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Abstract A sequence of polynomials in several variables is recurrent if it satisfies a linear
recursion with fixed polynomial coefficients. The Newton polytope of a recurrent sequence
of polynomials is quasi-linear. Our goal is to give examples of recurrent sequences of
polynomials that appear in three-dimensional topology, classical, and quantum.
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1 Introduction

1.1 Recurrent Sequences of Polynomials

A sequence of polynomials in several variables is recurrent if it satisfies a linear recur-
sion with fixed polynomial coefficients. In other words, if R = Q[x±1

1 , . . . , x±1
r ], then a

sequence Qn ∈ R (for n = 0, 1, 2, . . . ) is recurrent if there exist a natural number d and
ck ∈ R for k = 0, . . . , d with cd �= 0, such that for all n ∈ N, we have

d∑

k=0

ckQn+k = 0. (1)

The Newton polytope of a polynomial is the convex hull of the exponents of its nonzero
monomials. In [10], it was shown that the Newton polytope of a recurrent sequence of poly-
nomials is quasi-linear. Quasi-linear polytopes appear in the theory of stable-commutator
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Fig. 1 The effect of Dehn filling on a link

length studied by Calegari-Walker [7]. The number of lattice points of quasi-linear poly-
topes is a quasi-polynomial as shown by Chen-Li-Sam [5] generalizing work of Ehrhart [9].
In the present paper, we will not discuss the important notion of quasi-linearity. Instead, our
goal is to show that examples of recurrent sequences of polynomials (in one or several vari-
ables), appear naturally in three-dimensional topology, classical, and quantum. In all our
examples, the variable n comes from Dehn filling.

1.2 Dehn Filling

The result of −1/n Dehn filling along an unknot C which bounds a disk D replaces a string
that meets D with n full twists, right-handed if n > 0 and left-handed if n < 0 (see Fig. 1
and [17]).

Consider the three-component seed link L of Fig. 2, which contains a two-component
unlink C = (C1, C2). For integers m1, m2, let K(m1,m2) denote the knot obtained by
(−1/m1, −1/m2) filling on C. The two-parameter family of (2-fusion) knots K(m1,m2)

was studied in [12] and [8]. It is easy to see that K(m1, m2) is the closure of the three-string
braid βm1,m2 , where

βm1,m2 = ba2m1+1(ab)3m2

where s1 = a, s2 = b are the standard generators of the braid group B3 of three strands.
There is a symmetry

K(m1, m2) = −K(1 − m1,−1 − m2) (2)

where −K denotes the mirror of K.

1.3 The Alexander Polynomial of a Two-Parameter Family of Knots

Let �K(z) ∈ Z[z2] denote the Conway polynomial of a knot K [16]. Note that �K(t1/2 −
t−1/2) ∈ Z[t±1] is the Alexander polynomial of a knot K. Let us abbreviate �(m1,m2) =
�K(m1,m2)(z). We will explain the proof of the next proposition in Section 2.

Fig. 2 The seed link L (left) and
the two-fusion knot K(m1,m2)

(right)
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Proposition 1.1 �(m1, m2) satisfies the recursion relations

�(m1 + 2,m2) − (2 + z2)�(m1 + 1,m2) + �(m1,m2) = 0 (3a)

�(m1,m2 + 3) − (3 + 9z2 + 6z4 + z6)�(m1, m2 + 2)

+(3 + 9z2 + 6z4 + z6)�(m1, m2 + 1) − �(m1,m2) = 0 (3b)

as well as
�(m1, m2) − �(1 − m1,−1 − m2) = 0 (4)

with initial conditions
(

�(0, 0) �(0, 1)

�(1, 0) �(1, 1)

)
=

(
1 z6 + 5z4 + 5z2 + 1
z2 + 1 z8 + 7z6 + 14z4 + 8z2 + 1

)
. (5)

1.4 The Jones Polynomial of a Two-Parameter Family of Knots

Let JK(q) ∈ Z[q±1] denote the Jones polynomial of a knot K [15]. Let us abbreviate
J (m1,m2) = JK(m1,m2)(q). We will explain the proof of the next proposition in Section 2.
Similar recursions hold for the colored Jones polynomial of K(m1, m2) (for any fixed color)
as well as for every quantum group invariant of K(m1, m2).

