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1. Introduction

1.1. The slope conjecture and the case of Montesinos knots

The slope conjecture relates one of the most important knot invariants, the colored

Jones polynomial, to essential surfaces in the knot complement [12]. More precisely,

the growth of the degree as a function of the color determines boundary slopes.

∗Corresponding author.
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Understanding the topological information that the polynomial detects in the knot

is a central problem in quantum topology. The conjecture suggests the polynomial

can be studied through surfaces, which are fundamental objects in 3-dimensional

topology.

Our philosophy is that the connection follows from a deeper correspondence

between terms in an expansion of the polynomial and surfaces. This would poten-

tially lead to a purely topological definition of quantum invariants. The coefficients

of the polynomial should count isotopy classes of surfaces, much like in the case of

the 3D-index [13]. As a first test of this principle, we focus on the slope conjecture

for Montesinos knots. In this case, Hatcher–Oertel [18] provides a description of the

set of essential surfaces of those knots. In particular, they give an effective algo-

rithm to compute the set of boundary slopes of incompressible and ∂-incompressible

surfaces in the complement of such knots.

We provide a state-sum formula for the colored Jones polynomial that allows

us to match the parameters of the terms of the sum that contribute to the

degree of the polynomial with the parameters that describe the locally essential

surfaces. The key innovation of our state sum is that we are able to identify

those terms that actually contribute to the degree. The resulting degree func-

tion is piecewise-quadratic, allowing application of quadratic integer programming

methods.

We interpret the curve systems formed by intersections with essential surfaces

on a Conway sphere enclosing a rational tangle in terms of these degree-maximizing

skein elements in the state sum. In this paper, we carry out the matching for Mon-

tesinos knots but the state-sum (3.1) is valid in general. In fact using this framework,

one could determine the degree of the colored Jones polynomial and find candidates

for corresponding essential surfaces in many new cases beyond Montesinos knots.

While the local theory works in general, fitting together the surfaces in each

tangle to obtain a (globally) essential surface has yet to be done. The behavior of

the colored Jones polynomial under gluing of tangles has similar patterns, which

may be explored in future work.

The Montesinos knots, together with some well-understood algebraic knots, are

knots that have small Seifert fibered 2-fold branched covers [34, 43]. For our pur-

poses, we will not use this abstract definition, and instead construct Montesinos

links by inserting rational tangles into pretzel knots. More precisely, a Montesinos

link is the closure of a list of rational tangles arranged as in Fig. 1 and concretely

as in Fig. 2. See Definition 2.2.

Rational tangles are determined by rational numbers, see Sec. 2.1, thus a Mon-

tesinos link K(r0, r1, . . . , rm) is encoded by a list of rational numbers ri ∈ Q. Note

that K(r0, r1, . . . , rm) is a knot if and only if either there is only one even denomi-

nator, or, there is no even denominator and the number of odd numerators is odd.

When ri = 1/qi is the inverse of an integer, the Montesinos link K(1/q0, . . . , 1/qm)

is also known as the pretzel link P (q0, . . . , qm).
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r0 r1 rm

Fig. 1. A Montesinos link.

Fig. 2. The Montesinos link K(− 1
3
,− 3

10
, 1
4
, 3
7

).

1.2. Our results

Recall the colored Jones polynomial JK,n(v) ∈ Z[v±2] of a knot K colored by the

n-dimensional irreducible representation of sl2 [40]. See Definition 2.5. Our variable

v for the colored Jones polynomial is related to the skein theory variable A [38]

and to the Jones variable q [22] by v = A−1 = q−
1
4 . With our conventions, if

31 = P (1, 1, 1) denotes the left-hand trefoil, then J31,2(v) = v18− v10− v6− v2. For

the n-colored unknot we get JO,n = v2n−v−2n

v2−v−2 .

Let δK(n) denote the maximum v-degree of the colored Jones polynomial

JK,n(v). It follows that δK(n) is a quadratic quasi-polynomial [11]. In other words,

for every knot K there exists an NK ∈ N such that for n > NK :

δK(n) = jsK(n)n2 + jxK(n)n+ cK(n) (1.1)

where jsK , jxK , and cK are periodic functions.

Conjecture 1.1 (The strong slope conjecture). For any knot K and any

n > NK , there is an n′ and an essential surface S ⊂ S3 \ K with |∂S| boundary

components, such that the boundary slope of S equals jsK(n) = p/q (reduced to

lowest terms and with the assumption q > 0), and 2χ(S)
q|∂S| = jxK(n′).

The number q|∂S| is called the number of sheets of S, denoted by #S, and

χ(S) is the Euler characteristic of S. See the discussion at the beginning of Sec. 6

for the definition of an essential surface and boundary slope. We call a value of

the function jsK a Jones slope and a value of the function jxK a normalized Euler

characteristic. The original slope conjecture is the part of Conjecture 1.1 that con-

cerns the interpretation of jsK as boundary slopes [12], while the rest of the state-

ment is a refinement by [26]. The reader may consult these two sources [12, 26] for
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additional background. By considering the mirror image K of K and the formula

JK,n(v−1) = JK,n(v), the strong slope conjecture is equivalent to the statement in

[26] that includes the behavior of the minimal degree.

The slope conjecture and the strong slope conjecture were established for many

knots including alternating knots, adequate knots, torus knots, knots with at most

9 crossings, 2-fusion knots (in this case only the slope conjecture is proven), graph

knots, near-alternating knots, and most 3-tangle pretzel knots and 3-tangle Mon-

tesinos knots [2, 9, 12, 14, 20, 27, 28, 30, 35]. However, the general case remains

intractable and most proofs simply compute the quantum side and the topology

side separately, comparing only the end results.

Since the strong slope conjecture is known for adequate knots [9, 10, 12], we

will ignore the Montesinos knots which are adequate. When m ≥ 2, a non-adequate

Montesinos knot K(r0, r1, . . . , rm) has precisely one negative or positive tangle [32,

p. 529]. Without loss of generality, we need only to consider jsK(n) and jxK(n)

for a Montesinos knot with precisely one negative tangle. The positive tangle case

follows from taking mirror image.

Before stating our main result on Montesinos knots we start with the case of

pretzel knots as they are the basis for our argument. In fact Theorem 1.1 is the bulk

of our work. For P (q0, . . . , qm) to be a knot, at most one tangle has an even number

of crossings, and if each tangle has an odd number of crossings, then the number

of tangles has to be odd. In the theorem below, the condition on the parities of

the qi’s and the number of tangles may be dropped if one is willing to exclude an

arithmetic sub-sequence of colors n.

Theorem 1.1. Fix an (m+1)-vector q of odd integers q = (q0, . . . , qm) with m ≥ 2

even and q0 < −1 < 1 < q1, . . . , qm. Let P = P (q0, . . . , qm) denote the correspond-

ing pretzel knot. Define rational functions s(q), s1(q) ∈ Q(q):

s(q) = 1 + q0 +
1∑m

i=1(qi − 1)−1
, s1(q) =

∑m
i=1(qi + q0 − 2)(qi − 1)−1∑m

i=1(qi − 1)−1
. (1.2)

For all n > NK we have:

(a) If s(q) < 0, then the strong slope conjecture holds with

jsP (n) = −2s(q), jxP (n) = −2s1(q) + 4s(q)− 2(m− 1). (1.3)

In particular, jsP (n) and jxP (n) are constant functions.

(b) If s(q) = 0, then the strong slope conjecture holds with

jsP (n) = 0, jxP (n) =

{
−2(m− 1) if s1(q) ≥ 0,

−2s1(q)− 2(m− 1) if s1(q) < 0.
(1.4)

In particular, jsP (n) and jxP (n) are constant functions.

(c) If s(q) > 0, then the strong slope conjecture holds with

jsP (n) = 0, jxP (n) = −2(m− 1). (1.5)

In particular, jsP (n) and jxP (n) are constant functions.
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Next, we consider the case of Montesinos knots. Recall that by applying Euclid’s

algorithm, every rational number r has a unique positive continued fraction expan-

sion r = [b0, . . . , b`′ ], see (2.3), with `′ < ∞, b0 ∈ Z, |bj | ≥ 1 for 1 ≤ j ≤ `′ − 1,

|b`′ | ≥ 2, and bj ’s all of the same sign as r. From this we define an even length con-

tinued fraction expansion [a0, . . . , a`r ] of r to be equal to [b0, . . . , b`′ ] if `′ is even,

and we define it to be equal to [b0, . . . , b`′ − 1, 1] (respectively, [b0, . . . , b`′ + 1,−1])

if `′ is odd and r > 0 (respectively, r < 0) . Note [a0, . . . , a`r ] is well-defined. We

will call [a0, . . . , a`r ] the unique even length positive continued fraction expansion

for r. Define r[j] = aj for j = 0, . . . , `r, and define

[r]e =
∑

3≤j≤`r,j=even

r[j], [r]o =
∑

3≤j≤`r,j=odd

r[j], [r] = [r]e + [r]o .

For example, the fraction 63/202 = [0, 3, 4, 1, 5, 2] has the unique even length

positive continued fraction expansion [0, 3, 4, 1, 5, 1, 1]. Adding up all the partial

quotients of the continued fraction expansion with even indices ≥ 3, we get

[63/202]e = 5 + 1 = 6. Similarly, adding up all the partial quotients with odd

indices ≥ 3, we get [63/202]o = 1 + 1 = 2.

Given a Montesinos knot K(r0, . . . , rm), define DK to be the diagram obtained

by summing rational tangle diagrams corresponding to the unique even length posi-

tive continued fraction expansion for each ri, and then taking the numerator closure.

See Sec. 2.1 for how a rational tangle diagram is assigned to a continued fraction

expansion of a rational number and definitions for the tangle sum and numerator

closure.

By the classification of Montesinos knots by [3], and the existence and use of

reduced diagrams of Montesinos links [32] based on the classification, we will further

restrict to Montesinos knots K(r0, . . . , rm) where |ri| < 1 for all 0 ≤ i ≤ m. See

Sec. 2.2 for the discussion of why we may do so without loss of generality.

Let (r0, . . . , rm) ∈ Qm+1 denote a tuple of rational numbers, and let

(q0, . . . , qm) ∈ Zm+1 denote the associated tuple of integers where qi = ri[1] + 1 for

1 ≤ i ≤ m and

q0 =

{
r0[1]− 1 if `r0 = 2 and r0[2] = −1, and

r0[1] otherwise

from the unique even length positive continued fraction expansion of ri’s. Again,

for the following theorem the condition on the parities of the qi’s and the number

of tangles (m ≥ 2 even) may be dropped if one is willing to exclude an arithmetic

sub-sequence of colors n, thus proving a weaker version of the conjecture for all

Montesinos knots.

Theorem 1.2. Let K = K(r0, r1, . . . , rm) be a Montesinos knot such that r0 < 0,

ri > 0 for all 1 ≤ i ≤ m, and |ri| < 1 for all 0 ≤ i ≤ m with m ≥ 2 even. Suppose

q0 < −1 < 1 < q1, . . . , qm are all odd, and q′0 is an integer that is defined to be

0 if r0 = 1/q0, and defined to be r0[2] otherwise. Let P = P (q0, . . . , qm) be the
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associated pretzel knot, and let ω(DK), ω(DP ) denote the writhe of DK , DP with

orientations. Then the strong slope conjecture holds. For all n > NK , we have:

jsK(n) = jsP (n)− q′0 − [r0]− ω(DP ) + ω(DK) +

m∑
i=1

(ri[2]− 1) +

m∑
i=1

[ri],

jxK(n) = jxP (n)− 2
q′0
r0[2]

+ 2[r0]o − 2

m∑
i=1

(ri[2]− 1)− 2

m∑
i=1

[ri]e.

In particular, jsP (n) and jxP (n) are constant functions.

Example 1.1. Consider the Montesinos knot K = K(− 46
327 ,

35
151 ,

5
31 ,

16
35 ,

1
5 ). Apply-

ing Theorems 1.1 and 1.2, we compute the Jones slope jsK by using Euclid’s

algorithm to obtain the unique even length continued fraction expansion for each

rational number in the definition of K. We have for the first rational number

−46/327,

− 46

327
= 0 +

1

− 327
46

= 0 +
1

−7 + (− 5
46 )

= 0 +
1

−7 + 1
− 46

5

= 0 +
1

−7 + 1
−9+(− 1

5 )

= [0,−7,−9,−5].

This is of odd length, so the unique even length continued fraction expansion for

− 46
327 is

− 46

327
= [0,−7,−9,−4,−1].

The rational numbers together with their unique even length continued fractions

expansions are

− 46

327
= [0,−7,−9,−4,−1],

35

151
= [0, 4, 3, 5, 2],

5

31
= [0, 6, 5],

16

35
= [0, 2, 5, 2, 1],

1

5
= [0, 4, 1].

The associated pretzel knot is P (−7, 5, 7, 3, 5). Theorem 1.1 applied to the pretzel

knot gives that

s(q) = −36

7
< 0 and s1(q) = −32

7
.

So

jsP (n) = (−2)

(
−36

7

)
=

72

7
and

jxP (n) = −2

(
−32

7

)
+ 4

(
−36

7

)
− 2(4− 1) = −122

7
.

Dunfield’s program [7], which computes boundary slopes and other topological

properties of essential surfaces for a Montesinos knot based on Hatcher and Oer-

tel’s algorithm, produces an essential surface S whose boundary slope equals

2050056-6
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jsP (n) = −2s(q) = 72/7, and such that 2χ(S)/(7|∂S|) = jxP = −122/7. Now we

compute jsK(n) and jxK(n) using Theorem 1.2. To aid in presentation, we replace

each symbol in the equations in the theorem by the number computed from the

example. We have

jsK(n) = jsP (n)︸ ︷︷ ︸
72/7

− r0[2]︸︷︷︸
−9

− [r0]︸︷︷︸
−4+−1

−ω(DP )︸ ︷︷ ︸
−13

+ω(DK)︸ ︷︷ ︸
−43

+

m∑
i=1

(ri[2]− 1)︸ ︷︷ ︸
(2)+(4)+(4)

+

m∑
i=1

[ri]︸ ︷︷ ︸
(5+2)+(2+1)

=
100

7
.

jxK(n) = jxP (n)︸ ︷︷ ︸
−122/7

−2 + 2 [r0]o︸︷︷︸
−4

−2

m∑
i=1

(ri[2]− 1)︸ ︷︷ ︸
(2)+(4)+(4)

−2

m∑
i=1

[ri]e︸ ︷︷ ︸
(2)+(1)

= −374

7
.

For the Montesinos knot, Dunfield’s program also produces an essential surface

S which realizes the strong slope conjecture, with boundary slope 100/7 and

2χ(S)/7|∂S| = −374/7.

1.3. Plan of the proof

We divide the proof of Theorems 1.1 and 1.2 into two parts, first concerning

the claims regarding the degree of the colored Jones polynomial, and the second

concerning the existence of essential surfaces realizing the strong slope conjecture.

First we use a mix of skein theory and fusion, reviewed in Sec. 2.3, to find a

formula for the degree of the dominant terms in the resulting state sum for the col-

ored Jones polynomial in Sec. 3. Using quadratic integer programming techniques,

we determine the maximal degree of these dominant terms in Sec. 4, and this is

applied to find the degree of the colored Jones polynomial for the pretzel knots we

consider in Sec. 4.3. In Sec. 5, we determine the degree of the colored Jones poly-

nomial for the Montesinos knots we consider in Theorem 1.2 by reducing to the

pretzel case. Finally, we work out the relevant surfaces using the Hatcher–Oertel

algorithm in Sec. 6, and we match the growth rate of the degree of the quantum

invariant with the topology, using the analogy drawn between the parameters of

the state sum and the parameters for the Hatcher–Oertel algorithm by Lemma 6.1.

We explicitly describe the essential surfaces realizing the strong slope conjecture in

Secs. 6.5 and 6.7, and the proof of Theorems 1.1 and 1.2 is completed in Sec. 6.6

and 6.8, respectively.

2. Preliminaries

2.1. Rational tangles

Let us recall how to describe rational tangles by rational numbers and their con-

tinued fraction expansions. Originally studied by Conway [6], this material is

2050056-7
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well-known and may be found for instance in [4, 24]. An (m,n)-tangle is an embed-

ding of a finite collection of arcs and circles into B3, such that the endpoints of

the arcs lie in the set of m + n points on ∂B3 = S2. We consider tangles up to

isotopy of the ball B3 fixing the boundary 2-sphere. The integer m indicates the

number of points on the upper hemisphere of S2, and the integer n indicates the

number of points on the lower hemisphere. We may isotope a tangle so that its end-

points are arranged on a great circle of the boundary 2-sphere S2, preserving the

upper/lower information of endpoints from the upper/lower hemisphere. A tangle

diagram is then a regular projection of the tangle onto the plane of this great cir-

cle. We represent tangles by tangle diagrams, and we will refer to an (m,m)-tangle

as an m-tangle. Our building blocks of rational tangles are the horizontal and the

vertical 2-tangles shown below, called elementary tangles in [24].

• A horizontal tangle has n horizontal half-twists (i.e. crossings) for n ∈ Z.

2 −2 0

• A vertical tangle has n vertical half-twists (i.e. crossings) for n ∈ Z.

1
2 − 1

2 ∞

The horizontal tangle with 0 half-twists will be called the 0 tangle, and the

vertical tangle with 0 half-twists will be called the ∞ tangle.

Definition 2.1. A rational tangle is a 2-tangle that can be obtained by applying

a finite number of consecutive twists of neighboring endpoints to the 0 tangle and

the ∞ tangle.

For 2m-tangles we define tangle addition, denoted by ⊕, and tangle multipli-

cation, denoted by ∗, as follows in Fig. 3. We also define the numerator closure

of a 2m-tangle as a knot or link obtained by joining the two sets of m endpoints

in the upper hemisphere, and by joining the two sets of m endpoints in the lower

hemisphere.

The following theorem is paraphrased from [24] with changes in notations for

the elementary rational tangles.

Theorem 2.1 ([24, Lemma 3]). Every rational tangle can be isotoped to have a

diagram in standard form, obtained by consecutive additions of horizontal tangles

only on the right (or only on the left) and consecutive multiplications by vertical
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T S

T ⊕ S

T

S

T ∗ S

T T

N(T )

mm

m

m

mm

mm

mm

mm

m m

m m

m

m

Fig. 3. 2m-tangle addition, multiplication, and numerator closure.

tangles only at the bottom (or only at the top), starting from the 0 tangle or the ∞
tangle.

