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Abstract. Using the recently developed theory of ®nite type invariants of
integral homology 3-spheres we study the structure of the Torelli group of a
closed surface. Explicitly, we construct (a) natural cocycles of the Torelli
group (with coe�cients in a space of trivalent graphs) and cohomology
classes of the abelianized Torelli group; (b) group homomorphisms that
detect (rationally) the nontriviality of the lower central series of the Torelli
group. Our results are motivated by the appearance of trivalent graphs in
topology and in representation theory and the dual role played by the
Casson invariant in the theory of ®nite type invariants of integral homology
3-spheres and in Morita's study [Mo2, Mo3] of the structure of the Torelli
group. Our results generalize those of S. Morita [Mo2, Mo3] and comple-
ment the recent calculation, due to R. Hain [Ha2], of the I-adic completion
of the rational group ring of the Torelli group. We also give analogous
results for two other subgroups of the mapping class group.
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1. Introduction

1.1. Background. The notion of ®nite type invariants for oriented integral
homology 3-spheres was introduced not long ago by Ohtsuki [Oh]. More
recently Le, Murakami and Ohtsuki [L, LMO] used the Kontsevich integral
to give a complete classi®cation of these invariants in terms of a certain
space of trivalent graphs.

In another very recent paper [GL3] the present authors gave several
di�erent formulations of the notion of ®nite type invariants. In particular we
showed that one could use the lower central series of the Torelli group (or
certain other subgroups of the mapping class group), in conjunction with
Heegaard decompositions, to de®ne ®nite type invariants in terms of higher
genus surgery formulas.

It is the purpose of the present paper to exploit this connection, using the
classi®cation theorem of [LMO], to investigate the structure of the Torelli
group. Explicitly, we:

� Construct canonical cocycles of the Torelli group (with coe�cients in a
space of trivalent graphs), and cohomology classes in the abelianized Torelli
group.
� Show, by very explicit and geometric construction, that the (rational)
lower central series quotients of the Torelli group (and certain other sub-
groups of the mapping class group) map onto a space of trivalent graphs.

In a recent paper [Ha2] Hain has given a presentation of (the Lie algebra
associated to) the lower central series of the Torelli group using mixed
Hodge structures. We do not yet understand the relationship between our
results and his. However, it would be interesting to compare them.

Finally we point out that the relation between trivalent graphs (in the
theory of ®nite type invariants) and the Torelli group has been foreshad-
owed by the work of Morita in:

� The appearance of trivalent graphs in invariant theory applied to the
Torelli group, see [Mo6, KM].
� The study of the Casson invariant in terms of the Torelli group and other
subgroups of the mapping class group, see [Mo2, Mo3].

1.2. Trivalent graphs in topology and in representation theory. We begin by
recalling the appearance of trivalent graphs in topology (in the theory of
®nite type invariant s of integral homology 3-spheres) and in representation
theory (related to invariant tensors of the abelianization of the Torelli
group). Finite type invariants of integral homology 3-spheres were intro-
duced by Ohtsuki [Oh], in terms of a decreasing ®ltration Fas

�M on the
vector space M (over Q) of isomorphism classes of oriented, connected
integral homology 3-spheres. A linear map v : M! Q is called a type m
invariant of integral homology 3-spheres if v�Fas

m�1M� � 0. The associated
graded quotients Gas

�M of the ®ltration Fas
�M has recently been related to
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trivalent graphs in the following way. LetA�/� denote the vector space over
Q on the set of trivalent, vertex-oriented graphs, modulo the AS and the IHX
relations; see Fig. 1 and [GO1, LMO].A�/� has a natural grading G�A�/�;
the degree of a trivalent graph is half the number of its vertices. Thus a
degree m trivalent graph has 3m edges and 2m vertices.

One can de®ne a map (for details see Sect. 2.2):

GmA�/� ! Gas
3mM�1�

which was shown in [GO1] to be well de®ned and onto. According to the
fundamental theorem of ®nite type invariants of integral homology 3-spheres
[LMO, L] the map (1) is one-to-one and thus a vector space isomorphism.
We wish to think of the above isomorphism as a relation between ®nite type
invariants of integral homology 3-spheres and trivalent graphs (decorated by
a choice of a vertex orientation, and considered modulo the AS and IHX
relations).

As it turns out, one can reformulate [GL3] the notion of ®nite type
invariants of integral homology 3-spheres in such a way that makes explicit
the dependence of the values of ®nite type invariants on manifolds obtained
by cutting, twisting and gluing of higher genus surfaces. This reformulation,
given in [GL3] in terms of six ®ltrations onM, will be used crucially on the
present paper. Three ®ltrations onM were de®ned in [GL3] using surgery on
special classes of links, and three more ®ltrations by using cutting, twisting
and gluing along embedded surfaces. Even though the results of the present
paper can be stated using only a ®ltration denoted by FT

�M in [GL3], the
proofs of our results will require the use of a few more ®ltrations from
[GL3]. Following the notation as in [GL3], we brie¯y recall the de®nition of
FT
�M. Let M be an integral homology 3-sphere and f : R ,! M an em-

bedded, oriented, connected, closed genus g surface in M . Such a surface will
be called admissible in M . Note that an admissible surface has no boundary.
Since M is an integral homology 3-sphere it follows that an admissible
surface is separating, i.e., M ÿ f �R� is the union of two connected compo-
nents Mo

� and Mo
ÿ, where the positive normal vector to f �R� points into Mo

�.
Let M� �for � � �� denote their closures; they are compact 3-manifolds with
boundary f �R�. There is a natural decomposition H1�f �R�� � L� � Lÿ,
where L� � Kerf�i��� : H1�f �R�� ! H1�M��g and i� : f �R� ! M� is the
inclusion. Here the homology is taken with integer coe�cients. We refer to
�L�; Lÿ� as the Lagrangian pair of the symplectic module H � H1�f �R��
associated to the admissible surface f : R ,! M . If h 2 C�f �R�� (the map-
ping class group of f �R�, i.e., the group of isotopy classes of orientation

Fig. 1. The IHX and the AS relations on A�/�
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preserving di�eomorphisms of f �R�) let Mh denote M� qMÿ with the
identi®cations: i��x� $ iÿh�x� for every x 2 f �R�. The notation Mh does not
explicitly indicate the dependence of Mh on the admissible surface which we
keep ®xed; we hope that this will not confuse the reader. Note that if
h 2T�f �R��, the Torelli group of f �R� (i.e., all elements of the mapping
class group that act trivially on the homology of the surface) and M is an
integral homology 3-sphere then the resulting manifold Mh will also be
an integral homology 3-sphere. For a closed surface R of genus g, let
Tg �T�R�. The assignment h! Mfhfÿ1 de®nes a map

UT
f : QTg !M�2�

where QTg is the rational group ring of Tg. Let ITg denote the aug-
mentation ideal (i.e., the two sided ideal of QTg generated by elements of
the form 1ÿ f , for f 2Tg). We de®ne FT

mM to be the union in M of the
image UT

f ��ITg�m� for all admissible surfaces f : R ,! M in all integral
homology 3-spheres M . Alternatively we can choose a single Heegaard
embedding (i.e., M� and Mÿ are handlebodies) into S3 for each genus g and
let FT

mM be the union in M of the images UT
f ��ITg�m� for these embed-

dings. It is shown in [GL3] that this gives the same ®ltration, and that
Fas

3mM �FT
2mM �FT

2mÿ1M.
Let us now recall one more ingredient, the Johnson homomorphism

[Jo1], related to the abelianization of the Torelli group. For a more detailed
description, as well as a summary of properties of the Johnson homo-
morphism, see Sect. 2.3. If R is a closed surface, D. Johnson de®ned a
homomorphism s : Tg ! U � K3H=H where H � H1�R;Z�. There are
several versions of Johnson's homomorphism, depending on the surface
being closed, or punctured, or with boundary components. The following
are three important properties of Johnson's homomorphism (and its various
versions):

� It coincides (modulo torsion) with the abelianization of the Torelli group.
� It is equivariant with respect to the action of the mapping class group of
the surface.
� It is stable with respect to an inclusion of a surface with one boundary
component into another.

These properties have been used extensively by Hain [Ha2] and Morita
[Mo2], [Mo3] to study questions relating to the lower central series of the
Torelli group and the mapping class group. From its very de®nition, the
image of s is a quotient U of the third exterior power of H . Furthermore, it
turns out that the invariant space of 
2mU under the symplectic or the
general linear group can be described in terms of suitably ``decorated'' tri-
valent graphs, modulo an AS relation. For a precise statement, see Sect. 2.4
and especially De®nition 2.17.

It is a natural question to ask whether the above two appearances of
trivalent graphs in the theory of ®nite type invariants of integral homology

544 S. Garoufalidis, J. Levine



3-spheres and in the abelianization of the Torelli group are related to each
other. For a positive answer (in terms of a stably onto map WL�;m) see
Theorem 3.

1.3. The role of the Casson invariant. As was stated above, a main motivation
for the present work was the role of the Casson invariant in the theory of
®nite type invariants and in the work of S. Morita [Mo3]. Explicitly, the
Casson invariant k [AM] has the following properties:

� k is a type 3 invariant of integral homology 3-spheres, [Oh].
� Given an admissible genus g surface f : R ,! M , Morita [Mo3] used the
Casson invariant to construct a map:

2df : U 
 U ! Q�3�

where the notation is as in [Mo3].
� Furthermore, given an admissible surface Morita [Mo2] used the Casson
invariant to construct a group homomorphism:

Kg ! Q�4�

where Kg is the kernel of the Johnson homomorphism Tg ! U .

It is a natural question to ask whether one can use ®nite type invariants of
integral homology 3-spheres generalize the two maps constructed above.
For a positive answer, see Theorems 1, 2, 5 and especially Corollary 1.1 and
Theorem 4.

1.4. Statement of the results. In this section we state the main results of the
paper. For a group G, and a positive integer n, let us inductively de®ne the
lower central series subgroups of G by Gn�1 � �G;Gn�, with G1 � G. Let us
also de®ne G�n� to consist of all elements of G for which a nonzero power
lies in Gn. We call G�n� the nth term in the rational lower central series of G.
With the notation as in Sect. 1.1, we have the following:

Theorem 1. Let f : R ,! M be an admissible surface. For every non-negative
integer m, there is a map

Cf ;m : 
2mU ! GmA�/��5�

with the following properties:

� The map Cf ;m is multilinear and Sp�H� equivariant, i.e., satis®es the
following property (for ai 2 U ; h 2 Cg):

Cf ;m�h�a1; . . . h�a2m� � Chf ;m�a1; . . . a2m��6�
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� Cf ;m is a 2m cocycle of the abelian group U with coe�cients in the trivial U
module GmA�/�. In particular, it represents a cohomology class �Cf ;m� 2 H 2m

�U ;GmA�/��
� The pullback of the cocycle Cf ;m to Tg and, in fact, to Tg=Tg�3�, under
the projection maps Tg !Tg=Tg�3� ! U , is a coboundary.

Addendum 1. With the above notation, given an admissible surface
f : R ,! M , the following diagram commutes:

T2m
g ���! FT

2mM

s
2m
??y ??y


2mU ���!Ct ;m
GmA�/�

where the right vertical map is the composition of maps (de®ned in Sect. 1.1):

FT
2mM �Fas

3mM! Gas
3mM ' GmA�/�

and the top horizontal map is the map: �h1; . . . ; h2m� ! UT
f ��1ÿ h1� . . .

�1ÿ h2m��.

Corollary 1.1. If v is a type 3m invariant of integral homology 3-spheres, then
its associated weight system is an element Wv 2 GmA

��/�, [GO1]. Given an
admissible surface f : R ,! M , we thus get a 2m cocycle Wv � Cf ;m of U with
rational coe�cients.

Theorem 2. Let f : R ,! M be an admissible Heegaard surface. Then, for
every non-negative integer m,

� The cocycle Cf ;m depends only on the associated Lagrangian pair �L�; Lÿ�
of the admissible surface, and will thus be denoted by CL�;m.
� Using the natural onto maps U ! K3�H=L�� ' K3L�, CL�;m : 
2mU !
GmA�/� factors though a GL�L�Q�-invariant map:

K3L�Q 
 �
2mÿ2UQ� 
 K3LÿQ ! GmA�/��7�

� If we change the orientation of the integral homology 3-sphere M , this
results in a permutation of the Lagrangian pair L� and the associated cocycle
satis®es:

CL�;m�g1; g2; . . . ; g2m� � �ÿ1�mCL�;m�g2m; g2mÿ1; . . . ; g1��8�

Passing to cohomology classes though, we have

�CL�;m� � �CL�;m��9�

546 S. Garoufalidis, J. Levine



Addendum 2. In the case of an admissible Heegaard surface of genus g, the
map CL�;m is stable with respect to an inclusion of one ( punctured ) Heegaard
surface into another. Furthermore, the map CL�;m is stably (i.e., for g� m)
onto. In particular, the cocycles CL�;m of U are stably nontrivial.

See Sect. 3.1 for a more precise assertion of Addendum 2.
Before we state the next theorem we need to de®ne GmA

rp;nl;cl, a vector
space over Q on the set of ``decorated'' trivalent graphs with 3m edges,
modulo a colored antisymmetry relation (see Fig. 7). These decorations
involve a choice of ordering for the vertices, as well as a choice of vertex
orientation and a choice of 2-coloring for the edges. For a precise de®nition,
as well as motivation coming from representation theory of classical Lie
groups, see De®nition 2.17 and Sect. 2.4.

Theorem 3. Let f : R ,! M be an admissible Heegaard surface. Then, for
every non-negative integer m there is an onto map: GmA

rp;nl;cl ! 
2mU , which
combined with the map CL�;m : 
2mU ! GmA�/�, induce a (stably onto) map:

WL�;m : GmA
rp;nl;cl ! GmA�/��10�

The above map compares trivalent graphs related to the abelianization
of the Torelli group (on the left) to trivalent graphs related to ®nite type
invariants of integral homology 3-spheres (on the right), and ful®lls one of
the goals of the present paper.

In the case of m � 1, we have an explicit description of the cocycle CL�;1
of theorem 2 and corollary 1.1 and of the map WL�;1 of Theorem 3. We need
to recall ®rst that the Casson invariant k [AM] is a type 3 invariant, [Oh]. Let
Wk 2 G1A�/�� denote its associated manifold weight system as in [GO1].
Let Hw 2 G1A�/� denote the trivalent graph H with a ®xed choice of vertex
orientation. Let f : R ,! M be an admissible Heegaard surface, and let
CH : 
6H ! Q be given by:

CH�a1 
 a2 
 a3; b1 
 b2 
 b3� � x�a1; b1�x�a2; b2�x�a3; b3��11�

for ai; bi 2 H , where x is the intersection pairing on H . Recall the onto maps
UQ ! K3L�Q from theorem 2, their tensor product 
2UQ ! K3L�Q 
 K3LÿQ
and the natural inclusion K3L�Q 
 K3LÿQ ,! 
2 K3HQ ,! 
6 HQ. Let us
denote by CU

H the pullback of CH to 
2UQ under the composition of the
above maps. Then, we have the following theorem:

Theorem 4. Given an admissible Heegaard surface f : R ,! M ,

� The map �Wk� � CL�;1 : 
2UQ ! Q is given by:

�Wk� � CL�;1 � 2CU
H�12�
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� the map CL�;1 : 
2U ! G1A�/� is given as follows. For a1; a2 2 U we have:

CL�;1�a1; a2� � ÿCU
H�a1; a2� �Hw�13�

� The vector space G1A
rp;nl;cl is four dimensional, with a basis given in the

southeast part of Fig. 8. The map (10) of Theorem 3 is given as follows:
� The cocycle CL�;1 de®nes a nonzero cohomology class �CL�;1� 2 H2�U ; Q�, if
dimH � 6. Moreover �CL�;1� depends on the Lagrangian pair L� in the
following strong sense. If K� is another Lagrangian pair then �CL�;1� � �CK�;1�
if and only if one of the following holds:

�: dimH < 6
�: L� � K�; Lÿ � Kÿ, or
�: L� � Kÿ; Lÿ � K�.

