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Abstract. Our aim is to prove that two formal power series of importance to quan-
tum topology are Gevrey. These series are the Kashaev invariant of a knot (reformulated
by Huynh and the second author) and the Gromov norm of the LMO of an integral homo-
logy 3-sphere. It follows that the power series associated to a simple Lie algebra and a ho-
mology sphere is Gevrey. Contrary to the case of analysis, our formal power series are not
solutions to di¤erential equations with polynomial coe‰cients. The first author has conjec-
tured (and in some cases proved, in joint work with Costin) that our formal power series
have resurgent Borel transform, with geometrically interesting set of singularities.

1. Introduction

1.1. Gevrey series. A formal power series

f ðxÞ ¼
Py
n¼0

an

1

xn
A C½½1=x��ð0Þ

is called Gevrey-s if there exists a positive constant C, such that

janjeC nn!s

for all n > 0. Here, x is supposed to be large. In other words, we will order power series
so that 1=xn g 1=xm i¤ 0e n < m. Gevrey-0 series are well known: they are precisely the
convergent power series for x in a neighborhood of infinity. We will abbreviate Gevrey-1
by Gevrey. For example, the series

Py
n¼0

n!
1

xnþ1
ð1Þ

is Gevrey. Typically, Gevrey power series are divergent (for x in a neighborhood of infin-
ity), and developing a meaningful calculus of Gevrey power series is a well-studied subject;
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see [Ha], [Ra], [Ec] and also [Ba]. Gevrey power series appear naturally as formal power
series solutions to di¤erential equations–linear or not. For example, the unique formal
power series solution to Euler’s equation

f 0ðxÞ þ f ðxÞ ¼ 1

x
ð2Þ

is the series of Equation (1). One can construct actual solutions of the ODE (2) by suitably
resumming the factorially divergent series (1), resulting in analytic functions with an essen-
tial singularity at infinity; see [Ha], [Ra], [Ec]. The resummation process of a Gevrey formal
power series f ðxÞ A Q½½1=x�� as in Equation (0) consists of the following steps:

� Consider its Borel transform GðpÞ, defined by

GðpÞ ¼
Py
n¼1

an

pn�1

ðn� 1Þ! A C½½p��:

Since f ðxÞ is Gevrey, it follows that GðpÞ is analytic in a neighborhood of p ¼ 0.

� Endless analytically continue GðpÞ to a so-called resurgent function.

� Medianize if needed.

� Define the Laplace transform of GðpÞ by

ðLGÞðxÞ ¼
Ðy
0

e�xpGðpÞ dp:

In the example the power series of (1), its Borel transform GðpÞ is given by

GðpÞ ¼ 1

1� p

which is a resurgent (in fact, meromorphic) function with a single singularity at p ¼ 1.

In general, the output of a resummation is an analytic function (defined at least in a
right half-plane), constructed in a canonical way from the divergent formal power series
f ðxÞ. In analysis, the resummation process commutes with di¤erentiation, and as a result
one constructs actual solutions of di¤erential equations which are asymptotic to the formal
power series that one starts with.

A side corollary of resurgence (of importance to quantum topology) is the existence
of an asymptotic expansion of the coe‰cients of the power series f ðxÞ. For a thorough dis-
cussion and examples, see [CG1].

The above description highlights the necessity of the Gevrey property, as a starting
point of the resummation.
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1.2. Formal power series in quantum topology. As mentioned before, a usual source
of Gevrey series is a di¤erential equation or a fixed-point problem. Quantum topology of-
fers a di¤erent source of Gevrey series that do not seem to come from di¤erential equations
with polynomial coe‰cients, due to the di¤erent structure of singularities of their Borel
transforms. For example (and getting a little ahead of us), the Kashaev invariant of two
simplest knots (the trefoil ð31Þ, and the figure eight ð41Þ) are the power series:

F31
ðxÞ ¼

Py
n¼0

ðe1=xÞn;ð3Þ

F41
ðxÞ ¼

Py
n¼0

ðe1=xÞnðe�1=xÞn;ð4Þ

where

ðqÞn ¼ ð1� qÞ . . . ð1� qnÞ:

Notice that ðe1=xÞn A 1=xnQ½½1=x��, thus the power series F31
ðxÞ and F41

ðxÞ are well-defined
elements of the formal power series ring Q½½1=x��.

The power series F31
ðxÞ is the Kontsevich-Zagier power series that was studied exten-

sively by Zagier in [Za], and was identified with the Kashaev invariant of the trefoil by
Huynh and the second author in [HL]. In [CG1], Costin and the first author gave an ex-
plicit formula for the Borel transform of F31

ðxÞ:

Theorem 1 ([CG1]). If H31
ðpÞ denotes the Borel transform of e�1=ð24xÞF31

ðxÞ, then we

have

H31
ðpÞ ¼ 54

ffiffiffi
3
p

p
Py
n¼1

wðnÞn
ð�6pþ n2p2Þ5=2

;

where

wðnÞ ¼
1 if n1 1; 11 mod 12;

�1 if n1 5; 7 mod 12;

0 otherwise:

8<
:

Among other things, the above formula implies resurgence of the Borel transform of
the series F31

ðxÞ and locates explicitly the position and shape of its singularities.

In [CG2], Costin and the first author prove by an abstract argument that the Borel
transform of the power series F31

ðxÞ and F41
ðxÞ are resurgent functions.

The paper is concerned with two formal power series of importance to quantum
topology:

� the Kashaev invariant of a knot,

� the LMO invariant of a closed 3-manifold.
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Our aim is to prove that these series are Gevrey.

1.3. The Gromov norm of the LMO invariant is Gevrey. Let us give a first impres-
sion of the LMO invariant of Le-Murakami-Ohtsuki, [LMO]. It takes values in a (com-
pleted graded) vector space AðjÞ of trivalent graphs, modulo some linear AS and IHX
relations:

Z : 3-manifolds!AðjÞ:

The LMO invariant gives a meaningful definition to Chern-Simons perturbation
theory near a trivial flat connection. This is explained in detail in [BGRT], Part I. The tri-
valent graphs are the Feynman diagrams of a f3-theory (such as the Chern-Simons theory)
and their AS and IHX relations are diagrammatic versions of the antisymmetry and the
Jacobi identity of the Lie bracket of a metrized Lie algebra.

The vector space AðjÞ has a grading (or degree) defined by half the number of
vertices of the trivalent graphs. Let AnðjÞ denote the subspace of AðjÞ of degree n.

As we discussed above, the LMO invariant takes values in AðjÞ. In order to make
sense of its Gevrey property, we need to replace AðjÞ by Q½½1=x��. This is exactly what
weight systems do: they convert trivalent graphs into numerical constants; see [B-N1].
More precisely, given a simple Lie algebra g, one can define a weight system map (see
[B-N1]):

Wg : AðjÞ ! Q½½1=x��;

where each graph of degree n is mapped into a rational number times 1=xn. Combining the
LMO invariant of a closed 3-manifold M with the weight system of a simple Lie algebra g,
one gets a formal power series:

Fg;MðxÞ ¼WgðZMÞ A Q½½1=x��:ð5Þ

This power series is equal to the Ohtsuki series, defined by Ohtsuki [Oh1] for g ¼ sl2 and
then by the second author for all simple Lie algebras [Le2]. As nice as weight systems are,
the power series still depends on Lie algebras; moreover it is known that not all weight sys-
tems come from Lie algebras, [Vo].

