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ABSTRACT

Using the notion of surgery on objects called Y-graphs and claspers by Goussarov
and Habiro, one can define a theory of finite type invariants of closed 3-manifolds. The
paper discusses upper bounds for the number of invariants, and focuses on two surprises
that arise: One surprise is that the upper bounds depend on a bit more than a choice
of generators for H1. A complementary surprise a curious brane relation (in two flavors,
open and closed) which shows that the upper bounds are in a certain sense independent
of the choice of generators of H1.
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1. Introduction

1.1. Motivation

It is well-known that starting from a move (often described in terms of surgery) on a

set of knotted objects (such as knots, links, braids, tangles, 3-manifolds, graphs), one

can define a theory of finite type invariants. The question of how many invariants

are there in any degree gets divided into two separate questions: one that provides

upper bounds for the number of invariants, and one that provides lower bounds.

Traditionally, upper bounds are obtained by providing a set of topological relations

among the moves, whereas lower bounds are obtained by constructing (by quite

different means) invariants.

In the paper we consider the theory of finite type invariants based on the move

of surgery along objects called Y-graphs or claspers by Goussarov and Habiro (see

[Gu, Ha] and also [GGP]) and study upper bounds for the number of invariants.

Following the notation of [GGP], let us briefly recall that given a Y-graph G in a

manifold M , then MG denote the result of surgery on M along G. Consider the set

S(M) of (isomorphism classes of) 3-manifolds obtained by surgery along a disjoint

union of Y-graphs in M , and the free abelian group FY(M) on S(M). There is a

decreasing filtration on FY(M), where FY
n (M) is the subgroup generated by

[M,G] =
∑

G′⊂{G1,...,Gn}
(−1)|G

′|MG′
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for all disjoint unions G = G1 ∪ . . . Gn of Y-graphs in M , where |G′| denotes the

cardinality of the set G′.

Dually, and perhaps more naturally, this filtration allows us to call a function

λ on S(M) with values in an abelian group a finite type invariant of type n iff

its extension on FY(M) satisfies λ(FY
n+1(M)) = 0. Thus, the question of how

many finite type invariants of type n are there translates into a question about the

structure of the (graded quotient) abelian groups GY
n (M)

def
= FY

n (M)/FY
n+1(M).

For the case of M = S3 (or any other integral homology 3-sphere), it is well-known

that the topological calculus of Y-graphs or claspers developed indepedently by

Goussarov and Habiro, implies the existence of upper bounds of GY(M) in terms

of an abelian group A(φ) generated by (abstract) trivalent graphs, modulo the well

known antisymmetry AS and IHX relations, see for instance [GGP, Sec. 4]. The

case of arbitrary 3-manifolds M (needed for instance in [GL, Theorems 5–7]) seems

to be missing from the literature, even though the main tools are the same as in the

case of M = S3. There are, however, two surprises in extending the above upper

bound to all closed 3-manifolds, which are the main point of this paper: one is

that the upper bound for GY(M) is given in terms of a finitely generated (in each

degree) abelian group Ao(b) defined below, where b is a H1-spanning link i.e., an

oriented framed link in M that generates (possibly with redundances) H1(M,Z),

see Theorem 1. In other words, the generators of Ao(b) depend on just a bit more

than a choice of generators for H1(M,Z), they depend on a choice of 1-cycles. The

other surprise is the existence of a new relation in Ao(b), the open brane (OBR) and

the closed brane (BR) relation, which is also given in terms of a choice of embedded

2-cycles in M .

Of course the choice of b is not unique, and the choice of cycles in the OBR

relation is not unique, however the OBR and BR relations imply that any two such

choices b and b′ lead to rather canonical isomorphisms between Ao(b) and Ao(b′)

as well as commutative diagrams, see Theorem 1.

If one is willing to work with rational coefficients, then the above upper bound

Ao(b) can be identified with an invariant A-group A(H(M)) that depends only

on the cohomology ring H∗(M,Q) of M , see Corollary 1.4 (although the map

A(H(M))→ GY(M) still depends on a choice of a H1-spanning link b).

