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Abstract. Using elementary counting methods, we calculate a universal perturbative invariant
(also known as theLMO invariant) of a 3-manifoldM, satisfyingH1(M, Z) = Z, in terms of
the Alexander polynomial ofM. We show that+1 surgery on a knot in the 3-sphere induces an
injective map from finite type invariants of integral homology 3-spheres to finite type invariants
of knots. We also show that weight systems of degree 2m on knots, obtained by applying finite
type 3m invariants of integral homology 3-spheres, lie in the algebra ofAlexander-Conway weight
systems, thus answering the questions raised in [Ga].

1. Introduction

1.1. History

In their fundamental paper, T.T.Q. Le, J. Murakami and T. Ohtsuki [LMO] con-
structed a mapZLMO which associates to every oriented 3-manifold an element
of the graded (completed) Hopf algebraA(∅) of trivalent graphs.1 The restric-
tion of this map to the set of oriented integral homology 3-spheres was shown
in [Le1] to be auniversalfinite type invariant of integral homology 3-spheres
(i.e., every rationally-valued finite type invariant factors through it). ThusZLMO

is a rich (though not fully understood) invariant of integral homology 3-spheres.
However, the invariantZLMO behaves differently as soon as the first Betti num-
ber of the 3-manifold,b1(M), is positive. In [Ha2], the second author used an
elementary counting argument to deduce thatZLMO(M) = 1, if b1(M) > 3,
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and to computeZLMO(M), if b1(M) = 3 (and also forb1(M) = 2, see [BH]),
in terms of the Lescop invariant [Les] ofM. It is an open problem to compute
ZLMO(M), for b1(M) = 0, 1.

It is the purpose of the present paper to exploit elementary counting methods
in order to calculateZLMO(M), for 3-manifoldsM which satisfyH1(M, Z) = Z,
in terms of a “classical invariant” ofM, namely its Alexander polynomial. This
includes the special case of 0-surgery2 of a knotK in S3, S3

K,0, in which case
the Alexander polynomial ofS3

K,0 is the Alexander-Conway polynomial ofK.3

An important ingredient of our computation is the recent result of A. Kricker, B.
Spence, and I. Aitchinson, [Kr,KSA], calculating the Conway weight system on
uni-trivalent graphs.

Although the invariantZLMO(S3
K,+1), of +1-surgery on a knotK (in con-

trast to 0-surgery), is not determined by the Alexander-Conway polynomial of
K (there are examples with nontrivial invariant, and trivial Alexander polyno-
mial), we show that after truncatingZLMO at degreem, the associated degree 2m

knotweight systemlies in the algebra of the Alexander-Conway weight systems.
Similar methods allow us to show that finite type invariants of integral homol-
ogy 3-spheres are determined by their associated knot invariants, thus answering
positively the questions (see below) that were posed in [Ga] prior to the construc-
tion of the LMO invariant. (At that time, the only known finite type invariant of
3-manifolds was the Casson invariant.)

1.2. Statement of the results

All 3-manifolds and links considered in the present paper will be oriented.

Theorem 1. LetM be a closed, connected 3-manifold satisfyingH1(M, Z) = Z.
The universal invariantZLMO(M) ∈ A(∅) can be calculated in terms of the
Alexander-Conway polynomialA(M) of the 3-manifold. Conversely, the Alexan-
der polynomial ofM can be calculated in terms of the universal invariant
ZLMO(M) ∈ A(∅).

A precise formula relating the two invariants will be given in Section 2.

We outline here the basic idea of the proof, which though somewhat technical,
really is quite elementary: If a manifoldM is obtained by 0-surgery on a knotK in
S3 (the general case of a manifold satisfyingH1(M, Z) = Z is not much harder),
then quite immediately from the definitions, the degreem part ofZLMO(M) can
be computed from the part of the Kontsevich integral ofK (written in terms of

2 given a framed linkL in a 3-manifoldM, we denote byML the result of Dehn surgery onL.
3 An earlier version of this paper contained only this special case. We extend special thanks to

C. Lescop, for help in extending to the general case and to D. Thurston, for pointing out that the
result should hold in this generality.
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uni-trivalent graphs) which has 2m legs and 2m internal vertices. Since there are
no components which are intervals (because of the 0-framing), and since by the
anti-symmetry relation, all trees vanish, the only contributing part consists of
wheels. But this part is known to determine the Alexander polynomial ofK, and
thus that ofM.

