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Abstract. Using the recently developed theory of finite type invariants of
integral homology 3-spheres we study the structure of the Torelli group of a
closed surface. Explicitly, we construct (a) natural cocycles of the Torelli
group (with coefficients in a space of trivalent graphs) and cohomology
classes of the abelianized Torelli group; (b) group homomorphisms that
detect (rationally) the nontriviality of the lower central series of the Torelli
group. Our results are motivated by the appearance of trivalent graphs in
topology and in representation theory and the dual role played by the
Casson invariant in the theory of finite type invariants of integral homology
3-spheres and in Morita’s study [Mo2, Mo3] of the structure of the Torelli
group. Our results generalize those of S. Morita [Mo2, Mo3] and comple-
ment the recent calculation, due to R. Hain [Ha2], of the /-adic completion
of the rational group ring of the Torelli group. We also give analogous
results for two other subgroups of the mapping class group.
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1. Introduction

1.1. Background. The notion of finite type invariants for oriented integral
homology 3-spheres was introduced not long ago by Ohtsuki [Oh]. More
recently Le, Murakami and Ohtsuki [L, LMO] used the Kontsevich integral
to give a complete classification of these invariants in terms of a certain
space of trivalent graphs.

In another very recent paper [GL3] the present authors gave several
different formulations of the notion of finite type invariants. In particular we
showed that one could use the lower central series of the Torelli group (or
certain other subgroups of the mapping class group), in conjunction with
Heegaard decompositions, to define finite type invariants in terms of higher
genus surgery formulas.

It is the purpose of the present paper to exploit this connection, using the
classification theorem of [LMO], to investigate the structure of the Torelli
group. Explicitly, we:

e Construct canonical cocycles of the Torelli group (with coefficients in a
space of trivalent graphs), and cohomology classes in the abelianized Torelli
group.

e Show, by very explicit and geometric construction, that the (rational)
lower central series quotients of the Torelli group (and certain other sub-
groups of the mapping class group) map onto a space of trivalent graphs.

In a recent paper [Ha2] Hain has given a presentation of (the Lie algebra
associated to) the lower central series of the Torelli group using mixed
Hodge structures. We do not yet understand the relationship between our
results and his. However, it would be interesting to compare them.

Finally we point out that the relation between trivalent graphs (in the
theory of finite type invariants) and the Torelli group has been foreshad-
owed by the work of Morita in:

e The appearance of trivalent graphs in invariant theory applied to the
Torelli group, see [Mo6, KM].

e The study of the Casson invariant in terms of the Torelli group and other
subgroups of the mapping class group, see [Mo2, Mo3].

1.2. Trivalent graphs in topology and in representation theory. We begin by
recalling the appearance of trivalent graphs in topology (in the theory of
finite type invariant s of integral homology 3-spheres) and in representation
theory (related to invariant tensors of the abelianization of the Torelli
group). Finite type invariants of integral homology 3-spheres were intro-
duced by Ohtsuki [Oh], in terms of a decreasing filtration #¥.# on the
vector space .# (over Q) of isomorphism classes of oriented, connected
integral homology 3-spheres. A linear map v: .# — @ is called a type m
invariant of integral homology 3-spheres if v(#, |.#) = 0. The associated

graded quotients ¥%°.# of the filtration # .4 has recently been related to
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trivalent graphs in the following way. Let ./ (¢) denote the vector space over
Q on the set of trivalent, vertex-oriented graphs, modulo the 4S and the /HX
relations; see Fig. 1 and [GO1, LMO]. .«/(¢) has a natural grading ¥..o/(¢);
the degree of a trivalent graph is half the number of its vertices. Thus a
degree m trivalent graph has 3m edges and 2m vertices.

One can define a map (for details see Sect. 2.2):

T-H X ¥y

Fig. 1. The IHX and the A4S relations on .7 (¢)

(1) Gl (§) — G M

which was shown in [GOI1] to be well defined and onto. According to the
Sfundamental theorem of finite type invariants of integral homology 3-spheres
[LMO, L] the map (1) is one-to-one and thus a vector space isomorphism.
We wish to think of the above isomorphism as a relation between finite type
invariants of integral homology 3-spheres and trivalent graphs (decorated by
a choice of a vertex orientation, and considered modulo the 4S and IHX
relations).

As it turns out, one can reformulate [GL3] the notion of finite type
invariants of integral homology 3-spheres in such a way that makes explicit
the dependence of the values of finite type invariants on manifolds obtained
by cutting, twisting and gluing of higher genus surfaces. This reformulation,
given in [GL3] in terms of six filtrations on ., will be used crucially on the
present paper. Three filtrations on .# were defined in [GL3] using surgery on
special classes of links, and three more filtrations by using cutting, twisting
and gluing along embedded surfaces. Even though the results of the present
paper can be stated using only a filtration denoted by # ./ in [GL3], the
proofs of our results will require the use of a few more filtrations from
[GL3]. Following the notation as in [GL3], we briefly recall the definition of
FT . Let M be an integral homology 3-sphere and f : X < M an em-
bedded, oriented, connected, closed genus g surface in M. Such a surface will
be called admissible in M. Note that an admissible surface has no boundary.
Since M is an integral homology 3-sphere it follows that an admissible
surface is separating, i.e., M — f(X) is the union of two connected compo-
nents M9 and M°, where the positive normal vector to f(X) points into MY.
Let M. (for e = £) denote their closures; they are compact 3-manifolds with
boundary f(X). There is a natural decomposition H;(f (X)) =L, & L_,
where L. =Ker{(i.), : Hi(f (X)) —» Hi(M.)} and i :f(X)— M, is the
inclusion. Here the homology is taken with integer coefficients. We refer to
(Ly, L_) as the Lagrangian pair of the symplectic module H = H,(f (X))
associated to the admissible surface f : X — M. If h € T'(f(X)) (the map-
ping class group of f(X), i.e., the group of isotopy classes of orientation
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preserving diffeomorphisms of f(X)) let M, denote M, [T M_ with the
identifications: i, (x) < i_h(x) for every x € f(Z). The notation M does not
explicitly indicate the dependence of M), on the admissible surface which we
keep fixed; we hope that this will not confuse the reader. Note that if
he 7(f(X)), the Torelli group of f(X) (i.e., all elements of the mapping
class group that act trivially on the homology of the surface) and M is an
integral homology 3-sphere then the resulting manifold M, will also be
an integral homology 3-sphere. For a closed surface ¥ of genus g, let
T 4= (Z). The assignment & — My, defines a map

(2) Of QT — M

where Q7 , is the rational group ring of J,. Let /7, denote the aug-
mentation ideal (i.e., the two sided ideal of Q7 , generated by elements of
the form 1 — f, for f € 7). We define #' ./ to be the union in .# of the
image (D;((Ifg)m) for all admissible surfaces f: X — M in all integral
homology 3-spheres M. Alternatively we can choose a single Heegaard
embedding (i.e., M, and M_ are handlebodies) into S° for each genus g and
let ZT 4 be the union in .# of the images (D/Z((Ifg)m) for these embed-
dings. It is shown in [GL3] that this gives the same filtration, and that
‘a/‘jgfnﬂ = ‘gjjgmﬂ = 97%-”171%.

Let us now recall one more ingredient, the Johnson homomorphism
[Jol], related to the abelianization of the Torelli group. For a more detailed
description, as well as a summary of properties of the Johnson homo-
morphism, see Sect. 2.3. If ¥ is a closed surface, D. Johnson defined a
homomorphism t:7, - U = A’H/H where H = H,(Z,Z). There are
several versions of Johnson’s homomorphism, depending on the surface
being closed, or punctured, or with boundary components. The following
are three important properties of Johnson’s homomorphism (and its various
versions):

e It coincides (modulo torsion) with the abelianization of the Torelli group.
e It is equivariant with respect to the action of the mapping class group of
the surface.

e It is stable with respect to an inclusion of a surface with one boundary
component into another.

These properties have been used extensively by Hain [Ha2] and Morita
[Mo2], [Mo3] to study questions relating to the lower central series of the
Torelli group and the mapping class group. From its very definition, the
image of 7 is a quotient U of the third exterior power of H. Furthermore, it
turns out that the invariant space of ®*"U under the symplectic or the
general linear group can be described in terms of suitably “decorated” tri-
valent graphs, modulo an AS relation. For a precise statement, see Sect. 2.4
and especially Definition 2.17.

It is a natural question to ask whether the above two appearances of
trivalent graphs in the theory of finite type invariants of integral homology
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3-spheres and in the abelianization of the Torelli group are related to each
other. For a positive answer (in terms of a stably onto map ‘¥j:,) see
Theorem 3.

1.3. The role of the Casson invariant. As was stated above, a main motivation
for the present work was the role of the Casson invariant in the theory of
finite type invariants and in the work of S. Morita [Mo3]. Explicitly, the
Casson invariant 4 [AM] has the following properties:

e / is a type 3 invariant of integral homology 3-spheres, [Oh].
e Given an admissible genus g surface /' : £ — M, Morita [Mo3] used the
Casson invariant to construct a map:

(3) 200:UQU — Q

where the notation is as in [Mo3].
e Furthermore, given an admissible surface Morita [Mo2] used the Casson
invariant to construct a group homomorphism:

4) Hg—Q

where ', is the kernel of the Johnson homomorphism 7, — U.

It is a natural question to ask whether one can use finite type invariants of
integral homology 3-spheres generalize the two maps constructed above.
For a positive answer, see Theorems 1, 2, 5 and especially Corollary 1.1 and
Theorem 4.

1.4. Statement of the results. In this section we state the main results of the
paper. For a group G, and a positive integer n, let us inductively define the
lower central series subgroups of G by G,+1 = [G, G,], with G; = G. Let us
also define G(n) to consist of all elements of G for which a nonzero power
lies in G,. We call G(n) the n term in the rational lower central series of G.
With the notation as in Sect. 1.1, we have the following:

Theorem 1. Let f : £ — M be an admissible surface. For every non-negative
integer m, there is a map

(5) Cf,m : ®2mU - gm&/(d))

with the following properties:

o The map Cy, is multilinear and Sp(H) equivariant, i.e., satisfies the
Jollowing property (for o; € U, h € I'y):

(6) C/‘_’m (h*och e h*OCZm) = Chf’m(otl, e 062,,,)
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o Cy,y is a2m cocycle of the abelian group U with coefficients in the trivial U
module G,/ (¢). In particular, it represents a cohomology class [Cy ] € H™"
(U, Gt ($))

o The pullback of the cocycle Cy,, to T4 and, in fact, to T ;] T 4(3), under
the projection maps 7 g — 7 4/ T 4(3) — U, is a coboundary.

Addendum 1. With the above notation, given an admissible surface
f X — M, the following diagram commutes:

a-2m aT
L g

S

U g, ()
where the right vertical map is the composition of maps (defined in Sect. 1.1):

FY =TS M — GE M~ Gl (D)

3m*

and the top horizontal map is the map: (hl,...,hzm)—><D;((1—h1)...
(1 = hop)).

Corollary 1.1. If v is a type 3m invariant of integral homology 3-spheres, then
its associated weight system is an element W, € G,/ (¢), [GOL1]. Given an
admissible surface f : X — M, we thus get a 2m cocycle W, o Cy,, of U with
rational coefficients.

Theorem 2. Let f: X — M be an admissible Heegaard surface. Then, for
every non-negative integer m,

e The cocycle Cy,y depends only on the associated Lagrangian pair (L*,L™)
of the admissible surface, and will thus be denoted by Cy-+ ,,.

e Using the natural onto maps U — A3 (H/LF) ~ AL*, Crem: U —
G (P) factors though a GL(L(B)-invariant map:

(7) NLE ® (@ 2Uq) @ ALy — Gl (§)
o [If we change the orientation of the integral homology 3-sphere M, this
results in a permutation of the Lagrangian pair L* and the associated cocycle
satisfies:
(8) CLiA,m(glang cee >g2m) = (_l)mCLim(mea Iom—1y - - - 7g1)

Passing to cohomology classes though, we have

(9) [CLi,m] = [CLfm]
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Addendum 2. In the case of an admissible Heegaard surface of genus ¢, the
map Cy= ,, is stable with respect to an inclusion of one ( punctured) Heegaard
surface into another. Furthermore, the map Cy: ,, is stably (i.e., for g > m)
onto. In particular, the cocycles Cy: ,, of U are stably nontrivial.

See Sect. 3.1 for a more precise assertion of Addendum 2.

Before we state the next theorem we need to define 4,77 a vector
space over @ on the set of “decorated” trivalent graphs with 3m edges,
modulo a colored antisymmetry relation (see Fig. 7). These decorations
involve a choice of ordering for the vertices, as well as a choice of vertex
orientation and a choice of 2-coloring for the edges. For a precise definition,
as well as motivation coming from representation theory of classical Lie
groups, see Definition 2.17 and Sect. 2.4.

Theorem 3. Let f: X — M be an admissible Heegaard surface. Then, for
every non-negative integer m there is an onto map: 4, /™" <! — ¥ U, which
combined with the map Cpx ,, : @MU — Gl (¢), induce a (stably onto) map:

(10) Wi s G P — G of ()

The above map compares trivalent graphs related to the abelianization
of the Torelli group (on the left) to trivalent graphs related to finite type
invariants of integral homology 3-spheres (on the right), and fulfills one of
the goals of the present paper.

In the case of m = 1, we have an explicit description of the cocycle C+
of theorem 2 and corollary 1.1 and of the map ‘¥ | of Theorem 3. We need
to recall first that the Casson invariant A [AM] is a type 3 invariant, [Oh]. Let
W, € 91.o/(¢)" denote its associated manifold weight system as in [GOI].
Let ©,, € 9,.<7(¢) denote the trivalent graph ® with a fixed choice of vertex
orientation. Let f: X — M be an admissible Heegaard surface, and let
Co : ®°H — @ be given by:

(11) Co(a1 ® ay ® a3, by ® by @ b3) = w(ay, by)w(as, by)w(az, b3)

for a;, b; € H, where w is the intersection pairing on H. Recall the onto maps
Ug — A’L§ from theorem 2, their tensor product @*Ug — A’L§ @ A'Lg
and the natural inclusion A3L$®A3L — @ A’Hg — ®° HQ Let us
denote by C§ the pullback of Cg to ®2UQ under the composition of the
above maps. Then we have the following theorem:

Theorem 4. Given an admissible Heegaard surface f : X — M,

e The map (W;) o Cp=; : ®*Uq — @ is given by:

(12) (W;) 0 Cp=y = 2CH
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o the map Cp=1 : @*U — %1.9/(¢) is given as follows. For oy, 0 € U we have:
(13) CLiJ(OCl,OCZ) = —Cg(OChOCg) '®w

o The vector space 91.o/'7""! is four dimensional, with a basis given in the
southeast part of Fig. 8. The map (10) of Theorem 3 is given as follows:

o The cocycle Cp+ y defines a nonzero cohomology class [Cyx 1] € HY(U;Q), if
dimH > 6. Moreover [Cpx ;] depends on the Lagrangian pair L* in the
following strong sense. If K* is another Lagrangian pair then [Cp: 1] = [Cg= ;]
if and only if one of the following holds:

o dimH <6

o [t =K' L =K, or

o [t =K ,L- =K*.