More precisely, every rational tangle diagram may be isotoped to have the alge-

braic presentation (((
a` ∗

1

a`−1

)
⊕ a`−2

)
∗ · · · ∗ 1

a1

)
⊕ a0, (2.1)

if ` is even, or (((
1

a`
⊕ a`−1

)
∗ a`−2

)
⊕ · · · ∗ 1

a1

)
⊕ a0, (2.2)

if ` is odd, where aj ∈ Z for 0 ≤ j ≤ `, and aj 6= 0 for 1 ≤ j ≤ `.

Recall the notation of the positive continued fraction expansion [4, 24]:

[a0, . . . , a`] = a0 +
1

a1 + 1
a2+ 1

a3+···+ 1
a`

(2.3)

for integers aj 6= 0 of the same sign for 1 ≤ j ≤ ` and a0 ∈ Z. We define the

rational number r associated to a rational tangle in standard form with algebraic

expression (2.1) or (2.2) to be

r = [a0, . . . , a`].

Conversely, given a positive continued fraction expansion of a rational num-

ber r = [a0, . . . , a`] we may obtain a diagram of a rational tangle given by the

corresponding algebraic expression (2.1) or (2.2). See Fig. 4 for an example.

A rational tangle is determined by their associated rational number to a stan-

dard diagram by the following theorem.

Theorem 2.2 ([6]). Two rational tangles are isotopic if and only if they have the

same associated rational number.

See [24, Theorem 3] for a proof of this statement.

Definition 2.2. A Montesinos link K(r0, r1, . . . , rm) is a link that admits a dia-

gram D obtained by summing rational tangle diagrams Tc0 , Tc1 , . . . , Tcm then taking
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Fig. 4. A rational tangle diagram T associated to the continued fraction expansion [0, 2, 1, 3, 3] =

13/36.

the numerator closure:

D = N(((Tc0 ⊕ Tc1)⊕ Tc2)⊕ · · · ⊕ Tcm).

Here ci for each 0 ≤ i ≤ m is a choice of a positive continued fraction expansion of

ri, and Tci is the rational tangle diagram constructed based on ci via (2.1) or (2.2),

depending on whether the length of ci is even or odd, respectively.

Note that a different choice of positive continued fraction expansion for each

ri in the sum of Definition 2.2 produces a different diagram of the same knot by

Theorem 2.2. To simplify our arguments, we will fix a diagram for the Montesinos

knot K(r0, r1, . . . , rm) by specifying the choice of a positive continued fraction

expansion for each rational number ri.

2.2. Classification of Montesinos links

The book [5] has a complete account of the classification of Montesinos links, origi-

nally due to Bonahon [3]. The following version of the classification theorem comes

from [10].

Theorem 2.3 ([5, Theorem 12.29]). Let K(r0, . . . , rm) be a Montesinos link

such that m ≥ 3 and r0, . . . , rm ∈ Q \Z. Then K is determined up to isomorphism

by the rational number
∑m
i=0 rm and the vector ((r0 mod 1), (r1 mod 1), . . . , (rm

mod 1)), up to cyclic permutation and reversal of order.

We will work with reduced diagrams for Montesinos knots as studied by Lickorish

and Thistlethwaite [32]. Here we follow the exposition of [10, Chap. 8].

Definition 2.3. Let K be a Montesinos link. A diagram is called a reduced Mon-

tesinos diagram of K if it is the numerator closure of the sum of rational angles

T0, . . . , Tm corresponding to rational numbers r0, . . . , rm with m ≥ 2, and both of

the following hold:

(1) Either all of the ri’s have the same sign, or 0 < |ri| < 1 for all i.

2050056-10
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(2) For each i, the diagram of Ti comes from a positive continued fraction expansion

[a0, a1, . . . , a`i ] of ri with the nonzero aj ’s all of the same sign as ri.

It follows as a consequence of the classification theorem that every Montesinos

link K(r0, . . . , rm) with m ≥ 2 has a reduced diagram. For example, if ri < 0 while

ri′ ≥ 1, we can subtract 1 from ri′ and add 1 to ri until condition (1) is satisfied.

This does not change the link type of the Montesinos link by Theorem 2.3. Since we

are focused on Montesinos links with precisely one negative tangle we may assume

that 0 < |ri| < 1. Thus ri[0] = 0 for all 0 ≤ i ≤ m.

2.3. Skein theory and the colored Jones polynomial

We consider the skein module of properly embedded tangle diagrams on an oriented

surface F with a finite (possibly empty) collection of points specified on the bound-

ary ∂F . This will be used to give a definition of the colored Jones polynomial from

a diagram of a link. For the original reference for skein modules see [38]. We will

follow Lickorish’s approach [31, Sec. 13] except for the variable substitution (our v

is his A−1 to avoid confusion with the A for a Kauffman state). See [36] for how

the skein theory gives the colored Jones polynomial, also known as the quantum sl2
invariant. The word “color” refers to the weight of the irreducible representation

where one evaluates the invariant.

Definition 2.4. Let v be a fixed complex number. The linear skein module S(F )

of F is a vector space of formal linear sums over C, of unoriented and properly-

embedded tangle diagrams in F , considered up to isotopy of F fixing ∂F , and

quotiented by the skein relations

(i) D t = (−v−2 − v2)D, and

(ii) = v−1 + v .

Here denotes the unknot and Dt is the disjoint union of the diagram D with

an unknot. Relation (ii) indicates how we can write a diagram with a crossing as a

sum of two diagrams with coefficients in rational functions of v by locally replacing

the crossing by the two splicings on the right.

We consider the linear skein module S(D2, n, n′) of the disk D2 with n + n′-

points specified on its boundary, where the boundary is viewed as a rectangle with

n marked points above and n′ marked points below. We will use this to decompose

link diagrams into tangles. By the skein relations in Definition 2.4, every element

in S(D2, n, n′) is generated by crossingless matchings between the n points on top

and n′ points bottom. For crossingless matchings D1 ∈ S(D2, n, n′) and D2 ∈
S(D2, n′, n′′), there is a natural multiplication operation D1 × D2 ∈ S(D2, n, n′′)

defined by identifying the bottom boundary of D1 with the top boundary of D2

and matching the n′ common boundary points. Extending this by linearity to all

elements in S(D2, n, n) makes it into an algebra TLnn, called Temperley-Lieb algebra.
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For the original references see [25, 39]. We will simply write TLn for TLnn. There

is a natural identification of 2n-tangles with diagrams in TL2n. Pictorially, a non-

negative integer such as n next to a strand represents n parallel strands.

As an algebra, TLn is generated by a basis {|n, e1
n, . . . , e

n−1
n }, where |n is the

identity with respect to the multiplication, and ein is a crossingless tangle diagram

as specified below in Fig. 5.

Suppose that v−4 is not a kth root of unity for k ≤ n. There is an element,

which we will denote by
n
, in TLn called the nth Jones–Wenzl idempotent. For the

original reference where the idempotent was defined and studied, see [42]. Whenever

n is specified we will simply refer to this element as the Jones-Wenzl idempotent.

The element
n

is uniquely defined by the following properties. (Note
1

= |1.)

(i)
n
× ein = ein × n

= 0 for 1 ≤ i ≤ n− 1.

(ii)
n
− |n belongs to the algebra generated by {e1

n, e
2
n, . . . , e

n−1
n }.

(iii)
n
×

n
=

n
.

(iv) The image of
n

in S(R2), obtained by embedding the disk D2 in the plane

and then joining the n boundary points on the top with those on the bottom

with n disjoint planar parallel arcs outside of D2, is equal to

(−1)n(v−2(n+1) − v2(n+1))

v−2 − v2
· the empty diagram in R2.

We will denote the rational function multiplying the empty diagram by4n.

Definition 2.5. Let D be a diagram of a link K ⊂ S3 with k components. For

each component Di for i ∈ {1, . . . , k} take an annulus Ai = S1×I containing D via

the blackboard framing. Let S(S1 × I) be the linear skein module of the annulus

with no points marked on its boundary, and let

fD : S(A1)× · · · × S(Ak)︸ ︷︷ ︸
Cartesian product

→ S(R2)

be the map which sends a k-tuple of elements (s1 ∈ S(A1), . . . , sk ∈ S(Ak)) to

S(R2) by immersing in the plane the collection of skein elements in S(Ai) such that

the over- and under-crossings of components of D are the over- and under-crossings

1 2 n 1 i i+ 1 n

|n ein

Fig. 5. An example of the identity element |n (left) and a generator ein (right) of TLn for n = 5
and i = 2.
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of the annuli. For n ≥ 1, the n+ 1th unreduced colored Jones polynomial JK,n+1(v)

may be defined as

JK,n+1(v) := ((−1)nv)ω(D)(n2+2n)(−1)n〈
fD


n

,

n

, · · · ,

n


︸ ︷︷ ︸

k times

〉
,

where 〈S〉 for a linear skein element in S(R2) is the polynomial in v multiplying

the empty diagram after resolving crossings and removing disjoint circles of S using

the skein relations. This is called the Kauffman bracket of S. To simplify notation,

we will write

Dn = fD


n

,

n

, · · · ,

n

 .

A Kauffman state [23], which we will denote by σ, is a choice of the A- or

B-resolution at a crossing of a link diagram.

Definition 2.6. Let σ be a Kauffman state on a skein element with crossings,

define

sgn(σ) = (# of B-resolutions of σ)− (# of A-resolutions of σ).

This quantity keeps track of the number of A- and B-resolutions chosen by σ.

Definition 2.7. Given a skein element S with crossings in S(R2), the σ-state

denoted by Sσ is the set of disjoint arcs and circles, possibly connecting Jones–

Wenzl idempotents, resulting from applying a Kauffman state σ to S. The σ-state

graph SGσ is the set of disjoint arcs and circles, possibly connecting Jones–Wenzl

idempotents, resulting from applying a Kauffman state σ to S along with (dashed)

segments recording the original locations of the crossings as shown in Fig. 6.

We summarize standard techniques and formulas for computing the colored

Jones polynomial using Definition 2.5 that are used in this paper. Given a diagram

Dn decorated with a single Jones–Wenzl idempotent from a link, a state sum for

the Kauffman bracket 〈Dn〉 of Dn is an expansion of 〈Dn〉 into a sum over skein

A-resolution B-resolution

Fig. 6. A- and B-resolutions of a crossing. The dashed segment records the location where the
crossing was.
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elements (Dn)σ resulting from applying a Kauffman state σ on a subset of crossings

in Dn. As an example, one can compute the second colored Jones polynomial of

the trefoil knot 31 by writing down the following state sum in Fig. 7.

We are left with disjoint arcs and circles connecting the Jones–Wenzl idempo-

tent. These may be removed by applying skein relations and by applying properties

of the idempotent to obtain the polynomial. Note that we can also write down a

state sum for a skein element with crossings which may be decorated by Jones–

Wenzl idempotents.

Since we are interested in bounding degrees of the Kauffman brackets of skein

elements in the state sum, we will define a few more relevant combinatorial quan-

tities and gather some useful results.

The degree of a rational function L(v), denoted by degv(L(v)), is the maximum

power of v in the formal Laurent series expansion of L(v) with finitely many positive

degree terms.

Let Sσ be a skein element coming from applying a Kauffman state σ to a skein

element S with crossings and decorated by Jones–Wenzl idempotents in S(R2).

Then Sσ is the set of disjoint circles obtained from Sσ by replacing all idempotents

with the identity.

Definition 2.8. A sequence s of states starting at σ1 and ending at σf on a set

of crossings in a skein element S is a finite sequence of Kauffman states σ1, . . . , σf ,

=

1

v−3〈 〉+

v〈 〉+

v−1〈 〉+ v3〈 〉

v〈 〉+

v−1〈 〉+v〈 〉

v−1〈 〉+

+

=
∑

σ a Kauffman state

vsgn(σ)〈(D1)σ〉.

〈 〉

Fig. 7. A state sum for the second colored Jones polynomial of the left-hand trefoil 31. In this

example, Kauffman states are taken over the set of all crossings of the diagram.
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where σi and σi+1 differ on the choice of the A- or B-resolution at only one crossing

x, so that σi+1 chooses the A-resolution at x and σi chooses the B-resolution.

Let s = {σ1, . . . , σf} be a sequence of states starting at σ1 and ending at σf .

In each step from σi to σi+1 either two circles of Sσi merge into one or a circle

of Sσi splits into two. When two circles merge into one as the result of changing

the B-resolution to the A-resolution, the number of circles of the skein element

decreases by 1 while the sign of the state decreases by 2. More precisely, let Sσ be

the skein element resulting from applying the Kauffman state σ, we have

sgn(σi+1) + degv〈Sσi+1〉 = sgn(σi) + degv〈Sσi〉 − 4 ,

when a pair of circles merges from Sσi to Sσi+1 . This immediately gives the following

corollary.

Lemma 2.1. Let s = {σ1, . . . , σf} be a sequence of states on a skein element S
with crossings, then

sgn(σ1) + degv〈Sσ1
〉 = sgn(σf ) + degv〈Sσf 〉

if and only if a circle is split from Sσi to Sσi+1
for every 1 ≤ i ≤ f − 1. Otherwise

sgn(σ1) + degv〈Sσ1
〉 > sgn(σf ) + degv〈Sσf 〉.

We will also use standard fusion and untwisting formulas involving skein ele-

ments decorated by Jones–Wenzl idempotents for which one can consult [31] and

the original reference [33].

=
∑

c:(a,b,c)
admissible

4c
θ(a,b,c)

ab ab

ab

c
2

c
2 (2.4)

Fig. 8. Fusion formula: the skein element which locally looks like the left-hand side is equal to

the sum of skein elements on the right-hand side with corresponding local replacements.

= (−1)
a+b−c

2 va+b−c+ a2+b2−c2
2

a b

c

a b

c

(2.5)

Fig. 9. Untwisting formula: the skein element which locally looks like the left-hand side is equal
to the skein element on the right-hand side with the local replacement.

2050056-15

In
t. 

J.
 M

at
h.

 2
02

0.
31

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
A

X
-P

L
A

N
C

K
-I

N
ST

IT
U

T
E

 F
O

R
 M

A
T

H
E

M
A

T
IC

S 
L

IB
R

A
R

Y
 o

n 
07

/1
8/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



June 22, 2020 22:21 WSPC/S0129-167X 133-IJM 2050056

S. Garoufalidis, C. R. S. Lee & R. van der Veen

We say that a triple (a, b, c) of non-negative integers is admissible if a + b + c

is even and a ≤ b + c, b ≤ c + a, and c ≤ a + b. For k a non-negative integer, let

4k! := 4k4k−1 · · ·41, with the convention that 40 = 4−1 = 1. In Fig. 8 above,

the function θ(a, b, c) is defined by

θ(a, b, c) =
4x+y+z!4x−1!4y−1!4z−1!

4y+z−1!4z+x−1!4x+y−1!
,

where x, y, and z are determined by a = y + z, b = z + x, and c = x+ y.

3. The Colored Jones Polynomial of Pretzel Knots

From this point on we will always consider the standard diagram K when referring

to the pretzel knot K = P (q0, . . . , qm), with |qi| > 1. Throughout the section,

the integer n ≥ 2 is fixed, and we will illustrate graphically using the example

P (−5, 3, 3, 3, 5).

The colored Jones polynomial for a fixed n of a knot is by Definition 2.5 the

Kauffman bracket of the n-blackboard cable (n-cable) of a diagram of K decorated

by a Jones–Wenzl idempotent, multiplied by a monomial in v raised to the power of

the writhe of the diagram with orientation. We write the colored Jones polynomial

as

JK,n+1(v) = ((−1)nv)ω(K)n(n+2)(−1)n〈Kn〉.

The Jones–Wenzl idempotent is a sum of tangle diagrams with coefficients ratio-

nal functions of v in the algebra TLn. A skein element in TLnn′ decorated by Jones–

Wenzl idempotents is thus also a sum of tangle diagrams with coefficients rational

functions of v by locally replacing idempotent with its sum. We extend the tangle

sum operation ⊕ to skein elements S in TL2n decorated by Jones–Wenzl idempo-

tents, written

S =
∑

T∈TL2n

s(v)T,

as

S ⊕ S ′ =
∑

T,T ′∈TL2n

s(v)s′(v)T ⊕ T ′.

Graphically, this will be the same as joining the top right and bottom right 2n-

strands of S to the top left and bottom left 2n-strands to S ′ as in Fig. 3, except

with the presence of the idempotent and possibly crossings indicating that this

is actually a sum of such diagrams in TL2n. Similarly, we extend the numerator

closure to skein elements in TL2n.

We will represent the diagram Kn = N(Kn
− ⊕Kn

+) as the numerator closure of

the sum of two 2n-tangles decorated by Jones–Wenzl idempotents, with the label

n indicating the number of parallel strands. This decomposition of Kn reflects the

original splitting of K = N(K− ⊕ K+) into two 2-tangles K− and K+. A twist

region is a vertical 2-tangle with a nonzero number of crossings all of the same sign.
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Let K− be the negative twist region consisting of −q0 crossings, and K+ the rest

of the diagram K. For a fixed n double the idempotents in Kn so that four are

framing the n-cable of the negative twist region consisting of −q0 crossings, and

four are framing the n-cable of the rest of the knot diagram. The 2n-tangle Kn
−

is the n-cable of K− along with the four idempotents, and Kn
+ is the rest of Kn,

which is the n-cable of K+, also decorated with four idempotents. See the middle

figure in Fig. 10.

It is convenient to compute the bracket of these 2n-tangles first. For any tangle

T write 〈Tn〉 to mean cabling each component by a Jones–Wenzl idempotent of

order n and evaluating in the Temperley-Lieb algebra TL2n using the Kauffman

bracket.

