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1 The Jones polynomial of a knot
Quantum knot invariants are powerful numerical invariants defined by quantum field
theory with deep connections to the geometry and topology in dimension three [59]. This
is a survey talk on the various limits of the colored Jones polynomial [41], one of the best
known quantum knot invariants. This is a 25-year-old subject that contains theorems and
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conjectures in disconnected areas of mathematics. We chose to present some old and
recent conjectures on the subject, emphasizing two recent aspects of the colored Jones
polynomial, Modularity and Stability and their illustration by effective computations.
Zagier’s influence on this subject is profound, and several results in this talk are joint work
with him. Of course, the author is responsible for any mistakes in the presentation. We
thank Don Zagier for enlightening conversations, for his hospitality and for his generous
sharing of his ideas with us.
The Jones polynomial JL(q) ∈ Z[q±1/2] of an oriented link L in 3-space is uniquely

determined by the linear relations [41]

qJ (q) − q−1J (q) = (q1/2 − q−1/2)J (q) J (q) = q1/2 + q−1/2 .

The Jones polynomial has a unique extension to a polynomial invariant JL,c(q) of links
L together with a coloring c of their components that are colored by positive natural
numbers that satisfy the following rules

JL∪K,c∪{N+1}(q) = JL∪K (2) ,c∪{N,2}(q) − JL∪K,c∪{N−1}(q), N ≥ 2,

JL∪K,c∪{1}(q) = JL,c(q),

JL,{2,...,2}(q) = JL(q),

where (L∪K, c∪{N }) denotes a link with a distinguished component K colored byN and
K (2) denotes the 2-parallel of K with zero framing. Here, a natural number N attached to
a component of a link indicates the N -dimensional irreducible representation of the Lie
algebra sl(2,C). For a detailed discussion on the polynomial invariants of links that come
from quantum groups, see [40,56,57].
The above relations make clear that the colored Jones polynomial of a knot encodes the

Jones polynomials of the knot and its 0-framed parallels.

2 Three limits of the colored Jones polynomial
In this section, we will list three conjectures, the MMR Conjecture (proven), the Slope
Conjecture (mostly proven) and the AJ Conjecture (less proven). These conjectures relate
the colored Jones polynomial of a knot with the Alexander polynomial, with the set of
slopes of incompressible surfaces and with the PSL(2,C) character variety of the knot
complement.

2.1 The colored Jones polynomial and the Alexander polynomial

We begin by discussing a relation of the colored Jones polynomial of a knot with the
homology of the universal abelian cover of its complement. The homologyH1(M,Z) � Z

of the complement M = S3 \ K of a knot K in 3-space is independent of the knot K .
This allows us to consider the universal abelian cover ˜M of M with deck transformation
group Z, and with homology H1(˜M,Z) a Z[t±1] module. As it is well known, this module
is essentially torsion and its order is given by the Alexander polynomial �K (t) ∈ Z[t±1]
of K [53]. The Alexander polynomial does not distinguish knots from their mirrors and
satisfies �K (1) = 1.
There are infinitely many pairs of knots (for instance (1022, 1035) in the Rolfsen table

[3,53]) with equal Jones polynomial but different Alexander polynomial. On the other
hand, the colored Jones polynomial determines the Alexander polynomial. This so-called
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Melvin–Morton–Rozansky Conjecture was proven in [4] and states that

ĴK,n(eh̄) =
∑

i≥j≥0
aK,ijh̄inj ∈ Q[[n,h̄]] (1)

and
∞
∑

i=0
aK,ijh̄i = 1

�K (eh̄)
∈ Q[[h̄]].

Here ĴK,n(q) = JK,n(q)/JUnknot,n(q) ∈ Z[q±1] is a normalized form of the colored Jones
polynomial. The above conjecture is a statement about formal power series. A stronger
analytic version is known [26, Thm.1.3]; namely, for every knot K there exists an open
neighborhood UK of 0 ∈ C such that for all α ∈ UK we have

lim
n

JK,n(eα/n) = 1
�K (eα)

,

where the left-hand side is a sequence of analytic functions of α ∈ UK converging uni-
formly on each compact subset of UK to the function of the right-hand side. More is
known about the summation of the series (1) along a fixed diagonal i = j + k for fixed
k , both on the level of formal power series and on the analytic counterpart. For further
details, the reader may consult [26] and references therein.

2.2 The colored Jones polynomial and slopes of incompressible surfaces

In this section, we discuss a conjecture relating the degree of the colored Jones polynomial
of a knot K with the set bsK of boundary slopes of incompressible surfaces in the knot
complement M = S3 \ K . Although there are infinitely many incompressible surfaces
in M, it is known that bsK ⊂ Q ∪ {1/0} is a finite set [38]. Incompressible surfaces play
an important role in geometric topology in dimension three, often accompanied by the
theory of normal surfaces [37]. From our point of view, incompressible surfaces are a
tropical limit of the colored Jones polynomial, corresponding to an expansion around
q = 0 [20].
The Jones polynomial of a knot is a Laurent polynomial in one variable q with integer

coefficients. Ignoring most information, one can consider the degree δK (n) of ĴK,n+1(q)
with respect to q. Since (ĴK,n(q)) is a q-holonomic sequence [25], it follows that δK is a
quadratic quasi-polynomial [18]. In other words, we have

δK (n) = cK (n)n2 + bK (n)n + aK (n),

where aK , bK , cK : N −→ Q are periodic functions. In [19], the author formulated the
Slope Conjecture.