Before we state the next result, we need to recall some standard definitions and
notation from the theory of finite type invariants of knots and integral homology
3-spheres, see [B1,Oh,Ga,LMO].

LetK denote the vector space overQ on the set of isotopy classes of oriented
knots inS3 and letFmV (for a nonnegative integerm) denote the vector space
of finite type (i.e., Vassiliev) invariants of knots of typem, [B1]. Similarly, let
M denote the vector space overQ on the set of orientation preserving diffeo-
morphism classes of oriented integral homology 3-spheres, and letFmO denote
the vector space of finite type (i.e., Ohtsuki) invariants of integral homology
3-spheres of typem, [Oh]. In [Ga] we considered the mapK 7→ S3

K,+1. This is
a classical map, often used in the study of knots (or 3-manifolds). This yields a
mapK → M and a dual mapΦ : M∗ → K∗ (whereV ∗ denotes the dual of a
vector spaceV ). In [Ga] the following questions were posed:

Q1 Does the above map sendF3mO to F2mV?
Q2 Is the restriction of the mapΦ to F3mO one-to-one, for allm?
Q3 Assuming the answer to Question 1 is affirmative, and givenv ∈ F3mO, is

it true that the associated degree 2m knot weight system lies in the algebra
of the Alexander-Conway weight systems?

Let v be aQ-valued invariant of integral homology 3-spheres and letΦ(v)

be the associated invariant of knots inS3. Question 1 asks whetherΦ(v) is a
finite type invariant of knots inS3 (together with an estimate of the type of the
invariant), ifv is a finite type invariant of integral homology 3-spheres. Question
2 asks whetherΦ(v) determinesv. (It should be noted, however, that there are
integral homology 3-spheres that cannot be obtained by±1 surgery on a knot
in S3, see [A].) Question 3 is concerned with the finite type knot invariantΦ(v)

and asks whether in degree 2m (the maximum possible degree by question 1),
Φ(v) is a classical knot invariant (on elements in the 2m-th term of the Vassiliev
filtration), given by a polynomial in the Alexander-Conway coefficients.

Building on work of the first author and J. Levine (a preliminary version
of [GL2]), Question 1 was answered affirmatively by the second author, [Ha1].
Alternative proofs were later given in [GL2,Le1]. The methods used in [Ha1] and
[GL2] were a mixture of geometric topology together with a counting argument.
On the other hand, [Le1] used theZLMO invariant and an elementary counting
argument.
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Using elementary counting arguments similar to those in [Le1], together with
properties of theZLMO invariant, enables us to show that Questions 2 and 3 above
are true.

Theorem 2. The association, which takes a knot inS3 to the integral homology
sphere obtained by +1-framed surgery on the knot, induces an injection from the
space of finite type 3-manifold invariants (in the sense of Ohtsuki), to the space
of finite type (Vassiliev) knot invariants.

Theorem 3. Let v be a finite type3m invariant (in the sense of Ohtsuki) of
homology 3-spheres. Then the associated degree2m knot weight system lies in
the algebra of the Alexander-Conway weight systems.

Remark 1.Theorem 2 does not hold at the graded level, i.e., the associated graded
mapGmΦ : G3mO → G2mV is not one-to-one form ≥ 4 (see Remark 3.2).

Acknowledgement.We would like to thank Dror Bar-Natan,Vincent Franjou, Jerry Levine, Thang
T.Q. Le, Christine Lescop, Gregor Masbaum, Paul Melvin, Xiao-Song Lin, Dylan Thurston and
Pierre Vogel for useful conversations. We also wish to thank the referee for numerous suggestions
and comments.