Ideally, we would like to replace the graph-valued invariant ZM A AðjÞ by a single
series jZM jx A Q½½1=x�� so that:

(a) jZM jx A Q½½1=x�� is Gevrey.

(b) The Gevrey property of jZM j implies the Gevrey property of Fg;MðxÞ for all sim-
ple Lie algebras.

(c) jZM jx 3 1 i¤ ZM 3 1.

Can we accomplish this at once? A simple idea, the Gromov norm, allows us to
achieve this.
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Definition 1.1. Consider a vector space V with a subset b that spans V . For v A V ,
define b-norm by

jvjb ¼ inf
P

j

jcjj

where the infimum is taken over all presentations of the form v ¼
P

j

cjvj, vj A b.

For example, consider V ¼ Q½qG1�—the space of Laurent polynomials in q with ra-
tional coe‰cients, and b the set fqn j n A Zg. In this case the norm of a Laurent polynomial
f ðqÞ is known as its l1-norm, denoted by k f ðqÞk1.

Definition 1.2. (a) For an element v A AðjÞ, with b is the set of trivalent graphs, we
will denote jvjb simply by jvj. For a detailed discussion, see Section 2.

(b) For an element v A AðjÞ let GradnðvÞ be the part of degree n of v. The Gromov

norm of v is defined as

jvjx ¼
Py
n¼0

jGradnðvÞj
1

xn
A Q½½1=x��:

(c) Let us say that v A AðjÞ is Gevrey-s i¤ jvjx A Q½½1=x�� is Gevrey-s.

It is easy to see that jvjx ¼ 1 i¤ v ¼ 1. Here, 1 A AðjÞ denotes the element of degree 0
which is 1 times the empty trivalent graph.

Our next theorem explains a Gevrey property of the LMO invariant.

Theorem 2. For every integral homology sphere M, jZM jx A Q½½1=x�� is Gevrey.

Moreover, jZM jx ¼ 1 i¤ ZM ¼ 1.

Theorem 2 and an easy estimate implies the following:

Theorem 3. For every closed 3-manifold and every simple Lie algebra g, the Ohtsuki

series Fg;MðxÞ is Gevrey.

A key ingredient in the definition of the LMO invariant is the Kontsevich integral ZL

of a framed link L in S3. The Gromov norm of ZL can be defined in a similar fashion, see
Section 2. In fact, Theorem 2 motivates (and even requires) to consider the Gromov norm
jZLjx A Q½½1=x�� of the Kontsevich integral.

Theorem 4. For every framed link L in S3, jZLjx A Q½½1=x�� is Gevrey-0.

Recall that a power series f ðxÞ is Gevrey-0 i¤ f ðxÞ is a convergent power series for x

near y.

Theorems 2 and 4 are a special case of the following guiding principle, which we state
as Meta-Theorem:
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Meta-Theorem 1. Asymptotic power series that appear in constructive quantum field

theory (and in particular, in 3-dimensional Quantum Topology) are resurgent functions—and

in particular, Gevrey of some order (usually, order 1).

Let us comment that the factorial growth of power series in perturbative quantum
field theory is usually due to the factorial growth of the number of Feynman diagrams;
see for example Lemma 2.13. The contribution of each Feynman diagram is growing expo-
nentially only; see for example Lemma 2.12.

1.4. The Habiro ring. So far we discussed how perturbative quantum field theory
leads to Gevrey power series (5). Examples of such series (for knots, rather than 3-
manifolds) were given in Equations (3) and (4).

In the remaining of this section, we will concentrate with the case of g ¼ sl2. Our aim
is to give a non-perturbative explanation of the Gevrey property of the power series
Fsl2;MðxÞ, which we will abbreviate by FMðxÞ in this section. In fact, we will be dealing
with a formal power series invariant of knotted objects:

F : knotted objects! Q½½1=x��ð6Þ

where a knotted object (denoted in general by K) will be either a knot K in 3-space or an
integral homology sphere M. We already discussed the series FMðxÞ :¼ Fsl2;MðxÞ. In the
case of a knot K , the power series FKðxÞ will be defined below.

In the absence of a rule (such as a di¤erential equation) for the power series FKðxÞ, or
an explicit formula (in the style of (3) or (4)), how can one prove that our power series are
Gevrey? It turns out that the power series FKðxÞ have a certain ‘‘shape’’ which explains
their Gevrey (and conjectural resurgence) property. Such a shape was discovered by
Habiro, who considered the cyclotomic completion of the ring of Laurent polynomial (the
so-called Habiro ring)

L̂L ¼ lim
 n

Z½qG1�=
�
ðqÞn

�
:

As a set, it follows that the Habiro ring is

L̂L ¼
�

f ðqÞ ¼
Py
n¼0

fnðqÞðqÞn
��� fnðqÞ A Z½qG1�

�
:

Habiro showed a number of key properties of the ring L̂L; see [H2]. For our purposes, it will
be important that elements f ðqÞ of the Habiro ring have Taylor series expansions at q ¼ 1,
and that they are uniquely determined by their Taylor series. In other words, the map from
L̂L to Z½½q� 1��, sending f ðqÞ to its Taylor series at 1, is injective. Let

T : L̂L! Q½½1=x��; ðTf ÞðxÞ ¼ f ðe1=xÞ:

Then Habiro proves that T is injective.

In the case of an integral homology sphere M, Habiro proved that the series
FMðxÞ comes from a (unique) element FMðqÞ of the Habiro ring. In the case of a knot,
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Huynh and the second author observe in [HL] that the Kashaev invariant of a knot K

also comes from an element FKðqÞ of the Habiro ring. In that case, we define
FKðxÞ ¼ ðTFKÞðxÞ ¼ FKðe1=xÞ.

In other words, we have a map

F : knotted objects! L̂L

such that

F ¼ T �F:

Thus, instead of writing

FKðxÞ ¼
Py
n¼0

aK;n
1

xn

for aK;n A Q, we may write

FKðxÞ ¼
Py
n¼0

fK;nðe1=xÞðe1=xÞn

for suitable polynomials fK;nðqÞ A Z½qG1�. Keep in mind that the polynomials fK;nðqÞ are
not unique. For example, we have the following identity in the Habiro ring:

Py
n¼0

qnþ1ðqÞn ¼ 1:

Most importantly for us, without any additional information about the polynomials
fK;nðqÞ one cannot expect that the series FKðxÞ is Gevrey. The information can be formal-
ized by introducing two subrings of L̂L. We need an auxiliary definition.

Definition 1.3. (a) We say that a sequence
�

fnðqÞ
�

of Laurent polynomials is q-
holonomic if it satisfies a linear q-di¤erence equation of the form

adðqn; qÞ fnþdðqÞ þ � � � þ a0ðqn; qÞ fnðqÞ ¼ 0

for all n A N, where ajðu; vÞ A Z½uG1; vG1� for j ¼ 0; . . . ; d and ad 3 0.