Conjecture 2.1 For all knots K , we have

4cK (N) ⊂ bsK .

The motivating example for the Slope Conjecture was the case of the (−2, 3, 7) pretzel
knot, where we have [19, Ex.1.4]

δ(−2,3,7)(n) =
[

37
8
n2 + 17

2
n
]

= 37
8
n2 + 17

2
n + a(n),
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where a(n) is a periodic sequence of period 4 given by 0,−1/8,−1/2,−1/8 if n ≡
0, 1, 2, 3 mod 4, respectively. In addition, we have

bs(−2,3,7) = {0, 16, 37/2, 20}.
In all known examples, cK (N) consists of a single element, the so-called Jones slope.
How the colored Jones polynomial selects some of the finitely many boundary slopes is a
challenging and interesting question. The Slope Conjecture is known for all torus knots,
all alternating knots and all knots with at most 8 crossings [19] as well as for all adequate
knots [15] and all 2-fusion knots [10].

2.3 The colored Jones polynomial and the PSL(2,C) character variety

In this section, we discuss a conjecture relating the colored Jones polynomial of a knot
K with the moduli space of SL(2,C)-representations of M, restricted to the boundary of
M. Ignoring 0-dimensional components, the latter is a one-dimensional plane curve. To
formulate the conjecture, we need to recall that the colored Jones polynomial ĴK,n(q) is
q-holonomic [25], i.e., it satisfies a non-trivial linear recursion relation

d
∑

j=0
aj(q, qn)ĴK,n+j(q) = 0 (2)

for all nwhere aj(u, v) ∈ Z[u±1, v±1] and ad �= 0. q-holonomic sequenceswere introduced
by Zeilberger [66], and a fundamental theorem (multisums of q-proper hypergeometric
terms are q-holonomic) was proven in [61] and implemented in [52]. Using two operators
M and L which act on a sequence f (n) by

(Mf )(n) = qnf (n), (Lf )(n) = f (n + 1),

we can write the recursion (2) in operator form

P · ĴK = 0 where P =
d

∑

j=0
aj(q,M)Lj.

It is easy to see that LM = qML and M,L generate the q-Weyl algebra. Although a q-
holonomic sequence is annihilated by many operators P (for instance, if it is annihilated
by P, then it is also annihilated by any left multiple QP of P), one can choose a canonical
recursion, denotedbyAK (M,L, q) ∈ Z[q,M]〈L〉/(LM−qML) andcallednon-commutative
A-polynomial of K , which is a knot invariant [16]. The reason for this terminology is the
potential relationwith theA-polynomialAK (M,L) ofK [6]. The latter is defined as follows.
LetXM = Hom(π1(M), SL(2,C))/Cdenote themoduli space of flat SL(2,C) connections

onM. We have an identification

X∂M � (C∗)2/(Z/2Z), ρ �→ (M,L),

where {M, 1/M} (resp., {L, 1/L}) are the eigenvalues of ρ(μ) (resp., ρ(λ)) where (μ, λ) is
a meridian-longitude pair on ∂M. XM and X∂M are affine varieties and the restriction
map XM −→ X∂M is algebraic. The Zariski closure of its image lifted to (C∗)2, and after
removing any 0-dimensional components is a one-dimensional plane curve with defin-
ing polynomial AK (M,L) [6]. This polynomial plays an important role in the hyperbolic
geometry of the knot complement.We are now ready to formulate the AJ Conjecture [16];
see also [21]. Let us say that two polynomials P(M,L) =M Q(M,L) are essentially equal if
their irreducible factors with positive L-degree are equal.
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Conjecture 2.2 For all knots K , we have AK (M2, L, 1) =M AK (M,L).

The AJ Conjecture was checked for the 31 and the 41 knots in [16]. It is known for most
2-bridge knots [45], for torus knots and for the pretzel knots of Sect. 4; see [46,55].
From the point of view of physics, the AJ Conjecture is a consequence of the fact that

quantization and the corresponding quantum field theory exists [14,31].

3 The volume andmodularity conjectures
3.1 The volume conjecture

The Kashaev invariant of a knot is a sequence of complex numbers defined by [42,47]
〈K 〉N = ĴK,N (e(1/N )),

where e(α) = e2π iα . The Volume Conjecture concerns the exponential growth rate of the
Kashaev invariant and states that

lim
N

1
N

log |〈K 〉N | = vol(K )
2π

,

where Vol(K) is the volume of the hyperbolic pieces of the knot complement S3 \ K
[54]. Among hyperbolic knots, the Volume Conjecture is known only for the 41 knot.
Detailed computations are available in [49]. Refinements of the Volume Conjecture to all
orders inN and generalizationswere proposed by several authors [13,17,26,28]. Although
proofs are lacking, there appears to be a lot of structure in the asymptotics of the Kashaev
invariant. In the next section, we will discuss a modularity conjecture of Zagier and some
numerical verification.

