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1. Introduction

In the present paper, we study relations among special values of zeta functions of
real quadratic fields, properties of generalized Dedekind sums and Todd classes of
toric varieties. The main theme of the paper is the use of toric geometry to explain
in a conceptual way properties of the values of zeta functions and Dedekind sums,
as well as to provide explicit computations.

Both toric varieties and zeta functions associate numerical invariants to cones
in lattices, with different motivations and applications. Though we will focus on
the case of two-dimensional cones in the present paper, we introduce notation and
definitions that are valid for cones of arbitrary dimension. The reason for this
added generality is clarity, as well as preparation for the results of a subsequent
publication.

1.1. Zeta functions. We begin by reviewing the first source of numerical invari-
ants of cones: the study of zeta functions.

Given a number field K, its zeta function is defined (for Re(s) sufficiently large)
by:

ζ(K, s) =
∑
α

1
Q(α)s

where the summation is over all nonzero ideals and Q is the norm. The above
function admits a meromorphic continuation in C, with a simple pole at s = 1,
and regular everywhere else. Lichtenbaum [Li] conjectured a specific behavior of
the zeta function ζ(K, s) at nonpositive integers related to the global arithmetic of
the number field. In the special case of a totally real number field K, Lichtenbaum
conjectured that the values of the zeta function at negative integers are rational
numbers which involve the rank of the algebraic (or étale) K-theory of K. It is well
understood that the zeta function of a totally real field K can be decomposed as a
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sum ζ(K, s) =
∑
τ ζQ,τ (s), where the sum is over a finite set of cones τ in lattices

M ⊆ K of rank [K : Q] and

ζQ,τ (s) =
∑

a∈τ∩M−0

1
Q(a)s

.

The reader may see [Sh1] and [Za2, Section 2] for a discussion.
The problem of calculating the zeta values ζQ,τ (−n) for n ≥ 0 for all triples

(M,Q, τ) that arise from totally real fields has attracted a lot of attention by
several authors. Klingen [Kl] and Siegel [Si1, Si2] (using analytic methods) proved
that the values of the zeta functions of totally real fields at nonpositive integers
are rational numbers and provided an algorithm for calculating them. Meanwhile,
Shintani [Sh1] (using algebraic and combinatorial methods) gave an independent
calculation of the zeta values ζQ,τ (−n) for an arbitrary Q which is a product of
linear forms. Meyer [Me] and Zagier [Za3] gave another calculation of the zeta
values ζQ,τ (−n) for rank two lattices. Related results have also been obtained by
P. Cassou-Noguès [CN1, CN2, CN3]. More recently, Hayes [Hs], Sczech [Sc1, Sc2]
and Stevens [St] have constructed PGLm(Q) cocycles which, among other things,
provide a calculation of the zeta values (at nonpositive integers) of totally real
number fields in terms of generalized Dedekind sums.

We now specialize to the case of real quadratic fields. We first note that when
we use the word lattice, we will mean simply a free abelian group of finite rank.
Some authors assume that a lattice comes equipped with a quadratic form, but we
follow the usual custom in the theory of toric varieties, where no quadratic form is
assumed to be present (for example, see [Fu]). Given a lattice M , we will denote
the associated real vector space M ⊗R by MR, and by a (rational) cone in M or in
MR, we will mean a cone generated by a finite set of rays from the origin which pass
through points of M . From now on, we will use the following slightly normalized
form of the zeta function ζQ,τ defined for admissible triples (M,Q, τ) as follows:

Definition 1.1. An admissible triple (M,Q, τ) consists of a two-dimensional lat-
tice M , a nonzero quadratic homogeneous function Q : MR → R (i.e., a function
satisfying Q(av) = a2Q(v) for a ∈ R, v ∈MR and such that Q is not identically 0)
and a rational two-dimensional cone τ in M such that Q is positive on τ ; that is,
for all a ∈ τ , a 6= 0, we have Q(a) > 0. For an admissible triple (M,Q, τ) we set

ζQ,τ (s) =
∑

a∈τ∩M

wt(τ, a)
Q(a)s

(1)

where wt(τ, ·) : M → Q is the weight function defined by:

wt(τ, a) =


1 if a lies in the interior of τ ,
1/2 if a lies in the boundary of τ , and a 6= 0,
0 otherwise.

(2)

The above zeta function, defined for Re(s) sufficiently large, can be analytically
continued to a meromorphic function on C, regular everywhere except at 1. Zagier
[Za4] stated this in the case where Q is indefinite, and the proof he gives works also
in the definite case.

Note that all triples (M,Q, τ) that come from real quadratic fields are admissible.
Zagier showed [Za4] that every triple (M,Q, τ) which arises from a real quadratic
field can be constructed explicitly by means of a finite sequence b = (b0, . . . , br−1)
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of integers greater than 1 and not all equal to 2. (It may be necessary to multiply
M by a totally positive number and Q by a nonzero rational number, which simply
multiplies values of the zeta function by a nonzero constant.) In addition, there
are canonical vectors A0, . . . , Ar in M (that depend on b) that subdivide the cone
τ = 〈A0, Ar〉 (i.e., the cone whose extreme rays are A0 and Ar) in M into r
nonsingular cones 〈Ai, Ai+1〉. For the convenience of the reader, as well as for
motivation of the next theorem, we now recall Zagier’s construction.

Given a sequence b as above, we extend it to a sequence of integers parametrized
by the integers by defining bk = bkmodr. Furthermore, for an integer k, we define

wk = [[bk, . . . , bk+r−1]] = bk −
1

bk+1 −
1

bk+2 − · · ·

where [[bk, . . . , bk+r−1]] denotes the infinite periodic continued fraction with period
r. Note that wk = wk+r for all integers k, and that, by definition,

w0 = b0 −
1

b1 −
1

· · · br−1 −
1
w0

from which it follows that w0 satisfies a quadratic equation Aw2 + Bw + C = 0
where A,B,C are (for a fixed r) polynomials in bi with integer coefficients. (Strictly
speaking, A,B,C are defined up to a scalar multiple; however, there is a canonical
choice coming from writing the above continued fraction expansion as a quadratic
equation.) Let D = B2 − 4AC be the discriminant. Since bi > 1, it follows that
D > 0, and that the roots of the quadratic equation are w0 = (−B +

√
D)/(2A)

and w′0 = (−B −
√
D)/(2A) satisfying w0 > 1 > w′0. We define numbers A0 = 1,

Ak−1 = Akwk for k ∈ Z. Since wk = bk − 1
wk+1

, we see that

Ak−1 +Ak+1 = bkAk(3)

for all integers k. Let us define M = Zw0 + Z to be the rank two lattice in the
real quadratic field K = Q(

√
D) with basis {w0, 1}. Since A−1 = w0, A0 = 1, the

recursion relation (3) implies that M = ZAk+ZAk+1 for all integers k. In addition,
the homogeneous function Q : MR → R defined by

Q(xw0 + y) = Cx2 −Bxy +Ay2

is a multiple of the norm function of the real quadratic field Q(
√
D), restricted to

M ; see also [Za4, p. 138].
We will now give an explicit formula for the zeta values ζQ,τ (−n) (for n ≥ 0), for

the triples (M,Q, τ) constructed via a sequence b above. While both the motivation
and the proof involve concepts from the theory of toric geometry, the formula
can be stated and understood without a knowledge of toric varieties. We will
state the formula here, and in the next subsection we will discuss concepts from
toric geometry which are necessary for the proof and which lead to a conceptual
understanding of the present formula.
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Let λm be defined by the power series:

h

1− e−h =
∞∑
m=0

λmh
m;(4)

thus we have: λm = (−1)mBm/m! where Bm is the mth Bernoulli number. (See
also Definition 1.6 below.) Note that if m > 1 is odd, then λm = 0. For n ≥ 0,
define homogeneous polynomials Pn(X,Y ), Rn(X,Y ) of degree 2n by:

Pn(X,Y ) =
∑

i+j=2n,i,j≥0

(−1)i+1λi+1λj+1X
iY j ,

Rn(X,Y ) =
X2n+1 + Y 2n+1

X + Y
= X2n −X2n−1Y + · · ·+ Y 2n.

