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The Ptolemy field of 3–manifold representations
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The Ptolemy coordinates for boundary-unipotent SL.n;C/–representations of a 3–
manifold group were introduced by Garoufalidis, Thurston and Zickert [10] inspired
by the A–coordinates on higher Teichmüller space due to Fock and Goncharov. We
define the Ptolemy field of a (generic) PSL.2;C/-representation and prove that it
coincides with the trace field of the representation. This gives an efficient algorithm
to compute the trace field of a cusped hyperbolic manifold.

57N10; 57M27

1 Introduction

1.1 The Ptolemy coordinates

The Ptolemy coordinates for boundary-unipotent representations of a 3–manifold group
in SL.n;C/ were introduced by Garoufalidis, Thurston and Zickert [10], inspired by
the A–coordinates on higher Teichmüller space due to Fock and Goncharov [7]. In
this paper we will focus primarily on representations in SL.2;C/ and PSL.2;C/.

Given a topological ideal triangulation T of an oriented compact 3–manifold M , a
Ptolemy assignment (for SL.2;C/) is an assignment of a non-zero complex number
(called a Ptolemy coordinate) to each 1–cell of T such that, for each simplex, the
Ptolemy coordinates assigned to the edges "ij satisfy the Ptolemy relation

(1-1) c03c12C c01c23 D c02c13:

The set of Ptolemy assignments is thus an affine variety P2.T /, which is cut out by
homogeneous quadratic polynomials.

We define the Ptolemy field of a boundary-unipotent representation and show that
it is isomorphic to the trace field. This gives rise to an efficient algorithm for exact
computation of the trace field of a hyperbolic manifold.
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1.2 Decorated SL.2 ;C/–representations

The precise relationship between Ptolemy assignments and representations is given by

(1-2) fPoints in P2.T /g
1–1
 ! fNatural .SL.2;C/;P /–cocycles on M g

1–1
 ! fGenerically decorated .SL.2;C/;P /–representationsg:

The concepts are briefly described below, and the correspondences are illustrated in the
right image in Figure 3 and in Figure 2. We refer to Section 2 for a summary of our
notation. The bijections of (1-2) first appeared in Zickert [14] (in a slightly different
form), and were generalized to SL.n;C/–representations by Garoufalidis, Thurston
and Zickert [10].

� Natural cocycle Labeling of the edges of each truncated simplex by elements
in SL.2;C/ satisfying the cocycle condition (the product around each face is
1). The long edges are counter-diagonal, ie of the form�

0 �x�1

x 0

�
and the short edges are nontrivial elements in P . Identified edges are labeled by
the same group element.

� Decorated representation A decoration of a boundary-parabolic representa-
tion � is an assignment of a coset gP to each vertex of beM which is equivariant
with respect to � . A decoration is generic if for each edge joining two vertices,
the two P –cosets gP , hP are distinct as B –cosets. This condition is equivalent
to det.ge1; he1/¤ 0. Two decorations are considered equal if they differ by left
multiplication by a group element g .
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˛
ˇ

Figure 1: Left: Ptolemy assignment; the Ptolemy relation (1-1) holds. Right:
natural cocycle; ˛ is counter-diagonal, ˇ 2 P .

By ignoring the decoration, (1-2) yields a map

(1-3) RW P2.T /! f.SL.2;C/;P /–representationsg=Conj:
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Figure 2: From Ptolemy assignments to natural cocycles

The representation corresponding to a Ptolemy assignment is given explicitly in terms
of the natural cocycle.

Remark 1.1 Note that a natural cocycle canonically determines a representation of
the edge path groupoid of the triangulation of M by truncated simplices.

Remark 1.2 A decoration of � determines a developing map beM !H3 by straight-
ening the simplices. We shall not need this here. For a discussion of the relationship
between decorations and developing maps, see Zickert [14]. For general theory of
developing maps, see Dunfield [4].

Remark 1.3 Every boundary-parabolic representation has a decoration, but a repre-
sentation may have only non-generic decorations. The map R is thus not surjective
in general, and the image depends on the triangulation. However, if the triangulation
is sufficiently fine, R is surjective (see Garoufalidis, Thurston and Zickert [10]). The
preimage of a representation depends on the image of the peripheral subgroups (see
Proposition 1.10).

g0P

g1P

g2P

g3P

giP i

gj P j

cij D det.gie1;gj e1/

Figure 3: Left: decoration; equivariant assignment of cosets. Right: from
decorations to Ptolemy assignments.
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1.3 Obstruction classes and PSL.2 ;C/–representations

There is a subtle distinction between representations in SL.2;C/ versus PSL.2;C/.
The geometric representation of a hyperbolic manifold always lifts to an SL.2;C/–
representation, but for a one-cusped manifold, no lift is boundary-parabolic (any lift
will take a longitude to an element of trace �2; see Calegari [2]).

The obstruction to lifting a boundary-parabolic PSL.2;C/–representation to a boundary-
parabolic SL.2;C/–representation is a class in H 2.cM IZ=2Z/. For each such class,
there is a Ptolemy variety P�

2
.T /, which maps to the set of PSL.2;C/–representations

with obstruction class � . More precisely, P�
2
.T / is defined for each 2–cocycle

� 2Z2.cM IZ=2Z/, and up to canonical isomorphism only depends on the cohomology
class of � . The Ptolemy variety for the trivial cocycle equals P2.T /. The analogue
of (1-2) is

(1-4) fPoints in P�
2 .T /g

1–1
 !

�
Lifted natural .SL.2;C/;P /–cocycles

with obstruction cocycle �

�
��

�
Generically decorated .SL.2;C/;P /–

representations with obstruction class �

�
:

A lifted natural cocycle is defined as above, except that the product along a face is
now ˙I , where the sign is determined by � . The right map is no longer a 1–1

correspondence; the preimage of each decorated representation is the choice of lifts,
ie parametrized by a cocycle in Z1.cM IZ=2Z/. We refer to [10] for details. As
in (1-3), ignoring the decoration yields a map

(1-5) RW P�
2 .T /!

�
.PSL.2;C/;P /–representations

with obstruction class �

�ı
Conj;

which is explicitly given in terms of the natural cocycle.

