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THE SL3 COLORED JONES POLYNOMIAL OF THE TREFOIL

STAVROS GAROUFALIDIS, HUGH MORTON, AND THAO VUONG

(Communicated by Daniel Ruberman)

Abstract. Rosso and Jones gave a formula for the colored Jones polynomial
of a torus knot, colored by an irreducible representation of a simple Lie algebra.
The Rosso-Jones formula involves a plethysm function, unknown in general.
We provide an explicit formula for the second plethysm of an arbitrary rep-
resentation of sl3, which allows us to give an explicit formula for the colored
Jones polynomial of the trefoil and, more generally, for T (2, n) torus knots.
We give two independent proofs of our plethysm formula, one of which uses
the work of Carini and Remmel. Our formula for the sl3 colored Jones polyno-
mial of T (2, n) torus knots allows us to verify the Degree Conjecture for those
knots, to efficiently determine the sl3 Witten-Reshetikhin-Turaev invariants of
the Poincaré sphere, and to guess a Groebner basis for the recursion ideal of
the sl3 colored Jones polynomial of the trefoil.

1. Introduction

The initial goal of this paper is to provide a supply of explicit quantum invariants
so as to help in formulating and testing a number of conjectures. The most readily
approachable knots in this context are the (m,n) torus knots, particularly when
m = 2. The aim is to give explicit details for the sl3 invariants, as these are
potentially the simplest case after the more readily available colored Jones (sl2)
invariants.

There is a general method of Rosso and Jones to determine any quantum invari-
ant of a torus knot. For the invariant of the (m,n) torus knot with quantum group
module V their calculations require knowledge of the decomposition of the module
ψm(V ) into irreducible representations. This is a combinatorial problem depending
on the quantum group and the choice of V , which does not always have a readily
available explicit formula.

We give here an explicit formula where m = 2 and V is a general irreducible sl3

module; from this we are able to give a detailed estimate for the extreme degrees
of the resulting Laurent polynomial invariant.

Subsequently the second author reformulated some combinatorial work of Carini
and Remmel [CR98] describing ψ2(V ) for the irreducible slN modules which corre-
spond to partitions with two parts. This recovers the explicit formulae for sl3 and
also allows us to extend them to slN .
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2. The colored sl3 Jones polynomial of the trefoil

In his seminal paper [Jon87], Jones introduced the Jones polynomial of a knot
K in 3-space. The Jones polynomial is a Laurent polynomial in a variable q with
integer coefficients, which can be generalized to an invariant JK,V (q) ∈ Z[q±1] of
a (0-framed) knot K colored by a representation V of a simple Lie algebra g, and
normalized to be 1 at the unknot. The definition of JK,V (q) uses the machinery of
quantum groups and may be found in [Tur88, Tur94] and also in [Jan96].

Concrete formulas for the colored Jones polynomial JK,V (q) are hard to find
in the case of higher rank Lie algebras, and for good reasons. For torus knots
T , Jones and Rosso gave a formula for JT,V (q) which involves a plethysm map
of V , unknown in general. Our goal is to give an explicit formula for the second
plethysm of representations of sl3 and consequently to give a formula for the sl3

colored Jones polynomial of the trefoil. To state our results, let Vn1,n2
denote the

irreducible representation of sl3 with highest weight,

(1) λ = n1ω1 + n2ω2,

where n1, n2 are nonnegative integers and ω1, ω2 are the fundamental weights of sl3
dual to the simple roots α1, α2. In coordinates, we have

α1 = (1,−1, 0), α2 = (0, 1,−1), ω1 =
1

3
(2α1 + α2), ω2 =

1

3
(α1 + 2α2).

The quantum integer [n], the quantum dimension dn1,n2
and the twist parameter

θn1,n2
of Vn1,n2

are defined by

[n] =
q

n
2 − q−

n
2

q
1
2 − q−

1
2

,(2)

dn1,n2
=

[n1 + 1][n2 + 1][n1 + n2 + 2]

[2]
,(3)

θn1,n2
= q

1
3 (n

2
1+n1n2+n2

2)+n1+n2 .(4)

Let T (m,n) denote the torus knot associated to a pair of coprime natural numbers
m,n, and let JT (m,n),n1,n2

(q) denote the sl3 colored Jones polynomial of the torus
knot T (m,n) colored by Vn1,n2

.

Theorem 2.1. For all odd natural numbers n we have

JT (2,n),n1,n2
(q)

=
θ−2n
n1,n2

dn1,n2

⎛
⎝min{n1,n2}∑

l=0

n1−l∑
k=0

(−1)kd2n1−2k−2l,2n2+k−2lθ
n
2

2n1−2k−2l,2n2+k−2l

+

min{n1,n2}∑
l=0

n2−l∑
k=0

(−1)kd2n1+k−2l,2n2−2k−2lθ
n
2

2n1+k−2l,2n2−2k−2l

−
min{n1,n2}∑

l=0

d2n1−2l,2n2−2lθ
n
2

2n1−2l,2n2−2l

⎞
⎠ .