We then have:

Theorem 1. For a sequence b, as above, with associated (M,Q, τ), the values
ζQ,τ (−n) for n ≥ 0 are given explicitly as follows:

ζQ,τ (−n) = Pn

(
∂

∂x
,
∂

∂y

) r−1∑
i=0

(Q(xAi−1 + yAi)n)(5)

+λ2n+2Rn

(
∂

∂x
,
∂

∂y

) r−1∑
i=0

bi(Q(xAi−1 + yAi+1)n).(6)

If the length r of the sequence b is fixed, the above expresses ζQ,τ (−n) as a polyno-
mial in the bi with rational coefficients, symmetric under cyclic permutation of the
bi.

In particular, we obtain the following formula due to Meyer; see also [Za1, Equa-
tion 3.3]:

ζQ,τ (0) =
1
12

r−1∑
i=0

(bi − 3).(7)

It is important to note that in the above formula, not only do we see the cones
〈Ai−1, Ai〉 generated by consecutive rays, but also the cones 〈Ai−1, Ai+1〉 generated
by rays two apart. In the classical formulas of Zagier, the cones generated by
consecutive rays play a key role, but the other cones, those generated by rays two
apart, seem to be an ingredient appearing for the first time in Theorem 1 above.
This new ingredient permits one to express the zeta values in a somewhat simpler
manner, as illustrated by the example below.

Example 1.2. We will express ζQ,τ (−1) and ζQ,τ (−2) using Theorem 1. For i =
0, . . . , r − 1, we define Li,Mi, Ni to be the coefficients of the quadratic form Q on
the ith nonsingular cone 〈Ai−1, Ai〉. Explicitly,

Q(xAi−1 + yAi) = Lix
2 +Mixy +Niy

2.

We define L̃i, M̃i, Ñi similarly, as the coefficients of Q on the cone 〈Ai−1, Ai+1〉,
generated by rays two apart:

Q(xAi−1 + yAi+1) = L̃ix
2 + M̃ixy + Ñiy

2.
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Note that for sequences b of fixed length r, Li,Mi, Ni, L̃i, M̃i, Ñi are polynomials
in bi with integer coefficients, as follows from Lemma 3.2. Theorem 1 then gives
us:

ζQ,τ (−1) =
1

720

r−1∑
i=0

(5Mi + bi(−2L̃i + M̃i − 2Ñi)).

We may compare this with a formula of Zagier [Za4, p.149], which involves only
the Li,Mi, Ni and not the L̃i, M̃i, Ñi, though it does involve higher powers of the
bi:

ζQ,τ (−1) =
1

720

r−1∑
i=0

(−2Nib3i + 3Mib
2
i − 6Libi + 5Mi).

The patient reader may use Lemma 3.2 to show that the above two expressions for
ζQ,τ are the same polynomial in the bi with rational coefficients.

As for ζQ,τ (−2), Theorem 1 yields the following expression:

ζQ,τ (−2) =
1

15120

r−1∑
i=0

(−21Mi(Li +Ni)

+ 2bi(6L̃2
i − 3L̃iM̃i + 2L̃iÑi + M̃2

i − 3M̃iÑi + 6Ñ2
i )).

1.2. Toric geometry. The second source of numerical invariants of cones comes
from the theory of toric varieties. For a general reference on toric varieties, see [Da]
or [Fu].

Founded in the 1970s, the subject of toric varieties provides a strong link between
algebraic geometry and the theory of convex bodies in a lattice. To each lattice
polytope (the convex hull of a finite set of lattice points) is associated an algebraic
variety with a natural torus action. This correspondence enables one to translate
important properties and theorems about lattice polytopes into the language of
algebraic geometry, and vice-versa. One important example of this is the very
classical problem of counting the number of lattice points in a polytope. The early
pioneers in the subject of toric varieties found that this problem, translated into
algebraic geometry, becomes the problem of finding the Todd class of a toric variety.
Much progress has been made over the past ten years on the Todd class problem,
and this has led to a greater understanding of the lattice point counting question.

One approach to computing the Todd class of a toric variety is the fundamental
work of R. Morelli [Mo]. He settled a question of Danilov by proving a local formula
expressing the Todd class of a toric variety as a cycle. Another approach, introduced
by the second author in [P1, P2], is to express the Todd class as a polynomial in the
torus-invariant cycles. Dedekind sums appear as coefficients in these polynomials,
and this leads to lattice point formulas in terms of Dedekind sums, as well as new
reciprocity laws for Dedekind sums [P1]. Cappell and Shaneson [CS] subsequently
announced an extension of the program of [P1] in which they proposed formulas
for the Todd class of a toric variety in all dimensions. In [P3] it was shown that
the polynomials of [P1, P2] can be expressed nicely as the truncation of a certain
power series whose coefficients were shown to be polynomial-time computable using
an idea of Barvinok [Ba]. A beautiful power series expression for the equivariant
Todd class of a toric variety was given by Brion and Vergne in [BV2]. Guillemin
[Gu] also proved similar Todd class formulas from a symplectic geometry point of
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view. Furthermore, in [BV1], Brion and Vergne use the Todd power series of [BV2]
to give a formula for summing any polynomial function over a polytope.

The power series studied in [P3] and [BV1, BV2] are, in fact, identical (see
Section 2) and play a central role in the present paper. A detailed discussion of
the properties of these power series, which we call the Todd power series of a cone,
is contained in Section 2. In this section, we state two theorems about the Todd
power series of a two-dimensional cone that we will need in our study of the zeta
function.

Given independent rays ρ1, . . . , ρn from the origin in an n-dimensional lattice N ,
the convex hull of the rays in the vector space NR = N ⊗R forms an n-dimensional
cone σ = 〈ρ1, . . . , ρn〉. Cones of this type (that is, ones generated by linearly
independent rays) are called simplicial. Let Cn(N) denote the set of n-dimensional
simplicial cones of N with ordered rays. There is then a canonical function

t : Cn(N)→ Q[[x1, . . . , xn]],

invariant under lattice automorphisms, which associates to each cone σ a power
series tσ with rational coefficients, called the Todd power series of σ. Several ways
of characterizing this function are given in Section 2. These include an N -additivity
property (see Proposition 2.1), an exponential sum over the cone (Proposition 2.3)
and an explicit cyclotomic sum formula (Proposition 2.4).

In the case of a two-dimensional cone σ, the coefficient of xy of tσ(x, y) was iden-
tified as a Dedekind sum [P1]. Furthermore, in [P1] it was shown that reciprocity
formulas for Dedekind sums follow from an N -additivity formula for t. Zagier’s
higher-dimensional Dedekind sums [Za1] were later shown to appear as coefficients
[BV2]. It is natural to conjecture that, in the two-dimensional case, all the co-
efficients of t are generalized Dedekind sums and that reciprocity properties of
generalized Dedekind sums will be related to the N -additivity formula of t. Indeed,
this is the case; see Theorem 4.