Theorem 1.4 (Garoufalidis, Thurston and Zickert [10]) If M is hyperbolic, and all
edges of T are essential, the geometric representation is in the image of R.

Remark 1.5 If T has a non-essential edge, all Ptolemy varieties will be empty.
Hence, if P�

2
.T / is non-empty for some � , and if M is hyperbolic, the geometric

representation is detected by the Ptolemy variety of the geometric obstruction class.

1.4 Our results

We view the Ptolemy varieties P�
2
.T / as subsets of an ambient space Ce , with

coordinates indexed by the 1–cells of T . Let T D .C�/v , with the coordinates indexed
by the boundary components of M .
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Definition 1.6 The diagonal action is the action of T on P�
2
.T /, where an element

.x1; : : : ;xv/ 2 T acts on a Ptolemy assignment by replacing the Ptolemy coordinate c

of an edge e with xixj c , where xi and xj are the coordinates corresponding to the
ends of e . Let

(1-6) P�
2 .T /red D P�

2 .T /=T:

Definition 1.7 A boundary-parabolic PSL.2;C/–representation is generic if it has a
generic decoration. It is boundary-nontrivial if each peripheral subgroup has nontriv-
ial image.

Remark 1.8 Note that the notion of genericity is with respect to the triangulation.
By Theorem 1.4, if all edges of T are essential (and T has no interior vertices),
the geometric representation of a cusped hyperbolic manifold is always generic and
boundary-nontrivial.

Remark 1.9 Note that if M has spherical boundary components (eg if T is a trian-
gulation of a closed manifold), no representation is boundary-nontrivial.

Proposition 1.10 The map R in (1-5) factors through P�
2
.T /red , ie we have

(1-7) RW P�
2 .T /red!

�
.PSL.2;C/;P /–representations

with obstruction class �

�ı
Conj:

The image is the set of generic representations, and the preimage of a generic, boundary-
nontrivial representation is finite and parametrized by H 1.cM IZ=2Z/.

Remark 1.11 For the corresponding map from P2.T /red to .SL.2;C/;P /–represen-
tations, the preimage of a generic boundary-nontrivial representation is a single point.

Remark 1.12 The preimage of a representation which is not boundary-nontrivial
is never finite. In fact, its dimension is the number of boundary components that
are collapsed. In particular, it follows that if c 2 P�

2
.T /red is in a 0–dimensional

component (which is not contained in a higher-dimensional component), the image is
boundary-nontrivial.

By geometric invariant theory, P�
2
.T /red is a variety whose coordinate ring is the ring

of invariants OT of the coordinate ring O of P�
2
.T /.

Definition 1.13 Let c 2 P�
2
.T /. The Ptolemy field of c is the field

(1-8) kc DQ
�
fp.c1; : : : ; ce/ j p 2OT

g
�
:

The Ptolemy field of a generic boundary-nontrivial representation is the Ptolemy field
of any preimage under (1-7).
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Clearly, the Ptolemy field only depends on the image in P�
2
.T /red . Our main result is

the following.

Theorem 1.14 The Ptolemy field of a boundary-nontrivial, generic, boundary-para-
bolic representation � in PSL.2;C/ or SL.2;C/ is equal to its trace field.

Remark 1.15 For a cusped hyperbolic 3–manifold the shape field is in general smaller
than the trace field. The shape field equals the invariant trace field (see eg Maclachlan
and Reid [12]).

For computations of the Ptolemy field, we need an explicit description of the ring of
invariants OT , or, equivalently, the reduced Ptolemy variety P�

2
.T /red .

Proposition 1.16 There exist 1–cells "1; : : : ; "v of T such that the reduced Ptolemy
variety P�

2
.T /red is naturally isomorphic to the subvariety of P�

2
.T / obtained by

intersecting with the affine hyperplane c"1
D � � � D c"v

D 1.

Corollary 1.17 Let c 2 P�
2
.T /red . Under an isomorphism as in Proposition 1.16, the

Ptolemy field of c is the field generated by the Ptolemy coordinates.

Remark 1.18 A concrete method for selecting 1–cells as in Proposition 1.16 is
described in Section 4.3.

Analogues of our results for higher-rank Ptolemy varieties are discussed in Section 6.
The analogue of Proposition 1.10 holds for representations that are boundary-non-
degenerate (see Definition 6.10), and the analogue of Proposition 1.16 leads to a simple
computation of the Ptolemy field.

Conjecture 1.19 The Ptolemy field of a boundary-non-degenerate, generic, boundary-
unipotent representation � in SL.n;C/ or PSL.n;C/ is equal to its trace field.

Remark 1.20 The computation of reduced Ptolemy varieties is remarkably efficient
using Magma [1]. For all but a few census manifolds, primary decompositions of the
(reduced) Ptolemy varieties P�

2
.T / can be computed in a fraction of a second on a

standard laptop. A database can be found at CURVE [5]; see also Falbel, Koseleff and
Rouillier [6]. All of our tools have been incorporated into SnapPy [3] by the second
author and the Ptolemy fields can be obtained through the command below:

>>> from snappy import Manifold
>>> p=Manifold("m019").ptolemy_variety(2,’all’)
>>> p.retrieve_solutions().number_field()
... [[x^4 - 2*x^2 - 3*x - 1], [x^4 + x - 1]]
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The number fields are grouped by obstruction class. In this example, we see that the
Ptolemy variety for the nontrivial obstruction class has a component with number field
x4Cx� 1, which is the trace field of m019. The above code retrieves a precomputed
decomposition of the Ptolemy variety from CURVE [5]. In Sage or SnapPy with Magma
installed, you can use p.compute_solutions().number_field() to compute the
decomposition.

Acknowledgements Stavros Garoufalidis and Christian Zickert were supported in
part by NSF grants number DMS-14-06419 and DMS-13-09088, respectively.

2 Notation

2.1 Triangulations

Let M be a compact oriented 3–manifold with (possibly empty) boundary. We refer
to the boundary components as cusps (although they may not be tori). Let zM be the
universal cover of M and let cM and beM , respectively, be the spaces obtained from
M and zM by collapsing each boundary component to a point.