We write 〈Kn
−〉 =

∑
k0
Gk0(v)Ik0 for 2n-tangles Ik0 with four Jones–Wenzl idem-

potents of size n connected in the middle by two Jones–Wenzl idempotents of size

2k0 arranged in an I-shape using the fusion and untwisting formulas. Apply the

fusion formula (2.4) to two strands of Kn
− going into (or coming out of) the n-cabled

negative twist region. Then, apply the untwisting formula (2.5) to get rid of all the

negative crossings. The function Gk0(v) =
42k0

θ(n,n,2k0) ((−1)n−k0v2n−2k0+n2−2k20 )q0

is a rational function that is the product of two coefficient functions in v multi-

plying the replacement skein elements. The other tangle Kn
+ is expanded into a

state sum by taking Kauffman states over all the crossings in Kn
+, leaving the

four Jones–Wenzl idempotents of size n. Let (Kn
+)σ denote the skein element

resulting from applying a Kauffman state σ to all the crossings of Kn
+. Then,

〈Kn
+〉 =

∑
σ v

sgn(σ)〈(Kn
+)σ〉 as discussed in Sec. 2.3. The state sum we consider

is indexed by pairs (k0, σ) and we write

〈Kn〉 =
∑

(k0,σ)

Gk0(v)vsgn(σ)〈N(Ik0 ⊕ (Kn
+)σ)〉. (3.1)

See the rightmost figure of Fig. 10 for an example of N(Ik0 ⊕ (Kn
+)σ). Using the

notion of through strands, we collect like terms together in our state sum.

Kn
+

Kn
−

Kn
+

k0

n n

n

Ik0

Kn

k0

n n

nn

Fig. 10. From left to right: Kn, doubling the idempotents and the splitting Kn = N(Kn
−⊕Kn

+),
and N(Ik0 ⊕ (Kn

+)σA ), where σA is the Kauffman state that chooses the A-resolution on all the

crossings in Kn
+. The dotted boxes enclose the skein elements in S(D2, 2n, 2n), which are sums of

2n-tangles.
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Definition 3.1. Consider the Temperley-Lieb algebra TLnn′ with n inputs and n′

outputs. Let T be an element of TLnn′ with no crossings. Viewing ∂D2 as a square,

an arc in T with one endpoint on the top boundary of the disk D2 defining TLnn′

and another endpoint on the bottom boundary is called a through strand of T .

We can organize states (k0, σ) according to the number of through strands at

various levels. The global number of through strands of σ, denoted by c = c(σ), is

the number of through strands of (Kn
+)σ in TL2n inside the box framed by four

idempotents in Kn
+, see Fig. 11 for examples of Kauffman states (Kn

+)σ and their

through strands.

For 1 ≤ i ≤ m, we will also define ci(σ) to be the number of ith local through

strands when restricting σ to the ith twist region, that are also global through

strands. The parameter ki corresponding to a Kauffman state σ for each twist

Fig. 11. Top: An example of (Kn
+)σ with n = 3 and c(σ) = 4. Middle: When restricting σ to

i = 4th twist region, we have c4(σ) = k4(σ) = 2. Bottom: We show an example of a state σ where

c4(σ) = 1 and therefore k4(σ) = d 1
2
e = 1.
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region qi will be defined as ki(σ) = d ci(σ)
2 e. The intuition for these parameters is

that they will be used to bound the degree of each term in the state sum relative

to each other, which is crucial to determining the degree of the nth colored Jones

polynomial JK,n+1.

With the notation k = (k0, . . . , km) we set

Gc,k =
∑
k0

∑
σ:ki(σ)=ki,c(σ)=c

Gk0(v)vsgn(σ)〈N(Ik0 ⊕ (Kn
+)σ)〉. (3.2)

Note 0 ≤ ki ≤ n and define the parameters c, k to be tight if k0 = k1+. . .+km =
c
2 . We prove the following theorem.

Theorem 3.1. Assume |qi| > 1 and write 〈Kn〉 =
∑
c,k Gc,k using (3.1) and (3.2).

For tight c, k we have Gc,k = (−1)q0(n−k0)+n+k0+
∑m
i=1(n−ki)(qi−1)vδ(n,k) +l.o.t.a and

δ(n, k) =

−2

(
(q0 + 1)k2

0 +

m∑
i=1

(qi − 1)k2
i +

m∑
i=1

(−2 + q0 + qi)ki

− n(n+ 2)

2

m∑
i=0

qi + (m− 1)n

)
. (3.3)

If c, k are not tight then there exists a tight pair c′, k′ (coming from some Kauffman

state) such that degv Gc,k < degv Gc′,k′ .

This theorem will be used in the next section to find the actual degree of JK,n+1

using quadratic integer programming.

3.1. Outline of the proof of Theorem 3.1

Let c, k be tight and let st(c, k) be the set of states (k0, σ) with c(σ) = c and

ki(σ) = ki for all 1 ≤ i ≤ m. A state in st(c, k) is said to be taut if its term

Gk0(v)vsgn(σ)〈N(Ik0 ⊕ (Kn
+)σ)〉 in (3.2) maximizes the v-degree within st(c, k). For

any fixed tight c, k we plan to construct all taut states. The first examples we

construct will be minimal states, from which we will derive all taut states. A state

in st(c, k) is minimal if it chooses the least number of A-resolutions.

We will first show that minimal states are characterized by having a cer-

tain configuration, or position, on the set of crossings where they choose the A-

resolution, called pyramidal. This will also be used to show that c, k not tight

implies degv Gc,k < degv Gc′,k′ for some tight pair c′, k′.

aThe abbreviation l.o.t. means lower order terms in v.
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Then, with the construction of all taut states from minimal states, we show that

δ(n, k) is the degree of a taut state with parameters k, and

Gtaut
c,ktight = (−1)q0(n−k0)+n+k0+

∑m
i=1(n−ki)(qi−1)vδ(n,k) + l.o.t.,

where Gtaut
c,ktight is the double sum of Gc,k only over taut states with tight c, k. This

will lead to

Gc,ktight = (−1)q0(n−k0)+n+k0+
∑m
i=1(n−ki)(qi−1)vδ(n,k) + l.o.t.

and conclude Theorem 3.1.

3.1.1. Conventions for representing a Kauffman state

Throughout the rest of Sec. 3, we will indicate schematically a crossingless skein

element Sσ, resulting from applying a Kauffman state to a skein element S with

crossings, by the following convention. Let SGB be the all-B state graph of S. For

a Kauffman state σ let Aσ be the set of crossings of S on which σ chooses the A-

resolution, and define |Aσ| to be the number of crossings inAσ. The skein element Sσ
is represented by SGB with colored edges, such that the edge in SGB corresponding to

a crossing in Aσ is colored red, and all other edges remain black. The skein element

Sσ may then be recovered from SGB by a local replacement of two arcs with a dashed

segment. See Fig. 12 below.

3.2. Simplifying the state sum and pyramidal position

for crossings

We will denote by S(k0, σ) the skein element N(Ik0 ⊕ (Kn
+)σ) as in (3.2).

Lemma 3.1. Fix (k0, σ) determining a skein element S(k0, σ) with ki = ki(σ) and

c = c(σ). If k0 >
∑m
i=1 ki, then S(k0, σ) = 0.

Proof. Note that
∑m
i=1 ki ≥

c
2 . Thus if k0 >

∑m
i=1 ki, then k0 >

c
2 , and the lemma

follows from [27, Lemma 3.2].

With the information of through strands c(σ) and {ki(σ)}, we describe the

structure of Aσ for a Kauffman state σ. It is necessary to introduce a labeling of

the crossings with respect to their positions in the all-B Kauffman state graph

SG(k0, B) = N(Ik0 ⊕ (Kn
+)GB).

We first further decompose Kn
+ = St×Sw×Sb where × is the multiplication by

stacking in TL, and let the crossings contained in those skein elements be denoted

by Ct, Cw, and Cb, respectively. See Fig. 13 for an example.

Fig. 12. A red edge in SGB indicates the choice of the A-resolution for a Kauffman state σ on S.

2050056-20

In
t. 

J.
 M

at
h.

 2
02

0.
31

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
A

X
-P

L
A

N
C

K
-I

N
ST

IT
U

T
E

 F
O

R
 M

A
T

H
E

M
A

T
IC

S 
L

IB
R

A
R

Y
 o

n 
07

/1
8/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



June 22, 2020 22:21 WSPC/S0129-167X 133-IJM 2050056

The slope conjecture for Montesinos knots

St

Sw

Sb

Kn
+

k0

n

k0

Fig. 13. Skein element S = N(Ik0 ⊕ (St × Sw × Sb)) of the pretzel knot P (−5, 3, 3, 3, 5). We

have St ∈ TL2n
2mn, Sw ∈ TL2mn, and Sb ∈ TL2mn

2n where m = 4.

......

Su4

Su3

Su2

Su1

Cu3

Cu2

Cu1

Cu4

S`,11,2
S`,11,1

S`,11,3

S`,11,4 C `,12,3
C `,12,2

C `,12,1

s = 1

......

s = q1 s = q2

s = 1

S`1

S`2

Su,q11,1
Su,q11,2

.

.

.

.

.

.

.

.

.

C`3 S`3

S`4

C`2
C`1

Fig. 14. Labeling of crossings, arcs, and circles from applying the all-B state to Kn
+. In this

example n = 4.

See Fig. 14 for a guide to the labeling. The skein element (Kn
+)B consists of n

arcs on top in the region defining St, n arcs on the bottom in the region defining

Sb, and qi − 1 sets of n circles for the ith twist region in the region defining Sw.

The n upper arcs are labeled by Su1 , . . . , S
u
n , and the n lower arcs are labeled by

S`1, . . . , S
`
n, respectively. Cuj is the set of crossings whose corresponding segments in

(Kn
+)GB lie between the arcs Suj and Suj+1. Similarly we define C`j by reflection.

For the crossings in the region defining Sw, we divide each set of n state circles

into upper and lower half arcs as also shown in Fig. 14, and use an additional label

s for 1 ≤ s ≤ qi. Thus the notation C`,si,j , where 1 ≤ s ≤ qi for each twist region with
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qi crossings and 1 ≤ j ≤ n indicating a circle in the n-cable, means the crossings

between the state circles S`,si,j and S`,si,j+1, see Fig. 14.

It is helpful to see a local picture at each n-cabled crossing in Kn
+.

The goal of this subsection is to prove the following theorem.

Theorem 3.2. Suppose a skein element S(k0, σ) has parameters ki = ki(σ) and

c = c(σ). Then, there is a subset A′σ ⊆ Aσ of crossings on which the Kauffman state

σ chooses the A-resolution, such that we have A′σ = Atσ ∪ Awσ ∪ Abσ denoting the

crossings in the regions determining St, Sw, and Sb, respectively, and the following

conditions are satisfied.

(i) |Awσ | =
∑m
i=1(qi − 2)k2

i . The set Awσ =
⋃m
i=1

⋃qi
s=1

⋃n
j=n−ki+1(usi,j ∪ `si,j) is a

union of crossings with usi,j ⊂ C
u,s
i,j and `si,j ⊂ C

`,s
i,j , such that

— For each n− ki + 1 ≤ j ≤ n, usi,j , `si,j each has j − n+ ki crossings.

— For each n−ki+2 ≤ j ≤ n and a pair of crossings x, x′ in usi,j (respectively,

`si,j) whose corresponding segments e, e′ in (Kn
+)GB are adjacent (i.e. there

is no other edge in usi,j between e and e′), there is a crossing x′′ in usi,j−1

(respectively, `si,j−1), where the end of the corresponding segment e′′ on Su,si,j
(respectively, S`,si,j ) lies between the ends of e and e′.

(ii) |Atσ| = |Abσ| =
c2/4−c/2+

∑m
i=1(k2i+ki)

2 . The set Atσ =
⋃n
j=n−c/2+1 uj is a union

of crossings uj ⊂ Cuj , and the set Abσ =
⋃n
j=n−c/2+1 `j is a union of crossings

`j ⊂ C`j satisfying :

— For n− c
2 + 1 ≤ j ≤ n, uj (respectively, `j) has j − n+ c

2 crossings.

— For each n− c
2 + 2 ≤ j ≤ n and a pair of crossings x, x′ in uj (respectively,

`j) whose corresponding segments e, e′ in (Kn
+)GB are adjacent (i.e. there

is no other crossing in uj whose corresponding segment is between e and

e′), there is a crossing x′′ in uj−1 (respectively, `j−1), where the end of the

corresponding segment e′′ on Suj (respectively, S`j) lies between the ends of

e and e′.

It follows that |A′σ| = |Atσ|+|Awσ |+|Abσ| = c2

4 −
c
2 +
∑m
i=1(k2

i +ki)+
∑m
i=1(qi−2)k2

i .

The set of crossings A′σ is said to be in pyramidal position.

Proof. Statement (i) is a direct application to every set of n-cabled crossings in

each twist region of Sw of the following result from [27].

Lemma 3.2 ([27, Lemma 3.7]). Let S be a skein element in TL2n consisting of

a single n-cabled positive crossing xn with labels as shown in Fig. 15.

If (xn)σ for a Kauffman state σ on xn has 2k through strands, then σ chooses

the A-resolution on a set of k2 crossings Cσ of xn, where Cσ =
⋃n
j=n−k+1(uj ∪ `j)

is a union of crossings uj ⊆ Cuj and `j ⊆ C`j , such that

• For each n− k + 1 ≤ j ≤ n, uj , `j each has j − n+ k crossings.
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xn

Su3

S`3

Su1

S`1

Cu3 = C`3

C
u

2

C
`

1

C
u

1

C
`

2

Upper

Lower

S`2

Su2

Fig. 15. Local labeling of n2 crossings on the all-B state of an n-cabled crossing. In this example

n = 3.

• For each n − k + 2 ≤ j ≤ n, and a pair of crossings x, x′ in uj (respectively,

`j) whose corresponding segments c, c′ in the all-B state of xn are adjacent

(i.e. there is no other edge in Cσ between c and c′), there is a crossing x′′ in

uj−1 (respectively, `j−1), where the end of the corresponding segment c′′ on Suj
(respectively, S`j) lies between the ends of c and c′.

The same proof applies to the crossings in the strip St to show the existence

of a set of crossings Atσ satisfying (ii), see Fig. 16. Reflection with respect to the

horizontal axis will show (ii) for Sb.

We will now apply what we know about the crossings on which a state σ chooses

the A-resolution from Theorem 3.2 to construct degree-maximizing states for given

global through strands c(σ) and parameters {ki(σ)}. See Fig. 17 for an example of

a pyramidal position of crossings.

3.3. Minimal states are taut and their degrees are δ(n, k)

The contribution of the state (k0, σ) to the state sum is Gk0(v)vsgn(σ)〈N(Ik0 ⊕
(Kn

+)σ)〉 as in (3.2). We denote its v-degree by d(k0, σ).

Recall the skein element S(k0, σ) = N(Ik0 ⊕ (Kn
+)σ). Also recall Aσ denotes

the set of crossings on which σ chooses the A-resolution, and |Aσ| is the number of

. . .n

n n

n n n

n n

Fig. 16. The arrow indicates the direction from left to right of the crossings in St.
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k0

k0 k0

k0

Fig. 17. A minimal state τ is shown with n = 3 and c(τ) = 6 global through strands. In the top
picture one can see the pyramidal position of the crossings Aτ as described by Theorem 3.2. The

skein element S(k0, τ) with k = (k0, 0, 0, 2, 1) resulting from applying τ is shown below.

crossings in Aσ. A minimal state with tight parameters c, k (i.e. k0 = k1+· · ·+km =
c
2 ) has the least |Aσ| in st(c, k). Let o(Aσ) denote the number of circles of S(k0, σ),

which is the skein element obtained by replacing all the Jones–Wenzl idempotents

in S(k0, σ) by the identity, respectively.

Lemma 3.3. A minimal state (k0, τ) with c(τ) through strands and tight c, k has

Aτ in pyramidal position as specified in Theorem 3.2 and distance |Aτ | from the

all-B state given by

|Aτ | = 2

((
m∑
i=1

ki

)
(
∑m
i=1 ki − 1)

2
+

m∑
i=1

ki(ki + 1)

2

)
+

m∑
i=1

(qi − 2)k2
i .

Moreover,

Gk0(v)vsgn(σ)〈N(Ik0 ⊕ (Kn
+)σ)〉 = (−1)q0(n−k0)+n+k0+

∑m
i=1(n−ki)(qi−1)vδ(n,k)

+ l.o.t. (3.4)
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Proof. Observe that minimal states τ have corresponding crossings Aτ in pyra-

midal position. Moreover, if Aτ is pyramidal, then |Aτ | determines the number

of circles o(Aτ ). The skein element S(k0, τ) is adequate as long as k0 ≤
∑m
i=1 ki.

This means that no circles of S(k0, τ) goes through a location where there was an

idempotent twice. Thus by [1, Lemma 4], we have

degv v
sgn(τ)〈S(k0, τ)〉 = degv v

sgn(τ)〈S(k0, τ)〉 ,

and we simply need to determine the number of circles in S(k0, τ) and sgn(τ) in

order to compute the degree of the Kauffman bracket. This is completely specified

by the pyramidal position of Aτ by just applying the Kauffman state. With the

assumption that k0 =
∑m
i=1 ki = c

2 since c, k is tight, the degree is then

d(k0, τ)

=

m∑
i=1

qin
2 − 2(2

(
(
∑m
i=1 ki) ((

∑m
i=1 ki)− 1)

2
+

m∑
i=1

ki(ki + 1)

2

)
+

m∑
i=1

(qi − 2)k2
i )︸ ︷︷ ︸

sgn(τ)

+ 2

(
2n−

((
m∑
i=1

ki

)
− k0

)
+

m∑
i=1

(n− ki)(qi − 1)

)
︸ ︷︷ ︸

2o(Aτ )

+ q0

(
2n− 2k0 +

2n2 − 4k2
0

2

)
+ 2k0 − 2n︸ ︷︷ ︸

fusion and untwisting

.

The sign of the leading term is given by

(−1)

q0(n− k0) + n+ k0︸ ︷︷ ︸
fusion and untwisting

+ o(Aτ )︸ ︷︷ ︸
number of circles = (−1)q0(n−k0)+n+k0+

∑m
i=1(n−ki)(qi−1).

Lemma 3.4. Minimal states are taut. In other words, given c, k tight, we have

max
σ:c(σ)=c,ki(σ)=ki

d(k0, σ) = d(k0, τ),

where τ is a minimal state with c(τ) = c and ki(τ) = ki.

Proof. Note that for any state σ with corresponding skein element S(k0, σ), we

have

Aτ ⊆ Aσ

for a minimal state τ with the same parameter set (c, k) by Theorem 3.2, and

d(k0, τ) = d(k0, τ
′) for two minimal states τ, τ ′ with the same parameters c(τ) =

c(τ ′) and ki(τ) = ki(τ
′) by Lemma 3.3. This implies d(k0, σ) ≤ d(k0, τ) by

Lemma 2.1.
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3.3.1. Constructing minimal states

Lemma 3.5. A minimal state exists for any tight c, k, where c is an even integer

between 0 and 2n and k0 =
∑m
i=1 ki = c

2 .