As a final comment before the details, we should mention that for finite type

invariants of integral homology 3-spheres, or for Q-valued finite type invariants of

rational homology spheres the above mentioned choices of 1-cycles and 2-cycles are

invisible, which partly explains why they were not discovered so far.

1.2. Statement of the results

Throughout, by graph we mean we mean one with (symmetric) univalent and triva-

lent vertices, together with a choice of cyclic order on each trivalent vertex. Note

that graphs that contain struts, i.e., an interval with two univalent vertices and no

trivalent ones, will not be allowed here. Univalent vertices of graphs will often be
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called legs or leaves. Given a set X, an X-colored graph is a graph G together with

a function c : Legs(G) → X. This assignment can be extended linearly to include

graphs whose univalent vertices are assigned a nonzero formal linear combination

of elements of X. Below we will discuss L-colored graphs (really, π0(L)-colored

graphs), where L is some auxiliary link.

Let B(X) denote the abelian group spanned by X-colored graphs modulo the

well-known AS, IHX and LOOP relations shown in Fig. 1. B(X) is graded, by

declaring the degree of a graph to be the number of its trivalent vertices.

Notice that the group B(X) is closely related to a group that appears when

one studies finite type invariants of X-component links in S3, with some notable

differences: one is that we do not allow struts, another is that we do not grade by

half the number of vertices, and the third is that we allow graphs with no legs.

Notice also that the AS relation implies that 2LOOP = 0 ∈ B(X), which can

be ignored when inverting 2.

+ += - = 0 = 0

Fig. 1. The AS, IHX (all trivalent vertices oriented counterclockwise), and LOOP relations. In
the LOOP relation, the appearing loop is an edge and not a leaf of the graph.

Given a H1-spanning link b, we now define two important relations on B(b). Let

· : H2(M,Z)⊗H1(M,∂M,Z)→ Z be the intersection pairing.

Definition 1.1. Fix a closed surface Σ in M . Let (G, ∗) be b-colored graph, which

contains a special leg colored by the special symbol ∗ (disjoint from the alphabet

b). Let

〈G,Σ〉 :=
∑
l

[Σ] · [cl]Gl ∈ B(b)

where the summation is over all legs of G except ∗ and where Gl is the result of

gluing the ∗-leg of G to a cl-colored leg of G, as shown in the following example〈
y

x

x

*
,Σ

〉
= [Σ] · [x]

y

x
+ [Σ] · [x]

yx
+ [Σ] · [y]

x

x
.

By convention, the summation over the empty set equals to zero. The BR (closed

brane) relationa is the subgroup of B(b) generated by 〈G,Σ〉 = 0 for all surfaces

Σ, or really, only a generating set for H2(M,Z) and all graphs (G, ∗) as above. Let

A(b) = B(b)/(BR).

aWhich does not seem to be related in any meaningful way to the wonderful (mem)branes of
string theory.
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Definition 1.2. Fix a b-colored graph that contains a distinguished leg ∗ colored

by a nullhomologous label c0 which bounds a surface Σ0 in M . Let

〈G,Σ0〉 := G+
∑
l

[Σ0] · [cl]Gl ∈ B(b)

where the summation is over all legs of G except ∗ and where Gl is the result of

gluing the ∗-leg of G to a cl-colored leg of G. The OBR (open brane) relation is the

subgroup of B(b) generated by 〈G,Σ0〉 = 0 for all graphs G as above and all surfaces

Σ0. Note that the OBR subgroup of B(b) includes the BR subgroup if we assume

that one of the components of b is the boundary of an embedded disk disjoint from

the rest of the components of b. Let Ao(b) = A(b)/(OBR).

Theorem 1.

(i) For every H1-spanning link b in a manifold M , there is a group homomorphism

WM,b : Ao(b)→ GY(M)

which is onto, once tensored with Z[1/2].

