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Abstract. Using elementary counting methods, we calculate a universal perturbative invariant
(also known as thé. M O invariant) of a 3-manifoldV, satisfyingH1(M, Z) = Z, in terms of

the Alexander polynomial o#Z. We show that+1 surgery on a knot in the 3-sphere induces an
injective map from finite type invariants of integral homology 3-spheres to finite type invariants
of knots. We also show that weight systems of degreeo knots, obtained by applying finite
type 3n invariants of integral homology 3-spheres, lie in the algebra of Alexander-Conway weight
systems, thus answering the questions raised in [Ga].

1. Introduction
1.1. History

In their fundamental paper, T.T.Q. Le, J. Murakami and T. Ohtsuki [LMO] con-
structed a mag “¥? which associates to every oriented 3-manifold an element
of the graded (completed) Hopf algeb#a?) of trivalent graphs. The restric-

tion of this map to the set of oriented integral homology 3-spheres was shown
in [Lel] to be auniversalfinite type invariant of integral homology 3-spheres
(i.e., every rationally-valued finite type invariant factors through it). TA&Y©

is a rich (though not fully understood) invariant of integral homology 3-spheres.
However, the invarianZ-" 9 behaves differently as soon as the first Betti num-
ber of the 3-manifoldb; (M), is positive. In [Ha2], the second author used an
elementary counting argument to deduce tBat’% (M) = 1, if by(M) > 3,
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1 For a different construction &~ O (ar) for a rational homology 3-spheré, see [BGRT2)].
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and to computeZ M9 (M), if by(M) = 3 (and also fob, (M) = 2, see [BH]),
in terms of the Lescop invariant [Les] @f. It is an open problem to compute
ZEMO (pry, for by(M) = 0, 1.

Itis the purpose of the present paper to exploit elementary counting methods
inorderto calculat&“™© (M), for 3-manifoldsy which satisfyH, (M, Z) = Z,
in terms of a “classical invariant” af7, namely its Alexander polynomial. This
includes the special case ofsbvgery of a knotk in 3, 5% , in which case
the Alexander polynomial Qﬁ%o is the Alexander-Conway polynomial &f.3
An important ingredient of our computation is the recent result of A. Kricker, B.
Spence, and I. Aitchinson, [Kr, KSA], calculating the Conway weight system on
uni-trivalent graphs.

Although the invariantZ“"9(S3 _,), of +1-surgery on a knok (in con-
trast to 0-surgery), is not determined by the Alexander-Conway polynomial of
K (there are examples with nontrivial invariant, and trivial Alexander polyno-
mial), we show that after truncatirigf ¥ © at degreen, the associated degree 2
knotweight systerties in the algebra of the Alexander-Conway weight systems.
Similar methods allow us to show that finite type invariants of integral homol-
ogy 3-spheres are determined by their associated knot invariants, thus answering
positively the questions (see below) that were posed in [Ga] prior to the construc-
tion of the LMO invariant. (At that time, the only known finite type invariant of
3-manifolds was the Casson invariant.)

1.2. Statement of the results

All 3-manifolds and links considered in the present paper will be oriented.

Theorem 1. LetM be aclosed, connected 3-manifold satisfyihgM, 7)) = Z.
The universal invarianZ"° (M) e A(%) can be calculated in terms of the
Alexander-Conway polynomidl(M) of the 3-manifold. Conversely, the Alexan-
der polynomial ofM can be calculated in terms of the universal invariant
ZMO (M e AD).

A precise formula relating the two invariants will be given in Section 2.

We outline here the basic idea of the proof, which though somewhat technical,
really is quite elementary: If amanifold is obtained by O-surgery on a knktin
S2 (the general case of a manifold satisfyiHg(M, Z) = Z is not much harder),
then quite immediately from the definitions, the degregart of Z:* 9 (M) can
be computed from the part of the Kontsevich integrakofwritten in terms of

2 given a framed linkL in a 3-manifoldM, we denote by; the result of Dehn surgery ai.