Proof. It is not hard to see that at an n-cabled crossing xn in a twist region with

qi crossings in Sw, for any 0 ≤ ki ≤ n there is always a minimal state giving 2ki
through strands. For an n-cabled crossing xn in St or Sb, it is also not hard to see

that we may take the pyramidal position for the minimal state for the upper half

(or bottom half, for Sb) of each crossing in xn in Cun (or C`n) and in C`,si,j (or Cu,si,j )

for each twist region.

What remains to be shown is that a minimal state overall always exists, given

the set of parameters {ki} and c total through strands for crossings in the top

and bottom strips delimited by {Suj }nj=1 and {S`j}nj=1. To see this, we take the

leftmost position for the crossings xn in (
⋃m
i=1

⋃n
j=1 C

`,1
i,j )∪Cun with {2ki} through

strands, which we already know to exist. Given two crossings x and x′ in Cun whose

corresponding segments in S(k0, B) have ends on Sun we can always find another

crossing x′′ in Cun−1, the end of whose corresponding segment on Sun lies between

those of x and x′, because the previously chosen crossings in Cun are leftmost. Pick

the leftmost possible and repeat to choose crossings in Cuj for n−k+1 ≤ j ≤ n−2.

We pick crossings in the bottom strip by reflection. For the remaining n-cabled

crossings xn in Sw in a twist region corresponding to qi, any subset of crossings

in pyramidal position with 2ki through strands will complete the description of a

minimal state satisfying the conditions in the lemma.

Lemma 3.6. Let σ be a state with c = c(σ) and ki = ki(σ) which is not tight, that

is,
∑m
i=1 ki >

c
2 or k0 <

c
2 , then d(k0, σ) < d(k0, τ), where τ is a minimal state with

c(τ) = c through strands.

Proof. For the case
∑m
i=1 ki >

c
2 , we can apply Theorem 3.2 to conclude that

there is a minimal state τ (there may be multiple such states) such that

Aτ ⊂ Aσ,

with ki(τ) ≤ ki(σ) for each i. There must be some i for which ki(τ) < ki(σ).

Applying the B-resolution to the additional crossings to obtain a sequence of states

from τ to σ, we see that it must contain two consecutive terms that merge a pair

of circles.

If k0 <
c
2 , since d(k0, σ) increases monotonically in k0 in Gk0(v) from the fusion

and untwisting formulas, we can see that d(k0, σ) < d(c/2, τ).

3.4. Enumerating all taut states

By Lemma 3.4, we have shown that every taut state contains a minimal state. Next

we show that every taut state is obtained from a unique such minimal state τ by
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changing the resolution from B-to A-on a set of crossings Fτ . We show that any taut

state σ with c(σ) = c(τ) and ki(σ) = ki(τ) containing τ as the leftmost minimal

state, to be defined below, satisfies Aσ = Aτ ∪ p, where p is any subset of Fτ .

All the circles here in the definitions and theorems are understood with possible

extra labels u, `, s, i, j indicating where they are in the regions defining St,Sw, and

Sb. To simplify notation we do not show these extra labels.

Definition 3.2. For each x ∈ Aτ between Sj−1 and Sj , let Rx be the set of

crossings to the right of x between Sj−1 and Sj , but to the left of any x′ ∈ Aτ
between Sj−2 and Sj−1, and any x′′ ∈ Aτ between Sj and Sj+1. We define the

following (possibly empty) subset Fτ of crossings of Kn.

Fτ :=
⋃
x∈Aτ

Rx.

See Fig. 18 and 19 for examples.

Definition 3.3. Given a set of crossings C of Kn, a crossing x ∈ C, and 1 ≤ j ≤ n,

define the distance |x|C of a crossing x ∈ C from the left to be

|x|C := For x ∈ Cj , the # of edges in SG(k0, B) to the left of

x between Sj and Sj+1.

The distance of the set C from the left is defined as∑
x∈C
|x|C .

Given any state σ with tight parameters c, k, we extract the leftmost minimal

state τσ where Aτσ ⊆ Aσ, i.e. there is no other minimal state τ ′ such that Aτ ′ ⊂ Aσ,

and the distance of Aτ ′ from the left is less than the distance of Aτσ from the left.

x
Sj−1

Sj

Sj+1

Sj−2

Fig. 18. (Color online) Only the blue edge is in Rx because of the presence of the top and bottom
red edges.

Fig. 19. (Color online) An example of Fτ with edges shown in blue with the minimal state τ
shown as red edges.
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Lemma 3.7. A Kauffman state σ with tight parameters c(σ), {ki(σ)} is taut if and

only if Aσ may be written as

Aσ = Aτσ ∪ p

where τσ is the leftmost minimal state from σ such that Aτσ ⊆ Aσ, and p is a subset

of Fτσ . See Fig. 20 for an example of a taut state that is not a minimal state, and

how it is obtained from the leftmost minimal state that it contains.

k0 k0

k0 k0

Fig. 20. (Color online) On top, a taut state having the same degree as a minimal state but is

not equal to it. The bottom picture shows the resulting skein element from applying the state. We
have c = 6, k1 = 0, k2 = 0, k3 = 2, and k4 = 1 as the minimal state in Fig. 17, and the thickened

red edges indicate the difference from a minimal state with the same parameters. Choosing the

A-resolution at each of the thickened red edges splits off a circle.
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Proof. By construction, if a state σ is such that

Aσ = Aτσ ∪ p

where p is a subset of Fτσ , then σ is a taut state.

Conversely, suppose by way of contradiction that σ is taut, which means that

it has the same parameters (c, k) as its leftmost minimal state τσ with the same

degree, but that there is a crossing x ∈ Aσ and x /∈ Fτσ . Then there are two

cases:

(1) x is to the left or to the right of all the edges in Aτσ .

(2) x ∈ Cj is between x′, x′′ ∈ Cj in Aτσ for some j.

In both cases we consider the state σ′ where

Aσ′ = Aτσ ∪ {x},

and we assume that taking the A-resolution on x splits off a circle from the skein

element S(k0, σ). Otherwise, by Lemma 2.1 applied to a sequence from τσ to σ

starting with changing the resolution from B to A on x,

degv v
sgn(σ)〈S(k0, σ)〉 < degv v

sgn(τσ)〈S(k0, τσ)〉 ,

a contradiction to σ being taut.

In case (1), the state σ′ has parameters (c, k′) such that
∑m
i=1 k

′
i <

∑m
i ki. If

each step of a sequence from σ′ to σ splits a circle in order to maintain the degree,

then the parameters for σ, and hence the number of global through strands of

S(k0, σ) will differ from S(k0, τσ), a contradiction.

In case (2), we have that x /∈ Fτσ must be an edge of the following form between

a pair of edges x′, x′′ as indicated in the generic local picture shown in Fig. 21, since

τσ is assumed to be leftmost.

Choosing the A-resolution at x merges a pair of circles in S(k0, τσ) which means

that d(k0, σ) < d(k0, τσ), a contradiction.

3.5. Adding up all taut states in st(c, k)

Note that in general there may be many taut states σ with fixed parameters (c =

c(σ), k = k(σ)).

xx′ x′′

Fig. 21. (Color online) The crossing x corresponds to the green edge.
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Theorem 3.3. Let c, k = {ki}mi=1 be tight. The sum∑
σ taut:c(σ)=c,ki(σ)=ki

vsgn(σ)〈S(k0, σ)〉

= (−1)q0(n−k0)+n+k0+
∑m
i=1(n−ki)(qi−1)vd(k0,τ) + l.o.t., (3.5)

where τ is a minimal state in the sum.

We are finally ready to prove Theorem 3.3.

Proof. Every minimal state with parameters c, k may be obtained from the left-

most minimal state of the entire set of minimal states M by transposing to the

right. Now we organize the sum (3.5) by putting it into equivalence classes of states

indexed by the leftmost minimal state τσ. We may write∑
σ taut:c(σ)=c,ki(σ)=ki

vsgn(σ)〈S(k0, σ)〉 =
∑

τ minimal

∑
στσ=τ

vsgn(σ)〈S(k0, σ)〉.

By Lemma 3.7, this implies∑
σ taut:c(σ)=c,ki(σ)=ki

vsgn(σ)〈S(k0, σ)〉

=
∑

τ minimal

|Fτ |∑
j=0

(
|Fτ |
j

)
vsgn(τ)−2j(−v2 − v−2)o(Aτ )+j .

If Fτ 6= ∅, then by a direct computation,

degv

|Fτ |∑
j=0

(
|Fτ |
j

)
vsgn(τ)−2j(−v2 − v−2)o(Aτ )+j


= sgn(τ) + 2o(Aτ )− 4|Fτ | < degv

(
vsgn(τ)〈S(k, τ)〉

)
= δ(n, k)

by Lemma 3.3.

Every taut state can be grouped into a nontrivial canceling sum except for the

rightmost minimal state. Thus it remains and determines the degree of the sum.

3.6. Proof of Theorem 3.1

Recall that JK,n+1 =
∑
c,k Gc,k and

Gc,k =
∑
k0

Gk0(v)
∑

σ:ki(σ)=ki,c(σ)=c

vsgn(σ)〈N(Ik0 ⊕ (Kn
+)σ)〉

By the fusion and untwisting formulas, we have

Gk0(v) = (−1)q0(n−k0) 42k0

θ(n, n, 2k0)
vq0(2n−2k0+n2−k20).
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We apply the previous lemmas to compute for each c, k the v-degree of the sum∑
σ:ki(σ)=ki,c(σ)=c

vsgn(σ)〈N(Ik0 ⊕ (Kn
+)σ)〉.

When c, k are tight the top degree part of the sum is Gtaut
c,k . By Theorem 3.3, we

have that the coefficient and the degree of the leading term are given by a minimal

state τ with parameters c, k. The degree is computed to be δ(n, k) in Lemma 3.3,

which also determines the leading coefficient.

When σ is a state such that c, k are not tight, and k0 ≥ c(σ)/2 or k0 ≥∑m
i=1 ki(σ), Lemma 3.1 says that S(k0, σ) is zero. Otherwise, Lemma 3.6 says that

there exists a taut state corresponding to a tight c′, k′ that has strictly higher

degree.

4. Quadratic Integer Programming

In this section, we collect some facts regarding real and lattice optimization of

quadratic functions.

4.1. Quadratic real optimization

We begin with considering the well-known case of real optimization.

Lemma 4.1. Suppose that A is a positive definite m × m matrix and b ∈ Rm.

Then, the minimum

min
x∈Rm

1

2
xtAx+ b · x (4.1)

is uniquely achieved at x = −A−1b and equals − 1
2b
tAb.

Proof. The function is proper with the only critical point at x = −A−1b which is

a local minimum since the Hessian of A is positive definite.

For a vector v ∈ Rm, we let vi for i = 1, . . . ,m denote its ith coordinate, so

that v = (v1, . . . , vm). When vi’s are nonzero for all i, we set v−1 = (v−1
1 , . . . , v−1

m ).

The next lemma concerns optimization of convex separable functions f(x), that

is, functions of the form

f(x) =

m∑
i=1

fi(xi), fi(xi) = aix
2
i + bixi (4.2)

where ai > 0 and bi are real for all i. The terminology follows Onn [37, Sec. 3.2].

Lemma 4.2. (a) Fix a separable convex function f(x) as in (4.2) and a real number

t ∈ R. Then the minimum

min

{
f(x) |

∑
i

xi = t, x ∈ Rm
}

(4.3)
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is uniquely achieved at x∗(t) where

x∗i (t) =
a−1
i t+ 1

2

∑
j(bj − bi)a

−1
i a−1

j∑
j a
−1
j

, (4.4)

and

f(x∗(t)) =
1

1 · a−1
t2 +

b · a−1

1 · a−1
t+ s0(a, b) (4.5)

where 1 ∈ Zm denotes the vector with all coordinates equal to 1, and s0(a, b) is a

rational function in coordinates a = (a1, . . . , am) and b = (b1, . . . , bm).

(b) If t� 0, then the minimum

min

{
f(x) |

∑
i

xi = t, x ∈ Rm, 0 ≤ xi, i = 1, . . . ,m

}
(4.6)

is uniquely achieved at (4.4) and given by (4.5).

Note that the coordinates of the minimizer x∗(t) are linear functions of t for

t � 0; we will call such minimizers linear. It is obvious that the minimal value is

then quadratic in t for t� 0.

Proof. Let f(x) =
∑
j ajx

2
j+bjxj and g(x) =

∑
j xj and use Lagrange multipliers.{

∇f = λ∇g,
g = t.

So, 2ajxj + bj = λ for all j, hence xj + bj/(2aj) = λ/(2aj) for all j. Summing up,

we get t+
∑
j bj/(2aj) = λ

∑
j 1/(2aj). Solving for λ, we get λ =

2t+
∑
j bja

−1
j∑

j a
−1
j

and

using

xi =
λ− bi

2ai
=

2t+
∑
j(bj − bi)a

−1
j

2ai
∑
j a
−1
j

=
a−1
i t+ 1

2

∑
j(bj − bi)a

−1
i a−1

j∑
j a
−1
j

,

Equation (4.4) follows. Observe that x∗(t) is an affine linear function of t. It follows

that f(x∗(t)) is a quadratic function of t. An elementary calculation by plugging in

x∗ into f gives (4.5) for an explicit rational function s0(a, b), which is the portion

of f(x∗(t)) that does not involve t.

If in addition t� 0 observe that x∗(t) = t
1·a−1 a

−1 +O(1), therefore x∗(t) is in

the simplex xi ≥ 0 for all i and
∑
i xi = t. The result follows.

4.2. Quadratic lattice optimization

In this section, we discuss the lattice optimization problem

min{f(x) |Ax = t, x ∈ Zm, 0 ≤ x ≤ t} (4.7)

for a nonnegative integer t, where A = (1, 1, . . . , 1) is a 1 × m matrix and f(x)

is a convex separable function (4.2) with a, b ∈ Zm with a > 0. We will follow
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the terminology and notation from Onn’s book [37]. In particular the set x ∈ Zm
satisfying the above conditions Ax = t and 0 ≤ xi ≤ t is called a feasible set. Lemma

3.8 of Onn [37] gives a necessary and sufficient condition for a lattice vector x to

be optimal. In the next lemma, suppose that a feasible x ∈ Zm is non-degenerate,

that is, xi < t and xj > 0 for all i, j. Note that this is not a serious restriction since

otherwise the problem reduces to a lattice optimization problem of the same shape

in one dimension less.

Lemma 4.3 ([37]). Fix a feasible x ∈ Zm which is non-degenerate. Then it is

optimal (i.e. a lattice optimizer for the problem (4.7)) if and only if it satisfies the

certificate

2(aixi − ajxj) ≤ (ai + aj)− (bi − bj). (4.8)

Proof. Lemma 3.8 of Onn [37] implies that x is optimal if and only if f(x) ≤
f(x + g) for all g ∈ G(A) where G(A) is the Graver basis of A. In our case, the

Graver basis is given by the roots of the Am−1 lattice, i.e. by

G((1, 1, . . . , 1)) = {ej − ei | 1 ≤ i, j ≤ m, i 6= j}.

Let g = ej − ei ∈ G(A) and f(x) as in (4.2). Then f(x) ≤ f(x + g) is equivalent

to (4.8).

Below, we will call a vector quasi-linear if its coordinates are linear quasi-

polynomials.

Proposition 4.1. (a) Every non-degenerate lattice optimizer x∗(t) of (4.7) is

quasi-linear of the form

x∗i (t) =
a−1
i∑
j a
−1
j

t+ ci(t) (4.9)

for some $-periodic functions ci, where

$ =
∑
i

∏
j 6=i

aj . (4.10)

(b) When t � 0 is an integer, the minimum value of (4.7) is a quadratic quasi-

polynomial

1

1 · a−1
t2 +

b · a−1

1 · a−1
t+ s0(a, b)(t), (4.11)

where s0(a, b) is a $-periodic function of t.

(c) For all t > 0 the minimum value of (4.7) is

1

1 · a−1
t2 +

b · a−1

1 · a−1
t+O(1). (4.12)

Part (c) of Proposition 4.1 is what we will apply to the degree of the colored

Jones polynomial. Note that in general there are many minimizers of (4.7). Com-

paring with (4.4) it follows that any lattice minimizer of (4.7) is within O(1) from

the real minimizer.
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Proof. Let Ai =
∏
j 6=i aj = a1 . . . âi . . . am, then $ = A1 + . . . + Am. Suppose

x∗ satisfies the optimality criterion (4.8) and Ax∗ = t where A = (1, 1, . . . , 1). Let

x∗∗ = x∗ + (A1, . . . , Am). Since aiAi − ajAj = 0 for i 6= j, it follows that

2(aix
∗
i − ajx∗j ) = 2(aix

∗∗
i − ajx∗∗j ).

Hence x∗ satisfies the optimality criterion (4.8) if and only if x∗∗ does. Moreover,

Ax∗∗ = Ax∗ + $ = t + $. Since a−1
i /(

∑
j a
−1
j ) = Ai/$, it follows that every

minimizer x∗(t) satisfies the property that x∗i (t)−
a−1
i∑
j a
−1
j

t is a $-periodic function

of t. Part (a) follows. For part (b), write x∗(t) = t
1·a−1 a

−1 + c(t) and use the fact

that Ac(t) = 0 to deduce that f(x∗(t)) is a quadratic quasi-polynomial of t with

constant quadratic and linear term given by (1.2). For part (c), note that by (b)

there is a constant C > 0 such that we get (4.12) for all t > C by taking the

maximum absolute value of the periodic s0(a, b). For 0 ≤ t ≤ C both the function

f and the quadratic are bounded by a constant so the conclusion still holds.

4.3. Application: The degree of the colored Jones polynomial

Recall that our aim is to compute the maximum of the degree function δ(k) =

δ(n, k) of the states in the state sum of the colored Jones polynomial with tight

parameters k0 =
∑m
i=1 ki, see Theorem 3.1. Here k = (k0, k1, . . . , km) and q =

(q0, q1, . . . , qm) are (m + 1)-vectors and we make use of the assumption that qi is

odd for all 0 ≤ i ≤ m. We will compute the maximum in two steps.