(ii) For every two H1-spanning links b and b′ in M , there are isomorphisms

WM,b,b′ : Ao(b)→ Ao(b′) over Z[1/2], such that:

WM,b = WM,b′ ◦WM,b,b′ . (1)

1.3. The size of Ao(b)

It is natural to ask how big is the (finitely generated in each degree) abelian group

Ao(b) which bounds from above GY(M).

Corollary 1.3.

(i) If H1(M,Z) is torsion-free and b is a basis of H1, then

A(b) ∼= Ao(b).

(ii) If b is H1,Q-basis and b′ is H1-spanning then

A(b) ∼=Q Ao(b′) .

(iii) If H1(M,∂M,Q) = 0, then for every H1-spanning b we have

B(b) ∼= A(b) .

(iv) In particular, for M a rational homology 3-sphere, we have that

Ao(b) ∼=Q A(b) ∼=Q A(φ) .

(v) For M a homology-cylinder (i.e., a manifold with the same integer homology as

that of Σ× I for a surface Σ with one boundary component) and a H1,Q-basis

b, we have that

B(b) ∼=Q A(b) ∼=Q Ao(b) .
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If we are willing to work with rational coefficients, then one can define in

an invariant way a group of graphs, that depends only on the cohomology ring

H∗(M,Q) as follows: A(H(M)) is generated by graphs colored by nonzero elements

of H1(M,Q), modulo the AS, IHX, LOOP and BR relations.

Corollary 1.4. For every manifold M , there is a map

A(H(M))→ GY(M) ,

onto over Q.

For manifolds M with b1(M) = 0, i.e., for rational homology 3-spheres, we show

a promised universal property of the LMO invariant restricted to the set of rational

homology spheres [LMO], or of its cousin, the Aarhus integral [A]:

Theorem 2. The LMO invariant is the universal Q-valued finite type invariant of

rational homology spheres. In particular, for M a rational homology 3-sphere and

b H1-spanning, we have Ao(b) ∼=Q A(b) ∼=Q A(φ) ∼=Q GY(M).

With regards to the size of A(φ), it is well-known that Lie algebras and their

representation theory provides lower bounds for the abelian groups A(φ). In the

case of manifoldsM with positive betti number, we do not know yet of lower bounds

for Ao(b). The little we know at present is the following:

Corollary 1.5. Let b be a H1-spanning link in a closed manifold M and G be a

graph colored by a sublink b′ of b. Assume that G has an internal edge, that is an

edge between two trivalent vertices of G. If b′ is not H1-spanning (over Q), then

G = 0 ∈ Ao(b).

In particular, if b1(M) > 0, then every graph without legs vanishes in Ao(b).

Corollary 1.6. Let b be a H1-spanning link in a closed manifold M and G be a

graph whose r+1 legs are colored by x, y1, . . . , yr so that x is primitive and linearly

independent from {y1, . . . , yr}. For k = 0, . . . , r, let G(k) denote the sum of all

ways of replacing k many yi by x. Assume that G contains an internal edge. Then

G(k) = 0 in Ao(b) for all k.

We caution the reader that the above corollary by no means implies thatAo(b) is

zero dimensional for manifolds M with positive betti number, since for example, for

manifolds with positive betti number, the coefficients of the Alexander polynomial

(of the maximal torsion-free abelian cover) are finite type invariants in our sense.

2. Proofs

The proofs of the theorems and their corollaries involve algebraic alternatings of

the topological calculus of clovers; the uninitiated reader may also look at [GGP,

Sec. 3]. Clovers are mild generalizations of Y-graphs; a clover of degree 1 is by

definition a Y-graph and surgery on a clover of degree n corresponds to surgery on
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a disjoint union of n Y-graphs. Thus, one need never talk about clovers; in that

case surgery on an embedded Θ graph correponds to surgery on a disjoint union of

two Y-graphs whose leaves link pairwise like a Hopf link. Sentences like the above

will hopefully make the reader appreciate clovers; in addition clovers will be assist

in a quick definition of the map WM,b of Theorem 1 as well as a motivation for the

validity of Theorem 1. In view of this, we will use them freely in what follows.