Theorem 2.1 can be used to answer several problems.

• We can verify the sl3-Degree Conjecture of the colored Jones polynomial
for the trefoil; see [GV]. Explicitly, we can compute the lowest degree
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δ∗T (2,n),n1,n2
and the highest degree δT (2,n),n1,n2

of the Laurent polynomial

JT (2,n),n1,n2
(q) as follows:

δ∗T (2,n),n1,n2
=

{
−n

2n
2
1 − n

2n
2
2 − nn1n2 − 3n

2 n1 − ( 5n2 − 2)n2 if n1 ≥ n2,

−n
2n

2
1 − n

2n
2
2 − nn1n2 − 3n

2 n2 − ( 5n2 − 2)n1 if n1 < n2,
(5)

δT (2,n),n1,n2
= −(n− 1)(n1 + n2).(6)

The above formula verifies that the degree, restricted to each Kostant cham-
ber, is a quadratic quasi-polynomial.

• We can efficiently compute the Witten-Reshetikhin-Turaev invariant of the
Poincaré sphere, complementing calculations of Lawrence [Law03].

• We can guess an explicit Groebner basis for the ideal of recursion relations
of the 2-variable q-holonomic sequence JT (2,3),n1,n2

(q); see [GK10].

Remark 2.2. An alternative formula for the sl3 colored Jones polynomial of T (2, 3)
is given by Lawrence in [Law03]. Lawrence’s formula is derived from the theory
of Quantum Groups and cannot generalize to the case of T (2, n) torus knots. In
contrast, the plethysm formula of Theorem 2.4 below can be generalized to a formula
for ψm(Vλ) which allows for an efficient formula of the sl3 colored Jones polynomial
of all torus knots. Additional generalizations are possible for all simple Lie algebras;
see [GV].

Remark 2.3. Theorem 2.1 gives an efficient computation of the sl3 colored Jones
polynomial of the 31, 51, 71 and 91 knots in the Rolfsen notation. In low weights,
our answer agrees with the independent computation given by the entirely different
methods of the KnotAtlas; see [BN05]. This is a consistency check which simulta-
neously validates the formulas of Theorem 2.1 and the data of the KnotAtlas.

2.1. An sl3 plethysm formula. As mentioned above, Theorem 2.1 follows from
the Rosso-Jones formula for the colored Jones polynomial of torus knots and the
following plethysm computation. Let ψm denote the m-plethysm operation.

Theorem 2.4. For λ as in Equation (1) we have

ψ2(Vλ) =

min{n1,n2}∑
l=0

n1−l∑
k=0

(−1)kV2λ−kα1−2l(α1+α2)

+

min{n1,n2}∑
l=0

n2−l∑
k=0

(−1)kV2λ−kα2−2l(α1+α2)

−
min{n1,n2}∑

l=0

V2λ−2l(α1+α2).

3. The Rosso-Jones formula

The polynomial invariant JK,V (q) of a knot K colored by the representation V
of a simple Lie algebra is difficult to compute from its Quantum Group definition
even when K = 41 and g = sl3. Although it is a finite multi-dimensional sum,
a practical computation seems out of reach. Fortunately, there is a class of knots
whose quantum group invariant has a simple enough formula that allows us to
extract its q-degree. This is the class of torus knots T (m,n) where m,n are coprime
natural numbers. The simple formula is due to Rosso and Jones and is also studied
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by the second named author, [RJ93, Mor95]. Let dλ denote the quantum dimension
of the representation Vλ and let θλ be the eigenvalue of the twist operator on the
representation Vλ. dλ and θλ are given by

dλ =
∏
α>0

[(λ+ ρ, α)]

[(ρ, α)]
,(7)

θλ = q
1
2 (λ,λ+2ρ),(8)

where α belongs to the set of positive roots, ρ = 1
2

∑
α>0 α is half the sum of the

positive roots and (·, ·) denotes the g-invariant inner product on the dual of the

Cartan algebra (normalized so that the longest root has length
√
2). When g = sl3

and λ is given by (1), then the quantum dimension and the twist parameter coincide
with (3) and (4). For a natural number m, consider the m-Adams operation ψm on
representations. It is given by (see [FH91, Mac95])

(9) ψm(Vλ) =
∑

μ∈Sλ,m

cμλ,mVμ,

where cμλ,m are nonzero integers. The Rosso-Jones formula is the following (see

[RJ93]):

(10) JT (m,n),λ(q) =
θ−mn
λ

dλ

∑
μ∈Sλ,m

cμλ,mdμθ
n
m
μ .

For a related discussion, see also [MM08].