Remark 1.2. In coordinates, the map C§ is given as follows. Let {x;}7_
(respectively, {y:}?7_,) be basis for L™ (respectively, L~) such that
o(x;,y;) = 0;;. Using the natural projection A3HQ — Ug, consider
or, 0 € Ug and let oy, € A3HQ be their lifts written as:

% = Y olx; Ax; Axc + other terms

i<j<k
0y = Z ocfjkyi Ay; A ye + other terms
i<j<k
Then, we have:
- 2
(14) Cg(ozl,ocz) = Z “},-k%,-k

i<j<k

Remark 1.3. Note that the above map (W,) o C;+ coincides with the map
267 of [Mo3, Definition 4.1, Theorem 4.3], and that the first part of the
above theorem was originally proven by Morita [Mo3, Theorem 4.3]. Mo-
rita’s result was a starting point for the results of the present paper. It is
interesting to note that the factor of 2 in 26, in the above mentioned paper
of Morita was derived from a representation theory calculation (counting
irreducible components of Sp(H) representations), whereas in our context it
comes from the identity ®,, = 27,,.

The maps Cy, assemble well to define a map: Cy: T.,(U) — Z(¢),
where T,,,(U) = @ ,(®*"U). Recall that 7,,(U) and .« (¢) are graded Hopf
algebras, where the comultiplication in 7,,(U) is given by declaring U to be
the set of primitive elements. Cy respects the multiplication in the following
sense. For i=1,2 let f;: X, — M be two admissible genus g; surfaces
disjointly embedded in an integral homology 3-sphere M. Without loss of
generality, let us assume that f; are inclusions. Assume that there is an
embedded 2-sphere S — M with the following properties:
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e The intersections SNX, =D; for i =1,2 are disjoint discs. Let X; =
Egi — Il’ltDi.

e Recall that S separates M — .S in two components. Assume that X; for
i = 1,2 lie in different components of M — S.

Then we can form the composite admissible surface fjUf;: X =
21 Us—(p,u p,) Z2 — M. Considering the homology of X, ,X,, and X we get
natural onto maps Uy, 4, — Uy, for i = 1,2 which in turn induce onto maps:
Tos(Ugi4g,) = Teo(Uy,). Let C} denote the pullbacks of the maps C; to
Too(Uy 44,) fori=1,2.

Proposition 1.4. With the above assumptions we have the following:

(15) le’l ’ C%z = CflUfz

Remark 1.5. The above proposition makes necessary the existence of an
operadic formalism of the above cocycles. Such a formalism, which may

D

1

0
Er=

e

S

Fig. 2. Gluing two admissible surfaces to form a third one. Note that only part of the surface S
is drawn in the figure

make more transparent the relation with the ideas from 2D gravity [Kol],
[Ko2], [Wil], [Wi2] will be the subject of a future study.

Before we state the next theorem, we need some notation: for a group G
and a positive integer n let us denote by 9,G the (abelian) quotient
G(n)/G(n+1). Let o/“°""(¢p) denote the subspace of .«/(¢) consisting of
linear combinations of connected admissible graphs. We also define two
binary operations: [’x,y] =x® y and ['x,y] = —y ® x. Then, we have the
following theorem:

Theorem 5. Given an admissible surface f : £ — M, and a nonnegative integer
m, there is a linear map:

(16) Df.m : mefg—g ® Q - gm&{conn(qs)

with the following properties:
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® Dy, is determined by the cocycle Cy,, as follows:

Dy m(fx1, [x2, ... [xzm 1,xzm}])
(17) Z—Zcf R R E T L SR S 1)

where x; € T 4, y; = 1(x;) € U, the summation runs over all functions a : {1, 2,
2m — 1} — {0, 1}, and we set ['x,y] = x®y and ['x,y] = —y @ x.

Assume in addition that f is an admissible Heegaard sulface. Then,

® Dy, depends only on the associated Lagrangian pair (L*,L™), and will be

denoted by Dpx .

® D+, satisfies the following symmetry property:

(18) Dyepy(x") = (=1)"Dpr ()

Sfor every x € 92,7, @ Q.

o Assume that f is the standard Heegaard splitting of S*. If g > 5m + 1, then
D= ,, is onto.

e For an arbitrary admissible Heegaard surface f, let Dy, : (G20, T 4 @ Q)%
— G A" (P) denote the restriction of Dy ,, on the symplectic mvartant part
of its domain. For m =1, the composition of Dy with the weight system
W, : G, () — Q coincides with the restriction of —2—14d1 Ty —Q of
[Mo2, section 5] to (%27 , ® Q)%He)

Remark 1.6. The proof of Theorem 5 (and Theorem 7 below) exhibits an
explicit construction of enough stably non-trivial elements of the lower
central series quotients %,,.7, of the Torelli group when g > 5Sm+1 to
prove that the map D;+ , is onto for a standard Heegaard splitting of genus
at least 5m + 1. This construction may prove useful in further study of the
Torelli group.

As an application of the proof of Theorem 5 (and Theorem 7 below) we
define and determine an analogue of the (rational) Gusarov group of knots
[Gu] for integral homology 3-spheres. This result has been obtained inde-
pendently by Le [L, Theorem 10]. Following the ideas of Gusarov, [Gu], we
define a sequence of equivalence relations on the set of (orientation pre-
serving diffeomorphism classes of ) integral homology 3-spheres as follows.
Given a nonnegative integer n, and two integral homology 3-spheres M and
N, we define M to be n-equivalent to N, (and write M ~, N) if
M-NeZF5 . Let &, denote the set of ~,j-equivalence classes.
Connected sum induces the structure of an abelian semigroup on &,. We
have natural projections &, — &,-1 whose kernel @, is an abelian semigroup.
We can define a map

(19) Ty Oy — G5 M
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by t,(M) = S* — M. This map is additive. Indeed, we have
S — MEN = —(8* = M) - (S* = N) + (8> = M) + ($* = N)

and, if M,N €0, then (§°-M)-(S*-N)ecFgu CTg
n > 1. We now have:

></%, for

n+1

Theorem 6. [L] O, is a group and 7, induces an isomorphism of 0, ® Q with
the subspace of primitive elements in 45, .M .

Corollary 1.7. &, is an abelian group.

1.5. Plan of the proof. In Sect. 2 we review the definition and a few essential
properties of the Johnson homomorphism and discuss invariant theory for
the symplectic and general linear group. In Sect. 3 we prove our main
results. In Sect. 4 we discuss analogous constructions for some other sub-
groups of the mapping class group. In Sect. 5 we discuss related results by
Hain [Ha2] and Morita [Mo6]. Finally in Sect. 6 we formulate a question
which will be studied in a subsequent publication.

1.6. Acknowledgment. The final part of the paper was written during the
authors’ visit at Waseda University in July 1996; we wish to thank the
organizers and especially S. Suzuki for inviting us. In addition, we wish to
thank D. Vogan and R. Hain for encouraging conversations. We especially
wish to thank S. Morita for several enlightening and clarifying conversa-
tions during the conference in Waseda University. Finally, we wish to
thank the Internet for providing useful communication for the two au-
thors.

2. Preliminaries

2.1. Generalities in group theory. In this section we review some general facts
about group cohomology of discrete groups. Let G be a discrete group and
QG the rational group ring of G. Let /G (or simply /, in case we fix the group
G) denote the augmentation ideal of QG and I” the n-th power of 7. We first
recall the definition of the chain complex defined by the bar construction.
Since we will only be dealing with coefficients with trivial G-action we can
define, for a trivial G module M, C,(G, M) défHom(C,,(G),M). Here C,(G) is
the free Z-module generated by n-tuples [gi|...|g,], where g; € G, and the
boundary operator is defined by the formula:

gl .- .19 =1g2|- - -19x]

Y (='[g1]---1gigis1] - -1ga] + (=1)"[g1] - - - |gn-1]
1

i
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As usual, we let Z"(G,M) (resp., B"(G,M)) denote the n-cocycles (resp.,
n-coboundaries). For a cocyle ¢, € Z"(G,M), let [c,] € H'(G,M) denote
the associated cohomology class.

Before proceeding to the main results of this section, we will prove a
lemma which will be needed below in Sect. 3.2. Define an involution y of
C.(G) by the formula

ol g = (~DO[g 1]

We leave it to the reader to check that this, indeed, is a chain map. We have
the following lemma:

Lemma 2.1. If G is a free abelian group, then vy, : H,(G) — H,(G) is multi-
plication by (—1)".

Proof. 1t is sufficient to prove this is true for y* on the exterior algebra
H*(G;Z). Notice that for n =1 this is clearly true. Since H'(G) generates
H*(G), as an algebra, we will be done if we prove that y* preserves cup-
products. Recall (see [Mac]) that the formula for cup-product, in the context
of the bar construction, is:

Cumigil.--lgalhl .. ] = Elgr] .- - |gn] - nlma] ... |hn]

where & € C"(G),n € C"(G). Now we compute:

FEUngl..Jgnlil - ) = DU GO h gy g ]
= DU m ) - nlgy | lar
= (DU E O ) )l - gn]
1Y) U il ]

So we see that, for any cohomology classes o< H"(G),f € H"(G),
Y (U B) = (—1)""y*(B) U y*(«). But now we just invoke the commutativity
of cup-product on the cohomology level. O

Turning to our main results, we will now define for every nonnegative
integer n a cochain ¢, € C"(G;I"), where I" is given the trivial G-module
structure, as follows:

Gulgr] .- lgal = (1 = g1) ... (1 = ga)

Let i, : I"*' — I" be the inclusion and (in); be the corresponding coeffi-
cient homomorphism of cochains.

Lemma 2.2.
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Proof. We have the following formula for the coboundary:

3¢, (1] - - 1gnt1]) = dulga] - - - |9nr1]) +Z - 1gigis1 - - |gni1])

+ (=", (911 19u))

n+1

= H(l - ql)

+Z Y(1=g1)...(1 = gigis1) - .- (1 = gur1)
l)n-H H(l _gi)
i=1

Now making the substitution 1 — g;g;11 = —(1 —g:)(1 — gi1) + (1 — gi) +
(I — gi11), the summation term in the above equation becomes:

n

Z(*l)i(l —g1)--- (1 =gigiy1) ... (1 = gny1)

=Y (D)1 =g) .. {=(1=g)(1 = gix1)
1
Jr(l—g,) (1_gt+l)} (l_gn+l)

=D =g (=) (1 = gi) o (1= o)

3D =g A0 =)+ (= ge)} oo (1= gart)

n

n+l1 n
= <Z(—])i+l>(]—g1)..‘(l—gn+l) H(l—gl ,,H —
i=1 pc) 1

Inserting this into the previous equation we obtain:

n

(- lawet) = (1)1 =01 = )

i=1

= (20" )bl loner)

i=1

and the result follows. O

Corollary 2.3. For every even nonnegative integer n, there is a well-defined
cohomology class [¢,] in H"(G;I").
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Proof. Immediate by Lemma 2.2 above. O

We now point out another useful fact. Recall from Sect. 1.4 that for any
positive integer ¢, G, is defined inductively by G, = [G, G,] with the un-
derstanding that G; = G. Recall also that G(g) is the (normal) subgroup of
G that contains all elements of G for which a nontrivial power belongs to G,.
It is easy to see that {G(n)},~, is a decreasing sequence of normal subgroups
of G with the property: [G(n), G(m)] C G(n + m).

Lemma 2.4. If g; € G(q;) then ¢,([g1]. .. |gn]) C I0TT4n,

Proof. With the notation [g, 4] = ghg~'h~!, the following formula
(200 1—=[g A =(=(1=g)(1=m)+ (1 =m)(1-g)g 'h el

shows that if g € G,, then 1 — g € /9. The following formula

=g =Y ()

i=1

and the above shows by induction on ¢ that if g € G, for some nonnegative
integer m, then

(21) m(1 —g) =1 — g" mod 19!

thus deducing that m(1 — g) € 19, and since we are using rational coeffi-
cients, this proves the lemma. []

Corollary 2.5. Given nonnegative integers n,q, ¢, induces cochains
(22) Pug € C"(G/G(q): 1" /1Y)

Furthermore, for even n, ¢, , is a cocycle and, for odd n, ¢, , is a cocycle.
Moreover, ¢, , is multilinear.

Now suppose that % is a vector space (over @), carrying a decreasing fil-
tration &, %4 and p: QG — % is a linear map preserving the filtration,
ie., p(I") C Z,%. Suppose also that the filtration of & is p-step, for some
positive integer p, i.e., # ;%4 = F ;114 unless p divides i. Now ¢, , induces
via p, a cochain @, € C"(G/G(q); F B/ F pig198). Let Gyof = F ),
B|F pni1 B.

We will consider the cochains ¢} ., € C"""%(G/G(q +2);%,/), for
0<gq<p, (since F,,_gB|F pni1% = %,o/). These cochains are cocycles if
either pn — g is odd and ¢ =0, or pn — g is even and 0 < g < p.
Proposition 2.6. If pn —q is even and 0 < g < p—1, then [sﬁqﬁgn_q’qﬁ} =
0 € H"1(G/G(q + 3);%unl), where s:G/G(g+3) — G/G (q+2) is the
obvious projection.
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Proof. Consider the cochain ¢) | ., € C" 4 (G/G(q+3);9,+). It

follows from Lemma 2.2 that, when pn — ¢ is even

(23) 5¢Zn—q—l,q+3 = Sﬁ(ﬁZn—q.cH-Q [

Corollary 2.77. With the above notation, if pn is even, we have that

(%, 5] = 0 € H™(G/G(3); ,.0).