3 An earlier version of this paper contained only this special case. We extend special thanks to
C. Lescop, for help in extending to the general case and to D. Thurston, for pointing out that the
result should hold in this generality.
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uni-trivalent graphs) which hasi2legs and &: internal vertices. Since there are

no components which are intervals (because of the 0-framing), and since by the
anti-symmetry relation, all trees vanish, the only contributing part consists of
wheels. But this part is known to determine the Alexander polynomi&l,and

thus that ofM.

Before we state the next result, we need to recall some standard definitions and
notation from the theory of finite type invariants of knots and integral homology
3-spheres, see [B1,0h,Ga,LMO].

Let K denote the vector space ov@on the set of isotopy classes of oriented
knots inS® and letF,,V (for a nonnegative integer) denote the vector space
of finite type (i.e., Vassiliev) invariants of knots of type [B1]. Similarly, let
M denote the vector space ov@ron the set of orientation preserving diffeo-
morphism classes of oriented integral homology 3-spheres, afij), (Btdenote
the vector space of finite type (i.e., Ohtsuki) invariants of integral homology
3-spheres of typez, [Oh]. In [Ga] we considered the mdp — 513<,+1- This is
a classical map, often used in the study of knots (or 3-manifolds). This yields a
mapX — M and a dual ma@ : M* — K* (whereV* denotes the dual of a
vector spacé’). In [Ga] the following questions were posed:

Q1 Does the above map serid,, O to 75, V?

Q2 Is the restriction of the mag to F3,,© one-to-one, for alin?

Q3 Assuming the answer to Question 1 is affirmative, and givenF3,, O, is
it true that the associated degree Rnot weight system lies in the algebra
of the Alexander-Conway weight systems?

Let v be aQ-valued invariant of integral homology 3-spheres andiét)
be the associated invariant of knots§A. Question 1 asks wheth@r(v) is a
finite type invariant of knots ir§ (together with an estimate of the type of the
invariant), ifv is a finite type invariant of integral homology 3-spheres. Question
2 asks whethe® (v) determines. (It should be noted, however, that there are
integral homology 3-spheres that cannot be obtained-bysurgery on a knot
in 3, see [A].) Question 3 is concerned with the finite type knot invari@at)
and asks whether in degres:Zthe maximum possible degree by question 1),
@ (v) is a classical knot invariant (on elements in tive-th term of the Vassiliev
filtration), given by a polynomial in the Alexander-Conway coefficients.
Building on work of the first author and J. Levine (a preliminary version
of [GL2]), Question 1 was answered affirmatively by the second author, [Hal].
Alternative proofs were later givenin [GL2,Lel]. The methods used in [Hal] and
[GL2] were a mixture of geometric topology together with a counting argument.
On the other hand, [Lel] used ti&"? invariant and an elementary counting
argument.
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Using elementary counting arguments similar to those in [Le1], together with
properties of the& X" © invariant, enables us to show that Questions 2 and 3 above
are true.

Theorem 2. The association, which takes a knotd#to the integral homology
sphere obtained by +1-framed surgery on the knot, induces an injection from the
space of finite type 3-manifold invariants (in the sense of Ohtsuki), to the space
of finite type (Vassiliev) knot invariants.

Theorem 3. Let v be a finite type3m invariant (in the sense of Ohtsuki) of
homology 3-spheres. Then the associated degyreknot weight system lies in
the algebra of the Alexander-Conway weight systems.

Remark 1.Theorem 2 does not hold atthe graded level, i.e., the associated graded
mapg,, @ : G3,O — G,V is not one-to-one fom > 4 (see Remark 3.2).

AcknowledgementWe would like to thank Dror Bar-Natan, Vincent Franjou, Jerry Levine, Thang
T.Q. Le, Christine Lescop, Gregor Masbaum, Paul Melvin, Xiao-Song Lin, Dylan Thurston and
Pierre Vogel for useful conversations. We also wish to thank the referee for numerous suggestions
and comments.