Before we prove the theorems, it will be important to state some lemmas the

proof of which follows by applying to the topological calculus of clovers elementary

alternations, see for example [GGP, Sec. 4.1]:

Lemma 2.1. [Ha, Gu] (Cutting a Leaf) Let G be a clover of degree m in a

manifold M and L be a leaf of G. An arc a starting in the external vertex incident

to L and ending in other point of L, splits L into two arcs L′ and L′′. Denote by G′

and G′′ the graphs obtained from G by replacing the leaf L with L′ ∪ a and L′′ ∪ a
respectively, see Fig. 2. Then [M,G] = [M,G′] + [M,G′′] in GY

m(M).

a
L

G
L

L

G
L

G

L

Fig. 2. Splitting a leaf.

Lemma 2.2. [Gu, Ha] (Sliding an Edge) Let G be a clover of degree m in a

manifold M , and let G′ be obtained from G by sliding an edge of G along a tube in

M . Then [M,G] = [M,G′] in GY
m(M).

The next lemma involves some mixed objects i.e., pairs (L,G) of a (framed) link

L and a clover G in M . In this case, alternating means to alternate with respect

sublinks of L and components of G.

Lemma 2.3. [Gu, Ha] For all ε = ±1, consider an ε-framed unknot and a clover

in M shown below. Then, we have the following identities in GY(M) :

2[M, ε ] = 0 and 2[M,

ε

] = −2ε[M, ] .

Lemma 2.4. Let G be a clover with r + 1 leaves li for i = 0, . . . , r in a manifold

M . Assume that l0 bounds an embedded surface Σ0 in M . Then

G+
r∑
i=1

[Σ0] · [li]Gi = 0 ∈ GY(M)

where Gi is the result of gluing the 0-th leg of G to its i-th leg.
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Proof. Consider a graph G and a surface Σ0 as above. Σ0 can be thought of as an

embedded disk with bands. We can assume that G is disjoint from the (interiors of

the bands) of Σ0 and thus G intersects the (interior of) Σ0 only in the embedded

disk. Cut each band along arcs (in the normal direction to the core of the band)

using the Cutting and Sliding Lemmas 2.1 and 2.2 as shown

[M, ] = [M, ] + [M, ]

= [M, ] + [M, ] + [M, ]

= [M, ] + [M, ] + [M, ]

= −[M, ] + [M, ] + [M, ]

= [M, ]

(where Σ0 is a surface of genus 1, and the solid arcs represent arbitrary tubes in

the 3-manifold). The above calculation reduces to the case of a surface Σ0 hawith

no bands, i.e., a disk. Using the Cutting and Sliding Lemmas 2.1 and 2.3 once

again, we may assume that the leaf l0 of G is zero-framed and that the disk Σ0

intersects geometrically once a leaf of G and is otherwise disjoint from G. The

following equality

[M, ] = [M, ] + [M, ] = [M, ] = −[M, ]

(2)

which follows by Lemma 2.1, concludes our proof.

Lemma 2.5. Let (G, γ) be a clover in a manifold M together with a distinguished

leaf γ that bounds two surfaces Σ0 and Σ1 in M . Then,

〈G,Σ0 − Σ1〉 = 0 ∈ GY(M) .

Proof. It follows from two applications of the OBR relation that

−G = 〈G,Σ0〉 = 〈G,Σ1〉 ∈ GY(M) .

Proof of Theorem 1. First we construct the map WM,b. Let b = (b1, . . . , br) be

a H1-spanning link in M . Given a graph G with colored legs choose an arbitrary

embedding of it in M . For every coloring
∑
i aibi of each of its univalent vertices

(where ai are integers), push |ai| disjoint copies of bi (using the framing of bi), orient

them the same (resp. opposite) way from bi if ai ≥ 0 (resp. ai < 0), and finally

take an arbitrary band sum of them. We can arrange the resulting knots, one for

each univalent vertex of the embedding of G, to be disjoint from each other, and
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together with the embedding of G to form an embedded graph with leaves in M .