We can also identify a family of secondary cohomology classes, although
we will not, at this time, explore the application of these to our consider-
ations. For pn—gq odd, we define pn, ,,d f] (;’)”nf 2 €CP(G(g+ 1)
/G(q+2);9,o/), where j: G(q+1)/G(qg +2) — G/G(q +2) is the obvious
inclusion. Since s o j is trivial, it follows from equation (23) that g, , is a
cocycle. Clearly for ¢ > 0,

[1g.0) € H"4(G(q +1)/G(q +2); Gnd)

and [¢), . 1] € H"T(G/Gg + 1); 9, )

are related by transgression in the fibration G(g¢+1)/G(gq+2) —
G/G(q+2) — G/G(q + 1), but neither one is determined by the other. The
extra information is encoded in the particular cocycle representatives. If
g = 0, then this gives nothing new since [y,] = [¢Zn.,2]'

We end this section with a lemma that will be used in the proof of
Theorem 5. Recall first the map G — QG given by ¢ — 1 — g. According to
Lemma 2.4 for every positive integer n, we get an induced map G(n) — I",
and thus a linear map:

(24) 4,62 Q — I"/I"""

Note that addition in 4,G ® Q is given by group multiplication in G.

These maps can be assembled together in the following way. Recall first
that G ® Q can be given the structure of a graded Lie algebra (over Q). Let
U(%G ® Q) denote the universal enveloping algebra. Note that U(9G ® Q)
is a Hopf algebra. Note also that QG is a filtered algebra with respect to
powers of the augmentation ideal. Let ¥QG be the associated graded al-
gebra, i.e., 4,QG = I"/I""'. Note that QG is a Hopf algebra with comul-
tiplication defined by A(g) = g ® g for g € G. Then the maps of equation
(24) induce a map:

(25) U(%G ® Q) — 9QG

This map was shown by Jennings (see Quillen [Qu]) to be a Hopf algebra
isomorphism. In particular, the primitive elements of ¥QG are isomorphic
to the Lie algebra 9G ® Q.

We end the section with the following lemma:
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Lemma 2.8. For x; € G we have the following identity in the graded quotient
V& /1n+1 :

(26)  1—fer s sl = (D" 1O (@, 107D (z0,2)

where z;=1—x; €1 and the summation is over all functions a:
{1,2,...,n— 1} — {0,1}, and we set 1° (a,b) = ab and 1' (a,b) = —ba.
Furthermore, the map (24) is a linear map.

Proof. Using the identity (20) the first part follows by induction on n.
Indeed, (20) implies that

1 —[xi,x]=—(1—x1)(1 —x2) + (I —x2)(1 —xl)modl3
=—(1"(1=x,1 —=x2)+ 1" (1 —=x1,1 —x2)) mod I*

which concludes the proof of the first part for » = 1. The induction step
follows the same way using identity (20).
The second part follows immediately using the following identity:

1 —ab=(1—a)b+(1—b) O

2.2. A review of finite type invariants of integral homology 3-spheres. In this
section we review some essential properties of finite type invariants of
integral homology 3-sphere s that will be used in the present paper.

We begin by recalling the definition of the map (1) from [Oh], [GO1]: for
an admissible (i.e., trivalent, vertex-oriented) graph G with 3m edges and 2m
vertices, let L,,(G) denote the (linear combination of 2>") algebraically split
links in % with framing / = +1 on each component obtained by choosing
some of the vertices of G, replacing each non-chosen vertex of G by a
Borromean ring, each chosen vertex by a trivial 3-component link and each
edge of G by a band as in Fig. 3. The coefficient of that term is (—l)k, where
k is the number of chosen vertices. Due to the fact that G is an abstract
graph (i.e., non-embedded in S%), the links whose sum with signs is L, (G)
are not well defined (modulo isotopy). Nevertheless, (with the notation
of [GLI1], [GO1]) one can associate a well defined element [S? L,
(G), f] € 95 M in the associated graded space. This map was shown in [Oh]
(see also [ GL1]) to be onto. Furthermore, in [GOI1] it was shown that it
actually descends to a map 9,/ (¢) — 95,4 which, therefore, is also onto.
This defines the map (1). According to the fundamental theorem of finite type
invariants of integral homology 3-spheres [LMO], [L], the map (1) is one-to-
one, and therefore a vector space isomorphism. The isomorphisms of (1) can
be assembled together for various m. Indeed, .&7(¢) is equipped with a
multiplication (induced by the disjoint union of graphs) and a comultipli-
cation (induced by all ways of splitting a graph into its connected compo-
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nents), compatible with the grading, thus giving .o/(¢) the structure of a
commutative cocommutative Hopf algebra. Let .2/(¢) denote the comple-
tion. Furthermore, .# is equipped with a multiplication (induced by con-
nected sums of integral homology 3-spheres) and a comultiplication defined
by A(M) = M ® M for an integral homology 3-sphere M, thus giving 7% .#
and 9%/ the structure of a commutative cocommutative Hopf algebra.
The above mentioned results of [LMO], [L] additionally imply that the maps
(1) combine to give an isomorphism of Hopf algebras .o/(¢) — 9“4

Fig. 3. Two maps from admissible graphs to (linear combinations of) algebraically split links in

S3. The map on the left is denoted by G — L, (G) and the one on the right is denoted by
G — Lb(G)

In the rest of this section we recall several facts about the combinatorics
of finite type invariants that will be used exclusively in the proof of Theorem
7. The reader may choose to postpone them until needed.

We begin with an equivalent description of the Hopf algebra .o7(¢) taken
from [GOL]. It turns out (see [GO1]) that there is a vector space (over @)
/p(¢p) on the set of vertex oriented graphs with univalent and trivalent
vertices only, modulo an appropriate set of relations, described in detail in
[GO1], together with a deframing map:

(27) F ool ($) — oAb(P)

defined as follows: for a vertex oriented trivalent graph I

FO= 3 ("L
s:w(I)—{0,1}

where T’ is obtained by splitting I" along every vertex v such that s(v) = 1.
We will not use explicitly the set of relations in .2/ (¢); note however [GO1]
that F is a vector space isomorphism, thus giving .o7,(¢) the structure of a
graded Hopf algebra. For a trivalent vertex oriented graph I, let T,
(resp., I'y) denote the associated element in .o/(¢p) (resp., /p(¢)). The
subscripts w, b denote white and black vertices resp., the terminology is
taken from [GOI1]. Given a trivalent vertex oriented graph I', the associated
elements under the maps 4./ () — G4, G/ (p) — 9.4 are shown in the
left and right hand of Fig. 3 and are denoted by I' — [S3,L,,(T'), +1] and
I — [S%, L, (), +1] respectively. Putting together the isomorphism of (1)
with the isomorphism (27) we get an isomorphism:
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(28) F Gl () ~ 9% .

o/ (¢p) (resp., #p(¢p)) has a naturally defined ideal: #,, = @, - /()
(resp., ¥y =Yy - () where O, (resp., ¥) are the obvious generators of
the degree 1 parts 4,.<7(¢) (resp., 91./5(¢)). Note that the ideals %,,, ¥,
correspond under the isomorphism F of (27), since F(®,,) =2Y, (see
[GO1)). Let A(P) = AL(P)/ W, Ap($) = Ap($)/%» denote the quotient
spaces.

We now have the following very useful lemma:

Lemma 2.9. Let T' denote a connected vertex oriented trivalent graph of
degree n # 1, and let a € 9,.o/°™ (¢p) be such that:

(29) I'ymod %, =F(amod %) € 4,./,(¢)
Then, we have that T',, = a.

Proof. Recall first from [GO1] that F(T',,) = I', mod %,. In fact more is true:
namely F(I',) =T’y + k&(I')(]], ¥») for some integer k(I'). This follows by
definition of the map F of (27) and the relations in %,.o7,(¢). Therefore, we
have that F(T,) = F(a) mod %, thus T', =amod®,, thus T —a=
0 € 9,/(¢). Recall that .</(¢) is graded by ¥, and thus filtered, where
Ful (Q) = Di>n@i (P). Using the fact that /" (p) = A (P)/(F 1.4 (P)
719 (¢)), we can see that, for any k # 1, there is an onto map
Gr.od () — Gp.od " (Pp). Moreover, the composite map %/ (¢p) —
G () — Gp.of " () is the identity map on %7 (¢). This finishes the
proof of the lemma. O

Remark 2.10. For n = 1 the above lemma is obviously not true, since we can
take ' =©® and a = 0.

We now recall a few essential facts from [GL3] relating the various
filtrations on .# that will only be used in the proof of Theorem 7. Following
the notation of [GL3], consider f : £, — M an admissible genus g surface.
We need to recall from [GL3, Sect. 1.3] an important subgroup Lﬂj of the
mapping class group. We call a Lagrangian L C H f-compatible if
L=(LNL")+ (LNL™),where (LT,L™) is the associated Lagrangian pair of
the admissible surface f. (For example, LT and L~ themselves are f-com-
patible). For any f-compatible Lagrangian L, let Efl denote the subgroup of
the mapping class group generated by Dehn twists along simple closed
curves that homologically represent elements of L. Let ¢ denote any of
the subgroups 7,4, A" g,LPL of the mapping class group. Consider the
maps @7 : Q7 — ./ defined the same way as the map @7 of (2). Let
%(I)‘] gQ ¥ — %’/ denote the associated graded maps. Recall from
Sect 2.1 that 9@ ¢ is a coalgebra, and so is %’ .# (with the comultiplication
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of 4’ . induced by the one on .#). Then, with the above conventions we
have the following lemma:

Lemma 2.11. For ¢ as above, the maps @@I{ 2 9Q ¢ — G M are maps of
coalgebras. ‘

Proof. Recalling that the coproduct on @Q_¢ is defined by A(g) = g ® ¢, and
the coproduct on .# defined by A(M) =M ® M, it follows that the map
(I); : Q¢ — . preserves the coalgebra structure. Therefore, the associated
graded map preserves the coalgebra structure as well. O

Corollary 2.12. For ¢ as above, we get an induced map:

(30) b GIRQ — GA"(P)

Proof. We need to recall from [GL3] the following filtrations on .#: for a
nonnegative integer m, # . ./ (resp., FX.i,F*~ #) are defined to be the
span of the images (over all admissible surfaces f) of @;(15' )"
(resp., O (1A°y)", DL(ILE)"). Let F 117 4 denote the span of the images,
for Heegaard surfaces f and f-compatible Lagrangians L of (I)‘Lf((l 35)’"). In
[GL3] we showed that 9753% = ffnﬂ, and from now on we will identify
these two filtrations. The filtrations considered above can be compared to
the # filtration on .# as follows [GL3, Corollary 1.20]:

FEuCF o =F o =F o =F M= FE M

3m

inducing associated graded maps

gﬁ’% - ggm% = ggmfl% = ggm% = g§m72% = ggfnﬂ
Using the isomorphism of Hopf algebras ¥,./(¢p) ~ 9%°.# the above
graded maps and Lemma 2.11 show that there are coalgebra maps
@CDj 1 9Q ¢ — 9o/(¢p), which induce maps ¢; on the primitive elements.
Recall finally from section 2.1 that the subspace of primitive elements of
4Q ¢ is the Lie algebra ¥ ¢ ® Q, and that the subspace of primitive ele-
ments of G.o/(¢p) is G/ (). O

Remark 2.13. 4’ is a Hopf algebra and the map %/ . # — G.o/(¢) is a
Hopf algebra isomorphism for ¢ =, and 35 and a Hopf algebra
epimorphism for ¢ = %, see [GL2]. Furthermore, ¥Q_¢ is also a Hopf
algebra, see Sect. 2.1. The map %(I)‘; however is not an algebra map.

We close the section with the following lemma which will be used in the
proof of Theorem 5.
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Lemma 2.14. Given an admissible surface and compatible Lagrangian L, we
have inclusions 2’5 DAy C Ty Then:

(31) (DJL"‘(DJ/'H = (D;‘ny

Proof. This is a straightforward consequence of the definitions of the
maps. ]

2.3. Johnson’s homomorphism and representation theory. In this section we

review well known properties of the Johnson homomorphism, [Jol], and

some essential facts about representation theory of the symplectic group.
We begin with the following:

Remark 2.15. Even though in the present paper we are interested mainly in
closed surfaces embedded in closed 3-manifolds, we will for a variety of
reasons, also consider surfaces with boundary. These reasons include (a)
historical traditions [Jo1], [Mo02], [Mo3], (b) technical reasons (the fact that
the fundamental group of a closed surface is not free, whereas that of one
with boundary is. Also, one can glue surfaces along boundary to increase the
genus and consider stability problems, whereas there is no canonical way of
increasing the genus of closed surfaces), and (¢) modern interpretation in
terms of open string field theory [Kol, Ko2, Wil, Wi2]. For all of the above
reasons, we usually first decorate surfaces by boundary components or
punctures, and only afterwards do we discuss closed surfaces. At any rate,
the reader should keep in mind that there are exact sequences that relate
invariants of decorated surfaces to invariants of closed surfaces.

Let X, denote a closed, oriented surface of genus g, and let D C X, be a
fixed embedded disk. Let X, denote the associated surface X — IntD with
one boundary component. Let I'y (resp. I'y;) denote the mapping class
group, i.e., the group of isotopy classes of orientation preserving surface
diffeomorphisms (resp. that are identity on the boundary). Let 7, (resp.
T 4.1) (the Torelli group) denote the subgroup of I'y (resp. I'; ;) of elements
that act trivially on the homology of the surface. Let H = H,(%,,Z), and
be the intersection form. Note that the inclusion X,; — X, induces a ca-
nonical isomorphism H;(X,,Z) ~ H, and in this section we will identify
H\(Zy,1,Z) with H. The groups I'y, I’y 1,7 4, 7 4 are related in the following
(exact) commutative diagram [Jol]:

1—>7T1(T2)—> ﬂ—yJ — g-q — 1
l — m(Tx) — Iy — I, — 1

l

Sp(H) —— Sp(H)
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where Ts denotes the unit tangent bundle of the surface X,. Note that the
two rightmost vertical sequences are also short exact.

With the above notation, we can recall a few essential facts from rep-
resentation theory. For proofs, we refer the reader to [FH]. Recall that for
an abelian group 4, we let Aq denote the rational vector space 4 ®z Q. All
the linear maps to be described in this section will be Sp(Hg) equivariant.
Recall first that the intersection form @ € A’H* induces an isomorphism
H ~ H*. Let H — A*H denote the map defined by x — x A @ (where we
think of w € A’H, via the isomorphism H ~ H*). In terms of a symplectic
basis {x;,y;} of H, the above map is given by x — > ,x Ax; Ay. Let
U=AH /H denote the quotient. Note that our notation differs from [ Mo6]
(Morita denotes %A3H/H by U). Since both Morita and we are only dealing
with rational results, this is not really a problem.