2. Preliminaries
2.1. Uni-trivalent graphs

A uni-trivalent graphis a graph (possibly with loops or multiple edges) every
vertex of which has valency 1 or 3, together with a cyclic order of the edges at
each of its trivalent vertices; such graphs were called chinese characters in [B1].
There is a degree-preserving linear isomorphjsmB — A(S') between the
graded coalgebrB of uni-trivalent graphs (modulo the antisymmetry and IHX
relations) and the graded coalgebra of chord diagralt®') on a circle, see
[B1, Theorem 8], given by mapping a uni-trivalent graphwith »n legs to ¥ n!
times the sum of the! ways of joining all of its legs ta chosen ordered points
on a fixed circle. The degree of a uni-trivalent graph or chord diagram is half the
number of vertices, and the primitive diagrams are the connected ones.

Since the mayy is a vector space isomorphism, we vidéntify 3 and.A(S?)
via x. Note thatB3 hastwo commutative multiplication$;one is induced by the
multiplication on.A(S?t) via x, denoted by, and the other is the disjoint union
of uni-trivalent graphs, denoted hyln what follows, we will suppress from
the notation, but will explicitly use. Thus, exp will be used to designate the

4 The two multiplications are different. For a conjectural relation between these two multipli-
cations, see [BGRT1, Conjecture 2].
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exponential with respect to thanultiplication, and exp will be used to designate
the exponential with respect to themultiplication.

We will be interested in several important subspaceg.ofet B’ denote
the subspace df which is spanned by uni-trivalent graphs, no component of
which is (homeomorphic to) anterval® B’ is a subalgebra df with respect to
either multiplication. Note tha$’ is a direct summand @& with complementary
factor the span of uni-trivalent graphs which contain an interval compoffént.
is related to adeframingprojection mapF : A(SY) — A(SY) (whose image
will be denoted byA’(S')) defined in [B1, part 2 of Theorem 4 and exercise
3.16]. Using the isomorphism, the image of the induced deframing map (also
denoted byF) F : B — B®was shown in [KSA, Corollary 4.4] to coincide with
B.’

Let B” denote the subspace Bfwhich is spanned by uni-trivalent graphs
some component of which has more trivalent vertices than univalent Bfies.
is a direct summand df’. In fact, one has the direct sum decompositi®n=
B’ @ B.,, whereB,,,® denotes the subspace Bfspanned by all uni-trivalent
graphs every component of which is a wheel (see Section 2.2 below).

Let P,, : B — B denote the composition of the deframing m@ollowed
by the projection to the subspaBg,.

We close this section with the following characterization of the algebra of
Alexander-Conway weight systems, due to [KSA, Kr]. Recall thve¢mht system
W is a linear magv : A(S) — Q. Weight systems can be multiplied and thus
they form an algebra. Given a finite type invariant of knots (or a power series
of such invariants, such as the Alexander-Conway polynomial, which will be
discussed in greater detail in the next section) there is an associated weight
system, generating a subalgebra in the algebra of weight systems. We now have
the following

Theorem 4. [Kr,KSA] A weight systeni : A(S') — Q lies in the algebra of
Alexander-Conway weight systems if and only if it factors throBgh

2.2. The Alexander-Conway polynomial and its weight system
In this section we review some well known properties of the Alexander-Conway

polynomial and its associated weight system. (For the Alexander-Conway poly-
nomial and further references, see for example the exposition in the appendix of

5 Aninterval is a uni-trivalent graph of degree 1 with 2 univalent vertices and no trivalent ones.

6 Note thatF is notthe projection in the above direct-sum decompositiof of

7 As an exercise, the reader may try to find a conjectural formul& fiorterms of uni-trivalent
graphs using [BGRT1, Conjecture 2].