4. Schur functions in sl3

4.1. A review of Schur functions. Let us recall some well-known properties of
Schur functions and their relation to the character of irreducible representations of
slN , which can be found in [Mac95, FH91]. For a partition λ with parts λ1 ≥ λ2 ≥
. . . ≥ λk ≥ 0, let sλ1,...,λk

(x1, . . . , xN ) denote the corresponding Schur function. A
partition λ = (λ1, . . . , λk) will be depicted as an arrangement of boxes as follows
(for λ = (4, 2, 1)):

If ωi denote the fundamental weights of slN and ni are nonnegative integers for

i = 1, . . . , N − 1, and λ = (
∑N−1

i=1 ni,
∑N−1

i=2 ni, . . . ,
∑N−1

i=N−1 ni), then

(11) character(V∑N−1
i=1 niωi

) = sλ(x1, . . . , xN ).

For λ = (4, 2, 1) we then have (n1, n2, n3) = (2, 1, 1).
The plethysm operation ψm is defined by

ψm(sλ(x1, . . . , xN )) = sλ(x
m
1 , . . . , xm

N ).

Note that s1 = x1 + · · ·+ xN and ψ2(s1) = s2 − s1,1.
In slN the irreducible modules correspond to partitions λ with at most N parts.

The decomposition of ψm(Vλ) into irreducibles needed for the invariant of the
(m,n) torus knot is given by the corresponding expansion of the symmetric function
ψm(sλ) as a linear combination of Schur functions.
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When N = 3 the Schur function sλ vanishes where λ has more than 3 parts
and satisfies sa,b,c = sa+1,b+1,c+1. Then sa,b,c = sa−c,b−c, so we need only consider
partitions with at most 2 parts. All the same, it will be convenient to use 3 parts
in what follows.

4.2. A reformulation of Theorem 2.4. The goal of this section is to give a
formula for ψ2(sm1,m2

) as a linear combination of Schur functions, assuming that
N = 3.

Definition 4.1. For m1 ≥ m2 ≥ 0, let D(m1,m2) ⊂ N
3 denote the set of tuples

(a, b, c) that satisfy

• a+ b+ c = 2m1 + 2m2, 2m1 ≥ a ≥ b ≥ c ≥ 0, a ≥ 2m2 ≥ c;
• if b ≥ 2m2, then c ≡ 0 mod 2;
• if b ≤ 2m2, then a ≡ 0 mod 2.

When m1 < m2, we define D(m1,m2) to be the empty set.

Theorem 4.2. In sl3 for all m1 ≥ m2 we have

ψ2(sm1,m2
) =

∑
(a,b,c)∈D(m1,m2)

(−1)bsa,b,c.

It is interesting to note that the coefficient of every Schur function in the expan-
sion of ψ2(sm1,m2

) is 0,±1. The same feature proves to be the case for ψ2(sm1,m2
)

in the general case of slN , noted in Subsection 5.1.

4.3. Theorem 4.2 implies Theorem 2.4. Since V ∗
n1ω1+n2ω2

= Vn2ω1+n1ω2
and

JK,V ∗(q) = JK,V (1/q), it suffices to prove Theorem 2.4 when n1 ≥ n2. Equation
(11) for N = 3 implies that

character(Vn1ω1+n2ω2
) = sn1+n2,n2

(x1, x2, x3).

Fix nonnegative integers n1 and n2 and set (m1,m2) = (n1+n2, n2) in Theorem 4.2.
We can parametrise a tuple (a, b, c) ∈ D(m1,m2) that satisfies b ≥ 2m2 by

setting b = 2m2 + k, c = 2l, to get a = 2m1 − k − 2l, satisfying the inequalities
k, l ≥ 0, k ≤ m1 −m2 − l, l ≤ m2,m1 −m2. Likewise, we can parametrise a tuple
(a, b, c) ∈ D(m1,m2) that satisfies b ≤ 2m2 by setting b = 2m2−k, a = 2m1− 2l to
get c = 2l+ k, satisfying k, l ≥ 0, k ≤ m2 − l, l ≤ m2,m1 −m2. Thus Theorem 4.2
implies the formula of Theorem 2.4.

4.4. A reformulation of Theorem 4.2. To establish Theorem 4.2 we first prove
Theorem 4.3.

Theorem 4.3. For m1 ≥ m2 we have⎛
⎝ ∑

(a,b,c)∈D(m1,m2)

(−1)bsa,b,c

⎞
⎠ψ2(s1) =

∑
(a′,b′,c′)∈D(m1+1,m2)

(−1)b
′
sa′,b′,c′

+
∑

(a′,b′,c′)∈D(m1,m2+1)

(−1)b
′
sa′,b′,c′

+
∑

(a′,b′,c′)∈D(m1−1,m2−1)
m2>0

(−1)b
′
sa′,b′,c′ .
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In the proof of Theorem 4.2 we will need the following special cases of the
Littlewood-Richardson rule adapted to sl3, bearing in mind that Schur functions
for partitions with more than 3 parts are 0 in this case; see [Mac95]. In the next
lemma and below, we will use the convention that sa1,a2,a3

= 0 unless a1 ≥ a2 ≥ a3.
Furthermore, the notation sa,b,c|a>b (resp. sa,b,c|a=b) means sa,b,c when a > b (resp.
a = b) and zero otherwise.