We can think of A*Hg as a quotient module of ®*Hg (in the natural
way), or as a submodule of @*Hyg, as follows: we let A’Hq — ©° Hg, be the
(one-to-one) map: xj Axa AX3 — D g SEN(S)xy(1) AXy(2) A Xy(3), Where
Sym; denotes the symmetric group and sgn denotes the sign homo-
morphism. Note that we do not divide out the above map by 1/6. As a
result, the composite map A3HQ — ®Hq — A3HQ is multiplication by 6.
Let ®H — H denote the map x; ® x» ® x3 — @(x1,x)x3, and let ANH—H
denote the composite map A*H — ® > H — H. More explicitly, the above
composite map is the following:

(32) X1 Axa Axz — 2(o(x1,x2)x3 — o(x1,x3)x2 + @(x2,Xx3)x1)

It is easy to see that there is a rational isomorphism Ug ~ Ker
(A’Hq — Hy).

In his pioneering work [Jol1], [Jo2] D. Johnson described a homomorp-
hismt:7 4 — A’H. We briefly summarize its properties here:

e 7 is onto.

e 7 is equivariant with respect to the conjugation action of the mapping class
group I'y; on 74 and the natural action of the symplectic group Sp(H) on
AH.

e 7 coincides, modulo 2 torsion, with the abelianization of the Torelli group.
In fact, [7 41,7 41] C Ker(7,1 — A’H) is a normal subgroup with
quotient a 2-group.

o 7 factors through a map t: 4, — U (denoted by the same name) making
the following diagram commute:

1 — m(lx) — Tg — T, — 1
| d d
0o — H — v ANH — U — 1

Furthermore, 7, — U is equivariant, onto, and coincides (modulo 2 tor-
sion) with the abelianization of 7,. From this and the preceding property
we have that 4y = 7 4(2) and that t1: 7 ,/7 4(2) ® Q =~ Uy.



562 S. Garoufalidis, J. Levine
e 7 is stable with respect to an inclusion X, — X 1.

2.4. Representations of the symplectic and the general linear group. In this
section we review a few essential facts about representations of the
symplectic and the general linear group. The main result is Proposition 2.18
which will be used in the proof of Theorem 3.

Let (H,w) denote a symplectic space, and assume a given splitting
H=L"®L into two Lagrangian subspaces. An example is given by the
Lagrangian pair of an admissible surface in an integral homology 3-sphere.
Let us denote Lt by V; then, the symplectic form induces isomorphisms
L™ ~V*and H ~ V @ V*. In this section we will identify L*, L~ and H with
V,V* and V @ V*, respectively.

Consider the subgroup of the symplectic group Sp(H) formed by all
'g (A’(;fl , where 4 € GL(V') and A4 stands for the
transpose of a matrix 4. This subgroup of Sp(H) is obviously isomorphic to
the group GL(V). Note that the action of GL(V) on H preserves the de-
composition H =V @ V* and as a subgroup of Sp(H) extends to an action
on AH and U.

We will be mainly concerned with describing a generating set for the
vector space of invariants (2" UQ)GL(VQ). First, however, we need to recall
several ideas about irreducible representations of Sp(Hg) and GL(Vg). For
more details see [FH] and [KK].

We begin by recalling some results about the invariant theory of the
symplectic group as formulated by Morita [Mo06]. There is a one-to-one
correspondence between irreducible Sp(Hg) representations and dominant
integral weights (with respect to a standard choice of a Weyl chamber). Let
us denote by V(1) the rational representation associated to weight A.
Dominant integral weights are parametrized as follows: if dim(Hg) = 2n and
{e&:}7_, is the set of dominant weights, then every dominant integral weight
can be written uniquely in the form ), fig for integers f; such that
fi = fr... > fu = 0. Itis often customary to denote the representation V(1)
by a Young diagram of n rows with f; boxes on each row. Due to typo-
graphical limitations though, we will not denote them by Young diagrams.
In this language we have the following identifications (as Sp(Hg) repre-
sentations):

matrices of the form

Ho=V(e)) AHg="V(e)+V(e) Ug = V(e3)

Before we state the next result, we need a few definitions: a degree m
linear chord diagram is an involution on the set {1,...,2m} without fixed
points [B-N]. Let %,,2' denote the vector space over Q on the set of linear
chord diagrams with m chords. It is easy to see that %,,2' is a vector space of
dimension (2m — 1)!l =1.3.5....(2m — 1).

The symplectic form gives a Sp(Hg) invariant map w : Ho ® Hgy — Q,
thus given a degree m linear chord diagram, we get an induced Sp(Hg)
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invariant map ®”"Hg — @, and dually (using the isomorphism H ~ H*
induced by the symplectic form) a Sp(Hg) invariant element in ®*"Hg,. The
definition is clear from the example shown in figure 4. Thus we have a map:

(33) gm@l N (®2mHQ)SP(HQ>

According to the first fundamental theorem of representation theory (see
[W, p. 167]), the above map (33) is onto, and according to the second fun-
damental theorem of representation theory [W, p. 168]), provided dim(Hg)
= 2n > 2m, (33) is one-to-one and therefore a vector space isomorphism.

Vs Ot
U1 ® U @ U3 ® vy ® V5 ® Vg — w(vy, Va)w(V2, Vs)w (s, Us)

Fig. 4. A degree 3 linear chord diagram and its associated trivalent graph. The trivalent graph

G comes equipped with an ordering ody () of its vertices, as well as with a vertex orientation

ory(g), indicated by a choice of cyclic order of the edges around each vertex. The linear chord

diagram corresponds (under the map (33)) to the contraction shown @°H — @ shown in the
figure

Our next goal is to describe the invariant spaces (®2’”A3HQ)S” (He) 1p

order to do so, we need one more definition. Given a degree 3m linear chord
diagram, its associated trivalent graph is defined as follows: the set of ver-
tices is the quotient set {1,2,...,6m}/ ~, modulo the relation 3j —2 ~
3j—1~3j(for 1 <j<m), and the set of edges is given by the quotient map
of the chord diagram. There is an orientation at every vertex, induced by the
ordering 3j — 2 < 3j — 1 < 3j of the edges around it. For an example, see
Fig. 4. The trivalent graphs constructed above have extra data: they come
equipped with an ordering ody ) of the vertices. Let 4,./"7 denote the
vector space over @ on the set of isomorphism classes of tuples
(G,0dy ), 0ry(c)) divided out by the usual antisymmetry relation (denoted
by 4S in Fig. 1). Here G is a trivalent graph with 3m edges and 2m vertices,
ody () is an ordering of its vertices and ory () is a vertex orientation of G,
i.e., a choice of cyclic order for the 3 edges that emanate through each vertex
of G. The above discussion defines a map:

(34) g}m@l = GuA"?
Due to the projection ®3H — A*H of Sect. 2.3, and the choice of cyclic

order for the above mentioned trivalent graphs, the map of equation (33)
factors through the map of (34), thus inducing a map:

(35) Gost? — (@A Hgy) ¥ )
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Furthermore, there are natural inclusion maps %, — %3,2' and
(®2’"A3HQ)S”(H‘°) — G,/ (¢p), such that the composite maps ¥,./? —
g}rn@l N gm&{rp and (®2mA3HQ)SP<HQ) _ (®6mHQ)SP(HfD) N (®2mA3HQ)
Sr(fle) are multiplication by a nonzero scalar. Moreover, we have two
commutative diagrams:

Gn?'  — (@ Hg) T Gul? — ("N Ho) """
l l and l
G, AP (®2’”A3HQ)SP<H‘D) g3m91 (®6mHQ)SP(Ho)

where the vertical maps on the left diagram are onto, and on the right
diagram are one-to-one. Using the fact that the map of (33) is an
isomorphism (provided that n > m) and the above commutative diagrams,
it is easy to see that the map (35) is a vector space isomorphism, provided
that n > 3m.

Finally, we describe a generating set for the invariant vector space
(@™ UQ)SP He). let 4,,.0/P" denote the quotient space %,,.«/'? divided out by
the subspace of tuples (G, ody (), 0ry(c)), where G contains a loop. For an
example of a loop, see Fig. 5.

O— OD

Fig. 5. An example of a loop on the left and of a trivalent graph containing a loop on the right

Due to the projection A3HQ — Uy it is easy to see that the map of (35)
induces a map:

(36) Gt P — (2" Ug) )

Using the fact of an inclusion Ug =~ Ker(A’Hq — Hg) C A*Hg and the
same reasoning as that of A3HQ above, it follows that equation (36) is an
isomorphism, provided n > 3m. The above isomorphism has already been
discussed in previous work of Morita [Mo6, p. 11] which has been a source
of inspiration for us. The reason that we recall it here in detail is to show the
similarities and differences between the invariant theory of Sp(Hg) and the
invariant theory of the general linear group GL(Vg) — Sp(Hg), to which we
now turn.

We begin by recalling a few standard facts about representations of
GL(Vg). In this case too, it turns out that there is a one-to-one correspon-
dence between irreducible GL(Vg) representations and dominant integral
weights (with respect to a standard choice of a Weyl chamber). Let us denote
by V(4) the representation (over @) associated to weight 4. Dominant in-
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tegral weights are parametrized as follows: if dim(Vg) = n and {¢;};_, is the
set of dominant weights, then every dominant integral weight can be written
uniquely in the form ), fie; for integers f; such that /1 > f>... > f,. (In case
fn >0, such representations are called polynomial, and a usual graphical
way of representing them is by a Young diagram of n rows with f; boxes on
each row. However, if (/) is not polynomial, there is no graphical way to
represent it. Since we will be dealing with non-polynomial representations of
GL(Vg), we will not use the Young diagram method.) In this language we
have the following lemma:

Lemma 2.16. As representations of GL(Vg), we have the following decompo-
sition:

Ho =V(e) + V(=€)
NHy=V(e+e+e)+Viea)+Via+ea—e)
+V(—e)+V(eh—ep1 —€) + V(—€12 — €41 — €)
Upg=V(e+e+e)+V(ea+e—e)
+V(er — €1 —€) + V(—€—2 — €11 — €)

Proof. The first part is obvious. The second one follows using the identity
NV +V)Y =NV ANV QV + VoAV + AV~
together with the facts that
ANV =V +e+ea) AV RV =V(e)+V(el+e —e)

The third part follows from first and the second. We thank D. Vogan for a
crash course on representation theory of GL(Vg). O

Before we state the main proposition of this section, we need a few more
definitions:

Definition 2.17. A 2-coloring of a linear chord diagram (resp., of a graph) is an
orientation for each of the edges of the chord diagram (resp., graph). For
examples, see Fig. 6. Let 4,2 denote the vector space over © on the set of
2-colored linear chord diagrams with m chords. It is easy to see that 4,,2'! is
a vector space of dimension (2m — 1)I1...2" =1.3.5....(2m —1)2". Let
G, "7 denote the vector space over Q on the set of isomorphism classes of
tuples (G, ody ), 0ry (), clgg)) divided out by the colored antisymmetry re-
lation (denoted by AS!) of figure 7. Here G is a trivalent graph with 3m edges
and 2m vertices, ody ) is an ordering of its vertices, oryg) is a vertex ori-
entation of G, (i.e., a choice of cyclic order for the 3 edges that emanate
through each vertex of G) and clg g is a 2-coloring of the edges E(G) of G. Let



566 S. Garoufalidis, J. Levine

G AP denote the quotient space of 4. divided out by all graphs
which contain a loop. As is maybe apparent from the notation, the superscripts
on o are explained as follows: rp stands for representation theory, nl stands
for no loops and cl stands for 2-coloring (of the edges).

SN @ :
Fig. 6. An example of a 2-coloring of a linear chord diagram and of its associated trivalent
graph

YooY Q0

Fig. 7. The colored antisymmetry relation on 2-colored, vertex oriented trivalent graphs. All

edges are 2-colored by the choice of an arrow. The left hand side corresponds to 8 identities (for

all possible 2-colorings of the edges of the Y graph). Similarly, the right hand side corresponds
to 2 identities

With the notation as in the above definition, we are ready to state the
main result of this section:

Proposition 2.18. For every nonnegative integer m, there are onto maps:

gm@l,cl N (®2mHQ)GL(VQ)
gmﬂrp,cl _ (®2mA3HQ)GL(VQ)
gmﬂrp,nl,cl N (®2m UQ)GL(VQ)

which are isomorphisms provided that n > m, n > 3m and n > 3m respectively.

Proof. Recall first that H = V' @ V™, thus we get two GL(Vg) invariant maps:
Hg ® Hy — @, obtained as follows:

HQ@HQ—)V@@V(SHQ
HQ@HQHVGS@VQHQ

by projecting Hq — Vg or Hq — Vg, appropriately. A choice between each
of the above mentioned invariant maps will be associated with a 2-coloring.
Therefore, given a degree m 2-colored linear chord diagram, we get an
invariant map ®*"Hg — @, and dually (using the isomorphism H ~ H*)
a GL(Vg) invariant element in ®%"Hg. This defines a map: %,2" —
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(®2’”HQ)GL(V‘D), which according to the first fundamental theorem of invariant
theory is onto, and according to the second fundamental theorem (provided
that n > m) is one-to-one and thus a vector space isomorphism. This shows
the first part of Proposition 2.18. Next, recall the map of (34) that assigns to
each degree 3m linear chord diagram its associated degree m trivalent graph.
This map by definition respects the 2-coloring of linear chord diagrams and
trivalent graphs and therefore descends to onto maps:

(37) g},n@l’d N gmt%rp.cl and g}mb@l.cl N !(qm&{rp,cl,nl

Arguing as in (34) and (36), due to the projections ®3Hg — A3HQ and
®3Hg — A’*Hg we obtain that the map %, 2" — (@*"Hg)?“"® induces
quotient maps:

(38) gm&{rp,cl _ (®2’”A3HQ)GL(V‘°) and gm&/rp,nl,cl _ (®2mUQ)GL(V<D>
The same reasoning as that of (34) and (36) together with the
isomorphism of the first part of the proposition implies the rest of Propo-

sition 2.18. O

Corollary 2.19. In particular, for m =1, we have the following table of
dimensions for the various invariant spaces:

A dim (4)*He) dim (4)“H )
®°Hy sN=15 2351 =120
A’ Hy 2 6

®*Ug 1 4

In terms of the isomorphisms of Proposition 2.18, the graphs in Fig. 8 form a
basis for the invariant spaces (AHg)P®  (Ug)¥™® (A He) M) and
(Ug) ™!