8 With respect to the multiplication, B, is a polynomial algebra on the set of wheels with an
even number of legs (the odd-legged wheels vanish by antisymmetry).
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[Les].) TheConwaypolynomialC [Co, Ka] of a knot (considered as a polynomial
in z) is defined by the relations:

C<X>_C(X):ZC<><) L)

1 ife=1
0 otherwise.

With the terminology of [BG, Section 3.1], the Conway polynomial itself is not
acanonicalVassiliev power series, but its renormalized reparametrized version

A
eh/2 _ o—h/2

C (c-component unlink= {

C(h) = C ("2 —e7"/?)

is a canonical Vassiliev power series (i.e., it satisfie¢x ) (h) = We.no ZX(K),

see below). Similarly, thélexandempolynomial, defined by () = C(tY/? —
t~%2), is not a canonical Vassiliev power series, but it becomqs canonical when
multiplied byeh/z_hw and evaluated at= ¢" (as this product i€ (4)).

Let We : A(SY) — Q denote theweight systenof C (which is equal to
the weight system of’). It has the property that it is a deframed multiplicative
weight system. (Recall that a weight systéim A(S*) — Qis calleddeframed

if it factors as a compositionl(S?) £ A(SY) — Q, whereF is the deframing
map. Furthermore, a weight systei : A(S') — Q is calledmultiplicative
if for all chord diagramsC D,, C D, of degreesni, m, respectively, we have:
Winy4my(C D1 - CD2) = Wy, (CD1) W,y (C D2).)

The weight systenW. was calculated on linear chord diagrams in [BG,
Theorem 3]. Its expression in terms of uni-trivalent graphg'invas given by
Kricker [Kr, Theorem 2.10] as follows:

(=2)? if m = 2n and¢ is a disjoint union of
We(§) = p even-legged wheels (2)
0 otherwise

wherew,, is a wheel with 2 legs, see Fig. 1.

Fig. 1. The wheelw, with 4 legs. Its trivalent vertices are oriented clockwise

Let ZK : K — A(SYH denote theuniversalfinite type invariant of knots,

constructed by Kontsevich [Ko] (see [B1]), andgéK ) def log ZtM9(K) denote

its logarithm. (N.b., since knots are considered as unframed, their image under
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the mapZX liesin the image of the deframing mé&gor an extension to a functor
Z on the category of framegttangles, see e.g., [B2,Ca,KT,LM1]. Then for a O-
framed knotK in §2, ZX (K) coincides with the value of on K. In particular,
£(K) lies in (the primitive part of, see for example [LM2}/'(S') ~ B'. So
P,,E(K) consists of a sum of (even-legged) wheels.

Defineay,, (K) by

def

Y aom(K)wan = Py (K). (3)

m=1

Let W¢, denote the product oW and 299 where %9 is the operator
that multiplies every degree diagram bya™. Let/ denote the (zero-framed)
unknot® and seb,,, = as, (). We now claim that

— Fact 1.For a zero framed knot i§® we have:

—1/210g(A(K)(e") = Y ap,, (K)h™",

m=1

whereas,, (K) = az,(K) — by,. Indeed, one has that

C(K) () = Wep 0 ZK(K) sinceC is canonical
= exXp(We £(K)) sinceWc , is multiplicative
= exp(—2)"%°_, az, (K)i?") by equation (2).

Thuswe have;-1/2 Iog(C’(K)(h)) =y aom (K)A?". In particular—1/2 log
() = Yoo qb2,h?™", and the result follows sinc€ (K)(h) =
CU M) AK) (M.