We now present an explicit link between Todd power series and zeta functions.
The following theorem expresses the values of zeta functions at negative integers
in terms of the Todd power series of a two-dimensional cone. Note that the idea of
considering the Todd power series as a differential operator and applying this to an
integral over a shifted cone is not new; this was introduced in [KP] and developed
further in [BV1].

First we introduce some notation which is standard in the theory of toric vari-
eties. If τ is a cone in a lattice M , the dual cone τ̌ is a cone in the dual lattice
N = Hom(M,Z), defined by

τ̌ = {v ∈ N |〈v, u〉 ≥ 0 for all u ∈ τ}.

The dual of an n-dimensional simplicial cone τ = 〈ρ1, . . . , ρn〉 is generated by the
rays ui normal to the n−1-dimensional faces of τ ; hence τ̌ is also a simplicial cone.
Given h = (h1, . . . , hn) ∈ Rn, we define the shifted cone τ(h) to be the following
cone in MR:

τ(h) = {m ∈MR|〈ui,m〉 ≥ −hi for all i = 1, . . . , n}.

Here (and throughout) we have identified each ray ui with the primitive lattice
point on that ray, that is, the nonzero lattice point on ui closest to the origin.

Given an n-dimensional simplicial cone τ = 〈ρ1, . . . , ρn〉 in an n-dimensional
lattice M , the multiplicity of τ , denoted by mult(τ), is defined to be the index in M
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of the sublattice Zρ1 + · · ·+Zρn (again identifying the rays ρi with their primitive
lattice points). Thus the multiplicity of τ is simply the volume of the parallelepiped
formed by the vectors from the origin to the primitive lattice points on the rays of
τ .

Theorem 2. Let τ be a two-dimensional cone of multiplicity q in a two-dimensional
lattice M , and let σ = τ̌ be the dual cone in N = Hom(M,Z). Then for all admis-
sible triples (M,Q, τ) and n ≥ 0, we have:

ζQ,τ (−n) = (−1)nn!
{

(tσ)(2n+2)

(
∂

∂h1
,
∂

∂h2

)
− δn,0

q

2
∂2

∂h1∂h2

}
�
∫
τ(h)

exp(−Q(u))du,

where the diamond symbol above indicates that all derivatives are evaluated at h1 =
h2 = 0 and δn,0 = 1 (resp. 0) if n = 0 (resp. n 6= 0).

In this equation, (tσ)d denotes the degree d part of the Todd power series thought
of as an (infinite order) constant coefficients differential operator acting on the
function h→

∫
τ(h)

exp(−Q(u))du.

Remark 1.3. We should point out that despite their similarity, Theorems 1 and 2
differ in their hypothesis, since there are admissible triples (M,Q, τ) that do not
come from a sequence b.

The coefficients of tσ for a two-dimensional cone may be expressed explicitly
in terms of continued fractions. We now state this formula. Let σ be a two-
dimensional cone in a lattice N . Then there exists a (unique) pair of relatively
prime integers p, q with 0 < p ≤ q such that σ is lattice equivalent (equivalent
under the automorphism group of the lattice) to the cone σ(p,q)

def= 〈(1, 0), (p, q)〉 in
Z2. Such a cone will be called a cone of type (p, q). Let bi, hi, ki, Xi be defined in
terms of the negative-regular continued fraction expansions:

q

p
= [b1, . . . , br−1],

hi
ki

def= [b1, . . . , bi−1], Xi
def= −hix+ (qki − phi)y.(8)

(Throughout, we use such bracketed lists to denote finite negative-regular continued
fractions.) We adopt the convention that (h0, k0) = (0,−1) and (h1, k1) = (1, 0),
so that X0 = −qy and X1 = −x− py.

We then have the following continued fraction expression for the degree d part
(tσ)d of the Todd power series tσ.

Theorem 3. For σ of type (p, q) as above, and for any integer n ≥ 0, the degree
2n+ 2 part of the Todd power series tσ is expressed as follows:

(tσ)2n+2(x, y) = qxy

r∑
i=1

Pn(Xi−1, Xi) + λ2n+2qxy

r−1∑
i=1

biRn(Xi−1, Xi+1)

−λ2n+2(xX2n+1
1 + yX2n+1

r−1 ) +
1
2
δn,0qxy.

If d ≥ 1 is odd, then (tσ)d(x, y) = 1
2λd−1q

d−2xy(xd−2 + yd−2).

Remark 1.4. We have stated the formula above in the form we will need for our
study of zeta functions. However, from the toric geometry point of view, it is more
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natural to use the continued fraction expansion of q
q−p instead. This formula will

be given in Section 2.3.

Remark 1.5. The formula for the Todd operator in Theorem 3 is reminiscent of for-
mulas in quantum cohomology, even though we know of no conceptual explanation
for this fact.

1.3. Dedekind sums. Finally, we calculate the coefficients of the Todd power
series of two-dimensional cones in terms of a particular generalization si,j (defined
below) of the classical Dedekind sum. For an excellent review of the properties
of the classical Dedekind sum, see [RG]. Several generalizations of the classical
Dedekind sums were studied by T. Apostol, Carlitz, C. Meyer, D. Solomon, and
more recently and generally by U. Halbritter [AV, Ha, Me, So]. These papers
investigate the sums (and several other generalizations of them, which we will not
consider here) given in the following definition:

Definition 1.6. For relatively prime integers p, q (with q 6= 0), and for nonnegative
integers i, j, we define the following generalized Dedekind sum:

si,j(p, q) =
1
i!j!

q∑
a=1

B̂eri(〈
a

q
〉)B̂erj(〈−

ap

q
〉)(9)

where for a real number x, we denote by 〈x〉 the (unique) number such that 〈x〉 ∈
(x + Z) ∩ (0, 1]. Here Berm denotes the mth Bernoulli polynomial, defined by the
power series

∑∞
m=0 Berm(x) t

m

m! = tetx

1−et , and B̂erm denotes the restriction of the

mth Bernoulli polynomial Berm to (0, 1], with the boundary condition B̂erm(1) def=
1
2 (Berm(1) + Berm(0)) = Bm + δm,1/2, where Bm is the mth Bernoulli number,
defined by Bm = Berm(0).1

By definition, the sum s1,1(−p, q) coincides with the classical Dedekind sum
s(p, q) (cf. [RG]). An important property of generalized Dedekind sums is a reci-
procity formula which leads to an evaluation in terms of negative-regular continued
fractions. This reciprocity formula was most conveniently written by D. Solomon in
terms of an additivity formula of a generating power series [So, Theorem 3.3]. On
the other hand, the Todd operator also satisfies an additivity property. We denote
by fi,j(p, q) (for nonnegative integers i, j) the coefficient of xiyj of the power series
tσ(p,q)(x, y) (abbreviated by t(p,q)(x, y)). We then have:

Theorem 4. Let p, q ∈ Z be relatively prime with q 6= 0. If i, j > 1, then we have:

fi,j(p, q) = qi+j−1(−1)isi,j(p, q).(10)

If i = 1 or j = 1, the above equation is true when the correction term

qi+j−1(−1)i+j
BiBj
i!j!

is added to the right hand side.

Corollary 1.7. Fixing r, for all nonnegative integers i, j and with the notation of
(8), si,j(p, q) are polynomials in bi, 1/q.

1There seem to be two conventions for denoting Bernoulli numbers; one, which we follow here,
is used often in number theory texts. Due to the facts that B2n+1 = 0 for n ≥ 1, and that the
sign of B2n alternates, the other convention, which is often used in intersection theory, defines
the nth Bernoulli number to be (−1)n+1B2n.
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Remark 1.8. For i = j = 1, the above theorem was obtained in [P1], and was a
motivation for the results of the present paper.