Remark 1.2. In coordinates, the map CU
H is given as follows. Let fxigg

i�1
(respectively, fyigg

i�1) be basis for L� (respectively, Lÿ) such that
x�xi; yj� � di;j. Using the natural projection K3HQ ! UQ, consider
a1; a2 2 UQ and let �a1; �a2 2 K3HQ be their lifts written as:

�a1 �
X

i<j<k

a1ijkxi ^ xj ^ xk � other terms

�a2 �
X

i<j<k

a2ijkyi ^ yj ^ yk � other terms

Then, we have:

CU
H��a1; �a2� �

X
i<j<k

a1ijka
2
ijk�14�

Remark 1.3. Note that the above map �Wk� � CL�;1 coincides with the map
2df of [Mo3, De®nition 4.1, Theorem 4.3], and that the ®rst part of the
above theorem was originally proven by Morita [Mo3, Theorem 4.3]. Mo-
rita's result was a starting point for the results of the present paper. It is
interesting to note that the factor of 2 in 2df in the above mentioned paper
of Morita was derived from a representation theory calculation (counting
irreducible components of Sp�H� representations), whereas in our context it
comes from the identity Hw � 2Yw.

The maps Cf ;m assemble well to de®ne a map: Cf : Tev�U� !A�/�,
where Tev�U� � �1m�0�
2mU�. Recall that Tev�U� andA�/� are graded Hopf
algebras, where the comultiplication in Tev�U� is given by declaring U to be
the set of primitive elements. Cf respects the multiplication in the following
sense. For i � 1; 2 let fi : Rgi ! M be two admissible genus gi surfaces
disjointly embedded in an integral homology 3-sphere M . Without loss of
generality, let us assume that fi are inclusions. Assume that there is an
embedded 2-sphere S ,! M with the following properties:
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� The intersections S \ Rgi � Di for i � 1; 2 are disjoint discs. Let Ri �
Rgi ÿ IntDi.
� Recall that S separates M ÿ S in two components. Assume that Ri for
i � 1; 2 lie in di�erent components of M ÿ S.

Then we can form the composite admissible surface f1 [ f2 : R �
R1 [Sÿ�D1[ D2� R2 ! M . Considering the homology of Rg1 ;Rg2 and R we get
natural onto maps Ug1�g2 ! Ugi for i � 1; 2 which in turn induce onto maps:
Tev�Ug1�g2� ! Tev�Ugi�. Let Ci

fi
denote the pullbacks of the maps Cfi to

Tev�Ug1�g2� for i � 1; 2.

Proposition 1.4. With the above assumptions we have the following:

C1
f1 � C2

f2 � Cf1[f2�15�

Remark 1.5. The above proposition makes necessary the existence of an
operadic formalism of the above cocycles. Such a formalism, which may

make more transparent the relation with the ideas from 2D gravity [Ko1],
[Ko2], [Wi1], [Wi2] will be the subject of a future study.

Before we state the next theorem, we need some notation: for a group G
and a positive integer n let us denote by GnG the (abelian) quotient
G�n�=G�n� 1�. Let Aconn�/� denote the subspace of A�/� consisting of
linear combinations of connected admissible graphs. We also de®ne two
binary operations: �0x; y� � x
 y and �1x; y� � ÿy 
 x. Then, we have the
following theorem:

Theorem 5. Given an admissible surface f : R ,! M , and a nonnegative integer
m, there is a linear map:

Df ;m : G2mTg 
Q! GmA
conn�/��16�

with the following properties:

Fig. 2. Gluing two admissible surfaces to form a third one. Note that only part of the surface S
is drawn in the ®gure
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� Df ;m is determined by the cocycle Cf ;m as follows:

Df ;m��x1; �x2; . . . ; �x2mÿ1; x2m���
� ÿ

X
a

Cf ;m��a�1�y1; �a�2�y2; . . . ; �a�2mÿ1�y2mÿ1; y2m�����17�

where xi 2Tg, yi � s�xi� 2 U , the summation runs over all functions a : f1; 2;
. . . ; 2mÿ 1g ! f0; 1g, and we set �0x; y� � x
 y and �1x; y� � ÿy 
 x.
Assume in addition that f is an admissible Heegaard surface. Then,
� Df ;m depends only on the associated Lagrangian pair �L�; Lÿ�, and will be
denoted by DL�;m.
� DL�;m satis®es the following symmetry property:

DL�;m�xÿ1� � �ÿ1�mDL�;m�x��18�

for every x 2 G2mTg 
Q.
� Assume that f is the standard Heegaard splitting of S3. If g � 5m� 1, then
DL�;m is onto.
� For an arbitrary admissible Heegaard surface f , let Dm : �G2mTg 
Q�Spg

! GmA
conn�/� denote the restriction of DL�;m on the symplectic invariant part

of its domain. For m � 1, the composition of D1 with the weight system
Wk : G1A

conn�/� ! Q coincides with the restriction of ÿ 1
24 d1 : Cg ! Q of

[Mo2, section 5] to �G2Tg 
Q�Sp�HQ�

Remark 1.6. The proof of Theorem 5 (and Theorem 7 below) exhibits an
explicit construction of enough stably non-trivial elements of the lower
central series quotients G2mTg of the Torelli group when g � 5m� 1 to
prove that the map DL�;m is onto for a standard Heegaard splitting of genus
at least 5m� 1. This construction may prove useful in further study of the
Torelli group.

As an application of the proof of Theorem 5 (and Theorem 7 below) we
de®ne and determine an analogue of the (rational) Gusarov group of knots
[Gu] for integral homology 3-spheres. This result has been obtained inde-
pendently by Le [L, Theorem 10]. Following the ideas of Gusarov, [Gu], we
de®ne a sequence of equivalence relations on the set of (orientation pre-
serving di�eomorphism classes of ) integral homology 3-spheres as follows.
Given a nonnegative integer n, and two integral homology 3-spheres M and
N , we de®ne M to be n-equivalent to N , (and write M �n N ) if
M ÿ N 2Fas

3nM. Let En denote the set of �n�1-equivalence classes.
Connected sum induces the structure of an abelian semigroup on En. We
have natural projections En ! Enÿ1 whose kernel On is an abelian semigroup.
We can de®ne a map

sn : On ! Gas
3nM�19�
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by sn�M� � S3 ÿM . This map is additive. Indeed, we have

S3 ÿM]N � ÿ�S3 ÿM� � �S3 ÿ N� � �S3 ÿM� � �S3 ÿ N�

and, if M ;N 2 On, then �S3 ÿM� � �S3 ÿ N� 2Fas
6nM �Fas

3�n�1�M, for
n � 1. We now have:

Theorem 6. [L] On is a group and sn induces an isomorphism of On 
Q with
the subspace of primitive elements in Gas

3nM.

Corollary 1.7. En is an abelian group.

1.5. Plan of the proof. In Sect. 2 we review the de®nition and a few essential
properties of the Johnson homomorphism and discuss invariant theory for
the symplectic and general linear group. In Sect. 3 we prove our main
results. In Sect. 4 we discuss analogous constructions for some other sub-
groups of the mapping class group. In Sect. 5 we discuss related results by
Hain [Ha2] and Morita [Mo6]. Finally in Sect. 6 we formulate a question
which will be studied in a subsequent publication.
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thank the Internet for providing useful communication for the two au-
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2. Preliminaries

2.1. Generalities in group theory. In this section we review some general facts
about group cohomology of discrete groups. Let G be a discrete group and
QG the rational group ring of G. Let IG (or simply I , in case we ®x the group
G) denote the augmentation ideal of QG and In the n-th power of I . We ®rst
recall the de®nition of the chain complex de®ned by the bar construction.
Since we will only be dealing with coe�cients with trivial G-action we can
de®ne, for a trivial G module M , Cn�G;M� �def Hom�Cn�G�;M�. Here Cn�G� is
the free Z-module generated by n-tuples �g1j . . . jgn�, where gi 2 G, and the
boundary operator is de®ned by the formula:

@�g1j . . . jgn� � �g2j . . . jgn�

�
Xnÿ1
i�1
�ÿ1�i�g1j . . . jgigi�1j . . . jgn� � �ÿ1�n�g1j . . . jgnÿ1�
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As usual, we let Zn�G;M� (resp., Bn�G;M�) denote the n-cocycles (resp.,
n-coboundaries). For a cocyle cn 2 Zn�G;M�, let �cn� 2 H n�G;M� denote
the associated cohomology class.

Before proceeding to the main results of this section, we will prove a
lemma which will be needed below in Sect. 3.2. De®ne an involution c of
C��G� by the formula

c�g1j . . . jgn� � �ÿ1�
n
2� ��gÿ1n j . . . jgÿ11 �

We leave it to the reader to check that this, indeed, is a chain map. We have
the following lemma:

Lemma 2.1. If G is a free abelian group, then c� : Hn�G� ! Hn�G� is multi-
plication by �ÿ1�n.
Proof. It is su�cient to prove this is true for c� on the exterior algebra
H ��G; Z�. Notice that for n � 1 this is clearly true. Since H1�G� generates
H ��G�, as an algebra, we will be done if we prove that c� preserves cup-
products. Recall (see [Mac]) that the formula for cup-product, in the context
of the bar construction, is:

�n [ g��g1j . . . jgnjh1j . . . jhm� � n�g1j . . . jgn� � g�h1j . . . jhm�

where n 2 Cn�G�; g 2 Cm�G�. Now we compute:

c]�n [ g��g1j . . . jgmjh1j . . . jhn� � �ÿ1�
m�n
2� ��n [ g��hÿ1n j . . . jhÿ11 jgÿ1m j . . . jgÿ11 �

� �ÿ1� m�n
2� �n�hÿ1n j . . . jhÿ11 � � g�gÿ1m j . . . jgÿ11 �

� �ÿ1� m�n
2� �� m

2� �� n
2� �c]�n��h1 . . . jhn� � c]�g��g1j . . . jgm�

� �ÿ1�mn�c]�g� [ c]�n���g1j . . . jgmjh1j . . . jhn�

So we see that, for any cohomology classes a 2 Hn�G�; b 2 Hm�G�,
c��a [ b� � �ÿ1�mnc��b� [ c��a�. But now we just invoke the commutativity
of cup-product on the cohomology level. (

Turning to our main results, we will now de®ne for every nonnegative
integer n a cochain /n 2 Cn�G; In�, where In is given the trivial G-module
structure, as follows:

/n�g1j . . . jgn� � �1ÿ g1� . . . �1ÿ gn�
Let in : In�1 ! In be the inclusion and �in�] be the corresponding coe�-

cient homomorphism of cochains.

Lemma 2.2.

d�/n� �
0 n even
�in�]�/n�1� n odd

�
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Proof. We have the following formula for the coboundary:

d/n��g1j . . . jgn�1�� � /n��g2j . . . jgn�1�� �
Xn

i�1
�ÿ1�i/n��g1j . . . jgigi�1j . . . jgn�1��

� �ÿ1�n�1/n��g1j . . . jgn��

�
Yn�1
i�2
�1ÿ gi�

�
Xn

i�1
�ÿ1�i�1ÿ g1� . . . �1ÿ gigi�1� . . . �1ÿ gn�1�

� �ÿ1�n�1
Yn

i�1
�1ÿ gi�

Now making the substitution 1ÿ gigi�1 � ÿ�1ÿ gi��1ÿ gi�1� � �1ÿ gi��
�1ÿ gi�1�, the summation term in the above equation becomes:

Xn

i�1
�ÿ1�i�1ÿ g1� . . . �1ÿ gigi�1� . . . �1ÿ gn�1�

�
Xn

i�1
�ÿ1�i�1ÿ g1� . . . fÿ�1ÿ gi��1ÿ gi�1�

� �1ÿ gi� � �1ÿ gi�1�g . . . �1ÿ gn�1�

�
Xn

i�1
�ÿ1�i�1�1ÿ g1� . . . �1ÿ gi��1ÿ gi�1� . . . �1ÿ gn�1�

�
Xn

i�1
�ÿ1�i�1ÿ g1� . . . f d�1ÿ gi� � d�1ÿ gi�1�g . . . �1ÿ gn�1�

�
�Xn

i�1
�ÿ1�i�1

�
�1ÿ g1� . . . �1ÿ gn�1� ÿ

Yn�1
i�2
�1ÿ gi� � �ÿ1�n

Yn

i�1
�1ÿ gi�

Inserting this into the previous equation we obtain:

d/n��g1j . . . jgn�1�� �
�Xn

i�1
�ÿ1�i�1

�
�1ÿ g1� . . . �1ÿ gn�1�

�
�Xn

i�1
�ÿ1�i�1

�
/n�1��g1j . . . jgn�1��

and the result follows. (

Corollary 2.3. For every even nonnegative integer n, there is a well-de®ned
cohomology class �/n� in H n�G; In�.
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Proof. Immediate by Lemma 2.2 above. (

We now point out another useful fact. Recall from Sect. 1.4 that for any
positive integer q, Gq is de®ned inductively by Gq�1 � �G;Gq� with the un-
derstanding that G1 � G. Recall also that G�q� is the (normal) subgroup of
G that contains all elements of G for which a nontrivial power belongs to Gq.
It is easy to see that fG�n�gn�1 is a decreasing sequence of normal subgroups
of G with the property: �G�n�;G�m�� � G�n� m�.

Lemma 2.4. If gi 2 G�qi� then /n��g1j . . . jgn�� � Iq1�...�qn .

Proof. With the notation �g; h� � ghgÿ1hÿ1, the following formula

1ÿ �g; h� � �ÿ�1ÿ g��1ÿ h� � �1ÿ h��1ÿ g��gÿ1hÿ1 2 I2�20�

shows that if g 2 Gq, then 1ÿ g 2 Iq. The following formula

1ÿ gm �
Xm

i�1
�ÿ1�i m

i

� �
�1ÿ g�i

and the above shows by induction on q that if gm 2 Gq for some nonnegative
integer m, then

m�1ÿ g� � 1ÿ gm mod Iq�1�21�

thus deducing that m�1ÿ g� 2 Iq, and since we are using rational coe�-
cients, this proves the lemma. (

Corollary 2.5. Given nonnegative integers n; q, /n induces cochains

/n;q 2 Cn�G=G�q�; In=In�qÿ1��22�

Furthermore, for even n;/n;q is a cocycle and, for odd n, /n;2 is a cocycle.
Moreover, /n;2 is multilinear.

Now suppose that B is a vector space �over Q�, carrying a decreasing ®l-
tration F�B and q : QG! B is a linear map preserving the ®ltration,
i.e., q�In� �FnB. Suppose also that the ®ltration of B is p-step, for some
positive integer p, i.e., FiB �Fi�1B unless p divides i. Now /n;q induces
via q, a cochain /q

n;q 2 Cn�G=G�q�;FnB=Fn�qÿ1B�. Let GnA �Fpn

B=Fpn�1B.
We will consider the cochains /q

pnÿq;q�2 2 Cpnÿq�G=G�q� 2�;GnA�, for
0 � q < p, �since FpnÿqB=Fpn�1B � GnA�. These cochains are cocycles if
either pnÿ q is odd and q � 0, or pnÿ q is even and 0 � q < p.

Proposition 2.6. If pnÿ q is even and 0 � q < p ÿ 1, then �s]/q
pnÿq;q�2� �

0 2 H pnÿq�G=G�q� 3�;GnA�, where s : G=G�q� 3� ! G=G �q� 2� is the
obvious projection.
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Proof. Consider the cochain /q
pnÿqÿ1;q�3 2 Cpnÿqÿ1�G=G�q� 3�;GnA�. It

follows from Lemma 2.2 that, when pnÿ q is even

d/q
pnÿqÿ1;q�3 � s]/q

pnÿq;q�2 (�23�

Corollary 2.7. With the above notation, if pn is even, we have that
�s]/q

pn;2� � 0 2 Hpn�G=G�3�;GnA�:
We can also identify a family of secondary cohomology classes, although

we will not, at this time, explore the application of these to our consider-
ations. For pnÿ q odd, we de®ne lq;n �def j]/q

pnÿq;q�2 2 Cpnÿq�G�q� 1�
=G�q� 2�;GnA�, where j : G�q� 1�=G�q� 2� ! G=G�q� 2� is the obvious
inclusion. Since s � j is trivial, it follows from equation (23) that lq;n is a
cocycle. Clearly for q > 0,

�lq;n� 2 H pnÿq�G�q� 1�=G�q� 2�;GnA�
and �/q

pnÿq�1;q�1� 2 Hpnÿq�1�G=G�q� 1�;GnA�

are related by transgression in the ®bration G�q� 1�=G�q� 2� !
G=G�q� 2� ! G=G�q� 1�, but neither one is determined by the other. The
extra information is encoded in the particular cocycle representatives. If
q � 0, then this gives nothing new since �l0;n� � �/q

pn;2�.
We end this section with a lemma that will be used in the proof of

Theorem 5. Recall ®rst the map G! QG given by g! 1ÿ g. According to
Lemma 2.4 for every positive integer n, we get an induced map G�n� ! In,
and thus a linear map:

GnG
Q! In=In�1�24�

Note that addition in GnG
Q is given by group multiplication in G.
These maps can be assembled together in the following way. Recall ®rst

that GG
Q can be given the structure of a graded Lie algebra (over Q). Let
U�GG
Q� denote the universal enveloping algebra. Note that U�GG
Q�
is a Hopf algebra. Note also that QG is a ®ltered algebra with respect to
powers of the augmentation ideal. Let GQG be the associated graded al-
gebra, i.e., GnQG � In=In�1. Note that QG is a Hopf algebra with comul-
tiplication de®ned by D�g� � g
 g for g 2 G. Then the maps of equation
(24) induce a map:

U�GG
Q� ! GQG�25�

This map was shown by Jennings (see Quillen [Qu]) to be a Hopf algebra
isomorphism. In particular, the primitive elements of GQG are isomorphic
to the Lie algebra GG
Q.