(b) We say that a sequence
�

fnðqÞ
�

of Laurent polynomials is nicely bounded if there
exist the bounds on their span and coe‰cients: There are constants C;C 0 > 0 that depend
on
�

fnðqÞ
�

such that for n > 0,

spanq fnðqÞH ½�C 0n2;C 0n2�;ð7Þ

k fnðqÞk1 eC n:ð8Þ

Now, we may define the following subrings of the Habiro ring.
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Definition 1.4. (a) We define:

L̂Lhol ¼
�

f ðqÞ ¼
Py
n¼0

fnðqÞðqÞn
��� fnðqÞ A Z½qG1�;

�
fnðqÞ

�
is q-holonomic

�
:

(b) We define:

L̂Lb ¼
�

f ðqÞ ¼
Py
n¼0

fnðqÞðqÞn
��� fnðqÞ A Z½qG1�;

�
fnðqÞ

�
is nicely bounded

�
:

It is easy to see that L̂Lhol and L̂Lb are subrings of L̂L. Observe that L̂Lhol is a countable
ring, whereas L̂L and L̂Lb are not.

It is easy to show that if
�

fnðqÞ
�

is a q-holonomic sequence of Laurent polynomials,
then it satisfies (7). On the other hand, the authors do not know the answer to the following
question.

Question 1. Is it true that L̂Lhol is a subring of L̂Lb?

1.5. Gevrey series from the Habiro ring. Independently of the answer to the above
question, we have:

Theorem 5. For every knotted object K we have

FKðqÞ A L̂Lhol X L̂Lb:ð9Þ

Our next theorem relates the ring L̂Lb with Gevrey series.

Theorem 6. If f ðqÞ A L̂Lb, then f ðe1=xÞ A Q½½1=x�� is Gevrey.

Theorems 5 and 6 imply the promised result.

Theorem 7. For every knotted object K, the power series FKðxÞ is Gevrey.

If M is an integral homology sphere, then the above theorem gives an independent
proof that the series FMðxÞ is Gevrey.

1.6. What next? As was mentioned in Section 1.1, a Gevrey series is the input of a
resummation process. In [CG2] we conjecture that the series FKðxÞ of every knotted object
K can be resummed. In other words, we conjecture that the Borel transform GKðpÞ of
FKðxÞ is a resurgent function, with singularities given by geometric invariants of the
knotted object K. This conjecture is true for the two simplest knots 31 and 41 and for sev-
eral elements of L̂Lhol; see [CG1] and [CG2]. Based on this partial evidence, we pose the fol-
lowing questions:

Question 2. If f ðqÞ A L̂Lhol, is it true that its Taylor series ðTf ÞðxÞ A Q½½1=x�� has re-
surgent Borel transform?
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Question 3. Is it true that the Gromov norm jZM jx A Q½½1=x�� of the LMO invariant
of an integral homology sphere has resurgent Borel transform?

Question 4. Is it true that the Gromov norm jZLjx A Q½½1=x�� of the Kontsevich in-
tegral of a framed link in S3 is a resurgent function?

For a detailed discussion on analytic continuation of the power series of our paper,
see [G2].

1.7. Plan of the proof. Since Gevrey series are not familiar objects in quantum to-
pology, we have made an e¤ort to motivate their appearance and usefulness in quantum
topology. For the analyst, we would like to point out that our Gevrey series (and their ex-
pected resurgence properties) are not expected to be solutions of di¤erential equations (lin-
ear or not) with polynomial coe‰cients. Thus, our results are new from this perspective.

We have also separated into di¤erent sections results from quantum topology and
from asymptotics.

In Section 2 we discuss in detail the LMO invariant, starting from the necessary dis-
cussion of the Kontsevich integral of a framed link in 3-space. Basically, the LMO invari-
ant of a 3-manifold is obtained by the (suitably normalized) Kontsevich integral of a sur-
gery presentation link, after we glue all legs. We will use combinatorial counting arguments
to bound the number of unitrivalent graphs, as well as the original definition of the Kont-
sevich integral to estimate the coe‰cients of these graphs, before and after the gluing of the
legs. In addition in Section 2.9 we show that various analytic reparametrizations of the
LMO invariant (such as the Ohtsuki series) are Gevrey. This ends the perturbative quan-
tum field theory discussion of the paper.

In Section 4 we give a nonperturbative explanation of the Gevrey property of our
power series for the simple Lie algebra sl2. In that case, the Kontsevich integral is replaced
by the colored Jones function of a link. The latter is a multisequence of Laurent polyno-
mials. We discuss two key properties of the colored Jones function: q-holonomicity (intro-
duced in [GL1]) and integrality, introduced by Habiro in [H1], [H2]. Together with Hab-
iro’s definition of FMðqÞ (given in terms of a surgery presentation of M), q-holonomicity

implies that FMðqÞ A L̂Lhol, and integrality implies that FMðqÞ A L̂Lb. Combined together
with Theorem 6 (shown in the next section), they give a proof of Theorem 7.

Finally, in Section 3 we use elementary estimates to give a proof of Theorem 6.

1.8. Acknowledgement. An early version of this paper was presented by lectures of
the first author in Paris VII in the summer of 2005. The first author wishes to thank G.
Masbaum and P. Vogel for their hospitality.

2. The LMO invariant is Gevrey

In this section we will give a proof of Theorem 2.

Omitting technical details, the Aarhus version of the LMO invariant ([BGRT], Part II
and III), is defined as follows. Suppose an integral homology M is obtained from S3 by
surgery on a framed link L.
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� Consider a presentation of L as the closure of a framed string link T .

� Consider the suitably normalized Kontsevich integral �ZZT of the string link T . It
takes values in a completed Q-vector space of vertex-oriented unitrivalent graphs (Jacobi
diagrams) with legs colored by the components of L.

� Separating out the strut part from �ZZT and closing we get the formal Gaussian inte-
gral

Ð
�ZZT , which takes values in the algebra AðjÞ of Jacobi diagrams without legs.

� Finally, normalize
Ð
�ZZT in a minor way to get the LMO invariant ZM .

The precise definition will be recalled later. To prove Theorem 2 we will need to have
an estimate

(a) for the norm of the Kontsevich integral and

(b) for the norms of the maps appearing in the definition of the LMO invariant.

To get the desired estimates it will be simpler to exclude Jacobi diagrams with tree compo-
nents. This is guaranteed when L is a boundary link. And it su‰ces since every integral
homology sphere can be obtained by surgery along a unit-framed boundary link.

2.1. Jacobi diagrams. We quickly recall the basic definitions and properties here, re-
ferring the details to [B-N1], [BLT].

An open Jacobi diagram is a vertex-oriented uni-trivalent graph, i.e., a graph with
univalent and trivalent vertices together with a cyclic ordering of the edges incident to the
trivalent vertices. A univalent vertex is called a leg, and a trivalent vertex is also called an
internal vertex. The degree of an open Jacobi diagram is half the number of vertices (triva-
lent and univalent). The i-degree is the number of internal vertices, and the e-degree is the
number of legs.