2. Preliminaries

2.1. Uni-trivalent graphs

A uni-trivalent graphis a graph (possibly with loops or multiple edges) every
vertex of which has valency 1 or 3, together with a cyclic order of the edges at
each of its trivalent vertices; such graphs were called chinese characters in [B1].
There is a degree-preserving linear isomorphismχ : B → A(S1) between the
graded coalgebraB of uni-trivalent graphs (modulo the antisymmetry and IHX
relations) and the graded coalgebra of chord diagramsA(S1) on a circle, see
[B1, Theorem 8], given by mapping a uni-trivalent graphC with n legs to 1/n!
times the sum of then! ways of joining all of its legs ton chosen ordered points
on a fixed circle. The degree of a uni-trivalent graph or chord diagram is half the
number of vertices, and the primitive diagrams are the connected ones.

Since the mapχ is a vector space isomorphism, we willidentifyB andA(S1)

via χ . Note thatB hastwo commutative multiplications;4 one is induced by the
multiplication onA(S1) via χ , denoted by×, and the other is the disjoint union
of uni-trivalent graphs, denoted byt. In what follows, we will suppress× from
the notation, but will explicitly uset. Thus, expt will be used to designate the

4 The two multiplications are different. For a conjectural relation between these two multipli-
cations, see [BGRT1, Conjecture 2].
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exponential with respect to thet-multiplication, and exp will be used to designate
the exponential with respect to the×-multiplication.

We will be interested in several important subspaces ofB. Let B′ denote
the subspace ofB which is spanned by uni-trivalent graphs, no component of
which is (homeomorphic to) aninterval.5 B′ is a subalgebra ofB with respect to
either multiplication. Note thatB′ is a direct summand ofB with complementary
factor the span of uni-trivalent graphs which contain an interval component.B′
is related to adeframingprojection mapF : A(S1) → A(S1) (whose image
will be denoted byA′(S1)) defined in [B1, part 2 of Theorem 4 and exercise
3.16]. Using the isomorphismχ , the image of the induced deframing map (also
denoted byF ) F : B → B6 was shown in [KSA, Corollary 4.4] to coincide with
B′.7

Let B′′ denote the subspace ofB which is spanned by uni-trivalent graphs
some component of which has more trivalent vertices than univalent ones.B′′
is a direct summand ofB′. In fact, one has the direct sum decompositionB′ =
B′′ ⊕ Bwh, whereBwh

8 denotes the subspace ofB spanned by all uni-trivalent
graphs every component of which is a wheel (see Section 2.2 below).

Let Pwh : B → B denote the composition of the deframing mapF followed
by the projection to the subspaceBwh.

We close this section with the following characterization of the algebra of
Alexander-Conway weight systems, due to [KSA,Kr]. Recall that aweight system
W is a linear mapW : A(S1) → Q. Weight systems can be multiplied and thus
they form an algebra. Given a finite type invariant of knots (or a power series
of such invariants, such as the Alexander-Conway polynomial, which will be
discussed in greater detail in the next section) there is an associated weight
system, generating a subalgebra in the algebra of weight systems. We now have
the following

Theorem 4. [Kr,KSA] A weight systemW : A(S1) → Q lies in the algebra of
Alexander-Conway weight systems if and only if it factors throughPwh.

2.2. The Alexander-Conway polynomial and its weight system

In this section we review some well known properties of the Alexander-Conway
polynomial and its associated weight system. (For the Alexander-Conway poly-
nomial and further references, see for example the exposition in the appendix of

5 An interval is a uni-trivalent graph of degree 1 with 2 univalent vertices and no trivalent ones.
6 Note thatF is not the projection in the above direct-sum decomposition ofB.
7 As an exercise, the reader may try to find a conjectural formula forF in terms of uni-trivalent

graphs using [BGRT1, Conjecture 2].
8 With respect to thet multiplication,Bwh is a polynomial algebra on the set of wheels with an

even number of legs (the odd-legged wheels vanish by antisymmetry).



490 S. Garoufalidis, N. Habegger

[Les].) TheConwaypolynomialC [Co,Ka] of a knot (considered as a polynomial
in z) is defined by the relations:

(1)

C (c-component unlink) =
{

1 if c = 1
0 otherwise.