Step 1: We will apply Proposition 4.1 to the function δ(k) (divided by −2, and

ignoring the terms that depend on n and q = (q0, . . . , qm) but not on k):

−1

2
δ(k) =

m∑
i=1

(qi − 1)k2
i + (q0 + 1)

(
m∑
i=1

ki

)2

+

m∑
i=1

ki(−2 + q0 + qi) (4.13)

under the usual assumptions that q0 < 0, qi > 0 for i = 1, . . . ,m. We assume that

k = (k1, . . . , km) ∈ Zm. Restricting δ(k) to the simplex ki ≥ 0 and t = k1 + . . .+km,

we apply Proposition 4.1(c). It follows that for t > 0,

min
ki≥0∑
i ki≤n

δ(k) = min
0≤t≤n

Q0(t) +O(1),

where

Q0(t) = s(q)t2 + s1(q)t, (4.14)

and s(q), s1(q) are given by (1.2).

Step 2: Next it follows that Q0(t) is positive definite, degenerate, or negative

definite if and only if s(q) > 0, s(q) = 0, or s(q) < 0, respectively.

2050056-34

In
t. 

J.
 M

at
h.

 2
02

0.
31

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
A

X
-P

L
A

N
C

K
-I

N
ST

IT
U

T
E

 F
O

R
 M

A
T

H
E

M
A

T
IC

S 
L

IB
R

A
R

Y
 o

n 
07

/1
8/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



June 22, 2020 22:21 WSPC/S0129-167X 133-IJM 2050056

The slope conjecture for Montesinos knots

Case 1: s(q) < 0. Then Q0(t) is negative definite and the minimum is achieved at

the boundary t = n. It follows that

min
ki≥0∑
i ki≤n

δ(k) = s(q)n2 + s1(q)n+O(1) .

Case 2a: s(q) = 0, s1(q) 6= 0. Then Q0(t) is a linear function of t and the minimum

is achieved at t = 0 or t = n depending on whether s1(q) > 0 or s1(q) < 0, so we

have

min
ki≥0∑
i ki≤n

δ(k) =

{
O(1) if s1(q) > 0,

s1(q)n+O(1) if s1(q) < 0.

Case 2b: s(q) = 0 = s1(q). Now t = 0 and t = n both contribute equally so

cancellation may occur. It does not because the sign of the leading term is constant

due to the parities of the qi’s.

Case 3: s(q) > 0. Then Q0(t) is positive definite and Proposition 4.1 implies that

the lattice minimizers are near −s1(q)/(2s(q)) or at 0, when s1(q) < 0 or s1(q) ≥ 0

and the minimum value is given by:

min
ki≥0∑
i ki≤n

δ(k) =


−s1(q)2

4s(q)
+O(1) if s1(q) < 0,

O(1) if s1(q) ≥ 0.

Note that cancellation of multiple lattice minimizers is ruled out because the signs

of the leading terms are always the same due to the assumption on the parities of

the qi’s. Note also that the uncomputed O(1) term above does not affect the proof

of Theorem 1.1.

Remark 4.1. It may be of interest to note that there are very few pretzel knots

with s(q) ≥ 0 and s1(q) = 0. These are cases 2b and 3 above where cancella-

tions might occur if we had no control on the sign of the leading coefficients. The

case P (−3, 5, 5) is mentioned in [29] for its colored Jones polynomial with growing

leading coefficient.

Lemma 4.4 (Exceptional Pretzel knots). The only pretzel knots with q0 ≤
−2 < 3 ≤ q1, . . . , qm for which s(q) ≥ 0 and s1(q) = 0 are

(1) P (−3, 5, 5), P (−3, 4, 7), P (−2, 3, 5, 5), with s(q) = 0.

(2) P (−2, 3, 7), with s(q) = 1
2 .

Proof. Changing variables to fi = qi − 1 turns the two equations s(q) ≥ 0 and

s1(q) = 0 into: f0(f−1
1 + . . . + f−1

m ) + m = 0 and 2 + f0 + 1
f−1
1 +...+f−1

m
= c for

some c ≥ 0. Solving for f0 yields f0 = (c − 2) m
m−1 . Since f0 ≤ −3 we must have

0 ≤ c ≤ 2− 3m−1
m . This means there can only be such c when m = 2 or 3. Suppose
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m = 2 then c = 0 or c = 1
2 . In the first case we find f2 = 2f1

f1−2 so the positive integer

solutions are (f1, f2) ∈ {(3, 6), (4, 4), (6, 3)}. In the case c = 1
2 we find f2 = 3f1

2f1−3

so (f1, f2) ∈ {(2, 6), (3, 3), (6, 2)}. Finally the case m = 3, c = 0, f0 = −3 yields

(f1, f2, f3) ∈ {(2, 4, 4), (2, 3, 6), (3, 3, 3)} and permutations.

5. The Colored Jones Polynomial of Montesinos Knots

In this section, we will extend Theorem 3.1 to the class of Montesinos knots. For

a Montesinos knot K = K(r0, r1, . . . , rm), we will always consider the standard

diagram, also denoted by K, coming from the unique continued fraction expansion

of even length of each rational number as in the case of pretzel knots. Recall that our

restriction to Montesinos links with precisely one negative tangle and the existence

of reduced diagrams for Montesinos links means that we can assume ri[0] = 0

for all 0 ≤ i ≤ m, see Sec. 2.2. To build the diagram from simpler diagrams we

introduce the tangle replacement move (in short, TR-move), and study its effect on

the state-sum formula for the colored Jones polynomial.

5.1. The TR-move

A TR-move is a local modification of a link diagram D. Suppose D contains a twist

region T . Viewing T as a rational tangle T = 1
t for some integer t we may consider

a new diagram D1 obtained by replacing T by the rational tangle T1 = r ∗ 1
t

for some non-zero integer r with the same sign as t. Alternatively, viewing T as

an integer tangle t we replace it with T2 = 1
r ⊕ t, also with r having the same

sign. Collectively these two operations are referred to as the TR-moves. Recall from

Sec. 2.1, Eqs. (2.1), (2.2) that we can construct a diagram of any rational tangle by

a combination of TR-moves, see also Figs. 22 and 23. We extend this to n-cabled

tangle diagrams by labeling each arc in the diagram by n.

We will use the TR-moves to reduce a Montesinos knot to the associated pretzel

knot by first reducing it to a special Montesinos knot.

5.2. Special Montesinos knot case

We start by considering the case of Montesinos links K(r0, . . . , rm) where `ri = 2

for all 0 ≤ i ≤ m. This includes the pretzel links by choosing the unique even length

r

1
t1

t
t t

1
r

r ∗ 1
t

1
r ⊕ t

Fig. 22. Two types of TR-moves.
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r′′ < 0

1
r′ < 0

r < 0

1
t < 0

Fig. 23. Any rational tangle is produced by a combination of TR-moves. In the picture shown,

we have performed three TR-moves: first on 1/t, then r, then 1/r′.

continued fraction expansion with r0[2] = −1 and ri[2] = 1 for each 1 ≤ i ≤ m. We

call these links special Montesinos links. We prove the main theorem, Theorem 5.1,

for special Montesinos links.

As in the case of pretzel links we use a customized state sum to compute the

colored Jones polynomial, splitting K = N(K−⊕K+). In this case K− is the single

vertical 2-tangle 1/(r0[1]−1) and K+ is the 2-tangle that is the rest of the diagram.

As before we apply the fusion and untwisting formulas (2.4), (2.5) to Kn
− and the

Kauffman state sum to Kn
+ after cabling with the nth Jones–Wenzl idempotent for

the nth colored Jones polynomial. See Fig. 24.

The methods used previously on the pretzel links also apply to this case with

minor modifications. In particular, the notion of global through strands c(σ) for a

Kauffman state σ on Kn
+ still makes sense and ki(σ) is still well-defined by restrict-

ing σ to the ith tangle. In this case ci(σ) means the number of through strands of

the ith tangle of Kn
+ that are also global through strands, and as before ki = d ci2 e.

Let

Gc,k =
∑
k0

∑
σ:ki(σ)=ki,c(σ)=c

Gk0(v)vsgn(σ)〈N(Ik0 ⊕ (Kn
+)σ)〉,

where as in the case of pretzel links, Ik0 is the skein element in TL2n in the sum

obtained by applying the fusion and untwisting formulas to Kn
−, and Gk0(v) are

the coefficients in rational functions of v.

K− K+ K−

n

Fig. 24. A special Montesinos knot K = K(− 1
3

= 1
−2+ 1

−1

, 2
7

= 1
3+ 1

2

, 1
4

= 1
3+ 1

1

) = N(K−⊕K+),

and Kn = N(Kn
− ⊕Kn

+).
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We have

〈Kn〉 =
∑

(k0,σ)

Gk0(v)vsgn(σ)〈N(Ik0 ⊕ (Kn
+)σ)〉 =

∑
c,k

Gc,k.

We prove the following theorem.

Theorem 5.1. Consider K = K( 1
r0[1]+ 1

−1

, 1
r1[1]+ 1

r1[2]

, . . . , 1
rm[1]+ 1

rm[2]

). Assume

|ri[1]| > 1, |ri[2]| > 0, r0[1] < 0 < ri[1], and define q0 = r0[1] − 1, qi = ri[1] + 1

for 1 ≤ i ≤ m, q′i = ri[2] for 1 ≤ i ≤ m. Referring to the state sum

〈Kn〉 =
∑
c,k Gc,k we have the following : For a Kauffman state σ, define the param-

eters c = c(σ), k = k(σ) to be tight if k0 = k1 + . . .+ km = c
2 . For tight c, k we have

Gc,k = (−1)q0(n−k0)+n+k0+
∑m
i=1(n−ki)(qi−1)vδ(n,k) + l.o.t.b and

−δ(n, k)

2
= (q0 + 1)k2

0 +

m∑
i=1

(qi − 1)k2
i +

m∑
i=1

(−2 + q0 + qi)ki

− n(n+ 2)

2

m∑
i=0

qi + (m− 1)n− n2

2

m∑
i=1

(q′i − 1). (5.1)

If c, k are not tight then there exists a tight pair c′, k′ (coming from some Kauffman

state) such that degv Gc,k < degv Gc′,k′ .

Proof. The proof is analogous to that of Theorem 3.1 for pretzel links. As in

the pretzel case we identify the minimal states and show that they maximize the

degree and do not cancel out. Since these arguments are exactly the same we focus

n

n

Restriction from τP

Extension to τ

Fig. 25. An example with n = 4 showing a minimal state with 3 through strands through a

rational tangle r where `r = 2 and r[2] > 1. One can see the extension of the minimal state on the
vertical twist region 1/r[1]. We choose 32 = 9 crossings in pyramidal position in the twist region

(r[2])n.

bThe abbreviation l.o.t. means lower order terms in v.
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on describing the minimal states, one for each set of tight parameters of through

strands c, k. The minimal states are produced by choosing a minimal state τP for

the pretzel link P = P (q0, . . . , qm) and extending it to a minimal Kauffman state τ

of 〈Kn
+〉. The set Aτ on which τ chooses the A-resolution is a union of the restriction

of AτP on the twist region (1/ri[1])n and a set of k2
i crossings in pyramidal position

with ki through strands in (ri[2])n, 1 ≤ i ≤ m. This set exists whenever |ri[2]| > 0.

We have

d(k, τ) = d(k, τP ) + n2
m∑
i=1

(q′i − 1),

to account for the additional crossings from ri[2] for 1 ≤ i ≤ m on which τ chooses

the B-resolution. This gives δ(n, k) in the theorem.

5.3. The general case

Given K = K(r0, r1, . . . , rm), we decompose the standard diagram K = N(K− ⊕
K+), where K− is the single negative tangle, and K+ is the rest of the diagram.

We further decompose K− = D− ∪ V− where D− consists of the negative twist

region 1/r0[1] if r0[2] 6= −1, or 1/(r0[1] − 1) if r0[2] = −1 and `r0 = 2, while

V− is the rest of K−. Note D− and V− are joined as they are in the diagram

K. For the 2-tangle diagram corresponding to ri in K, where i ≤ 1 ≤ m, let

the tangle diagram Ti be the portion corresponding to the first two (with respect

to the continued fraction expansion) twist regions 1/ri[1] and ri[2]. If `ri = 2,

then Ti = ri[2] ∗ 1
ri[1] . Otherwise if `ri > 2, then Ti is a (4, 2)-tangle diagram

obtained by joining the upper right strand of 1
ri[1] to the lower right strand of

ri[2]. We decompose K+ as K+ = D+ ∪ V+, where D+ =
⋃m
i=1 Ti is the portion

of the standard diagram K obtained by arranging Ti side by side in a row in

order, and joining each pair Ti, Ti+1 for 1 ≤ i ≤ m − 1 according to the rules as

follows:

• If `ri = `ri+1
= 2, then Ti and Ti+1 are both 2-tangles. The lower right strand of

Ti is joined to lower left strand of Ti+1, and the upper right strand of Ti is joined

to the upper left strand of Ti+1.

• If `ri = 2 and `ri+1 > 2, or `ri > 2 and `ri+1 > 2 , only the lower right strand of

Ti is joined to the lower left strand of Ti+1.

• If `ri > 2 and `ri+1 = 2, then the upper right strand of Ti is joined to the upper

left strand of Ti+1, and the lower right strand of Ti is joined to the lower left

strand of Ti+1.

Define V+ to be the rest of K+. See Fig. 26 for examples of Ti’s and Fig. 27 for

an illustration of the decomposition of a Montesinos knot K. The union defined

extends to the n-cable of the tangle diagrams by decorating each strand with n, so

(D+ ∪ V+)n = Dn
+ ∪ V n+ and (D− ∪ V−)n = Dn

− ∪ V n− .
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Tangle ri Tangle Ti Tangle ri Tangle Ti

LL LR

UL UR

LL LR

UL UR

Fig. 26. Two cases of the Ti’s corresponding to the ri’s are shown. UL stands for upper left; UR

stands for upper right; LL stands for lower left; LR stands for lower right.

K−

K+

D+

K−

K+

D+

V−

D−

Fig. 27. We show the decomposition K = N(K− ⊕ K+) of a Montesinos knot K = K(− 3
7

=
1

−2+ 1
−3

, 2
7

= 1
3+ 1

2

, 2
7

= 1
3+ 1

2

, 7
17

= 1
2+ 1

2+ 1
2+ 1

1

, 7
17

= 1
2+ 1

2+ 1
2+ 1

1

, 2
7

= 1
3+ 1

2

). In the figure, K− =

D− ∪ V− (decomposed on the left) is the 2-tangle enclosed in the dashed rectangular box on K.

On the right, D+ is the tangle enclosed in the dashed curve on K+, and V+ is the rest of the
diagram K+.

Let

q0 =


r0[1] +

1

−1
if `r0 = 2 and r0[2] = −1.

r0[1] otherwise.

The link L = K( 1
q0
, 1
r1[1]+ 1

r1[2]

, . . . , 1
rm[1]+ 1

rm[2]

) is a special Montesinos link. We

approach the general case as insertion of the union of rational tangles V = V−∪V+

into this special Montesinos link via TR-moves. The essential feature of V is that

its all-B state acts like the identity on 〈L〉 plus some closed loops, see Fig. 28.

Lemma 5.1. Suppose we have the standard diagram of a Montesinos knot K =

K(r0, r1, . . . , rm) = N(K− ⊕ K+) = N((D− ∪ V−) ⊕ (D+ ∪ V+)), where L =

K( 1
q0
, 1
r1[1]+ 1

r1[2]

, . . . , 1
rm[1]+ 1

rm[2]

) is a special Montesinos knot. Let V = V− ∪ V+,
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1
r1

r2

1
t

r1

1
r2

t

V
V

Fig. 28. Examples of applying the all-B state to V and the resulting disjoint circles for moves
sending tangles 1

t
to ( 1

r1
⊕ r2) ∗ 1

t
and sending t to (r1 ∗ 1

r2
)⊕ t. The tangles that form part of V

are encircled.

joined as they are in the diagram K. If q0 < −1 is odd, and qi = ri[1] + 1 > 1 is

odd for every i > 0, then we have

degv〈Kn〉 = degv〈Ln〉+ c(V )n2 + 2n o(VB),

where c(V ) is the number of crossings in V and o(VB) is the number of disjoint

circles resulting from applying the all-B state to V .

Proof. Decompose the n-cable of the standard diagram Ln = N(Ln− ⊕ Ln+) as in

Fig. 24. Applying quadratic integer programming to the formula of Theorem 5.1

for the degree-maximizing states of 〈Ln〉, discarding any terms that depend only

on qi, q
′
i and n and not on ki, we see that there are minimal states of the state

sum of any special Montesinos knot that attain the maximal degree. Fix one such

minimal state τ .

We decompose Kn = N(Kn
− ⊕Kn

+) = N((Dn
− ∪ V n− ) ⊕ (Dn

+ ∪ V n+ )) and write

down a state sum for 〈Kn〉 by applying the fusion and untwisting formulas to the

n-cable of the single negative twist region in Dn
− and applying Kauffman states on

the set of crossings in the rest of the diagram Kn. Let σ ∪ σ′ denote a Kauffman

state on Kn where σ is a Kauffman state on Dn
+ and σ′ is a Kauffman state on

V n = (V n− ∪ V n+ ). We have

〈Kn〉 =
∑

(k0,σ∪σ′)

Gk0(v)vsgn(σ∪σ′)〈N((Ik0 ∪ (V n− )σ′)⊕ ((Dn
+)σ ∪ (V n+ )σ′))〉.

Because V = V− ∪ V+ is a (possibly disjoint) union of alternating tangles,

applying the all-B state on V n results in a set O(V nB ) of n o(VB) disjoint circles,

and

N((Ik0 ∪ (V n− )B)⊕ ((Dn
+)σ ∪ (V n+ )B)) = N(Ik0 ⊕ (Ln+)σ) tO(V nB )

by visual inspection of the diagrams involved. Letting BV denote the all-B state

on V n, we get

〈Kn〉 =
∑

(k0,σ∪σ′),σ′ 6=BV

Gk0(v)vsgn(σ∪σ′)〈N((Ik0 ∪ (V n− )σ′)⊕ ((Dn
+)σ ∪ (V n+ )σ′))〉

+
∑

(k0,σ∪BV )

Gk0(v)vsgn(σ∪BV )〈N((Ik0 ∪ (V n− )BV )⊕ ((Dn
+)σ ∪ (V n+ )BV ))〉
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=
∑

(k0,σ∪σ′),σ′ 6=BV

Gk0(v)vsgn(σ∪σ′)〈N((Ik0 ∪ (V n− )σ′)⊕ ((Dn
+)σ ∪ (V n+ )σ′))〉

+
∑

(k0,σ∪BV )

Gk0(v)vsgn(σ∪BV )〈N(Ik0 ⊕ (Ln+)σ) tO(V nB )〉

=
∑

(k0,σ∪σ′),σ′ 6=BV

Gk0(v)vsgn(σ∪σ′)〈N((Ik0 ∪ (V n− )σ′)⊕ ((Dn
+)σ ∪ (V n+ )σ′))〉

+ 〈Ln tO(V nB )〉.