Definition 2.1 A (concrete) triangulation of M is an identification of cM with a
space obtained from a collection of simplices by gluing together pairs of faces by affine
homeomorphisms. For each simplex � of T we fix an identification of � with a
standard simplex.

Remark 2.2 By drilling out disjoint balls if necessary (this does not change the
fundamental group), we may assume that the triangulation of M is ideal, ie that
each 0–cell corresponds to a boundary component of M . For example, we regard a
triangulation of a closed manifold as an ideal triangulation of a manifold with boundary
a union of spheres.

Definition 2.3 A triangulation is oriented if the identifications with standard simplices
are orientation-preserving.

Remark 2.4 The triangulations in the SnapPy censuses OrientableCuspedCensus,
LinkExteriors and HTLinkExteriors [3] are oriented. Unless otherwise specified
we shall assume that our triangulations are oriented.

A triangulation gives rise to a triangulation of M by truncated simplices, and to a
triangulation of beM .

Algebraic & Geometric Topology, Volume 15 (2015)
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2.2 Miscellaneous
� The number of vertices, edges, faces and simplices, of a triangulation T are

denoted by v , e , f and s , respectively.
� The standard basis vectors in Zk are denoted by e1; : : : ; ek .
� The (oriented) edge of simplex k from vertex i to j is denoted by "ij ;k .
� The matrix groups

˚�
1 x
0 1

�	
and

˚� a x
0 a�1

�	
are denoted by P and B , respectively.

The higher-rank analogue of P is denoted by N .
� A representation is boundary-parabolic if it takes each peripheral subgroup to a

conjugate of P . Such is also called a .G;P /–representation (G D SL.2;C/ or
PSL.2;C/). In the higher-rank case, such a representation is called boundary-
unipotent.

� A triangulation is ordered if "ij ;k � "i0j 0;k0 implies that i < j () i 0 < j 0 .

3 The Ptolemy varieties

We define the Ptolemy variety for nD 2 following Garoufalidis, Thurston and Zick-
ert [10] (see also Garoufalidis, Goerner and Zickert [8]).

3.1 The SL.2 ;C/–Ptolemy variety

Assign to each oriented edge "ij ;k of �k 2 T a Ptolemy coordinate cij ;k . Consider
the affine algebraic set A defined by the Ptolemy relations

(3-1) c03;kc12;k C c01;kc23;k D c02;kc13;k ; k D 1; 2; : : : ; t;

the identification relations

(3-2) cij ;k D ci0j 0;k0 when "ij ;k � "i0j 0;k0 ;

and the edge orientation relations cij ;k D�cji;k . By only considering i < j , we shall
always eliminate the edge orientation relations.

Definition 3.1 The Ptolemy variety P2.T / is the Zariski open subset of A consisting
of points with non-zero Ptolemy coordinates.

Remark 3.2 One can concretely obtain P2.T / from A by adding a dummy variable x

and a dummy relation x �
Q

cij ;k D 1.

Remark 3.3 We can eliminate the identification relations (3-2) by selecting a repre-
sentative for each edge cycle. This gives an embedding of the Ptolemy variety in an
ambient space Ce , where it is cut out by s Ptolemy relations, one for each simplex.
Note that when all boundary components are tori, s D e .
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3.1.1 The figure-8 knot Consider the ideal triangulation of the figure-8 knot com-
plement shown in Figure 4. The Ptolemy variety P2.T / is given by

(3-3)

c03;0c12;0C c01;0c23;0 D c02;0c13;0;

c03;1c12;1C c01;1c23;1 D c02;1c13;1;

c02;0 D c12;0 D c13;0 D c01;1 D c03;1 D c23;1;

c01;0 D c03;0 D c23;0 D c02;1 D c12;1 D c13;1:

By selecting representatives "23;0 and "13;0 for the two edge cycles, P2.T / embeds
in C2 , where it is given by

(3-4) c23;0c13;0C c2
23;0 D c2

13;0; c13;0c23;0C c2
13;0 D c2

23;0:

It follows that P2.T / is empty, which is no surprise, since the only boundary-parabolic
SL.2;C/–representations of the figure-8 knot are abelian. To detect the geometric
representation, we need to consider obstruction classes (see Section 3.2 below).

3.1.2 The figure-8 knot sister Consider the ideal triangulation of the figure-8 knot
sister shown in Figure 5. The Ptolemy variety P2.T / is given by

(3-5)

c03;0c12;0C c01;0c23;0 D c02;0c13;0;

c03;1c12;1C c01;1c23;1 D c02;1c13;1;

c01;0 D�c03;0 D c23;0 D�c01;1 D c03;1 D�c23;1;

c02;0 D�c12;0 D c13;0 D�c02;1 D c12;1 D�c13;1:

Selecting representatives "23;0 and "13;0 for the two edge cycles, P2.T / 2 C2 is
given by

(3-6) c23;0c13;0C c2
23;0 D c2

13;0; c23;0c13;0C c2
23;0 D c2

13;0:

This is equivalent to

(3-7) x2
�x� 1D 0; x D

c13;0

c23;0

:

Remark 3.4 Note that, for ordered triangulations, the identification relations (3-2) do
not involve minus signs. The triangulation in Figure 4 is not oriented.

3.2 Obstruction classes

Each class in H 2.cM IZ=2Z/ can be represented by a Z=2Z–valued 2–cocycle on cM ,
ie an assignment of a sign to each face of T .

Algebraic & Geometric Topology, Volume 15 (2015)



380 Stavros Garoufalidis, Matthias Goerner and Christian K Zickert

0

1

2

3

0

1

2

3

c02;0

c01;0 c03;0 c12;0 c23;0

c13;0

c02;1

c01;1 c03;1 c12;1 c23;1

c13;1

Figure 4: Ordered triangulation of the figure-8 knot. The signs indicate the
nontrivial obstruction class.
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Figure 5: Oriented triangulation of the figure-8 knot sister. The signs indicate
the nontrivial obstruction class.