With the terminology of [BG, Section 3.1], the Conway polynomial itself is not
acanonicalVassiliev power series, but its renormalized reparametrized version

C̃(h̄) = h̄

eh̄/2 − e−h̄/2
C
(
eh̄/2 − e−h̄/2

)
is a canonical Vassiliev power series (i.e., it satisfiesC̃(K)(h̄) = WC,h̄ ◦ZK(K),
see below). Similarly, theAlexanderpolynomial, defined byA(t) = C(t1/2 −
t−1/2), is not a canonical Vassiliev power series, but it becomes canonical when
multiplied by h̄

eh̄/2−e−h̄/2 and evaluated att = eh̄ (as this product is̃C(h̄)).

Let WC : A(S1) → Q denote theweight systemof C̃ (which is equal to
the weight system ofC). It has the property that it is a deframed multiplicative
weight system. (Recall that a weight systemW : A(S1) → Q is calleddeframed

if it factors as a compositionA(S1)
F→ A(S1) → Q, whereF is the deframing

map. Furthermore, a weight systemW : A(S1) → Q is calledmultiplicative
if for all chord diagramsCD1, CD2 of degreesm1, m2 respectively, we have:
Wm1+m2(CD1 · CD2) = Wm1(CD1)Wm2(CD2).)

The weight systemWC was calculated on linear chord diagrams in [BG,
Theorem 3]. Its expression in terms of uni-trivalent graphs inB′ was given by
Kricker [Kr, Theorem 2.10] as follows:

WC(ξ) =
{

(−2)p if m = 2n andξ is a disjoint union of
p even-legged wheels

0 otherwise
(2)

whereω2n is a wheel with 2n legs, see Fig. 1.

Fig. 1.The wheelω4 with 4 legs. Its trivalent vertices are oriented clockwise

Let ZK : K → A(S1) denote theuniversalfinite type invariant of knots,

constructed by Kontsevich [Ko] (see [B1]), and letξ(K)
def= logZLMO(K) denote

its logarithm. (N.b., since knots are considered as unframed, their image under
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the mapZK lies in the image of the deframing map.9 For an extension to a functor
Z on the category of framedq-tangles, see e.g., [B2,Ca,KT,LM1]. Then for a 0-
framed knotK in S3, ZK(K) coincides with the value ofZ onK. In particular,
ξ(K) lies in (the primitive part of, see for example [LM2])A′(S1) ' B′. So
Pwhξ(K) consists of a sum of (even-legged) wheels.

Definea2m(K) by

∞∑
m=1

a2m(K)ω2m
def= Pwhξ(K). (3)

Let WC,h̄ denote the product ofWC and h̄deg, where h̄deg is the operator
that multiplies every degreem diagram byh̄m. Let U denote the (zero-framed)
unknot10 and setb2m = a2m(U). We now claim that

– Fact 1.For a zero framed knot inS3 we have:

−1/2 log(A(K)(eh̄)) =
∞∑

m=1

a′
2m(K)h̄2m,

wherea′
2m(K) = a2m(K) − b2m. Indeed, one has that

C̃(K)(h̄) = WC,h̄ ◦ ZK(K) sinceC̃ is canonical

= exp(WC,h̄ξ(K)) sinceWC,h̄ is multiplicative

= exp(−2
∑∞

m=1 a2m(K)h̄2m) by equation (2).

Thus we have,−1/2 log(C̃(K)(h̄)) = ∑∞
m=1 a2m(K)h̄2m. In particular,−1/2 log

( h̄

eh̄/2−e−h̄/2 ) = ∑∞
m=1 b2mh̄2m, and the result follows sincẽC(K)(h̄) =

C̃(U)(h̄)A(K)(eh̄).

Defineα(K) in (the completion of)Bwh by:

α(K) =
∞∑

m=1

(b2m + a2m(K))ω2m (4)

Note thatα(K) = ∑∞
m=1(2b2m + a′

2m(K))ω2m.