3.2 The modularity conjecture

Zagier considered the Galois invariant spreading of the Kashaev invariant on the set of
complex roots of unity given by

φK : Q/Z −→ C, φK
(a
c

)

= ĴK,c
(

e
(a
c

))

,

where (a, c) = 1 and c > 0. The above formula works even when a and c are not coprime
due to a symmetry of the colored Jones polynomial [36].φK determines 〈K 〉 and conversely
is determined by 〈K 〉 via Galois invariance.
Let γ =

(

a b
c d

)

∈ SL(2,Z) and α = a/c and h̄ = 2π i/(X + d/c) where X −→ +∞
with bounded denominators. Let φ = φK denote the extended Kashaev invariant of a
hyperbolic knot K and let F ⊂ C denote the invariant trace field ofM = S3 \ K [48]. Let
C(M) ∈ C/(4π2

Z) denote the complex Chern–Simons invariant of M [35,50]. The next
conjecture was formulated by Zagier.

Conjecture 3.1 [65] With the above conventions, there exist �(α) ∈ C with �(α)2c ∈
F (ε(α)) and Aj(α) ∈ F (e(α)) such that

φ(γX)
φ(X)

∼
(

2π
h̄

)3/2
eC(M)/h̄�(α)

∞
∑

j=0
Aj(α)h̄j . (3)

When γ =
(

1 0
1 1

)

and X = N − 1, and with the properly chosen orientation of M, the

leading asymptotics of (3) together with the fact that �(C(M)) = vol(M) gives the volume
conjecture.
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4 Computation of the non-commutative A-polynomial
As we will discuss below, the key to an effective computation the Kashaev invariant is
a recursion for the colored Jones polynomial. Proving or guessing such a recursion is at
least as hard as computing the A-polynomial of the knot. The A-polynomial is already
unknown for several knots with 9 crossings. For an updated table of computations see [8].
TheA-polynomial is known for the 1-parameter families of twist knotsKp [39] and pretzel
knots KPp = (−2, 3, 3 + 2p) [29] depicted on the left and the right part of the following
figure

where an integerm inside a box indicates the number of |m| half-twists, right-handed (if
m > 0) or left-handed (ifm < 0), according to the following figure

The non-commutativeA-polynomial of the twist knotsKp was computedwith a certificate
by X. Sun and the author in [30] for p = −14, . . . , 15. The data are available from

http://www.math.gatech.edu/~stavros/publications/twist.knot.data

The non-commutative A-polynomial of the pretzel knots KPp = (−2, 3, 3 + 3p) was
guessed by C. Koutschan and the author in [23] for p = −5, . . . , 5. The guessing method
used an a priori knowledge of the monomials of the recursion, together with computa-
tion of the colored Jones polynomial using the fusion formula, and exact but modular
arithmetic and rational reconstruction. The data are available from

http://www.math.gatech.edu/~stavros/publications/pretzel.data

For instance, the recursion relation for the colored Jones polynomial f (n) of the 52 =
(−2, 3,−1) pretzel knot is given by

b(qn, q) − q9+7n(−1 + qn)(−1 + q2+n)(1 + q2+n)(−1 + q5+2n)f (n)

+ q5+2n(−1 + q1+n)2(1 + q1+n)(−1 + q5+2n)(−1 + q1+n + q1+2n − q2+2n

− q3+2n + q4+2n − q2+3n − q5+3n − 2q5+4n + q6+5n)f (1 + n)

− q(−1 + q2+n)2(1 + q2+n)(−1 + q1+2n)(−1 + 2q2+n + q2+2n + q5+2n

− q4+3n + q5+3n + q6+3n − q7+3n − q7+4n + q9+5n)

× f (2 + n) − (−1 + q1+n)(1 + q1+n)(−1 + q3+n)(−1 + q1+2n)f (3 + n) = 0,

where

b(qn, q) = q4+2n(1 + q1+n)(1 + q2+n)(−1 + q1+2n)(−1 + q3+2n)(−1 + q5+2n).

http://www.math.gatech.edu/~stavros/publications/twist.knot.data
http://www.math.gatech.edu/~stavros/publications/pretzel.data
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The recursion relation for the colored Jones polynomial f (n) of the (−2, 3, 7) pretzel
knot is given by

b(qn, q) − q224+55n(−1 + qn)(−1 + q4+n)(−1 + q5+n)f (n)

+ q218+45n(−1 + q1+n)3(−1 + q4+n)(−1 + q5+n)f (1 + n)

+ q204+36n(−1 + q2+n)2(1 + q2+n + q3+n)(−1 + q5+n)f (2 + n)