Suppose X is a compact oriented 1-manifold (possibly with boundary) and Y a
finite set. A Jacobi diagram based on X WY is a graph D together with a decomposition
D ¼ X WG, where G is an open Jacobi diagram with some legs labeled by elements of Y ,
such that D is the result of gluing all the non-labeled legs of G to distinct interior points of
X . Note that repetition of labels is allowed. The degree of D, by definition, is the degree of
G.

The space A f ðX ;Y Þ is the vector space over Q spanned by Jacobi diagrams based on
X WY modulo the usual AS, IHX and STU relations (see [B-N1]). The completion of
A f ðX ;Y Þ with respect to degree is denoted by AðX ;Y Þ.

Of special interest are the following flavors of Jacobi diagrams:

(a) ðX ;YÞ ¼ ð

h

m
; jÞ, where X ¼

h

m
the union of m numbered, oriented circles.

Then, AðX ;YÞ ¼Að

h

m
Þ is the space where the Kontsevich integral of m-component

framed link lies.
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(b) ðX ;Y Þ ¼ ð"m; jÞ, where X ¼ "m, the union of m numbered, oriented intervals.
Then, AðX ;Y Þ ¼Að"mÞ is the space where the Kontsevich integral of m-component
framed braid (or a dotted Morse link) lies.

(c) ðX ;YÞ ¼ ðj; f1; 2; . . . ;mgÞ. Then, we denote AðX ;Y Þ by Að?mÞ

(d) ðX ;Y Þ ¼ ð

h

r
W "s; jÞ. Then AðX ;YÞ is the space where the Kontsevich integral

of a tangle T lies, where r is the number of interval components of T and s is the number of
circle components of T .

The spaces Að

h

m
Þ, Að"mÞ are related with an obvious projection map:

p : Að"mÞ !Að
h

m
Þð10Þ

which identifies the two end points of each interval in "m.

The spaces Að"mÞ and Að?mÞ are also related with a symmetrization map

w : Að?mÞ !Að"mÞð11Þ

which is a linear map defined on a diagram G by taking the average over all possible ways
of ordering the legs labeled by j, 1e j em, and attach them to the j-th oriented interval.
It is known that w is a vector space isomorphism [B-N1].

Remark 2.1. Note that Að"mÞ is an algebra, where the product of two Jacobi dia-
grams is obtained by placing (or stacking) the first on top of the second. Að?mÞ is also an
algebra, where the product of two diagrams is their disjoint union. However, the map w,
which is a vector space isomorphism, is not an algebra isomorphism. To get an algebra iso-
morphism one needs the wheeling map, see [BLT]. To avoid confusion we useK to denote
the product in Að"mÞ and t the product in Að?mÞ.

The diagonal map DðmÞ : Að?1Þ !Að?mÞ is a linear map defined on a Jacobi dia-
gram G A Að?1Þ by taking the sum of all possible Jacobi diagrams G 0 A Að?mÞ such that
if we switch all the labels in G 0 to 1, then from G 0 we get G. It is clear that if G has k legs,
then there are mk such G 0.

Suppose X ¼ Y ¼ j. The space AðjÞ is the space in which lie the values of the LMO
invariants of 3-manifolds [LMO]. With disjoint union as the product, AðjÞ becomes a
commutative algebra, and all other AðX ;Y Þ have a natural AðjÞ-module structure.

An open Jacobi diagram is tree-less if none of its connected components is a tree. Let
A tlð?mÞ be the subspace of Að?mÞ spanned by treeless Jacobi diagrams. The following is
obvious but useful later.

Lemma 2.2. If v A A tlð?mÞ has i-degree n, then the e-degree of v is less than or equal

to n.

2.2. Norm of Jacobi diagrams. The set of Jacobi diagrams based on X WY clearly
spans the space AðX ;Y Þ. The norm of v A AnðX ;YÞ with respect to this spanning subset is
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denoted by jvj. The Gromov norm of v A AðX ;YÞ with respect to the set of Jacobi diagrams
is defined by

jvjx ¼
Py
n¼0

jGradnðvÞj
1

xn
A Q½½1=x��:ð12Þ

We will say that v A AðX ;Y Þ is Gevrey-s i¤ jvjx A Q½½1=x�� is Gevrey-s.

It is clear that if the product vu can be defined, then jvuje jvj juj. Since the product of
two Gevrey-s power series is Gevrey-s, and the inverse of a Gevrey-s series with nonzero
constant term is Gevrey-s (see for example, [Ba], Exer. 6, 7, p. 5), it follows that:

Lemma 2.3. (a) If v; u A AðX ;YÞ are Gevrey-s and the product vu can be defined, then

vu is also Gevrey-s.

(b) If v A AðjÞ has non-zero constant term and is Gevrey-s, then 1=v A AðjÞ is

Gevrey-s.

For an element v A A tlð?mÞHAð?mÞ, in addition to the above norm, there is another
one defined using the spanning set of treeless Jacobi diagrams.

Lemma 2.4. The above two norms are equal.

Proof. The lemma follows at once from the fact that the subspace spanned by
Jacobi diagrams other than treeless ones intersects A tlð?mÞ only by the zero vector. r

Recall the symmetrization map w from (11). The next proposition estimates the norm
of w and w�1.

Proposition 2.5. (a) For every v A Að?mÞ, one has jwðvÞje jvj. In other words, the op-

erator w has norm less than or equal to 1.

(b) Suppose x A Að"mÞ has e-degree k f 1, then jw�1ðvÞje 2kjvj.

(c) For any v A Að?1Þ of e-degree k, one has jDðmÞðvÞjemkjvj.

Proof. (a) and (c) follow immediately from the definition. We give here the proof of
(b).

We use induction. Suppose the statement holds true when v has e-degree < k. It is
enough to prove for the case when v ¼ GW "m, where G is an open Jacobi diagram with
k legs. Using the STU relation, one can see that u :¼ wðGÞ � v has e-degree < k. One has

juj ¼ jwðGÞ � vje jwðGÞj þ jvje 2:

By induction, jw�1ðuÞj < 2ðk � 1Þ. Since v ¼ uþ wðGÞ, we have w�1ðvÞ ¼ w�1ðuÞ þ G, and
hence

jw�1ðvÞje jw�1ðuÞj þ jGje 2ðk � 1Þ þ 1 < 2k: r
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2.3. The unknot. Let w2n A Að?1Þ be the wheel with 2n legs. It is the open Jacobi
diagram consisting of a circle and 2n intervals attached to it. For example,

w4 ¼ :

Define

n ¼ exp

�Py
n¼1

b2no2n

�
A Að?1Þ and

ffiffiffi
n
p
¼ exp

�
1

2

Py
n¼1

b2no2n

�
A Að?1Þ;

where the modified Bernoulli numbers b2n are defined by the power series expansion

Py
n¼0

b2nx2n ¼ 1

2
log

sinh x=2

x=2
:ð13Þ

Notice that

1

2
log

sinh x=2

x=2
¼ 1

48
x2 � 1

5760
x4 þ 1

362880
x6 þ � � � :

The modified Bernoulli numbers are related to the zeta function zðnÞ :¼
Py
k¼1

k�n by

b2n ¼ ð�1Þn�1 zð2nÞ
2nð2pÞ2n

:ð14Þ

In [BLT] it was shown that w�1ðnÞ is the Kontsevich integral of the unknot.