Proposition 1.2 J (m1,m2) satisfies the recursion relations

J (2 + m1,m2) − (q + q3)J (1 + m1,m2) + q4J (m1,m2) = 0 (6a)

J (m1, 2 + m2) − (q3 + q6)J (m1, 1 + m2) + q9J (m1,m2) = 0 (6b)

J (m1,m2)(q) − J (1 − m1,−1 − m2)(q
−1) = 0 (6c)

with initial conditions
(

J (0, 0) J (0, 1)

J (1, 0) J (1, 1)

)
=

(
1 −q8 + q5 + q3

−q4 + q3 + q −q10 + q6 + q4

)
. (7)

1.5 The A-polynomial of Some One-Parameter Families of Knots

We now discuss recurrence relations of A-polynomials. The A-polynomial AM(m, l) ∈
Z[m±1, l±1] of an oriented 3-manifold M with a torus boundary component equipped with
a meridian and longitude was introduced in [3]. Roughly speaking, it parametrizes SL(2,C)

representations of the fundamental group of M , restricted to the boundary torus, where a
fixed meridian and longitude have eigenvalues m and l. An important example is the case
when M is a hyperbolic manifold. In that case, there is a distinguished component of the
character variety of PSL(2,C) representations which contains the diescrete faithful repre-
sentation, [21, 22]. This component lifts to several components of the SL(2,C) character
variety (see [6]) defined by the vanishing of a polynomial A

geom
M (m, l). In general, this

polynomial has at most four factors of the form p(±m,±l), discussed in detail in Cham-
panerkar’s thesis [4, Section 2.1.3]. Fixing an orientation on M , reduces the above factors
to at most two of the form p(±m, l). In the case of two-bridge knots and (−2, 3, 3 + 2n)

pretzel knots, we further have p(−m, l) = p(m, l).
Consider three seed links of Fig. 3.
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Fig. 3 The Whitehead link (left), the twisted Whitehead link (middle), and the pretzel link (right)

Let Kn denote the twist knot obtained by −1/n filling on a component of the Whitehead
link. Hoste-Shanahan show that AKn(m, l) is a recurrent sequence for n > 0 or n < 0; see
[13, Theorem 1]. Likewise, if K ′

n denotes the knot obtained by −1/n surgery on a com-
ponent of the twisted Whitehead link, Hoste-Shanahan shown that AK ′

n
(m, l) is recurrent

when n > 0 or n < 0. Here, AKn and AK ′
n

denote the A-polynomial of all non-abelian
components, each with multiplicity one, and the recursion (one for n > 0 and another for
n < 0) is of order 2.

Similarly, let Pn = (−2, 3, 3 + 2n) denote the pretzel knot obtained by −1/n surgery on
the pretzel link. The author and Mattman show that APn (i.e., all non-abelian components
each with multiplicity one) is recurrent for n > 0 or n < 0 (see [11, Theorem 1.3]). The
recursions are of order 4.

In Section 3, we will explain a general theorem regarding the behavior of the geometric
component of the A-polynomial under filling.

2 The Behavior of Quantum Invariants Under Filling

In this section, we explain how recurrent sequences of polynomials arise in quantum topol-
ogy. Consider two endomorphisms A, B of a finite-dimensional vector space V over the
field Q(q). Let tr(D) denote the trace of an endomorphism D. The next lemma is an
elementary application of the Cayley-Hamilton theorem.

Lemma 2.1 With the above assumptions, the sequence tr(ABn) ∈ Q(q) is recurrent.
Moreover, a recursion depends only on the characteristic polynomial of B .

We now recall the relevant quantum invariants of links from [14, 15, 23, 24]. Fix a simple
Lie algebra g, a representation V of g, a knot K, and consider the quantum group invariant
Z
g
V,K(q) ∈ Z[q±1/d ], Here, d ∈ N depends on g, [14, 19] but not on V or K. In particular,

• When g = sl2 and V = C2 is the defining representation, Z
g
V,K(q) is the Jones

polynomial of K.
• When g = gl(1|1) and V = C2, Z

g
V,K(q) is the Alexander polynomial of K.