1.4. Is toric geometry needed? Some natural questions arise, at this point:

• Is toric geometry needed?
• How do the statement and proof of Theorem 1 differ from the statement and

proof of Zagier’s formula [Za4]?

With respect to the first question, Theorem 1 (an evaluation of zeta functions
associated to real quadratic fields) is stated without reference to toric geometry,
and a close examination reveals that its proof is based on an analytic Lemma 2.11
and on the two-dimensional analogue of the Euler-MacLaurin formula given by
Proposition 2.13. In addition, two-dimensional cones can be canonically subdivided
into nonsingular cones, so in a sense the two-dimensional analogue of the Euler-
MacLaurin formula can be obtained by the classical (one-dimensional) one, as is
used by Zagier [Za4]. Furthermore, number theory offers, for every m ≥ 2, a
canonical Eisenstein cocycle of PGLm(Q) [Sc1, Sc2] that expresses, among other
things, the generalized Dedekind sums si,j in terms of negative-regular continued
fraction expansions like the ones of Theorems 3 and 4, and the values (at nonpositive
integers) of zeta functions of totally real fields (of degree m) in terms of generalized
Dedekind sums. See also [So, St].

On the other hand, for every simplicial cone σ in an m-dimensional lattice N ,
toric geometry constructs a canonical Todd power series tσ satisfying an additivity
property (see Proposition 2.1 below). The coefficients of the Todd power series are
generalized Dedekind sums, and the power series itself is intimately related to the
Euler-MacLaurin summation formula. As a result, for m = 2, we provide a toric
geometry explanation of Theorems 1 and 4.

With respect to the second question, Zagier [Za4] obtained similar formulas
for the values of the zeta function of a quadratic number field at negative integers.
Zagier used additivity in the lattice M , whereas we use additivity in the dual lattice
N . The definition of the zeta function of an arbitrary rational cone τ involves a
sum over the lattice points in that cone, which sits inside a two-dimensional lattice
M . A major idea in Zagier’s attack on finding values of these zeta functions was
to subdivide the cone τ into nonsingular cones, and use the set-theoretic additivity
of summations under subdivisions. Precisely, the function ζQ,·(s) : C2(M) → C is
additive, i.e., it satisfies:

ζQ,τ (s) = ζQ,τ1(s) + ζQ,τ2(s).(11)

This kind of additivity may be called M -additivity, since it is nothing more than
set-theoretic additivity in the lattice M . Note that the M -additivity of ζQ,·(s) is
due to the particular choice of the weight function wt involved in the definition.

The approach of this paper is to use a different and somewhat more subtle kind
of additivity in the dual lattice, which may be called N -additivity. This idea may
be illustrated by considering the function g that sends a rational cone τ in a lattice
M ≡ Zn to the sum

g(τ) =
∑

n∈τ̌∩N
xn,
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10 STAVROS GAROUFALIDIS AND JAMES E. POMMERSHEIM

which defines a rational function. The function g is then additive in the sense that
if an n-dimensional cone τ is subdivided into n-dimensional cones τi, then

g(τ) =
∑
i

g(τi).

This additivity arises in the work of Brion ([Br]), and is also discussed in [P3]
and [BP]. It is important to realize that in this N -additivity formula, cones of
smaller dimension may be completely ignored, whereas these lower-dimensional
cones must be accounted for in the M -additivity, which is inclusion-exclusion. For
the present work, we rely on the N -additivity of the Todd operator, i.e., the function
sending a cone σ to the power series tσ, which is N -additive with a suitable change
of coordinates (see Proposition 2.1). These somewhat deeper ideas prove to be
effective in the study of zeta functions, for they imply, as we show in this paper, that
the zeta values are a priori polynomials in bi and 1/q; moreover, these polynomials
are directly defined in terms of the Todd operator and the quadratic form Q.

1.5. Plan of the proof. In Section 2, we review well-known properties of Todd
power series and prove Theorems 2 and 3. In Section 3, we review the relation
between the zeta functions that we consider and the zeta functions of real quadratic
fields. We give a detailed construction of zeta functions, and prove Theorem 1.
Finally, in Section 4 we review properties of generalized Dedekind sums and prove
Theorem 4.

Acknowledgments. We wish to thank M. Rosen for encouraging conversations dur-
ing the academic year 1995-96. We also thank B. Sturmfels and M. Brion for their
guidance. We especially wish to thank W. Fulton for enlightening and encouraging
conversations since our early years of graduate studies.

2. The Todd power series of a cone

In this section we study properties of the Todd power series tσ associated to a
simplicial cone σ. Section 2.1 provides an introduction and statements of several
previously discovered formulas for the Todd power series. In Section 2.2 we make
these formulas explicit for two-dimensional cones. Section 2.3 contains a proof of the
explicit continued fraction formula for the Todd power series of a two-dimensional
cone. Finally, in Section 2.4 we prove Theorem 2 which links Todd power series
with the problem of evaluating zeta functions and nonpositive integers.

2.1. General properties of the Todd power series. Todd power series were
studied in connection with the Todd class of a simplicial toric variety in [P3].
Independently, they were introduced in [BV2] in the study of the equivariant Todd
class of a simplicial toric variety. In addition, these power series appear in Brion
and Vergne’s formula for counting lattice points in a simple polytope [BV1], which
is an extension of Khovanskii and Pukhlikov’s formula [KP]. In these remarkable
formulas, the power series in question are considered as differential operators which
are applied to the volume of a deformed polytope. The result yields the number
of lattice points in the polytope, or more generally, the sum of any polynomial
function over the lattice points in the polytope. Below (Proposition 2.13), we give
a version of this formula expressing the sum of certain functions over the lattice
points contained in a simplicial cone.
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VALUES OF ZETA FUNCTIONS AND TORIC GEOMETRY 11

The Todd power series considered in the works cited above are also closely related
to the fundamental work of R. Morelli on the Todd class of a toric variety [Mo]. A
precise connection is given in [P3, Section 1.8].

We now state some of the properties of the Todd power series of a simplicial
cone. Our purpose is twofold: we will need these properties in our application to
zeta functions, and we wish to unite the approaches of the works cited above. Here,
we follow the notation of [P3].

Let σ = 〈ρ1, . . . , ρn〉 be an n-dimensional simplicial cone in an n-dimensional
lattice N . The Todd power series tσ of σ is a power series with rational coefficients
in variables x1, . . . , xn corresponding to the rays of σ. These power series, when
evaluated at certain divisor classes, yield the Todd class of any simplicial toric
variety [P3, Theorem 1].

To state the properties of tσ, it will be useful to consider the following variant s

of the power series t defined in [P3] by:

sσ(x1, . . . , xn) =
1

mult(σ)x1 · · ·xn
tσ(x1, . . . , xn),

which is a Laurent series in x1, . . . , xn.
The Todd power series tσ and sσ are characterized by the following proposition

[P3, Theorem 2], which states that s is additive under subdivisions (after suitable co-
ordinate changes), and gives the value of s on nonsingular cones. An n-dimensional
cone is called nonsingular if it is generated by rays forming a basis of the lattice.
It is well known that any cone may be subdivided into nonsingular cones, and that
such a subdivision determines a resolution of singularities of the corresponding toric
variety (cf. [Fu, Section 2.6]).

Proposition 2.1. If Γ is a simplicial subdivision of σ, then

sσ(X) =
∑

γ∈Γ(n)

sγ(γ−1σX),(12)

where the sum is taken over the n-dimensional cones of the subdivision Γ. Here X
denotes the column vector (x1, . . . , xn)t and we have identified each cone (σ and γ)
with the n-by-n matrix whose columns are the coordinates of the rays of that cone.