Let

d(k0, σ ∪ σ′) = degv

(
Gk0(v)vsgn(σ∪σ′)〈N((Ik0 ∪ (V n− )σ′)⊕ ((Dn

+)σ ∪ (V n+ )σ′))〉
)
.

The diagram V being a union of alternating tangles also implies that a state on V n

that is not the all-B state merges a circle from O(V nB ). Therefore, by an application

of Lemma 2.1,

d(k0, σ ∪BV ) > d(k0, σ ∪ σ′),

for any σ′ 6= BV .

Thus for a pair (k0, τ) where d(k0, τ) maximizes the degree in the state sum of

〈Ln〉, the term

Gk0(v)vsgn(τ∪BV )N(Ik0 ⊕ (Ln+)τ ) t O(V nB )

also maximizes the degree in the state sum for 〈Kn〉. The leading terms all have

the same sign because of the assumption on the parities of the qi’s and Theo-

rem 5.1. Thus, there is no cancellation of these maximal terms, and we can deter-

mine degv〈Kn〉 relative to degv〈Ln〉 by counting the number of disjoint circles in

O(VB), giving the formula in the lemma.

It is useful to reformulate Lemma 5.1 in a more relative sense, pinpointing how

the degree changes as a result of applying a TR-move. Let TR−1 denote the TR-move

that sends 1
t to r ∗ 1

t . We define two composite moves TR−2 (T ) = ( 1
r1
⊕ r2) ∗ T , and

TR+(T ) = (r1 ∗ 1
r2

)⊕ T .

Lemma 5.2. Suppose two standard diagrams K,L of Montesinos knots satisfy the

conditions of Lemma 5.1, where K is obtained from L by applying one of the moves

TR−1 ,TR
−
2 ,TR

+, locally replacing tangle (T )n by (T ′)n, then the degree of the colored

Jones polynomial changes as follows. See Fig. 28 for examples of the moves TR−2 ,

TR+.

TR−1 -move: Suppose r, t < 0, and T = 1
t is a vertical twist region, and T ′ = r ∗ 1

t ,

then

deg〈Kn〉 = deg〈Ln〉 − rn2 + 2(−r − 1)n.
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TR−2 -move: Suppose r1, r2, t < 0, T = 1
t is a vertical twist region, and T ′ = ( 1

r1
⊕

r2) ∗ 1
t , then

deg〈Kn〉 = deg〈Ln〉 − (r1 + r2)n2 − 2r2n.

TR+-move: Suppose r1, r2, t > 0, T = t is a horizontal twist region, and T ′ =

(r1 ∗ 1
r2

)⊕ t, then

deg〈Kn〉 = deg〈Ln〉+ (r1 + r2)n2 + 2r2n.

Proof. Applying Lemma 5.1 we count the number of crossings and the number of

state circles from applying the all-B state to the newly added tangle V in each of

these cases, and determine the resulting degree.

We use Lemma 5.2 to prove the part of Theorem 1.2 concerning the degree of

the colored Jones polynomial for the Montesinos knots that we consider.

Theorem 5.2. With the same definitions for qi’s for 0 ≤ i ≤ m as in Lemma 5.1,

let K = K(r0, r1, . . . , rm) be a Montesinos knot such that r0 < 0, ri > 0 for all

1 ≤ i ≤ m, and |ri| < 1 for all 0 ≤ i ≤ m with m ≥ 2 even. Suppose q0 < −1 <

1 < q1, . . . , qm are all odd, and q′0 is an integer that is defined to be 0 if r0 = 1/q0,

and defined to be r0[2] otherwise. Let P = P (q0, . . . , qm) be the associated pretzel

knot, and let ω(DK), ω(DP ) denote the writhe of standard diagrams DK , DP with

orientations. For all n > NK we have:

jsK(n) = jsP (n)− q′0 − [r0]− ω(DP ) + ω(DK) +

m∑
i=1

(ri[2]− 1) +

m∑
i=1

[ri],

jxK(n) = jxP (n)− 2
q′0
r0[2]

+ 2[r0]o − 2

m∑
i=1

(ri[2]− 1)− 2

m∑
i=1

[ri]e.

Proof. Suppose K = K(r0, r1, . . . , rm) = N(K− ⊕ K+) is a Mon-

tesinos knot, then K is obtained from a special Montesinos knot L =

K( 1
q0
, 1
r1[1]+ 1

r1[2]

, . . . , 1
rm[1]+ 1

rm[2]

) = N(L− ⊕ L+) by a combination of TR-moves

on the tangles in L following the unique even length positive continued fraction

expansions of ri for 0 ≤ i ≤ m. Recall each rational tangle diagram corresponding

to ri has an algebraic expression of the form(((
ri[`ri ] ∗

1

ri[`ri − 1]

)
⊕ ri[`ri − 2]

)
∗ · · · ∗ 1

ri[1]

)
.

The diagram K+ is obtained by applying successive TR+-moves to ri[j] in L+,

1 ≤ i ≤ m, sending ri[j] to (ri[j + 2] ∗ 1/ri[j + 1])⊕ ri[j] for each even 2 ≤ j ≤ `ri
starting with j = 2. Similarly, the rational tangle K− is obtained from L− by

applying the TR−2 -moves to 1
r0[j] , sending 1

r0[j] to ( 1
r0[j+2] ⊕r0[j+1])∗ 1

r0[j] , for each
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odd 1 ≤ j < `r0 starting with j = 1, with a final TR−1 -move sending 1
r0[`r0−1] to

(r0[`r0 ] ∗ 1
r0[`r0−1] ).

Recall

[r]e =
∑

3≤j≤`r, j=even

r[j], [r]o =
∑

3≤j≤`r, j=odd

r[j], [r] = [r]e + [r]o.

We have two cases for the degree of 〈Kn〉 relative to 〈Ln〉, where Kn is obtained

from applying the combination of TR-moves to Ln as described above:

(1) r0 = 1/q0. By Lemma 5.2, each application of the TR+-move adds (ri[j + 2] +

ri[j+1])n2+2ri[j+1]n to the degree for each even 2 ≤ j ≤ `ri where 1 ≤ i ≤ m.

We have

degv〈Kn〉

= degv〈Ln〉+

m∑
i=1

∑
j even, 2≤j≤`ri

(ri[j + 2] + ri[j + 1])n2 + 2ri[j + 1]n

= degv〈Ln〉+ n2
m∑
i=1

[ri] + 2n

m∑
i=1

[ri]o.

Applying quadratic integer programming to (5.1) for degv〈Ln〉 and ignoring

the part of the degree function that only depends on n, qi, and q′i’s, we see that

as long as the qi’s for 0 ≤ i ≤ m satisfy the hypotheses of the theorem,

degv〈Kn〉

= −2s(q)(n)n2 − 2s1(q)(n)n+ lower order terms︸ ︷︷ ︸
degv〈Ln〉

+ n2
m∑
i=1

(q′i − 1) + n2
m∑
i=1

[ri] + 2n

m∑
i=1

[ri]o.

Gathering the coefficients multiplying n2 and accounting for the writhes of

standard diagrams DK , DP , we get

jsK(n) = jsP (n)− ω(Dp) + ω(DK) +

m∑
i=1

(q′i − 1) +

m∑
i=1

[ri].

Note that q′i = ri[2], and q′0 = [r0] = 0 for this case, and so trivially

jsK(n) = jsP (n)− q′0 − [r0]− ω(Dp) + ω(DK) +

m∑
i=1

(ri[2]− 1) +

m∑
i=1

[ri].
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Now we compute jxK(n) by considering degv〈Kn−1〉 and collecting coefficients

of n. This gives

jxK(n) = jxP (n)− 2

m∑
i=1

(q′i − 1)− 2

m∑
i=1

[ri] + 2

m∑
i=1

[ri]o.

= jxP (n)− 2

m∑
i=1

(q′i − 1)− 2

m∑
i=1

[ri]e.

Trivially we have

jxK(n) = jxP (n)− 2
q′0
r0[2]

+ 2[r0]o − 2

m∑
i=1

(ri[2]− 1)− 2

m∑
i=1

[ri]e.

(2) r0 6= 1/q0. In this case, we account for the degree change for the TR+-moves

applied to Ln+ in the same way as in case (1). It remains to account for the

change to the degree based on applying TR−2 -moves with a final TR−1 -move to

the n-cabled negative tangle of the special Montesinos knot L. Each application

of the TR−2 -move adds −(r0[j + 2] + r0[j + 1])n2 − 2(r0[j + 1])n to the degree,

and the final application of the TR−1 -move adds −r0[`r0 ]n2 + 2(−r0[`r0 ]− 1)n.

We sum the contribution over j odd from 1 to `r0 .∑
j odd,1≤j<`r0

−(r0[j + 2] + r0[j + 1])n2 − 2(r0[j + 1])n

= −(r0[2] + [r0]− r0[`r0 ])n2 − 2([r0]e − r0[`r0 ] + r0[2])n. (5.2)

We compute similarly the quadratic growth rate and the linear growth rate of

the final TR−1 -move:

−r0[`r0 ]n2 + 2(−r0[`r0 ]− 1)n. (5.3)

Adding (5.2), (5.3), we have

(5.2) + (5.3) = −(r0[2] + [r0])n2 − 2([r0]e + r0[2] + 1)n. (5.4)

Plugging in n− 1 for n and expanding, the result is

(5.2) + (5.3) = −(r0[2] + [r0])n2 − 2([r0]e + r0[2] + 1− (r0[2] + [r0]))n.(5.5)

When we add the coefficients multiplying n2 and the coefficients multiplying n

from (5.4) from the moves on Kn
+, we get in this case

jsK(n) =

(
jsP (n)− ω(Dp) + ω(DK) +

m∑
i=1

(ri[2]− 1) +

m∑
i=1

[ri]

)
− (r0[2] + [r0]), (5.6)

and

jxK(n) =

(
jxP (n)− 2

m∑
i=1

(ri[2]− 1)− 2

m∑
i=1

[ri]e

)
+ 2[r0]o − 2

q′0
r0[2]

, (5.7)

as in the statement of the theorem.
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6. Essential Surfaces of Montesinos Knots

Let Σ be a compact, connected, non-boundary-parallel, and properly embedded

surface in a compact, orientable 3-manifold Y with torus boundary. We say that

Σ is essential if the map on fundamental groups ι∗ : π1(Σ) → π1(Y ) induced by

inclusion of Σ into Y is injective. The surface Σ is incompressible if for each disk

D ⊂ Y with D ∩Σ = ∂D, there is a disk D′ ⊂ Σ with ∂D′ = ∂D. The surface Σ is

called ∂-incompressible if for each disk D ⊂ Y with D∩Σ = α, D∩∂Y = β (α and

β are arcs), α∪β = ∂D, and α∩β = S0, there is a disk D′ ⊂ Σ with ∂D′ = α′ ∪β′
such that α′ = α and β′ ⊂ ∂Σ.

Orient the torus boundary ∂Y with the choice of the canonical meridian-

longitude basis µ, λ from the standard framing (so the linking number of the longi-

tude and the knot is 0) given an orientation on the knot. The boundary curves ∂Σ

of an essential surface Σ with boundary in ∂Y are homologous and thus determines

a homology class [pµ + qλ] in H1(∂Y ). The boundary slope of Σ is the fraction

p/q ∈ Q ∪ {1/0}, reduced to lowest terms. Hatcher showed that the set of bound-

ary slopes of a compact orientable irreducible 3-manifold with torus boundary (in

particular a knot exterior) is finite [16].

An orientable surface is essential if and only if it is incompressible. On the other

hand, a non-orientable surface is essential if and only if its orientable double cover

in the ambient manifold is incompressible. In an irreducible orientable 3-manifold

whose boundary consists of tori (such as a link complement), an orientable incom-

pressible surface is either ∂-incompressible or a ∂-parallel annulus [41]. Therefore,

the problem of finding boundary slopes for Montesinos knots may be reduced to the

problem of finding orientable incompressible and ∂-incompressible surfaces, and we

will only consider such surfaces for the rest of the paper.

In this section, we summarize the Hatcher–Oertel algorithm for finding all

boundary slopes of Montesinos knots [18], based on the classification of orientable

incompressible and ∂-incompressible surfaces of rational (also known as 2-bridge)

knots in [19]. For every Jones slope that we find in Secs. 4.3 and 5.3, we will use the

algorithm to produce an orientable, incompressible and ∂-incompressible surface,

whose boundary slope, number of boundary components, and Euler characteris-

tic realize the strong slope conjecture. This completes the proof of Theorems 1.1

and 1.2.

We will follow the conventions of [18, 19]. For further exposition of the algorithm,

the reader may also consult [21]. It will be useful to introduce the negative continued

fraction expansion [4, Chap. 13]

[[a0, a1, . . . , a`]] = [a0,−a1, . . . , (−1)`a`] = a0 −
1

a1 − 1
a2− 1

a3−···−
1
a`

. (6.1)

with ai ∈ Z and ai 6= 0 for i > 0.
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6.1. Incompressible and ∂-incompressible surfaces

for a rational knot

A notion originally due to Haken [15], a branched surface B in a 3-manifold Y

is a subspace locally modeled on the space as shown on the left in the Fig. 29.

This means every point has a neighborhood diffeomorphic to the neighborhood of

a point in the model space. A properly embedded surface Σ in Y is carried by B if

Σ can be isotoped so that it runs nearly parallel to B, i.e. S lies in a fibered regular

neighborhood N(B) of B, and such that S meets every fiber of N(B).c

Using branched surfaces, Hatcher and Thurston [19] classify all orientable,

incompressible and ∂-incompressible surfaces with nonempty boundary for a ratio-

nal knot Kr = K(1/r) where r ∈ Q∪{1/0} in terms of negative continued fraction

expansions of r. For each negative continued fraction expansion [[b0, b1, . . . , bk]] of r

as in (6.1) they construct a branched surface Σ(b1, . . . , bk) and associated surfaces

SM (M1, . . . ,Mk) carried by Σ(b1, . . . , bk), where M ≥ 1 and 0 ≤Mj ≤M .

We will now describe their representation of a surface SM (M1, . . . ,Mk) carried

by a branched surface Σ(b1, . . . , bk) in terms of an edge-path on a one-complex D.

Here, D is the Farey ideal triangulation of H2 on which PSL2(Z) is the group of

orientation-preserving symmetries, see Fig. 30. Recall that the vertices (in the nat-

ural compactification) of D are Q∪∞ and we set∞ = 1
0 in projective coordinates.

A typical vertex of D will be denoted by 〈pq 〉 for coprime integers p, q with q ≥ 0.

There is an edge between two vertices 〈pq 〉 and 〈 rs 〉, denoted by 〈pq 〉 〈 rs 〉, when-

ever |ps − rq| = 1. An edge-path is a path on the 1-skeleton of D which may have

endpoints on an edge rather than on a vertex.

Given a negative continued fraction expansion [[b0, . . . , bk]] of r, the vertices of

the corresponding edge-path are the sequence of partial sums

[[b0, b1, . . . , bk]], [[b0, b1, . . . , bk−1]], . . . , [[b0, b1]], [[b0]],∞.

Fig. 29. (Color online) Left: Local picture of a branched surface, with the blue lines indicating

the singularities. Right: A surface carried by the branch surface.

cIn [8, 16], a surface is carried by a branched surface if it lies in a fibered regular neighborhood of

the branched surface. A surface is carried by a branched surface with positive weights if in addition
the surface intersects every fiber of the fibered regular neighborhood of the branched surface. Here

we add the condition that the surface meets every fiber of the fibered regular neighborhood of the
branched surface to simplify the summary of results from [8, 16].
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−3/1

2/31/1

−1/1

0/11/0

1/22/1

−2/1
−1/2

Fig. 30. Some edges of the 1-complex D.

Given a choice of integers M ≥ 1 and 0 ≤ Mj ≤ M , we construct a surface

SM (M1, . . . ,Mk) in the exterior of Kr from this edge-path as follows. We isotope

the 2-bridge knot presentation of Kr so that it lies in S2 × [0, 1], with the two

bridges intersecting S2×{1} in two arcs of slope∞, and the arcs of slope r lying in

S2 × {0}. See [19, p. 1, Fig. 1(b)]. The slope here is determined by the lift of those

arcs to R2, where S2 × {i} \K is identified with the orbit space of Γ, the isometry

group of R2 generated by 180◦ rotation about the integer lattice points.

Given an edge-path with vertices {〈v〉}, choose heights {iv}, iv ∈ [0, 1] respecting

the ordering of the vertices in the path. At S2 × {0}, we have 2M arcs of slope r,

and at S2 × {1} we have 2M arcs of slope ∞. For a fixed M , each vertex 〈v〉 of an

edge-path determines a curve system on S2 × {iv}, consisting of 2M arcs of slope

v with ends on the four punctures representing the intersection with the knot. The

surface SM (M1, . . . ,Mk) is constructed by having its intersections with S2 × {iv}
coincide with the curve system at 〈v〉. Between one vertex 〈v〉 to another, say 〈v′〉
connected by an edge, M saddles are added to change all 2M arcs of slope v to 2M

arcs of slope v′, with Mj indicating one of the two possible choices of such saddles.

At the end of the edge-path, 2M disks are added to the slope ∞ curve system,

which corresponds to closing the knot by the two bridges.

