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Abstract We consider the natural problem of counting isotopy classes of
essential surfaces in 3-manifolds, focusing on closed essential surfaces in a
broad class of hyperbolic 3-manifolds. Our main result is that the count of
(possibly disconnected) essential surfaces in terms of their Euler character-
istic always has a short generating function and hence has quasi-polynomial
behavior. This gives remarkably concise formulae for the number of such sur-
faces, as well as detailed asymptotics. We give algorithms that allow us to
compute these generating functions and the underlying surfaces, and apply
these to almost 60,000 manifolds, providing a wealth of data about them. We
use this data to explore the delicate question of counting only connected essen-
tial surfaces and propose some conjectures. Our methods involve normal and
almost normal surfaces, especially the work of Tollefson andOertel, combined
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718 N. M. Dunfield et al.

with techniques pioneered by Ehrhart for counting lattice points in polyhedra
with rational vertices. We also introduce a new way of testing if a normal
surface in an ideal triangulation is essential that avoids cutting the manifold
open along the surface; rather, we use almost normal surfaces in the original
triangulation.
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1 Introduction

Essential surfaces have played a central role in 3-manifold topology for at
least the last 70 years, being both a key tool and a fundamental object of study.
Roughly, these are compact embedded surfaces F ⊂ M3 where π1F → π1M
is injective; throughout this introduction, see Sect. 2 for precise definitions
and conventions. While some compact 3-manifolds contain no essential sur-
faces at all (the 3-sphere, lens spaces), others contain infinitely many isotopy
classes of essential surfaces of the same topological type (the 3-torus con-
tains infinitely many essential 2-tori). However, for M that are irreducible and
atoroidal (i.e. contain no essential spheres or tori), the number of essential F of
a fixed topological type is always finite [38, Corollary 2.3]. For example, any
hyperbolic 3-manifold is irreducible and atoroidal, and these form the main
class of interest here.

A natural problem is thus to describe in a structured way the set of essential
surfaces in a given 3-manifold M , in particular to list and to count them.
Focusing on those F that are closed, connected, and orientable, define aM(g) to
be the number of isotopy classes of essential surfaces inM of genus g. There are
plenty of hyperbolic 3-manifoldswhereaM(g) = 0 for all g, including all those
that are exteriors of 2-bridge knots [36]. In contrast, for the exterior of X of the
Conway knot K11n34, we can use Theorem 1.4 below to compute the values
of aX (g) shown in Table 1, as well as further values such as aX (50) = 56,892
and aX (100) = 444,038.

Table 1 The first few values of aX (g) where X is the exterior of the Conway knot shown at
left

g aX (g) g aX (g) g aX (g) g aX (g)

K11n34

1 0 7 87 13 602 19 1993

2 6 8 208 14 1168 20 3484

3 9 9 220 15 1039 21 2924

4 24 10 366 16 1498 22 4126

5 37 11 386 17 1564 23 3989

6 86 12 722 18 2514 24 6086
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While the sequence in Table 1 is a complete mystery to us, if we broaden
our perspective to include disconnected surfaces, we get a relatively simple
pattern that we can describe completely. Specifically, for any M define bM(n)

to be the number of isotopy classes of closed orientable essential surfaces F
in M with χ(F) = n. For the Conway exterior X , we show (see Fig. 3):

bX (−2n) = 2

3
n3 + 9

4
n2 + 7

3
n + 7 + (−1)n

8
for all n ≥ 1. (1.1)

The formula for bX would be a polynomial in n were it not for the final term
which oscillates mod 2. The first main result of this paper, Theorem 1.3 below,
shows that the count bM always has this kind of almost polynomial structure
for a broad class of 3-manifolds M .

1.2 Main results

We can encode a function s : N → Q by its generating function S(x) =∑∞
n=0 s(n)xn in the formal power series ring Q[[x]]. We say this generating

function is short when S(x) = P(x)/Q(x) for polynomials P and Q in Q[x]
where Q(x) is a product of cyclotomic polynomials. For example, the function
s(n) = bX (−2n) from (1.1) above has a short generating function, namely

S(x) = −x5 + 3x4 − 2x3 + 2x2 + 6x

(x + 1)(x − 1)4
.

Having a short generating function is equivalent to s(n) being a quasi-
polynomial for all but finitely many values of n, see Sect. 2.7. Quasi-
polynomials first arose in Ehrhart’s work on counting lattice points in
polyhedra with rational vertices [24] and have many applications to enumer-
ative combinatorics [59, Chapter 4]; curiously, they also appear in quantum
topology [28,29,32]. We can now state:

1.3 Theorem Suppose M is a compact orientable irreducible ∂-irreducible
atoroidal acylindrical 3-manifold that does not contain a closed nonorientable
essential surface. Let bM(n)be thenumberof isotopy classes of closed essential
surfaces F in M with χ(F) = n, and BM(x) = ∑∞

n=1 bM(−2n)xn be the
corresponding generating function. Then BM(x) is short.

