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Resurgence of Faddeev’s quantum dilogarithm

Stavros Garoufalidis and Rinat Kashaev

Abstract The quantum dilogarithm function of Faddeev is a special function that plays a key role as
the building block of quantum invariants of knots and 3-manifolds, of quantum Teichmüller theory
and of complex Chern–Simons theory. Motivated by conjectures on resurgence and the recent
interest in wall-crossing phenomena, we prove that the Borel summation of a formal power series
solution of a linear difference equation produces Faddeev’s quantum dilogarithm. Along the way,
we give an explicit formula for the Borel transform, a meromorphic function in the Borel plane,
locate its poles and residues and describe the Stokes phenomenon of its Laplace transforms along
the Stokes rays.

1 Introduction

A well-known problem in quantum topology is the Volume Conjecture which asserts
that the Kashaev invariant of a hyperbolic knot grows exponentially at a rate propor-
tional to the volume of the knot [19–21]. There are several strengthenings of this con-
jecture that involve the analytic properties of the asymptotics of the Kashaev invariant
to all orders (see, e.g., [11, 16] and references therein). Such factorially divergent for-
mal power series have been conjectured to lead to resurgent functions [13], and this in
turn leads to astonishing numerically testable conjectures [14, 16, 18]. The Kashaev
invariant of a knot is a finite state-sum whose building block is the quantum n factorial
.qI q/n DQn

jD1.1� qj /, evaluated at complex roots of unity. The latter is intimately
related to another special function, the Faddeev quantum dilogarithm [12], evaluated
at rational points. Although the conjectured resurgence properties of quantum knot
invariants are largely unproven, in an unfinished manuscript from 2006 we studied
the resurgence properties of their building block, namely the Faddeev quantum dilog-
arithm. This special function plays a key role in quantum Teichmüller theory [5, 22]
and complex Chern–Simons theory [6, 9, 10]. Since there is renewed interest in
this subject with applications to resurgence and wall-crossing phenomena (see for
instance [25]), we decided to update our manuscript and make it widely available.

To begin the story, in the quantization of Teichmüller theory one considers the
difference equation

f� .z � i��/ D .1C ez/f� .z C i��/ (1.1)

whose motivation is explained in detail in [22, Prop. 8] and also in [5, Prop. 1,
Eqn. (9)] (after some minor change in notation). The above difference equation
appears, among other places, in quantum integrable systems (see Ruijsenaars [31,
Eqn. (1.17)]) and in holomorphic dynamics (see Marmi–Sauzin [28]).
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It it easy to see (see Lemma 2.1 below) that if f� .z/ satisfies equation (1.1) and
the limiting value limz!�1 f� .z/ D 1, then for a fixed z, f� .z/ admits an asymptotic
expansion of the form

logf� .z/ � 1

2�i�
Li2.�ez/C O��.z/; .� ! 0/ (1.2)

where

O��.z/ D
1X
nD1
.2�i/2n�1

B2n.1=2/

.2n/Š
@2nz Li2.�ez/�2n�1; (1.3)

Li2.z/ D P
k�1 z

k=k2 is Euler’s dilogarithm function and the differentiation opera-
tor @2nz (defined by @zg.z/ D g0.z/) acts on Li2.�ez/.

The goal of this paper is to identify the Borel summation of the factorially diver-
gent series O��.z/ with Faddeev’s quantum dilogarithm function

f� .z/ D ˆb.z=.2�b// (1.4)

(see Corollary 1.5 below) when � D b2 > 0. Along the way, we give an explicit
formula for the Borel transform G.�; z/ of the power series O��.z/ (see Theorem 1.1
below).

It turns out that G.�; z/ is a meromorphic function of � with poles that lie dis-
cretely in a countable union L.z/ of lines through the origin given in equation (1.11)
below. The arrangement L.z/ depends on z and accumulates to the imaginary axis.
Such an arrangement is reminiscent of the parametric resurgence of non-linear equa-
tions (see, e.g., [30]), the exact and perturbative invariants of Chern–Simons theory
(predicted for instance in [13] and the figure below Definition 2.3 of ibid), and the
wall-crossing formulas of Kontsevich–Soibelman (see [26] and also [25]).