For nonsingular cones, σ, we have the following expression for sσ:

sσ(x1, . . . , xn) =
n∏
i=1

1
1− e−xi .

Remark 2.2. It follows immediately that for any cone σ, sσ is a rational function
of the exi .

The Laurent series sσ in x1, . . . , xn may also be expressed as an exponential sum
over the lattice points in the cone, in the spirit of the important earlier work of
M. Brion [Br].

Proposition 2.3. Let σ̌ denote the dual cone in the lattice M = Hom(N,Z). We
then have

sσ(x1, . . . , xn) =
∑

m∈σ̌∩M
e−(〈m,ρ1〉x1+···+〈m,ρn〉xn).

The equality is one of rational functions in the exi.
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12 STAVROS GAROUFALIDIS AND JAMES E. POMMERSHEIM

Proof. As noted in [Br], since 〈m, ρi〉 ≥ 0 for m ∈ σ̌ ∩M , the right hand side has
a meaning in the completion of C[y1, . . . , yn] with respect to the ideal (y1, . . . , yn),
where yi stands for e−xi. While it is not obvious, the right hand side is a rational
function of the exi . See [Br, p.654]. The left hand side is a rational function of the
exi by Proposition 2.1. By [Br, p.655] and the second formula of Proposition 2.1,
these two rational functions are equal on nonsingular cones. As any cone can be
subdivided into nonsingular cones, it suffices to verify that the right hand side sat-
isfies the additivity formula of Proposition 2.1. But this follows again from Brion’s
work. See the proposition of [Br, p.657], for example. Intuitively, this additivity can
be seen from the fact that a sum of exponentials over a cone containing a straight
line vanishes formally.

The sσ also have an explicit expression in terms of cyclotomic sums, due to Brion
and Vergne. Following [BV2], we introduce the following notation. Let u1, . . . , un
denote the primitive generators of the dual cone σ̌. Thus we have 〈ui, ρj〉 = 0 if
i 6= j, and 〈ui, ρi〉 ∈ Z, but does not necessarily equal 1. Let Nσ be the subgroup
of N generated by the ρi, i = 1, . . . , n, and let Gσ = N/Nσ. Then Gσ is an abelian
group of order mult(σ), which we denote by q. Define characters ai of Gσ by

ai(g) = e
2πi

〈ui,g〉
〈ui,ρi〉 .

Proposition 2.4. The Laurent series sσ coincides with Brion and Vergne’s for-
mula expressing their Todd differential operator. Namely, we have

sσ(x1, . . . , xn) =
1
q

∑
g∈Gσ

n∏
i=1

1
1− ai(g)e−xi

.

Proof. By inspection, the right hand side is a rational function in the variables yi =
e−xi which takes the value 1 when yi = 0 for all i. Such rational functions embed
into the completion of the ring C[y1, . . . , yn] with respect to the ideal (y1, . . . , yn).
To prove the proposition, it is enough to show that the right hand side and the
right hand side of Proposition 2.3 define the same element of this completion. To
do so, we expand the right hand side, getting:

1
q

∑
k1,...,kn≥0

∑
g∈Gσ

n∏
i=1

[
ai(g)e−xi

]ki
,

which becomes
1
q

∑
k1,...,kn≥0

e−(k1x1+···+knxn)
∑
g∈Gσ

ak1
1 · · · aknn (g).

This last sum over Gσ is either q or 0, depending on whether ak1
1 · · · aknn is the

trivial character of Gσ or not. Comparing the above with the right hand side of
Proposition 2, we see that it suffices to show that ak1

1 · · · aknn is the trivial character
of Gσ if and only if there exists m ∈ σ̌ such that 〈m, ρi〉 = ki for all i. This
straightforward lattice calculation is omitted.

Remark 2.5. The sum in the proposition above appears in the important work of
R. Diaz and S. Robins [DR]. They use such sums to give an explicit formula for
the number of lattice points in a simple polytope. Interestingly, their techniques,
which come from Fourier analysis, are seemingly unrelated to the toric geometry
discussed above.
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2.2. Properties of Todd power series of two-dimensional cones. In this
section, we state properties of the power series tσ for a two-dimensional cone σ.

It is not hard to see that if σ is any two-dimensional cone, then there are relatively
prime integers p, q such that σ is lattice-equivalent to the cone

σ(p,q)
def= 〈(1, 0), (p, q)〉 ⊂ Z2.

Here q is determined up to sign and p is determined modulo q. Thus we may
arrange to have q > 0 and 0 ≤ p < q. This gives a complete classification of two-
dimensional cones up to lattice isomorphism. In discussing Todd power series we
will abbreviate tσ(p,q) by t(p,q).

The explicit cyclotomic formula of Proposition 2.4 may be written as:

Proposition 2.6. The Todd power series of a two-dimensional cone is given by

t(p,q)(x, y) =
∑
ωq=1

xy

(1− ω−pe−x)(1 − ωe−y) .

Proof. With the coordinates above and the notation of Proposition 2.4, we have
u1 = (q,−p), u2 = (0, 1), and Gσ consists of the lattice points (0, k), k = 0, . . . , q−1.
The desired equation now follows directly from Proposition 2.4.

In the two-dimensional case, the additivity formula of Proposition 2.1 can be
expressed as an explicit reciprocity law. This and a periodicity relation for s are
contained in the following theorem.

Proposition 2.7. Let p and q be relatively prime positive integers. Then

s(p,q)(x−
p

q
y,

1
q
y) + s(q,p)(y −

q

p
x,

1
p
x) = s(0,1)(x, y),(13)

s(p+q,q)(x, y) = s(p,q)(x, y).(14)

Proof. The quadrant 〈(1, 0), (0, 1)〉may be subdivided into cones γ1 = 〈(1, 0), (p, q)〉
and γ2 = 〈(0, 1), (p, q)〉. The cone γ1 is of type (p, q), and γ2 is of type (q, p).
Applying the additivity formula (Proposition 2.1) to this subdivision yields the
first equation above.

The second equation follows from the fact that the cones 〈(1, 0), (p, q)〉 and
〈(1, 0), (p+ q, q)〉 are lattice isomorphic.

Let sev (resp. sodd) denote the part of s of even (resp. odd) total degree.

Corollary 2.8. Given a two-dimensional lattice N , the function s : C2(N) →
Q((x, y)) (where Q((x, y)) is the function field of the power series ring Q[[x, y]]) is
uniquely determined by properties (13) and (14) and its initial condition s(0,1)(x, y)
= 1/((1 − e−x)(1 − e−y)). Since equations (13) and (14) are homogeneous with
respect to the degrees of x and y, it follows that sev (resp. sodd) satisfies (13) and
(14) with initial condition sev(0,1) (resp. sodd(0,1)).

Remark 2.9. Corollary 2.8 has a converse. From equations (13) and (14) it follows
that s(0,1) satisfies the following relations:

s(0,1)(x, y) = s(0,1)(x− y, y) + s(0,1)(y − x, x) and s(0,1)(x, y) = s(0,1)(y, x).
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Conversely, one can show that, given any element g(x, y) ∈ Q((x, y)) satisfying

g(x, y) = g(x− y, y) + g(y − x, x) and g(x, y) = g(y, x),

there is a unique function g : C2(N)→ Q((x, y)) so that g(0,1) = g.

2.3. Continued fraction expansion for the Todd power series. In this sec-
tion, we prove Theorem 3, which expresses the coefficients in the Todd power series
of a two-dimensional cone in terms of continued fractions. Before doing so, we
first formulate an equivalent version which is more natural from the point of view
of toric varieties. The continued fraction expansion in this second version of the
formula corresponds directly to a desingularization of the cone.