In what follows, we will not need the full formalism of quantum groups and ribbon catero-
gies. Instead, all we need to know is the fact that the quantum group invariant Z

g
V,K(q) can

be computed as the (quantum) trace of an operator associated to a tangle presentation of K.
Let L denote a two-component link in S3 with one unknotted component C2, and let Kn

denote the knot obtained by −1/n filling on C2. Since S3 \ C2 is a solid torus S1 × D2

and L is a knot in S1 × D2, it follows that L is the closure of an (r, r)-tangle α. Without
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loss of generality, we can assume that the writhe of α is zero. Choose an orientation on K.
Let D denote a disk with boundary C2. After isotopy, the intersection of L with D consists
of r+ positively oriented points and r− negatively oriented ones, where r+ + r− = r . For
example, for (r+, r−) = (2, 1), the intersection of L and D looks like

Let βr+,r− denote the (r, r) tangle which is a 0-framed full twist on r strands. Kirby’s
calculus [17] implies that the 0-framed knot Kn is obtained by the closure of the tangle
αβn

r+,r− . If A and Br,s denote the endomorphism of V ⊗r ⊗ (V ∗)⊗s corresponding to α and
βr,s , then we have

ZV,Kn(q) = tr(ABnμ⊗r+ ⊗ μ−⊗r− )

where μ = uv−1 and u is the Drinfeld element and v is the ribbon element of [23, Section 3].
The next theorem follows from the above discussion and Lemma 2.1.

Theorem 2.1 Fix a simple Lie algebra g and a representation V of g. With the above
assumptions, the sequence Z

g
V,Kn

(q) ∈ Z[q1/d ] is recurrent.

Moreover, the minimal polynomial of βr+,r− gives a recurrence relation for Theorem 2.1.
In practice, if we know the degree of the characteristic polynomial of βr+,r− and several
values of the quantum group invariant, we can compute the recurrence of Theorem 2.1. This
is how (3a–3b) and (6a–6b) were obtained using β2,0 and β3,0. (4) and (6c) follow from (2)
and the fact that Z

g
V,−K(q) = Z

g
V,K(q−1) for all g, V , and K, where −K denotes the mirror

of K. Finally, the initial conditions (5) and (7) were obtained by a direct computation using
the KnotAtlas; [1].

3 The Behavior of the A-Polynomial Under Filling

In this section, we describe a general theorem regarding the behavior of the geometric
component of the A-polynomial under filling.

Fix an oriented hyperbolic 3-manifold M which is the complement of a hyperbolic link
with two components in a homology 3-sphere. Let (μ1, l1) and (μ2, l2) denote pairs of
meridian-longitude curves along the two cusps C1 and C2 of M , and let Mn denote the result
of −1/n filling on C2. Thurston proved that for all but finitely many n, Mn is hyperbolic;
[21, 22]. Let A

geom
n (m1, l1) denote the geometric component of the A-polynomial of Mn

with the meridian-longitude pair (μ1, l1) inherited from M .

Theorem 3.1 With the above conventions, there exists a recurrent sequence Rn(m1, l1)

∈ Z[m1, l1], such that for all but finitely many integers n, Ageom
n (m1, l1) divides Rn(m1, l1).

In addition, a recursion for Rn(m1, l1) can be computed explicitly via elimination given an
ideal triangulation of M .

Theorem 3.1 is general, but in favorable circumstances more is true. Namely, consider
a family of knot complements Kn, obtained by −1/n filling on a cusp of two-component
hyperbolic link L in S3, with linking number f . Let A

geom
n (m, l) denote the geometric
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component of the A-polynomial of Kn with respect to the canonical meridian and longitude
(μ, l) of Kn.

Definition 3.1 We say that two-component hyperbolic L link in S3 with linking number
f is favorable if A

geom
n (m, lm−f 2n) ∈ Q[m±1, l±1] is recurrent, for all but finitely many

values of n.