Theorem 1.3 identifies the Laplace transform of G.	; z/ with the logarithm of
Faddeev’s quantum dilogarithm function f� .z/ given in equation (1.4). We also con-
sider the Laplace transform of the function G.	; z/ along any ray in the complement
of L.z/ and describe the Stokes phenomenon, i.e., the change of the Laplace trans-
form as one crosses a Stokes line R�m.z/. One may think of this as an instance of
a wall-crossing formula, in the spirit of Kontsevich–Soibelman.

Another noteworthy phenomenon is the Laplace transform of G.	; z/ along the
vertical rays ˙iRC, which no longer lie in an open cone in the complement of L.z/.
This is the case considered by Marmi–Sauzin [28] who prove (with a careful analysis)
that the Laplace transform f �� (resp. f C� ) is defined in the upper half-plane Im.�/ > 0
(resp. lower half-plane Im.�/ < 0) thus leading to two distinguished solutions f�̇ .z/
of equation (1.1).

1.1 Our results. Recall the quantum dilogarithm function of Faddeev [12]

ˆb.z/ D exp

�Z
RCi�

e�2ixz

4 sinh.xb/ sinh.xb�1/
dx

x

�
; (1.5)
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a function with remarkable analytic properties that satisfies a pentagon identity and
an inversion relation summarized in Section 3 below. ˆb.z/ is a meromorphic, quasi-
periodic function of z that satisfies

ˆb.z � ib=2/ D .1C e2�bz/ ˆb.z C ib=2/: (1.6)

The function ˆb.z/ is used as the building block of topological invariants of 3-mani-
folds via quantum Teichmüller theory [3–5, 24].

Consider the Borel transform

BW �CŒŒ� ��! CŒŒ���; B.�nC1/ D �n

nŠ
: (1.7)

Let
G.�; z/ D B. O��.z// (1.8)

denote the Borel transform of O��.z/. Our first result describes a global formula for
G.�; z/ in the complex Borel �-plane.

Theorem 1.1. When z 2 C with jIm.z/j < � and � 2 C with j�j < � � jIm.z/j, we
have

G.�; z/ D 1

2�i

1X
nD1

.�1/n
n2

�
1

1C e �n�z
C 1

1C e� �n�z
�
; (1.9)

where the right-hand side is expanded as a formal power series in � around zero with
radius of convergence � � jIm.z/j.

It follows that G.�; z/ is a meromorphic function of � with simple poles at
� D n�m.z/ (shown in Figure 1) with residue Cn, where

�m.z/ D z C .2mC 1/�i; n 2 Z� D Z n f0g; m 2 Z; Cn D .�1/n
2�in

: (1.10)

Note that the singularities of G.	; z/ form a lattice in a countable union L.z/ of lines
through the origin

L.z/ D
[
m2Z

R�m.z/: (1.11)

The formula of the above theorem is similar to the one of Marmi–Sauzin [28, Thm.
4.3]. It is also similar to the Euler–MacLaurin summation formula given in Costin–
Garoufalidis [8, Thm. 2]. This is not an accident. When Im.�/ > 0, the quan-
tum dilogarithm has an infinite product expansion (see equation (3.1) below) whose
logarithm can be written as an infinite sum which one can analyze with the Euler–
MacLaurin summation method. However, such a manipulation is meaningless since
the product formula (3.1), although convergent when Im.�/ > 0, diverges when
� > 0.
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Figure 1. The poles of G.�; z/ in the �-plane are points n�m.z/ lie in an arrangement of lines
passing through the origin.