Hatcher and Thurston have shown that every non-closed incompressible, ∂-

incompressible surface in S3 \Kr is isotopic to SM (M1, . . . ,Mk) for some M and

Mj ’s . Furthermore, a surface SM (M1, . . . ,Mk) carried by Σ(b1, . . . , bk) is incom-

pressible and ∂-incompressible if and only if |bj | ≥ 2 for each 1 ≤ j ≤ k [19, The-

orem 1(b) and c)]. For more details on the construction of the branched surface

Σ(b1, . . . , bk), and how it is used in the proof, see [19]. Floyd and Oertel have

shown that there is a finite, constructible set of branched surfaces for every Haken

3-manifold with incompressible boundary, which carries all the two-sided, incom-

pressible and ∂-incompressible surfaces [8]. For the general theory of branched sur-

faces applied to the question of finding boundary slopes in a 3-manifold, interested

readers may consult these references. We will continue to specialize to the case of

knots.
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Let B be a branched surface in a 3-manifold Y with torus boundary, and let S

be a properly embedded surface in Y carried by B. There is an orientation on ∂B

such that all the boundary circles of S, oriented with the induced orientations from

the orientation on ∂B, are homologous in the torus boundary of Y . See [16, p. 375,

Lemma] for the full statement and a proof of this result that generalizes to the case

where an orientable, compact, and irreducible 3-manifold has boundary the union

of multiple tori. Thus to compute a boundary slope it suffices to specify a branched

surface, and hence the edge-path representing the surface as described above in the

case of rational knots. This is how we will describe the surfaces we consider for

computing the boundary slopes of a Montesinos knot for the rest of this paper.

6.2. Edge-paths and candidate surfaces for Montesinos knots

Hatcher and Oertel [18] give an algorithm that provides a complete classification

of boundary slopes of Montesinos knots by decomposing K(r0, r1, . . . , rm) via a

system of Conway spheres {S2
i }mi=1, each of which contains a rational tangle Tri .

Their algorithm determines the conditions under which the incompressible and the

∂-incompressible surfaces in the complement of each rational tangle, as classified

by [19] and put in the form in terms of edge-paths as discussed in Sec. 6.1, may

be glued together across the system of Conway spheres to form an incompressible

surface in S3 \K(r0, r1, . . . , rm).

To describe the algorithm, it is now necessary to give coordinates to curve

systems on a Conway sphere. The curve system S ∩ S2
i for a connected surface

S ⊂ S3 \ K(r0, r1, . . . , rm) may be described by homological coordinates Ai, Bi,

and Ci as shown in Fig. 31 [17].

Since an incompressible surface S must also be incompressible when restricting

to a tangle inside a Conway sphere, the classification of [19] applies, and the rep-

resentation by Hatcher–Thurston of such a surface in terms of an edge-path also

carries over. However, the edge-paths lie instead in an augmented 1-complex D̂
in the plane obtained by splitting open D along the slope ∞ edge and adjoining

constant edge-paths 〈pq 〉 〈pq 〉. See [18, Fig. 1.3]. The additional edges in D̂ incor-

porate the new possibilities of curve systems that arise when gluing the surfaces

following the tangle sum.

Ai
Ai

Bi

Ci

Fig. 31. The Conway sphere containing the tangle corresponding to ri and the curve system
on it.
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Again, an edge-path in D̂ is a path in the 1-skeleton of D̂ which may or may

not end on a vertex. It describes a surface in the complement of a rational tangle

in K(r0, r1, . . . , rm) consisting of saddles joining curve systems corresponding to

vertices, as described in the last paragraph of Sec. 6.1. The main adjustment is

that the endpoint of an edge-path may not end at 〈∞〉. In order for the endpoint

representing the curve system to come from the intersection with an incompressible

and ∂-incompressible surface, it must be on an edge 〈pq 〉 〈 rs 〉 and has the form

K

M

〈
p

q

〉
+
M −K
M

〈r
s

〉
,

for integers K ∈ Z, M > 0. If p
q 6=

r
s , this describes a curve system on a Conway

sphere consisting of K arcs of slope p/q, of (A,B,C)-coordinates K(1, q−1, p), and

M−K arcs of slope r/s, of (A,B,C)-coordinates (M−K)(1, s−1, r). The coordinate

of the point is the sum: (M,K(q−1)+(M−K)(s−1),Kp+(M−K)r). If pq = r
s , this

describes a curve system on a Conway sphere consisting of (M−K) arcs of slope p/q,

of (A,B,C)-coordinates (M−K)(1, q−1, p) = (M−K, (M−K)(q−1), (M−K)p),

and K circles of slope p/q, of (A,B,C)-coordinates K(0, q, p) = (0,Kq,Kp). The

coordinate of the point is again the sum: (M −K, (M −K)(q − 1) +Kq,Mp).

The algorithm is as follows.

(1) For each fraction ri, pick an edge-path γi in the 1-complex D̂ corresponding to

a continued fraction expansion

ri = [[b0, b1, . . . , bk]], bj ∈ Z, |bj | ≥ 2 for 1 ≤ j ≤ k.

As discussed in Sec. 6.1, these continued fraction expansions correspond to

essential surfaces in the complement of the rational knot Kri . For example, for

1/3 the choices are either [[0,−3]] or [[1, 2, 2]]. Or, choose the constant edge-path

〈ri〉 〈ri〉.
(2) For each edge 〈pq 〉 〈 rs 〉 in γi, determine the integer parameters {Ki}mi=0,

{Mi}mi=0 satisfying the following constraints.

(a) Ai = Aj and Bi = Bj for all the A-coordinates Ai and the B-coordinates

Bi of the point

Ki

Mi

〈
p

q

〉
+
Mi −Ki

Mi

〈r
s

〉
.

(b)
∑m
i=0 Ci = 0 where Ci is the C-coordinate of the point

Ki

Mi

〈
p

q

〉
+
Mi −Ki

Mi

〈r
s

〉
.

The edge-paths chosen in (1) with endpoints specified by the solutions to (a)

and (b) of (2) determine a candidate edge-path system {γi}mi=0, corresponding

to a connected and properly embedded surface S in S3 \K(r0, r1, . . . , rm). We

call this the candidate surface associated to a candidate edge-path system.
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(3) Apply incompressibility criteria [18, Prop. 2.1, Cor. 2.4, and Prop. 2.5–2.9] to

determine if a candidate surface is an incompressible surface and thus actually

gives a boundary slope.

Remark 6.1. We would like to remark that Dunfield [7] has written a computer

program implementing the Hatcher–Oertel algorithm, which will output the set

of boundary slopes given a Montesinos knot and give other information like the

set of edge-paths representing an incompressible, ∂-incompressible surface, Euler

characterstic, number of sheets, etc. The program has provided most of the data

we use in our examples in this paper. Interested readers may download the program

at his website https://faculty.math.illinois.edu/ nmd/montesinos/index.html.

We will write S({γi}mi=0) to indicate a candidate surface associated to a candi-

date edge-path system {γi}mi=0. Note that for a candidate edge-path system without

constant edge-paths, Mi is identical for i = 0, . . . ,m by condition (2a) in the algo-

rithm. We will only consider this type of edge-path systems for the rest of this

paper, and simply write M for Mi for a candidate surface S.

We will mainly be applying [18, Corollary 2.4], which we restate here. Note that

for an edge 〈pq 〉
K
M 〈

p
q 〉+ M−K

M 〈 rs 〉, the ∇-value (called the “r-value” in [18]) is 0

if p
q = r

s or if the edge is vertical, and the ∇-value is |q − s| when p
q 6=

r
s .

Theorem 6.1 ([18, Corollary 2.4]). A candidate surface S({γi}mi=0) is incom-

pressible unless the cycle of ∇-values for the final edges of the γi’s is of one of the

following types: {0,∇1, . . . ,∇m}, {1, 1, . . . , 1,∇m}, or {1, . . . , 1, 2,∇m}.

6.3. The boundary slope of a candidate surface

The twist number tw(S) for a candidate surface S({γi}mi=0) is defined as

tw(S) :=
2

M

m∑
i=0

(s−i − s
+
i ) = 2

m∑
i=0

(e−i − e
+
i ), (6.2)

where s−i is the number of slope-decreasing saddles of γi, s
+
i is the number of slope-

increasing saddles of γi, and M is the number of sheets of S [18, p. 460]. Let an

edge be given by 〈pq 〉 〈 rs 〉, we say that the edge decreases slope if rs <
p
q , and that

the edge increases slope if r
s >

p
q . In terms of edge-paths, tw(S) can be written in

terms of the number e−i of edges of γi that decreases slope and e+
i , the number of

edges of γi that increases slope as shown. If γi has a final edge〈
p

q

〉
Ki

M

〈
p

q

〉
+
M −Ki

M

〈r
s

〉
,

then the final edge of γi is called a fractional edge and counted as a fraction M−Ki
M .

Finally, the boundary slope bs(S) of a candidate surface S is given by

bs(S) = tw(S)− tw(S0) (6.3)

where S0 is a Seifert surface that is a candidate surface from the Hatcher–Oertel

algorithm. For the relation of the twist numbers to boundary slopes, see [18, p. 460].
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6.4. The Euler characteristic of a candidate surface

We compute the Euler characteristic of a candidate surface S = S({γi}mi=0), where

none of the γi’s are constant or end in 〈∞〉 as follows. M is again the number of

sheets of the surface S. We begin with 2M disks which intersect S2
i × {0} in slope

ri arcs in each 3-ball B3
i containing the rational tangle corresponding to ri.

• From left to right in an edge-path γi, each non-fractional edge 〈pq 〉 〈 rs 〉 is con-

structed by gluing M saddles that change 2M arcs of slope p
q (representing the

intersections with S2
i × {i pq }) to slope r

s (representing the intersections with

S2
i × {i rs }), therefore decreasing the Euler characteristic by M .

• A fractional final edge of γi of the form 〈pq 〉
K
M 〈

p
q 〉+

M−K
M 〈 rs 〉 changes 2(M−K)

out of 2M arcs of slope p
q to 2(M−K) arcs of slope r

s via M−K saddles, thereby

decreasing the Euler characteristic by M −K.

This takes care of the individual contribution to the Euler characteristic of an

edge-path {γi}. Now the identification of the surfaces on each of the 4-punctured

spheres will also affect the Euler characteristic of the resulting surface. In terms of

the common (A,B,C)-coordinates of each edge-path, there are two cases:

• The identification of hemispheres between neighboring balls B3
i and B3

i+1 iden-

tifies 2M arcs and Bi half circles. Thus it subtracts 2M + Bi from the Euler

characteristic for each identification.

• The final step of identifying hemispheres from B3
0 and B3

m on a single sphere

adds Bi to the Euler characteristic.

6.5. Matching the growth rate to topology for pretzel knots

We consider two candidate surfaces from the Hatcher–Oertel algorithm whose

boundary slopes and the ratios of Euler characteristic to the number of sheets will

be shown to match the growth rate of the degree of the colored Jones polynomial

from the previous sections as predicted by the strong slope conjecture.

6.5.1. The surface S(M,x∗)

For 1 ≤ i ≤ m write

x∗i =
(qi − 1)−1∑m
j=1(qj − 1)−1

. (6.4)

The x∗i ’s come from the coefficients of t in (4.4) in the real maximizers x∗i (t) of

the degree function δ(n, k) from the state sum of the nth colored Jones polynomial.

Let M be the least common multiple of the denominators of {x∗i }mi=1, reduced to

lowest terms. For example, suppose we have the pretzel knot P (−11, 7, 9), then

x∗1 =
1

7−1
1

7−1 + 1
9−1

=
4

7
, x∗2 =

1
8

1
7−1 + 1

9−1

=
3

7
,
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and M is 7. We show that {x∗i } and M determine a candidate surface from the

Hatcher–Oertel algorithm.

Recall for q = (q0, q1, . . . , qm),

s(q) = 1 + q0 +
1∑m

i=1(qi − 1)−1
.

Lemma 6.1. Suppose q = (q0, q1, . . . , qm) is such that s(q) ≤ 0. There is a candi-

date surface S(M,x∗) from the Hatcher–Oertel algorithm with M > 0 sheets and

C-coordinates

{−M,Mx∗1,Mx∗2, . . . ,Mx∗m}.

Proof. Directly from the proof of Lemma 4.1, the elements of the set {x∗i }mi=1

satisfy the following equations.

x∗i (qi − 1) = x∗j (qj − 1), for i 6= j, and
m∑
i=1

x∗i = 1. (6.5)

Consider the edge-path systems determined by the following choice of continued

fraction expansions for {1/qi}mi=0.

1/q0 = [[−1,−2,−2, . . . ,−2︸ ︷︷ ︸
−q0−1

]], and

1/qi = [[0,−qi]], for 1 ≤ i ≤ m.

Note that they represent locally incompressible surfaces since | − 2| ≥ 2 and qi ≥ 2

for 1 ≤ i ≤ m as discussed in Sec. 6.1. Let Ki = Mx∗i for 1 ≤ i ≤ m, and suppose

we have 0 ≤ K0 ≤M , 2 ≤ q ≤ −q0 such that

K0 +M(q − 2) = K1(q1 − 1). (6.6)

This condition is the same as requiring B0 = B1 from (a) of Step (2) of the Hatcher–

Oertel algorithm. We specify a candidate surface S(M,x∗) in terms of edge-paths

{γi}mi=0:

The edge-path γ0 for q0 is〈
−1

−q0

〉 〈
−1

−q0 − 1

〉
· · · K0

M

〈
−1

q

〉
+
M −K0

M

〈
−1

q − 1

〉
.

For 1 ≤ i ≤ m, we have the edge-path γi:〈
1

qi

〉
Ki

M

〈
1

qi

〉
+
M −Ki

M

〈
0

1

〉
. (6.7)

Provided that K0, q satisfying (6.6) exist, together with (6.5) this edge-path

system satisfies the equations coming from (a) and (b) of Step (2) of the algorithm.

Thus, there is a candidate surface with {−M,Mx∗1,Mx∗2, . . . ,Mx∗m} as the C-

coordinates in the tangles corresponding to ri’s.
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It remains to show that the assumption s(q) ≤ 0 implies the existence of K0, q

satisfying (6.6).

Write

x∗i =
(qi − 1)−1∑m
j=1(qj − 1)−1

=

∑m
j=1(qj − 1)

(qi − 1)Πm
j=1(qj − 1)

.

Recall s(q) ≤ 0 means

1 + q0 +
1∑m

i=1(qi − 1)−1
= 1 + q0 +

∑m
i=1(qi − 1)

Πm
i=1(qi − 1)

≤ 0.

Multiply both sides by M , we get

M(1 + q0) +M

∑m
i=1(qi − 1)

Πm
i=1(qi − 1)

≤ 0.

This implies that a pair of integers K0, q such that 0 ≤ K0 ≤M , q0 ≤ q ≤ −2 exist

such that (6.6) is satisfied, since by definition∑m
i=1(qi − 1)

Πm
i=1(qi − 1)

= Mx∗1(q1 − 1) = K1(q1 − 1),

which is the same as saying

M(1 + q0) +K1(q1 − 1) ≤ 0.

So if M > K1(q1 − 1), we can choose q = 2 and K0 = K1(q1 − 1). Otherwise, we

choose some q0 ≤ −q ≤ −2 such that

0 ≤ K1(q1 − 1)−M(q − 2) ≤M.

Let K0 be the difference K1(q1 − 1)−M(q − 2).

The twist number of S(M,x∗). With the given edge-path system (6.7) in the

proof of Lemma 6.1 and applying the formula for computing the boundary slope

in Sec. 6.3, we compute the twist number of S(M,x∗). For the edge-path γ0 of q0,

since q0 < 0, each edge of the edge-path is slope-decreasing. Similarly, each edge in

γi for qi is slope-decreasing (since qi > 0, the edge 〈1/qi〉 〈0/1〉 is decreasing in

slope). Each non-fractional path contributes 1, and then the single fractional edge

at the end contributes (M −Ki)/M for 0 ≤ i ≤ m. Thus

tw(S(M,x∗))

2

= (−q − q0)︸ ︷︷ ︸
contribution of the non-fractional edges of γ0
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+
M −K0

M︸ ︷︷ ︸
contribution of the single fractional edge at the end of γ0

+

m∑
i=1

M −Ki

M︸ ︷︷ ︸
contribution of the single fractional edge for each of the γi’s for 1 ≤ i ≤ m.

By construction,
∑m
i=1

Ki
M = 1 and −q − K0

M = −K1

M (q1 − 1)− 2 from (6.6), so

tw(S(M,x∗)) = 2(−q0 − x∗1(q1 − 1) +m− 2). (6.8)

The Euler characteristic of S(M,x∗). With the given edge-path system and

applying the formula for computing the Euler characteristic in Sec. 6.4, we compute

the Euler characteristic over the number of sheets for S(M,x∗). We start with 2M

disks for each tangle. Each non-fractional edge of an edgepath in {γi}mi=0 subtracts

M from the Euler characteristic, while the final fractional edges subtract
∑m
i=0M−

Ki from the Euler characteristic. At the final step of gluing surfaces across Conway

spheres, we subtract 2M +Bi for each identification out of m identifications, then

add a single Bi back. We have, since Bi = Ki(qi − 1) = Bj ,

m∑
i=1

Bi = mKi(qi − 1). (6.9)

All together, the Euler characteristic over the number of sheets of S(M,x∗) is given

by

2χ(S(M,x∗))

#S(M,x∗)
= 2

 2M(m+ 1)

M︸ ︷︷ ︸
contribution from 2M disks in each tangle

−
(−q − q0)M + (

∑m
i=0M −Ki)

M︸ ︷︷ ︸
contribution from the edges of the edge-path system

−

(
m∑
i=1

(2M +Bi)

M

)
︸ ︷︷ ︸

contribution from the m identifications

+
Bi
M︸︷︷︸

contribution from the final identification

 (6.10)
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Using (6.5), (6.8), and (6.9) to simplify, we get

2χ(S(M,x∗))

#S(M,x∗)
= 4− tw(S(M,x∗))− 2(m− 1)x∗i (q1 − 1)

= 4− 2(−q0 − x∗i (q1 − 1) +m− 2)− 2(m− 1)x∗i (q1 − 1)

= 8− 2m+ 2q0 − 2(m− 2)x∗i (q1 − 1). (6.11)

The cycle of ∇-values of S(M,x∗). For i = 0, the last edge of the edge-path

γ0 is 〈
−1

q

〉
K0

M

〈
−1

q

〉
+
M −K0

M

〈
−1

q − 1

〉
,

so the ∇-value for this edge-path is |q − (q − 1)| = 1. For 1 ≤ i ≤ m, the final edge

of the edge-path γi is of the form〈
1

qi

〉
Ki

M

〈
1

qi

〉
+
M −Ki

M

〈
0

1

〉
.

So the value of each 1 ≤ i ≤ m is qi − 1 following the discussion preceding Theo-

rem 6.1.

The cycle of ∇-values for the edge-path system is (1, q1 − 1, q2 − 1, . . . , qm − 1).