Definition 3.5 Let � be a Z=2Z–valued 2–cocycle on cM . The Ptolemy variety
for � is defined as in Definition 3.1, but with the Ptolemy relation replaced by

(3-8) �0;k�3;kc03;kc12;k C �0;k�1;kc01;kc23;k D �0;k�2;kc02;kc13;k ;

where �i;k is the sign of the face of �k opposite vertex i.

Remark 3.6 Multiplying � by a coboundary ı.�/ corresponds to multiplying the
Ptolemy coordinate of a one-cell e by �.e/ (see [10] for details). Hence, up to canonical
isomorphism, the Ptolemy variety P�

2
.T / only depends on the cohomology class of � .

The Ptolemy variety P2.T / is the Ptolemy variety for the trivial obstruction class.

3.2.1 Examples In both examples above, H 2.cM IZ=2Z/DZ=2Z, and the nontriv-
ial obstruction class � is indicated in Figures 4 and 5.

For the figure-8 knot, P�
2
.T / is given by

(3-9) �c23;0c13;0C c2
23;0 D�c2

13;0; �c13;0c23;0C c2
13;0 D�c2

23;0;
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which is equivalent to

(3-10) x2
�xC 1D 0; x D

c13;0

c23;0

:

The corresponding representations are the geometric representation and its conjugate.

For the figure-8 knot sister, the Ptolemy variety becomes

(3-11) �c23;0c13;0� c2
23;0 D c2

13;0; �c23;0c13;0� c2
23;0 D c2

13;0;

which is equivalent to

(3-12) x2
CxC 1D 0; x D

c13;0

c23;0

:

4 The diagonal action

Fix an ordering of the 1–cells of T and of the cusps of M . As mentioned in Remark 3.3,
the Ptolemy variety can be regarded as a subset of the ambient space Ce .

Let T D .C�/v be a torus whose coordinates are indexed by the cusps of M . There
is a natural action of T on P�

2
.T / defined as follows: for x D .x1; : : : ;xv/ 2 T and

c D .c1; : : : ce/ 2 P�
2
.T /, define a Ptolemy assignment cx by

(4-1) .xc/i D xj xkci ;

where j and k (possibly j D k ) are the cusps joined by the i th edge cycle. The action
is thus determined entirely by the 1–skeleton of cM .

Remark 4.1 There is a more intrinsic definition of this action in terms of decorations:
Each vertex of beM determines a cusp of M , and if D is a decoration taking a vertex w
to gP , the decoration xD takes w to

g

�
xi 0

0 x�1
i

�
P;

where i is the cusp determined by w . The fact that the two definitions agree under
the one-to-one correspondence (1-4) is an immediate consequence of the relationship
given in the right image in Figure 3.
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4.1 The reduced Ptolemy varieties

Definition 4.2 The reduced Ptolemy variety P�
2
.T /red is the quotient P�

2
.T /=T .

Let O be the coordinate ring of P�
2
.T /, and let OT be the ring of invariants. By

geometric invariant theory, the reduced Ptolemy variety is a variety whose coordinate
ring is isomorphic to OT .

For i D 0; 1, let Ci denote the free abelian group generated by the unoriented i –cells
of cM , and consider the maps (first studied by Neumann [13])

(4-2) ˛W C0! C1; ˛�W C1! C0;

where ˛ takes a 0–cell to the sum of its incident 1–cells, and ˛� takes a 1–cell to the
sum of its endpoints. The maps ˛ and ˛� are dual under the canonical identifications
Ci Š C �i . Also, ˛ is injective, and ˛� has cokernel of order 2 (see [13]).

The following is an elementary consequence of the definition of the diagonal action.

Lemma 4.3 The diagonal action P�
2
.T / and the induced action on the coordinate

ring O of P�
2
.T / are given, respectively, by

(4-3) .xc/i D

� vY
jD1

x
˛ij

j

�
ci ; x.cw/D

vY
jD1

x
˛�.w/j
j cw;

where cw is the monomial c
w1

1
� � � c

we
e 2O , w 2 Ze .

Corollary 4.4 Suppose that w1; : : : ; we�v form a basis for Ker˛� . The monomials
cw1 ; : : : ; cwe�v generate OT .

4.1.1 Examples Suppose the 1–skeleton of cM looks like the left image in Figure 6
(this is in fact the 1–skeleton of the census triangulation of the Whitehead link comple-
ment). We have

(4-4) ˛� D

�
2 1 1 0

0 1 1 2

�
and the action of .x1;x2/ on a Ptolemy assignment c is given in the right image in
Figure 6.

The kernel of ˛� is generated by .0;�2; 0; 1/t and .�1; 1; 1; 0/t , so we have

(4-5) OT
D hc�2

2 c4; c
�1
1 c2c3i:

Also note that, in each of the examples in Section 3, x 2OT .

For computations we need a more explicit description of the reduced Ptolemy variety.
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c2

c1 c4

c3

1 2

x1x2c2

x2
1
c1 x2

2
c4

x1x2c3

1 2

Figure 6: Left: Ptolemy assignment. Right: the diagonal action of .x1;x2/ .

Definition 4.5 Let T W Zn!Zm be a homomorphism. We say that T is basic if there
exists a subset J of fe1; : : : ; eng such that T maps Span.J / isomorphically onto the
image of T . Elements of such a set J are called basic generators for T .

We identify C1 and C0 with Ze and Zv , respectively.

Proposition 4.6 The map ˛�W C1! C0 is basic.

The proof will be relegated to Section 4.3, where we shall also give explicit basic
generators.

Proposition 4.7 Let "i1
; : : : ; "iv

be basic generators for ˛� . The ring of invariants OT

is isomorphic to CŒc1; : : : ; ce � modulo the Ptolemy relations and the relations ci1
D

� � � D civ
D 1, ie the reduced Ptolemy variety is isomorphic to the subset of P�

2
.T /

where the Ptolemy coordinates of the basic generators are 1.

Proof Let w1; : : : ; we�v be a basis for Ker˛� . Hence, w1; : : : ; we�v and "i1
; : : : ; "iv

generate C1 . We can thus uniquely express each ci as a monomial in the wj and
the cij . The result now follows from Corollary 4.4.