Proposition 2.6. The series n and
ffiffiffi
n
p

are Gevrey-0.

Proof. Since jw2nje 1, it is enough to to show that the series exp

�P
n

jb2njx�2n

�
is

convergent for large enough x. Since jb2nj ¼ ð�1Þn�1
b2n, it follows that

exp

�P
n

jb2njx�2n

�
¼ exp

�
�
P

n

b2nð1=xÞ2n

�

¼ exp � 1

2
log

sin
�
1=ð2xÞ

�
1=ð2xÞ

 !

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=ð2xÞ
sin
�
1=ð2xÞ

�
s

:

The latter converges for jxj > 1=ð4pÞ. r

Question 5. Is it true that

jnjx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=ð2xÞ
sin
�
1=ð2xÞ

�
s

?
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Since Gradn n, the part of degree n of n, has e-degree 2n, Proposition 2.5(c) implies
that

Corollary 2.7. For every positive integer m the series DðmÞðnÞ A Að?mÞ is Gevrey-0.

2.4. The Kontsevich integral. The framed Kontsevich integral of a framed tangle T

takes value in AðTÞ, see for example [LM], [B-N2], [BLT]. This is a slight modification of
the original integral defined by Kontsevich [Ko]. The framed Kontsevich integral depends
on the positions of the boundary points. To get rid of this dependence one has to choose
standard positions for the boundary points. It turns out that the best positions are in a
limit, when all the boundary points go to one fixed point. In addition one has to regularize
the Kontsevich integral in the limit. In the limit one has to keep track of the order in which
the boundary points go to the fixed point. This leads to the notion of parenthesized

framed tangle. The latter were called q-tangle in [LM] and non-commutative tangles in
[B-N2]. For details, see [LM] and [B-N2].

In all framed tangles in this paper, we assume that a non-associative structure is fixed.
Theorem 4 is a special case of the following theorem.

Theorem 8. For every framed tangle T the Kontsevich integral ZT is Gevrey-0.

Proof. This follows from the facts that:

(a) The Kontsevich integral satisfies a locality property. In other words, a framed
tangle is the assembly (i.e., the product) of elementary blocks of three kinds: local extrema,
crossings, and change of parenthetization; for a computerized example, see [B-N2], Sec.
1.2. The Kontsevich integral is the corresponding product of the invariants of the elemen-
tary blocks.

(b) The invariants of each blocks are Gevrey-0.

(c) The product of Gevrey-0 series is Gevrey-0 by Lemma 2.3.

More precisely, the Kontsevich integral of the elementary blocks is given by:

; !
ffiffiffi
n
p

;

! exp
1

2

� �
;

! F;

where the strut is the only open Jacobi diagram homeomorphic to an interval, and F is
any associator. For a definition of an associator, see [Dr] and also [B-N2], [B-N3]. Propo-
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sition 2.6 implies that
ffiffiffi
n
p

is Gevrey-0. In [LM], J. Murakami and the second author gave
an explicit formula for the KZ-associator FKZ:

FKZ ¼ 1þ
Py
l¼1

P
a;b;p;q

ð�1Þjbjþjpjhðaþ p; bþ qÞ aþ p

bþ q

� �
BjqjðA;BÞða;bÞAjpjð15Þ

¼ 1þ 1

24
½A;B� � zð3Þ

ð2piÞ3
½A; ½A;B�� þ � � �

where

A ¼ ; B ¼ ;

½X ;Y � ¼ XY � XY ,

zða1; a2; . . . ; akÞ ¼
P

n1<n2<���<nk AN
n�a1

1 n�a2

2 . . . n�ak

kð16Þ

are the multiple zeta numbers and for a ¼ ða1; . . . ; alÞ and b ¼ ðb1; . . . ; blÞ we put

hða; bÞ ¼ zð1; 1; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
a1�1

; b1 þ 1; 1; 1; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
a2�1

; b2 þ 1; . . . ; 1; 1; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
al�1

; bl þ 1Þ;

jaj ¼ a1 þ a2 þ � � � þ al ;

a

b

� �
¼ a1

b1

� �
a2

b2

� �
� � � al

bl

� �
;

ðA;BÞða;bÞ ¼ Aa1Bb1 . . .Aal Bbl :

Equation (15) implies that the KZ associator FKZ is Gevrey-0. r

Remark 2.8. It is not true that every associator F A Að"3Þ is Gevrey-0. In fact, it is
not even true that the twist of a Gevrey-0 associator is Gevrey-0, since the twist may have
arbitrarily large coe‰cients.

Remark 2.9. There is an alternative proof of Theorem 8 that does not use associa-
tors. First decompose T into smaller tangles, where each smaller one is either elementary of
type 1, or a braid. By deformation we can assume that in any braid X , the horizontal dis-
tance between any 2 strands is bigger than 1. Then the very Kontsevich integral formula of
ZðX Þ, see [Ko] and [B-N1], Sec. 4.3 (and also [B-N1], Fig. 13), is regular and easily seen to
be Gevrey-0.

2.5. The LMO invariant. In this section we review the Aarhus version of the LMO
invariant from [BGRT], Part II. For an equality of the Aarhus integral with the LMO in-
variant, see [BGRT], Part III.

We define a bilinear map

h� ; �i : Að?mÞnA tlð?mÞ !AðjÞð17Þ
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as follows. Suppose G1 A Að?mÞ and G2 A A tlð?mÞ are Jacobi diagrams with respectively kj,
lj legs of label j, j ¼ 1; 2; . . . ;m. If there is a j such that kj 3 lj, let hG1;G2i ¼ 0, otherwise
let hG1;G2i be the sum of all possible ways to glue legs of label j in G1 to legs of the same

labels in G2. Note that there are
Qm
j¼1

ðkjÞ! terms in the sum. If v A Að?mÞ and u A Atlð?mÞ
have kj legs of label j, then

jhv; uije
�Qm

j¼1

k j!

�
jvj juj:ð18Þ

It is known that the integral homology sphere M can be obtained from S3 by surgery
along a boundary link L, where the framing e1; . . . ; em of the link components areG1. Sup-
pose furthermore L is the closure of a framed boundary string link T . It is known ([LM])
that

ZL ¼ p
�
½ZT �K



w�1
�
DðmÞðnÞ

���
:

Let us introduce some convenient notation. For Jacobi diagrams Gj A Að?1Þ,
j ¼ 1; 2; . . . ;m let G1 n � � �nGm A Að?mÞ be the union of all Gj, with the legs of Gj rela-
beled by j. Using linearity we can define v1 n � � �n vm A Að?mÞ for vj A Að?1Þ. With the
above notation, let us define

�ZZT :¼ ½ZT �K


w�1
�
DðmÞðnÞ

��
K½w�1ðnnmÞ�;

~ZZT :¼ wð �ZZTÞ t E;

E ¼ Eðe1; . . . ; emÞ :¼ exp

�
� 1

2

Pm
j¼1

�j

�
A Að?mÞ:

Notice that ~ZZT has no struts. Since T is a boundary framed link, it follows from [HM] (see
also [GL0]) that ~ZZT is treeless. One can define

Ð
T :¼ hE; ~ZZTi A AðjÞ:

Note that our
Ð

T is equal to
Ð FG �ZZL in [BGRT].