Proof. For m = 1, there are only two trivalent graphs with 3 edges and no
decorations. After including the possible decorations and taking into ac-
count the colored AS relation of Fig. 7, we arrive at the table of Fig. 8. [

Two remarks are in order:

Remark 2.20. An alternative way of counting the dimensions of the invariant
spaces (A*Hg)®) | (Ug)PH) (A*Hg)? @) and (Ug)® @ is by decom-
posing into irreducible representations and using Schur’s lemma. Indeed,
since /\3H(,*2 ~ A’Hyg, we obtain:
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1632 (p—<)

Fig. 8. Basis for the invariant spaces corresponding to the last two rows and columns of the

table of Corollary 2.19. Note that all graphs are vertex ordered, vertex oriented and 2-colored.

For simplicity, the ordering and the orientation of the vertices is indicated only in the northwest
part of the figure

OO
OO

(®2A3HQ)GL(VQ) _ (A3H(l*) ® A3HQ)GL(VQ)
= HOIIIGL<VQ)(A3HQ, A3HQ)

Using Lemma 2.16, we see that A*Hg is a sum of six irreducible nonisom-
orphic representations of GL(Vg); therefore it follows by Schur’s lemma that
the dimension of the invariant space HomGL<VQ)(A3HQ, A3H(D) is six. We can
deduce the rest of the dimensions of the invariant spaces the same way as
above. Note however, that this alternative way can only provide us with a
dimension count but not with a choice of basis for the above mentioned
invariant spaces.

Remark 2.21. On the one hand, weights (or Young diagrams) are a classical
and convenient way of parametrizing irreducible representations of classical
Lie groups. On the other hand, trivalent graphs seem to be a very convenient
way of parametrizing invariant tensors of representations of classical
groups.

3. Proofs

3.1. Proof of Theorem 1 and Addenda

Proof. [of Theorem 1] We fix an admissible surface /' : £ — M and consider
the (discrete) group G = .7, as in Sect. 2.1. For every nonnegative integer m,
consider the following cocycle as in Corollary 2.5

Gama € sz(yy/g.y(z)?ﬁm/lzmﬂ)

where / denotes the augmentation ideal of the group ring ©®.7,. According
to the properties of the Johnson homomorphism reviewed in Sect. 2.3 we
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have that the abelianization (modulo torsion) of the Torelli group is iso-
morphic, via the Johnson homomorphism, with U, i.e., that t7: 9 ,/7 4(2)
~ U. Recall from (2) the linear map CD/Z : QT y — M preserving (by defi-

nition) the filtration {/"} of Q7 , and #!.# of .. In [ GL3] it was shown
that the filtration # 7. is 2-step (following the definition of section 2.1),
i.e., we have that #) ./ = F1 . In [GL3] it was additionally shown
that #1 4 = F5.4, and that F*.4 is 3-step, from which follows the
equality 95 M = %5 i of the associated graded spaces. According to the
fundamental theorem of [LMO] and [ L] it follows that there is an
isomorphism 9% # ~ %,,</(¢). Thus we get a linear map 7*"/[*"*! —
G/ (p), and putting everything together, according to Corollary 2.5, we
get a 2m cocycle

(39) Crm € C"(U, Gt ($))

Of course, this cocycle depends on the choice of an admissible surface
f X — M, as the notation indicates. It follows from Corollary 2.7 that Cy
is multilinear. In order to show that Cy, is equivariant, consider a diffeo-
morphism 4 : ¥ — X. It follows by definition of the map CD; of (2) that for
a € 7 () we have: ®;¢(a) = ®7(h~'ah). Thus T, acts by conjugation on the
graded quotients (17 ,)"/(174)""", and since the action of 7, C T, is
trivial, and the quotient I'; /.7, is the symplectic group Sp(H), equivariance
follows as stated in the first part of Theorem 1. Furthermore, it follows by
Proposition 2.6 that the pullback of the cocycle Cy,, to T,/ 4(3) (and
therefore, to J,) represents a trivial cohomology class. The proof of
Theorem 1 is complete. [

Proof. (of Addendum 1) The commutativity of the diagram follows by
definition of the map Cy . O

Proof. (of Addendum 2) We explain the statement of this addendum more
fully. Suppose, for each g, we choose a Heegaard embedding of a closed
surface of genus ¢ into the 3-sphere. Fixing a disk, and considering surface
diffeomorphisms on the disc complement that pointwise fix a neighborhood
of the boundary, we obtain a map Q7 ,; — .# by h — S3, where h is the
obvious extension of % to a diffeomorphism of the closed surface. Moreover,
with respect to an inclusion of such a surface with boundary in another one,
we obtain an inclusion 7, C 7 4,1 and we can arrange that the following
diagram is commutative:

Q7,1 — M

|

ng+l,1 — M

This is, in fact, a special case of Proposition 1.4. We can define
J =limy_.o 741 and thus combine these into a single map QI — ./Z.
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Then it is proved in [GL3] that this map sends (1.7)" onto Z!./, thus we
have epimorphisms (1.7)"/(17)""" — 4T.«. 1t follows that the stable co-
cycle Cap € C*" (T T (2); 9t (P)) is onto. From this it is clear, since
G,.o/ () is finitely-generated, that Cy,, is onto for large enough g. O

3.2. Proof of Theorem 2

Proof. For the convenience of the reader, we divide the proof of Theorem 2
into several lemmas. Recall first that for a diffeomorphism 6 of a manifold,
we denote by 0, the action of it on the homology of the manifold. ]

Lemma 3.1. Let Q be a handlebody and L = Ker{i, : H|(0Q,Z) — H,(Q,Z)}.
Suppose o is a symplectic automorphism of H,(00,Z) such that o(L) = L.
Then there exists a diffeomorphism h of Q such that (h|0Q), = o.

Proof. Let 0y be the automorphism of H,(Q,Z) = H,(0Q, Z)/L induced by
. Then there exists an orientation preserving diffeomorphism / of Q such
that h, = ap. Now consider the symplectic automorphism 8 = (h|0Q) o o~
of Hi(0Q,Z). If we write H;(Q,Z) = L & L', where L' is a complementary
I C

0 X )
Since f is symplectic, it follows that X = I and C is symmetric. It suffices to
see that any such matrix can be realized by a diffeomorphism of Q. But this
is proved in [GL3]. O

Lagrangian to L, then a matrix representative of f has the form

Lemma 3.2. Suppose that f1, f> : £ — M are admissible Heegaard surfaces in
an integral homology 3-sphere M satisfying:

o fiE)=A(3) 1

o (fi.) (Le) = (f2r) (Le) CHI(Z,Z) where L, is the Lagrangian pair in
Hi(/i(2),Z) as in section 1.1.

Then Cm’f1 = Cm,f>-

Proof. Consider the diffeomorphism g = f5f;! of fi(Z). Since g. preserves
Le, for e = £, we can apply Lemma 3.1to deduce the existence of a diffeo-
morphism %, of M, which induces the same automorphism of H,( f1(X),Z)
as g. In other words we can write f> = h.f1g., where g. € 7 (%) and A, is the

restriction of A, to OM.. Recalling the map (I);, of equation (2), for g; € 7 (%)
we have:

Cralgt,- - g0) = OL((1—g1) ... (1 — gi))
=M ) (—g0 ()
= Mh+f]y+(17g]),4_<lfgk)gi]fl—lh:1

=My (1-g)..(1=g0g=1 1!
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=07 (g,(1—g1)... (1 —gi)g")

But g(1—g1)...(1—gr) =(1—g1)... (1 =gr)g = (1 —g1)... (1 — gx)mod
I for any g € 7 () and so, if k = 2m, this last term is the same as

O ((1=g1)... (1 —gi)) € Gt (§). O

Lemma 3.3. Suppose that f; : X — M; for i = 1,2 are admissible Heegaard
surfaces in integral homology 3-spheres M; satisfying:

° (f*)fl(lef) = (fz’*)fl(Lz_f) C H|(X,Z), where Li¢ for i=1,2,¢ =+ are
the Lagrangian pairs associated to (M, f;) respectively.

Then Cm7f1 = Cmfr-

Proof. We reduce this to the preceding Lemma 3.2 by the following obser-

vation. Let N be an integral homology 3-sphere , f : =N, ¥ = f(X). Let

he 7 (X)) and N' = N,. Define f': ¥ — N’ from f by identifying N, C N
. T

with N+ g N+ Up N_ = N/,,. Then q)fr(g) = N]/”g(f’)il = N/,l/xg/—l = Nf(f’]hf)

gf = = ®}(Wg), where k' = f~'hf € T (Z). Therefore, when k = 2m:

Cralgns -, g8) = @p((1 = g1) ... (1 = gx))

_;(h/(l —g1)---(1=gx)
(1—g1)...(1 —gr) mod F [, .M
(g1l 19k) € Gnt ()

o
a8 e

since H'(1—g1)...(1—ge) =1 —g1)...(1 —gx) mod I*"'. Thus Cpy =
Cr g

Now, since M| and M, are endowed with Heegaard decompositions of
the same genus by fi, />, we may identify M, as (M;),, for some h € T'(X'),
where X' = f(X). We may even assume that 4 € 7 (¥') since we can increase
the genus of the Heegaard decompositions without affecting the hypotheses,
and every integral homology 3-sphere has some Heegaard decomposition
where the gluing map is an element of the Torelli group. The above
observation and Lemma 3.2 complete the proof of the present lemma. [

Lemma 3.3 implies that the cocycle Cy, in the case of a Heegaard
admissible surface depends only on the Lagrangian pair (L™,L™), and will
thus be denoted by C;+ ,,. In addition the Sp(H)-equivariance of Cy ,, shows
that Cy- ,, is GL(Lg))-invariant.

We next recall a useful lemma due to Morita [Mo3]. Let A~ ;1 (resp.,
A",1) be the subgroup of the mapping class group I'y; of X that extend to
M~ (resp., M™). Let W+ (resp., W~) denote the quotient space: A°H /A’L*
(resp., A’H / A’L™). Note that we can identify W (and similarly, W) with a
subgroup of A’H in the following way: Let
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Ny N°H — AY(H/LT) ~ A°L*

be the projection followed by the natural isomorphism. Then the projection
A’H — w# induces an isomorphism W+ ~ Kern,. Alternatively, if we
choose {x,}, . (resp., {J’z}, ) a basis for L* (resp., L~) such that
o(x;,y;) = d;j, (Where w is the symplectic form on H) then W™ is isomorphic
to the subgroup of A’H generated by all elements of the form:
XiNXj A Yk, Xi NV Aye, i Ny Ay forall 1 <i<j<k<y.
Recall the Johnson homomorphism 7 of Sect. 2.3. Then, we have the
following lemma:

Lemma 3.4. [ Mo3, lemma 4.6] With the above notation, identifying W+ with
a subgroup of N*H, we have the following:

(40) (T g NNy =W

We can now show that the cocycle C: , factors through a map as in
equation (7).

First notice that the map H — A’H from Sect. 2.3 followed by
the projection AH — A’L* vanishes, and therefore induces onto maps
U=ANH/H— NL*.

Let us now consider elements g;,h; € 7, (for i =1,2,...,2m) such that
fe(gn)] = [c(i)] € ALY, and [t(gan)] = [e(hsn)] € AL, and g, = by for
2 <i<2m— 1. The notation is as follows: recall that r(g,), t(h;) € U, and
temporarily denote both maps U — A’L* by x — [x].

Now it is clear that W* N U = Ker{U — A’L*}. Since hlq1 eEwWwrnu
and h2mg2 € W~ N U, we can choose liftings gl,hl,gz,n,hzm gl so that

t(hamdy)) € W—. Using Lemma 3.4 above, there exist b™ € 7,1 N AT i
(resp., b~ € 741N A ) such that h = b*tg, (resp., hom = Gomb™ ) Since
f:Z—=Misa Heegddrd embedding, it follows by definition of JV g1 that
M, ;= My = My = My = Mhb , and therefore that Mg
M(1_b+g)(1-g2)...(1=gam_1 ) (1-gamb-)» @nd therefore that

l—gom) =

(41) CLi,m(glv-“»me) = CLi,m(hla--'ath)

This completes the second part of Theorem 2.

In order to show the third part of Theorem 2, recall first that all integral
homology 3-spheres are oriented. The change of orientation of an integral
homology 3-sphere induces an involution on .#, and thus on ¥ .4 for
every m. Recalling the isomorphism 4% .# ~ ,.</(¢), the above involution
on %,.9/(¢) is simply multiplication with (—1)", [LMO, Proposition
5.2]. On the other hand, given an admissible Heegaard surface f : ¥ — M in
an integral homology 3-sphere M, let f : ¥ — M denote the same embed-
ding but with different orientation on the ambient space M.

It is easy to see that the associated change to the set of Lagrangian pairs
is given by (L*,L7) — (L™, L").
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Furthermore, note that for an element g of the Torelli group of X, we
have the following identity: (M), = M, 1; see also Fig. 9. Thus, by the above
discussion, we deduce that Cfﬁm(gl, o Gom) = (=1)"Crm(gap, - 971).
Since passing from f to f interchanges the Lagrangians, and since
Crm(Gans---191") = Crm(gams - - -, g1) (due to the fact that Cy,, is multilin-
ear, and the fact that we use multiplicative notation here to denote addition)
this proves the third part on the cocycle level. The assertion about the
cohomology class follows from Lemma 2.1, using the fact that
[Cr ) = (= l)( ) 4 1y [Crm] and (%) =m (mod 2). This completes the
proof of Theorem 2. O

Fig. 9. An orientation reversing of M corresponds to a reflection along the x-axis

3.3. Proof of Theorem 3

Proof. Let f : ¥ — M be an admissible Heegaard surface, and (L*,L™) the
associated Lagrangian pair of the symplectic vector space (H,w) as in
Sect. 1.1. Consider the cocycle Cyx,, : @*"U — %,/ (). Recall from Sect.
2.4 the subgroup of the symplectic group Sp(H) isomorphic to GL(L*).
Since this group acts on H preserving the Lagrangian pair (LT,L7), it
follows from Theorem 2 that C;-, factors through an invariant map:
(®2’"U)GL g w/ (¢). Composing with the onto map %,,.o/P""< —
(@ U)GL(L ) of Proposition 2.18, we get a composite map:

(42) Pri: Gud P — Gl (§)

thus finishing the proof of Theorem 3. O

3.4. Proof of theorem 4

Proof. Let f : X — M be an admissible Heegaard surface, and let (LT,L7)
be the associated Lagrangian pair of the symplectic vector space (H, ®) as in
Sect. 1.1.