Recall the Laplace transform

.Lf /.�/ D
Z 1
0

e��=� f .�/ d� (1.12)

of a function f 2 L1.R/. Our next theorem concerns the analytic properties of the
meromorphic function G.�; z/ and its Laplace transform .LG/.�; z/. For a positive
real number ı, define

Sı D
˚
� 2 C j dist.�; Œ0;1// < ı�; ı0

Sı (1.13)

Theorem 1.2. (a) When z 2 C with 0 < ı < � � jIm.z/j and � 2 Sı we have

jG.�; z/j � max

�
2;

�2

3 sin.jIm.z/j C ı/
�
: (1.14)

(b) Fix 0 < ı < � . Then we haveˇ̌̌̌
ˇ.LG/.�; z/ �

NX
nD1
.2�i/2n�1

B2n.1=2/

.2n/Š
@2nz Li2.�ez/�2n�1

ˇ̌̌̌
ˇ

� LM2N .2N /ŠRe.�/j� j2N (1.15)

for all � 2 C with Re.�/ > 0 and all z 2 C with jIm.z/j < � � ı and all natu-
ral numbersN , whereM DMı D 2=ı andL D Lz;ı D maxf2; �2

3 sin.jIm.z/jCı/ g.
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Our next result identifies the Borel transform ofG.�; z/with the quantum dilogarithm
function.

Theorem 1.3. When � > 0 and z 2 C with jIm.z/j < � , we have

logˆb

� z

2�b

�
D 1

2�i�
Li2.�ez/C .LG/.�; z/ (1.16)

where b2 D � and G.�; z/ is as in (1.9).

This theorem follows from the explicit formula for G.�; z/ in Theorem 1.1 which
agrees with the integral formula of Woronowicz for ˆb.z/. Theorems 1.2 and 1.3
give the following.

Corollary 1.4. With the assumptions of part (b) of Theorem 1.2, we haveˇ̌̌̌
ˇlogˆb

� z

2�b

�
�

NX
nD0
.2�i/2n�1

B2n.1=2/

.2n/Š
@2nz Li2.�ez/�2n�1

ˇ̌̌̌
ˇ

� LM2N .2N /ŠRe.�/j� j2N : (1.17)

The special case of (1.17) withN D 0 is equivalent to Lemma 7.13 of [7], which itself
is an improvement of an earlier Lemma 3 of Andersen–Hansen [2]. An alternative
proof of the above inequality (1.17) was given by Andersen [1].

The process of replacing a factorially divergent series with its Borel transform,
followed by the Laplace transform is known as Borel summation. Theorems 1.1
and 1.3 imply the following.

Corollary 1.5. When � > 0 and z 2 C with jIm.z/j < � , the Borel summation of
the series (1.3) reproduces the logarithm of Faddeev’s quantum dilogarithm function,
namely, logˆb.z=.2�b//.

The above corollary has some surprising consequences. A priori, a solution of (1.1) is
well-defined up to multiplication with 2�i� -periodic functions, and Borel summation
chooses exactly the one that agrees with the quantum dilogarithm function. What’s
more, the quantum dilogarithm function satisfies the symmetry of equation (3.3), and
hence satisfies a second difference equation (obtained by replacing b by b�1 in (1.6)).
This, together with Corollary 1.5, implies the following.

Corollary 1.6. The Borel summation of O��.z/ satisfies the additional functional
equation

f� .z � i�/ D
�
1C e z� �f� .z C i�/: (1.18)
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The two functional equations (1.1) and (1.18) determine f� up to multiplication by
a doubly periodic function, and when � > 0 and irrational, such functions are con-
stant; see for example [12, p. 251].

Our last topic concerns the Stokes phenomenon of the Laplace transform ofG.	; z/.
Let �� D Œ0;1/ei� denote the ray in the complex plane and let

.L�f /.�/ D
Z
��

e��=�f .�/ d� (1.19)

denote the Laplace transform of a function f , integrable along �� . Recall that the
singularities of the meromorphic functionG.	; z/ are in an arrangement of lines L.z/
through the origin whose complement C n L.z/ D S

m2Z Cm.z/ is a union of open
cones

Cm.z/ D
˚
� 2 C� j arg.�m�1.z// < arg.�/ < arg.�m.z//

�
: (1.20)

It follows that when � 2 Cm.z/, the Laplace transform .L�G/.�; z/ is independent
of � and defines a holomorphic function of � for arg.�m�1.z// � �=2 < arg.�/ <
arg.�m.z//C �=2. When � D 0 2 C0.z/, Theorem 1.3 implies that .L�G/.�; z/ is,
up to a dilogarithm term, equal to f� .z/ and the latter is equal to

logf� .z/ D log
��q 1

2 ez I q�1 � log
��Qq 1

2 ez=� I Qq�1 (1.21)

when Im.�/ > 0 and Re.z/ < 0, as follows from equation (3.1). On the other hand,
by crossing the walls of L.z/, we get