We end the section with the following lemma:

Finite type 3-manifold invariants and the structure of the Torelli group. I 555



Lemma 2.8. For xi 2 G we have the following identity in the graded quotient
In=In�1:

1ÿ �x1; . . . ; �xnÿ1; xn�� � �ÿ1�nÿ1
X

a

"a�1� �z1; . . . ; "a�nÿ1� �znÿ1; zn���26�

where zi � 1ÿ xi 2 I and the summation is over all functions a :
f1; 2; . . . ; nÿ 1g ! f0; 1g, and we set "0 �a; b� � ab and "1 �a; b� � ÿba.
Furthermore, the map (24) is a linear map.

Proof. Using the identity (20) the ®rst part follows by induction on n.
Indeed, (20) implies that

1ÿ �x1; x2� � ÿ�1ÿ x1��1ÿ x2� � �1ÿ x2��1ÿ x1�mod I3

� ÿ�"0 �1ÿ x1; 1ÿ x2�� "1 �1ÿ x1; 1ÿ x2��mod I3

which concludes the proof of the ®rst part for n � 1. The induction step
follows the same way using identity (20).

The second part follows immediately using the following identity:

1ÿ ab � �1ÿ a�b� �1ÿ b� (

2.2. A review of ®nite type invariants of integral homology 3-spheres. In this
section we review some essential properties of ®nite type invariants of
integral homology 3-sphere s that will be used in the present paper.

We begin by recalling the de®nition of the map (1) from [Oh], [GO1]: for
an admissible (i.e., trivalent, vertex-oriented) graph G with 3m edges and 2m
vertices, let Lw�G� denote the (linear combination of 22m) algebraically split
links in S3 with framing f � �1 on each component obtained by choosing
some of the vertices of G, replacing each non-chosen vertex of G by a
Borromean ring, each chosen vertex by a trivial 3-component link and each
edge of G by a band as in Fig. 3. The coe�cient of that term is �ÿ1�k, where
k is the number of chosen vertices. Due to the fact that G is an abstract
graph (i.e., non-embedded in S3), the links whose sum with signs is Lw�G�
are not well de®ned (modulo isotopy). Nevertheless, (with the notation
of [GL1], [GO1]) one can associate a well de®ned element �S3;Lw

�G�; f � 2 Gas
3mM in the associated graded space. This map was shown in [Oh]

(see also [ GL1]) to be onto. Furthermore, in [GO1] it was shown that it
actually descends to a map GmA�/� ! Gas

3mM which, therefore, is also onto.
This de®nes the map (1). According to the fundamental theorem of ®nite type
invariants of integral homology 3-spheres [LMO], [L], the map (1) is one-to-
one, and therefore a vector space isomorphism. The isomorphisms of (1) can
be assembled together for various m. Indeed, A�/� is equipped with a
multiplication (induced by the disjoint union of graphs) and a comultipli-
cation (induced by all ways of splitting a graph into its connected compo-

556 S. Garoufalidis, J. Levine



nents), compatible with the grading, thus giving A�/� the structure of a
commutative cocommutative Hopf algebra. Let Â�/� denote the comple-
tion. Furthermore, M is equipped with a multiplication (induced by con-
nected sums of integral homology 3-spheres) and a comultiplication de®ned
by D�M� � M 
M for an integral homology 3-sphere M , thus givingFas

? M
and Gas

? M the structure of a commutative cocommutative Hopf algebra.
The above mentioned results of [LMO], [L] additionally imply that the maps
(1) combine to give an isomorphism of Hopf algebras Â�/� ! Gas

�M.

In the rest of this section we recall several facts about the combinatorics
of ®nite type invariants that will be used exclusively in the proof of Theorem
7. The reader may choose to postpone them until needed.

We begin with an equivalent description of the Hopf algebraA�/� taken
from [GO1]. It turns out (see [GO1]) that there is a vector space �over Q�
Ab�/� on the set of vertex oriented graphs with univalent and trivalent
vertices only, modulo an appropriate set of relations, described in detail in
[GO1], together with a deframing map:

F : A�/� !Ab�/��27�

de®ned as follows: for a vertex oriented trivalent graph C

F �C� �
X

s:v�C�!f0;1g
�ÿ1�jsÿ1�1�jCs

where Cs is obtained by splitting C along every vertex v such that s�v� � 1.
We will not use explicitly the set of relations inAb�/�; note however [GO1]
that F is a vector space isomorphism, thus giving Ab�/� the structure of a
graded Hopf algebra. For a trivalent vertex oriented graph C, let Cw

�resp., Cb� denote the associated element in A�/� �resp., Ab�/��. The
subscripts w; b denote white and black vertices resp., the terminology is
taken from [GO1]. Given a trivalent vertex oriented graph C, the associated
elements under the maps GA�/� ! GM, GAb�/� ! GM are shown in the
left and right hand of Fig. 3 and are denoted by C! �S3; Lw�C�;�1� and
C! �S3; Lb�C�;�1� respectively. Putting together the isomorphism of (1)
with the isomorphism (27) we get an isomorphism:

Fig. 3. Two maps from admissible graphs to (linear combinations of) algebraically split links in

S3. The map on the left is denoted by G! Lw�G� and the one on the right is denoted by

G! Lb�G�
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F 0 : GnAb�/� ' Gas
3nM�28�

A�/� �resp., Ab�/�� has a naturally de®ned ideal: Yw � Hw �A�/�
�resp., Yb � Yb �Ab�/�� where Hw �resp., Yb� are the obvious generators of
the degree 1 parts G1A�/� �resp., G1Ab�/��. Note that the ideals Yw;Yb

correspond under the isomorphism F of (27), since F �Hw� � 2Yb (see
[GO1]). Let A~�/� �A�/�=Yw;A~b�/� �Ab�/�=Yb denote the quotient
spaces.

We now have the following very useful lemma:

Lemma 2.9. Let C denote a connected vertex oriented trivalent graph of
degree n 6� 1, and let a 2 GnA

conn�/� be such that:

Cb modYb � F �a modYw� 2 GnA~b�/��29�

Then, we have that Cw � a.

Proof. Recall ®rst from [GO1] that F �Cw� � Cb modYb. In fact more is true:
namely F �Cw� � Cb � k�C��`n Yb� for some integer k�C�. This follows by
de®nition of the map F of (27) and the relations in GnAb�/�. Therefore, we
have that F �Cw� � F �a�modYb, thus Cw � a modYw, thus Cÿ a �
0 2 GnA~�/�. Recall that A�/� is graded by G, and thus ®ltered, where
FnA�/� � �k�nGkA�/�. Using the fact that Aconn�/� �A�/�=�F1A�/�
�F1A�/��, we can see that, for any k 6� 1, there is an onto map
GkA~�/� ! GkA

conn�/�. Moreover, the composite map GkA
conn�/� !

GkA~�/� ! GkA
conn�/� is the identity map on GkA

conn�/�. This ®nishes the
proof of the lemma. (

Remark 2.10. For n � 1 the above lemma is obviously not true, since we can
take C � H and a � 0.

We now recall a few essential facts from [GL3] relating the various
®ltrations onM that will only be used in the proof of Theorem 7. Following
the notation of [GL3], consider f : Rg ,! M an admissible genus g surface.
We need to recall from [GL3, Sect. 1.3] an important subgroup LL

g of the
mapping class group. We call a Lagrangian L � H f -compatible if
L � �L \ L�� � �L \ Lÿ�, where �L�; Lÿ� is the associated Lagrangian pair of
the admissible surface f . (For example, L� and Lÿ themselves are f -com-
patible). For any f -compatible Lagrangian L, letLL

g denote the subgroup of
the mapping class group generated by Dehn twists along simple closed
curves that homologically represent elements of L. Let J denote any of
the subgroups Tg;Kg;L

L
g of the mapping class group. Consider the

maps UJ
f : QJ!M de®ned the same way as the map UT

f of (2). Let
GUJ

f : GQJ! GJM denote the associated graded maps. Recall from
Sect. 2.1 that GQJ is a coalgebra, and so is GJM (with the comultiplication
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of GJM induced by the one on M). Then, with the above conventions we
have the following lemma:

Lemma 2.11. For J as above, the maps GUJ
f : GQJ! GJM are maps of

coalgebras.

Proof. Recalling that the coproduct on QJ is de®ned by D�g� � g
 g, and
the coproduct on M de®ned by D�M� � M 
M , it follows that the map
UJ

f : QJ!M preserves the coalgebra structure. Therefore, the associated
graded map preserves the coalgebra structure as well. (

Corollary 2.12. For J as above, we get an induced map:

/J
f : GJ
Q! GAconn�/��30�

Proof. We need to recall from [GL3] the following ®ltrations on M: for a
nonnegative integer m, FT

mM �resp., FK
mM;FL

mM� are de®ned to be the
span of the images (over all admissible surfaces f ) of UT

f �ITg�m
�resp., UK

f �IKg�m; UL
f �ILL�

g �m�. LetFHL
m M denote the span of the images,

for Heegaard surfaces f and f -compatible Lagrangians L of UL
f ��ILL

g�m�. In
[GL3] we showed that FHL

m M �FL
mM, and from now on we will identify

these two ®ltrations. The ®ltrations considered above can be compared to
the Fas ®ltration on M as follows [GL3, Corollary 1.20]:

FK
mM �FT

2mM �FT
2mÿ1M �FL

3mM �FL
3mÿ2M �Fas

3mM

inducing associated graded maps

GK
mM! GT

2mM � GT
2mÿ1M � GL

3mM � GL
3mÿ2M � Gas

3mM

Using the isomorphism of Hopf algebras G?A�/� ' Gas
? M the above

graded maps and Lemma 2.11 show that there are coalgebra maps
GUJ

f : GQJ! GA�/�, which induce maps /J
f on the primitive elements.

Recall ®nally from section 2.1 that the subspace of primitive elements of
GQJ is the Lie algebra GJ
Q, and that the subspace of primitive ele-
ments of GA�/� is GAconn�/�. (

Remark 2.13. GJM is a Hopf algebra and the map GJM! GA�/� is a
Hopf algebra isomorphism for J �Tg and LL

g and a Hopf algebra
epimorphism for J �Kg, see [GL2]. Furthermore, GQJ is also a Hopf
algebra, see Sect. 2.1. The map GUJ

f however is not an algebra map.

We close the section with the following lemma which will be used in the
proof of Theorem 5.
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Lemma 2.14. Given an admissible surface and compatible Lagrangian L, we
have inclusions LL

g �Kg �Tg. Then:

UL
f jQKg

� UT
f jQKg

�31�

Proof. This is a straightforward consequence of the de®nitions of the
maps. (

2.3. Johnson's homomorphism and representation theory. In this section we
review well known properties of the Johnson homomorphism, [Jo1], and
some essential facts about representation theory of the symplectic group.

We begin with the following:

Remark 2.15. Even though in the present paper we are interested mainly in
closed surfaces embedded in closed 3-manifolds, we will for a variety of
reasons, also consider surfaces with boundary. These reasons include �a�
historical traditions [Jo1], [Mo2], [Mo3], �b� technical reasons (the fact that
the fundamental group of a closed surface is not free, whereas that of one
with boundary is. Also, one can glue surfaces along boundary to increase the
genus and consider stability problems, whereas there is no canonical way of
increasing the genus of closed surfaces), and �c� modern interpretation in
terms of open string ®eld theory [Ko1, Ko2, Wi1, Wi2]. For all of the above
reasons, we usually ®rst decorate surfaces by boundary components or
punctures, and only afterwards do we discuss closed surfaces. At any rate,
the reader should keep in mind that there are exact sequences that relate
invariants of decorated surfaces to invariants of closed surfaces.

Let Rg denote a closed, oriented surface of genus g, and let D � Rg be a
®xed embedded disk. Let Rg;1 denote the associated surface Rÿ IntD with
one boundary component. Let Cg (resp. Cg;1) denote the mapping class
group, i.e., the group of isotopy classes of orientation preserving surface
di�eomorphisms (resp. that are identity on the boundary). Let Tg (resp.
Tg;1) (the Torelli group) denote the subgroup of Cg (resp. Cg;1) of elements
that act trivially on the homology of the surface. Let H � H1�Rg;Z�, and x
be the intersection form. Note that the inclusion Rg;1 ,! Rg induces a ca-
nonical isomorphism H1�Rg;1;Z� ' H , and in this section we will identify
H1�Rg;1;Z� with H . The groups Cg;Cg;1;Tg;Tg;1 are related in the following
(exact) commutative diagram [Jo1]:

1 ��! p1�TR� ��! Tg;1 ��! Tg ��! 1 ??y ??y
1 ��! p1�TR� ��! Cg;1 ��! Cg ��! 1??y ??y

Sp�H� ��! Sp�H�
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where TR denotes the unit tangent bundle of the surface Rg. Note that the
two rightmost vertical sequences are also short exact.

With the above notation, we can recall a few essential facts from rep-
resentation theory. For proofs, we refer the reader to [FH]. Recall that for
an abelian group A, we let AQ denote the rational vector space A
Z Q. All
the linear maps to be described in this section will be Sp�HQ� equivariant.
Recall ®rst that the intersection form x 2 K2H� induces an isomorphism
H ' H�. Let H ! K3H denote the map de®ned by x! x ^ x (where we
think of x 2 K2H , via the isomorphism H ' H�). In terms of a symplectic
basis fxi; yig of H , the above map is given by x!P

i x ^ xi ^ yi. Let
U � K3H=H denote the quotient. Note that our notation di�ers from [ Mo6]
(Morita denotes 1

2K3H=H by U ). Since both Morita and we are only dealing
with rational results, this is not really a problem.

We can think of K3HQ as a quotient module of 
3HQ (in the natural
way), or as a submodule of 
3HQ as follows: we let K3HQ ,! 
3 HQ be the
(one-to-one) map: x1 ^ x2 ^ x3 !

P
s2Sym3

sgn�s�xs�1� ^ xs�2� ^ xs�3�, where
Sym3 denotes the symmetric group and sgn denotes the sign homo-
morphism. Note that we do not divide out the above map by 1=6. As a
result, the composite map K3HQ ! 
3HQ ! K3HQ is multiplication by 6.
Let 
3H ! H denote the map x1 
 x2 
 x3 ! x�x1; x2�x3, and let K3H ! H
denote the composite map K3H ,!
 3 H ! H . More explicitly, the above
composite map is the following:

x1 ^ x2 ^ x3 ! 2�x�x1; x2�x3 ÿ x�x1; x3�x2 � x�x2; x3�x1��32�
It is easy to see that there is a rational isomorphism UQ ' Ker
�K3HQ ! HQ�.