Given relatively prime integers p, q with p > 0 and 0 ≤ p < q, let ai, γi, δi, Li be
defined in terms of the negative continued fraction expansions:
q

q − p = [a1, . . . , as−1],
γi
δi

def= [a1, . . . , ai−1], Li
def= γix+ (qδi + (p− q)γi)y,

with the convention that (γ0, δ0) = (0,−1) and (γ1, δ1) = (1, 0), so that L0 = −qy
and L1 = x+ (p− q)y.

We then have the following continued fraction expression for the degree d part
(t$)d of the Todd power series of a two-dimensional cone $.

Theorem 5. For $ a cone of type (p, q) as above, and for d = 2n+ 2 ≥ 2 an even
integer, we have:

(t$)2n+2(x, y) = −qxy
s∑
i=1

Pn(Li−1, Li)− λ2n+2qxy

s−1∑
i=1

aiRn(Li−1, Li+1)

+ λ2n+2(xL2n+1
1 − yL2n+1

s−1 ).

If d ≥ 1 is odd, then (t$)d(x, y) = 1
2λd−1q

d−1xy(xd−2 + yd−2).

Proof. It will be convenient to choose coordinates so that $ = 〈(0,−1), (q, q − p)〉
(which is easily seen to be lattice equivalent to the cone 〈(1, 0), (p, q)〉). We now
subdivide $ into nonsingular cones. It is well known that for two-dimensional
cones this can be done in a canonical way, and that the resulting subdivision has
an explicit expression in terms of continued fractions [Fu, Section 2.6]. In our
coordinate system, the rays of this nonsingular subdivision of $ are given by

β0 = (0,−1),
β1 = (1, 0),
β2 = (a1, 1),

. . .

βs = (q, q − p).

Thus we have βi+1 + βi−1 = aiβi, which implies that βi = (γi, δi).
The cone $ is subdivided into cones $i = 〈βi−1, βi〉, i = 1, . . . , s. The N -

additivity formula of Proposition 2.7 implies that:

s$(x, y) =
s∑
i=1

s$i($
−1
i $(x, y)t),
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where again we have identified the 2-dimensional cone $ with the 2-by-2 matrix
whose columns are the primitive generators of $. One easily sees that this becomes

s$(x, y) =
s∑
i=1

s$i(−Li−1, Li).

Rewriting the equation in terms of the t$ yields

t$(x, y) = −qxy
s∑
i=1

t$i(−Li−1, Li)
Li−1Li

.

Since every $i is nonsingular, we have

t$i(X,Y ) = g(X)g(Y )

where g(z) = z/(1 − e−z). Now consider the degree d part of the above. We will
assume d = 2n + 2 is even with n > 0, and leave the other (easier) cases to the
reader. The degree d part of g(Li−1)g(Li) may be written as:

−Li−1LiPn(−Li−1, Li) + λd(Ldi−1 + Ldi ).

Summing the first term above yields the first term in the equation of the theorem.
So it suffices to examine the remaining term:

−λdqxy
s∑
i=1

Ldi−1 + Ldi
Li−1Li

.

Using the relation Li−1 + Li+1 = aiLi, the sum above may be rewritten as
s−1∑
i=1

ai
Ld−1
i−1 + Ld−1

i+1

Li−1 + Li+1
+
(
Ld−1

1

L0
+
Ld−1
s−1

Ls

)
.

Keeping in mind that L0 = −qy and Ls = qx, Theorem 5 follows easily.

Corollary 2.10. For a two-dimensional cone σ = 〈ρ1, ρ2〉 of multiplicity q we
have:

tσ(h1, h2)− 1
2
t〈ρ1〉(qh1)h2 −

1
2
t〈ρ2〉(qh2)h1 = tevσ (h1, h2)− qh1h2

2
(15)

where tevσ is the even total degree part of the power series tσ.

Proof. It follows immediately from (and in fact is equivalent to) the formula for the
odd part of the Todd power series tσ given by Theorem 5.

We now prove Theorem 3. Let σ be a two-dimensional cone of type (p, q) in a
lattice N , and let ai, hi, ki and Xi be as in Theorem 3. The dual cone σ̌ in the dual
lattice M is easily seen to have type (−p, q) and so we may choose coordinates in
M so that σ̌ = 〈(0,−1), (q, p)〉 in Z2. Furthermore, the negative-regular continued
fraction expansion of q/p corresponds naturally to the desingularization of the dual
cone σ̌. Explicitly, the desingularization of σ̌ is given by the subdivision

ρ0 = (0,−1),
ρ1 = (1, 0),
ρ2 = (b1, 1),

. . .

ρr = (q, p).
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One has ρi+1 + ρi−1 = biρi and thus ρi = (hi, ki). Applying Theorem 5 to σ̌
expresses t(−p,q) in terms of the bi. However t(−p,q) is related to t(p,q) via the
relation

t(p,q)(x, y) = t(−p,q)(−x, y) +
qxy

1− e−qy .

In this way, we obtain an expression for t(p,q) in terms of the bi, which concludes
the proof of Theorem 3.

2.4. Zeta function values in terms of Todd power series. In this section, we
prove Theorem 2 which expresses values of the zeta function of a two-dimensional
cone in terms of the Todd power series. Three ingredients are involved in the proof
of this theorem: an asymptotic series formula (Lemma 2.11), a polytope summation
formula (Proposition 2.12) and a cone summation formula (Proposition 2.13). We
begin with the first ingredient:

Lemma 2.11 ([Za4, Proposition 2]). Let φ(s) =
∑
λ>0 aλλ

−s be a Dirichlet series
where {λ} is a sequence of positive real numbers converging to infinity. Let E(t) =∑
λ>0 aλe

−λt be the corresponding exponential series. Assume that E(t) has the
following asymptotic expansion as t→ 0:

E(t) ∼
∞∑

n=−1

cnt
n.(16)

Then it follows that
• φ(s) can be extended to a meromorphic function on C.
• φ(s) has a simple pole at s = 1, and no other poles.
• The values of φ at nonpositive integers are given by: φ(−n) = (−1)nn!cn.

We now present our second ingredient, a polytope summation formula. This
proposition is a variant of the lattice point formula of [BV2]. A polytope of dimen-
sion n is called simple if each of its vertices lies on exactly n facets (n−1-dimensional
faces) of the polytope.

Proposition 2.12. Let N be an n-dimensional lattice, P a simple lattice polytope
in M and Σ its associated fan in N . For every analytic function φ : MR → R, we
have the following asymptotic expansion as t→ 0:∑

a∈P∩M
φ(ta) ∼ tΣ

(
∂

∂h

)
�
∫
P (h)

φ(tu)du(17)

where tΣ is the Todd power series of [BV2, Definition 10].

Proof. First of all, the meaning of the right hand side is as follows: we consider the
degree k Taylor expansion φ = φk + Rk of φ, where φk is a polynomial in MR of
degree k and Rk is the remainder satisfying lima→0 |a|kRk(a) = 0. It follows that∫
P (h) φk(tu)du is a polynomial in t and h of degree k (with respect to t) and that∫
P (h)Rk(tu)du = o(tk) at t = 0 (with the notation that f(t) = o(tk) if and only if

limt→0 f(t)t−k = 0). Thus,

tΣ

(
∂

∂h

)
�
∫
P (h)

φ(tu)du = tΣ

(
∂

∂h

)
�
∫
P (h)

φk(tu)du + o(tk).
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On the other hand,∑
a∈P∩M

φ(ta) =
∑

a∈P∩M
φk(ta) +

∑
a∈P∩M

Rk(ta)

=
∑

a∈P∩M
φk(ta) + o(tk).