6.5.2. The reference surface R

Note that the sequence of parameters (0)mi=0 also trivially satisfy the equations from

Step 2(a) and 2(b) of the Hatcher–Oertel algorithm with the choice of continued

fraction expansion 1/qi = [[0,−qi]] for 0 ≤ i ≤ m, and therefore defines a connected

candidate surface in the complement of K(1/q0, . . . , 1/qm). We will call this surface

the reference surface R.

In the framework of the Hatcher–Oertel algorithm, the edge-path corresponding

to the reference surface has the following form for each qi, 0 ≤ i ≤ m:〈
1

qi

〉
〈0〉.

The twist number of R. With the exception of γ0, which has a single slope-

increasing edge (reading from left to right, the edge increases in slope from 1/q0 <

0 to 0), each edge-path γi is slope-decreasing (the edge decreases in slope from

1/qi > 0 to 0) of length 1, thus the twist number of the reference surface R is

tw(R) = 2(m− 1). (6.12)

The Euler characteristic of R. The surface R has 1 sheet. The Euler charac-

teristic is computed similarly as for S(M,x∗), (6.10), except that there are only
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non-fractional edges in the edge-path system.

2χ(R)

#R
= 2

(
2M(m+ 1)

M
−

m∑
i=0

M

M
−

(
m∑
i=1

2M + 0

M

)
+

0

M

)
= 2(1−m).

The cycle of ∇-values of R. The cycle of ∇-values of R is (−q0 − 1, q1 − 1, . . . ,

qm − 1).

6.5.3. Matching the Jones slope

The results of Sec. 4.3 applied to the class of pretzel knots we consider gives the

degree of the nth colored Jones polynomial. We show that the quadratic growth

rate with respect to n matches the boundary slope of an incompressible surface.

The claim is that the Jones slope is either realized by the surface S(M,x∗) or the

reference surface R in Sec. 6.5 depending on s(q) and s1(q). Note that both S(M,x∗)

(if s(q) ≤ 0) and R are incompressible by an immediate application of Theorem 6.1,

since m ≥ 2 and |qi| > 2 for all i. By the Hatcher–Oertel algorithm, the reference

surface is incompressible for a Montesinos knot except K(− 1
2 ,

1
3 ,

1
3 ),K(− 1

2 ,
1
3 ,

1
4 ),

and K(− 1
2 ,

1
3 ,

1
5 ).

Lemma 6.2. Suppose s(q) ≤ 0. Let R be the reference surface and S(M,x∗) the

surface by Lemma 6.1 with boundary slopes bs(R) and bs(S(M,x∗)), respectively.

If

−2s(q) = tw(S(M,x∗))− tw(R),

then −2s(q) equals the boundary slope of the surface S(M,x∗).

Proof. Note that R is a Seifert surface from the Hatcher–Oertel algorithm, so

bs(R) = 0, and

bs(S(M,x∗)) = tw(S(M,x∗))− tw(R)

by (6.3).

Theorem 6.2. Suppose s(q) ≤ 0, we have:

−2s(q) = tw(S(M,x∗))− tw(R).

Proof. From Eqs. (6.8) and (6.12) we have

tw(S(M,x∗))− tw(R) = 2(−q0 − x∗1(q1 − 1) +m− 2)− 2(m− 1).

By the definition of x∗i ,

tw(S(M,x∗))− tw(R) = −2

(
q0 +

(qi − 1)−1∑m
j=1(qj − 1)−1

(q1 − 1) + 1

)
= −2s(q).
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6.5.4. Matching the Euler characteristic

Recall that for q = (q0, q1, . . . , qm),

s1(q) =

∑m
i=1(qi + q0 − 2)(qi − 1)−1∑m

i=1(qi − 1)−1
.

Lemma 6.3. We have

−2s1(q) + 4s(q)− 2(m− 1) = 2
χ(S(M,x∗))

#S(M,x∗)
,

where χ(S(M,x∗)) is the Euler characteristic and #S(M,x∗) is the number of

sheets M of the surface S(M,x∗).

Proof. We have by (6.10) and substituting for x∗i by definition,

2χ(S(M,x∗))

#S(M,x∗)
= 8− 2m+ 2q0 − 2(m− 2)x∗i (q1 − 1)

= 8− 2m+ 2q0 − 2(m− 2)
(qi − 1)−1∑m
j=1(qj − 1)−1

(q1 − 1)

= 8− 2m+ 2q0 − 2(m− 2)
1∑m

j=1(qj − 1)−1
. (*)

On the other hand, also substituting s(q), s1(q) by definition,

−2s1(q) + 4s(q)− 2(m− 1)

= −2

(∑m
i=1(qi + q0 − 2)(qi − 1)−1∑m

i=1(qi − 1)−1

)
+ 4

(
1 + q0 +

1∑m
j=1(qj − 1)−1

)
− 2(m− 1)

= −2

(
m∑m

j=1(qj − 1)−1
+ q0 − 1

)
+ 4

(
1 + q0 +

1∑m
j=1(qj − 1)−1

)
− 2(m− 1).

The last line is easily seen to be equal to (*) by expanding and gathering like

terms.

6.6. Proof of Theorem 1.1

Now we prove heorem 1.1. Fix odd integers q0, . . . , qm with q0 < −1 < 1 <

q1, . . . , qm. Let P = P (q0, . . . , qm) denote the pretzel knot. By Theorem 6.1, both

of the surfaces S(M,x∗) (if s(q) ≤ 0) and R are incompressible by examining their

edge-paths and computing their∇-values. Lemma 6.2, Theorem 6.2, and Lemma 6.3

show that −2s(q) = bs(S(M,x∗)) and −2s1(q) + 4s(q) − 2(m − 1) = 2χ(S(M,x∗))
#S(M,x∗) .

For the reference surface R, it is immediate also from the Hatcher–Oertel algorithm

that its boundary slope bs(R) = 0 and 2χ(R)
#R = −2(m− 1).
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From Sec. 4.3, we have the following cases for the degree of the colored Jones

polynomial JP,n(v). The choice of the surface detected by the Jones slope swings

between the surface S(M,x∗) and the reference surface R.

Case 1: s(q) < 0. We have that the maximum of δ(n, k) is given by

−2s(q)n2 − 2s1(q)n− 2(m− 1)n+ (n2 + 2n)

m∑
i=0

qi +O(1),

where recall that s(q) and s1(q) are explicitly defined by (1.2). We see that s(q)

and s1(q) for any n � 0 are actually constant in n. The fact that jsP = −2s(q) =

bs(S(M,x∗)) and jxP = −2s1(q) + 4s(q)− 2(m− 1) = 2χ(S(M,x∗))
#S(M,x∗) (by considering

JK,n = (−1)n−1((−1)n−1v)ω(K)(n2−1)〈Kn−1〉) verifies the strong slope conjecture

in this case.

Case 2: s(q) = 0, s1(q) 6= 0. If s1(q) ≥ 0, the maximum of δ(n, k) has no quadratic

term, but its linear term is −2(m − 1)n, so the reference surface R verifies the

conjecture. If s1(q) < 0, then the maximum

−2s1(q)n− 2(m− 1)n+ (n2 + 2n)

m∑
i=0

qi +O(1)

of δ(n, k) is found at maximizers τ∗ with parameters n, k∗, again all satisfying

n = k∗0 = k∗1 + · · ·+ k∗m. Thus the surface S(M,x∗) verifies the conjecture.

Case 3: s(q) > 0. In this case the maximum of δ(n, k) also does not have quadratic

term but has a linear term −2(m − 1)n, and the reference surface R verifies the

conjecture.

6.7. Matching the growth rate to topology for Montesinos knots

Let K(r0, . . . , rm) be a Montesinos knot satisfying the assumptions of Theorem 1.2,

and let P (q0, . . . , qm) be the associated pretzel knot. Similar to the case of pretzel

knots, we define a surface S(M,x∗) where

x∗i =
(qi − 1)−1∑m
j=1(qj − 1)−1

. (6.13)

We give the explicit description of the surface in terms of an edge-path system from

the Hatcher–Oertel algorithm below. We will see that these surfaces are built from

extending the surfaces of the associated pretzel knots.

6.7.1. The surface S(M,x∗)

The edge-path system of S(M,x∗) is described as follows.

For i = 0, say r0 = [0, a1, a2, . . . , a`r0 ] the unique even length continued frac-

tion expansion for aj < 0, 1 ≤ j ≤ `r0 , we take the following continued fraction
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expansion

r0 =


−1,−2, . . . ,−2︸ ︷︷ ︸

−a1−1 times

, a2 − 1− 1,−2, . . . ,−2︸ ︷︷ ︸
−a3−1 times

, a2j − 1− 1,

−2, . . . ,−2︸ ︷︷ ︸
−a2j+1−1 times

, . . . , a`r0 − 1


 , (6.14)

with corresponding edge-path (reading backwards from the continued fraction

expansion)〈
[[−1,−2, . . . , a`r0 − 1]]

〉
· · · 〈[[−1,−2,−2]]〉 〈[[−1,−2]]〉 〈−1〉 .

For 1 ≤ i ≤ m, say ri = [0, a1, a2, . . . , a`ri ] for aj > 0, 1 ≤ j ≤ `r0 , we take the

following continued fraction expansion

ri =


0,−a1 − 1,−2, . . . ,−2︸ ︷︷ ︸

a2−1 times

,−a3 − 1− 1,−2, . . . ,−2︸ ︷︷ ︸
a4−1 times

,−a2j+1 − 1− 1,

−2, . . . ,−2︸ ︷︷ ︸
a2j+2−1 times

, . . . , −2, . . . ,−2︸ ︷︷ ︸
a`ri
−1 times


 , (6.15)

with corresponding edge-path (reading backwards from the continued fraction

expansion)〈0,−a1 − 1, . . . , −2, . . . ,−2︸ ︷︷ ︸
a`ri
−1 times



〉

· · · 〈[[0,−a1 − 1,−2]]〉

〈[[0,−a1 − 1]]〉 〈0〉 .

We let M be the least common multiple of the denominators of {x∗i }. We similarly

have

Lemma 6.4. Let q0, q1, . . . , qm be defined as they are for Theorem 1.2 for a Mon-

tesinos knot K = K(r0, . . . , rm). Suppose q = (q0, q1, . . . , qm) is such that s(q) ≤ 0.

There is a candidate surface S(M,x∗) for K from the Hatcher–Oertel algorithm

with M sheets and C-coordinates

{−M,Mx∗1,Mx∗2, . . . ,Mx∗m}.

Proof. Let Ki = Mx∗i for 1 ≤ i ≤ m, and 0 ≤ K0 ≤M , 2 ≤ q ≤ −q0 such that

K0 +M(q − 2) = K1(q1 − 1), (6.16)

We specify a candidate surface S(M,x∗) in terms of edge-paths {γi}mi=0, by tacking

onto the existing edge-path system for the associated pretzel knot P (q0, q1, . . . , qm):
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The edge-path γ0 for r0 from (6.14) is

〈
[[−1,−2, . . . , a`r0 − 1]]

〉
· · ·

〈
−1

−q0

〉 〈
−1

−q0 − 1

〉
· · · K0

M

〈
−1

q

〉
+
M −K0

M

〈
−1

q − 1

〉
.

For i 6= 0, we have the edge-path γi from (6.15):〈0,−a1 − 1, . . . , −2, . . . ,−2︸ ︷︷ ︸
a`ri
−1 times



〉

· · ·
〈

1

qi

〉
Ki

M

〈
1

qi

〉

+
M −Ki

M
〈0
1
〉.

Provided that K0, q satisfying (6.16) exist, this edge-path system satisfies the

equations coming from (a) and (b) of Step (2) of the algorithm. We have already

verified that K0, q exist when s(q) ≤ 0 in Lemma 6.1. Thus, there is a candidate

surface with {−M,Mx∗1,Mx∗2, . . . ,Mx∗m} as the C-coordinates in the tangle corre-

sponding to ri.

We also define a reference surface R for K(r0, r1, . . . , rm).

6.7.2. The reference surface R

For the reference surface R, we have for each ri, the edge-path system corresponding

to the following continued fraction expansion

For r0 = [0, a1, a2, . . . , a`r0 ] for aj < 0, 1 ≤ j ≤ `r0 , we take the following

continued fraction expansion.

r0 =


0,−a1, a2 − 1,−2, . . . ,−2︸ ︷︷ ︸

−a3−1 times

, a4 − 1− 1,−2, . . . ,−2︸ ︷︷ ︸
−a5−1 times

,

a2j − 1− 1, −2, . . . ,−2︸ ︷︷ ︸
−a2j+1−1 times

, . . . , a`r0 − 1


 , (6.17)

with corresponding edge-path

〈
[[0,−a1, . . . , a`r0 − 1]]

〉
· · · 〈[[0,−a1]]〉 〈0〉 .
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For 1 ≤ i ≤ m, say ri = [0, a1, a2, . . . , a`ri ] for aj > 0, 1 ≤ j ≤ `ri , we take the

following continued fraction expansion.

ri =


0,−a1 − 1,−2, . . . ,−2︸ ︷︷ ︸

a2−1 times

,−a3 − 1− 1,−2, . . . ,−2︸ ︷︷ ︸
a4−1 times

,−a2j+1 − 1− 1,

−2, . . . ,−2︸ ︷︷ ︸
a2j+2−1 times

, . . . , −2, . . . ,−2︸ ︷︷ ︸
a`ri
−1 times


 , (6.18)

with corresponding edge-path〈0,−a1 − 1, . . . , −2, . . . ,−2︸ ︷︷ ︸
a`ri
−1 times



〉

· · · 〈[[0,−a1 − 1,−2]]〉

〈[[0,−a1 − 1]]〉 〈0〉 .

Again, both R and S(M,x∗) are incompressible by a direct application of Propo-

sition 6.1.

6.8. Proof of Theorem 1.2

Putting everything together we prove Theorem 1.2.

Proof. Let K = K(r0, . . . , rm). Recall q = (q0, . . . , qm) ∈ Zm+1 denotes the asso-

ciated tuple of integers to (r0, . . . , rm) where qi = ri[1] + 1 for 1 ≤ i ≤ m and

q0 =

{
r0[1]− 1 if `r0 = 2 and r0[2] = −1,

r0[1] otherwise

from the unique even length positive continued fraction expansions of ri’s, and q′0
is an integer that is defined to be 0 if r0 = 1/q0, and defined to be r0[2] otherwise.

Theorem 5.2 gives jsK and jxK in terms of the Jones slope jsP and the normal-

ized Euler characteristic jxP of the associated pretzel knot P = P (q0, q1, . . . , qm).

Depending on the signs of s(q) and s1(q) we have three cases by Theorem 1.1.

(1) If s(q) < 0, then

jsP (n) = −2s(q), jxP (n) = −2s1(q) + 4s(q)− 2(m− 1).

(2) If s(q) = 0, then

jsP (n) = 0, jxP (n) =

{
−2(m− 1) if s1(q) ≥ 0

−2s1(q)− 2(m− 1) if s1(q) < 0.

(3) If s(q) > 0, then

jsP (n) = 0, jxP (n) = −2(m− 1).
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When s(q) = 0 and s1(q) ≥ 0, or s(q) > 0, applying Theorem 5.2, we get

jsK(n) = −q′0 − [r0]− ω(DP ) + ω(DK) +

m∑
i=1

(ri[2]− 1) +

m∑
i=1

[ri]

and

jxK(n) = −2(m− 1)− 2
q′0
r0[2]

+ 2[r0]o − 2

m∑
i=1

(ri[2]− 1)− 2

m∑
i=1

[ri]e.

The reference surface R is easily seen to verify the strong slope conjecture using [9],

by viewing it as a state surface. Since this material is well-known, we will briefly

describe what a state surface is and indicate the state surface corresponding to the

reference surface R.

A state surface from a Kauffman state σ on a link diagram D is a surface that

comes from filling in the state circles of the σ-state graph Dσ by disks and replacing

the segments recording the original locations of the crossings by twisted bands.

With the standard diagram that we are using for a Montesinos knot

K(r0, . . . , rm) with r0 < 0 < r1, . . . , rm, the reference surface R is the state sur-

face that comes from the Kauffman state which chooses the A-resolution on the

negative twist region 1/r0[1] (or 1/(r0[1] − 1) if r0 = 1/q0) in the negative tangle

corresponding to r0, and the B-resolution everywhere else. Using [9, 27] shows that

bs(R) = −q′0 − [r0]− ω(DP ) + ω(DK) +

m∑
i=1

(ri[2]− 1) +

m∑
i=1

[ri],

and

2
χ(R)

#R
= −2(m− 1)− 2

q′0
r0[2]

+ 2[r0]o − 2

m∑
i=1

(ri[2]− 1)− 2

m∑
i=1

[ri]e.

We use this fact to prove that S(M,x∗) realizes the strong slope conjecture when

the reference surface R does not realize the Jones slope.

When s(q) < 0 or s(q) = 0 and s1(q) < 0, the candidate surface S(M,x∗) exists

by Lemma 6.1. It suffices to verify that

jsK − bs(R) = tw(S(M,x∗))− tw(R)

for the part of the strong slope conjecture concerning relationship of jsK to bound-

ary slopes. This is because if the equation is true, then

jsK − (tw(R)− tw(S0)) = tw(S(M,x∗))− tw(R),

where S0 is a Seifert surface from the Hatcher–Oertel algorithm, by (6.3). Rear-

ranging terms in the equation gives

jsK = tw(S(M,x∗))− tw(S0) = bs(S(M,x∗)).
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By Theorem 5.2,

jsK −

(
−q′0 − [r0]− ω(DP ) + ω(DK) +

m∑
i=1

(ri[2]− 1) +

m∑
i=1

[ri]

)
︸ ︷︷ ︸

bs(R)

= jsP .

Notice that the edge-path systems of the two surfaces S(M,x∗) (from (6.14),

(6.15)) and R (from (6.17), (6.18)) coincide beyond the first segments of their edge-

path systems, which define candidate surfaces SP (M,x∗) and the reference surface

RP for the associated pretzel knot P . Now by Theorem 6.2, we have

jsP = tw(SP (M,x∗))− tw(RP ).

Since S(M,x∗) and R are identical beyond the first edges of their edge-path systems,

we get

tw(SP (M,x∗))− tw(RP ) = tw(S(M,x∗))− tw(R),

and we are done.

The proof that jxK = 2χ(S(M,x∗))
#S(M,x∗) is similar.
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