In his pioneering work [Jo1], [Jo2] D. Johnson described a homomorp-
hism s : Tg;1 ! K3H . We brie¯y summarize its properties here:

� s is onto.
� s is equivariant with respect to the conjugation action of the mapping class
group Cg;1 onTg;1 and the natural action of the symplectic group Sp�H� on
K3H .
� s coincides, modulo 2 torsion, with the abelianization of the Torelli group.
In fact, �Tg;1;Tg;1� � Ker�Tg;1 ! K3H� is a normal subgroup with
quotient a 2-group.
� s factors through a map s : Tg ! U (denoted by the same name) making
the following diagram commute:

1 ��! p1�TR� ��! Tg;1 ��! Tg ��! 1??y s
??y s

??y
0 ��! H ��! K3H ��! U �! 1

Furthermore, Tg ! U is equivariant, onto, and coincides (modulo 2 tor-
sion) with the abelianization of Tg. From this and the preceding property
we have that Kg �Tg�2� and that s : Tg=Tg�2� 
Q ' UQ.
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� s is stable with respect to an inclusion Rg;1 ,! Rg�h;1.

2.4. Representations of the symplectic and the general linear group. In this
section we review a few essential facts about representations of the
symplectic and the general linear group. The main result is Proposition 2.18
which will be used in the proof of Theorem 3.

Let �H ;x� denote a symplectic space, and assume a given splitting
H � L� � Lÿ into two Lagrangian subspaces. An example is given by the
Lagrangian pair of an admissible surface in an integral homology 3-sphere.
Let us denote L� by V ; then, the symplectic form induces isomorphisms
Lÿ ' V � and H ' V � V �. In this section we will identify L�; Lÿ and H with
V ; V � and V � V �, respectively.

Consider the subgroup of the symplectic group Sp�H� formed by all

matrices of the form
A 0
0 �At�ÿ1

� �
, where A 2 GL�V � and At stands for the

transpose of a matrix A. This subgroup of Sp�H� is obviously isomorphic to
the group GL�V �. Note that the action of GL�V � on H preserves the de-
composition H � V � V � and as a subgroup of Sp�H� extends to an action
on K3H and U .

We will be mainly concerned with describing a generating set for the
vector space of invariants �
2mUQ�GL�VQ�. First, however, we need to recall
several ideas about irreducible representations of Sp�HQ� and GL�VQ�. For
more details see [FH] and [KK].

We begin by recalling some results about the invariant theory of the
symplectic group as formulated by Morita [Mo6]. There is a one-to-one
correspondence between irreducible Sp�HC� representations and dominant
integral weights (with respect to a standard choice of a Weyl chamber). Let
us denote by V �k� the rational representation associated to weight k.
Dominant integral weights are parametrized as follows: if dim�HQ� � 2n and
f�ign

i�1 is the set of dominant weights, then every dominant integral weight
can be written uniquely in the form

P
i fi�i for integers fi such that

f1 � f2 . . . � fn � 0. It is often customary to denote the representation V �k�
by a Young diagram of n rows with fi boxes on each row. Due to typo-
graphical limitations though, we will not denote them by Young diagrams.
In this language we have the following identi®cations (as Sp�HQ� repre-
sentations):

HQ � V ��1� K3HQ � V ��3� � V ��1� UQ � V ��3�

Before we state the next result, we need a few de®nitions: a degree m
linear chord diagram is an involution on the set f1; . . . ; 2mg without ®xed
points [B±N]. Let GmD

l denote the vector space over Q on the set of linear
chord diagrams with m chords. It is easy to see that GmD

l is a vector space of
dimension �2mÿ 1�!! � 1:3:5: . . . �2mÿ 1�.

The symplectic form gives a Sp�HQ� invariant map x : HQ 
 HQ ! Q,
thus given a degree m linear chord diagram, we get an induced Sp�HQ�

562 S. Garoufalidis, J. Levine



invariant map 
2mHQ ! Q, and dually (using the isomorphism H ' H�

induced by the symplectic form) a Sp�HQ� invariant element in 
2mHQ. The
de®nition is clear from the example shown in ®gure 4. Thus we have a map:

GmD
l ! �
2mHQ�Sp�HQ��33�

According to the ®rst fundamental theorem of representation theory (see
[W, p. 167]), the above map (33) is onto, and according to the second fun-
damental theorem of representation theory [W, p. 168]), provided dim�HQ�
� 2n � 2m, (33) is one-to-one and therefore a vector space isomorphism.

Our next goal is to describe the invariant spaces �
2mK3HQ�Sp�HQ�. In
order to do so, we need one more de®nition. Given a degree 3m linear chord
diagram, its associated trivalent graph is de®ned as follows: the set of ver-
tices is the quotient set f1; 2; . . . ; 6mg= �, modulo the relation 3jÿ 2 �
3jÿ 1 � 3j (for 1 � j � m), and the set of edges is given by the quotient map
of the chord diagram. There is an orientation at every vertex, induced by the
ordering 3jÿ 2 < 3jÿ 1 < 3j of the edges around it. For an example, see
Fig. 4. The trivalent graphs constructed above have extra data: they come
equipped with an ordering odV �G� of the vertices. Let GmA

rp denote the
vector space over Q on the set of isomorphism classes of tuples
�G; odV �G�; orV �G�� divided out by the usual antisymmetry relation (denoted
by AS in Fig. 1). Here G is a trivalent graph with 3m edges and 2m vertices,
odV �G� is an ordering of its vertices and orV �G� is a vertex orientation of G,
i.e., a choice of cyclic order for the 3 edges that emanate through each vertex
of G. The above discussion de®nes a map:

G3mD
l ! GmA

rp�34�

Due to the projection 
3H ! K3H of Sect. 2.3, and the choice of cyclic
order for the above mentioned trivalent graphs, the map of equation (33)
factors through the map of (34), thus inducing a map:

GmA
rp ! �
2mK3HQ�Sp�HQ��35�

Fig. 4. A degree 3 linear chord diagram and its associated trivalent graph. The trivalent graph

G comes equipped with an ordering odV �G� of its vertices, as well as with a vertex orientation

orV �G�, indicated by a choice of cyclic order of the edges around each vertex. The linear chord

diagram corresponds (under the map (33)) to the contraction shown 
6H ! Q shown in the

®gure
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Furthermore, there are natural inclusion maps GmA
rp ! G3mD

l and
�
2mK3HQ�Sp�HQ� ! GmA�/�, such that the composite maps GmA

rp !
G3mD

l ! GmA
rp and �
2mK3HQ�Sp�HQ� ! �
6mHQ�Sp�HQ� ! �
2mK3HQ�

Sp�HQ� are multiplication by a nonzero scalar. Moreover, we have two
commutative diagrams:

G3mD
l ��! �
6mHQ�Sp�HQ�??y ??y

GmA
rp ��! �
2mK3HQ�Sp�HQ�

and

GmA
rp ��! �
2mK3HQ�Sp�HQ�??y ??y

G3mD
l ��! �
6mHQ�Sp�HQ�

where the vertical maps on the left diagram are onto, and on the right
diagram are one-to-one. Using the fact that the map of (33) is an
isomorphism (provided that n � m) and the above commutative diagrams,
it is easy to see that the map (35) is a vector space isomorphism, provided
that n � 3m.

Finally, we describe a generating set for the invariant vector space
�
2mUQ�Sp�HQ�: let GmA

rp;nl denote the quotient space GmA
rp divided out by

the subspace of tuples �G; odV �G�; orV �G��, where G contains a loop. For an
example of a loop, see Fig. 5.

Due to the projection K3HQ ! UQ it is easy to see that the map of (35)
induces a map:

GmA
rp;nl ! �
2mUQ�Sp�HQ��36�

Using the fact of an inclusion UQ ' Ker�K3HQ ! HQ� � K3HQ and the
same reasoning as that of K3HQ above, it follows that equation (36) is an
isomorphism, provided n � 3m. The above isomorphism has already been
discussed in previous work of Morita [Mo6, p. 11] which has been a source
of inspiration for us. The reason that we recall it here in detail is to show the
similarities and di�erences between the invariant theory of Sp�HQ� and the
invariant theory of the general linear group GL�VQ� ,! Sp�HQ�, to which we
now turn.

We begin by recalling a few standard facts about representations of
GL�VQ�. In this case too, it turns out that there is a one-to-one correspon-
dence between irreducible GL�VC� representations and dominant integral
weights (with respect to a standard choice of a Weyl chamber). Let us denote
by V �k� the representation (over Q) associated to weight k. Dominant in-

Fig. 5. An example of a loop on the left and of a trivalent graph containing a loop on the right
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tegral weights are parametrized as follows: if dim�VQ� � n and f�ign
i�1 is the

set of dominant weights, then every dominant integral weight can be written
uniquely in the form

P
i fi�i for integers fi such that f1 � f2 . . . � fn. (In case

fn � 0, such representations are called polynomial, and a usual graphical
way of representing them is by a Young diagram of n rows with fi boxes on
each row. However, if V �k� is not polynomial, there is no graphical way to
represent it. Since we will be dealing with non-polynomial representations of
GL�VQ�, we will not use the Young diagram method.) In this language we
have the following lemma:

Lemma 2.16. As representations of GL�VQ�, we have the following decompo-
sition:

HQ � V ��1� � V �ÿ�n�
K3HQ � V ��1 � �2 � �3� � V ��1� � V ��1 � �2 ÿ �n�

� V �ÿ�n� � V ��1 ÿ �nÿ1 ÿ �n� � V �ÿ�nÿ2 ÿ �nÿ1 ÿ �n�
UQ � V ��1 � �2 � �3� � V ��1 � �2 ÿ �n�

� V ��1 ÿ �nÿ1 ÿ �n� � V �ÿ�nÿ2 ÿ �nÿ1 ÿ �n�

Proof. The ®rst part is obvious. The second one follows using the identity

K3�V � V �� � K3V � K2V 
 V � � V 
 K2V � � K3V �

together with the facts that

K3V � V ��1 � �2 � �3� K2V 
 V � � V ��1� � V ��1 � �2 ÿ �n�

The third part follows from ®rst and the second. We thank D. Vogan for a
crash course on representation theory of GL�VQ�. (

Before we state the main proposition of this section, we need a few more
de®nitions:

De®nition 2.17. A 2-coloring of a linear chord diagram (resp., of a graph) is an
orientation for each of the edges of the chord diagram (resp., graph). For
examples, see Fig. 6. Let GmD

l;cl denote the vector space over Q on the set of
2-colored linear chord diagrams with m chords. It is easy to see that GmD

l;cl is
a vector space of dimension �2mÿ 1�!! . . . 2m � 1:3:5: . . . �2mÿ 1�2m. Let
GmA

rp;cl denote the vector space over Q on the set of isomorphism classes of
tuples �G; odV �G�; orV �G�; clE�G�� divided out by the colored antisymmetry re-
lation (denoted by AScl� of ®gure 7. Here G is a trivalent graph with 3m edges
and 2m vertices, odV �G� is an ordering of its vertices, orV �G� is a vertex ori-
entation of G, (i.e., a choice of cyclic order for the 3 edges that emanate
through each vertex of G) and clE�G� is a 2-coloring of the edges E�G� of G. Let
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GmA
rp;nl;cl denote the quotient space of GmA

rp;cl divided out by all graphs
which contain a loop. As is maybe apparent from the notation, the superscripts
on A are explained as follows: rp stands for representation theory, nl stands
for no loops and cl stands for 2-coloring (of the edges).

With the notation as in the above de®nition, we are ready to state the
main result of this section:

Proposition 2.18. For every nonnegative integer m, there are onto maps:

GmD
l;cl ! �
2mHQ�GL�VQ�

GmA
rp;cl ! �
2mK3HQ�GL�VQ�

GmA
rp;nl;cl ! �
2mUQ�GL�VQ�

which are isomorphisms provided that n � m, n � 3m and n � 3m respectively.

Proof. Recall ®rst that H � V � V �, thus we get two GL�VQ� invariant maps:
HQ 
 HQ ! Q, obtained as follows:

HQ 
 HQ ! VQ 
 V �Q ! Q

HQ 
 HQ ! V �Q 
 VQ ! Q

by projecting HQ ! VQ or HQ ! V �Q appropriately. A choice between each
of the above mentioned invariant maps will be associated with a 2-coloring.
Therefore, given a degree m 2-colored linear chord diagram, we get an
invariant map 
2mHQ ! Q, and dually (using the isomorphism H ' H �)
a GL�VQ� invariant element in 
2mHQ. This de®nes a map: GmD

l;cl !

Fig. 6. An example of a 2-coloring of a linear chord diagram and of its associated trivalent

graph

Fig. 7. The colored antisymmetry relation on 2-colored, vertex oriented trivalent graphs. All

edges are 2-colored by the choice of an arrow. The left hand side corresponds to 8 identities (for

all possible 2-colorings of the edges of the Y graph). Similarly, the right hand side corresponds

to 2 identities
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�
2mHQ�GL�VQ�, which according to the ®rst fundamental theorem of invariant
theory is onto, and according to the second fundamental theorem (provided
that n � m) is one-to-one and thus a vector space isomorphism. This shows
the ®rst part of Proposition 2.18. Next, recall the map of (34) that assigns to
each degree 3m linear chord diagram its associated degree m trivalent graph.
This map by de®nition respects the 2-coloring of linear chord diagrams and
trivalent graphs and therefore descends to onto maps:

G3mD
l;cl ! GmA

rp;cl and G3mD
l;cl ! GmA

rp;cl;nl�37�

Arguing as in (34) and (36), due to the projections 
3HQ ! K3HQ and

3HQ ! K3HQ we obtain that the map GmD

l;cl ! �
2mHQ�GL�VQ� induces
quotient maps:

GmA
rp;cl ! �
2mK3HQ�GL�VQ� and GmA

rp;nl;cl ! �
2mUQ�GL�VQ��38�

The same reasoning as that of (34) and (36) together with the
isomorphism of the ®rst part of the proposition implies the rest of Propo-
sition 2.18. (

Corollary 2.19. In particular, for m � 1, we have the following table of
dimensions for the various invariant spaces:

In terms of the isomorphisms of Proposition 2.18, the graphs in Fig. 8 form a
basis for the invariant spaces �K3HQ�Sp�HQ� ; �UQ�Sp�HQ�; �K3 HQ�GL�VQ� and
�UQ�GL�VQ�.

Proof. For m � 1, there are only two trivalent graphs with 3 edges and no
decorations. After including the possible decorations and taking into ac-
count the colored AS relation of Fig. 7, we arrive at the table of Fig. 8. (

Two remarks are in order:

Remark 2.20. An alternative way of counting the dimensions of the invariant
spaces �K3HQ�Sp�HQ�; �UQ�Sp�HQ�; �K3HQ�GL�VQ� and �UQ�GL�VQ� is by decom-
posing into irreducible representations and using Schur's lemma. Indeed,
since K3H �Q ' K3HQ, we obtain:

A dim �A�Sp�HQ� dim �A�GL�HQ�

�6HQ 5!! � 15 23:5!! � 120

�6K3HQ 2 6

�2UQ 1 4
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�
2K3HQ�GL�VQ� � �K3H�Q 
 K3HQ�GL�VQ�

� HomGL�VQ��K3HQ;K
3HQ�

Using Lemma 2.16, we see that K3HQ is a sum of six irreducible nonisom-
orphic representations of GL�VQ�; therefore it follows by Schur's lemma that
the dimension of the invariant space HomGL�VQ��K3HQ;K

3HQ� is six. We can
deduce the rest of the dimensions of the invariant spaces the same way as
above. Note however, that this alternative way can only provide us with a
dimension count but not with a choice of basis for the above mentioned
invariant spaces.

Remark 2.21. On the one hand, weights (or Young diagrams) are a classical
and convenient way of parametrizing irreducible representations of classical
Lie groups. On the other hand, trivalent graphs seem to be a very convenient
way of parametrizing invariant tensors of representations of classical
groups.

3. Proofs

3.1. Proof of Theorem 1 and Addenda

Proof. [of Theorem 1] We ®x an admissible surface f : R! M and consider
the (discrete) group G �Tg as in Sect. 2.1. For every nonnegative integer m,
consider the following cocycle as in Corollary 2.5

/2m;2 2 C2m�Tg=Tg�2�; I2m=I2m�1�

where I denotes the augmentation ideal of the group ring QTg. According
to the properties of the Johnson homomorphism reviewed in Sect. 2.3 we

Fig. 8. Basis for the invariant spaces corresponding to the last two rows and columns of the

table of Corollary 2.19. Note that all graphs are vertex ordered, vertex oriented and 2-colored.