Remark 4.8 This is how the Ptolemy varieties are computed in SnapPy.

4.2 Shapes and gluing equations

One can assign to each simplex a shape

(4-6) z D �3�2

c03c12

c02c13

2C n f0; 1g;

and one can show (see [10; 8]) that these satisfy Thurston’s gluing equations. For
the geometric representation of a cusped hyperbolic manifold, the shape field (field
generated by the shapes) is equal to the invariant trace field, which is in general smaller
than the trace field; see Maclachlan and Reid [12].

Remark 4.9 Note that the shapes are elements in OT .
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4.3 Proof that ˛� is basic

Since ˛� has cokernel of order 2, it is enough to prove that there is a set of columns
of ˛� forming a matrix with determinant ˙2. Recall that the columns of ˛� correspond
to 1–cells of T . We shall thus consider graphs in the 1–skeleton of cM . We recall
some basic results from graph theory. All graphs are assumed to be connected.

Definition 4.10 The incidence matrix of a graph G with vertices v1; : : : ; vk and edges
"1; : : : ; "l is the k � l matrix IG whose .i; j / entry is 1 if vi is incident to "j , and 0

otherwise.

Lemma 4.11 The rank of IG is k � 1. If G is a tree, IG is a k � .k � 1/ matrix, and
removing any row gives a matrix with determinant ˙1.

4.3.1 Case 1: a single cusp In this case the result is trivial. The matrix representation
for ˛� is .2 � � � 2/.

4.3.2 Case 2: multiple cusps, self-edges Suppose cM has a self-edge "1 (an edge
joining a cusp to itself), and consider the graph G consisting of the union of "1 with a
maximal tree T (see left image in Figure 7). The columns of ˛� corresponding to the
edges of G then form the matrix

(4-7) B D

 
2

0
IT

!
which, by Lemma 4.11, has determinant ˙2.

4.3.3 Case 3: multiple cusps, no self-edges Pick a face with edges "1; "2; "3 , and
add edges to form a graph G such that G n "1 is a maximal tree (see right image in
Figure 7). The corresponding columns form the matrix

(4-8) C D IG D

0BB@
1

0 IT

1

0

1CCA
By Lemma 4.11, IG is invertible and has determinant ˙2. This concludes the proof
that ˛� is basic.

Note that

(4-9) det.B/D det
�

2 1

1

�
D 2; det.C /D det

0@1 1

0 1 1

1 1

1AD 2;
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ie only the edges and vertices shown in Figure 7 contribute to the determinant.

"1

"2

1 2

"2

"3

"1

1

2 3

Figure 7: Left: tree G with 1–cycle; G n"1 is a maximal tree. Right: tree G

with 3–cycle; G n "1 is a maximal tree.

Remark 4.12 Trees with 1– or 3–cycles are also used in [9, Section 4.6] to study
index structures.

5 The Ptolemy field and the trace field

5.1 Explicit description of the Ptolemy field

By Proposition 4.7 any c 2 P�
2
.T / is equivalent to a Ptolemy assignment c0 whose

coordinates for a set of basic generators "i1
; : : : ; "iv

is 1. In particular, it follows that
the Ptolemy field (see Definition 1.13) of c 2 P�

2
.T / is given by

(5-1) kc D kc0 DQ.fc0"1
; : : : ; c0"e

g/:

Definition 5.1 Let �W �1.M /! PSL.2;C/ be a representation. The trace field of �
is the field generated by the traces of elements in the image. We denote it k� .

Our main result is the following. We defer the proof to Section 5.4.

Theorem 5.2 Let c 2 P�
2
.T /red . If the corresponding generic representation � of

�1.M / in PSL.2;C/ is boundary-nontrivial, the Ptolemy field of c equals the trace
field of � .

Remark 5.3 Note that if c 2P�
2
.T /red is in a degree-0 component, the Ptolemy field

is a number field.
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5.2 The setup of the proof

Since the natural cocycle is given in terms of the Ptolemy coordinates, it follows that �
is defined over the Ptolemy field. Hence, the trace field is a subfield of the Ptolemy field.

Fix a maximal tree G with 1– or 3–cycle as in Figure 7. As explained in Section 4.3,
the edges of G are basic generators of ˛�. We may thus assume without loss of
generality that the Ptolemy coordinates ci of the edges "i of G are 1. By (5-1), it is
thus enough to show that the Ptolemy coordinates of the remaining 1–cells are in the
trace field.

Let 
 denote the (lifted) natural cocycle of c . Then 
 assigns to each edge path p incM a matrix 
 .p/ 2 SL.2;C/. Let

(5-2) ˛.a/D

�
0 �a�1

a 0

�
; ˇ.b/D

�
1 b

0 1

�
As shown in Figure 2, 
 takes long and short edges to elements of the form ˛.a/

and ˇ.b/, respectively, where a and b are given in terms of the Ptolemy coordinates.

Since � is boundary-nontrivial there exists, for each cusp i of M , a peripheral loop Mi

with 
 .Mi/ 2 P nontrivial. We shall here refer to such loops as nontrivial. Fix such
nontrivial loops Mi , once and for all, and let mi ¤ 0 be such that 
 .Mi/D ˇ.mi/.
For any edge path p with endpoint on a cusp i we can alter Mi by a conjugation if
necessary (this does not change mi ) so that p is composable with Mi .

5.3 Proof for one cusp

We first prove Theorem 5.2 in the case where there is only one cusp. In this case, all
edges are self-edges, and T consists of a single edge "1 .

Lemma 5.4 For any self-edge ", we have m1c" 2 k� .

Proof Let X1 be a peripheral path such that X1" is a loop (see the left image in
Figure 8), and let x1 be such that 
 .X1/D ˇ.x1/. We have

(5-3) Tr.
 .X1"//D Tr.ˇ.x1/˛.c"//D Tr
��

1 x1

0 1

��
0 �c�1

"

c" 0

��
D x1c" 2 k�:

Applying the same computation to the loop X1M1" yields

(5-4) Tr.ˇ.x1/ˇ.m1/˛.c"//D .x1Cm1/c" 2 k�;

and the result follows.
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Since the Ptolemy coordinate of "1 is 1, it follows that m1 2 k� . Since all edges
are self-edges, we have c" 2 k� for all 1–cells ". This concludes the proof in the
one-cusped case.