Lemma 4.4. In sl3 we have

sa,b,cs2 = sa+2,b,c + sa,b+2,c + sa,b,c+2 + sa+1,b+1,c|a>b

+ sa+1,b,c+1 + sa,b+1,c+1|b>c,

sa,b,cs1,1 = sa+1,b+1,c + sa+1,b,c+1 + sa,b+1,c+1,

sm1,m2
s1 = sm1+1,m2

+ sm1,m2+1 + sm1,m2,1.

Corollary 4.5. For a ≥ b ≥ c ≥ 0 we have

sa,b,c(s2 − s1,1) = sa+2,b,c + sa,b+2,c + sa,b,c+2 − sa+1,b+1,c|a=b − sa,b+1,c+1|b=c.

Corollary 4.6. Since ψ2 is a ring homomorphism and ψ2(s1) = s2− s1,1, we have

ψ2(sm1,m2
)(s2 − s1,1) = ψ2(sm1,m2

)ψ2(s1) = ψ2(sm1,m2
s1)

=

{
ψ2(sm1+1,m2

) + ψ2(sm1,m2+1) + ψ2(sm1,m2,1) if m1 > m2 > 0,
ψ2(sm1+1,m2

) + ψ2(sm1,m2+1) if m1 > m2 = 0.

4.5. Theorem 4.3 implies Theorem 4.2. We deduce Theorem 4.2 from Theo-
rem 4.3 by induction on m2.

When m2 = 0 we have (a, b, c) ∈ D(m1, 0) iff c = 0, a+ b = 2m1, a ≥ b ≥ 0. It
is known (for example, [CGR84, Eqn. 2.30]) that

ψ2(sm) =
m∑

k=0

(−1)ks2m−k,k.

This establishes Theorem 4.2 for m2 = 0.
Theorem 4.3 gives

ψ2(sm1,m2
)ψ2(s1) = ψ2(sm1+1,m2

)

+
∑

(a′,b′,c′)∈D(m1,m2+1)

(−1)b
′
sa′,b′,c′ + ψ2(sm1−1,m2−1)

by induction on m2.
Corollary 4.6 then shows that

ψ2(sm1,m2+1) =
∑

(a′,b′,c′)∈D(m1,m2+1)

(−1)b
′
sa′,b′,c′ ,

which completes the induction step.

4.6. Proof of Theorem 4.3. To prove Theorem 4.3 we sum both sides of the
equation in Corollary 4.5 over (a, b, c) ∈ D(m1,m2), using the following lemma.
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Lemma 4.7. Suppose that m1 > m2 ≥ 0. Then
∑

(a,b,c)∈D(m1,m2)

(−1)bsa+2,b,c =
∑

(a′,b′,c′)∈D(m1+1,m2)

a′ �=b′,a′ �=2m2

(−1)b
′
sa′,b′,c′ ,(12)

∑

(a,b,c)∈D(m1,m2)

(−1)bsa,b+2,c =
∑

(a′,b′,c′)∈D(m1,m2+1)

b′ �=c′,c′ �=2m2+2

(−1)b
′
sa′,b′,c′(13)

+
∑

(a′,b′,c′)∈D(m1+1,m2)

a′=2m2,b
′ �=c′

(−1)b
′
sa′,b′,c′ ,

∑

(a,b,c)∈D(m1,m2)

(−1)bsa,b,c+2 =
∑

(a′,b′,c′)∈D(m1−1,m2−1)
m2>0

(−1)b
′
sa′,b′,c′(14)

+
∑

(a′,b′,c′)∈D(m1,m2+1)

c′=2m2+2

(−1)b
′
sa′,b′,c′ ,

∑

(a,b,c)∈D(m1,m2)
a=b

(−1)b+1sa+1,b+1,c =
∑

(a′,b′,c′)∈D(m1+1,m2)

a′=b′,a′ �=2m2,b
′ �=c′

(−1)b
′
sa′,b′,c′ ,(15)

∑

(a,b,c)∈D(m1,m2)
b=c

(−1)b+1sa,b+1,c+1 =
∑

(a′,b′,c′)∈D(m1,m2+1)

b′=c′,c′ �=2m2+2

(−1)b
′
sa′,b′,c′(16)

+
∑

(a′,b′,c′)∈D(m1+1,m2)

a′=2m2,b
′=c′

(−1)b
′
sa′,b′,c′ .

The total sum of the left hand sides of the equations in Lemma 4.7 is then the
left hand side of the equation in Theorem 4.3, while the terms on the right hand
sides make up the right hand side of Theorem 4.3.