For simplicity, the ordering and the orientation of the vertices is indicated only in the northwest

part of the ®gure
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have that the abelianization (modulo torsion) of the Torelli group is iso-
morphic, via the Johnson homomorphism, with U , i.e., that s : Tg=Tg�2�
' U . Recall from (2) the linear map UT

f : QTg !M preserving (by de®-

nition) the ®ltration fIng of QTg and F
T
�M ofM. In [ GL3] it was shown

that the ®ltration FT
�M is 2-step (following the de®nition of section 2.1),

i.e., we have that FT
2mÿ1M �FT

2mM. In [GL3] it was additionally shown
that FT

2mM �Fas
3mM, and that Fas

�M is 3-step, from which follows the
equality GT

2mM � Gas
3mM of the associated graded spaces. According to the

fundamental theorem of [LMO] and [ L] it follows that there is an
isomorphism Gas

3mM ' GmA�/�. Thus we get a linear map I2m=I2m�1 !
GmA�/�, and putting everything together, according to Corollary 2.5, we
get a 2m cocycle

Cf ;m 2 C2m�U ;GmA�/���39�

Of course, this cocycle depends on the choice of an admissible surface
f : R ,! M , as the notation indicates. It follows from Corollary 2.7 that Cf ;m

is multilinear. In order to show that Cf ;m is equivariant, consider a di�eo-
morphism h : R! R. It follows by de®nition of the map UT

f of (2) that for
a 2T�R� we have: Uhf �a� � Uf �hÿ1ah�. Thus Cg acts by conjugation on the
graded quotients �ITg�n=�ITg�n�1, and since the action of Tg � Cg is
trivial, and the quotient Cg=Tg is the symplectic group Sp�H�, equivariance
follows as stated in the ®rst part of Theorem 1. Furthermore, it follows by
Proposition 2.6 that the pullback of the cocycle Cf ;m to Tg=Tg�3� (and
therefore, to Tg) represents a trivial cohomology class. The proof of
Theorem 1 is complete. (

Proof. (of Addendum 1) The commutativity of the diagram follows by
de®nition of the map Cf ;m. (

Proof. (of Addendum 2) We explain the statement of this addendum more
fully. Suppose, for each g, we choose a Heegaard embedding of a closed
surface of genus g into the 3-sphere. Fixing a disk, and considering surface
di�eomorphisms on the disc complement that pointwise ®x a neighborhood
of the boundary, we obtain a map QTg;1 !M by h! S3

ĥ
, where ĥ is the

obvious extension of h to a di�eomorphism of the closed surface. Moreover,
with respect to an inclusion of such a surface with boundary in another one,
we obtain an inclusionTg;1 �Tg�1;1 and we can arrange that the following
diagram is commutative:

QTg;1 ��! M??y 
QTg�1;1 ��! M

This is, in fact, a special case of Proposition 1.4. We can de®ne
T � limg!1Tg;1 and thus combine these into a single map QT!M.
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Then it is proved in [GL3] that this map sends �IT�n onto FT
nM, thus we

have epimorphisms �IT�n=�IT�n�1 ! GT
nM. It follows that the stable co-

cycle C2m 2 C2m�T=T�2�;GmA�/�� is onto. From this it is clear, since
GmA�/� is ®nitely-generated, that Cf ;m is onto for large enough g. (

3.2. Proof of Theorem 2

Proof. For the convenience of the reader, we divide the proof of Theorem 2
into several lemmas. Recall ®rst that for a di�eomorphism h of a manifold,
we denote by h� the action of it on the homology of the manifold. (

Lemma 3.1. Let Q be a handlebody and L � Kerfi� : H1�@Q;Z� ! H1�Q;Z�g.
Suppose a is a symplectic automorphism of H1�@Q;Z� such that a�L� � L.
Then there exists a di�eomorphism h of Q such that �hj@Q�� � a.

Proof. Let aQ be the automorphism of H1�Q;Z� � H1�@Q;Z�=L induced by
a. Then there exists an orientation preserving di�eomorphism �h of Q such
that �h� � aQ. Now consider the symplectic automorphism b � ��hj@Q� � aÿ1

of H1�@Q;Z�. If we write H1�Q;Z� � L� L0, where L0 is a complementary

Lagrangian to L, then a matrix representative of b has the form
I C
0 X

� �
.

Since b is symplectic, it follows that X � I and C is symmetric. It su�ces to
see that any such matrix can be realized by a di�eomorphism of Q. But this
is proved in [GL3]. (

Lemma 3.2. Suppose that f1; f2 : R ,! M are admissible Heegaard surfaces in
an integral homology 3-sphere M satisfying:

� f1�R� � f2�R�
� � f1;��ÿ1�L�� � �f2;��ÿ1�L�� � H1�R;Z� where L� is the Lagrangian pair in
H1� f1�R�;Z� as in section 1.1.

Then Cm;f1 � Cm;f2 .

Proof. Consider the di�eomorphism g � f2fÿ11 of f1�R�. Since g� preserves
L�, for � � �, we can apply Lemma 3.1to deduce the existence of a di�eo-
morphism ĥ� of M� which induces the same automorphism of H1� f1�R�;Z�
as g. In other words we can write f2 � h�f1g�, where g� 2T�R� and h� is the
restriction of ĥ� to @M�. Recalling the map UT

fi
of equation (2), for gi 2T�R�

we have:

Cf2;k�g1; . . . ; gk� � UT
f2��1ÿ g1� . . . �1ÿ gk��

� Mf2�1ÿg1�...�1ÿgk��f2�ÿ1

� Mh�f1g��1ÿg1�...�1ÿgk�gÿ1ÿ fÿ1
1

hÿ1ÿ

� Mf1g��1ÿg1�...�1ÿgk�gÿ1ÿ fÿ1
1
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� UT
f1�g��1ÿ g1� . . . �1ÿ gk�gÿ1ÿ �

But g�1ÿ g1� . . . �1ÿ gk� � �1ÿ g1� . . . �1ÿ gk�g � �1ÿ g1� . . . �1ÿ gk�mod
Ik�1 for any g 2T�R� and so, if k � 2m, this last term is the same as
UT

f1��1ÿ g1� . . . �1ÿ gk�� 2 GmA�/�. (

Lemma 3.3. Suppose that fi : R ,! Mi for i � 1; 2 are admissible Heegaard
surfaces in integral homology 3-spheres Mi satisfying:

� �f��ÿ1�L1;�� � �f2;��ÿ1�L2;�� � H1�R;Z�, where Li;� for i � 1; 2; � � � are
the Lagrangian pairs associated to �Mi; fi� respectively.

Then Cm;f1 � Cm;f2 .

Proof. We reduce this to the preceding Lemma 3.2 by the following obser-
vation. Let N be an integral homology 3-sphere , f : R,!N ;R0 � f �R�. Let
h 2T�R0� and N 0 � Nh. De®ne f 0 : R ,! N 0 from f by identifying N� � N
with N� � N� [h Nÿ � Nh. Then UT

f 0 �g� � N 0
f 0g�f 0�ÿ1 � Nhfgfÿ1 � Nf �fÿ1hf �

gfÿ1 � UT
f �h0g�, where h0 � fÿ1hf 2T�R�. Therefore, when k � 2m:

Cf 0;k�g1; . . . ; gk� � UT
f 0 ��1ÿ g1� . . . �1ÿ gk��

� UT
f �h0�1ÿ g1� . . . �1ÿ gk��

� UT
f �1ÿ g1� . . . �1ÿ gk� mod FT

k�1M

� Cf ;k�g1j . . . jgk� 2 GmA�/�

since h0�1ÿ g1� . . . �1ÿ gk� � �1ÿ g1� . . . �1ÿ gk� mod Ik�1. Thus Cf 0;k �
Cf ;k.

Now, since M1 and M2 are endowed with Heegaard decompositions of
the same genus by f1; f2, we may identify M2 as �M1�h, for some h 2 C�R0�,
where R0 � f �R�. We may even assume that h 2T�R0� since we can increase
the genus of the Heegaard decompositions without a�ecting the hypotheses,
and every integral homology 3-sphere has some Heegaard decomposition
where the gluing map is an element of the Torelli group. The above
observation and Lemma 3.2 complete the proof of the present lemma. (

Lemma 3.3 implies that the cocycle Cf ;m in the case of a Heegaard
admissible surface depends only on the Lagrangian pair �L�; Lÿ�, and will
thus be denoted by CL�;m. In addition the Sp�H�-equivariance of Cf ;m shows
that CL�;m is GL�L�Q�-invariant.

We next recall a useful lemma due to Morita [Mo3]. Let N�
g;1 (resp.,

Nÿ
g;1) be the subgroup of the mapping class group Cg;1 of R that extend to

M� (resp., Mÿ). Let W � (resp., W ÿ) denote the quotient space: K3H=K3L�

(resp., K3H=K3Lÿ). Note that we can identify W � (and similarly, W ÿ) with a
subgroup of K3H in the following way: Let
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g� : K3H ! K3�H=L�� ' K3L�

be the projection followed by the natural isomorphism. Then the projection
K3H ! W � induces an isomorphism W � ' Kerg�. Alternatively, if we
choose fxigg

i�1 (resp., fyigg
i�1) a basis for L� (resp., Lÿ) such that

x�xi; yj� � di;j, (where x is the symplectic form on H ) then W � is isomorphic
to the subgroup of K3H generated by all elements of the form:
xi ^ xj ^ yk; xi ^ yj ^ yk; yi ^ yj ^ yk for all 1 � i < j < k � g.

Recall the Johnson homomorphism s of Sect. 2.3. Then, we have the
following lemma:

Lemma 3.4. [ Mo3, lemma 4.6] With the above notation, identifying W � with
a subgroup of K3H , we have the following:

s�Tg;1 \N�
g;1� � W ��40�

We can now show that the cocycle CL�;m factors through a map as in
equation (7).

First notice that the map H ! K3H from Sect. 2.3 followed by
the projection K3H ! K3L� vanishes, and therefore induces onto maps
U � K3H=H ! K3L�.

Let us now consider elements gi; hi 2Tg (for i � 1; 2; . . . ; 2m) such that
�s�g1�� � �s�h1�� 2 K3L�, and �s�g2m�� � �s�h2m�� 2 K3Lÿ, and gi � hi for
2 � i � 2mÿ 1. The notation is as follows: recall that s�gi�; s�hi� 2 U , and
temporarily denote both maps U ! K3L� by x! �x�.

Now it is clear that W � \ U � KerfU ! K3L�g. Since h1gÿ11 2 W � \ U
and h2mgÿ12m 2 W ÿ \ U , we can choose liftings ~g1; ~h1; ~g2m; ~h2m 2Tg;1 so that
s�~h2m~gÿ12m� 2 W ÿ. Using Lemma 3.4 above, there exist b� 2Tg;1 \N�

g;1
(resp., bÿ 2Tg;1 \Nÿ

g;1) such that ~h1 � b�~g1 (resp., ~h2m � ~g2mbÿ). Since
f : R ,! M is a Heegaard embedding, it follows by de®nition of N�

g;1 that
Mb�~h � Mb�h � Mh � Mhbÿ � M~hbÿ , and therefore that M�1ÿg1�...�1ÿg2m� �
M�1ÿb�g1��1ÿg2�...�1ÿg2mÿ1��1ÿg2mbÿ�, and therefore that

CL�;m�g1; . . . ; g2m� � CL�;m�h1; . . . ; h2m��41�

This completes the second part of Theorem 2.
In order to show the third part of Theorem 2, recall ®rst that all integral

homology 3-spheres are oriented. The change of orientation of an integral
homology 3-sphere induces an involution on M, and thus on Gas

mM for
every m. Recalling the isomorphism Gas

mM ' GmA�/�, the above involution
on GmA�/� is simply multiplication with �ÿ1�m, [LMO, Proposition
5.2]. On the other hand, given an admissible Heegaard surface f : R ,! M in
an integral homology 3-sphere M , let f : R ,! M denote the same embed-
ding but with di�erent orientation on the ambient space M .

It is easy to see that the associated change to the set of Lagrangian pairs
is given by �L�; Lÿ� ! �Lÿ; L��.
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Furthermore, note that for an element g of the Torelli group of R, we
have the following identity: �M�g � Mgÿ1 ; see also Fig. 9. Thus, by the above
discussion, we deduce that Cf ;m�g1; . . . ; g2m� � �ÿ1�mCf ;m�gÿ12m ; . . . ; gÿ11 �.
Since passing from f to f interchanges the Lagrangians, and since
Cf ;m�gÿ12m ; . . . ; gÿ11 � � Cf ;m�g2m; . . . ; g1� (due to the fact that Cf ;m is multilin-
ear, and the fact that we use multiplicative notation here to denote addition)
this proves the third part on the cocycle level. The assertion about the
cohomology class follows from Lemma 2.1, using the fact that
�Cf ;m� � �ÿ1��

2m
2 � � 1c��Cf ;m� and �2m

2 � � m �mod 2�. This completes the
proof of Theorem 2. (

3.3. Proof of Theorem 3

Proof. Let f : R ,! M be an admissible Heegaard surface, and �L�; Lÿ� the
associated Lagrangian pair of the symplectic vector space �H ;x� as in
Sect. 1.1. Consider the cocycle CL�;m : 
2mU ! GmA�/�. Recall from Sect.
2.4 the subgroup of the symplectic group Sp�H� isomorphic to GL�L��.
Since this group acts on H preserving the Lagrangian pair �L�; Lÿ�, it
follows from Theorem 2 that CL�;m factors through an invariant map:
�
2mU�GL�L�� ! GmA�/�. Composing with the onto map GmA

rp;nl;cl !
�
2mU�GL�L�� of Proposition 2.18, we get a composite map:

WL�;m : GmA
rp;nl;cl ! GmA�/��42�

thus ®nishing the proof of Theorem 3. (

3.4. Proof of theorem 4

Proof. Let f : R ,! M be an admissible Heegaard surface, and let �L�; Lÿ�
be the associated Lagrangian pair of the symplectic vector space �H ;x� as in
Sect. 1.1.

Let k denote the Casson invariant, and Wk its associated manifold weight
system. Consider the associated 2-cocycle Wk � CL�;1 of U with coe�cients in
Q as in corollary 1.1. According to theorem 2, Wk � CL�;1 factors through a
GL�L�Q� invariant map: K3L�Q 
 K3LÿQ ! Q. According to Corollary 2.19,
the vector space of such invariant maps is 1 dimensional, and a nonzero

Fig. 9. An orientation reversing of M corresponds to a re¯ection along the x-axis
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such map is the restriction of the map CH of (11) to K3L�Q

K3LÿQ ,!
2 K3HQ ,!
6 HQ, which we will denote by the same name
before the 
2UQ. Using the de®nition of the map CU

H (given before the
statement of Theorem 4) and the above discussion, we deduce that
Wk � CL�;1 � cgCU

H for some rational number cg depending on the genus g of
R. According to Addendum 2, CL�;1 is stable (with respect to an inclusion of
a surface in another) and so is CU

H , therefore cg � c independent of the
genus.

To determine the value of c, we need to calculate a particular example.
Consider a 2-pair blink L0bl and a 3-component algebraically split link L0 in
S3 shown in the left part of Fig. 10. Part of this ®gure appeared ®rst in [GL3,
Sect. 3, Fig. 39]. Note that L0 is a trivial 3-component link, bounding a
disjoint union of obvious disks. Choose a unit Seifert-framing for the blink
L0bl, and for L0. Perform a Dehn twist on each of the three disks that L0

bounds, and let Lbl denote the image of L0bl. After performing the twists,
thicken the surface that Lbl bounds in order to get two disconnected genus 3
solid surfaces, and join them along three tubes to form a genus 9 surface R9,
see the right part of Fig. 10. We can assume that Lbl lies in R9. It is easy to
see that R9 is a genus 9 Heegaard splitting of S3. Let Li

bl (for i � 1; 2) denote
the two pairs of the blink Lbl; each gives rise to an element of the Torelli
group of R9, see [GL3]. Let ai (for i � 1; 2) denote the image in U of each of
the above mentioned elements of the Torelli group under the Johnson ho-
momorphism. Using the de®nition of CU

H and the de®nition of the Johnson
homomorphism, it is easy to show that CU

H�a1; a2� � ÿ1.
The ®rst part follows from the following lemma:

Lemma 3.5. With the above normalizations, we have the following equalities:

Wk � CL�;1�a1; a2� � ÿ 2

Wk�Hw� � ÿ 2

Proof. For the ®rst part, note ®rst that for f : R9 � S3 the admissible
Heegaard surface we have:

Fig. 10. On the left, a special case of a 2-pair blink L0bl (bounding the disjoint union of two

genus 2 surfaces) union a 3-component algebraically split link L0. On the right the boundary

surface R9 of a genus 9 handlebody
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UT
f ��1ÿ a1��1ÿ a2�� � S3 ÿ S3a1 ÿ S3a2 � S3a1;a2

� ÿS3 � S3a1;a2

� ÿ�S3; Lbl; f � 2FT
2M �Fas

3 M

where the ®rst equality follows from the fact that S3a1 � S3a2 � S3. We also
have that:

ÿ�S3; Lbl; f � � �S3; L0bl [ L0; f � � Hw � 2Yb � 2�S3 ÿ S3Trefoil;�1�

where the ®rst equality follows from the fact that L0 is an unlink, and the
second follows from the fact that surgery on each of the pairs of L0bl cor-
responds to the alternating sum of cutting or not each vertex of the H graph,
see also [GL3, Sect. 3, Fig. 36]. The third equality follows from the main
identities of [Oh], [GL2], and the last by the fact that S3Trefoil;�1 equals the
result of Dehn surgery on a Borromean ring of three components with
framing �1. Note that Trefoil is a right (or left) handed trefoil in S3

depending on the Borromean ring; either case does not a�ect the validity
of our calculation.