Here, we can ensure that M has no closed nonorientable essential surfaces by
requiring that H1(∂M;F2) → H1(M;F2) is onto, see Proposition 2.4. Thus,
Theorem 1.3 applies to the exterior of any hyperbolic knot in S3. We discuss
possible extensions of Theorem 1.3 to nonorientable surfaces, as well as to
surfaces with boundary, in Sect. 4.13.
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All aspects of Theorem 1.3 can be made algorithmic, both in theory and in
practice. The theoretical part is:

1.4 Theorem There exists an algorithm that takes as input a triangulation T
of a manifold M as in Theorem 1.3 and computes P(x), Q(x) ∈ Q[x] such
that BM(x) = P(x)/Q(x). Moreover, there is an algorithm that given n ∈ N

outputs a list of normal surfaces in T uniquely representing all isotopy classes
of essential surfaces with χ = −2n. Finally, there is an algorithm that given
an essential normal surface F with χ(F) = −2n finds the isotopic surface in
the preceding list.

In Sect. 6, we refine Theorem 1.4 into a practical algorithm that uses ideal
triangulations and their special properties. Then in Sect. 7, we compute BM(x)
for almost 60,000 examples. It is natural to ask whether one could permit
nonorientable essential surfaces in Theorem 1.3, as well as essential surfaces
with boundary; we outline some of the difficulties inherent in such extensions
in Sect. 4.13 below.

1.5 Motivation and broader context

From Theorem 1.3 and the discussion in Sect. 2.7, the sequence bM(−2n)

grows at most polynomially in n. It is not always the case that bM(−2n) is
asymptotic to cnd : we found an example where bM(−2n) is n/2 + 1 for n
even and 0 for n odd. However, by Lemma 2.8, we get precise asymptotics if
we smooth the sequence by setting bM(−2n) = ∑n

k=1 bM(−2k):

1.6 Corollary For each M as in Theorem 1.3, either bM(−2n) = 0 for all n
or there exists d ∈ N and c > 0 in Q such that limn→∞ bM(−2n)/nd = c.

We conjecture in Sect. 1.11 below that d is the dimension of the space
ML0(M) of measured laminations without boundary in M , and c is the vol-
ume of a certain subset of ML0(M).

As aM(g) ≤ bM(−2g + 2) for each g, we have that aM(g) also grows at
most polynomially in g. In stark contrast, if we allow immersed surfaces, then
Kahn-Markovic [43] showed that, for any closed hyperbolic 3-manifold M ,
the number of essential immersed surfaces of genus g grows like g2g.

This distinction between counts of embedded versus immersed surfaces
parallels the following story a dimension down. For a closed hyperbolic surface
Y of genus g, Mirzakhani [49] showed that the number sY (L) of embedded
essential multicurves in Y of geodesic length at most L satisfies sY (L) ∼
n(Y )L6g for some n(Y ) > 0; in contrast, the number cY (L) of primitive
closed geodesics of length at most L satisfies cY (L) ∼ eL/L , see e.g. [18]. In
fact,Mirzakhani provedmuchmore: given an essential multicurve γ , the count
sY (L , γ ) of multicurves in the mapping class group orbit of γ also satisfies
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sY (L , γ ) ∼ nγ (Y )L6g with nγ (Y ) > 0. In particular, this gives asymptotics
for the counts of all connected essential curves, analogous in our setting to aM
as opposed to bM ; we hint at how this connection might be further developed
in Sect. 1.13. There are also similarities between the setting of [49] and the
measured lamination perspective on Theorem 1.3 outlined in Sect. 1.11. The
fact that we count surfaces by Euler characteristic, which is discrete, rather
than by a continuous notion such as length or area, is what allows us get precise
formulas for bM aswell as asymptotics. (More directly analogous to the surface
case, one could try to count embedded essential surfaces in a closed hyperbolic
3-manifold M in terms of the area of their least area representatives. As such
representatives satisfy π |χ(F)| ≤ Area(F) ≤ 2π |χ(F)| by [33, Lemma
6], it is not inconceivable that there are good asymptotics here as well given
Corollary 1.6.)

The algorithm of Sect. 6 relies heavily on ideal triangulations and their
normal and almost-normal surfaces. Curiously, normal surfaces are also used
to construct recent topological quantum invariants of 3-manifolds, specifically
the 3D-index of Dimofte, Gaiotto and Gukov [21,22]. The latter is a collection
of Laurent series with integer coefficients which are defined using an ideal
triangulation and depend only on the number of tetrahedra around each edge
of the triangulation, as encoded in the Neumann-Zagier matrices. The 3D-
index is a topological invariant of cusped hyperbolic 3-manifolds [31] that
can be expressed as a generating series of generalized normal surfaces in a
1-efficient triangulation [30], a class of surfaces that includes both normal and
almost normal surfaces. It would be very interesting to connect the topological
invariants of Theorem 1.3 with the 3D-index.