4.7. Proof of Lemma 4.7. For each of the five equations we provide a bijec-
tive transformation carrying (a, b, c) ∈ D(m1,m2) with the restrictions shown to
(a′, b′, c′) satisfying the conditions on the right hand sides.

We make repeated use of the parity rules to ensure that inequalities force a
difference of at least 2. With the exception of a couple of less obvious cases we omit
proofs that the individual parity rules for (a′, b′, c′) are satisfied, as they generally
follow readily from those for (a, b, c) and vice versa. Equally the sum a′ + b′ + c′ is
always obviously correct.

Proof. For Equation (12), put a′ = a + 2, b′ = b, c′ = c. Let (a, b, c) ∈ D(m1,m2).
Then 2m2 + 2 ≥ a′ > b′ ≥ c′ ≥ 0, and a′ > 2m2 ≥ c′. Then (a′, b′, c′) ∈
D(m1 + 1,m2), with a′ �= b′ and a′ �= 2m2.

Conversely suppose that (a′, b′, c′) ∈ D(m1 + 1,m2), with a′ > b′ and a′ > 2m2.
By the parity rules, if b′ ≤ 2m2, then a′ ≡ 0 mod 2, so a′ ≥ 2m2 + 2 ≥ b′ + 2.
If b′ > 2m2, then a′ ≡ b′ mod 2, so a′ ≥ b′ + 2 > 2m2 + 2. In any case 2m1 ≥
a′ − 2 ≥ b′ ≥ c′ ≥ 0, and a′ − 2 ≥ 2m2 ≥ c′. Then (a, b, c) ∈ D(m1,m2). This
proves Equation (12).
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For Equation (13), put a′ = a, b′ = b + 2, c′ = c. Let (a, b, c) ∈ D(m1,m2) with
a ≥ b + 2. If a = 2m2, then 2m1 + 2 ≥ a′ ≥ b′ > c′ ≥ 0 and a′ ≥ 2m2 ≥ c′. Then
(a′, b′, c′) ∈ D(m1+1,m2), with a′ = 2m2, b

′ > c′. Otherwise a > 2m2. If b ≥ 2m2,
then a ≥ b+ 2 ≥ 2m2 + 2, while if b < 2m2, then a ≡ 0 mod 2 by the parity rules,
so that a ≥ 2m2 + 2. Hence 2m1 ≥ a′ ≥ b′ > c′ ≥ 0 and a′ ≥ 2m2 + 2 ≥ c′. In this
case we check the parity rules explicitly. Here b′ ≥ 2m2 + 2 =⇒ b ≥ 2m2 =⇒
c′ ≡ c ≡ 0 mod 2 and b′ ≤ 2m2 + 2 =⇒ b ≤ 2m2 =⇒ a′ ≡ a ≡ 0 mod 2. So
(a′, b′, c′) ∈ D(m1,m2 + 1) with b′ > c′ and c′ < 2m2 + 2.

Conversely suppose that (a′, b′, c′) ∈ D(m1,m2+1) with b′ > c′ and c′ < 2m2+2.
If b′ ≥ 2m2 + 2, then c′ ≡ 0 mod 2, so c′ ≤ 2m2 ≤ b′ − 2; and if b′ < 2m2 + 2,
then b′ ≡ c′ mod 2 and c′ ≤ b′ − 2 < 2m2. Hence 2m1 ≥ a′ ≥ b′ − 2 ≥ c′ ≥ 0
and a′ > 2m2. A parity check as above shows that then (a, b, c) ∈ D(m1,m2) with
a = a′ ≥ b′ = b+ 2 and a > 2m2.

Finally suppose that (a′, b′, c′) ∈ D(m1 + 1,m2), with a′ = 2m2, b
′ > c′. Then

b′ ≡ c′ mod 2, so b′ − 2 ≥ c′, and a′ = 2m2 ≥ c′, again giving (a, b, c) ∈ D(m1,m2)
with a = 2m2 ≥ b+ 2. This proves Equation (13).

For Equation (14), put a′ = a, b′ = b, c′ = c + 2 when c = 2m2, and a′ =
a − 2, b′ = b − 2, c′ = c otherwise. In either case sa,b,c+2 = sa′,b′,c′ since we
are working in sl3. Let (a, b, c) ∈ D(m1,m2) with b ≥ c + 2. If c = 2m2, then
2m1 ≥ a′ ≥ b′ ≥ 2m2+2 = c′ ≥ 0, and (a′, b′, c′) ∈ D(m1,m2+1) with c′ = 2m2+2.
Otherwise c < 2m2 �= 0. If b ≤ 2m2, then c ≤ 2m2−2. If b > 2m2, then c ≡ 0 mod 2
by the parity rules, giving again c ≤ 2m2−2. Then 2m1−2 ≥ a−2 ≥ b−2 ≥ c ≥ 0
and a− 2 ≥ 2m2 − 2 ≥ c. So (a′, b′, c′) ∈ D(m1 − 1,m2 − 1).