This and the de®nition of Wk � CL�;1 imply that

Wk � CL�;1�a1; a2� � k�UT
f ��1ÿ a1��1ÿ a2���

� k�Hw�
� 2k�S3� ÿ 2k�S3Trefoil;�1�

Using the normalizations of the Casson invariant it follows that k�S3� � 0
and k�S3Trefoil;�1� � 1 which proves the lemma. (

In order to show the second part, since G1A�/� is 1 dimensional, the ®rst
part implies that:

CL�;1 � c
0
gCU

H �Hw�43�

for some rational number c
0
g. The stability of CL�;1 implies that c

0
g � c

0

independent of the genus. Composing (43) with Wk : G1A�/� ! Q we
obtain that Wk � CL�;1 � c

0
Wk�Hw�CU

H , which (due to the ®rst part of
Theorem 4) implies that 2 � c

0
Wk�Hw�. Using lemma 3.5, the second part of

Theorem 4 follows.
In order to show the third part of Theorem 4, recall ®rst from Theorem 2

that CL�;1 : 
2U ! G1A�/� factors through a GL�L�� invariant map
K3L�Q 
 K3LÿQ ! G1A�/�. Thus using the basis of the four dimensional
vector space G1A

rp;nl;cl�/� shown in the southeast part of Fig. 8 and the
de®nition of WL�;1 and Corollary 2.19, the second part of Theorem 4 implies
the third part.

In order to show the fourth part of Theorem 4, namely that CL�;1
represents a non-zero cohomology class, we interpret it as a cup-product.
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Consider the elements n� 2 H 1�K3H ; K3L�� de®ned by the homomorphisms
K3H ! K3�H=L�� � K3L�. Then the intersection pairing on H de®nes
a non-singular pairing on K3H which induces a non-singular pairing
K3L� 
 K3Lÿ ! Q. Using this pairing we have a cup-product

H1�K3H ; K3L�� 
 H1�K3H ; K3Lÿ� ! H2�K3H ; Q�

Now it is straightforward to check, from (13), that j��CL�;1� � n� [ nÿ,
where j : K3H ! U is the projection.

Recall that, for any ®nitely-generated abelian group A, there is an
isomorphism of Q-algebras:

H��A; Q� � K��A�� 
Q

where A� � Hom�A;Z�. The product structure on K��A�� is de®ned as
follows:

/p � wq�v1 ^ . . . ^ vp�q� �
X

p

sgn�p�/p�vp1 ^ . . . ^ vpp�

wq�vp�p�1� ^ . . . ^ vp�p�q��

where the sum ranges over all shu�e permutations p.
Thus n� [ nÿ 2 H2�K3H ; Q� � K2�K3H�� is de®ned by

u ^ v 7! x�n��u�; nÿ�v�� ÿ x�n��v�; nÿ�u��

for u; v 2 K3H . To see this is non-trivial we note, for example, that, if
u 2 K3L� and v 2 K3Lÿ, then n� [ nÿ�u ^ v� � x�u; v�.

Now suppose that K� is another Lagrangian pair with associated classes
g� 2 H 1�K3H ; K��, and suppose that n� [ nÿ � g� [ gÿ. We ®rst point
out that K3L� � K3Lÿ � K3K� � K3Kÿ � K3H . This follows from the
observation that n� [ nÿ�u ^ w� � 0 for all v 2 K3H if and only if
x�u;K3L� � K3Lÿ� � 0.

We can assume that dimH � 6. Let p : K� ! L� be the restriction of the
projection of H onto L� with kernel Lÿ. Choose any basis v1; . . . ; vn of K�

such that p�vi� � 0 for i � r, and p�vi� are linearly independent in L� for
i > r. Write vi � v�i � vÿi for i > r, where v�i 2 L�. We consider several
cases.

1 < r < n. Then v1; v2 2 Lÿ and v1 ^ v2 ^ vn � v1 ^ v2 ^ v�n � v1 ^ v2 ^ vÿn .
If we now consider the direct sum decomposition:

K3H � �K3L� � K3Lÿ� � �L� 
 K2Lÿ� � �Lÿ 
 K2L���44�

then we see that the component of v1 ^ v2 ^ vn in L� 
 K2Lÿ is non-zero. But
v1 ^ v2 ^ vn 2 K3K� � K3K� � K3Kÿ � K3L� � K3Lÿ, which means this
component should be zero.
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r � 1. For any 1 < i < j, we examine v1 ^ vi ^ vj. The component in
L� 
 K2Lÿ is v�i ^ �vÿj ^ v1� � v�j ^ �v1 ^ vÿi �. Since v�i ; v

�
j are linearly inde-

pendent, this means v1 ^ vÿi � v1 ^ vÿj � 0. Thus vÿi � civ1, for some scalars
ci, i > 1. But then v1 ^ vi ^ vj � v1 ^ v�i ^ v�j lying in Lÿ 
 K2L� in the
decomposition of (44).

r � 0. Suppose K� 6� L�. Then we can assume without loss of generality
that vÿ1 6� 0. If we consider the element v1 ^ vi ^ vj, then the component in
L� 
 K2Lÿ is v�1 ^ �vÿi ^ vÿj � � v�i ^ �vÿj ^ vÿ1 � � v�j ^ �vÿ1 ^ vÿi �. Since v�1 ; v

�
i ;

v�j are linearly independent, we conclude that vÿ1 ^ vÿi � vÿ1 ^ vÿj � 0 and so
vÿi � civÿ1 , for suitable scalars ci. Now let us replace each vi by vi ÿ civ1. In
other words we can assume that each vi 2 L� for i > 1. But now we can see
that v1 ^ vi ^ vj has component vÿ1 ^ vi ^ vj in Lÿ 
 K2L� and so vÿ1 would
have to be zero.

The conclusion from these arguments is that either r � n, in which case
K� � Lÿ, or, from the last case, that K� � L�. Similarly, we see that
Kÿ � L� or Lÿ. Finally we need to check that n� [ nÿ � g� [ gÿ in case
K� � Lÿ and Kÿ � L�. Using the orthogonal direct sum decomposition
(44), we can write u � u� � uÿ � u0; v � v� � vÿ � v0, where u�; v� 2 K3L�;
uÿ; vÿ 2 K3Lÿ and u0; v0 2 �L� 
 K2Lÿ� � �Lÿ 
 K2L��. Then we have

n� [ nÿ�u ^ v� � x�u�; vÿ� ÿ x�v�; uÿ�
g� [ gÿ�u ^ v� � x�uÿ; v�� ÿ x�vÿ; u��

The skew-symmetry of the symplectic pairing implies that these are equal.

3.5. Proof of Proposition 1.4

Proof. Under the assumptions of Corollary 1.4, we are given an embedded
sphere S ,! M in an integral homology 3-sphere M which separates M into
two components. Therefore, we have that M is a connected sum of two
integral homology 3-spheres M1;M2, along the separating sphere S, i.e.,
M � M1]M2. Furthermore, by assumption, the admissible surfaces
fi : Rgi ,! M belong to di�erent components of M ÿ S. Recall the composite
surface f1 [ f2 : Rg1�g2 � Rg1 [@Sÿ�D1[D2� Rg2 ,! M . Therefore, for hi 2T
�Rgi;1�(i � 1; 2) we get an element h1 [ h2 2T�Rg1�g2�, and an isomorphism:

Mh1[h2 ' �M1�h1]�M2�h2
Since M (resp., A�/�) is a commutative algebra with multiplication the
operation of connected sum on integral homology 3-spheres, (resp., the
disjoint union of vertex oriented trivalent graphs) and since the isomor-
phism Gas

3mM ' GmA�/� preserves the algebra structures, the result
follows. (
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3.6. Proof of Theorem 5

In this section we give a proof of Theorem 5. Since the proof combines
several rather di�erent techniques, for the convenience of the reader we
separate it into several steps.

Proof. [of Theorem 5]

� Step 1 The de®nition of the map Df ;m of (16).
Set Df ;m � /Tg

f from Corollary 2.12.

� Step 2 Df ;m is determined by Cf ;m.

Indeed, equation (17) follows from Lemma 2.8 and the above de®nition of
Df ;m. It remains to show that G2mTg 
Q is spanned by elements of the form
�x1; �x2; . . . ; �x2mÿ1; x2m��� for xi 2Tg. This follows from several applications
of the Jacobi identity: ��a; b�; c� � �a; �b; c�� ÿ �b; �a; c�� for a 2Tg�n1�;
b 2Tg�n2�; c 2Tg�n3� with n1 � n2 � n3 � 2m.

In case f : R ,! M is an admissible Heegaard surface, Cf ;m, and thus
Df ;m, depends only on the associated Lagrangian pair �L�; Lÿ�. In that case
we will denote Df ;m by DL�;m. Assume from now on that f is an admissible
Heegaard surface.

� Step 3 DL�;m satis®es the symmetry property of (18).

Indeed, Fig. 9 shows that Df ;m�aÿ1� � Df ;m�a� where f is the surface in the
orientation reversed 3-manifold M . Since the involution of reversing the
orientation in the ambient 3-manifold is multiplication by �ÿ1�m on
GmA�/�, the result follows.
� Step 4 Assume now that f is the standard genus g Heegaard splitting of S3.
Then, for g � 5m� 1, DL�;m is onto.

This follows by Corollary 3.10 of Theorem 7 whose proof is given below.
The proof of Theorem 7 and Corollary 3.10 given below is long and tech-
nical; furthermore it is logically independent from the rest of the proof of
Theorem 5.

� Step 5 The case of m � 1.

We now describe explicitly the map DL�;1. Assume that we are given an
admissible Heegaard genus g surface f . Recall ®rst that GmTg 
Q is a ®nite
dimensional, stable with respect to the genus, representation of Sp�H�. It
follows by a theorem of Quillen [Qu] (see also [Ha1]) that it is a rational
representation of Sp�HQ�. It is a very interesting question to analyze the
structure of the above representation. Motivated by the above question
Morita [Mo5] developed a theory of higher Johnson homomorphisms, known
to form a Lie algebra. The structure of this and related Lie algebras have
been analyzed in the pioneering work of Morita [Mo2] and Hain [Ha2]. In
case of G2Tg 
Q the answer is known and we describe it here.
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It turns out that for g � 6 we have the following decomposition as
representations of Sp�HQ� [Mo2], [Ha2]:

G2Tg 
Q � V �0� � V �2�2��45�

Recall from Sect. 2.3 that Tg�2� �Kg, thus we have that G2Tg �
Kg=Tg�3�. Morita [Mo2, Sec. 5] using his theory of secondary characteristic
classes de®ned a group homomorphism d1 : Kg ! Q which vanishes on
Tg�3�, thus inducing a map G2Tg 
Q! Q. Furthermore, Morita [Mo2,
Sect. 1] de®ned a higher version of Johnson's homomorphism
s3 : Kg ! V �2�2�, which also vanishes on Tg�3� thus inducing a map
G2Tg 
Q! V �2�2�. The above maps are Sp�HQ� invariant, and stable, and
realize the decomposition of (45) as a Sp�HQ� module. Moreover, Morita
[Mo2] using a Heegaard splitting f , de®ned a map qf : V �2�2� ! Q and
showed in his main result [Mo2, Theorem 6.1] that:

Wk � DL�;1 � ÿ
1

24
d1 ÿ qf�46�

Note that the change in sign from [Mo2, Theorem 6.1] to the above equation
is due to the fact that Morita uses the mapTg ! Q to be a! k�S3a� ÿ k�S3�;
however we use the map Tg ! Q to be a! k�S3� ÿk�S3a�. From this, it
follows immediately that Wk � D1 � ÿ 1

24 d1, thus ®nishing step 5 and the
proof of Theorem 5.

The proof of Theorem 7 and Corollary 3.10 occupies the rest of this
section. The proof is long and technical, and consists of combinatorial as
well as geometric topology arguments. We urge the reader to keep in mind
the ®gures.

Let f : Rg ,! S3 be the standard genus g Heegaard splitting of S3, which
we keep ®xed for the rest of this section. We follow the notation and ter-
minology of Sect. 2.2. For L an f -compatible Lagrangian consider the maps
GUL

f : GQLL
g ! GLM and /L

f : GLL
g 
Q! GAconn�/�, which, for sim-

plicity, we denote by UL and /L respectively. Then, we have the following
theorem:

Theorem 7. Suppose g � 5n� 1. Then there exists an f-compatible Lagrang-
ian L � H1�Rg� so that /L�G3nL

L
g 
Q� � GnA

conn�/�.

Proof. Due to the length of the proof, for the convenience of the reader we
provide the proof in six (or perhaps seven) steps.

� Step 0 A non proof.

We ®rst give a ``too good to be true'' proof. GUL
f is a map of coalgebras and

according to the results of [GL3] reviewed in Sect. 2.2, GUL
f is stably onto. If

it were the case that GUL
f was a Hopf algebra map, the induced map on the

primitives would be onto by a dimension count using the PoincareÂ -Birkho�-
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Witt theorem. Unfortunately, GUL
f does not preserve the product structure,

see Remark 2.13.

� Step 1 A reduction to ``chord diagrams''.

We begin by recalling the following de®nition: a degree n chord diagram (on
a cirle is a collection of n chords with 2n distinct end points; for an example
see Fig. 11. Note that a chord diagram can be thought of as a connected
vertex oriented trivalent graph (with the counterclockwise orientation at
each vertex), and furthermore this way a degree n chord diagram gives rise
to an element of GnA

conn�/�. Note that a degree n chord diagram has 2n
external edges (the ones on the circle) and n internal ones. Degree n chord
diagrams are rather special elements of GnA

conn�/�, however we have the
following claim:

Claim 3.6. GnA
conn�/� is generated by chord diagrams as above.

A proof, using the IHX relation, can be found in [GL2, Lemma 3.2].
With the notation of Sect. 2.2, we make the following:

Claim 3.7. For every n >1 there is an f-compatible Lagrangian L with the
following property: For each degree n chord diagram C; there is an element
nC 2LL

g�3n� such that:

F �/L�nC�� � Cb mod Yb�47�

Using Lemma 2.9 the above claim implies that for each degree n > 1 chord
diagram C, there is an element nC 2LL

g�3n� such that /L�nC� � Cw. This,
together with Claim 3.6 implies Theorem 7 for n > 1.

Thus, we will prove Theorem 7 by proving the special case of Theorem 7
for n � 1, and proving Claim 3.7 for n > 1. Note that Theorem 7 is obvious
for n � 0. In the rest of the proof, we will be working in the graded space
G3nAb�/� which is isomorphic to Gas

3nM.

Fig. 11. A degree 3 chord diagram on a circle
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� Step 2 An important construction.