Suppose UG are the trivial string knots with framingG1. Suppose among e1; e2; . . . ; em

there are sþ positive numbers and s� negative numbers. Then the LMO invariant of M can
be calculated by

ZM ¼
Ð

T

ð
Ð

UþÞsþð
Ð

U�Þs�
:

2.6. Proof of Theorem 2. Using the multiplicative property of Gevrey-1 series, see
Lemma 2.3, to prove that ZM is Gevrey-1 it is enough to prove the following lemma.

Lemma 2.10. For every boundary string link T with framing e1; . . . ; em A fG1g, the

series
Ð

T is Gevrey-1.
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Proof. By definition, we have

E ¼
P

k1;...;kmf0

Ek1;...;km
;

where

Ek1;...;km
:¼
Qm
j¼1

ð�ej=2Þkj

kj!

 !
ð Þk1ð Þk2 . . . ð Þkm :ð19Þ

Let ~ZZ
ð2n;2kÞ
T be the part of ~ZZT of i-degree 2n and e-degree 2k. Since ~ZZT is treeless, by

Lemma 2.2, we have k e n, and hence the degree of ~ZZ
ð2n;2kÞ
T is less than or equal to 2n. By

Theorem 8, Corollary 2.7, Proposition 2.5(b), and the multiplicative property of Gevrey-0
series, ~ZZT is Gevrey-0. Thus, there is a constant C such that for every nf 1 we have

j ~ZZð2n;2kÞ
T j < C n:

Since E consists of struts only, hE; vi has degree equal half the i-degree of v. Hence

Gradn

Ð
T ¼

Pn
k¼0

hE; ~ZZ
ð2n;2kÞ
T i:ð20Þ

Recall that E ¼
P

Ek1;...;km
, and Ek1;...;km

has 2kj legs of label j. For fixed k, the inner

product hEk1;...;km
; ~ZZ
ð2n;2kÞ
T i is non-zero only when k1 þ � � � þ km ¼ k. Using (18) and (19) we

have

jhEk1;...;km
; ~ZZ
ð2n;2kÞ
T ij < C n

Qm
j¼1

ð2kjÞ!
kj!

< C n
Qm
j¼1

2kj kj! ðsince
ð2kÞ!

k!
e 2kk!Þ

< C n2nn! ðsince k1 þ � � � þ km ¼ k e nÞ:

It follows that the norm of

hE; ~ZZ
ð2n;2kÞ
T i ¼

P
k1þ���þkm¼k

hEk1;...;km
; ~ZZ
ð2n;2kÞ
T i

can be estimated by

jhE; ~ZZ
ð2n;2kÞ
T ij < C n2nn!

� P
k1þ���þkm¼k

1

�
¼ C n2nn!

k þm� 1

m

� �
eC n2nn!2nþm:

Using (20), we get

jGradn

Ð
T j < nC n2nn!2nþm < n!C 0n

for an appropriate constant C 0 ¼ C 0T . This concludes the proof of Theorem 2. r
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Remark 2.11. Without doubt, Theorem 2 holds for rational homology spheres as
well. This requires a technical modification of the proof that allows one to deal with Jacobi
diagrams with tree components. This is possible, but it requires another layer of technical-
ities that we will not present here.

2.7. Proof of Theorem 3. Theorem 3 follows immediately from Theorem 2 and the
following Lemma 2.12.

Lemma 2.12. For every simple Lie algebra g there is a constant C such that for any

Jacobi diagram G A AðjÞ of degree n > 0 we have

jWgðGÞjeC n:

Proof. G is obtained from a cloud of 2n Y graphs by a complete pairing of their
legs. By the definition of the weight system, it follows that WgðGÞ is obtained by the con-
traction of the indices of a tensor in

L
2n

ðgn3Þ. The result follows. r

2.8. On the dimension of the space of Feynman diagrams. Although our proof of
Theorem 2 is completed, in this section we will give some estimates for the space DnðjÞ
and AnðjÞ of Feynman diagrams, introduced in Section 1.3. Our crude estimates explain
the Gevrey nature of the Gromov norm of the LMO invariant.

Let DnðjÞ denote the (finite dimensional) vector space with basis the set of Jacobi dia-
grams with no legs of degree n, and AnðjÞ is its quotient by the AS and IHX relations.

Let us say that a Jacobi diagram is normalized if it is made out of a number of disjoint
circles together with a number of chords that each begin and end on the same circle. Let S
(resp. Sn) denote the set of normalized graphs (resp. of degree n).

Lemma 2.13. (a) dim DnðjÞe n!3C 0n for some C 0.

(b) Sn is a spanning set for AnðjÞ.

(c) dimAnðjÞe n!C n for some C.

Proof. If G is a trivalent graph of degree n, then we can cut it along each of its edges.
We obtain a cloud of 2n Y graphs. G can be reconstructed by matching the legs of the Y

graphs. There are 6n legs, and they can be matched in ð6nÞ!! ways. Using Stirling’s formula
[F], p. 50–53, ffiffiffiffiffiffi

2p
p

nnþ1=2e�nþ1=ð12nþ1Þ < n!
ffiffiffiffiffiffi
2p
p

nnþ1=2e�nþ1=ð12nÞ;ð21Þ

the result follows. This proves (a). The above bound may feel a little crude, since we did not
take into account automorphisms of the graphs. Nevertheless, it seems to be asymptotically
optimal; see also [Bo], p. 55. Cor. 2.17.

For parts (b), (c), we need to understand what we gain by the AS and IHX relation. If
G is a connected trivalent graph of degree n, choose a cycle in it. Then, using the IHX rela-
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tion repeatedly, write G as a linear combination of ‘‘chord diagrams’’ on that cycle. Since
there are at most ð2nÞ!! chord diagrams with n chords on a circle, the result follows for con-
nected graphs. Applying the above reasoning to each connected component of a trivalent
graph implies the result in general. r

2.9. An integral version of the Ohtsuki series. In quantum topology, there are two
commonly used Taylor series expansions of an element f ðqÞ of the Habiro ring; namely
setting q ¼ e1=x or setting q ¼ 1þ 1=x. So far we have worked with q ¼ e1=x. The other
substitution q ¼ 1þ 1=x leads to another map

T Z : L̂L! Z½½1=x��; ðT Z f ÞðxÞ ¼ f ð1þ 1=xÞ;

which is also injective. We may also consider a map

F Z : knotted objects! Z½½1=x��; F Z ¼ T Z �F:

The interest in the latter formal power series lies in the fact that it has integer coe‰-
cients. In fact, the original definition of the Ohtsuki series is in this form, see [Oh1].

From the point of view of analysis, the series FKðxÞ and F Z
KðxÞ are simple reparamet-

rizations of one another, by an analytic change of variables. Our next lemma shows that
the notion of a Gevrey series is independent of an analytic change of variables.