Similarly, letM denote a 3-manifold which satisfiesH1(M, Z) = Z, and let
A(M)(t)denote itsAlexander polynomial, normalized so that it is symmetric (int

9 Actually, ZK(K) lies in a quotient ofA(S1) isomorphic toA′(S1).
10 It may be of interest to note that the value ofZK(U) is conjecturally given by the equation
Pwh(ξ(U)) = ξ(U). (See [BGRT1, Conjecture 1], where it is shown that the conjecture holds
on the level of semisimple Lie algebras.) Note also that the Alexander-Conway polynomial is
determined by theslN colored Jones polynomial (see [BG]).
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andt−1) and evaluates to 1 att = 1. We definea′
2m(M) by−1/2 log(A(M)(eh̄))=∑∞

m=1 a′
2m(M)h̄2m.

Defineα(M) by:

α(M)
def=

∞∑
m=1

(2b2m + a′
2m(M))ω2m. (5)

Obviously,α(M) andA(M) can be computed from each other.

2.3. Preliminaries on theLMO invariant

In this section we review some well known properties of the invariantZLMO . We
denote by{x}m the degreem part ofx. Recall from [LMO] that for every integer
f , and every knotK in S3, the value of the universal invariant onS3

K,f is given
by:

ZLMO
(
S3

K,f

) =
∞∑

m=0

{
ιm(c(f )ZK(K))

cm(f )

}
m

∈ A(∅)

(the product inB is taken with respect to the× multiplication), wherec(f ) =
exp(f

2 Θ)ZK(U) andcm(f ) = ιm(exp(sgn(f )Θ/2)ZK(U)2) (resp. 1) iff 6= 0
(resp.f = 0). HereΘ denotes the unique chord diagram of degree 1 on a circle,
ιm : A(S1) → A(∅) is a map defined in [LMO, Section 2],U is the zero framed
unknot, andZK(K) is the value of the universal knot invariant with thezero
framing. Note thatZK(U) is denoted byν in [LMO,Le1].

Let πm denote the projectionA(∅) → A≤m(∅). In the special case when
f = +1 (n.b., the formula below holds since we are in the case of an integral
homology sphere, see [LMO]), one has the formula

πm

(
ZLMO

(
S3

K,+1

))
= πm

(
ιm(cZK(K))

cm

)
∈ A≤m(∅)

wherec = exp(1
2Θ)ZK(U) and wherecm = ιm(exp(1

2Θ)ZK(U)2).

The mapιm, though rather complicated when evaluated on chord diagrams on
a circle, becomes more transparent when evaluated on uni-trivalent graphs. In
particular, it follows from its definition that for a uni-trivalent graphC with l

legs, we have:

ιm(C) =
{

O−2m(〈C〉) if l = 2m

0 otherwise
(6)

where〈C〉 denotes the closure ofC, i.e., the sum of all(2m − 1)!! ways of
closing its legs by joining the univalent vertices in pairs, andO−2m is the map
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which sets circle components equal to−2m.11 Note that in the special case that
no connected component ofC is an intervalI , then no connected component of
〈C〉 is a circle, and soO−2m(〈C〉) = 〈C〉. Note also that ifC has 2k legs, then
O−2m(〈CtI 〉) = (−2)(m − k)O−2m(〈C〉).

We have the following:

– Fact 2.Fix a nonnegative integerm. Givena ∈ 1 + B≥1, b ∈ B′
≥2m, c ∈

1 + A≥1(∅), then:{
ιm(ab))

c

}
m

= 〈Pwh({b}2m)〉 ∈ Am(∅).

Note that this identity holds with respect to either multiplication inB.

For the proof, note thatιm reduces degree bym. In particular, the only part ofb
which contributes to both sides is{b}2m, the degree 2m part ofb lying in B′

2m.
Note also that an element ofB′

2m has at most 2m legs; moreover, it has exactly 2m

legs if and only if it lies in(Bwh)2m, i.e., it is a linear combination of uni-trivalent
graphs, all of whose components are even-legged wheels. This shows the above
claim.

3. Proofs

In this section we give the proofs of Theorems 1, 2 and 3.