+ (−1 + q)q180+27n(1 + q)(−1 + q1+n)(−1 + q3+n)2(−1 + q5+n)f (3 + n)

− q149+18n(−1 + q1+n)(−1 + q4+n)2(1 + q + q4+n)f (4 + n)

− q104+8n(−1 + q1+n)(−1 + q2+n)

(−1 + q5+n)3f (5 + n) + q59(−1 + q1+n)(−1 + q2+n)(−1 + q6+n)f (6 + n) = 0,

where

b(qn, q) = q84+5n(1 − q1+n − q2+n + q3+2n − q16+3n + q17+4n + q18+4n

− q19+5n − q26+5n + q27+6n + q28+6n + q31+6n − q29+7n − q32+7n

− q33+7n − q36+7n + q34+8n + q37+8n + q38+8n − q39+9n + q45+9n − q46+10n

− q47+10n + q49+10n + q48+11n − q50+11n − q51+11n − q54+11n

+ q52+12n + q55+12n + q56+12n − q57+13n − q62+13n + q63+14n + q64+14n

− q66+14n + q67+14n − q65+15n + q67+15n − q69+15n + q71+15n − q69+16n

+ q70+16n − q72+16n − q75+17n − q78+17n + q76+18n + q79+18n − q83+19n + q85+19n

+ q84+20n − q86+20n + q88+20n − q89+21n + q91+21n − q96+22n − q93+23n

+ 2q98+24n − q99+25n − q108+26n − q107+27n + q109+27n + q108+28n − q110+28n

+ q112+28n − q113+29n + q115+29n + q112+30n + q115+30n − q117+31n − q120+31n

− q117+32n + q118+32n − q120+32n − q119+33n + q121+33n − q123+33n

+ q125+33n + q123+34n + q124+34n − q126+34n + q127+34n − q123+35n − q128+35n

+ q124+36n + q127+36n + q128+36n + q126+37n − q128+37n − q129+37n − q132+37n

− q130+38n − q131+38n + q133+38n − q129+39n + q135+39n + q130+40n + q133+40n

+ q134+40n − q131+41n − q134+41n − q135+41n − q138+41n + q135+42n

+ q136+42n + q139+42n − q133+43n − q140+43n + q137+44n + q138+44n − q142+45n

+ q135+46n − q139+47n − q140+47n + q144+48n).

The pretzel knots KPp are interesting frommany points of view. For every integer p, the
knots in the pair (KPp,−KP−p) (where −K denotes the mirror of K )

• are geometrically similar, in particular they are scissors congruent, have equal volume,
equal invariant trace fields and their Chern–Simons invariant differs by a sixth root
of unity,

• their A-polynomials are equal up to a GL(2,Z) transformation [29, Thm.1.4].

Yet, the colored Jones polynomials of (KPp,−KP−p) are different, and so are the Kashaev
invariants and their asymptotics and even the term�(0) in the modularity conjecture 3.1.
An explanation of this difference is given in [11].
Zagier posed a question to compare the modularity conjecture for geometrically similar

pairs of knots, which was a motivation for many of the computations in Sect. 5.2.
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5 Numerical asymptotics and themodularity conjecture
5.1 Numerical computation of the Kashaev invariant

Tonumerically verify Conjecture 3.1, we need to compute the Kashaev invariant to several
hundred digits when N = 2000 for instance. In this section, we discuss how to achieve
this.
There are multidimensional R-matrix state sum formulas for the colored Jones poly-

nomial JK,N (q) where the number of summation points is given by a polynomial in N of
degree the number of crossings of K minus 1 [25]. Unfortunately, this is not practical
method even for the 41 knot.
An alternative way is to use fusion [7,32,43] which allows one to compute the colored

Jones polynomial more efficiently at the cost that the summand is a rational function of q.
For instance, the colored Jones polynomial of a 2-fusion knot can be computed in O(N 3)
steps using [23, Thm.1.1]. This method works better, but it still has limitations.
A preferred method is to guess a non-trivial recursion relation for the colored Jones

polynomial (see Sect. 4) and instead of using it to compute the colored Jones polynomial,
differentiate sufficiently many times and numerically compute the Kashaev invariant. In
the efforts to compute the Kashaev invariant of the (−2, 3, 7) pretzel knot, Zagier and the
author obtained the following lemma, of theoretical and practical use.

Lemma 5.1 The Kashaev invariant 〈K 〉N can be numerically computed in O(N ) steps.

A computer implementation of Lemma 5.1 is available.