�
L�=2G

�
.�; z/� �L0G�.�; z/ D 1X

mD0
fm.�; z/� fmC1.�; z/ (1.22)

where fm.�; z/ D .L�m.z/G/.�; z/ is the Laplace transform of G.	; z/ along a ray
�m.z/ 2 Cm.z/. When Re.z/ < 0 and jIm.z/j < � and Im.�/ > 0, the difference
fm.�; z/ � fmC1.�; z/ is obtained by adding the poles �n��m�1.z/ with n > 0 of
G.	; z/ at the corresponding ray. Using the residue of G.	; z/ at these points given in
Theorem 1.1 and adding up, it follows that

fm.�; z/ � fmC1.�; z/ D
1X
nD1

2�iC�ne��m�1.z/n=� D �
1X
nD1

.�1/n
n

e��m�1.z/n=�

D log
�
1C e��m�1.z/=�� D log

�
1C ez=� QqmC 1

2

�
: (1.23)

This, combined with equations (1.21) and (1.22), implies that�
L�=2G

�
.�; z/ D log

��q 1
2 ez I q�1 (1.24)

in agreement with the result of Marmi–Sauzin proven in [28, Sec. 1.1 and Thm. 4.3].
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2 Proofs

2.1 The formal power series solution of the difference equation. The following
lemma is well-known and standard (see, e.g., [5, Sec. 13.4, Prop. 6]), but we include
its proof for completeness.

Lemma 2.1. If f� .z/ satisfies equation (1.1) and limz!�1 f� .z/ D 1, then for
fixed z, f� .z/ admits an asymptotic expansion of the form (1.2) with O��.z/ given
in (1.3).

Proof. Letting ��.z/ D logf� .z/, it follows that

��.z C �i�/� ��.z � �i�/ D � log.1C ez/:
Taylor’s theorem combined with � log.1C ez/ D @zLi2.�ez/ implies that

2 sinh.�i�@z/��.z/ D @zLi2.�ez/
hence, that

2�i�� .z/ D �i@z

sinh.�i�@z/
Li2.�ez/:

The expansion
z

sinh.z/
D

1X
nD0

B2n.1=2/
.2z/2n

.2n/Š

concludes the proof of the lemma.

2.2 The Borel transform. Consider the formal power series

�f .�; z/ D
1X
nD1

B2n.1=2/

.2n/Š
f .2n/.z/.2�i/2n�1�2n�1 (2.1)

for a function f analytic on z with jIm.z/j < � , and let Gf .�; z/ D B.�f .	; z//
denote the corresponding Borel transform.

Proposition 2.2. We have

Gf .�; z/ D i

2�

1X
nD1

.�1/n
n2

�
f 00
�
z C �

n

�
C f 00

�
z � �

n

��
: (2.2)

Proof. The proof is rather standard. It uses the Hadamard product~ of power series
(which was also used in [8]) whose definition we recall� 1X

nD0
bn�

n

�
~
� 1X
nD0

cn�
n

�
D

1X
nD0

bncn�
n: (2.3)
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We have

Gf .�; z/ D
1X
nD1

B2n.1=2/

.2n/Š

f .2n/.z/

.2n � 2/Š.2�i/
2n�1�2n�2

D
� 1X
nD1

B2n.1=2/

.2n/Š
�2n�2

�
~
� 1X
nD1

f .2n/.z/

.2n � 2/Š.2�i/
2n�1�2n�2

�
D f1.�/~ f2.�; z/

where

f1.�/ D
1X
nD1

B2n.1=2/

.2n/Š
�2n�2; f2.�; z/ D 2�i

1X
nD1

f .2n/.z/

.2n � 2/Š.2�i�/
2n�2: (2.4)