Lemma 3.1. The mapx 7→ 〈x〉 fromBwh → A(∅) is injective, but its restriction
(Bwh)2n → An(∅) for n ≥ 4, is not surjective.

Proof. Note that the map〈 〉 sends connected uni-trivalent graphs to connected
trivalent graphs. In particular it induces a map of primitives ofBwh which is
easily seen to be injective.12

Now note further that the map〈 〉, although not multiplicative, sends a product
of primitives to the product of their closures, plus terms with fewer connected
components. This implies that the map〈 〉 on Bwh is injective, and further that
the preimage of the set of primitives is the set of primitives ofBwh. Thus, were

11 To see this, see [Le2], note that the total symmetrization of the elementT m
l

, described in
[LMO], vanishes, ifl is different from 2m. The formula follows, since the total symmetrization of
T m

2m, applied to a Chinese character, corresponds to the sum of all ways of closing up the character.
12 Indeed, consider the multiplicative mapW : A(∅) → Q[[c]] defined by imposing the relation
W(H) = W(II)−W(X) and setting any resulting circle components equal toc. HereH denotes a
uni-trivalent graph which in a neighborhood of some arc looks like anH, andII, resp.X, is obtained
from H by replacing this neighborhood by two arcs joining the four points on the boundary of the
neighborhood which are on the same side of the arc, resp. diametrically opposed. Then one has
thatW(〈w2〉) = c2 − c and thatW(〈w2m+2〉) = (c + 2m)W(〈w2m〉), so〈w2m〉 6= 0.
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the map also surjective as well, it would send the primitives onto the primitives.
But as the primitive part of(Bwh)2n is of dimension 1, and since the dimension
of the primitive part ofAn(∅) is > 1, forn ≥ 4 (see e.g. [B1]), it follows that〈 〉
is not surjective in degreen ≥ 4. ut
Proof of Theorem 1.We first give the proof in caseM = S3

K,0 is obtained by
surgery on a zero-framed knotK in S3. We have

ZLMO(M) =
∞∑

m=0

{ιm(ZK(U)ZK(K))}m

=
∞∑

m=0

{ιm(exp(ξ(U)) exp(ξ(K)))}m

=
∞∑

m=0

{ιm(exp(ξ(U) + ξ(K)))}m
= 〈Pwh exp(ξ(U) + ξ(K))〉
= 〈expt(Pwh(ξ(U) + ξ(K)))〉

=
〈
expt

( ∞∑
m=1

(a2m(U) + a2m(K))w2m

)〉

= 〈expt α(K)〉
where the first and second equality is by definition, the third follows since we are
in a commutative algebra, the fourth follows from fact 2 (witha = c = 1), the
fifth follows sincePwh is an algebra homomorphism, and the last two follow from
the definitions. This shows that the invariantZLMO(S3

K,0) is determined by the
Alexander polynomialA(K). SinceA(K) = A(M) (and henceα(K) = α(M)),
the result follows.

Conversely, by Lemma 3.1, the map
∑∞

m=1 c2mw2m →〈expt(
∑∞

m=1 c2mw2m)〉
is the composite of two injective maps and hence is injective. It follows that
ZLMO(S3

K,0) determines the Alexander polynomial.

To prove the general case, first note that we may obtainM via surgery on a
boundary linkK ∪ L in S3, where the framing onK is the zero framing, and
the framing of each component ofL is ±1. Indeed, one may obtainM by zero-
framed surgery on a knot in an integral homology sphere, which in turn may be
obtained by surgery on a±1-framed boundary linkL. It suffices to isotope, in
this homology sphere, the Seifert surface for the knot so as to be disjoint from
the Seifert surfaces of the components ofL.13