Definexa(K) in (the completion ofj3,,;, by:

a(K) =Y (bon + azn(K))wom 4)
m=1
Note thatw(K) = > > (2ba, + ab, (K))wzy.
Similarly, let M denote a 3-manifold which satisfiég (M, Z) = Z, and let
A(M)(r) denote its Alexander polynomial, normalized so that itis symmetric (in

9 Actually, K (k) lies in a quotient ofA(S1) isomorphic tad’(s1).
10 ¢ may be of interest to note that the valueX (/) is conjecturally given by the equation
PynEU)) = EU). (See [BGRT1, Conjecture 1], where it is shown that the conjecture holds
on the level of semisimple Lie algebras.) Note also that the Alexander-Conway polynomial is
determined by thely colored Jones polynomial (see [BG])).
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and: 1) and evaluates to 1 at= 1. We defines,, (M) by—1/2 log(A(M)(e")) =
Z:?:l a/Zm (M)hzm
Definea (M) by:

a(M) €Y @bz, + ah, (M)) w2 (5)

m=1

Obviously,a(M) andA(M) can be computed from each other.

2.3. Preliminaries on thé&. M O invariant

In this section we review some well known properties of the invadit® . we
denote by{x},, the degreen part ofx. Recall from [LMO] that for every integer
£, and every knoK in $3, the value of the universal invariant dﬁ,’f is given

by:

2 tm ZK(K
zLMo (Sl?;,f):Z{L (C(cfm)(f)( ))} e AW®)

(the product in3 is taken with respect to the multiplication), wherec(f) =
exp(£0)Z% U) ande, (f) = 1 (expsgn(f)©/2ZX U)?) (resp. 1) iff # 0
(resp.f = 0). Here® denotes the unique chord diagram of degree 1 on a circle,
L 2 ASYH — A(®) is a map defined in [LMO, Section ZJ, is the zero framed
unknot, andZX (K) is the value of the universal knot invariant with thero
framing. Note thaZ X (/) is denoted by in [LMO, Lel].

Let ,, denote the projectiotd(¥) — A-,,(¥). In the special case when
f = +1 (n.b., the formula below holds since we are in the case of an integral
homology sphere, see [LMO]), one has the formula

T, (ZLMO (SI%,H)) =1, <M) e A, (D)

m=0

Cm

wherec = exp(30) ZX ) and where,, = 1,,(exp(30)ZX U)?).

The map,,, though rather complicated when evaluated on chord diagrams on
a circle, becomes more transparent when evaluated on uni-trivalent graphs. In
particular, it follows from its definition that for a uni-trivalent graghwith [

legs, we have:

_ [ 02, ((C)) (fl=2m

(€)= {O otherwise ©
where (C) denotes the closure af, i.e., the sum of al{2m — 1)!! ways of
closing its legs by joining the univalent vertices in pairs, &ng,, is the map
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which sets circle components equaH@m.'! Note that in the special case that
no connected component 6fis an intervall, then no connected component of
(C) is acircle, and s@_,, ({C)) = (C). Note also that ifC has Z% legs, then
O_2,({Cul)) = (=2)(m — k) O_2,((C)).

We have the following:

/

— Fact 2.Fix a nonnegative integen. Givena € 1+ B.1,b € B.,,, ¢ €
14 A.1(9), then:

{ tm(ab))

c

} = (Pu}h({b}Zm)) € Am(@)

Note that this identity holds with respect to either multiplicatiorSin

For the proof, note that, reduces degree by. In particular, the only part af

which contributes to both sides §8},,, the degree 2 part ofb lying in B, .

Note also that an elementBf,, has at most2 legs; moreover, it has exactly2

legsif and only if it lies in(53,,,) 2., i.€., itis a linear combination of uni-trivalent
graphs, all of whose components are even-legged wheels. This shows the above
claim.

3. Proofs

In this section we give the proofs of Theorems 1, 2 and 3.

Lemma 3.1. The mapx — (x) fromB,;, — A(%) isinjective, but its restriction
(Bui)2, — A, (@) forn > 4, is not surjective.

Proof. Note that the map ) sends connected uni-trivalent graphs to connected
trivalent graphs. In particular it induces a map of primitivesiaf, which is
easily seen to be injectivé.