Now, since Bm.1=2/ D 0 for every odd m, we have

f1.�/ D
1X
nD1

B2n.1=2/

.2n/Š
�2n�2 D 1

�2

1X
nD1

B2n.1=2/

.2n/Š
�2n D 1

�2

1X
nD1

Bn.1=2/

nŠ
�n

D 1

�2

� e�=2�
e� � 1 � 1

�
D 1

�.e�=2 � e��=2/ �
1

�2

and Taylor’s theorem gives

f2.�; z/ D 2�i
1X
nD1

f .2n/.z/

.2n � 2/Š.2�i�/
2n�2

D .2�i/�1@2�
1X
nD1

f .2n/.z/

.2n/Š
.2�i�/2n

D .2�i/�1@2�
�1
2
.f .z C 2�i�/C f .z � 2�i�//� f .z/

�
D �i�f 00.z C 2�i�/C f 00.z � 2�i�/�:

Now, using Cauchy’s theorem, it follows that

Gf .�; z/ D 1

2�i

Z
�

f1.s/f2

��
s
; z
�ds
s

where � is a small circle around 0. The function f1.s/ has simple poles at 2�im
for m 2 Z n f0g with residue .�1/m=.2�im/. Now, deform the integration contour
to circles of increasing radii and collect the residues. Since f1.s/ D O.1=s/ and
f2.�=s/ D O.1=s2/, it follows that the integrand is O.1=s3/, thus the contribution
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from infinity is zero. The residue of the integrand form 2 Z n f0g is given by

Res
�
f1.s/f2

��
s
; z
�1
s
; s D 2�im

�
D 1

2�im
f2

� �

2�im
; z
�

Res.f1.s/; s D 2�im/

D .�1/m
4�im2

�
f 00
�
z C �

m

�
C f 00

�
z � �

m

��
:

Thus, collecting the residues, it follows that

Gf .�; z/ D �
X
m2Zn0

.�1/m
4�im2

�
f 00
�
z C �

m

�
C f 00

�
z � �

m

��

D i

2�

1X
mD1

.�1/m
m2

�
f 00
�
z C �

m

�
C f 00

�
z � �

m

��
:

For fixed z and � , the above sum is dominated by
P1

mD1 1=m
2 and thus the conver-

gence is uniform on compact sets. This concludes the proof of Proposition 2.2.

Proof of Theorem 1.1. Apply Proposition 2.2 to the function f .z/ D Li2.�ez/which
satisfies

f 00.z/ D � 1

1C e�z :

2.3 Bounds. In this section we give a proof of Theorem 1.2.
We begin with the following lemma.

Lemma 2.3. When z 2 C with jIm.z/j < � we have

1

j1C ez j �
(
1 if cos.Im.z// � 0;

1
j sin.Imz/j if cos.Im.z// � 0: (2.5)

Proof. With z D t C ia, we have

j1C ez j2 D e2t C 2et cos aC 1
and the right-hand side, as a function of t 2 R, has critical points in t0 2 R such that
et0 C cos a D 0. When cos a > 0, it follows that inft2R j1 C ez j2 D 1, and when
cos a � 0, it follows that t0 is a global minimum and e2t0 C 2et0 cos a C 1 D sin2 a.
The result follows.

Proof of Theorem 1.2. The first part follows from equation (1.9), Lemma 2.3 (applied
to �=n� z for n 2 Z�) and the fact that

P1
nD1 1=n

2 D �2=6. In particular, it implies
that the Laplace transform .LG/.�; z/ is well-defined and even extends to � 2 C with
Re.�/ > 0.
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The second part follows from what is known in the literature as Watson’s
lemma [32], a modern proof of which may be found for instance in Miller [29,
p. 53, Prop. 2.1]. It is also known as the fine Borel–Laplace transform in Mitschi–
Sauzin [30, Sec. 5.7, Thm. 5.20] whose proof follows Malgrange [27]. Our proof
of the second part follows directly from Mitschi–Sauzin [30, Sec. 5.7, Thm. 5.20],
together with the upper bound from the first part (which implies that c0 D 0 and
c1 D � in the notation of Theorem 5.20 of [30]).