Although the isotopy class of the embedded graph depends on the choices made,

the image of [M,G] ∈ GY
m(M) is well-defined. This follows from Lemma 2.1. We

need to show that the relations AS, IHX, OBR, BR and LOOP are mapped to zero,

which will define our map WM,b. For the AS and IHX relations, see for example

[GGP, Section 4.1]. The LOOP relation follows from Fig. 2.

=====

The OBR and BR relations follow from Lemmas 2.4 and 2.5.

We now show that WM,b is onto, over Z[1/2]. Note first that GY
m(M) is generated

by [M,G] for all simple graphs of degree m, where a simple graph is a disjoint union

of graphs of degree 1. Each of the leaves of G are isotopic to some connected sum

of (possibly orientation reversed) components of b and contractible knots. Using

the Cutting Lemma 2.1, we may assume that each leaf is isotopic to one of the

components of b (with possibly reversed orientation) or is contractible in M . From

this point on, the proof is analogous to the case of M = S3. Let L be the link

consisting of all contractible leaves of G. There exists a trivial, unit-framed link C

in M r (Gr L) with the properties that

• each component of C bounds a disk that intersects L at at most two points.

• Under the diffeomorphism of M with MC , L becomes a zero-framed unlink

bounding a disjoint collection of disks Di.

Such a link C was called L-untying in [GGP ]. Lemma 2.1 and Eq. (2) imply that

we can assume each of the disks Di are disjoint from G and intersect C in at most

two points C. Lemma 2.3 imply that WM,b is onto, over Z[1/2].

In order to show that Ao(b) is independent of b, up to isomorphism, we need

the following:

Lemma 2.6. Every two H1-spanning links b and b′ in M are equivalent by a

sequence of moves:

M1: Add one component (after possibly changing its orientation) of b to another.

M2: Change the framing of a component of b.

M3: Insert or delete a null-homologous zero-framed component of b.

Proof. It suffices to show that under these moves b is equivalent to b ∪ b′. Con-

sider a component b′i of b′. Since b is a basis of H1(M,Z), we can add a multiple of
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components of b (after perhaps changing their orientation) so that b′i is nullhomol-

ogous, in which case we can change its framing to zero, and erase it. The lemma

now follows by induction on the number of components of b′.

Proof of Theorem 1 (Continue). If b′ is obtained from b by applying one of the

three moves above, we will now define WM,b,b′ : Ao(b) → Ao(b′) (abbreviated by

Wb,b′ in what follows) and show that Eq. (1) holds.

For the first move, if b = (b1, b2, . . . , br) and b′ = (b1]b2, b2, . . . , br) (where b1]b2
is an arbitrary oriented band sum of b1 with b2) then Wb,b′ sends a b1 colored vertex

of an abstract graph G to a b1]b2 − b2 colored vertex of G. It is easy to see that

this defines a map Ao(b) → Ao(b′) whose inverse sends a b1]b2 colored vertex of

G to a b1 + b2 colored vertex of G. Similarly, one can define a map Wb,b′′ where

b′ = (b1]b2, b2, . . . , br). Equation (1) follows from Lemma 2.1.

For the second move, let b = (b1, b2, . . . , br) and b′ = (b′1, b2, . . . , br) where b′1 is

a knot whose framing differs from that of b1 by ε = ±1. For graph G with n legs

colored by b1 we define

Wb,b′(G) =
∑

I:|I|=even

ε|I|/2G′I

where the summation is over all functions I : {1, . . . , n} → {0, 1} such that the

cardinality I of I−1(1) is even and G′I is the result of gluing the b1 colored legs li
of G for which I(i) = 1 pairwise and recoloring the remaining b1 colored legs with

b′1 colored legs. It is easy to see that Wb,b′ is well-defined (i.e., that it respects the

relations in Ao(b)) and that its inverse is given by

Wb,b′(G
′) =

∑
I:|I|=even

(−ε)|I|/2GI .