Let 4 denote the Casson invariant, and 7, its associated manifold weight
system. Consider the associated 2-cocycle W, o C;= | of U with coefficients in
@ as in corollary 1.1. According to theorem 2, W, o C;« ; factors through a
GL(Lg,) invariant map: /\3L(,+2 ® A3L(,*2 — Q. According to Corollary 2.19,
the vector space of such invariant maps is 1 dimensional, and a nonzero
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such map is the restriction of the map Ce of (11) to A3L(E®
A3L(5 — @2 A’Hq — ®° Hg, which we will denote by the same name
before the ®?Ug. Using the definition of the map C§ (given before the
statement of Theorem 4) and the above discussion, we deduce that
WyoCpey = ¢yC§ for some rational number ¢, depending on the genus g of
2. According to Addendum 2, C;+ ; is stable (with respect to an inclusion of
a surface in another) and so is C§, therefore ¢, = ¢ independent of the
genus.

Fig. 10. On the left, a special case of a 2-pair blink L, (bounding the disjoint union of two
genus 2 surfaces) union a 3-component algebraically split link Z’. On the right the boundary
surface Xy of a genus 9 handlebody

To determine the value of ¢, we need to calculate a particular example.
Consider a 2-pair blink L}, and a 3-component algebraically split link L' in
S3 shown in the left part of Fig. 10. Part of this figure appeared first in [GL3,
Sect. 3, Fig. 39]. Note that L’ is a trivial 3-component link, bounding a
disjoint union of obvious disks. Choose a unit Seifert-framing for the blink
L},, and for L'. Perform a Dehn twist on each of the three disks that L’
bounds, and let Ly, denote the image of L},. After performing the twists,
thicken the surface that L,; bounds in order to get two disconnected genus 3
solid surfaces, and join them along three tubes to form a genus 9 surface Xy,
see the right part of Fig. 10. We can assume that Ly, lies in Zg. It is easy to
see that Zg is a genus 9 Heegaard splitting of $°. Let Li, (for i = 1,2) denote
the two pairs of the blink L;; each gives rise to an element of the Torelli
group of X, see [GL3]. Let o (for i = 1,2) denote the image in U of each of
the above mentioned elements of the Torelli group under the Johnson ho-
momorphism. Using the definition of C§ and the definition of the Johnson
homomorphism, it is easy to show that C§(a!,o?) = —1.

The first part follows from the following lemma:

Lemma 3.5. With the above normalizations, we have the following equalities:
WyoCpey(al,o0f) = =2
I/V/l(®w) =-2

Proof. For the first part, note first that for f: X9 C S the admissible
Heegaard surface we have:
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OT((1—o') (1 —o?) =8> =8 — S + 5,
= _S3 +S:102
=[S Ly, fl € FLtl = FEM

-,az

where the first equality follows from the fact that §3 = 8% = $°. We also
have that:

7[S37Lblvf] = [S37L;71 UL/af] =0, =2Y= 2(S3 - S%refoil,Jrl)

where the first equality follows from the fact that L’ is an unlink, and the
second follows from the fact that surgery on each of the pairs of L}, cor-
responds to the alternating sum of cutting or not each vertex of the ® graph,
see also [GL3, Sect. 3, Fig. 36]. The third equality follows from the main
identities of [Oh], [GL2], and the last by the fact that S%remih 41 €quals the
result of Dehn surgery on a Borromean ring of three components with
framing +1. Note that Trefoil is a right (or left) handed trefoil in S*
depending on the Borromean ring; either case does not affect the validity
of our calculation.
This and the definition of W, o C;+; imply that

W, Cuu(a,o2) = 2@ (1 — o)1~ 7))
= /I(GW)
= 2}(S3) - ZX(S%refoil,Jrl)

Using the normalizations of the Casson invariant it follows that A(S?) = 0
and A(S},pi4) = 1 which proves the lemma. O

In order to show the second part, since %;.<7(¢) is | dimensional, the first
part implies that:

(43) Cpey =c,CH O,

for some rational number c;,. The stability of C;+; implies that c;/ =c
independent of the genus. Composing (43) with W, : 4,./(¢) — Q we
obtain that W, o C:, = c'W,1(®W)Cg , which (due to the first part of
Theorem 4) implies that 2 = ¢ #;(®,,). Using lemma 3.5, the second part of
Theorem 4 follows.

In order to show the third part of Theorem 4, recall first from Theorem 2
that Cps : ®*U — %.9/(¢) factors through a GL(L') invariant map
A3L$ ®A3Lq’2 — 9,9/(¢). Thus using the basis of the four dimensional
vector space %1.o/"7"“!(¢) shown in the southeast part of Fig. 8 and the
definition of ¥, | and Corollary 2.19, the second part of Theorem 4 implies
the third part.

In order to show the fourth part of Theorem 4, namely that Cj:
represents a non-zero cohomology class, we interpret it as a cup-product.
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Consider the elements ¢* € H'(A’H; A’L*) defined by the homomorphisms
A'H — A’(H/L7) =~ A’L*. Then the intersection pairing on H defines
a non-singular pairing on A’H which induces a non-singular pairing
A’L* ® A’L~ — Q. Using this pairing we have a cup-product

H' (NH; LYY @ HY(NH,NL™) — HY(ANH; Q)

Now it is straightforward to check, from (13), that j*[C;: ;] = Erué,
where j: A’H — U is the projection.

Recall that, for any finitely-generated abelian group A4, there is an
isomorphism of Q-algebras:

H'(4;Q) = A'(47) © Q

where A4* = Hom(4,Z). The product structure on A*(4*) is defined as
follows:

I W1 A ATpg) = sgn(n)dF (Va1 A A vgy)
lpq(vn(erl) ARRRA Un(p+q))

where the sum ranges over all shuffle permutations 7.
Thus ¢ U & € HA(A’H; Q) = A*(A’H*) is defined by

uhvi— oE (u), & (v) — (& (v),E (u)

for u,v € A’H. To see this is non-trivial we note, for example, that, if
ue ALt and v € A’L~, then " UE (uAv) = o(u,v).

Now suppose that K is another Lagrangian pair with associated classes
nt e H'(A’H;K*), and suppose that ¢"U & =yt Upy~. We first point
out that A’LT + A’L~ = A’KT + A’K~ C A’H. This follows from the
observation that T U¢E (uAw)=0 for all ve A’H if and only if
o(u, LT + A’L™) = 0.

We can assume that dim H > 6. Let p : K™ — L™ be the restriction of the
projection of H onto L™ with kernel L~. Choose any basis vy, ...,v, of KT
such that p(v;) =0 for i <r, and p(v;) are linearly independent in L* for
i>r. Write v; = v +v; for i >r, where v € L*. We consider several
cases.

1<r<nThenv,v, e L andv; Ava Av, =v; Ay AUT + 01 Ava A,
If we now consider the direct sum decomposition:

(44) NH=NL"oNL)e (LToA L) e (L” @ ALY
then we see that the component of v; A vy Av, in LT ® A’L~ is non-zero. But

Vi A Ao, € AKT CAKT + AK = AL + AL, which means this
component should be zero.
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r=1. For any 1 <i<j, we examine v; A v; Av;. The component in
Lt ® A’L™ is v A (v; Avr) 4ol A(or Avy). Since v, v) are linearly inde-
pendent, this means v; A v; = v; A v, = 0. Thus v; = ¢;v;, for some scalars
¢, i> 1. But then vy Av; Avy = v Avf A v]* lying in L™ ® A’L* in the
decomposition of (44).

r = 0. Suppose K+ # L. Then we can assume without loss of generality
that v # 0. If we consider the element v; A v; A v, then the component in
LY@ A’ L™ is vf A (0] A v;) ol Aoy Avp) 4 o) A(op Avy). Since o, v
v} are linearly independent, we conclude that v; Av; = vy Av; =0 and so
v; = c;v], for suitable scalars ¢;. Now let us replace each v; by v; — ¢;v;. In
other words we can assume that each v; € L™ for i > 1. But now we can see
that v; A v; A v; has component v; Av; Av; in L~ ® A’L* and so vy would
have to be zero.

The conclusion from these arguments is that either » = n, in which case
K+t =L", or, from the last case, that K™ = LT. Similarly, we see that
K~ =L7" or L~. Finally we need to check that ¢ U & =»T Uny~ in case
Kt =L and K~ =L*. Using the orthogonal direct sum decomposition
(44), we can write u = ut +u~ +u’,v = vT + v~ + 1%, where u, vt € A’LT,
u - € AL~ and u°,1° € (LT ® A’L™) @ (L~ ® A’L*). Then we have

ETUE (unv) = ot
ntun (wAv)=ou v

\,CI
~—
I
S
—
<

4+
:l
~—

The skew-symmetry of the symplectic pairing implies that these are equal.

3.5. Proof of Proposition 1.4

Proof. Under the assumptions of Corollary 1.4, we are given an embedded
sphere S — M in an integral homology 3-sphere M which separates M into
two components. Therefore, we have that M is a connected sum of two
integral homology 3-spheres M, M,, along the separating sphere S, i.e.,
M = M{M,. Furthermore, by assumption, the admissible surfaces
fi + X4 — M belong to different components of A — S. Recall the composite
surface f1 U f2: 2y 1g, = Zy, Ups—(p,uby) Zg, — M. Therefore, for h; € 7
(24,1)(i = 1,2) we get an element i U hy € 7 (Z4,44,), and an isomorphism:

Mh]th = (Ml )]1] ﬁ(MZ)hz

Since .# (resp., /(¢)) is a commutative algebra with multiplication the
operation of connected sum on integral homology 3-spheres, (resp., the
disjoint union of vertex oriented trivalent graphs) and since the isomor-
phism 95 .4 ~ %,.</(¢) preserves the algebra structures, the result
follows. O
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3.6. Proof of Theorem 5

In this section we give a proof of Theorem 5. Since the proof combines
several rather different techniques, for the convenience of the reader we
separate it into several steps.

Proof. [of Theorem 5]

e Step 1 The definition of the map Dy, of (16).
Set Dy, = (;’)}/-" from Corollary 2.12.

e Step 2 Dy, is determined by Cy .

Indeed, equation (17) follows from Lemma 2.8 and the above definition of
Dy . It remains to show that %,,.7 , ® Q is spanned by elements of the form
[xi, [x2,. .., Peam—1,X2m]]] for x; € 7. This follows from several applications
of the Jacobi identity: [[a,b],c] = [a,[b,c]] — [b,]a,c]] for a€ T ,(n),
be ng(nz),c € .7g(n3) with ny +ny + n3 = 2m.

In case f: X — M is an admissible Heegaard surface, Cr,,, and thus
Dy ,», depends only on the associated Lagrangian pair (L*,L™). In that case
we will denote Dy, by D;+ ,. Assume from now on that /" is an admissible
Heegaard surface.

e Step 3 D;- , satisfies the symmetry property of (18).

Indeed, Fig. 9 shows that Dy,,(a”") = D7, (a) where £ is the surface in the
orientation reversed 3-manifold M. Since the involution of reversing the
orientation in the ambient 3-manifold is multiplication by (—1)" on
Gl (@), the result follows.

o Step 4 Assume now that f is the standard genus g Heegaard splitting of S°.
Then, for g > Sm+ 1, D;+ , is onto.

This follows by Corollary 3.10 of Theorem 7 whose proof is given below.
The proof of Theorem 7 and Corollary 3.10 given below is long and tech-
nical; furthermore it is logically independent from the rest of the proof of
Theorem 5.

e Step 5 The case of m = 1.

We now describe explicitly the map D;- ;. Assume that we are given an
admissible Heegaard genus g surface f. Recall first that 4,7, ® Q is a finite
dimensional, stable with respect to the genus, representation of Sp(H). It
follows by a theorem of Quillen [Qu] (see also [Hal]) that it is a rational
representation of Sp(Hg). It is a very interesting question to analyze the
structure of the above representation. Motivated by the above question
Morita [Mo5] developed a theory of higher Johnson homomorphisms, known
to form a Lie algebra. The structure of this and related Lie algebras have
been analyzed in the pioneering work of Morita [Mo2] and Hain [Ha2]. In
case of 9,7 ; ® Q the answer is known and we describe it here.
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It turns out that for g > 6 we have the following decomposition as
representations of Sp(Hg) [Mo2], [Ha2]:

(45) GT,2Q=V(0)+V(2e)

Recall from Sect. 2.3 that J,(2) = #,, thus we have that 4,7, =

H 4/ T 4(3). Morita [Mo2, Sec. 5] using his theory of secondary characteristic
classes defined a group homomorphism d; : #; — Q which vanishes on
I 4(3), thus inducing a map 4,7, ® Q — Q. Furthermore, Morita [Mo2,
Sect. 1] defined a higher version of Johnson’s homomorphism
73 : A’y — V(2€), which also vanishes on 7 ,(3) thus inducing a map
4,7 ;@ Q — V(2¢;). The above maps are Sp(Hg) invariant, and stable, and
realize the decomposition of (45) as a Sp(Hg) module. Moreover, Morita
[Mo2] using a Heegaard splitting f, defined a map g, : V(2¢;) — @Q and
showed in his main result [Mo2, Theorem 6.1] that:

1
46 W,oDi+1 = —=—d| —qr
(46) oD+ 24 1 — gy

Note that the change in sign from [Mo2, Theorem 6.1] to the above equation
is due to the fact that Morita uses the map 7, — @Q to be a — A(S3) — A(S?);
however we use the map 7, — Q to be a — A(S?) —A(S3). From this, it
follows immediately that W, o D| = —2—14d1, thus finishing step 5 and the
proof of Theorem 5.

The proof of Theorem 7 and Corollary 3.10 occupies the rest of this
section. The proof is long and technical, and consists of combinatorial as
well as geometric topology arguments. We urge the reader to keep in mind
the figures.