Now note further that the map, although not multiplicative, sends a product
of primitives to the product of their closures, plus terms with fewer connected
components. This implies that the map on B, is injective, and further that
the preimage of the set of primitives is the set of primitive8pf. Thus, were

11 19 see this, see [Le2], note that the total symmetrization of the eleiﬂl‘f@nﬂescribed in

[LMO], vanishes, ifl is different from 2n. The formula follows, since the total symmetrization of

T applied to a Chinese character, corresponds to the sum of all ways of closing up the character.
12" Indeed, consider the multiplicative ma¥p : A(@) — QI[lc] defined by imposing the relation

W (H) = w(l) — W(X) and setting any resulting circle components equal tdere H denotes a
uni-trivalent graph which in a neighborhood of some arc looks likid aandll, resp X, is obtained

from H by replacing this neighborhood by two arcs joining the four points on the boundary of the
neighborhood which are on the same side of the arc, resp. diametrically opposed. Then one has
that W ((w)) = ¢2 — ¢ and thatW (w2, 42)) = (¢ 4+ 2m)W (w2 )), SO(woy,) # 0.
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the map also surjective as well, it would send the primitives onto the primitives.
But as the primitive part ofB,,,)2, is of dimension 1, and since the dimension
of the primitive part of4,,(¥) is > 1, forn > 4 (see e.g. [B1]), it follows that)

is not surjective in degree > 4. |

Proof of Theorem 1We first give the proof in caséf = S% , is obtained by
surgery on a zero-framed knft in 3. We have

o]

ZLMO(M) — Z{Lm(ZK(Z/[)ZK(K))}m

m=0

= >l (eXPEQD) eXPEK )

m=0

=3 o (XPEWU) + EK))}n

m=0
= (Pun €XPEU) + §(K)))
= (exp,(Puwi (§U) + §(K))))

= ( exp, (Z(az,,,(U) + azm(K))me>>

m=1

= (exp, a(K))

where the first and second equality is by definition, the third follows since we are
in a commutative algebra, the fourth follows from fact 2 (with= ¢ = 1), the
fifth follows sinceP,,;, is an algebra homomorphism, and the last two follow from
the definitions. This shows that the invariat? (S3 ) is determined by the
Alexander polynomialA (K). SinceA(K) = A(M) (and hence(K) = a(M)),
the result follows.

Conversely, by Lemma 3.1, the mAp~_; conwan —> (XA o1 ComWam))
is the composite of two injective maps and hence is injective. It follows that
ZMO($3 ) determines the Alexander polynomial.

To prove the general case, first note that we may oltimia surgery on a
boundary linkK U L in S%, where the framing oK is the zero framing, and

the framing of each component bfis £1. Indeed, one may obtai by zero-
framed surgery on a knot in an integral homology sphere, which in turn may be
obtained by surgery on#1-framed boundary linld. It suffices to isotope, in

this homology sphere, the Seifert surface for the knot so as to be disjoint from
the Seifert surfaces of the componentd.of

13 The same argument can be used to see that every integral homology $plere be obtained
by unit-framed surgery on a boundary link: First note tBats surgery on some link and after
stabilization and handle sliding, the link may be assumed thbéramed with zero linking num-
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In this case, one still had(K) = A(M) (since the link is a boundary link,
the Seifert form ork in S is the same as the Seifert form&fin the homology
sphere obtained by surgery b Moreover, since the link is boundary, its Milnor
invariants vanish, and hence, by [HM]X (K U L) consists of diagrams, none of
which are trees (wherkg denotes the linl. with zero framing). Consequently,
using a counting argument similar to [Ha2], one can checkthét'( ) ZX (K U
Lo)) = 1, (c'(f)ZX (K U Lo)) wherec'(f) are terms that depend on the framing
of L, andK LILg denotes the disjoint union of the linksandL . The definition of
the L M O invariant and its multiplicative property under connected sum implies
that ZEMO (M) = ZEMO (83 (183) = ZEMO(S3 ), thus finishing the proof of
the theorem. O

Proof of Theorem 2Recall, [Lel], thatZZ)? : M/Mzgyu1 — A (D) is
an isomorphism. We will prove that the map — M /M3, .1 is onto (or
equivalently, thatthe composite mBp— B_,, = K/Kapi1 = M/ Mz =

A, (9) is onto), which is dual to the statement of Theorem 2.
The mapB.,, — A<, () is given by the formula

X > T, (Lmécx)) e A, (),

m

wherec, ¢,, are as in secion 2.3.