Let C denotes a (−ε)-framed unknot in M which bounds a disk that geometri-

cally intersects b1 in one point and intersects no other components of b. Then MC

is diffeomorphic to M under a diffeomorphism that sends the image of b in MC to

b′ in M . Since WM,b′(G) = [MC , G] and WM,b(GI) = [M,GI ], Eq. (1) (or rather,

its equivalent form Wb′ = Wb ◦Wb′,b) follows from the following:

Lemma 2.7. For a graph G of degree m as above, we have in GY
m(M) :

[MC , G] =
∑

I:|I|=even

(−ε)|I|/2[M,GI ].

Proof. Using the Cutting Lemma 2.1 each b1-colored leaf li of G can be split along

an arc in two leaves; one that bounds a diskDi intersecting C once and disjoint from

b, and another that is isotopic to b1 but disjoint from C. For I : {1, . . . , n} → {0, 1},
let G′I denote the graph (Gr (b1 colored leaves of G))∪∪i:I(i)=1Di. Lemma 2.1 im-

plies that [MC , G] =
∑
I [MC , G

′
I ]. Let G′′I denote the graph in M that corresponds

to G′I under the diffeomorphism M = MC ; we obviously have [MC , G
′
I ] = [M,G′′I ].
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Note that G′′I has a collection of |I| leaves each of which is unknotted bounding

a disk with linking number ε with every other leaf of this collection. An applica-

tion of Lemma 2.4 |I| times together with Lemma 2.3 implies that [MC , G
′′
I ] =

(−ε)|I|/2[M,GI ] (resp. 0) for even (resp. odd) |I|.

For the third move, let b = (b1, b2, . . . , br) and b′ = (b0, b1, b2, . . . , br) where b0 is

a null-homologous zero-framed knot, and consider the natural map Wb,b′ : Ao(b)→
Ao(b′). Choose a surface Σ0 that b0 bounds. The OBR relation in Ao(b′) for b0
colored vertices defines a map Wb′,b : Ao(b′) → Ao(b); this map is independent of

Σ0 since the difference between two choices of Σ0 equals to a choice of a closed

surface and the resulting difference vanishes due to the BR relation on Ao(b). It

is easy to see that Wb′,b is inverse to Wb,b′ . Equation (1) follows essentially by

definition. This completes the proof of Theorem 1.

Proof of Corollary 1.3. The first statement follows immediately from the fact

that if b is a basis then no nontrivial linear combination is nullhomologous, thus

the OBR relation is vacuous.

For the second statement, since we are using Q coefficients, we may assume

that the link b is a basis for H1(M,Z)/(torsion), and choose a link bt to span the

torsion part of H1(M,Z). Then, we have that A(b) = Ao(b)→ Ao(b∪bt). There are

integers ni and surfaces Σi such that nib
t
i = ∂Σi for all components of bt. The OBR

relation for bt colored legs gives a map Ao(b ∪ bt) → Ao(b) which is independent

of the choices of {ni,Σi} and is inverse to the map Ao(b) → Ao(b ∪ bt). Thus,

A(b) ∼=Q Ao(b ∪ bt). Since Ao(b ∪ bt) ∼= Ao(b′) for every H1-spanning link b′, the

result follows.

The third statement follows immediately from the fact that if the intersection

form on M vanishes, then the BR relation is vacuous.

The forth and fifth statements are immediate consequences of those above.

Proof of Corollary 1.4. Let b′ be a H1-spanning link and b be a H1,Q-basis. Then,

we have over Q

A(H(M)) ∼=Q A(b) ∼=Q Ao(b′)→ GY(M)

which concludes the proof of the corollary.

Proof of Theorem 2. The proof is a simple application of the locality property

of the Kontsevich integral, as explained leisurely in [A, II, Sec. 4.2], and a simple

counting argument.

We now give the details. We need to show that

• The part of the LMO=Aarhus integral Z ∈ A(φ) of degree at most n is an

invariant of type n.