ˇ.m1/X1

ˇ.x1/

"
˛.c"/

M1

˛.c"/

˛.�c"/ ˇ.�mj /ˇ.mi/

Figure 8: Left: self-edge. Right: edge between cusps.

5.4 The general case

The general case follows the same strategy, but is more complicated since it involves
edge paths between multiple cusps.

Lemma 5.5 If " is a self-edge from cusp i to itself, mic" 2 k� .

Proof The proof is identical to that of Lemma 5.4.

Lemma 5.6 If two (distinct) cusps i and j are joined by an edge " in G , we have

(5-5) mimj 2 k�:

Proof Consider the loop "j Mj"j Mi shown in the right image in Figure 8. A simple
computation shows that

(5-6) Tr.˛.c"/ˇ.�mj /˛.�c"/ˇ.mi//D 2Cmimj c2
" :

Since " 2 T , c" D 1, and the result follows.

More generally, the following holds.

Lemma 5.7 We have mi 2 k� for all cusps i.

Proof If G is a tree with 1–cycle, then c1 D 1, so Lemma 5.5 implies that m1 2 k� .
Inductively applying Lemma 5.6 for the edge "j connecting cusp i D j � 1 and j
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implies the result. If G is a tree with 3–cycle, the Ptolemy coordinates c1; c2 and c3

are 1, so the edges of the face are labeled by ˛.1/ and ˇ.�1/ only (see Figure 2).
Inserting the peripheral loops Mi as in Figure 9, we obtain

(5-7) Tr
�
ˇ.�1/ˇ.m1/˛.1/ˇ.�1/ˇ.m2/˛.1/ˇ.�1/ˇ.m3/˛.1/

�
2 k�:

By an elementary computation, the trace equals

(5-8) m1m2m3�m1m2�m2m3�m3m1C 2 2 k�:

By Lemma 5.6, mimj 2k� , so m12k� . The result now follows as above by inductively
applying Lemma 5.6.

Let " be an arbitrary 1–cell. If " is a self-edge, Lemmas 5.5 and 5.7 imply that c" 2 k� .
Otherwise, there exists an edge path p in the maximal tree G n "1 such that p � " is
a loop in cM . By relabeling the cusps and edges if necessary, we may assume that
p D "iC1 � "iC2 � � � � � "j , where "k goes from cusp k � 1 to cusp k . Pick peripheral
paths Xk on cusp k connecting the ends (in M , not cM ) of edges "k and "kC1

(see Figure 10). We obtain a loop that can be composed with arbitrary powers of the
peripheral loops Mi ; : : : ;Mj . We thus obtain the following traces (where bk 2 Z):

(5-9) Tr
�
ˇ.xi C bimi/˛.ciC1/ˇ.xiC1C biC1miC1/˛.ciC2/ � � �

�ˇ.xj C bj mj /˛.c"/
�
2 k�:

˛.1/

˛.1/

˛.1/

ˇ.�1/

ˇ.�1/

ˇ.�1/

ˇ.m1/

ˇ.m2/

ˇ.m3/

X3

X1

X2
"1

"2

"3

M3

M1

M2

Figure 9: 3–cycle case

It will be convenient to regard Tr
�
ˇ.xi/˛.ciC1/ˇ.xiC1/˛.ciC2/ � � �ˇ.xj /˛.c"/

�
as a

function of variables xi (disregarding that the xi are fixed expressions of the Ptolemy
coordinates).
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ˇ.mi/ ˇ.miC1/ ˇ.mj /

Mi
MiC1 Mj

ˇ.xi/ ˇ.xiC1/ ˇ.xj /

Xi XiC1 Xj"iC1 "iC2 "j

˛.ciC1/ ˛.ciC2/ ˛.cj /

˛.c"/

"

Cusp j

Figure 10: Arbitrary edge "

Definition 5.8 Given a function f .x1; : : : ;xr /, let �if be the function given by

(5-10) �if .h/D f .x1; : : : ;xi C h; : : : ;xr /�f .x1; : : : ;xi ; : : : ;xr /:

The following is elementary.

Lemma 5.9 If f .x1; : : : ;xr / is a polynomial where the exponents of all variables xi

are 0 or 1, and where the highest-degree term is ax1x2 � � �xr , we have

(5-11) �r

�
� � ��2

�
�1f .h1/

�
.h2/ � � �

�
D ah1h2 � � � hr ;

and the left-hand side is thus independent of the xi .

If, for example, f .x1;x2/D x1x2 , we have

(5-12)
�1f .h1/D .x1C h1/x2�x1x2 D h1x2;

�2

�
�1f .h1/

�
.h2/D h1.x2C h2/� h1x2 D h1h2:

Lemma 5.10 Let x1; : : : ;xr be variables and y1; : : : ;yr be constants. The expression

(5-13) Tr
�
ˇ.x1/˛.y1/ � � �ˇ.xr /˛.yr /

�
is a polynomial in the xi whose unique highest-degree term is

Qr
iD1 yi

Qr
iD1 xi .

Moreover, for each monomial term, the exponent of each variable is either 1 or 0.

Proof This follows by induction on r .
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Applying Lemmas 5.10 and 5.9 to the function

(5-14) f .xi ; : : : ;xj /D Tr
�
ˇ.xi/˛.ciC1/ˇ.xiC1/˛.ciC2/ � � �ˇ.xj /˛.c"/

�
;

we obtain

(5-15) .mimiC1 � � �mj ciciC1 � � � cj /c" 2 k�:

Since all mi are in k� by Lemma 5.7, and all ci are 1 (since "i 2T ), it follows that c"
is in k� . This concludes the proof.