Lemma 2.14. Consider a formal power series f ðxÞ A C½½1=x�� and let

gðxÞ ¼ f ðe1=x � 1Þ A C½½x��. Then f ðxÞ is Gevrey i¤ gðxÞ is Gevrey.

Proof. Let

f ðxÞ ¼
Py
k¼0

ak

1

xk
;ð22Þ

f ðe1=x � 1Þ ¼
Py
k¼0

bk

1

xk
:ð23Þ

Then the sequences ðanÞ and ðbnÞ are related by an upper-triangular matrix with 1 on the
diagonal. The asymptotic behavior of the entries of this matrix makes the lemma possible.
For a thorough discussion on that subject, see also Hardy’s book [Ha]. The entries of the
matrix are given by Stirling numbers. The Stirling numbers sn;k of the first kind satisfy

1

xk
¼ k!

Py
n¼k

sn;k

n!
ð1� e�1=xÞn:

Substituting for 1=xk from the above identity into (23) and rearranging, it follows that

an ¼
Pn
k¼0

bkð�1Þn�k ðn� kÞ!
n!

sn;n�k:

Suppose now that ðbnÞ is Gevrey:

187Garoufalidis and Lê, Gevrey series in quantum topology

Brought to you by | MPI fuer Mathematik
Authenticated

Download Date | 3/17/20 11:04 PM



jbnje n!C 0C n:

On the other hand, we have

sn;n�k ¼
n2k

2kk!
1þ c1ðkÞ

n
þ c2ðkÞ

n2
þ � � �

� �
;

where c1ðkÞ ¼ �kð2k þ 1Þ=3; . . . which are polynomials in k.

Since sn;n�k f 0 for all n and k with k e n, and

ðn� kÞ!
n!

� �2

n2k ¼ nk

ðn� k þ 1Þ . . . n

� �2

e 1;

it follows that

janj ¼
����Pn
k¼0

bn�kð�1Þk ðn� kÞ!
n!

sn;n�k

����
e n!C 0C n

Pn
k¼0

C�k ðn� kÞ!
n!

� �2
n2k

2kk!
1þ c1ðkÞ

n
þ c2ðkÞ

n2
þ � � �

� �

¼ n!C 0C n
Py
k¼0

ð2CÞ�k 1

k!
1þ c1ðkÞ

n
þ c2ðkÞ

n2
þ � � �

� �

¼ n!C 0C ne�ð2CÞ�1

1þ d1ðkÞ
n
þ d2ðkÞ

n2
þ � � �

� �
;

where d1ðkÞ; d2ðkÞ; . . . are polynomials in k. This concludes one half of the theorem. The
other half is similar. r

Remark 2.15. In [CG3] a more general statement is shown. Namely, suppose that
f ðxÞ A C½½1=x�� is a power series and tðxÞ is analytic in a neighborhood of infinity and small
(i.e., tðyÞ ¼ 0). Consider the power series f tðxÞ ¼ f

�
1=xþ tðxÞ

�
. Then, f ðxÞ is Gevrey i¤

f tðxÞ is Gevrey.

Theorem 6 and Lemma 2.14 imply that:

Corollary 2.16. For every knotted object K, the integral Ohtsuki series

F Z
KðxÞ A Z½½1=x�� is Gevrey.

3. Proof of Theorem 6

In this section we give a proof of Theorem 6. To simplify notation, let h f ðxÞik denote
the coe‰cient of 1=xk in a formal power series f ðxÞ.

Lemma 3.1. (a) If two sequences
�

fnðqÞ
�

and
�
gnðqÞ

�
are nicely bounded, so is their

product.
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(b) If a sequence
�

fnðqÞ
�

is nicely bounded then there exist constants C, C 0 such that

for every k and every n we have

jh fkðe1=xÞinje
1

n!
k2neC 0nþCk:

In particular, there exist constants C 00 such that for every n and every k with 0e k e n we

have

jh fkðe1=xÞinje n!eC 00n:

(c) The sequence
�
ðqÞn

�
is nicely bounded.

Proof. Part (a) is easy.

For part (b), we may write

fkðqÞ ¼
P

j

ak; jq
j;

j A ½C 0k2 þ c 0;C 00k2 þ c 00�, and jak; jje eCk for all such j. It follows that

jh fkðe1=xÞinj ¼
����P

j

ak; jhe j=xin

����
¼ 1

n!

����P
j

ak; j j
n

����
e

1

n!
eCk
P

j

j n

¼ 1

n!
eCkk2neC 0n:

If in addition k e n, then Stirling’s formula (21) and the above implies that

jh fkðe1=xÞinje
1

n!
eCkk2neC 0n

e
1

n!
eCnn2neC 0n

e n!eC 00n:

For part (c), it is easy to see that

spanqðqÞn ¼ ½0; nðnþ 1Þ=2�;

kðqÞnk1 e 2n: r

Proof of Theorem 6. Let us fix an element
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f ðqÞ ¼
Py
n¼0

fnðqÞðqÞn

of L̂Lb where
�

fnðqÞ
�

is nicely bounded. Since hðe1=xÞkin ¼ 0 for k > n, it follows that

h f ðe1=xÞin ¼
Pn
k¼0

h fkðe1=xÞðe1=xÞkin:ð24Þ

Lemma 3.1 (a) and (c) implies that the sequence
�

fnðqÞðqÞn
�

is nicely bounded, and there-
fore by (b) there exists a constant so that for every n and every k with 0e k e n we have

jh fkðe1=xÞðe1=x; e1=xÞkinje n!C 00n:

Using Equation (24), the result follows. r

4. Proof of Theorem 5

In this section we give a proof of Theorem 5 using two properties of the colored Jones
polynomial: q-holonomicity (see [GL1]), and integrality, due to Habiro [H1].

We call a virtual sl2-module any Qðq1=4Þ-linear combination of finite-dimensional
sl2-modules. Suppose L is a framed oriented link with m numbered components, and
U1; . . . ;Um are virtual sl2-modules, then there is defined the colored Jones polynomial
(rather rational function)

JLðU1; . . . ;UrÞ A QðqG=4Þ

normalized by the quantum dimension for the unknot; see [Tu]. Habiro introduced two im-
portant sequences of virtual sl2, denoted by P 0n and P 00n , see [H1].

4.1. Proof of Theorem 5 for knots. Let us fix a knot K with framing 0 in 3-space.
[HL] give the following formula for the Kashaev invariant FKðqÞ:

FKðqÞ ¼
Py
n¼0

JKðP 00n ÞðqÞðqÞnðq�1Þn A L̂L;ð25Þ

where, according to Habiro we have JKðP 00n ÞðqÞ A Z½qG1� for all n; see [H2].

In [GL1] we proved that the sequence
�
JKðP 00n Þ

�
is q-holonomic and in [GL2]

we proved that it is also nicely bounded. It follows that the sequence
�
JKðP 00n Þðq�1Þn

�
is

q-holonomic and nicely bounded (by Lemma 3.1). Thus, FKðqÞ lies in L̂Lhol X L̂Lb. This con-
cludes the proof of Theorem 5 for knots.

Although we will not need it here, let us mention that [HL] prove that when
q ¼ e2pi=N , then
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FKðe2pi=NÞ ¼ hKiN ;

where hKiN is the well-known Kashaev invariant of a knot K ; see [Ka] and [MM].