Letx be a uni-trivalent graph withiZlegs of degree + k, having no interval
components; < m, k < m. Then{x) has degree. Under the above mapping, a
computation shows that— (—1)*(x)+o(n+1), whereo(n + 1) denotes terms
of degree> n + 1. Note that any connected graph is the closure of a connected
uni-trivalent graph with 2 legs. Moreover, the map— (x) sends a product
of connected uni-trivalent graphs (without interval components) to the product
of their closures plus terms each of which has fewer components. It follows
by downward induction on the degree and upward induction on the number of
components, that the mdp — A-,,(9) is surjective. ]

Proof of Theorem 3Consider the mag’ : K — A(¥) given by:
W(K)=2""0 (53 _,) (7)

as well as its truncationy.,, = w,, o ¥, wherern,, is the projection4(¥) —

A<, (?). Let S be aK -admissible Z-component set. Herg c S° denotes the
union of 2n disjoint embedded balls that intersect the knot ih erossing, and

[K, S]is the signed sum of all knots obtained by changing the crossings. (Recall

bers. In particulary can be obtained by a sequencetdf-framed surgeries on knots in homology
spheres. Arguing by induction and applying the Seifert surface argument above, establishes the
result.



496 S. Garoufalidis, N. Habegger

that such sums generate the-th term of the Vassiliev filtration.) One has that:

(UK, S) =, | o -D12040 (53 1)

N\

<Lm(CZK([Kv S])))
= ]‘[m

Cm

_ { t(€ZX (K, ST) }

Cm
= (D" {(Pun(ZX (K. SD))},,

(since by [LMO],{cin}o = (—=D™).

Similar computations show thét.,, ([K, S]) vanishes, if§ is aK -admissible
n-component set, with > 2m. It follows thatw.,, is a.A-,, (¥)-valued finite
type invariant of knots of orderi2. Moreover, the above shows that the weight
systemWy,,, : /Zm(Sl) — A,,(®) factors through the projectioB,,, to 5.

It follows from Theorem 4 thawy,, lies in the algebra of Alexander-Conway
weight systems with values A (). O

Remark 3.2.The above formula shows that the weight system is explicitly cal-
culated as the composite of the projection(By,;)2. followed by the closure
mapping{ }: (Bur)2n — A, (@). This proves the statement dual to that of Re-
mark 1, since by Lemma 3.1, the closure mappind3gn is injective, but not
surjective.

References

[A] D. Auckly, Surgery numbers of 3-manifolds, a hyperbolic example, Geometric topol-
ogy, Athens GA (1993) 21-32.

[B1] D. Bar-Natan, On the Vassiliev knot invariants, Topolo8#,(1995) 423-472.

[B2] D. Bar-Natan, Non-Associative Tangles, In: Geometric Topology (W. Kazez, Ed.),
Proc. Georgia Int. Topology Conf. 1993, AMS/IP Studies in Advanced Mathematics,
1997.

[BG] D. Bar-Natan, S. Garoufalidis, On the Melvin-Morton-Rozansky conjecture, Inven-

tiones,125(1996) 103-133.

[BGRT1] D. Bar-Natan, S. Garoufalidis, L. Rozansky, D. Thurston, Wheels, wheeling and the
Kontsevich integral of the unknot, to appear in Israel J. Math.

[BGRT2] D. Bar-Natan, S. Garoufalidis, L. Rozansky, D. Thurston, The Arhus invariant of
rational homology 3-spheres 1,1I: A highly non trivial flat connection$h Selecta
Math, in press.

[BH] A. Beliakova, N. Habegger, The Casson-Walker-Lescop Invariant as a Quantum 3-
manifold Invariant, preprint July 1997.