13 The same argument can be used to see that every integral homology sphere,Σ , can be obtained
by unit-framed surgery on a boundary link: First note thatΣ is surgery on some link and after
stabilization and handle sliding, the link may be assumed to be±1-framed with zero linking num-
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In this case, one still hasA(K) = A(M) (since the link is a boundary link,
the Seifert form onK in S3 is the same as the Seifert form ofK in the homology
sphere obtained by surgery onL). Moreover, since the link is boundary, its Milnor
invariants vanish, and hence, by [HM],ZK(K∪L0) consists of diagrams, none of
which are trees (whereL0 denotes the linkL with zero framing). Consequently,
using a counting argument similar to [Ha2], one can check that:ιm(c′(f )ZK(K∪
L0)) = ιm(c′(f )ZK(K tL0)) wherec′(f ) are terms that depend on the framing
ofL, andKtL0 denotes the disjoint union of the linksK andL0.The definition of
theLMO invariant and its multiplicative property under connected sum implies
thatZLMO(M) = ZLMO(S3

K,0]S
3
L) = ZLMO(S3

K,0), thus finishing the proof of
the theorem. ut
Proof of Theorem 2.Recall, [Le1], thatZLMO≤m : M/M3m+1 → A≤m(∅) is
an isomorphism. We will prove that the mapK → M/M3m+1 is onto (or
equivalently, that the composite mapB′ → B′

≤2m = K/K2m+1 → M/M3m+1 =
A≤m(∅) is onto), which is dual to the statement of Theorem 2.

The mapB′
≤2m → A≤m(∅) is given by the formula

x 7→ πm

(
ιm(cx)

cm

)
∈ A≤m(∅),

wherec, cm are as in secion 2.3.
Let x be a uni-trivalent graph with 2k legs of degreen+k, having no interval

components,n ≤ m, k ≤ m. Then〈x〉 has degreen. Under the above mapping, a
computation shows thatx 7→ (−1)k〈x〉+o(n+1), whereo(n+1) denotes terms
of degree≥ n + 1. Note that any connected graph is the closure of a connected
uni-trivalent graph with 2 legs. Moreover, the mapx 7→ 〈x〉 sends a product
of connected uni-trivalent graphs (without interval components) to the product
of their closures plus terms each of which has fewer components. It follows
by downward induction on the degree and upward induction on the number of
components, that the mapB′ → A≤m(∅) is surjective. ut
Proof of Theorem 3.Consider the mapΨ : K → A(∅) given by:

Ψ (K) = ZLMO
(
S3

K,+1

)
(7)

as well as its truncation,Ψ≤m = πm ◦ Ψ , whereπm is the projectionA(∅) →
A≤m(∅). Let S be aK-admissible 2m-component set. HereS ⊂ S3 denotes the
union of 2m disjoint embedded balls that intersect the knot in a± crossing, and
[K, S] is the signed sum of all knots obtained by changing the crossings. (Recall

bers. In particular,Σ can be obtained by a sequence of±1-framed surgeries on knots in homology
spheres. Arguing by induction and applying the Seifert surface argument above, establishes the
result.
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that such sums generate the 2m-th term of the Vassiliev filtration.) One has that:

Ψ≤m([K, S]) = πm


∑

S′⊆S

(−1)|S′|ZLMO
(
S3

KS′ ,+1

)
= πm

(
ιm(cZK([K, S]))

cm

)

=
{

ιm(cZK([K, S]))
cm

}
m

= (−1)m
{〈

Pwh(Z
K([K, S]))〉}

m

(since by [LMO],{cm}0 = (−1)m).
Similar computations show thatΨ≤m([K, S]) vanishes, ifS is aK-admissible

n-component set, withn > 2m. It follows thatΨ≤m is aA≤m(∅)-valued finite
type invariant of knots of order 2m. Moreover, the above shows that the weight
systemWΨ,m : A′

2m(S1) → Am(∅) factors through the projectionPwh to Bwh.
It follows from Theorem 4 thatWΨ,m lies in the algebra of Alexander-Conway
weight systems with values inA(∅). ut
Remark 3.2.The above formula shows that the weight system is explicitly cal-
culated as the composite of the projection to(Bwh)2m followed by the closure
mapping〈 〉: (Bwh)2m → Am(∅). This proves the statement dual to that of Re-
mark 1, since by Lemma 3.1, the closure mapping onBwh is injective, but not
surjective.
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