Let f: X, — S3 be the standard genus g Heegaard splitting of S3, which
we keep fixed for the rest of this section. We follow the notation and ter-
minology of Sect. 2.2. For L an f-compatible Lagrangian consider the maps
GO 4QLL — GhA and ¢7: GLE @ Q — G/ (¢), which, for sim-
phcrty, we denote by @ and ¢* respectrvely Then, we have the following
theorem:

Theorem 7. Suppose g > 5Sn+ 1. Then there exists an f-compatible Lagrang-
ian L C H\(Z,) so that qﬁL(%ngg ® Q) = G, A" ().

Proof. Due to the length of the proof, for the convenience of the reader we
provide the proof in six (or perhaps seven) steps.

e Step 0 A non proof.

We first give a ““too good to be true” proof. %(D? is a map of coalgebras and
according to the results of [GL3] reviewed in Sect. 2.2, @(DL is stably onto. If
it were the case that g(DL was a Hopf algebra map, the mduced map on the
primitives would be onto by a dimension count using the Poincaré-Birkhoff-
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Witt theorem. Unfortunately, @d)f does not preserve the product structure,
see Remark 2.13.

e Step 1 A reduction to ‘“‘chord diagrams”.

We begin by recalling the following definition: a degree n chord diagram (on
a cirle is a collection of n chords with 2x distinct end points; for an example
see Fig. 11. Note that a chord diagram can be thought of as a connected
vertex oriented trivalent graph (with the counterclockwise orientation at
each vertex), and furthermore this way a degree n chord diagram gives rise
to an element of @,.o7°""(¢). Note that a degree n chord diagram has 2n
external edges (the ones on the circle) and n internal ones. Degree n chord
diagrams are rather special elements of ¥,.27°°""(¢), however we have the
following claim:

Claim 3.6. 9,5/ () is generated by chord diagrams as above.

A proof, using the IHX relation, can be found in [GL2, Lemma 3.2].
With the notation of Sect. 2.2, we make the following:

Claim 3.7. For every n >1 there is an f-compatible Lagrangian L with the
following property: For each degree n chord diagram T; there is an element
e 35(311) such that:

(47) F(¢"(&")) =T mod %,

Using Lemma 2.9 the above claim implies that for each degree n > 1 chord
diagram TI', there is an element & e 32(311) such that (;SL(ér) =T,. This,
together with Claim 3.6 implies Theorem 7 for n > 1.

Thus, we will prove Theorem 7 by proving the special case of Theorem 7
for n = 1, and proving Claim 3.7 for n > 1. Note that Theorem 7 is obvious
for n = 0. In the rest of the proof, we will be working in the graded space
Y3, (¢p) which is isomorphic to %5, .4 .

€2 €3

€s

A )
€6 €5

Fig. 11. A degree 3 chord diagram on a circle
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e Step 2 An important construction.

We begin with a construction which will be an important component of, as
well as a warm-up for, the general construction. Let £, = OH be the surface
of genus two in S, where H = T} 11 7> is the boundary connected sum of
two solid tori in R3. We distinguish three simple closed curves on . Let a
be a meridian in 977, i.e., the boundary of a meridian disk in 77, and ¢ be a
longitude in 07>. Finally let » be a band sum of two disjoint meridians
in 0T, where the band passes once, longitudinally, around O0T;. See Fig. 12.
The orientations of these curves can be chosen arbitrarily for the moment.
Let o, 3, y be the diffeomorphisms of X, defined by Dehn twists along a, b, c,
respectively. Note that § € ', since b bounds in X, but o and y do not lie
in the Torelli group. However, there is a Lagrangian L C H,(Z;), compatible
with the given embedding of £, in S3, so that o, 8,y € ffé. In fact we can just
take L to be the subgroup generated by the homology classes of a and c.
Consider the element [[, f],7] € (£%);. Then, we have the following:

e Step 3 ¢"[[x, f], 7] is a generator of G M = G3./ () = G1.4™(¢) = Q.
Thus theorem 7 holds for n = 1.

Fig. 12. A genus 2 handlebody X, together with 3 curves a, b, c on it

Proof. Consider the element (1 —o)(1—p)(1—7y)el=(I%%)’. Then
®F((1 —a)(1 — B)(1 — 7)) represents the same linear combination in .# as
[S3, K], where the 3-component link K is constructed as follows. Take three
concentric copies of X, in IR and place a in the outer copy, b in the middle
copy and ¢ in the inner copy. Then K is given by these three disjoint curves
in R?. See Fig. 13. We refer the reader to [ GL3] for the explanation of this.

CH D)
Fig. 13. After taking 3 concentric copies of the surface of Fig. 12, and placing a, b, ¢ on each
copy in that order, we arrive at the 3-component Borromean link K shown in the figure above

Note that K is just the Borromean rings and so represents a generator of
45’4 . The following Claim 3.8 completes the proof of this step.
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Claim 3.8. We have:
" (1 — [[or, ], 7]) = @((1 — o) (1 = B)(1 = 7))

To prove the claim recall the following identity from Lemma 2.8:

I= [l Bliyl = (1 =) (1 = B)(1 =p) = (1 = )(1 =) (1 =)
—(L=p)(1 = a)(1 = B) + (1 =) (1 = B)(1 — ) mod I*

Now for any permutation oy, 00,035 of o, f,7, ®((1 —o)(l — )
(1 —a3)) = [S?,K’], where K’ is the 3-component link defined by placing
a, b, c in concentric copies of X,, just as above, except that they are placed in
the permuted order. But it is easy to see that, for any non-trivial permuta-
tion, the resulting link K’ is trivial. See Fig. 14. Thus, from the above
formula we see that ®“(1 — [[x, B],7]) = ®“((1 — a)(1 — B)(1 —7)). This
concludes the proof of the claim and of Step 3. O

e Step 4 The definition of the f-admissible Lagrangian L.

Now let T" be any chord diagram with 2n vertices. We associate to ' a
Heegaard surface X C IR? as follows. Choose an embedding of T' C IR>.
Then, at every vertex v of I', place a copy Z(v) of X, and, for every edge e of
I' with vertices v,, v}, take a connected sum of X(v,) with X(v}) using a tube
T(e) running along the edge e. See Fig. 15.

(P aﬁ\r\:%
%ﬂ U

Fig. 14. The links shown above associated to any nontrivial permutation of a, b, ¢ are trivial

Fig. 15. For the chord diagram I" shown on the left, the construction of a handlebody X on
the right

Note that the resulting surface X will have genus g = 5n + 1. In each
> (v) we have three copies a(v),b(v),c(v) of the curves a,b,c in X, and we
can assume they avoid the holes where the tubes {T(e)} meet Z(v). Now
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label the edges of I" with labels a, b or ¢, so that all the internal edges have
label b and the external edges are labeled alternately a and ¢ as we go round
the external circle. Thus the three edges incident to any vertex have all
different labels. See Fig. 16. Now for each edge e that connects the vertices v,
and v/, we take a band sum of the curves x(v,) and x(v}), where x € {a, b, c} is
the label of e, using a band which travels along the boundary of the tube
T(e). We will denote this band-sum curve by é. Note that there are 6n
labeled curves a(v), b(v), c(v) in Er which, after the above mentioned band
sum, yield 3z curves ¢ in Xr.

Fig. 16. A labeling of the edges of a degree 3 chord diagram with labels a, b, ¢

Let y, be the difftomorphism of X defined by a Dehn twist along é.
Notice that y, € 4, if e has label b, since it can be arranged, by taking our
connected sums correctly, that é bounds in Xp. See Fig. 17.

If we define our Lagrangian L to be generated by the homology classes in
each Z(v) represented by a(v) and ¢(v) and, in addition, the meridians of the
tubes T(e), then L is f-compatible and each y, € 32. It will be a very

Fig. 17. The connected sum of two b labeled curves is a bounding curve. Thus Dehn surgery
along it represents an element of .4,

important observation that whenever ¢; and é; are disjoint- for example if
the two edges ¢; and e; have the same label, or if e; has label a and e; has
label c- then y,, and 7, commute.

e Step 5 Verification of Claim 3.7 for n # 1.

We begin with some preliminaries. Choose any ordering .# = {ey, - - 63,,}
of the edges of . We now consider the element ¢ = (1 — Vey) "

(1-7,,) € P’", where I=%'12" and its image ®*(¢,) € 45,4 Recall
from Sect. 2.2 that there is a map g3 M — 45 M (induced by an inclusion
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map F5,.4 C F.AM); we will thus identify %5, .4 with its image in 954
With this identification in mind, we will now describe the element
L (&) € 9% .. Choose 3n concentric copies of r in R® and consider the
curve ¢; placed in the i-th copy of X1 (counting from the outer to the inner).
These curves define a 3n component link K in S* and we have that
[S3, K] = ®(&). If e;,ej,ex(i < j < k) are the edges incident to a vertex v,
then the three curves é;, ¢;, e, form a Borromean link if e;, e}, e, have labels
a,b,c, in that order, but form a trivial link if the labels are in any other
order. We will call v .#-proper in the former case and .#-improper in the
latter case. We call an ordering .#, or the associated element «f; proper if all
vertices are .#-proper, otherwise improper.

Now recall the isomorphism F' : 9,.27,(¢) — 95,4 of equation (28) of
Sect. 2.2. Comparing the definition of this map with our description of K, we
see that <DL(§1;) = F'(T ;) where Iy is the graph obtained from T by split-
ting every improper vertex v into three univalent vertices. Observing that
F(T,) = F'(I') mod F'(%,) if .7 is proper

0 mod F'(%p) if .7 is improper
the fact that each trivalent graph with at least one univalent vertex lies in %/,
see the proof of Lemma 2.9), it follows that

(which follows from

Loy _ JF'(I) mod F'(%,) if .7 is proper
(48) (Cs) = {O mod F'(%,) if 4 is improper

For each label x € {a,b,c}, let x; denote the edges with label x, in any
order. Fix an initial ordering %y = {ay,---,an, b1, -, by,c1,---,cy} of the
edges of I'. To simplify the notation we will also write x; when we really
mean 7, . This should cause no confusion.

Claim 3.9. There is a commutator C in the e; such that

510 =1 — C + improper terms mod Al

Note that (48) and the above claim imply that ®(¢))) = F/(T,) mod F'(%}).
Using the definition of F’ (see (28)) and the definition of ¢* this imples that
F(¢"(&%)) = T, mod %, which finishes the proof of Step 5.

Proof. [of Claim 3.9] Choose any a, and by which are incident. Then, using
(20), we have

=& =+ [0 —a)(1 = [an, b)) [T = 6) [](1 = <)

i#r J#s
[0 -a)(1 =b)(1 —a) JJ(1 =6 JJ(1 =)  mod PP
i#r J#s

The second term on the right side is improper since by precedes a,. Next
choose some a; which is incident to b,. Then we have
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H(l —a;)(1 - [a,.,bs])H(l — b)) H(l —c) =

i#r J#s
[T =a)( = la, [ar, b ) [ (1 =) T (1 =€)
i#rt J#s
- [I0 —a)(d = fan,b])(1 —a) [J(0 =) J[(1 = i) mod 1!
i#rt J#s

The second term on the right side can be further expanded by applying (20)
to 1 — [a,, bs] and we obtain, mod 7***!, a sum of two improper terms (since
by precedes a; in both terms). We next look for some b, which is incident to
a; and, if it exists we can, in the same manner, write

[T —a)(t o, far b)) T = 0 [T(1 =) =

i#rt J#s
H(l - ai)(l - Hala [arab‘v]]vbu]) H (1 - bj) H(l - Ci)
i#rt JES,u

+ improper terms  mod />"!

Continuing in this way we eventually reach a point where we can write, after
renumbering:

&o=x[J0-a)a - =) [0 =)

i<p J<q

+ improper terms mod />t

for some p,q < n (actually p = ¢g) and C’ is a commutator in which each
a;,i > p and b;, j > g appears once and no a;,b; with i < p, j < q is incident
to any a;, b; with i > p, j > q. Thus C' commutes with every b; and we have:

& == [[0-a) [0 -b)0 - )L -e)

i<p J<q

+ improper terms mod 7*"*!

We now play the same game with ¢;, b; and C’ that we just played with g;, b;.
We will then eventually arrive at

(49) &o=x[Ja-a)a-c)Ja-b) (1 -a)

i<p J<q i<r

+ improper terms  mod I°"*!

for some new g and r and new commutator C” involving all the a;, b;, ¢; not
involved in the other terms on the right side, and no b; or ¢; in C” is incident
to any not in C”. We now play the game again with the a;, b; and C”. Going
back and forth like this, we eventually arrive at the point where we have an
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equation of the form (49) where none of the edges in C” are incident to any
of the edges outside C”. But, since I' is connected, this is impossible unless
there are no edges in C”. O

e Step 6 The Lagrangian L and the Heegaard surface Xy do not depend on
the choice of the chord diagram T.

The equivalence (under isotopy) of the embeddings is not hard to see,
assuming that we always choose the “‘natural” embedding associated with
each chord diagram, namely embed the external circle to coincide with the
standard circle in R* and embed the internal edges as straight lines between
the endpoints on the external circle, introducing a small undercrossing or
overcrossing when necessary to avoid intersecting another internal edge. See
Fig. 15 again. By sliding the ends of the tubes associated to the internal
edges around on the torus associated to the external circle we can construct
an isotopy between the embeddings associated to any two chord diagrams
with the same number of edges. See Fig. 18.

N 7

Fig. 18. An isotopy of the handlebody on the left to the handlebody on the right via a handle
slide

What happens to L under such an isotopy? The generators of L are either
curves on the X(v) or meridians on the tubes associated to internal edges. In
either case the isotopy preserves the curve and so there is no problem. This
finishes the proof of Theorem 7. O

We now discuss the analogous result for the Torelli group 7, and
Johnson’s group ¢, instead of the Lagrdngldn group gL Recall from
Sect. 2.2 the maps ¢} for 7 = 74, Ay, 3(1, for our fixed Heegaard splitting
f, and the f-compatible Lagrangian L of Theorem 7. For simplicity, we
drop the dependence on f from the notation of the above maps. We now
have the following corollary:

Corollary 3.10. Assuming f to be the standard genus g Heegaard splitting of
S3, the maps ¢~ and ¢* are onto for g > 5Sn + 1.

