(log z)β
∞∑

k=0

c′α,β,λ,kz
k−1
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8 STAVROS GAROUFALIDIS

where the sum is over a finite set {α, β}, α ∈ Q\N, β ∈ N and
∑∞

k=0

∑∞
k=0 c

′
α,β,λ,kz

k

are germs of analytic functions at z = 0. When α ∈ Z\N, we can deform the Hankel
contour into a small circle centered around λ and apply Cauchy’s theorem. For the
remaining cases α ∈ Q \ Z, a change of variables z 	→ λ(1 + z) centers the Hankel
contour at zero and implies that

(16)

∫

Hλ

G(z)

zn+1
dz = λ−n

∫

H0

G(λ(1 + z))

(1 + z)n+1
dz = λ−n

∫ ε

0

ΔλG(λz)

(1 + z)n+1
dz

A Beta-integral calculation gives that
∫ ∞

0

zγ−1

(1 + z)n+1
dz =

Γ(γ)Γ(n+ 1− γ)

Γ(n+ 1)

and therefore
∫ ε

0

zγ−1

(1 + z)n+1
dz =

Γ(γ)Γ(n+ 1− γ)

Γ(n+ 1)
(1 +O((r + ε)−n))

More generally, for a natural number β let us define

(17) Iγ,β(n) =

∫ ∞

0

zγ−1

(1 + z)n+1
(log z)βdz

Then, we have

(18) Iγ,β(n) =
Γ(γ)Γ(n+ 1− γ)

Γ(n+ 1)
pβ(γ, n)

where pβ(γ, n) is a polynomial in the variables ψ(k)(n + 1 − γ) and ψ(l)(γ) with
rational coefficients, where ψ(z) = Γ′(z)/Γ(z) is the logarithmic derivative of the
Γ-function. For example, we have:

p0(n) = 1

p1(n) = −ψ(n+ 1− γ) + ψ(γ)

p2(n) = ψ(n+ 1− γ)2 + ψ(1)(n+ 1− γ)− 2ψ(γ)ψ(n+ 1− γ) + ψ(γ)2 + ψ(1)(γ)

Compare also with [M1, Eqn.I.4.2] and [M2, Eqn.7.5]. What is important is not
the exact evaluation of Iγ,β(n) given in (18), but the fact that the sequence Iγ,β(n)
is of Nilsson type. This follows from the fact that we have an asymptotic expansion
(see [O]):

(19)
Γ(n+ 1− γ)

Γ(n+ 1)
∼ 1

nγ

(
1 +

γ2 − γ

2n
+

3γ4 − 2γ3 − 3γ2 + 2γ

24n2
+ . . .

)

Alternatively, one may show that the sequence Iγ,β(n) is of Nilsson type by a change
of variables z = et − 1 which gives

∫ ∞

0

zγ−1

(1 + z)n+1
(log z)βdz =

∫ ∞

0

e−nttγ−1Aγ,β(t)dt

where

Aγ,β(t) =

(
et − 1

t

)γ−1 (
log

(
et − 1

t

)
− log t

)β

dt

is a function which can be expanded into a polynomial of log t with coefficients
functions which are analytic at t = 0. Expand Aγ,β(t) into power series at t = 0
and interchange summation and integration by applying Watson’s lemma (see [O])
to conclude that Iγ,β(n) is of Nilsson type.
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WHAT IS A SEQUENCE OF NILSSON TYPE? 9

Replace ΔλG(λz) by (15) in (16) and interchange summation and integration
by applying Watson’s lemma (see [O]). It follows that

1

2πi

∫

Hλ

G(z)

zn+1
dz ∼ λ−n

∑

α,β

1

nα
(log n)β

∞∑

k=0

cα,β,λ,k
1

nk

Equation (14) cocnludes that (an) is of Nilsson type. Strictly speaking, the above
analysis works only when �(α) > −1. This is a local integrability assumption of
the Beta-integral. The asymptotic expansion (2) remains valid as stated even when
�(α) ≤ −1 as follows by first integrating G(z) a sufficient number of times, and
then applying the analysis. This is exactly what was done in [CG, Sec.7] at the
cost of complicating the notation. �

Remark 4.3. Since the sequence (c′α,β,λ,k) as a function of k is exponentially

bounded and the asymptotic expansion (19) is Gevrey-1, it follows that the sequence
(cα,β,λ,k) is Gevrey-1. Moreover, if the sequence (c′α,β,λ,k) lies in a number field K,

then we can write the asymptotic expansion of (an) in the form (10) where Sα,β,λ

are polynomials (with rational coefficients) of values of logarithmic derivatives of
the Gamma function at rational numbers.

5. G-functions

5.1. G-functions: examples of sequences of Nilsson type. In [Ga2,
Thm.1] it was proven that balanced multisum sequences (which appear in abun-
dance in Enumerative Combinatorics) are sequences of Nilsson type. The proof uses
the theory of G-functions which verifies that the generating series of balanced mul-
tisum sequences satisfies the hypothesis of Corollary 4.1. Let us give the definition
of a balanced multisum sequence, a G-function and an example.

Definition 5.1. (a) A term tn,k in variables (n, k) where k = (k1, . . . , kr) is
an expression of the form:

(20) tn,k = Cn
0

r∏

i=1

Cki
i

J∏

j=1

Aj(n, k)!
εj

where Ci ∈ Q for i = 0, . . . , r, εj = ±1 for j = 1, . . . , J , and Aj are integral linear
forms in the variables (n, k) such that for every n ∈ N, the set

(21) supp(tn,•) := {k ∈ Z
r |Aj(n, k) ≥ 0, j = 1, . . . , J}

is finite. We will call a term balanced if in addition it satisfies the balance condition:

(22)
J∑

j=1

εjAj = 0.

(b) A (balanced) multisum sequence (an) is a sequence of complex numbers of the
form

(23) an =
∑

k∈supp(tn,•)

tn,k

where t is a (balanced) term and the sum is over a finite set that depends on t.
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10 STAVROS GAROUFALIDIS

For example, the following sequence is a balanced multisum

(24) an =
∑

k,l

(
n

k + l

)2(
n+ k

k

)3(
n+ l

l

)
=

∑

k,l

(n+ k)!3(n+ l)!

k!3l!n!2(k + l)!2(n− k − l)!2

where the summation is over the set of pairs of integers (k, l) that satisfy 0 ≤ k, l
and k + l ≤ n.

Let us now recall what us a G-function. The latter were introduced by Siegel
in [Si] with motivation being arithmetic problems in elliptic integrals, and tran-
scendence problems in number theory. For further information about G-functions
and their properties, see [An1, An2].

Definition 5.2. We say that series G(z) =
∑∞

n=0 anz
n is a G-function if

(a) the coefficients an are algebraic numbers,
(b) there exists a constant C > 0 so that for every n ∈ N the absolute value

of every conjugate of an is less than or equal to Cn,
(c) the common denominator of a0, . . . , an is less than or equal to Cn,
(d) G(z) is holonomic, i.e., it satisfies a linear differential equation with coef-

ficients polynomials in z.

G-functions satisfy the hypothesis of Corollary 4.1; see [An1, An2]. Indeed,
they satisfy a linear differential equation which analytically continues them in the
complex plane. Moreover, the arithmetic hypothesis ensures that the local mon-
odromy is quasi-unipotent. We can now state the main result of [Ga2].

Theorem 5.3. [Ga2] (a) If (an) is a balanced multisum sequence, its gener-
ating function G(z) =

∑∞
n=0 anz

n is a G-function.
(b) In that case, it follows that (an) is a sequence of Nilsson type.

The reader may have noticed that we defined the notion of a sequence of Nilsson
type only when lim sup |an|1/n > 0. In case the generating series is a G-function,
the remaining case is taken care by the following lemma.

Lemma 5.4. If G(z) =
∑∞

n=0 anz
n is a G-function and lim sup |an|1/n = 0,

then an = 0 for all but finitely many n.