5.2 Numerical verification of the modularity conjecture

Given a sequence of complex number (an) with an expected asymptotic expansion

an ∼ λnnα(log n)β
∞
∑

j=0

cj
nj

how can one numerically compute λ, α, β and several coefficients cj? This is a well-known
numerical analysis problem [5]. An acceleration method was proposed in [62, p. 954],
which is also equivalent to the Richardson transform. For a detailed discussion of the
acceleration method see [22, Sect. 5.2]. In favorable circumstances, the coefficients cj are
algebraic numbers, and a numerical approximation may lead to a guess for their exact
value.
A concrete application of the acceleration method was given in the appendix of [32]

where one deals with several λ of the same magnitude as well as β �= 0.
Numerical computations of the modularity conjecture for the 41 knot were obtained by

Zagier around roots of unity of order at most 5, and extended to several other knots in
[33,34]. As a sample computation, we present here the numerical data for 41 at α = 0,
computed independently by Zagier and by the author. The values of Ak in the table below
are known for k = 0, . . . , 150.

φ41 (X) = 3−1/4X3/2 exp(CX)
( ∞

∑

k=0

Ak
k !12k

hk
)

,

h = A/X A = π

33/2
C = 1

π
Li2(exp(2π i/3)).



Garoufalidis Res Math Sci (2018) 5:11 Page 9 of 17 11

k
A k

0
1

1
11

2
69

7
3

72
43

51
/5

4
27

83
92

94
9/
5

5
24

42
84

79
17

41
/7

6
11

40
36

39
07

11
70

19
/3
5

7
21

21
14

20
53

37
14

74
71

/5
8

36
73

62
84

42
29

96
81

31
55

7/
5

9
44

92
11

92
87

35
29

77
90

78
38

39
21

/2
75

10
31

74
34

21
30

56
24

95
57

56
02

14
34

07
/7

11
69

95
50

29
58

24
43

76
62

80
87

91
40

49
05

73
3/
45

5
12

14
22

23
88

63
14

69
86

31
65

73
26

95
95

49
13

15
89

31
/2
27

5
13

52
55

00
03

79
40

03
16

52
01

26
83

54
57

78
31

80
20

71
89

/1
75

14
42

05
48

41
48

17
00

89
34

76
79

28
21

14
85

40
31

90
87

14
27

3/
25

15
16

16
97

53
99

00
12

17
89

60
07

19
91

58
92

11
34

59
55

64
83

97
56

06
89

/1
48

75
16

11
93

90
46

96
35

15
60

67
91

58
57

71
28

83
54

63
81

43
87

02
43

30
35

71
92

59
/1
48

75
17

11
16

39
86

59
62

91
70

04
52

49
14

12
61

66
57

22
27

93
35

12
49

67
71

24
66

03
17

71
/1
66

25
18

57
78

48
33

28
64

91
07

42
91

76
64

40
29

61
32

09
78

85
17

12
48

33
84

45
52

37
96

17
60

78
3/
91

43
75

19
31

98
46

55
27

48
35

58
75

80
07

09
44

80
40

31
41

58
31

63
89

20
79

08
66

35
99

73
87

74
27

17
83

/4
81

25
20

52
31

92
89

06
53

48
08

94
95

92
18

04
93

20
92

23
57

39
53

67
17

04
75

08
23

17
39

28
62

96
44

53
83

03
/6
73

75
21

15
85

55
52

68
52

53
87

10
03

02
32

98
94

09
74

57
55

24
32

29
19

61
17

99
53

83
66

51
48

87
89

14
25

56
33

27
9/
15

81
25

22
26

61
38

68
77

13
77

22
41

96
22

65
44

64
28

42
60

77
61

24
11

81
94

29
02

29
32

15
08

11
27

49
93

28
18

15
76

92
85

1/
18

68
75

23
17

99
84

33
20

78
40

69
98

08
57

78
52

93
17

18
45

35
39

38
67

04
80

45
25

47
72

44
08

08
88

29
84

23
98

12
82

43
49

61
19

/8
12

5
24

10
68

85
70

72
91

05
20

39
96

48
90

65
26

26
80

97
47

97
33

30
41

16
40

23
14

18
21

32
96

22
80

53
96

63
17

89
94

21
09

46
66

66
79

/2
84

37
5

25
11

03
85

92
41

47
11

79
23

37
56

31
51

44
00

72
56

31
59

21
06

47
56

32
59

74
25

36
08

58
42

32
51

90
59

31
98

91
36

96
56

49
58

19
55

9/
15

92
5

26
84

81
80

22
19

13
64

92
77

21
28

33
10

64
32

96
34

49
31

04
33

48
30

42
79

43
23

45
64

48
44

04
17

43
12

93
02

11
30

95
57

18
81

51
60

47
09

/6
12

5



11 Page 10 of 17 Garoufalidis ResMath Sci (2018) 5:11

In addition, we present the numerical data for the 52 knot at α = 1/3, computed in [34].