Proof. Suppose I' is a connected trivalent vertex oriented graph of degree
n. We have constructed above an element C € (32)3,1 such that
O (1 - C) =T € 9% 4. Recall that C is a formal commutator in the ele-
ments a;, b;, c; for 1 <i < n. Also recall that b; € ', and so, since 4, is
normal in Z£, it follows that C € (Ay),- Since d)K (resp o) is 1nduced by
X (resp., d)Lg) it follows by Lemma 2.14 that ¢*(C) = qbK(C) dL(1 - C)
= I, which proves the corollary for .
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For .7, we need to recall from Sect. 2.3 the fact that 4", = .7 ,(2), where
T 4(2) is the second quotient of the rational central series of 7. Since
Ce(Ay), ST 42n), we have C" € (7 ),, for some r. This and equation
(21) show that I — C" = r(1 — C) mod (1.#,)""" and so " (C") = $*(C") =
voX (1 — C") = ®*(r(1 — C)) = T and we are done. ]

3.7. A Gusarov group for homology spheres. As an application of Theorem 7
in this section we prove Theorem 6. Recall the map 7, : ¢, — 95, .# of (19).
First we observe the well-known fact that 7,(0,) lies in the subspace of

primitive elements of ¥“.#, which follows from
ASP—M)=ASH - AM) =82S - MM
= (F-MRS-M+SF(S M+ (S -MS°

and the fact that if S*—M € FE M then (S°—M)® (S —M)=0 in
G (M @ M).

With respect to the standard genus g Heegaard splitting of S?, we have
amap I, — QI — ., using (2). It is easy to show that for every
nonnegative integer n, the above map induces a well defined map
T 4/ T 4(2n+ 1) — &,, thus, by restriction, we get a map o, : 92,7 g — &,.
It is easy to show that g, is a group homomorphism, and that the following
diagram commutes:

GnT g —— GuT 4 Q
Gnl ld)T
O, — G5 M

By its definition, 7, is one-to-one. Furthermore, by Corollary 3.10, Im ¢ is
the space of primitive elements, if g > 5n+ 1.

We can now prove that @, is a group. Suppose a € O, — then 1,(«) is
primitive and so 7,(o) € Im $”. So there are non-zero integers k, / such that
t,(kot) = ¢7 (1), for some ff € %5, . We can now compute:

(ko + a,(—1p)) = d’T(lﬁ) + d)T(_lﬁ) =0

Since 7, is one-one, we see that (k — 1)+ g,(—/f) is an (additive) inverse
for a. Thus we have shown that @, is an abelian group.

Now 1, induces a linear map O, ® Q — %4 .# which is one-to-one (since
1, is one-to-one) and onto the subspace of primitive elements (since ¢’ is
onto). This conlcudes the proof of Theorem 6.

4. Results for the subgroups 4, ,%f of the mapping class group

4.1. Cocycles for o4 ,. In this section we discuss some similar constructions
of cohomology classes for the Johnson subgroup ¢, discussed in Sect. 2.3.
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Following [GL3], recall from Sect. 2.2 that given an admissible surface
f:Z, — M, the induced map CDK QA" y — M maps the powers (14 ,)"
into #K K. Moreover, it was shown that 7K Cc 7 ZTm% FE M
thus mducmg a map of associated graded spaces g,’,i/% — G~ G
M ~ G,/ (¢p), where the last isomorphism is given by the fundamental
theorem of [LMO)], as was explained in the introduction. In Remark 2.13 we
pointed out that the composite map %5 .# — %4 i is onto, a fact that we
will not use here. If we combine Corollary 2.5, for G = A4y, q = 2, with
(DK((IJ{(,)"’), we obtain cocycles C, € C"(A g/ A 4(2); 9mst(¢)). Unlike
the case of the Torelli group, we cannot conclude that the pull-back of [CK ]
to H" (A g; G (P)) is trivial.

The little that we can say is summarized in the following proposition.

Proposition 4.1.
° CK is multilinear and I j-equivariant, i.e., satisfies the following property
(foroc, E Xy H4(2),h € F\)

(50) Cff’m(h*otl,...,h*ocm) = Cl)f’m(ocl,...,ocm)

o If f is an admissible Heegaard surface, then C fm depends only on the
“Lagrangians” L* L~ C n/n(3), where n = n(Z,;) and L* = Ker{is o f, :
n/n(3) = m (M) /m (M) (3)}-

Remark 4.2. Let l“g denote the quotient group I'y/#",. Then, from the work
of Johnson, we have a short exact sequence:

IHUHF{;HSp(H)Hl

1"5 acts on A 'y/ A 4(2) by conjugation, and on n/n(3) by definition. It
therefore acts on the Lagrangian pair in n/n(3) and the equivariance

. K P K
property of C’fm is really an I.“g -equivariance. Moreover the subgroup of I')
which preserves the Lagrangian pair acts trivially.

Proof. The multilinearity and I'yj-equivariance follows exactly as for the
Torelli group.

The proof of the second assertion follows the same lines as the proof of
the analogous result in Theorem 2 for the Torelli group. We need the
following analogue of Lemma 3.1.

Lemma 4.3. Suppose that Q is a handlebody. Set 0 = 7,(Q), n = n;(0Q) and
L =Ker{n/n(3) — 0/0(3)}. If o is an automorphism of mn/n(3) such that
o(L) = L, then there exists a diffeomorphism h of Q such that (h|0Q), =
(modulo inner automorphisms).

If we assume this lemma, then the rest of the proof proceeds as in the proof
of Theorem 2 with the following changes.
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The analogue of Lemma 3.2 is established with H;(X) replaced by
n/7(3). The proof only needs to be modified by observing that g. belongs to
Ay, since Johnson’s result says that an element g € I'y belongs to 4, if and
only if it induces the identity on 7/ (3)

The analogue of Lemma 3.3, with H;(X) replaced again by n/7n(3), is
established by the same proof, with the extra observation that we may
choose i € A, using the result of Morita [Mo3] that any integral homology
3-sphere is of the form S} for some h € 4, for some ¢'.

Proof of Lemma 4.3. Before we begin, lift « to an automorphism F/F(3),
where F = 7 (Z) is a free group. Recall the classical fact that the induced
automorphism o, on H;(X) is symplectic and so we can apply Lemma 3.1 to
find a diffeomorphism g of Q so that (g|0Q), = a. on H{(Z). Thus we can
assume that o, = identity. The effect of o« on F/F(3) is measured by 1(x),
where 1 is the Johnson homomorphism. We will now use Morita’s Lemma
3.4. We can choose a set of generators {xi,...,x4,¥1,...,¥,} for F so that L
is normally generated by {yi,...,»,}. Then Morita’s lemma says that o is
induced by a diffeomorphism of X, if and only if t(«) belongs to the sub-
group W = Ker{A’H — A’H/A’L}. Recall the definition of t(x). For any
h € F/F(3) we can write o(h) = hA(h). The assignment h — A(h) defines a
homomorphism A : H — A*H ~ F(2)/F(3). Now consider the element

(51) (o) =Y (v ® A1) — 3 @ Ax)) € AH CH@ NH

The inclusion A’H C H ® A’H is defined by

aNbANc—a®@(bAc)+bR(cNha)+c®(anD)

Now it is easy to see that W = W' N A*H, where W' C H ® A°H is the kernel
of the projection H ® A’H — (H/L)® A*(H/L). The condition that
a(L) = L implies that A(h) € Ker{A’H — A*(H/L)}. Remembering that L is
generated by {);}, we see that the first terms in equation (51) lie in
H ® Ker{A’H — A*(H/L)} while the second terms lie in L ® A*H. Thus
(o) € W. O

This completes the proof of Proposition 4.1. O

4.2. Cocycles for f;. Given an admissible surface f: £ — M, and an f-
compatible Lagrangian L, recall from Sect. 2.2 (see also [GL3]) the La-
grangian subgroup ,,?L C I', of the mapping class group and the associated
map (Df .,Zf] — M. It is proved in [GL3] that # ./ is the union of the
images <I)f(l$5) ) over all f and f- admissible Lagranglans L. Recall also
that 7./ is a 3-step filtration and that 75, .4 /7S, | M ~ G,/ ($). The
general results of Sect. 2.1 yield the following.

Proposition 4.4. Let f : X ;— M be an admissible surface, L a f-compatible
Lagrangian and m be a nonnegative integer.
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e There exist cocycles

Clam € c3'"($§ [ LEQ2); Gt (¢))  forallm
Clam € C" N LL/LEB); Gt (¢))  foroddm, and
C;,3m72 € C3”’72($§/$5(4); G (9)) for even m.

e The pullback of le3m to C3’"($§/Z§(3);@mﬂ(¢)) under the projection
2’2/35(2) — 33/3’2(3) is a coboundary if m is even. The pullback of
C/L | to C3’"’1($§/3’$(4);gmesz/(qﬁ)) under the projection 3’5/35(3)

"3m—

— 32/35(4) is a coboundary if m is odd.

Proof. The first statement follows from Corollary 2.5 and the paragraph
preceding Proposition 2.6. The second statement follows from Proposition
2.6. O

5. Discussion

In this section we discuss the results of the present paper in comparison with
the work of Hain [Ha2] and Morita [Mo06], which has been a source of
motivation and inspiration for our results.

5.1. Finite type invariants of knots and integral homology 3-spheres. One
of the results of the present paper is the construction of a cocycle
Crom: @*U — 9,./(p) given an admissible surface f:X — M, see
Theorem 1. There is a well known (dictionary) correspondence between
invariants of integral homology 3-spheres and invariants of knots. For
several statements using the above dictionary, see [Ha2]. We caution the
reader however, that the above mentioned dictionary is helpful in stating
results, but not necessarily in proving them.

In this section we discuss a related map after we replace integral ho-
mology 3-spheres by knots and admissible surfaces by admissible braids. Let
o € B, be a braid whose associated permutation is transitive, i.e., whose
closure is a knot: such a braid will be called admissible. Let .«/(S') be the
vector space over @ on the set of admissible trivalent graphs with additional
univalent vertices that lie on a circle, divided out by the AS and [HX rela-
tions, see [B-N]. Using the definition of the map of equation (5), and re-
placing ./ (the vector space over @ of integral homology 3-spheres) by %
(the vector space over @Q of oriented knots in S%), F*./# by the Vassiliev
filtration # .4, «/(¢) by A(S'), admissible surfaces by admissible braids,
and the fundamental theorem of finite type invariant s of integral homology
3-spheres by the fundamental theorem of finite type invariants of knots, we
can define a map:

(52) Com: @"(Po/Py(2)) = Gt (SY)
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One can show that the above map coincides with the following one: recall
first that the abelianization P,/P,(2) of the pure braid group is a free abelian
group in generators x; with i,j =1,2,...,n and relations x; = 0, x;; = x;.
Thus the tensor algebra T(P,/P,(2)) is a free (noncommutative) algebra in
generators x;; for 1 <i < j < n. Monomials in this algebra are represented
in the left hand side of Fig. 20 and will be called chord diagrams on n
vertical strands. The map C,,, : ®"(P,/P(2)) — %/ (S') defined above
coincides with the map that closes a degree m monomial (thought of as a
degree m vertical chord diagram on 7 strands) to a chord diagram on S'. The
above mentioned closure of course depends on the admissible braid ¢ but
only in a mild way: one can show that it depends only on the image of the
associated permutation.

As we discussed above, in the case of knots, the map (52) is well un-
derstood. This is due to the fact that there is a nice presentation of the pure
braid group, and the fact that the /-adic completion of the rational group
ring of the pure braid group P, is equal to a quotient of the tensor algebra
T(P,/P,(2)) modulo the ideal generated by the 4-term relation.

In the case of the Torelli group though, this is not the case. To begin
with, it is still unknown whether the Torelli group is finitely presented. On
the other hand, the /-adic completion of the rational group ring of the
Torelli group has been recently calculated by Hain [Ha2] using the tran-
scendental theory of Mixed Hodge Structures. No combinatorial proof of
the result is known. The map C;: ,, of equation (5) may help us understand
the structure of the Torelli group in a combinatorial way, and, in the other
direction, help us understand the space of finite type invariants of integral
homology 3-spheres. It may also be a first step in understanding Hain’s
calculation.

We can now give the following dictionary between the case of knots and
integral homology 3-spheres, summarized in the following table:

Knots 3-Manifolds
G P, Ty
G/G(2) Free(xij);.; U
Admissible objects braids surfaces
Graphical interpretation Fig. 20 Fig. 19
Cocycles Com Crm
Chord diragrams (S A (P)

AN
Y Y

Fig. 19. On the left, 4 trivalent vertices, and on the right a particular closing to a trivalent graph
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H_‘_, —

Fig. 20. On the left chord diagrams on 3 vertical strands, and on the right the resulting a chord
diagram on S' ontained by closing the chord diagram on the left

5.2. Comparison with the results of Morita In this section we review briefly a
very recent and important paper [Mo6] of Morita. A common problem
addressed in both Morita’s recent paper and ours is the one of constructing
cocycles in various subgroups of the mapping class group. Morita [Mo6,
Theorem p.3] uses a map' p, : [y, — %UxSp(H), to construct for each i an
Sp(H)-invariant element B; € H*(}U,Q) with the property that, if f; is
the class in H*(UxSp(H); Q) naturally associated to f;, then [p}(B;)] =
e; € HY (T'y, @), where e¢; is a certain cohomology class studied by Mumford
and Morita. By definition, the classes f5; have the following properties:

e They are defined on the cocycle level.

e The pullback [pj(f;)] represents cohomology classes in the full mapping
class group.

e They are Sp(H) invariant cocycles.

e The pullback cocycles in ", vanish.

e The coefficients of the cocycles are rational numbers.

On the other hand, the cocycles C;+ ,, that we defined in Theorems 1 and 2
have the following properties:

e They are cocycles.

e They are defined in the abelianization of the Torelli group.

e The pullback of these cocycles to the Torelli group 7, represent trivial
cohomology classes.

e They depend on a choice of Lagrangian pair (L*, L) and thus are only
GL(L") invariant, and not Sp(H) invariant.

o The pullback of these cocycles to 4", vanish.

e The coeflicients of these cocycles are the finite dimensional vector spaces of
manifold weight systems ¥,,.o7 (¢).

6. An epilogue or a beginning?
We end this paper with the following question. Recall from Theorem 5 the

construction of a linear map D, : (92,7 y @ Q)" — %,,./°" (). This map
is stable with respect to the genus and, for m = 1 it was shown to be a vector

"recall that we denote U by A*H/H
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space isomorphism (of one dimensional vector spaces). The authors now ask
the following question:

Question 1. Is the map D,, stably an onto for m = odd?

Note that a positive answer would connect several different areas together.
We hope to come back to the above question in the near future.
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