• For a trivalent graph G of degree n in a rational homology 3-sphere M , we have

that

Z(MG) = G+ higher degree diagrams ∈ A(φ).
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For the first claim, recall that a degree 1 clover G in a manifold M is the image

of an embedding V →M of a neighborhood V of the standard (framed) graph Γ of

R3, and that surgery of M along G can be described as the result of Dehn surgery

on the six component link L in V shown below

Γ

L
VV

L is partitioned in three blocks L1, L2, L3 of two component links each. We call

each block an arm of G. Alternating a rational homology 3-sphere M with respect

to surgery on G equals to alternating M with respect to all nine subsets of the set

of arms of G.

Recall also that the Kontsevich integral of a framed link L in a 3-manifold M

Z(M,L) (defined by Kontsevich for links in S3 and extended by Le-Murakami-

Ohtsuki for links in arbitrary 3-manifolds [LMO, Sec. 6.2]) takes values in linear

combinations of L-colored uni-trivalent graphs.

Recall also that the LMO=Aarhus integral of a rational homology 3-sphere

ML (obtained by surgery on a framed link L in a rational homology 3-sphere M) is

obtained by considering the Kontsevich integral Z(M,L), splitting it in a quadratic

Zq and trivalent (a better name would be “other”) part Zt, and gluing the L-colored

legs of Zt using the inverse linking matrix of L.

Given a clover G = ∪ni=1Gi in a rational homology 3-sphere M , (where Gi are

of degree 1), let Lact denote the link that consists of the 3n arms of G. When we

compute Z([M,G]) = Z([M,Lact]), we need to concentrate on all Lact-colored uni-

trivalent graphs that have at least one univalent vertex on each block of G. Such

graphs will have at least 3n univalent vertices. Since at most three univalent vertices

can share a trivalent vertex, it follows that the above considered graphs will have

at least n trivalent vertices; in other words it follows that Z([M,G]) ∈ A≥n(φ).

The second claim is best shown by example. Recall that surgery on the (generic

trivalent graph) Θ shown below corresponds to surgery on two clovers G1 and G2,

each with arms {Eij , Lij} for i = 1, 2 and j = 1, 2, 3. The linking matrix of the 12

component link Lact = Eij ∪ Lij and its inverse are given by(
0 I

I I

)
and

(
−I I

I 0

)
where I is the identity 6 × 6 matrix. The relevant trivalent part Zt(M,Lact) is

shown schematically in four cases here, where the graphs on the left terms of each

case come from G1 and the graphs on the right terms of each case come from G2
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and the dashed lines correspond to gluings of the univalent vertices:

E

E

E

E

E

E

E

E

E

E

E

E

L

L

L

L

L

L

L

L

L

L

L

L

However, the last three cases all contribute zero, since LLL is a 3-component unlink

whose coefficient in Zt is a multiple of the triple Milnor invariant and thus vanishes.

Thus, we are only left to glue terms in the first case, and this is summarized in the

following figure

E

E

E

E

E

E

which concludes the proof.

Proof of Corollary 1.5. If G is as in the statement of the corollary, colored by

a sublink b′ of b which is not H1-spanning , then we can find an x ∈ b r b′, and a

closed surface x∗ such that [x∗][y] = δy,x for all components y of b. Cut G along an

edge, and color the two new leaves x and ∗ to obtain a graph (G, ∗). By definition,

we have 〈G, x∗〉 = G, thus the result follows from the BR relation.

Proof of Corollary 1.6. We will first show the result for k = 0. Let G be as in

the statement of the corollary and let G′ be the graph with two more leaves than

G, colored by x and ∗ respectively as shown:

G G’

x x

x
*

The BR relation implies that

0 = 〈G′, x∗〉 = G+ LOOP = G = G(0).

Now, we will show the result for all k. Let G(n) be the same graph as G with r+ 1

leaves colored by x, x+ny1, . . . , x+nyr, for n ∈ N. Since x is primitive and linearly

independent from {x + ny1, . . . , x + nyr}, the k = 0 case for G(n) shown above

implies that G(n) = 0 for all n. Since G(n) =
∑
k n

kG(k), the result follows.
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