φ52 (X/(3X + 1))/φ52 (X) ∼ eC/h(2π/h)3/2�(1/3)
( ∞

∑

k=0
Ak (1/3)hk

)

,

h = (2π i)/(X + 1/3),

F = Q(α) α3 − α2 + 1 = 0 α = 0.877 · · · − 0.744 . . . i,

C = R(1 − α2) + 2R(1 − α) − π i log(α) + π2,

R(x) = Li2(x) + 1
2
log x log(1 − x) − π2

6
,

[1 − α2] + 2[1 − α] ∈ B(F ),
−23 = π2

1π2 π1 = 3α − 2 π2 = 3α + 1,

π7 = (α2 − 1)ζ6 − α + 1 π43 = 2α2 − α − ζ6,

�(1/3) = e(−2/9)π7
3
√−3√

π1
,

A0(1/3) = π7π43,

A1(1/3) = −952 + 321α − 873α2 + (1348 + 557α + 26α2)ζ6
α5π3

1
.

One may use the recursion relations [24] for the twisted colored Jones polynomial to
expand the above computations around complex roots of unity [9].

6 Stability
6.1 Stability of a sequence of polynomials

The Slope Conjecture deals with the highest (or the lowest, if you take the mirror image)
q-exponent of the colored Jones polynomial. In this section, we discuss what happens
when we shift the colored Jones polynomial and place its lowest q-exponent to 0. Stability
concerns the coefficients of the resulting sequence of polynomials in q. A weaker form
of stability (0-stability, defined below) for the colored Jones polynomial of an alternating
knot was conjectured by Dasbach and Lin and proven independently by Armond [2].
Stability was observed in some examples of alternating knots by Zagier, and conjectured

by the author to hold for all knots, assuming that we restrict the sequence of colored
Jones polynomials to suitable arithmetic progressions, dictated by the quasi-polynomial
nature of its q-degree [18,19]. Zagier asked about modular and asymptotic properties of
the limiting q-series.
A proof of stability in full for all alternating links is given in [27]. Besides stability, this

approach gives a generalized Nahm sum formula for the corresponding series, which
in particular implies convergence in the open unit disk in the q-plane. The generalized
Nahm sum formula comes with a computer implementation (using as input a planar
diagram of a link) and allows the computation of several terms of the q-series as well as
its asymptotics when q approaches radially from within the unit circle a complex root
of unity. The Nahm sum formula is reminiscent to the cohomological Hall algebra of
motivic Donaldson–Thomas invariants of Kontsevich-Soibelman [44] andmay be related
to recent work of Witten [60] and Dimofte-Gaiotto-Gukov [12].
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Let

Z((q)) =
{

∑

n∈Z
anqn | an = 0, n � 0

}

denote the ring of power series in qwith integer coefficients and bounded belowminimum
q-degree.

Definition 6.1 Fix a sequence (fn(q)) of polynomials fn(q) ∈ Z[q]. We say that (fn(q)) is
0-stable if the following limit exists

lim
n

fn(q) = �0(q) ∈ Z[[q]],

i.e., for every natural number m ∈ Z, there exists a natural number n(m) such that the
coefficient of qm in fn(q) is constant for all n > n(m).
We say that (fn(q)) is stable if there exist elements �k (q) ∈ Z((q)) for k = 0, 1, 2, . . .

such that for every k ∈ N we have

lim
n

q−nk

⎛

⎝fn(q) −
k

∑

j=0
qjn�j(q)

⎞

⎠ = 0 ∈ Z((q)).

We will denote by

F (x, q) =
∞
∑

k=0
�k (q)xk ∈ Z((q))[[x]]

the corresponding series associated with the stable sequence (fn(q)).

Thus, a 0-stable sequence fn(q) ∈ Z[q] gives rise to a q-series limn fn(q) ∈ Z[[q]]. The
q-series that come from the colored Jones polynomial are q-hypergeometric series of a
special shape, i.e., they are generalized Nahm sums. The latter are introduced in the next
section.

6.2 Generalized Nahm sums

In [51], Nahm studied q-hypergeometric series f (q) ∈ Z[[q]] of the form

f (q) =
∑

n1 ,...,nr≥0

q
1
2n

t ·A·n+b·n

(q)n1 . . . (q)nr

where A is a positive definite even integral symmetric matrix and b ∈ Z
r . Nahm sums

appear in character formulas in Conformal Field Theory and define analytic functions
in the complex unit disk |q| < 1 with interesting asymptotics at complex roots of unity,
and with sometimes modular behavior. Examples of Nahm sums are the famous list of
seven mysterious q-series of Ramanujan that are nearly modular (in modern terms, mock
modular). For a detailed discussion, see [64]. Nahm sums give rise to elements of the Bloch
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group, which governs the leading radial asymptotics of f (q) as q approaches a complex
root of unity. Nahm’s Conjecture concerns the modularity of a Nahm sum f (q) and was
studied extensively by Zagier, Vlasenko-Zwegers and others [58,63].
The limit of the colored Jones function of an alternating link leads us to consider gen-

eralized Nahm sums of the form

�(q) =
∑

n∈C∩Nr

(−1)c·n q
1
2n

t ·A·n+b·n

(q)n1 . . . (q)nr
, (4)

where C is a rational polyhedral cone in R
r , b, c ∈ Z

r and A is a symmetric (possibly
indefinite) matrix.Wewill say that the generalizedNahm sum (4) is regular if the function

n ∈ C ∩ N
r �→ 1

2
nt · A · n + b · n

is proper and bounded below, where mindegq denotes the minimum degree with respect
to q. Regularity ensures that the series (4) is a well-defined element of the ring Z((q)). In
the remaining of the paper, the term Nahm sum will refer to a regular generalized Nahm
sum.