5.5 Proof of Proposition 1.10

The fact that R factors follows from the fact that the diagonal action only changes
the decoration (by diagonal elements; see Remark 4.1), not the representation. Since
the preimage of the right map in (1-4) is parametrized by choices of lifts, ie elements
in Z1.cM IZ=2Z/, all that remains is to show that the only freedom in the choice of
decoration of a boundary-nontrivial representation is the diagonal action. This follows
from results in [10]: a decoration is an equivariant map

(5-16) DW beM .0/
! PSL.2;C/=P;

and is thus determined by its image of lifts ze1; : : : ; zev of the cusps of M . The freedom
in the choice of D.zei/ is the choice of a coset gP satisfying g�.Stab.zei//g

�1 � P ,
where Stab.zei/��1.M / is the stabilizer of zei , ie a peripheral subgroup corresponding
to cusp i. Hence, if �.Stab.zei// is nontrivial, the freedom is right-multiplication by a
diagonal matrix (if it is trivial, any coset works). Hence, if � is boundary-nontrivial,
the only freedom in choosing a decoration is the diagonal action.

6 Ptolemy varieties for n> 2

Many of our results generalize in a straightforward way to the higher-rank Ptolemy
varieties Pn.T /. We recall the definition of these below, and refer to [10; 8] for details.

We identify all simplices of T with a standard simplex

(6-1) �3
n D

˚
.x0;x1;x2;x3/ 2R4

j 0� xi � n; x0Cx1Cx2Cx3 D n
	

and regard cM as a quotient of a disjoint union
`s

kD1�
3
n;k

, with a copy �3
n;k

of �3
n

for each simplex k of T . Define

�3
n.Z/D�

3
n\Z4;

and define P�3
n.Z/ to be �3

n.Z/ with the four vertex points removed. A point in M in
the image of

`s
kD1
P�3

n;k
.Z/ is called an integral point of M .
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6.1 Definition of the Ptolemy variety

Assign to each .t; k/ 2�3
n;k.Z/ a Ptolemy coordinate ct;k . For each simplex k , we

have j�n�2.Z/j D
�
nC1

3

�
Ptolemy relations

(6-2) c˛C1001;kc˛C0110;k C c˛C1100;kc˛C0011;k

D c˛C1010;kc˛C0101;k ; ˛ 2�n�2.Z/;

as well as identification relations

(6-3) ct;k D˙ct 0;k0 when .t; k/� .t 0; k 0/:

Remark 6.1 The signs in (6-3) depend in a nontrivial way on the face pairings (see [8]).
For ordered triangulations the signs are always positive. As in Remark 3.3 we can
eliminate the identification relations by selecting a representative of each integral point
of M .

Definition 6.2 The Ptolemy variety Pn.T / is the subset of the affine algebraic set
defined by the Ptolemy and identification relations, consisting of the points where all
Ptolemy coordinates are non-zero.

For general n we denote the group of upper-triangular matrices with 1 on the diagonal
by N (instead of P ). As in (1-2) we have

(6-4) fPoints in Pn.T /g
1–1
 ! fNatural .SL.n;C/;N /–cocycles on M g

1–1
 ! fGenerically decorated .SL.n;C/;N /–representationsg:

6.2 The diagonal action

Let D be the group of diagonal matrices in SL.n;C/. We identify D with the torus
.C�/n�1 via the identification

(6-5) .C�/n�1
!D; .a1; : : : ; an�1/ 7!diag.a1; a2=a1; : : : ; an�1=an�2; 1=an�1/:

As in Remark 4.1, we have a diagonal action of the torus T DDv on the set of decorated
representations, where .D1; : : : ;Dv/ 2 T acts by replacing the coset gN assigned to
a vertex w by gDiN , where i is the cusp corresponding to w . The corresponding
action on Pn.T / is described in Lemma 6.4 below.

Let C n
1

be the group generated by the integral points of M , and let C n
0
D C0˝Zn�1.

In Garoufalidis and Zickert [11] we defined maps

(6-6) ˛W C n
0 ! C n

1 ; ˛�W C n
1 ! C n

0 ;
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generalizing (4-2). The map ˛� takes an integral point .t; k/ to
P

xi ˝ eti
, where xi

is the cusp determined by vertex i of simplex k . We shall not need the definition of ˛ .

Lemma 6.3 [11] The map ˛� is surjective with cokernel Z=nZ.

By selecting an ordering of the natural generators of C n
0

and C n
1

, we regard ˛ and ˛�

as matrices. The following is an elementary consequence of (6-4).

Lemma 6.4 The diagonal action of T D .C�/v.n�1/ on Pn.T / and the corresponding
action on the coordinate ring O of Pn.T / are given, respectively, by

(6-7) .xc/t D

�v.n�1/Y
jD1

x
˛tj

j

�
ct ; x.cw/D

v.n�1/Y
jD1

x
˛�.w/j
j cw:

Corollary 6.5 The ring of invariants OT is generated by cw1 ; : : : ; cwr , where r D

rank.C n
1
/� rank.C n

0
/ and w1; : : : ; wr are a basis for Ker˛� .

Definition 6.6 The Ptolemy field of a Ptolemy assignment c 2 Pn.T / is defined as

(6-8) kc DQ.cw1 ; : : : ; cwr /;

where w1; : : : ; wr are (integral) generators of Ker˛� .

The following is proved in Section 6.4.

Proposition 6.7 The map ˛�W C n
1
! C n

0
is basic.

Corollary 6.8 Let p1; : : : ;p.n�1/v be integral points that are basic generators of C n
1

.
The ring OT is generated by the Ptolemy relations together with the relations cp1

D

� � � D cp.n�1/v
D 1. Equivalently, the reduced Ptolemy variety is isomorphic to the

subvariety of Pn.T / consisting of Ptolemy assignments with cpi
D 1.

Proof This follows the proof of Proposition 4.7 word by word.

Remark 6.9 This is how the Ptolemy varieties and Ptolemy fields at [5] are computed.
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6.3 Representations

Definition 6.10 Let � be an .SL.n;C/;N /–representation, and let Ii denote the
image of the peripheral subgroup corresponding to cusp i. We say that � is boundary-
non-degenerate if each Ii has an element whose Jordan canonical form has a single
(maximal) Jordan block.