We begin with a construction which will be an important component of, as
well as a warm-up for, the general construction. Let R2 � @H be the surface
of genus two in S3, where H � T1

`
T2 is the boundary connected sum of

two solid tori in R3. We distinguish three simple closed curves on R2. Let a
be a meridian in @T1, i.e., the boundary of a meridian disk in T1, and c be a
longitude in @T2. Finally let b be a band sum of two disjoint meridians
in @T2, where the band passes once, longitudinally, around @T1. See Fig. 12.
The orientations of these curves can be chosen arbitrarily for the moment.
Let a; b; c be the di�eomorphisms of R2 de®ned by Dehn twists along a; b; c,
respectively. Note that b 2K2, since b bounds in R2, but a and c do not lie
in the Torelli group. However, there is a Lagrangian L � H1�R2�, compatible
with the given embedding of R2 in S3, so that a; b; c 2LL

2. In fact we can just
take L to be the subgroup generated by the homology classes of a and c.

Consider the element ��a; b�; c� 2 �LL
2�3. Then, we have the following:

� Step 3 /L��a; b�; c� is a generator of Gas
3 M � G3A�/� � G1A

conn�/� � Q.
Thus theorem 7 holds for n � 1.

Proof. Consider the element �1ÿ a��1ÿ b��1ÿ c� 2 I � �ILL
2�3. Then

UL��1ÿ a��1ÿ b��1ÿ c�� represents the same linear combination in M as
�S3;K�, where the 3-component link K is constructed as follows. Take three
concentric copies of R2 in R3 and place a in the outer copy, b in the middle
copy and c in the inner copy. Then K is given by these three disjoint curves
in R3. See Fig. 13. We refer the reader to [ GL3] for the explanation of this.

Note that K is just the Borromean rings and so represents a generator of
Gas
3 M. The following Claim 3.8 completes the proof of this step.

Fig. 12. A genus 2 handlebody R2 together with 3 curves a; b; c on it

Fig. 13. After taking 3 concentric copies of the surface of Fig. 12, and placing a; b; c on each

copy in that order, we arrive at the 3-component Borromean link K shown in the ®gure above
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Claim 3.8. We have:

UL�1ÿ ��a; b�; c�� � UL��1ÿ a��1ÿ b��1ÿ c��
To prove the claim recall the following identity from Lemma 2.8:

1ÿ ��a; b�; c� � �1ÿ a��1ÿ b��1ÿ c� ÿ �1ÿ b��1ÿ a��1ÿ c�
ÿ �1ÿ c��1ÿ a��1ÿ b� � �1ÿ c��1ÿ b��1ÿ a� mod I4

Now for any permutation a1; a2; a3 of a; b; c, UL��1ÿ a1��1ÿ a2�
�1ÿ a3�� � �S3;K 0�, where K 0 is the 3-component link de®ned by placing
a; b; c in concentric copies of R2, just as above, except that they are placed in
the permuted order. But it is easy to see that, for any non-trivial permuta-
tion, the resulting link K 0 is trivial. See Fig. 14. Thus, from the above
formula we see that UL�1ÿ ��a; b�; c�� � UL��1ÿ a��1ÿ b��1ÿ c��. This
concludes the proof of the claim and of Step 3. (

� Step 4 The de®nition of the f -admissible Lagrangian L.

Now let C be any chord diagram with 2n vertices. We associate to C a
Heegaard surface RC � R3 as follows. Choose an embedding of C � R3.
Then, at every vertex v of C, place a copy R�v� of R2 and, for every edge e of
C with vertices ve; v0e, take a connected sum of R�ve� with R�v0e� using a tube
T �e� running along the edge e. See Fig. 15.

Note that the resulting surface RC will have genus g � 5n� 1. In each
R�v� we have three copies a�v�; b�v�; c�v� of the curves a; b; c in R2 and we
can assume they avoid the holes where the tubes fT �e�g meet R�v�. Now

Fig. 14. The links shown above associated to any nontrivial permutation of a; b; c are trivial

Fig. 15. For the chord diagram C shown on the left, the construction of a handlebody RC on

the right
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label the edges of C with labels a; b or c, so that all the internal edges have
label b and the external edges are labeled alternately a and c as we go round
the external circle. Thus the three edges incident to any vertex have all
di�erent labels. See Fig. 16. Now for each edge e that connects the vertices ve

and v0e we take a band sum of the curves x�ve� and x�v0e�, where x 2 fa; b; cg is
the label of e, using a band which travels along the boundary of the tube
T �e�. We will denote this band-sum curve by ê. Note that there are 6n
labeled curves a�v�; b�v�; c�v� in RC which, after the above mentioned band
sum, yield 3n curves ê in RC.

Let ce be the di�eomorphism of RC de®ned by a Dehn twist along ê.
Notice that ce 2Kg if e has label b, since it can be arranged, by taking our
connected sums correctly, that ê bounds in RC. See Fig. 17.

If we de®ne our Lagrangian L to be generated by the homology classes in
each R�v� represented by a�v� and c�v� and, in addition, the meridians of the
tubes T �e�, then L is f -compatible and each ce 2LL

g . It will be a very

important observation that whenever êi and êj are disjoint- for example if
the two edges ei and ej have the same label, or if ei has label a and ej has
label c- then cei

and cej
commute.

� Step 5 Veri®cation of Claim 3.7 for n 6� 1.

We begin with some preliminaries. Choose any ordering I � fe1; � � � ; e3ng
of the edges of C. We now consider the element nC

I � �1ÿ ce1� � � ��1ÿ ce3n
� 2 I3n, where I �def ILL

g , and its image UL�nC
I� 2 GL

3nM. Recall
from Sect. 2.2 that there is a map GL

3nM! Gas
3nM (induced by an inclusion

Fig. 16. A labeling of the edges of a degree 3 chord diagram with labels a; b; c

Fig. 17. The connected sum of two b labeled curves is a bounding curve. Thus Dehn surgery

along it represents an element of Kg
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map FL
3nM �Fas

3nM); we will thus identify GL
3nM with its image in Gas

3nM.
With this identi®cation in mind, we will now describe the element
UL�nC

I� 2 Gas
3nM. Choose 3n concentric copies of RC in R3 and consider the

curve êi placed in the i-th copy of RC (counting from the outer to the inner).
These curves de®ne a 3n component link K in S3 and we have that
�S3;K� � UL�nC

I�. If ei; ej; ek�i < j < k� are the edges incident to a vertex v,
then the three curves êi; êj; êk form a Borromean link if ei; ej; ek have labels
a; b; c, in that order, but form a trivial link if the labels are in any other
order. We will call v I-proper in the former case and I-improper in the
latter case. We call an ordering I, or the associated element nC

I proper if all
vertices are I-proper, otherwise improper.

Now recall the isomorphism F 0 : GnAb�/� ! Gas
3nM of equation (28) of

Sect. 2.2. Comparing the de®nition of this map with our description of K, we
see that UL�nC

I� � F 0�CI� where CI is the graph obtained from C by split-
ting every improper vertex v into three univalent vertices. Observing that

F 0�CI� � F 0�C� mod F 0�Yb� if I is proper
0 mod F 0�Yb� if I is improper

�
(which follows from

the fact that each trivalent graph with at least one univalent vertex lies inYb,
see the proof of Lemma 2.9), it follows that

UL�nC
I� �

F 0�C� mod F 0�Yb� if I is proper
0 mod F 0�Yb� if I is improper

�
�48�

For each label x 2 fa; b; cg, let xi denote the edges with label x, in any
order. Fix an initial ordering I0 � fa1; � � � ; an; b1; � � � ; bn; c1; � � � ; cng of the
edges of C. To simplify the notation we will also write xi when we really
mean cxi

. This should cause no confusion.

Claim 3.9. There is a commutator C in the ei such that

nC
I0
� 1ÿ C � improper terms mod I3n�1

Note that (48) and the above claim imply that UL�nC
I� � F 0�Cb�mod F 0�Yb�.

Using the de®nition of F 0 (see (28)) and the de®nition of /L this imples that
F �/L�nC

I�� � Cb modYb which ®nishes the proof of Step 5.

Proof. [of Claim 3.9] Choose any ar and bs which are incident. Then, using
(20), we have

1ÿ nC
I0
��

Y
i 6�r

�1ÿ ai��1ÿ �ar; bs��
Y
j6�s

�1ÿ bj�
Y
�1ÿ ci�

�
Y
i 6�r

�1ÿ ai��1ÿ bs��1ÿ ar�
Y
j 6�s

�1ÿ bj�
Y
�1ÿ ci� mod I3n�1

The second term on the right side is improper since bs precedes ar. Next
choose some at which is incident to bs. Then we have
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Y
i 6�r

�1ÿ ai��1ÿ �ar; bs��
Y
j 6�s

�1ÿ bj�
Y
�1ÿ ci� �Y

i 6�r;t

�1ÿ ai��1ÿ �at; �ar; bs���
Y
j6�s

�1ÿ bj�
Y
�1ÿ ci�

ÿ
Y
i 6�r;t

�1ÿ ai��1ÿ �ar; bs���1ÿ at�
Y
j 6�s

�1ÿ bj�
Y
�1ÿ ci� mod I3n�1

The second term on the right side can be further expanded by applying (20)
to 1ÿ �ar; bs� and we obtain, mod I3n�1, a sum of two improper terms (since
bs precedes at in both terms). We next look for some bu which is incident to
at and, if it exists we can, in the same manner, writeY

i6�r;t

�1ÿ ai��1ÿ �at; �ar; bs���
Y
j6�s

�1ÿ bj�
Y
�1ÿ ci� �Y

i6�r;t

�1ÿ ai��1ÿ ��at; �ar; bs��; bu��
Y

j 6�s;u

�1ÿ bj�
Y
�1ÿ ci�

� improper terms mod I3n�1

Continuing in this way we eventually reach a point where we can write, after
renumbering:

nC
I0
��

Y
i�p

�1ÿ ai��1ÿ C0�
Y
j�q

�1ÿ bj�
Y
�1ÿ ci�

� improper terms mod I3n�1

for some p; q < n (actually p � q) and C0 is a commutator in which each
ai; i > p and bj; j > q appears once and no ai; bj with i � p; j � q is incident
to any ai; bj with i > p; j > q. Thus C0 commutes with every bj and we have:

nC
I0
��

Y
i�p

�1ÿ ai�
Y
j�q

�1ÿ bj��1ÿ C0�
Y
�1ÿ ci�

� improper terms mod I3n�1

We now play the same game with ci; bj and C0 that we just played with ai; bj.
We will then eventually arrive at

nC
I0
��

Y
i�p

�1ÿ ai��1ÿ C00�
Y
j�q

�1ÿ bj�
Y
i�r

�1ÿ ci��49�

� improper terms mod I3n�1

for some new q and r and new commutator C00 involving all the ai; bi; ci not
involved in the other terms on the right side, and no bi or ci in C00 is incident
to any not in C00. We now play the game again with the ai; bi and C00. Going
back and forth like this, we eventually arrive at the point where we have an
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equation of the form (49) where none of the edges in C00 are incident to any
of the edges outside C00. But, since C is connected, this is impossible unless
there are no edges in C00. (

� Step 6 The Lagrangian L and the Heegaard surface RC do not depend on
the choice of the chord diagram C.
The equivalence (under isotopy) of the embeddings is not hard to see,
assuming that we always choose the ``natural'' embedding associated with
each chord diagram, namely embed the external circle to coincide with the
standard circle in R3 and embed the internal edges as straight lines between
the endpoints on the external circle, introducing a small undercrossing or
overcrossing when necessary to avoid intersecting another internal edge. See
Fig. 15 again. By sliding the ends of the tubes associated to the internal
edges around on the torus associated to the external circle we can construct
an isotopy between the embeddings associated to any two chord diagrams
with the same number of edges. See Fig. 18.

What happens to L under such an isotopy? The generators of L are either
curves on the R�v� or meridians on the tubes associated to internal edges. In
either case the isotopy preserves the curve and so there is no problem. This
®nishes the proof of Theorem 7. (

We now discuss the analogous result for the Torelli group Tg and
Johnson's group Kg instead of the Lagrangian group LL

g . Recall from
Sect. 2.2 the maps /J

f for J �Tg;Kg;L
L
g , for our ®xed Heegaard splitting

f , and the f -compatible Lagrangian L of Theorem 7. For simplicity, we
drop the dependence on f from the notation of the above maps. We now
have the following corollary:

Corollary 3.10. Assuming f to be the standard genus g Heegaard splitting of
S3, the maps /K and /T are onto for g � 5n� 1.

Proof. Suppose C is a connected trivalent vertex oriented graph of degree
n. We have constructed above an element C 2 �LL

g�3n such that
UL�1ÿ C� � C 2 Gas

3nM. Recall that C is a formal commutator in the ele-
ments ai; bi; ci for 1 � i � n. Also recall that bi 2Kg and so, since Kg is
normal inLL

g , it follows that C 2 �Kg�n. Since /K (resp., /L) is induced by
UK (resp., UL) it follows by Lemma 2.14 that /L�C� � /K�C� � UL�1ÿ C�
� C, which proves the corollary for Kg.

Fig. 18. An isotopy of the handlebody on the left to the handlebody on the right via a handle

slide

586 S. Garoufalidis, J. Levine



ForTg we need to recall from Sect. 2.3 the fact thatKg �Tg�2�, where
Tg�2� is the second quotient of the rational central series of Tg. Since
C 2 �Kg�n �Tg�2n�, we have Cr 2 �Tg�2n for some r. This and equation
(21) show that 1ÿ Cr � r�1ÿ C� mod �IKg�n�1 and so /T �Cr� � /K�Cr� �
vUK�1ÿ Cr� � UK�r�1ÿ C�� � rC and we are done. (

3.7. A Gusarov group for homology spheres. As an application of Theorem 7
in this section we prove Theorem 6. Recall the map sn : On ! Gas

3nM of (19).
First we observe the well-known fact that sn�On� lies in the subspace of
primitive elements of GasM, which follows from

D�S3 ÿM� � D�S3� ÿ D�M� � S3 
 S3 ÿM 
M

� ÿ�S3 ÿM� 
 �S3 ÿM� � S3 
 �S3 ÿM� � �S3 ÿM� 
 S3

and the fact that if S3 ÿM 2Fas
3nM then �S3 ÿM� 
 �S3 ÿM� � 0 in

Gas
3n�M
M�.
With respect to the standard genus g Heegaard splitting of S3, we have

a map Tg ,! QTg !M, using (2). It is easy to show that for every
nonnegative integer n, the above map induces a well de®ned map
Tg=Tg�2n� 1� ! En, thus, by restriction, we get a map rn : G2nTg ! En.
It is easy to show that rn is a group homomorphism, and that the following
diagram commutes:

G2nTg ��! G2nTg 
Q

rn

??y ??y/T

On ��!sn
Gas
3nM

By its de®nition, sn is one-to-one. Furthermore, by Corollary 3.10, Im /T is
the space of primitive elements, if g � 5n� 1.

We can now prove that On is a group. Suppose a 2 On ± then sn�a� is
primitive and so sn�a� 2 Im /T . So there are non-zero integers k; l such that
sn�ka� � /T �lb�, for some b 2 G2nT. We can now compute:

sn�ka� rn�ÿlb�� � /T �lb� � /T �ÿlb� � 0

Since sn is one-one, we see that �k ÿ 1�a� rn�ÿlb� is an (additive) inverse
for a. Thus we have shown that On is an abelian group.

Now sn induces a linear map On 
Q! Gas
3nM which is one-to-one (since

sn is one-to-one) and onto the subspace of primitive elements (since /T is
onto). This conlcudes the proof of Theorem 6.

4. Results for the subgroups Kg, LL
g of the mapping class group

4.1. Cocycles for Kg. In this section we discuss some similar constructions
of cohomology classes for the Johnson subgroupKg, discussed in Sect. 2.3.
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Following [GL3], recall from Sect. 2.2 that given an admissible surface
f : Rg ,! M , the induced map UK

f : QKg !M maps the powers �IKg�m
into FK

mM. Moreover, it was shown that FK
mM �FT

2mM �Fas
3mM

thus inducing a map of associated graded spaces GK
mM! GT

2mM ' Gas
3m

M ' GmA�/�, where the last isomorphism is given by the fundamental
theorem of [LMO], as was explained in the introduction. In Remark 2.13 we
pointed out that the composite map GK

mM! Gas
3mM is onto, a fact that we

will not use here. If we combine Corollary 2.5, for G �Kg; q � 2, with
UK

f ��IKg�m�, we obtain cocycles CK
f ;m 2 Cm�Kg=Kg�2�;GmA�/��. Unlike

the case of the Torelli group, we cannot conclude that the pull-back of �CK
f ;m�

to H m�Kg;GmA�/�� is trivial.
The little that we can say is summarized in the following proposition.