Proof. The assumption implies that G(z) is an entire G-function. Since those
are regular-singular at infinity, it follows that G(z) is a polynomial; see also [An1,
An2]. The result follows. �

5.2. Classical spin networks: examples of G-functions. In [GV1, GV2]
it was proven that the evaluation of a quantum spin network at a fixed root of unity
is a balanced multisum sequence, and consequently it is a sequence of Nilsson type.

6. Effective computations

6.1. Exact computations. Proposition 2.1 is a uniqueness statement about
the asymptotics of a sequence of Nilsson type, and Theorem 4.1 is an existence
statement which is not effective. There are two types of effective computations,
exact and numerical. The exact computations use as an input a linear recursion
relation of the sequence. The following proposition is elementary and is discussed
in detail for example in [FS, WZ2].
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Proposition 6.1. Given a linear recursion relation for a sequence (an) of
Nilsson type, one can compute exactly λ, α, β and the power series gα,b,λ(x) that
appear in Equation (10).

In particular, a linear recursion relation computes exactly the asymptotics of a
sequence of Nilsson type, up to a finite number of unknown Stokes constants.

To apply Proposition 6.1 one needs to find a linear recursion for a sequence
(an). This comes from the fundamental theorem of Wilf-Zeilberger which states
that a balanced multisum sequence is holonomic, i.e., satisfies a linear recursion with
coefficients polynomials in n; see [Z, WZ1, PWZ]. The proof of the above theorem
has been computer implemented and works well for single sums and reasonably well
for double sums; see [PWZ, PR1, PR2]. As an example, consider the following
sequence from [GV1, Sec.10]

an =
n!6

(3n+ 1)!2

4n∑

k=3n

(−1)k(k + 1)!

(k − 3n)!4(4n− k)!3

Using the language of [GV1], (an) is the evaluation of the tetrahedron spin network
(also known as 6j-symbol) when all edges are equal to n. The command

�� zb.m

loads the package of [PR2] into Mathematica. The command

teucl�n�, k�� :� n�^6� �3�n � 1��^2 ��1�^k �k � 1�� 1� ��4�n � k��^3��k � 3�n��^4�

defines the summand of the sequence (an), and the command

Zb�teucl�n, k�, �k, 3�n, 4�n�, n, 2�

computes the following second order linear recursion relation for the sequence (an)

�9 �1 � n� �2 � 3 n�
2

�4 � 3 n�
2

�451 � 460 n � 115 n2� a�n� �

�3 � 2 n� �319212 � 1427658 n � 2578232 n2 � 2423109 n3 � 1255139 n4 � 340515 n5 � 37835 n6� a�1 � n� �

9 �2 � n� �5 � 3 n�
2

�7 � 3 n�
2

�106 � 230 n � 115 n2� a�2 � n� � 0

This linear recursion has two formal power series solutions of the form

a±,n =
1

n3/2
Λn

±

(
1 +

−432± 31i
√
2

576n
+

109847∓ 22320i
√
2

331776n2
+

−18649008± 4914305i
√
2

573308928n3

+
14721750481± 45578388960i

√
2

660451885056n4
+

−83614134803760± 7532932167923i
√
2

380420285792256n5

+
−31784729861796581∓ 212040612888146640i

√
2

657366253849018368n6
+O

(
1

n7

))

where

Λ± =
329∓ 460i

√
2

729
= e∓i6 arccos(1/3)

are two complex numbers of absolute value 1. The coefficients of the formal power
series a±,n are in the number field K = Q(

√
−2).
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6.2. Numerical computations. When a sequence (an) is given by a multi-
dimensional balanced sum, the computed implemented WZ method may not ter-
minate. In that case, one may develop numerical methods for finding λ, α, β as in
Equation (10). An example of this method is the asymptotics of the evaluation of
the Cube Spin Network that appears in the Appendix of [GV1]. Effective methods
for numerical computations of asymptotics have been developed by several authors,
and have also been studied by Zagier.
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