Conversely let (a′, b′, c′) ∈ D(m1 − 1,m2 − 1), with m2 �= 0. Then 2m1 ≥
a′ + 2 ≥ b′ + 2 ≥ c′ ≥ 0 and a′ ≥ 2m2 − 2 ≥ c′, so a′ + 2 ≥ 2m2 > c′. Hence
(a, b, c) ∈ D(m1,m2) with c �= 2m2.

Finally, suppose that (a′, b′, c′) ∈ D(m1,m2 + 1) with c′ = 2m2 + 2. Then
2m1 ≥ a′ ≥ b′ ≥ 2m2 = c′ − 2 ≥ 0 so that (a′, b′, c′ − 2) = (a, b, c) ∈ D(m1,m2)
with c = 2m2. This proves Equation (14).

For Equation (15), put a′ = a + 1, b′ = b + 1, c′ = c. Let (a, b, c) ∈ D(m1,m2)
with a = b. Then 2m1 + 2 ≥ a′ ≥ b′ ≥ c′ ≥ 0 and a′ > a ≥ 2m2 ≥ c′ ≥ 0. Since
b′ = a′ > 2m2 and c′ ≡ 0 mod 2 the parity rules are satisfied, and (a′, b′, c′) ∈
D(m1 + 1,m2) with a′ = b′, a′ > 2m2, b

′ �= c′.
Conversely let (a′, b′, c′) ∈ D(m1 + 1,m2) with a′ = b′, a′ > 2m2, b

′ �= c′. Now
2a′ ≤ a′ + b′ + c′ = 2m1 + 2m2 + 2 ≤ 4m1, since m2 < m1. Then 2m1 > a′ − 1 ≥
b′ − 1 ≥ c′ ≥ 0 and a′ − 1 ≥ 2m2 ≥ c′. Hence (a, b, c) ∈ D(m1,m2) with a = b.
This proves Equation (14).

For Equation (16), put a′ = a, b′ = b + 1, c′ = c + 1. Let (a, b, c) ∈ D(m1,m2)
with a > b = c. If a = 2m2, then 2m1 + 2 > a′ ≥ b′ ≥ c′ ≥ 0 and a′ = 2m2 ≥ c′.
Hence (a′, b′, c′) ∈ D(m1 + 1,m2) with a′ = 2m2, b

′ = c′. Otherwise a > 2m2,
and a′ = a ≥ 2m2 + 2, since b = c, while 2m2 + 2 ≥ c + 2 > c′. We have also
2m1 ≥ a′ ≥ b′ ≥ c′ ≥ 0. Hence (a′, b′, c′) ∈ D(m1,m2+1) with b′ = c′, c′ �= 2m2+2.

Conversely suppose that (a′, b′, c′) ∈ D(m1,m2 + 1) with b′ = c′, c′ < 2m2 + 2.
Now a′ +2c′ = 2m1 +2m2 +2 and a′ ≤ 2m1, so c′ > 0. Hence 2m1 ≥ a′ > b′ − 1 ≥
c′ − 1 ≥ 0 and a′ > 2m2 ≥ c′ − 1. Then (a, b, c) ∈ D(m1,m2) with a > b = c and
a > 2m2.

Finally if (a′, b′, c′) ∈ D(m1 + 1,m2) with a′ = 2m2, b
′ = c′, then b′ = c′ =

m1 + 1 > 0 and (a, b, c) ∈ D(m1,m2) with a = 2m2 > b = c. �
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5. A proof of Theorem 4.2 using Carini-Remmel’s work

5.1. A review of Theorem 5 of [CR98]. In this section we give an alternative
proof of Theorem 4.2 using the work of Carini and Remmel [CR98]. In Theorem 5
of [CR98], Carini and Remmel give the expansion of the plethysm ψ2(sa,b) for the
Schur function of a 2-row partition of n = a + b in terms of Schur functions sλ,
where λ runs through partitions of 2n with at most 4 parts. In this expansion each
sλ has coefficient 0,±1, depending on the parities of the parts of λ and some linear
inequalities.

In their paper Carini and Remmel use the opposite convention to Macdonald,
so that they take 0 ≤ a ≤ b for the given partition of n = a+ b and 0 ≤ λ1 ≤ λ2 ≤
λ3 ≤ λ4 for the parts of the partition λ of 2n. They also use the more common
combinatorial notation p2 rather than ψ2.

Theorem 5 of [CR98] can be readily restated as follows, by grouping separately
the partitions λ of 2a + 2b with λ1 + λ3 ≥ 2a and those with λ1 + λ3 < 2a in the
expansion of ψ2(sa,b):

• When λ1 + λ3 ≥ 2a, λ1 + λ2 is even and λ1 + λ2 ≤ 2a, the Schur function
sλ has coefficient (−1)λ2+λ3 .