6.3 Stability for alternating links

Let K denote an alternating link. The lowest monomial of JK,n(q) has coefficient ±1, and
dividing JK,n+1(q) by its lowest monomial gives a polynomial J+K,n(q) ∈ 1 + qZ[q]. We can
now quote the main theorem of [27].

Theorem 6.2 [27] For every alternating link K , the sequence (J+K,n(q)) is stable and the
corresponding limit FK (x, q) can be effectively computed by a planar projection D of K .
Moreover, FK (0, q) = �K,0(q) is given by an explicit Nahm sum computed by D.

An illustration of the corresponding q-series �K,0(q) the knots 31, 41 and 63 is given in
Sect. 6.4.

6.4 Computation of the q-series of alternating links

Given the generalizedNahmsum for�K,0(q), amultidimensional sumof asmany variables
as the number of crossings of K , one may try to identify the q-series�K,0(q) with a known
one. In joint work with Zagier, we computed the first few terms of the corresponding
series (an interesting and non-trivial task in itself) and guessed the answer for knots with
a small number of crossings. The guesses are presented in the following table
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K c− c+ σ �∗
K,0(q) �K,0(q)

31 = −K1 3 0 2 h3 h2
41 = K−1 2 2 0 h3 h3
51 5 0 4 h5 h2
52 = K2 0 5 −2 h4 h3
61 = K−2 4 2 0 h3 h5
62 4 2 2 h3h4 h3
63 3 3 0 h23 h23
71 7 0 6 h7 h2
72 = K3 0 7 −2 h6 h3
73 0 7 −4 h4 h5
74 0 7 −2 (h4)2 h3
75 7 0 4 h3h4 h4
76 5 2 2 h3h4 h23
77 3 4 0 h33 h23
81 = K−3 6 2 0 h3 h7
82 6 2 4 h3h6 h3
83 4 4 0 h5 h5
84 4 4 2 h4h5 h3
85 2 6 −4 h3 ???
Kp, p > 0 0 2p + 1 −2 h∗

2p h3
Kp, p < 0 2|p| 2 0 h3 h2|p|+1
T (2, p), p > 0 2p + 1 0 2p h2p+1 1

where σ denotes the signature of a knot [53] and for a positive natural number b, hb are
the unary theta and false theta series

hb(q) =
∑

n∈Z
εb(n) q

b
2 n(n+1)−n,

where

εb(n) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(−1)n if b is odd,

1 if b is even and n ≥ 0,

−1 if b is even and n < 0.

Observe that

h1(q) = 0, h2(q) = 1, h3(q) = (q)∞.

In the above table, c+ (resp. c−) denotes the number of positive (resp., negative) crossings
of an alternating knot K , and �∗

K,0(q) = �−K,0(q) denotes the q-series of the mirror −K
of K , and T (2, p) denotes the (2, p) torus knot.
Concretely, the above table predicts the following identities

(q)−2∞ =
∑

a,b,c≥0
(−1)a

q
3
2 a

2+ab+ac+bc+ 1
2 a+b+c

(q)a(q)b(q)c(q)a+b(q)a+c
,

(q)−3∞ =
∑

a,b,c,d,e≥0
a+b=d+e

(−1)b+d q
b2
2 + d2

2 +bc+ac+ad+be+ a
2+c+ e

2

(q)b+c(q)a(q)b(q)c(q)d(q)e(q)c+d
,
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(q)−4∞ =
∑

a,b,c,d,e,f ≥0
a+e≥b,b+f ≥a

(−1)a−b+e

× q
a
2+ 3a2

2 + b
2+ b2

2 +c+ac+d+ad+cd+ e
2+2ae−2be+de+ 3e2

2 −af +bf +f 2

(q)a(q)b(q)c(q)a+c(q)d(q)a+d(q)e(q)a−b+e(q)a−b+d+e(q)f (q)−a+b+f

corresponding to the knots

31 41 63

Some of the identities of the above table have been consequently proven [1]. In particular
this settles the (mock)-modularity properties of the series �K,0(q) for all but one knot.
The q-series of the remaining knot 85 is given by an eight-dimensional Nahm sum

Φ85,0(q) = (q)8∞
∑

a,b,c,d,e,f,g,h≥0
a+f≥b

S(a, b, c, d, e, f, g, h) 85

where S = S(a, b, c, d, e, f, g, h) is given by

S = (−1)b+f

q2a+3a2− b
2−2ab+ 3b2

2 +c+ac+d+ad+cd+e+ae+de+ 3f
2 +4af −4bf +ef + 5f 2

2 +g+ag−bg+eg+fg+h+ah−bh+fh+gh

(q)a(q)b(q)c(q)d(q)e(q)f (q)g (q)h(q)a+c(q)a+d(q)a+e(q)a−b+f (q)a−b+e+f (q)a−b+f +g (q)a−b+f +h
.