The shift l �→ lm−f 2n accommodates the difference between the canonical meridian-
longitude pair of Kn and the corresponding pair of the unfilled component of L.

In [10], the author proved that the Newton polytope N(Rn) of a recurrent sequence of
polynomials Rn ∈ Q[x±1

1 , . . . , x±1
r ] is quasi-linear, i.e., there exists a finite set J and

periodic functions sj,i : N −→ Qr for j ∈ J and i = 0, 1 such that for all but finitely many
n we have

N(Rn) = conv{sj,1(n)n + sj,0(n) |j ∈ J }
where conv(S) denotes the convex hull of a subset S of Rr .

Corollary 3.2 If L is favorable, then N(A
geom
Kn

(m, l)) is quasi-quadratic.

Proof If

N(A
geom
Kn

(m, lm−f 2n)) = conv

{(
uj,1(n)n + uj,0(n)

vj,1(n)n + vj,0(n)

)
|j ∈ J

}

for periodic functions uj,i , vj,i : N −→ Q, then

N(A
geom
Kn

(m, l)) = conv

{(
uj,1(n)n + uj,0(n)

f 2n2uj,1(n) + (f 2uj,0(n) + vj,1(n))n + vj,0(n)

)
|j ∈ J

}
.

Remark 3.3 The Whitehead link, the twisted Whitehead link, and the pretzel link of Fig. 3
are favorable (see [11, 13]). The corresponding Newton polygons are indeed quadratic:
generically hexagons the twist knots [13, Fig. 3] and for the pretzel knots [11, Theorem 1.3,
Fig. 2].

4 Proof of Theorem 3.1

Fix an oriented hyperbolic 3-manifold M with two cusps C1 and C2 and choice of meridian-
longitude (μi , li) on each cusp for i = 1, 2. Let Kn denote the result of −1/n filling on C2,
a hyperbolic manifold for all but finitely many n; [21, 22]. Let A

geom
n (m1, l1) denote the

A-polynomial of Kn with the conventions of Section 1.5.
We consider two cases: M has strongly geometrically isolated cusps, or not. For a

definition of strong geometric isolation, see [20] and also [2, 7].
When M is strongly geometrically isolated, Dehn filling on one cusp does not change the

shape of the other. This implies that A
geom
n (m1, l1) is independent of n (for all but finitely

many n) and certainly recurrent.
If M does not have strongly geometrically isolated cusps, consider the geometric com-

ponent of the PSL(2,C) character variety of M , which lifts to a union X′ of finitely many
components of SL(2,C) character variety of M . Consider a finite covering X′′ of X′ such
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that the eigenvalues of the meridians and longitudes are rational functions on X. The hyper-
bolic Dehn filling theorem of Thurston implies that X is a complex affine surface (see [22]
and also [21]). We will work with each component X of X′′ separately. So, the field F

of rational functions on X has transendence degree 2. Now, X has four nonconstant ratio-
nal functions: the eigenvalues of the meridians m1,m2 and the longitudes l1, l2 around
each cusp. So, each triple {m1, l1, m2} and {m1, l1, l2} of elements of F is polynomially
dependent, i.e., satisfies a polynomial equation

P (m1, l1,m2) = 0 Q(m1, l1, l2) = 0 (8)

where P (m1, l1,m2) ∈ Q(m1, l1)[m2] and Q(m1, l1, l2) ∈ Q(m1, l1)[l2] are polynomials
of strictly positive (by hypothesis) degrees dP and dQ with respect to m2 and l2. The union
Xn of the geometric components of the SL(2,C) character variety of Kn is the intersection
of X with the Dehn-filling equation m2l

−n
2 = 1 [22]. This is a surprising fact since Dehn

filling imposes an SL(2,C) matrix condition which a priori involves three polynomial equa-
tions and not one as stated above. The Dehn filling equation m2l

−n
2 = 1 is necessary, but

not (in general) sufficient to cut out nongeometric components of the SL(2,C) character
variety of Kn from those of the character variety of M .