• When λ1 + λ3 < 2a, λ2 + λ3 is even, 2a ≤ λ2 + λ3 and 2a ≤ λ1 + λ4, the
Schur function sλ has coefficient (−1)λ1+λ2 .

• All other sλ have coefficient 0.

The first of these cases corresponds to the partitions in (ii) and some of (i) in
[CR98, Thm. 5], while the second corresponds to the partitions in (iii) and the
remaining partitions in (i).

5.2. Reformulation of Carini and Remmel’s expansion of ψ2(sm1,m2
). The-

orem 5 of [CR98] gives rise to an expansion of ψ2(sm1,m2
),m1 ≥ m2, in Schur

functions of x1, . . . , xN which is valid for all N .
We can reformulate this further by specifying the support set for the partitions

which appear in the expansion in terms of linear inequalities and some parity rules,
so that Theorem 4.2, the case where N = 3, is an immediate corollary.

Using Macdonald’s ordering, we take m1 in place of b and m2 in place of a from
[CR98] and write (λ4, λ3, λ2, λ1) = (a, b, c, d) = λ.

Definition 5.1. For m1, m2 ∈ N, let A(m1,m2) ⊂ N
4 denote the set of tuples

(a, b, c, d) that satisfy

• a+ b+ c+d = 2m1+2m2, a ≥ b ≥ c ≥ d ≥ 0, 2m1 ≥ a+d ≥ 2m2 ≥ c+d;
• if b+ d ≥ 2m2, then c ≡ d mod 2;
• if b+ d ≤ 2m2, then a ≡ d mod 2.

Theorem 5.2. Let m1 ≥ m2 ≥ 0. Then

ψ2(sm1,m2
) =

∑
(a,b,c,d)∈A(m1,m2)

(−1)b+dsa,b,c,d.

Theorem 4.2 is an immediate corollary, since Schur functions for partitions with
more than 3 rows are 0 in sl3, and the support set A(m1,m2) becomes D(m1,m2)
when d = 0.

We can see readily that Theorem 5.2 follows from Theorem 5 of [CR98] as rear-
ranged above.
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Firstly, for λ ∈ A(m1,m2) with b + d ≥ 2m2 we have c + d even, by the parity
rule, and c+d ≤ 2m2, while the coefficient of sλ is (−1)b+d = (−1)b+c. This agrees
with the first group of partitions above. The condition 2m1 ≥ a+d does not impose
any extra restriction on this group, since it is equivalent to b+ c ≥ 2m2.

For λ ∈ A(m1,m2) with b + d ≤ 2m2 we have a + d even, and hence b + c
even, by the parity rule. In addition we have 2m2 ≤ b + c since 2m1 ≥ a+ d, and
2m2 ≤ a+ d. Again this agrees with the second group of partitions above, and the
coefficient of sλ is (−1)b+d = (−1)c+d as required there.

5.3. Parametrisation. Theorem 5.2 can be used to give a parametrisation of these
two sets of Schur functions with nonzero coefficient, each in terms of 3 integer
parameters satisfying some linear inequalities. These in turn give a parametric
formula for ψ2(sm1,m2

), with a reduction in the case of sl3 to the formulae of
Theorem 2.4.

5.3.1. The first group of Schur functions. Parametrise {A(m1,m2) : b + d ≥ 2m2}
by setting b+ d = 2m2 + k, k ≥ 0. Write c = d+ 2l, l ≥ 0 to get c ≡ d mod 2. The
condition c+ d ≤ 2m2 is equivalent to d+ l ≤ m2. This ensures that c ≤ b. Then
a = 2m1 − k− 2l− d, which satisfies 2m1 ≥ a+ d. To ensure that a ≥ b we impose
the condition a + d = 2m1 − k − 2l ≥ b + d = 2m2 + k to finish with parameters
k, l, d ≥ 0, d+ l ≤ m2, k + l ≤ m1 −m2.

The contribution of the partitions λ with b+ d ≥ 2m2 is then∑
(−1)ksλ, where λ = (2m1 − k − 2l − d, 2m2 + k − d, 2l + d, d)

and k, l, d are integer parameters with k, l, d ≥ 0, d+ l ≤ m2, k + l ≤ m1 −m2.

5.3.2. The second group of Schur functions. Parametrise {A(m1,m2) : b+d ≤ 2m2}
by setting b+ d = 2m2− k, k ≥ 0. Write a+ d = 2m1− 2l, l ≥ 0 to get a ≡ d mod 2
and 2m1 ≥ a+ d. Then b+ c = 2m2 + 2l, so c ≥ d. The condition 2m2 ≤ a+ d is
equivalent to l ≤ m1 −m2. This ensures that b ≤ a.

Now b = 2m2 − k− d, so c = 2l+ k+ d, so c ≤ b is equivalent to l+ k+ d ≤ m2.
The contribution of the partitions λ with b+ d ≤ 2m2 is∑

(−1)ksλ, where λ = (2m1 − 2l − d, 2m2 − k − d, 2l + k + d, d)

and k, l, d are integer parameters with k, l, d ≥ 0, l + k + d ≤ m2, l ≤ m1 −m2.