The first few terms of the series�85 ,0(q), which somewhat simplify when divided by (q)∞,
are given by

�85 ,0(q)/(q)∞ = 1 − q + q2 − q4 + q5 + q6 − q8 + 2q10 + q11 + q12 − q13

− 2q14 + 2q16 + 3q17 + 2q18 + q19 − 3q21 − 2q22 + q23 + 4q24 + 4q25

+ 5q26 + 3q27 + q28 − 2q29 − 3q30 − 3q31 + 5q33 + 8q34 + 8q35 + 8q36 + 6q37 + 3q38

− 2q39 − 5q40 − 6q41 − q42 + 2q43 + 9q44 + 13q45 + 17q46 + 16q47 + 14q48 + 9q49

+ 4q50 − 3q51 − 8q52 − 8q53 − 5q54 + 3q55 + 14q56 + 21q57 + 27q58 + 32q59 + 33q60

+ 28q61 + 21q62 + 11q63 + q64 − 9q65 − 11q66

− 11q67 − 2q68 + 9q69 + 27q70 + 40q71 + 56q72 + 60q73 + 65q74 + 62q75 + 54q76

+ 39q77 + 23q78 + 4q79 − 9q80 − 16q81 − 14q82 − 3q83 + 16q84 + 40q85 + 67q86

+ 92q87 + 114q88 + 129q89 + 135q90 + 127q91 + 115q92 + 92q93

+ 66q94 + 35q95 + 9q96 − 12q97 − 14q98 − 11q99 + 13q100 + O(q)101.

We were unable to identify �85 ,0(q) with a known q-series. Nor were we able to decide
whether it is a mock-modular form [64]. It seems to us that 85 is not an exception, and
that the mock-modularity of the q-series �85 ,0(q) is an open problem.

Question 6.3 Can one decide if a generalized Nahm sum is a mock-modular form?

7 Modularity and stability
Modularity and Stability are two important properties of quantum knot invariants. The
Kashaev invariant 〈K 〉 and the q-series �K,0(q) of a knotted three-dimensional object
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have some common features, namely asymptotic expansions at roots of unity approached
radially (for �K,0(q)) and on the unit circle (for 〈K 〉), depicted in the following figure

The leading asymptotic expansions of 〈K 〉 and �K,0(q) are governed by elements of the
Bloch group as is the case of the Kashaev invariant and also the case of the radial limits of
Nahm sums [58]. In this section, we discuss a conjectural relation, discovered accidentally
by Zagier and the author in the spring of 2011, between the asymptotics of 〈41〉 and
�6j,0(q), where 6j is the q-6j symbol of the tetrahedron graph whose edges are colored
with 2N [7,32]

The evaluation of the above tetrahedron graph J+6j,N (q) ∈ 1 + qZ[q] is given explicitly by
[7,32]

J+6j,N (q) = 1
1 − q

N
∑

n=0
(−1)n

q
3
2n

2+ 1
2n

(q)3n
(q)4N+1−n

(q)3n(q)4N−n
.

The sequence (J+6j,N (q)) is stable, and the corresponding series F6j(x, q) is given by

F6j(x, q) = 1
(1 − q)(q)3∞

∞
∑

n=0
(−1)n

q
3
2n

2+ 1
2n

(q)3n
(xq−n)4∞

(x4q−n+1)∞
∈ Z((q))[[x]],

where as usual (x)∞ = ∏∞
k=0(1 − xqk ) and (q)n = ∏n

k=1(1 − qk ). In particular,

lim
N

J+6j,N (q) = �6j,0(q) = 1
(1 − q)(q)3∞

∞
∑

n=0
(−1)n

q
3
2n

2+ 1
2n

(q)3n
.

Let

φ6j,0(q) = (q)4∞
1 − q

�6j,0(q) = (q)∞
∞
∑

n=0
(−1)n

q
3
2n

2+ 1
2n

(q)3n
.

The first few terms of φ6j,0(q) are given by

φ6j,0(q) = 1 − q − 2q2 − 2q3 − 2q4 + q6 + 5q7 + 7q8 + 11q9 + 13q10

+ 16q11 + 14q12 + 14q13 + 8q14 − 12q16 − 26q17 − 46q18 − 66q19 − 90q20 − 114q21

− 135q22 − 155q23 − 169q24 − 174q25 − 165q26 − 147q27 − 105q28 − 48q29 + 37q30

+ 142q31 + 280q32 + 435q33 + 627q34 + 828q35 + 1060q36 + O(q)37.

The next conjecture which combines stability and modularity of two knotted objects
has been numerically checked around complex roots of unity of order at most 3.

Conjecture 7.1 As X −→ +∞ with bounded denominator, we have

φ6j,0(e−1/X ) = φ41 (X)/X1/2 + φ41 (−X̄)/(−X̄)1/2.
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