2.4 The Laplace transform. Woronowicz [33], while studying the quantum expo-
nential function via functional analysis, introduced the function

W�.z/ D
Z

R

log.1C e�� /
1C e��z d� (2.6)

defined for � > 0 and jIm.z/j < � , and proved that (after some elementary change
of variables) it satisfies the functional equation (1.1); see [33, Eqn. (B.3)]. Thus, one
can relate Woronowicz’s function with the quantum dilogarithm as is done in [23,
Eqns. (1), (2)] without proof. The next proposition provides a formal proof of this
fact.

Proposition 2.4. When � > 0 and z 2 C with jIm.z/j < � , we have

W1
�
.z/ D �2�i logˆb

� z

2�b

�
; b2 D �: (2.7)

Proof. The proof uses a mixture of real and complex analysis. Let � be a positive real
number such that 0 < � < min.1; �/. We remark that W�.z/ can be interpreted as
a value of the scalar product in the complex Hilbert space L2.R/ of square integrable
functions on the real line with respect to the Lebesgue measure

W�.z/ D hf jgi D
Z

R
f .x/g.x/ dx (2.8)

where f; g 2 L2.R/ are defined by

f .x/ D e��x log.1C e�x/; g.x/ D e�x

1C ex�Nz : (2.9)

As the Fourier transformation

.F /.x/ D
Z

R
 .y/e2�ixy dy (2.10)

is a unitary operator in L2.R/, we have the equality

hf jgi D hFf jFgi: (2.11)



Resurgence of Faddeev’s quantum dilogarithm 267

By using Lemma 2.5 below, we can calculate explicitly the elements Ff; Fg 2
L2.R/. Indeed, denoting � D 2�x C i�, we have

.Ff /.x/ D
Z

R
ei�y log.1C e�y/ dy D i�

�

Z
R

ei�y

1C e��y dy (2.12)

D 2�i

�

Z
R

e2�i�y=�

1C e�2�y dy D �i

�

Z
R

e

�
�
�
� i2
�
2�iy

cosh.�y/
dy (2.13)

D �i

� cosh
�
��

�
� �i

2

� D �i

� cos
�
�
2
� ��

i�

� D �i

� sin
�
��

i�

� D � �

� sinh
�
��

�

�
(2.14)

where in the second equality we integrated by parts, and

.Fg/.x/D
Z

R

e�i�y

1C ey�z dy D
Z

R�z

e�i�.yCz/

1C ey dy (2.15)

D 2�e�i�z
Z

R� z
2�

e�2�i�y

1C e2�y dy D �e�i�z
Z

R� z
2�

e

�
i
2��
�
2�iy

cosh.�y/
dy (2.16)

D �e�i�z

cosh
�
�i
2
� ��� D �e�i�z

cos
�
�
2
C �i�� D �e�i�z

sin.��i�/ D
�ie�i�z

sinh.��/
(2.17)

where in the fifth equality we used the condition jIm.z/j < � . Thus, we obtain

W�.z/ D hFf jFgi D
Z

R
.Ff /.x/.Fg/.x/dx D

Z
RCi�

��ie�i�z
2 sinh

�
��

�

�
sinh.��/

d�

�

(2.18)
which implies that

i

2�
W1

�
.z/ D

Z
RCi�b�

e�i
�z
�b

4 sinh.b�/ sinh.�=b/

d�

�
D logˆb

� z

2�b

�
: (2.19)

The next lemma is well-known, see, e.g., Godement [17, VII and 3.15]. We will also
give a proof using [15, Lem. 2.1].

Lemma 2.5. When w; 
 2 CjImj<1
2
D fu 2 C j jIm.u/j < 1

2
g, we haveZ

RC


e2�iwz

cosh.�z/
dz D 1

cosh.�w/
: (2.20)

Proof. By using [15, Lem. 2.1] with f .z/ D e2�iwz

cosh.�z/ and a D i , we have

f .z C a/
f .z/

D cosh.�z/e2�iw.zCi/

cosh.�z C �i/e2�iwz D �e
�2�w (2.21)
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so thatZ
RC


e2�iwz

cosh.�z/
dz D

�Z
RC

�
Z

RC
Ci

�
e2�iwz

.1C e�2�w/ cosh.�z/
dz (2.22)