4.2. Proof of Theorem 5 for integral homology spheres.

Proof of Theorem 5. The proof will use integrality and holonomicity properties of
the colored Jones function of a link in 3-space.

Consider an integral homology sphere M. We can find surgery presentation
M ¼ S3

L; f where L is an algebraically split link L in S3 of r ordered components, with fram-
ing f ¼ ð f1; . . . ; frÞ.

Habiro considers the following series:

FMðqÞ ¼
Py

k1;...;kr¼0

JLðP 0k1
; . . . ;P 0kr

Þ
Qr
i¼1

ð�fiqÞ�fikiðk3þ3Þ=4;ð26Þ

where JL is the colored Jones function of the 0-framed link L. Habiro proves that:

� For all k1; . . . ; kr A N, we have

JLðP 0k1
; . . . ;P 0kr

Þ A f2mþ 1g!
fmg!f1g Z½qG1=2�;ð27Þ

where m ¼ maxfk1; . . . ; krg, and

fag! :¼
Qa
j¼1

ðqa=2 � q�a=2Þ ¼ ð�1Þaq�aðaþ1Þ=2ðqÞa:ð28Þ

Moreover,

JLðP 0k1
; . . . ;P 0kr

Þ
Qr
i¼1

ð�fiqÞ�fikiðk3þ3Þ=4 A Z½qG1�ð29Þ

for all k1; . . . ; kr A N. Thus, FMðqÞ A L̂L is a convergent series.

� The right-hand side of Equation (26) is independent of the surgery presentation
M ¼ S3

L; f , and depends on M alone.

To simplify notation, let us define:

aðk1; . . . ; krÞ ¼
1

ðqÞm
JLðP 0k1

; . . . ;P 0kr
Þ
Qr
i¼1

ð�fiqÞ�fikiðk3þ3Þ=4;ð30Þ

bðmÞ ¼
P

k1;...;kr;maxfk1;...;krg¼m

aðk1; . . . ; krÞ:ð31Þ
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Since
f2mþ 1g!
fmg!f1g is divisible by fmg!, it follows that for all k1; . . . ; kr, we have

aðk1; . . . ; krÞ A Z½qG1�, and consequently, for all m we have bðmÞ A Z½qG1�. Moreover,

FMðqÞ ¼
Py

m¼0

bðmÞðqÞm:ð32Þ

Theorem 5 for integral homology shperes follows from

Theorem 9. For every unit-framed algebraically split link ðL; f Þ, the sequence
�
aðmÞ

�
is q-holonomic and nicely bounded.

Proof. It su‰ces to show that
�
bðmÞ

�
is q-holonomic, and nicely bounded.

Let us first recall that the class of q-holonomic functions in several variables is closed
under the operations of

(P1) sum,

(P2) product,

(P3) specialization,

(P4) definite summation,

(P5) contains the proper q-hypergeometric functions.

For a proof, see [Ze].

Without loss of generality, let us assume that r ¼ 2 (the general case follows from
inclusion-exclusion). Then, we have

bðmÞ ¼
Pm

k1¼0

aðk1;mÞ þ
Pm

k2¼0

aðm; k2Þ � aðm;mÞ:ð33Þ

Changing basis from fP 0kg to fVlg it follows that

fk1g!fk2g!JLðP 0k1
;P 0k2
Þ ¼

Pk1

l1¼0

Pk2

l2¼0

Pl1; l2
k1;k2

JLðVl1 ;Vl2Þ;

where P
l1; l2
k1;k2

A Z½qG=2� are explicit Laurent polynomials which are proper q-hypergeometric;

see [GL2], Sec. 4. This, together with Equation (30) implies that

fmg!fk1g!fk2g!aðk1; k2Þ ¼
Pk1

l1¼0

Pk2

l2¼0

Rl1; l2
k1;k2

JLðVl1 ;Vl2Þ;ð34Þ
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where R
l1; l2
k1;k2
ðqÞ A Z½qG=2� are proper q-hypergeometric Laurent polynomials, and

m ¼ maxfk1; k2g.

Now JLðVl1 ;Vl2Þ can be written as a multisum:

JLðVl1 ;Vl2Þ ¼
Pl1
j1¼0

Pl2
j2¼0

Fl1; l2; j1; j2 ;ð35Þ

where Fl1; l2; j1; j2 A Z½qG=2� is a proper q-hypergeometric summand; see [GL1], Sec. 3.

Equations (34), (35) and Properties (P4), (P5) imply that aðk1; k2Þ is q-holonomic

in both variables ðk1; k2Þ. Together with Property (P4), it follows that
Pr

k1¼0

aðk1; sÞ is q-

holonomic in both variables ðr; sÞ, and (by Property (P3))
Pm

k1¼0

aðk1;mÞ is q-holonomic in m.

Alternatively, the WZ algorithm of [WZ] and Equations (34) and (35) imply directly (and

constructively) that
Pm

k1¼0

aðk1;mÞ is q-holonomic in m.

Likewise,
Pm

k2¼0

aðm; k2Þ is q-holonomic in m, and aðm;mÞ is q-holonomic in m. Prop-

erty (P1) and Equation (33) imply that bðmÞ is q-holonomic in m.

Alternatively, we could have used the identity

bðmÞ ¼
P

0ek1; ...;krem

aðk1; . . . ; krÞ �
P

0ek1;...;krem�1

aðk1; . . . ; krÞð36Þ

and the q-holonomicity of aðk1; . . . ; krÞ (as follows by the WZ algorithm) to deduce the q-
holonomicity of bðmÞ.

It remains to show that bðmÞ is nicely bounded. Let us say that a multi-indexed se-
quence

�
f ðr1; r2; . . .Þ

�
of Laurent polynomials is nicely bounded if it satisfies (7) and (8) for

all r1; r2; . . . with r1; r2; . . . e n.

It is easy to see that the class of nicely bounded functions satisfies properties (P1)–
(P4) and contains the proper q-hypergeometric terms that are Laurent polynomials.

Repeating our previous steps, Equations (35) and (34) imply that
fmg!fk1g!fk2g!aðk1; k2Þ is nicely bounded as a function of both variables ðk1; k2Þ. Lemma
4.1 below (communicated to us by D. Boyd), implies that aðk1; k2Þ is nicely bounded as a
function of both variables ðk1; k2Þ.

Our previous steps (or Equation (36)) now imply that bðmÞ is nicely bounded. r

This concludes the proof of Theorem 5 for integer homology spheres. r

Lemma 4.1 (Boyd). If
�

fnðqÞ
�

is a sequence of Laurent polynomials such that�
ðqÞn fnðqÞ

�
is nicely bounded, then

�
fnðqÞ

�
is nicely bounded, too.
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For a proof, see [GL2], Sec. 7.

Remark 4.2. In the special case where M is obtained by G1 surgery on a knot in
3-space, Lawerence-Ron have shown independently that the formal power series FMðxÞ is
Gevrey; see [LR].
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[Le1] T. T. Q. Lê, Integrality and symmetry of quantum link invariants, Duke Math. J. 102 (2000), 273–306.
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