5.4. Reduction to the case of sl3. In the special case of sl3 we have d = 0, and
we get two double sums of 3-row Schur functions, one for partitions with b ≥ 2m2,
and one for those with b < 2m2, to avoid double counting those with b = 2m2. Since
we are working in sl3 this can be reduced further to sums over 2-row partitions,
since sa,b,c = sa−c,b−c.

Explicitly we have from the first group of partitions the sum∑
(−1)ks2m1−4l−k,2m2−2l+k

taken over k, l ≥ 0, l ≤ m2, k + l ≤ m1 −m2. The second group yields∑
(−1)ks2m1−4l−k,2m2−2l−2k

taken over l ≥ 0, k > 0, k + l ≤ m2, l ≤ m1 − m2. This gives a second proof of
Theorem 2.4. It may be preferable all the same to retain the 3-row format when
estimating the effects of twists in sl3 as then all the partitions have 2m1+2m2 cells
and thus their twist factors depend only on the total content of the partition.
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6. Sample computations

In this section we give some sample computations of Theorems 2.1 and 2.4.
Theorem 2.1 implies that:

JT (2,3),5,7(1/q) = q24+q30+q32−q35+q36+2q38−q39−q41+q42−q43+2q44−q45−2q47+

q48−q49+2q50−2q51+q52−2q53−2q55+3q56−2q57+2q58−2q59−q60−q61+2q62−4q63+

3q64+q66−q67+q68−3q69+3q70−2q71+3q72+q73−q74−q75−2q77+2q78+q79+2q80−
2q82−q83+q85+2q86−3q88+q89−2q90−q92+2q93+q94+2q95−3q96+q97−2q98+q99+q100+

2q101−2q102+3q103−5q104−q106+3q107+2q108+4q109−4q110+3q111−3q112−2q113+q114+

q115−q116+5q117−5q118−2q119−2q121+2q122+5q123−2q124+q125−q126−4q127−q129−
q130+4q131−q132−2q133+2q134−q135+q136+q137−2q138+2q139+3q140−3q141+2q142−
2q143−4q144+2q145+6q148−2q149−q151−6q152+3q153+4q154−q155+3q156−4q157−4q158+

3q159−3q160+2q161+4q162−3q163+4q164−2q165−4q166+5q167+2q170−6q171+2q172+

3q173−4q174+q175+q176−3q177+5q178−2q179−2q180+4q181−2q183−q184−6q185+3q186+

2q187+2q189+q190−5q191+2q192−q193−q194+5q195+2q196−q197−q198−5q199+3q201−
2q202+q203+3q204−2q205+q206−5q208+4q209+2q210−3q213−3q214+4q215−2q216+2q217+

3q218−2q219−4q222+5q223+2q224−2q225−3q227−3q228+3q229− q230+3q232−2q233+

q234+2q235−3q236+q237+q238−2q239+3q240−q241−q242+2q243−4q244−2q245+2q246+

4q248+2q249−3q250−2q252−2q253+3q254+2q256+2q257−3q258−3q259−2q260+ q261+

4q262+q263+q264−q265−3q266−2q267+q268+q269+2q270+q271−q272−q273−q274+q275.

Theorem 2.4 implies that:
ψ2(V5,7) = V0,4 − V0,7 + V0,10 − V0,13 + V0,16 − V0,19 − V1,2 + V2,0 + V2,6 − V2,9 + V2,12 −

V2,15 +V2,18 −V3,4 +V4,2 +V4,8 −V4,11 +V4,14 −V4,17 −V5,0 −V5,6 +V6,4 +V6,10 −V6,13 +

V6,16−V7,2−V7,8+V8,0+V8,6+V8,12−V8,15−V9,4−V9,10+V10,2+V10,8+V10,14−V11,0−
V11,6 − V11,12 + V12,4 + V12,10 − V13,2 − V13,8 + V14,0 + V14,6 − V15,4 + V16,2 − V17,0, where
Vn1,n2

= Vn1ω1+n2ω2
.

For future checks with other formulas, Theorem 2.1 implies that J2,3,70,70(1/q) is
a polynomial of q with exponents with respect to q in the interval [280, 30100] (where
the end points are attained), leading and trailing coefficients 1 and coefficients in
the interval [−55196, 65594], where the coefficient −55196 is attained at precisely
q18854 and q18925 and the coefficient 65594 is attained precisely at q18165. In other
words, we have

J2,3,70,70(1/q) = q280 + · · ·+ 65594q18165 + · · · − 55196q18854 + · · · − 55196q18925

+ · · ·+ q30100.

Using Theorem 2.1 it is possible to compute the colored Jones polynomials
JT (2,3),n1,n2

(q) for n1, n2 = 0, . . . , 100.
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