[BZ] G. Burde, H. Zieschang, On knots, de Gruyter Studies in Mathentisrlin, 1985.

[Ca] P. Cartier, Construction combinatoire des invariants de Vassiliev-Kontsevich des

noeuds, C. R. Acad. Sci. PaA46, 1993, 1205-1210.



The Alexander polynomial and finite type 3-manifold invariants 497

[CP]
[Co]

(Ga]
[GL1]
[GL2]
[GQ]
[Ha1]
[Ha2]
[HM]

[Ka]
[KT]

[Ko]
[Kr]

[KSA]
[LM1]
[LM2]
[LMO]

[Lel]

[Le2]
[Les]
[Oh]

V]

V. Chari, A. Pressley, Quantum groups, Cambridge University Press, Cambridge 1994.
J. H. Conway, An enumeration of knots and links and some of their algebraic properties,
in Computational Problemsin AbstractAlgebra, 329—-358, Pergamon, New-York 1970.
S. Garoufalidis, On finite type 3-manifold invariants I, J. Knot Theory and its Ramifi-
cationsb, no. 4 (1996) 441-462.

S. Garoufalidis, J. Levine, On finite type 3-manifold invariants 11, Math. Ann36e,
(1996) 691-718.

S. Garoufalidis, J. Levine, On finite type 3-manifold invariants IV: comparison of
definitions, Proc. Camb. Phil. Sat22(1997) 291-300.

S. Garoufalidis, T. Ohtsuki, On finite type 3-manifold invariants Ill: manifold weight
systems, Topologyad7 (1998) 227-244.

N. Habegger, Finite type 3-manifold invariants: a proof of a conjecture of Garoufalidis,
preprint, July 1995.

N. Habegger, A Computation of the Universal Quantum 3-manifold Invariant for Man-
ifolds of Rank Greater than 2, preprint, December 1996.

N. Habegger, G. Masbaum, The Kontsevich Integral and Milnor’s Invariants, preprint,
to appear in Topology.

L. H. Kauffman, On knots, Princeton Univ. Press, Princeton, 1987.

C. Kassel and V. Turaev, Chord diagram invariants of tangles and graphs, University
of Strasbourg preprint, January 1995.

M. Kontsevich, Vassiliev’s knot invariants, Adv. in Sov. Matth6(2)(1993) 137-150.
A. Kricker, Alexander-Conway limits of many Vassiliev invariants, J. Knot Theory and
its Ramifications no. 5, (1997) 687-714.

A. Kricker, B. Spence, I. Aitchinson, Cabling the Vassiliev invariants, J. Knot Theory
and its Ramification§ no. 3, (1997) 327-358.

T.T.Q. Le, J. Murakami, The universal Vassiliev-Kontsevich invariant for framed ori-
ented links, Compositio Math. 102, 1996, 41-64.

T.T.Q. Le, J. Murakami, The parallel version of the Kontsevich integral, J. Pure and
Applied Algebra,121(1997), 271-291.

T.T.Q. Le, J. Murakami, T. Ohtsuki, A universal perturbative invariant of 3-manifolds,
Topology,37 (1998) 539-574.

T.T.Q. Le, Aninvariant of integral homology 3-spheres which is universal for all finite
type invariants, Soliton Geometry and Topology: On the crossroad, AMS Translations
2 Eds. V. Buchstaber, S. Novikov, 75-100.

S. Novikov, On Denominators of the Kontsevich Integral and the Universal Perturbative
Invariant of 3-manifolds, preprirg-alg 9704017

C. Lescop Global surgery formula for the Casson-Walker invariant, Annals of Math
Studies,140Princeton Univ. Press 1996.

T. Ohtsuki, Finite type invariants of integral homology 3-spheres, J. Knot Theory and
its Rami.5 (1996) 101-115.

P. Vogel, Algebraic structures on modules of diagrams, Inventiones, in press.