So, on Xn, we have P (m1, l1, ln2 ) = 0. Let p(m1, l1) and q(m1, l1) denote the coefficient

of m
dP

2 and l
dQ

2 in P (m1, l1, m2) and Q(m1, l1, l2) respectively. Let Rn(m1, l1) ∈ Q(m1, l1)

denote the resultant of P (m1, l1, l
n
2 ) and Q(m1, l1, l2) (both are elements of Q(m1, l1)[l2])

with respect to l2 (see [18, Section IV.8]. It follows that

Rn(m1, l1) = p(m1, l1)
dQ

∏

l2:Q(m1,l1,l2)=0

P (m1, l1, ln2 ) ∈ Q(m1, l1).

Since Rn(m1, l1) is a Q(m1, l1)-linear combination of P (m1, l1, ln2 ) and Q(m1, l1, l2) (see
[18, Section IV.8]) and since P (m1, l1, ln2 ) and Q(m1, l1, l2) vanish on the curve Xn, it
follows that A

geom
n (m1, l1) divides the numerator of Rn(m1, l1). Moreover, by the above

equation, Rn(m1, l1) is a Q(m1, l1)-linear combination of the n-th powers of a finite set
of elements l2 algebraic over Q(m1, l1). It follows that Rn(m1, l1) satisfies a linear recur-
sion with constant coefficients in Q[m1, l1]. Lemma 4.1 below implies that there exists
r(m1, l1), s(m1, l1) ∈ Q[m1, l1], such that rsnRn ∈ Q[m1, l1] is recurrent. Since Rn =
(rsnRn)/(rs

n), it follows that the numerator of Rn is a divisor of rsnRn ∈ Q[m1, l1], a
recurrent sequence. And A

geom
n divides the numerator of Rn, hence divides rsnRn. Theorem

3.1 follows.

Lemma 4.1 If Rn ∈ Q(x) is recurrent, x = (x1, . . . , xr ) then there exist r, s ∈ Q[x], such
that srnRn ∈ Q[x] is recurrent.

Proof Rn satisfies a linear recursion

d∑

k=0

ckRn+k = 0

for some d ∈ N and ck ∈ Q[x] with cd �= 0. Let r = cd and define R̃n = rnRn. It follows
that R̃n satisfies the linear recursion

d∑

k=0

ckr
d−1−kR̃n+k = 0.
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The above recursion is monic (since cdr = 1) and has coefficients in Q[x]. Hence, R̃n ∈
Q[x][R̃0, . . . , R̃d−1]. Choose s ∈ Q[x], such that sR̃k ∈ Q[x] for k = 0, . . . , d − 1. Then
sR̃n ∈ Q[x] is recurrent.

Acknowledgments The author wishes to thank N. Dunfield, T.T.Q. Le and T. Mattman for useful
conversations. The author was supported in part by NSF.

References

1. Bar-Natan, D.: KnotAtlas (2005). http://katlas.org
2. Calegari, D.: Napoleon in isolation. Proc. Am. Math. Soc. 129(10), 3109–3119 (2001). electronic
3. Cooper, D., Culler, M., Gillet, H., Long, D.D., Shalen, P.B.: Plane curves associated to character varieties

of 3-manifolds. Invent. Math. 118(1), 47–84 (1994)
4. Champanerkar, A.A.: A-polynomial and Bloch invariants of hyperbolic 3-manifolds. ProQuest LLC,

Ann Arbor, MI. Thesis (Ph.D.)–Columbia University (2003)
5. Chen, S., Li, N., Sam, S.V.: Generalized Ehrhart polynomials. Trans. Am. Math. Soc. 364(1), 551–569

(2012)
6. Culler, M.: Lifting representations to covering groups. Adv. Math. 59(1), 64–70 (1986)
7. Calegari, D., Walker, A.: Integer hulls of linear polyhedra and scl in families. Trans. Am. Math. Soc.

365(10), 5085–5102 (2013)
8. Dunfield, N.M., Garoufalidis, S.: Incompressibility criteria for spun-normal surfaces. Trans. Am. Math.

Soc. 364(11), 6109–6137 (2012)
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