Brion and Vergne [BV2, Theorem 11] prove that for every polynomial function
(such as φk) on MR we have:

∑
a∈P∩M

φk(ta) = tΣ

(
∂

∂h

)
�
∫
P (h)

φk(tu)du,

which concludes the proof.

We call a function φ : Rn → R rapidly decreasing if it is analytic and, for every
constant coefficients differential operator D and every subset I of [n] = {1, . . . , n},
the restriction D(φ)|I obtained by setting xi = 0 for i 6∈ I is in L1(RI+). Examples
of rapidly decreasing functions can be obtained by setting φ = P exp(Q) where P
is a polynomial on Rn and Q : Rn → R is totally positive, i.e., its restriction to RI+
takes positive values for every subset I of [n].

Proposition 2.13. Let N be an n-dimensional lattice. For every σ ∈ Cn(N) and
every rapidly decreasing analytic function φ : MR → R, we have the following
asymptotic expansion as t→ 0:

∑
a∈σ̌∩M

φ(ta) ∼ tσ

(
∂

∂h

)
�
∫
σ̌(h)

φ(tu)du.(18)

Proof. First of all, the right hand side of the above equation has the following
meaning: consider the decomposition tσ =

∑
k tσ,k of the power series tσ, where

tσ,k is a homogeneous polynomial of degree k. A change of variables v = tu implies
that

tσ,k

(
∂

∂h

)
�
∫
σ̌(h)

φ(tu)du = tσ,k

(
∂

∂h

)
�
∫
σ̌(th)

φ(v)dv/tn

= tk−ntσ,k

(
∂

∂h

)
�
∫
σ̌(h)

φ(v)dv

is a multiple of tk−n, thus the right hand side is defined to be the Laurent power
series in t given by

∞∑
k=0

tk−ntσ,k

(
∂

∂h

)
�
∫
σ̌(h)

φ(v)dv.

For the proof of the proposition, truncate in some way the cone σ̌ in M to obtain
a simple convex polytope P , with associated fan Σ. Since

⋃
r>0 rP = σ̌, using the
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convergence properties of φ, we obtain as r→∞:∑
a∈σ̌∩M

φ(ta) = lim
r

∑
a∈rP∩M

φ(ta)

∼ lim
r

tΣ

(
∂

∂h

)
�
∫

(rP )(h)

φ(tu)du

= lim
r

tΣ

(
∂

∂h

)
�
∫

(rtP )(th)

φ(v)dv/tn

= lim
r

∑
k

tΣ,kt
k−n

(
∂

∂h

)
�
∫

(rtP )(h)

φ(v)dv

=
∑
k

lim
r

tΣ,kt
k−n

(
∂

∂h

)
�
∫

(rtP )(h)

φ(v)dv

=
∑
k

tσ,kt
k−n

(
∂

∂h

)
�
∫
P (h)

φ(v)dv,

which concludes the proof.

In the case of a two-dimensional lattice N and a rapidly decreasing function
φ : MR → R, using the weight function wt of equation (2) and inclusion-exclusion,
we obtain the following

Corollary 2.14. For a two-dimensional cone σ = 〈ρ1, ρ2〉 of multiplicity q in N ,
we have the asymptotic expansion as t→ 0:∑

a∈σ̌∩M
wt(σ̌, a)φ(ta) ∼

{
t
ev
σ

(
∂

∂h1
,
∂

∂h2

)
− q

2
∂2

∂h1∂h2

}
�
∫
σ̌(h)

φ(tu)du,(19)

where the right hand side lies in the formal power series ring t−2R[[t2]].

Proof of Theorem 2. Recall that τ is a cone in M , σ is its dual in N and Q is
homogeneous quadratic, totally positive on τ ; thus e−Q is rapidly decreasing on
MR. Corollary 2.14 implies that the generating function

ZQ,τ (t) =
∑

a∈τ∩M
wt(τ, a)e−tQ(a) =

∑
a∈τ∩M

wt(τ, a)e−Q(t1/2a)(20)

satisfies the hypothesis of Lemma 2.11, which in turn yields Theorem 2.

Remark 2.15. Notice that the above proof of Theorem 2 used crucially the fact that
B1 = − 1

2 and the definition of the weight function wt. If we had weighted the sum
defining the zeta function in any other way, the resulting variation of Theorem 2
would not hold.

3. Proof of Theorem 1

3.1. Some lemmas. The proof of Theorem 1 will use some lemmas concerning the
admissible triples (M,Q, τ) constructed given a sequence b = (b0, . . . , br−1) which
we fix for the rest of this section.

The recursion relation (3) implies that

Ak = −pkA−1 + qkA0 where
pk
qk

= [b0, . . . , bk−1].(21)
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Let p, p′, q be defined by
q

p
= [b1, . . . , br−1] and p′ = numerator[b1, . . . , br−2],(22)

with the understanding that q = 1, p = 0, p′ = 0 if r = 1 and p′ = 1 if r = 2. It is
easy to see that q, p, p′ are (for fixed r) polynomials in the bi and that pp′ = 1 mod q.

Lemma 3.1. The cone τ = 〈A0, Ar〉 in M is of type (−p, q) and the dual cone σ
in N is of type (p, q) where 0 ≤ p < q as in equation (22) above.

Proof. The cone 〈Ar, A0〉 is canonically subdivided into nonsingular cones 〈Ai+1, Ai〉
(for i = 0, . . . , r−1), and using equation (3), it follows that τ is of type (c1, q) where
0 ≤ c1 < q and q

q−c1 = [b1, . . . , br−1]. Therefore the dual cone σ in N is of type
(p, q) where p = q − c1. Thus (p, q) satisfies equation (22).

Lemma 3.2. Let l,m ∈ Z with l 6= m. Then the coefficients of x2, xy and y2 of
the quadratic form Q(xAl + yAm) are given (for fixed r) by polynomials in bi with
integer coefficients. Moreover,

Q(xA−1 + yA1) = (qp′b0 + 1− pp′)x2 + (qb0θ + 2(pp′ − 1))xy
+(qpb0 + 1− pp′)y2,

Q(xAr + yA0) = q(x2 + θxy + y2)

where θ = b0q − p− p′.

Proof. The first part follows immediately from equation (21) and from the fact that
Q(xA−1 + yA0) = Cx2 −Bxy+Ay2, where A,B,C are polynomials in the bi with
integer coefficients; see Section 1.1. In fact, the A,B,C can be calculated (using
their definition) in terms of the bi as follows:

A = q, B = −b0q + p− p′, and C = qr−1 = b0p
′ + (1− pp′)/q.

This, together with a change of variables formula from {A−1, A0} to {Ar, A0} and
to {A−1, A1} given by equation (21), implies the other assertions of the Lemma.

3.2. Proof of Theorem 1.

Proof. The main idea is to use Theorem 2 which calculates the zeta values in terms
of the Todd operator of σ, and Theorem 3 which expresses the Todd operator in
terms of the bi. The expression that we obtain for the zeta values differ from the
one of equation (5) by an error term, which vanishes identically, as one can show
by an explicit calculation.

Now, for the details, we begin by calculating the integral
∫
τ(h1,h2) e

−Q(u)du.
Using the parametrization R2 → MR given by (u1, u2) → u1Ar + u2A0, it follows
that the preimage of τ(x, y) in R2 is given by {(u1, u2)|u1 ≥ −x/q, u2 ≥ −y/q}.
Thus we have:∫

τ(x,y)

e−Q(u)du = q

∫ ∞
u1=−x/q

∫ ∞
u2=−y/q

e−Q(u1Ar+u2A0)du2du1.