D 2�iReszD i
2

� e2�iwz

.1C e�2�w/ cosh.�z/

�
(2.23)

D �i

cosh.�w/
ReszD0

� 1

sin.�iz/

�
D 1

cosh.�w/
(2.24)

where, in the second equality, the application of the residue theorem is justified by
the limits

lim
x!˙1 jf .x C 
 C i t/j �

ˇ̌
e�2�wt

ˇ̌
lim

x!˙1

�
e2�jIm.w/jjxCRe.
/j

sinh j�.x C Re.
//j
�
D 0: (2.25)

The next proposition identifies Woronowicz’s formula for the quantum dilogarithm
with the Laplace transform of the function G.�; z/.

Proposition 2.6. When � > 0 and z 2 C with jIm.z/j < � , we have

W1
�
.z/ D �1

�
Li2.�ez/ � 2�i.LG/.�; z/: (2.26)

Proof. We have

W1
�
.z/ D

Z 1
�1

log.1C e�=� /
e��z C 1 d� D

Z 0

�1

log.1C e�=� /
1C e��z d� C

Z 1
0

log.1C e�=� /
1C e��z d�

D
Z 1
0

� log.1C e�=� /
1C e��z C log.1C e��=� /

1C e���z
�

d�

D 1

�

Z 1
0

�

1C e��z d� C
Z 1
0

log.1C e��=� /
� 1

1C e��z C
1

1C e���z
�

d�

D 1

�

Z 1
0

�

1C e��z d� �
Z 1
0

1X
nD1

.�1/n
n

e�n�=�
� 1

1C e��z C
1

1C e���z
�

d�

where the last equality follows from expanding the logarithm. Rescaling � ! �=n

and using the identity Z 1
0

�

1C e��z d� D �Li2.�ez/ (2.27)

(which can be verified for instance by integrating by parts) it follows that

W1
�
.z/C 1

�
Li2.�ez/ D �

Z 1
0

e��=�
1X
nD1

.�1/n
n2

� 1

1C e �n�z
C 1

1C e� �n�z
�

d�

D �2�i
Z 1
0

e��=�G.�; z/ d� D �2�i.LG/.�; z/
where we used equation (1.9).
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We are now ready to give a proof of Theorem 1.3.

Proof of Theorem 1.3. Propositions 2.4 and equation (2.26) imply that

� 2�i logˆb

� z

2�b

�
D W1

�
.z/ D �1

�
Li2.�ez/ � 2�i.LG/.�; z/ (2.28)

which is equivalent to (1.16).

3 Useful properties of the dilogarithm function

In this section we collect some useful properties of the quantum dilogarithm function

ˆb.z/ D .e2�b.zCcb/I q/1
.e2�b

�1.z�cb/I Qq/1
(3.1)

where

q D e2�ib2 ; Qq D e�2�ib�2 ; cb D i

2
.bC b�1/; Im.b2/ > 0: (3.2)

The above function can also be defined in the lower half-plane Im.b2/ < 0 using the
symmetry

ˆb.z/ D ˆb�1 .z/; (3.3)

and remarkably the function of b2 2 C n R admits an extension to b2 2 C0 D
C n .�1; 0�. The integral representation (1.5) implies the additional symmetry

ˆb.z/ D ˆ�b.z/: (3.4)

ˆb.z/ is a meromorphic function of z with

poles: cb C iNbC iNb�1; zeros: � cb � iNb � iNb�1:

It satisfies the inversion relation

ˆb.z/ ˆb.�z/ D e�iz2 ˆb.0/
2; ˆb.0/ D q 1

24 Qq� 1
24 :

It is a quasi-periodic function satisfying

ˆb.z � ib=2/ D .1C e2�bz/ ˆb.z C ib=2/ (3.5)

which, due to the symmetry (3.3), implies a second functional equation

ˆb.z � ib�1=2/ D .1C e2�b�1z/ ˆb.z C ib�1=2/ (3.6)

obtained from (3.5) by replacing b by b�1. Note that equation (3.5) (resp. (3.6))
implies that the function ˆb.z=.2�b// satisfies equation (1.1) (resp. (1.18)) with
� D b2.
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