Proposition 6.11 The map

(6-9) RW Pn.T /red! f.SL.n;C/;N /–representationsg=Conj

maps onto the generic representations, and the preimage of a generic boundary-non-
degenerate representation consists of a single point.

Proof The proof is identical to the proof in Section 5.5 for nD 2.

Conjecture 6.12 The Ptolemy field of a generic, boundary-non-degenerate represen-
tation is equal to its trace field.

Remark 6.13 Much of the theory also works for PSL.n;C/–representations by
means of obstruction classes in H 2.cM IZ=nZ/. When n is even, obstruction classes in
H 2.cM IZ=2Z/ were defined in [10] for representations in pSL.n;C/DSL.n;C/=˙I .
For PSL.n;C/–representations, both the Ptolemy field and the trace field are only
defined up to nth roots of unity. The generalized obstruction classes are used on the
website [5] and will be explained in a forthcoming publication.

6.4 Proof that ˛� is basic

By Lemma 6.3, we need to prove the existence of integral points such that the corre-
sponding columns of ˛� form a matrix of determinant ˙n. As in Section 4.3 we split
the proof into three cases.

6.4.1 Basic matrix algebra Let Ik be the identity matrix, Rk the sparse matrix
whose first row contains entirely of 1’s, Sk the sparse matrix whose lower diagonal
consists of 1’s (S1 D 0), and Tk the sparse matrix whose lower right entry is 1. The
index k denotes that the matrices are k � k . For k D 3, we have

(6-10) R3 D

0@1 1 1
1A ; S3 D

0@1

1

1A ; T3 D

0@
1

1A :
Lemma 6.14 We have

(6-11) det.Ik CRk �Sk/D kC 1; det.Ik CRk CTk �Sk/D 2kC 1:
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Proof This follows, for example, by expanding the determinant using the last column.
The matrices Ik CRk �Sk are shown below for k D 1; 2; 3 and 4:

(6-12)
�
2
�
;

�
2 1

�1 1

�
;

0@ 2 1 1

�1 1

�1 1

1A ;
0BB@

2 1 1 1

�1 1

�1 1

�1 1

1CCA :
For Ik CRk CTk �Sk , the only difference is that the lower right entry is now 2.

Lemma 6.15 Let A, B , C , D be k�k , k� l , l�k , and l� l matrices, respectively,
and let M D

�
A B
C D

�
. If D is invertible, we have

(6-13) det.M /D det.D/ det.A�BD�1C /:

Proof This follows from the identity�
A B

C D

�
D

�
I B

0 D

��
A�BD�1C 0

D�1C I

�
:

6.4.2 One cusp Pick any face of T and consider the integral points shown in
Figure 11. Let An be the .n � 1/ � .n � 1/ matrix formed by the corresponding
columns of ˛� . The columns are ordered as shown in the figures, and the rows, ie
the generators x˝ ei of C n

0
, are ordered in the natural way (increasing in i ). The

following is an immediate consequence of the definition of ˛� .

x x

x

1
2

k
2k

kC 2
kC 1

x x

x

1
2

k � 1
2k � 1

kC 1
k

Figure 11: Left: basic generators, nD 2kC 1 . Right: basic generators, nD 2k .

Lemma 6.16 The matrix An is given by

(6-14) A2kC1 D

�
Ik CRk CTk Ik

Sk Ik

�
; A2k D

0@2 0 � � � 0 1 0

0 Ik�1CRk�1 Ik�1

0 Sk�1 Ik�1

1A :
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Corollary 6.17 The determinant of An is ˙n.

Proof This follows from Lemma 6.15 and Lemma 6.14.

6.4.3 Multiple cusps, self-edges Pick a face with a self-edge, and extend to a max-
imal tree with 1–cycle G as in the left image in Figure 7. Let T D G n "1 , and
let Bn denote the matrix formed by the columns of ˛� corresponding to the face points
shown in the left image in Figure 12 together with the edge points on T . We order the
generators xi ˝ ej of C n

0
as

(6-15) x1˝ e1; : : : ;x1˝ en�1; x2˝ en�1; : : : ;x2˝ e1;

with a similar scheme for the other vertices. The following is an immediate consequence
of the definition of ˛� .

Lemma 6.18 The matrix Bn is given by

(6-16) Bn D

0@ In�1CRn�1

Sn�1 IT ˝Zn�1

0

1A
where IT ˝Zn�1 is the matrix obtained from IT by replacing each non-zero entry
by In�1 .

Corollary 6.19 The determinant of Bn is ˙n.

Proof This follows from

(6-17) det.Bn/D˙ det
�

In�1CRn�1 In�1

Sn�1 In�1

�
D˙n;

where the second equality follows from Lemmas 6.15 and 6.14.

6.4.4 Multiple cusps, no self-edge Pick a maximal tree with 3–cycle G , and let Cn

be the matrix formed by the columns of ˛� corresponding to the face points in the
right image in Figure 12 together with the edge points on T DG n "1 .

Lemma 6.20 The matrix Cn is given by

(6-18) Cn D

0BB@
In�1

Sn�1 IT ˝Zn�1

Rn�1

0

1CCA :
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x1 x2

x1

1

2

n� 2

n� 1 n

nC 1

2n� 3

2n� 2

"1 "2

x1

x2

x3

n� 1

n� 2

2

1

2n� 12n3n� 23n� 3

n

nC 1

2n� 3

2n� 2

"1"2

"3

Figure 12: Left: basic generators, tree with 1–cycle. Right: basic generators,
tree with 3–cycle.

Corollary 6.21 The determinant of Cn is ˙n.

Proof We have

(6-19) det.Cn/D˙ det.M /; M D

0@ In�1 In�1

Sn�1 In�1 In�1

Rn�1 In�1

1A :
Using Lemma 6.15 with

AD

�
In�1 In�1

Sn�1 In�1

�
; B D

�
0

In�1

�
; C D

�
Rn�1 0

�
; D D In�1;

we have

(6-20) det.M /D det
�

In�1 In�1

Sn�1�Rn�1 In�1

�
D det.In�1CRn�1�Sn�1/D nI

the second equation follows from Lemma 6.15 and the third from Lemma 6.14.

This concludes the proof that ˛� is basic.
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