Differentiating, we get(
∂

∂x

)(
∂

∂y

)
�
∫
τ(x,y)

e−Q(u)du =
1
q
e−Q(−xAr/q−yA0/q) =

1
q
e−Q(xAr/q+yA0/q).
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Using the notation of Theorem 3 and the elementary identity(
α
∂

∂x̄
+ β

∂

∂ȳ

)i (
γ
∂

∂x̄
+ δ

∂

∂ȳ

)j ∣∣∣x̄=αa+γb
ȳ=βa+δb

f(x̄, ȳ)

=
(
∂

∂x

)i(
∂

∂y

)j ∣∣∣x=a
y=b

f(αx+ γy, βx+ δy)

(and temporarily abbreviating ∂
∂x by x), we obtain that(

qxyXa
l X

b
m

)
�
∫
τ(x,y)

e−Q(u)du = Xa
l X

b
m � e−Q(xAr/q+yA0/q)

=
(
∂

∂x

)a(
∂

∂y

)b
� e−Q(xAl+yAm),

as well as

(xX2n+1
1 + yX2n+1

r−1 ) �
∫
τ(x,y)

e−Q(u)du

=
1

qn+1

∫ ∞
0

((
∂

∂x
+ p

∂

∂y

)2n+1

+
(
∂

∂x
+ p′

∂

∂y

)2n+1
)∣∣∣∣

x=0

e−(x2+θxy+y2)dy.

The above, together with Theorem 3, implies that:

ζQ,τ (−n) = (−1)nn!

{
r−1∑
i=0

Pn

(
∂

∂x
,
∂

∂y

)
� e−Q(xAi−1+yAi)

+λ2n+2

r−1∑
i=0

biRn

(
∂

∂x
,
∂

∂y

)
� e−Q(xAi−1+yAi+1) + E2n+2(b)

}
where

E2n+2(b) = λ2n+2

{
− b0Rn

(
∂

∂x
,
∂

∂y

)
e−Q(xA−1+yA1)

− 1
qn+1

∫ ∞
0

((
∂

∂x
+ p

∂

∂y

)2n+1

+
(
∂

∂x
+ p′

∂

∂y

)2n+1
) ∣∣∣∣

x=0

× e−(x2+θxy+y2)dx
}
.

Fixing r, the length of the sequence (b0, . . . , br−1), Lemmas 3.2 and 3.3 (below)
can be used to express E2n+2(b) as a polynomial in 1/q, p, p′, b0. An explicit but
lengthy calculation implies that E2n+2(b) = 0 for any b. Since Q is homogeneous
quadratic and Pn homogeneous of degree 2n, it follows that

Pn

(
∂

∂x
,
∂

∂y

)
� e−Q(xAi−1+yAi) =

(−1)n

n!
Pn

(
∂

∂x
,
∂

∂y

)
(Q(xAi−1 + yAi)n)

which concludes the proof of Theorem 1. The value of ζQ,τ (0) follows easily using
λ1 = 1/2, λ2 = 1/12.
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Lemma 3.3 ([Za4]). For every i, j ≥ 0 with i+ j even, we have:(
∂

∂x

)i(
∂

∂y

)j
� e−(ax2+bxy+cy2)

= i!j!(−1)(i+j)/2ai/2cj/2
min{i,j}∑

i2=0;i2≡imod2

(a−1/2bc−1/2)i2

((i− i2)/2)!i2!((j − i2)/2)!
.

Furthermore, for every n ≥ 1 we have:∫ ∞
y=0

(
∂

∂x

)2n−1

� e−(ax2+bxy+cy2)dy

= − (2n− 1)!
2cn

n−1∑
r=0

(−1)r
(n− 1− r)!

r!(2n− 1− 2r)!
arb2n−1−2rcr.

4. Dedekind sums in terms of Todd power series

In this section we give a proof of Theorem 4. To do this we will use Proposition
2.3, which can be used to express the coefficients fi,j as a sum of rational numbers,
which turn out to equal products of certain values of the Benoulli polynomials.
(Note, in contrast, that Proposition 2.4 expresses this same number in terms of
roots of unity instead of rational numbers.)

Let p and q be as in the statement of Theorem 4, and let σ be the cone
〈(1, 0), (p, q)〉 in Z2. We let ρ1 = (1, 0) and ρ2 = (p, q) denote the generators
of this cone. The left hand side of Theorem 4, fi,j(p, q), equals the coefficient of
xiyj in the power series tσ(x, y). We now compute this power series using Propo-
sition 2.3. This proposition contains an expansion for the power series sσ, which is
equivalent to the following expansion of tσ:

tσ(x, y) = qxy
∑

m∈σ̌∩M
e−(〈m,ρ1〉x+〈m,ρ2〉y).

Every point of σ̌ ∩M can be written uniquely as a nonnegative integral combi-
nation of the generators u1 = (q,−p) and u2 = (0, 1) of σ̌, plus a lattice point in
the semiopen parallelepiped

P = {cu1 + du2|c, d ∈ [0, 1)}.

Using 〈u1, ρ1〉 = 〈u2, ρ2〉 = q, it follows that

tσ(x, y) = qxy
1

1− e−qx
1

1− e−qy
∑

m∈P∩M
e−(〈m,ρ1〉x+〈m,ρ2〉y).

One finds also that

P =
{

(k, {pk
q
} − pk

q
) : k = 0, . . . , q − 1

}
,

where {x} ∈ [0, 1) denotes the fractional part of x. (Note this is slightly different
from 〈x〉 ∈ (0, 1], which appears in the definition of si,j : by definition, 〈0〉 = 1,
while {0} = 0.) One then finds that

tσ(x, y) = qxy
1

1− e−qx
1

1− e−qy
q−1∑
k=0

e−q(
k
q x+{kpq }y).
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We may then compute fi,j(p, q) as the coefficient of xiyj in the above expression.
It is convenient to replace x and y with −x and −y, which introduces a factor of
(−1)i+j . We obtain

fi,j(p, q) = (−1)i+jqi+j−1

q−1∑
k=0

coeff
(
xi;

xe
k
q x

1− ex

)
coeff

(
yi;

ye{
kp
q }y

1− ey

)
.

It is then clear that we can write the above sum in terms of values of the Bernoulli
polynomials, as follows:

fi,j(p, q) = (−1)i+jqi+j−1

q−1∑
k=0

Beri

(
k

q

)
Berj

(
{kp
q
}
)
.

Using the identity

Berj(λ) = (−1)jBerj(1 − λ),

we may rewrite our expression as

fi,j(p, q) = (−1)iqi+j−1

q−1∑
k=0

Beri

(
k

q

)
Berj

(
〈−kp

q
〉
)
.

The sum on the right hand side is easily seen to equal the sum defining si,j(p, q),
except for a possible discrepancy in the k = 0 term. It follows easily from the
definitions that the k = 0 terms actually match unless i = j = 1, or i = 1 and j
is even, or j = 1 and i is even. In these cases, we need the correction terms which
appear in the statement of the Theorem.
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(1988) no.4 653–663. MR 90d:52020

[BV1] M. Brion and M. Vergne, An equivariant Riemann-Roch theorem for simplicial toric
varieties, J. Reine Angew. Math 482 (1997) 67–92. MR 98a:14067

[BV2] , Lattice points in simple polytopes, Journal of AMS 10 (1997) 371–392.
MR 98a:11132

[CS] S. Cappell, J. Shaneson, Genera of algebraic varieties and counting lattice points, Bull.
Amer. Math. Soc. 30 (1994) 62–69. MR 94f:14018

[CN1] P. Cassou-Noguès, Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta
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