Proposition 4.1.
� CK

f ;m is multilinear and Cg-equivariant, i.e., satis®es the following property
� for ai 2Kg=Kg�2�; h 2 Cg�:

CK
hf ;m�h�a1; . . . ; h�am� � CK

f ;m�a1; . . . ; am��50�

� If f is an admissible Heegaard surface, then CK
f ;m depends only on the

``Lagrangians'' L�; Lÿ � p=p�3�, where p � p1�Rg� and L� � Kerfi� � f� :
p=p�3� ! p1�M��=p1�M���3�g.

Remark 4.2. Let CK
g denote the quotient group Cg=Kg. Then, from the work

of Johnson, we have a short exact sequence:

1! U ! CK
g ! Sp�H� ! 1

CK
g acts on Kg=Kg�2� by conjugation, and on p=p�3� by de®nition. It

therefore acts on the Lagrangian pair in p=p�3� and the equivariance
property of CK

f ;m is really an CK
g -equivariance. Moreover the subgroup of CK

g
which preserves the Lagrangian pair acts trivially.

Proof. The multilinearity and Cg-equivariance follows exactly as for the
Torelli group.

The proof of the second assertion follows the same lines as the proof of
the analogous result in Theorem 2 for the Torelli group. We need the
following analogue of Lemma 3.1.

Lemma 4.3. Suppose that Q is a handlebody. Set h � p1�Q�; p � p1�@Q� and
L � Kerfp=p�3� ! h=h�3�g. If a is an automorphism of p=p�3� such that
a�L� � L, then there exists a di�eomorphism h of Q such that �hj@Q�� � a
(modulo inner automorphisms).

If we assume this lemma, then the rest of the proof proceeds as in the proof
of Theorem 2 with the following changes.
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The analogue of Lemma 3.2 is established with H1�R� replaced by
p=p�3�. The proof only needs to be modi®ed by observing that g� belongs to
Kg, since Johnson's result says that an element g 2 Cg belongs toKg if and
only if it induces the identity on p=p�3�.

The analogue of Lemma 3.3, with H1�R� replaced again by p=p�3�, is
established by the same proof, with the extra observation that we may
choose h 2Kg using the result of Morita [Mo3] that any integral homology
3-sphere is of the form S3h for some h 2Kg0 , for some g0.

Proof of Lemma 4.3. Before we begin, lift a to an automorphism F =F �3�,
where F � p1�R0� is a free group. Recall the classical fact that the induced
automorphism a� on H1�R� is symplectic and so we can apply Lemma 3.1 to
®nd a di�eomorphism g of Q so that �gj@Q�� � a� on H1�R�. Thus we can
assume that a� � identity. The e�ect of a on F =F �3� is measured by s�a�,
where s is the Johnson homomorphism. We will now use Morita's Lemma
3.4. We can choose a set of generators fx1; . . . ; xg; y1; . . . ; ygg for F so that L
is normally generated by fy1; . . . ; ygg. Then Morita's lemma says that a is
induced by a di�eomorphism of R0 if and only if s�a� belongs to the sub-
group W � KerfK3H ! K3H=K3Lg. Recall the de®nition of s�a�. For any
h 2 F =F �3� we can write a�h� � hk�h�. The assignment h! k�h� de®nes a
homomorphism k : H ! K2H ' F �2�=F �3�. Now consider the element

s�a� �
X

i

�xi 
 k�yi� ÿ yi 
 k�xi�� 2 K3H � H 
 K2H�51�

The inclusion K3H � H 
 K2H is de®ned by

a ^ b ^ c! a
 �b ^ c� � b
 �c ^ a� � c
 �a ^ b�

Now it is easy to see that W � W 0 \ K3H , where W 0 � H 
 K2H is the kernel
of the projection H 
 K2H ! �H=L� 
 K2�H=L�. The condition that
a�L� � L implies that k�h� 2 KerfK2H ! K2�H=L�g. Remembering that L is
generated by fyig, we see that the ®rst terms in equation (51) lie in
H 
KerfK2H ! K2�H=L�g while the second terms lie in L
 K2H . Thus
s�a� 2 W . (

This completes the proof of Proposition 4.1. (

4.2. Cocycles for LL
g . Given an admissible surface f : R ,! M , and an f -

compatible Lagrangian L, recall from Sect. 2.2 (see also [GL3]) the La-
grangian subgroupLL

g � Cg of the mapping class group and the associated
map UL

f : LL
g !M. It is proved in [GL3] that Fas

mM is the union of the
images Uf �ILL

g�m� over all f and f - admissible Lagrangians L. Recall also
that Fas

mM is a 3-step ®ltration and that Fas
3mM=Fas

3m�1M ' GmA�/�. The
general results of Sect. 2.1 yield the following.

Proposition 4.4. Let f : R g,! M be an admissible surface, L a f -compatible
Lagrangian and m be a nonnegative integer.
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� There exist cocycles

CL
f ;3m 2 C3m�LL

g=L
L
g�2�;GmA�/�� for all m

CL
f ;3mÿ1 2 C3mÿ1�LL

g=L
L
g�3�;GmA�/�� for odd m; and

CL
f ;3mÿ2 2 C3mÿ2�LL

g=L
L
g�4�;GmA�/�� for even m:

� The pullback of CL
f ;3m to C3m�LL

g=L
L
g�3�;GmA�/�� under the projection

LL
g=L

L
g�2� !LL

g=L
L
g�3� is a coboundary if m is even. The pullback of

CL
f ;3mÿ1 to C3mÿ1�LL

g=L
L
g�4�;GmA�/�� under the projection LL

g=L
L
g�3�

!LL
g=L

L
g�4� is a coboundary if m is odd.

Proof. The ®rst statement follows from Corollary 2.5 and the paragraph
preceding Proposition 2.6. The second statement follows from Proposition
2.6. (

5. Discussion

In this section we discuss the results of the present paper in comparison with
the work of Hain [Ha2] and Morita [Mo6], which has been a source of
motivation and inspiration for our results.

5.1. Finite type invariants of knots and integral homology 3-spheres. One
of the results of the present paper is the construction of a cocycle
Cf ;m : 
2mU ! GmA�/� given an admissible surface f : R ,! M , see
Theorem 1. There is a well known (dictionary) correspondence between
invariants of integral homology 3-spheres and invariants of knots. For
several statements using the above dictionary, see [Ha2]. We caution the
reader however, that the above mentioned dictionary is helpful in stating
results, but not necessarily in proving them.

In this section we discuss a related map after we replace integral ho-
mology 3-spheres by knots and admissible surfaces by admissible braids. Let
r 2 Bn be a braid whose associated permutation is transitive, i.e., whose
closure is a knot: such a braid will be called admissible. Let A�S1� be the
vector space over Q on the set of admissible trivalent graphs with additional
univalent vertices that lie on a circle, divided out by the AS and IHX rela-
tions, see [B-N]. Using the de®nition of the map of equation (5), and re-
placing M (the vector space over Q of integral homology 3-spheres) by K
(the vector space over Q of oriented knots in S3), Fas

�M by the Vassiliev
®ltration F�K, A�/� by A�S1�, admissible surfaces by admissible braids,
and the fundamental theorem of ®nite type invariant s of integral homology
3-spheres by the fundamental theorem of ®nite type invariants of knots, we
can de®ne a map:

Cr;m : 
m�Pn=Pn�2�� ! GmA�S1��52�
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One can show that the above map coincides with the following one: recall
®rst that the abelianization Pn=Pn�2� of the pure braid group is a free abelian
group in generators xij with i; j � 1; 2; . . . ; n and relations xii � 0, xij � xji.
Thus the tensor algebra T �Pn=Pn�2�� is a free (noncommutative) algebra in
generators xij for 1 � i < j � n. Monomials in this algebra are represented
in the left hand side of Fig. 20 and will be called chord diagrams on n
vertical strands. The map Cr;m : 
m�Pn=Pn�2�� ! GmA�S1� de®ned above
coincides with the map that closes a degree m monomial (thought of as a
degree m vertical chord diagram on n strands) to a chord diagram on S1. The
above mentioned closure of course depends on the admissible braid r but
only in a mild way: one can show that it depends only on the image of the
associated permutation.

As we discussed above, in the case of knots, the map (52) is well un-
derstood. This is due to the fact that there is a nice presentation of the pure
braid group, and the fact that the I-adic completion of the rational group
ring of the pure braid group Pn is equal to a quotient of the tensor algebra
T �Pn=Pn�2�� modulo the ideal generated by the 4-term relation.

In the case of the Torelli group though, this is not the case. To begin
with, it is still unknown whether the Torelli group is ®nitely presented. On
the other hand, the I-adic completion of the rational group ring of the
Torelli group has been recently calculated by Hain [Ha2] using the tran-
scendental theory of Mixed Hodge Structures. No combinatorial proof of
the result is known. The map CL�;m of equation (5) may help us understand
the structure of the Torelli group in a combinatorial way, and, in the other
direction, help us understand the space of ®nite type invariants of integral
homology 3-spheres. It may also be a ®rst step in understanding Hain's
calculation.

We can now give the following dictionary between the case of knots and
integral homology 3-spheres, summarized in the following table:

Knots 3-Manifolds

G Pn Tg

G=G�2� Free�xij�i<j U
Admissible objects braids surfaces

Graphical interpretation Fig. 20 Fig. 19

Cocycles Cr;m Cf ;m

Chord diragrams A�S1� A�/�

Fig. 19. On the left, 4 trivalent vertices, and on the right a particular closing to a trivalent graph
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5.2. Comparison with the results of Morita In this section we review brie¯y a
very recent and important paper [Mo6] of Morita. A common problem
addressed in both Morita's recent paper and ours is the one of constructing
cocycles in various subgroups of the mapping class group. Morita [Mo6,
Theorem p.3] uses a map1 q1 : Cg ! 1

2 UoSp�H�, to construct for each i an
Sp�H�-invariant element bi 2 H 2i�12 U ;Q� with the property that, if �bi is
the class in H2i�UoSp�H�; Q� naturally associated to bi, then �q�1��bi�� �
ei 2 H 2i�Cg;Q�, where ei is a certain cohomology class studied by Mumford
and Morita. By de®nition, the classes bi have the following properties:

� They are de®ned on the cocycle level.
� The pullback �q�1��bi�� represents cohomology classes in the full mapping
class group.
� They are Sp�H� invariant cocycles.
� The pullback cocycles in Kg vanish.
� The coe�cients of the cocycles are rational numbers.
On the other hand, the cocycles CL�;m that we de®ned in Theorems 1 and 2
have the following properties:

� They are cocycles.
� They are de®ned in the abelianization of the Torelli group.
� The pullback of these cocycles to the Torelli group Tg represent trivial
cohomology classes.
� They depend on a choice of Lagrangian pair �L�; Lÿ� and thus are only
GL�L�� invariant, and not Sp�H� invariant.
� The pullback of these cocycles to Kg vanish.
� The coe�cients of these cocycles are the ®nite dimensional vector spaces of
manifold weight systems GmA�/�.

6. An epilogue or a beginning?

We end this paper with the following question. Recall from Theorem 5 the
construction of a linear map Dm : �G2mTg 
Q�Spg ! GmA

conn�/�. This map
is stable with respect to the genus and, for m � 1 it was shown to be a vector

Fig. 20. On the left chord diagrams on 3 vertical strands, and on the right the resulting a chord

diagram on S1 ontained by closing the chord diagram on the left

1recall that we denote U by �3H=H
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space isomorphism (of one dimensional vector spaces). The authors now ask
the following question:

Question 1. Is the map Dm stably an onto for m � odd?

Note that a positive answer would connect several di�erent areas together.
We hope to come back to the above question in the near future.

References

[AM] S. Akbulut, J.C. McCarthy, Casson's invariant for oriented homology 3-spheres: an
exposition, Princeton Math Notes, Princeton, 1990

[B-N] D. Bar-Natan, On the Vassiliev knot invariants, Topology 34, 423±472 (1995)
[CE] E. Cartan, Eilenberg, Homological Algebra, Princeton University Press, 1956
[FH] W. Fulton, J. Harris, Representation theory, a ®rst course, GTM 129, Springer-Verlag,

1991
[Ga] S. Garoufalidis, On ®nite type 3-manifold invariants I, J. Knot Theory and its

Rami®cations 5, no. 4, 441±462 (1996)
[GL1] S. Garoufalidis, J. Levine, On ®nite type 3-manifold invariants II, Math. Annalen, 306,

691±718 (1996)
[GL2] S. Garoufalids, J. Levine, On ®nite type 3-manifold invariants IV: comparison of

de®nitions, Proc. Camb. Phil. Soc, in press
[GL3] S. Garoufalids, J. Levine, Finite type 3-manifold invariants, the mapping class group

and blinks, Journal of Di�. Geom., in press
[GO1] S. Garoufalidis, T. Ohtsuki, On ®nite type 3-manifold invariants III: manifold weight

systems, Topology, in press
[Gu] M.N. Gusarov, On n-equivalence of knots and invariants of ®nite degrees, Topology of

manifolds and varieties, edited by O. Viro, Adv. Sov. Math. 18, (1994)
[Ha1] R. Hain, Completions of the mapping class group and the cycle C ÿ Cÿ, Mapping class

groups and Moduli Spaces of Riemann surfaces, Contemp. Math 150, 75±105 (1993)
[Ha2] R. Hain, In®nitesimal presentations of the Torelli groups, Journal of AMS, in press
[Jo1] D. Johnson, An abelian quotient of the mapping class group, Math. Ann. 249, 225±242

(1980)
[Jo2] D. Johnson, On the structure of the Torelli group III: the abelianization of T,

Topology 24, 127±144 (1985)
[KM] N. Kawazumi, S. Morita, The primary approximation to the cohomology of the

moduli space of curves and stable characteristic classes, Math. Research Letters, 3(5),
629±642 (1996)

[KK] K. Koike, I. Terada, Young-diagramatic methods for the representation theory of the
classical groups of type Bn;Cn;Dn, Journal of Algebra, 107, 466±511 (1987)

[Ko1] M. Kontsevich, Formal (non)-commutative symplectic geometry, Gelfand Math.
Seminars, 1990±92, Birkhauser, Boston, 173±188 (1993)

[Ko2] M. Kontsevich, Feynmann diagrams and low-dimensional topology, Proceedings of the
®rst European Congress of Mathematicians, vol. 2, Progress in Math. 120 Birkhauser,
Boston, 97±121 (1994)

[LMO] T.T.Q. Le, J. Murakami, T. Ohtsuki, A universal quantum invariant of 3-manifolds,
Topology, in press

[L] T.T.Q. Le, An invariant of integral homology 3-spheres which is universal for all ®nite
type invariants, preprint January 1996

[Mac] S. MacLane, Homology, Springer-Verlag, 1963
[Mo1] S. Morita, Characteristic classes of surface bundles, Inventiones Math. 90, 551±577

(1987)
[Mo2] S. Morita, Casson's invariant for homology 3-spheres and characteristic classes of

vector bundles I, Topology, 28, 305±323 (1989)
[Mo3] S. Morita, On the structure of the Torelli group and the Casson invariant, Topology,

30, 603±621 (1991)

Finite type 3-manifold invariants and the structure of the Torelli group. I 593



[Mo4] S. Morita, The structure of the mapping class group and characteristic classes of vector
bundles, Contemporary Math. 150, 303±315 (1993)

[Mo5] S. Morita, Abelian quotients of subgroups of the mapping class group of surfaces,
Duke Math. Journal, 70, 699±726 (1993)

[Mo6] S. Morita, A linear representation of the mapping class group of orientable surfaces
and characteristic classes of vector bundles, Topology of TeichmuÈ ller spaces, S. Kojima
et al editors, World Scienti®c, (1996) 159±186

[Oh] T. Ohtsuki, Finite type invariants of integral homology 3-spheres, J. Knot Theory and
its Rami. 5, 101±115 (1996)

[Qu] D. Quillen, On the associated graded ring of a group ring, Journal of Algebra 10, 411±
418 (1968)

[W] H. Weyl, The classical groups, Second Edition, Princeton U. Press 1946
[Wi1] E. Witten, Two dimensional gravity and intersection theory on moduli space, Surveys

in Di�. Geom. 1, 243±310 (1991)
[Wi2] E. Witten, On the Kontsevich model and other models of two dimensional gravity,

Proc. Conf. Di�. Geom. Methods in Physics, (S. Cato and A. Rocha Editors), Baruch
College (1991)

594 S. Garoufalidis, J. Levine