1.7 The key ideas behind Theorem 1.3

We first explain how the perspective of branched surfaces, especially the work
of Oertel [54], naturally relates the sequence bM(−2n) to counting lattice
points in an expanding family of rational polyhedra; combined with Ehrhart’s
work [24] on the latter topic, this discussion will make Theorem 1.3 very plau-
sible. We then sketch how Tollefson [64] reinterpreted and extended Oertel’s
branched surface picture in the context of normal surface theory, and how this
viewpoint allows us to actually prove Theorem 1.3. For ease of exposition, we
assume throughout that M is closed and contains only orientable surfaces by
Proposition 2.4.

A branched surfaceB in a 3-manifold M is the analog, one dimension up, of
a train track on a surface; see [26,54] for definitions and general background. A
surface F is carried byB if it is isotopic into a fibered neighborhood N (B) ofB
so that it is transverse to the vertical interval fibers. Such an F is determined by
the nonnegative integer weights it associates to the sectors of B, which are the
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components ofBminus its singular locus. Suchweights correspond to a surface
if and only if they satisfy a system of homogenous linear equations that are
analogous to the switch conditions for a train track. The set of all nonnegative
real weights satisfying these equations gives a finite-sided polyhedral cone
ML(B), which corresponds to measured laminations carried byB. Here, each
integer lattice point in ML(B) corresponds to a surface carried by B. As the
equations definingML(B) have integer coefficients, each edge ray of the cone
ML(B) contains a lattice point.

ForM as inTheorem1.3, byTheorem4of [54] there is afinite setB1, . . . ,Bn
of branched surfaces that together carry all essential surfaces in M and also
carry only essential surfaces. Moreover, two surfaces carried by one Bi are
isotopic if and only if they correspond to the same lattice point in ML(Bi ).
Putting aside the important issue of surfaces being carried by several of these
branched surfaces, here is how to count essential surfaces carried by a fixedBi .
First, there is a linear function χ : ML(Bi ) → Rwhich on lattice points gives
the Euler characteristic of the corresponding surface. BecauseM is irreducible
and atoroidal, every essential surface has χ < 0; as each edge ray of the cone
ML(Bi ) contains a lattice point corresponding to an essential surface, we
conclude that χ is proper and nonpositive onML(Bi ). Hence P = χ −1(−1)
is a compact polytopewith, it turns out, rational vertices. Thus, the contribution
to bM(−2n) of surfaces carried by Bi is exactly the number of lattice points
in 2n · P , where the latter denotes the dilation of P by a factor of 2n. The
foundational work of Ehrhart [24] shows that this count of lattice points is
quasi-polynomial.

If no surface is carried bymultipleBi , the sketch just givenwould essentially
prove Theorem 1.3 as sums of quasi-polynomials are again quasi-polynomial.
However, there is no avoiding this issue in general, and we deal with it by
using the work of Tollefson [64], who built on [54] to provide a concrete
description of isotopy classes of essential surfaces in the context of normal
surface theory. If we fix a triangulation T of M , then every essential surface in
M can be isotoped to be normal with respect to T ; throughout, see Sect. 2.6 for
definitions and general background. There can bemany normal representatives
of the same essential surface, so to reduce this redundancy, Tollefson focuses
on those that are least weight in that they meet the 1-skeleton of T in as
few points as possible. We define a lw-surface to be a normal surface that
is essential and least weight. To prove Theorem 1.3, we need to count such
lw-surfaces modulo isotopy in M .

Let ST be the normal surface solution space, which is a finite rational poly-
hedral cone whose admissible integer points correspond to normal surfaces in
T , and let PT be its projectivization. A normal surface F is carried by a face
C of PT if the projectivization of the lattice point corresponding to F is in C .
An admissible face C of PT is a lw-face if every normal surface it carries is a
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724 N. M. Dunfield et al.

lw-surface. While it is not obvious that any lw-faces exist, Tollefson showed
that every lw-surface is carried by a lw-face. To make the parallel with the
previous discussion explicit, each lw-face C has a corresponding branched
surface BC which carries, in the prior sense, exactly the surfaces carried by
C in the current sense. The collection of all lw-faces is a complex we denote
LWT ; see Fig. 3 for an example in the case of a triangulation of the Conway
knot exterior.

Tollefson shows moreover that every lw-surface is carried by a lw-face that
is complete: if F and G are isotopic lw-surfaces and C carries F then it also
carries G. The isotopies between lw-surfaces carried by the same complete
lw-face can be understood using a foliation of C by affine subspaces parallel
to some fixed linear subspace WC ; roughly, surfaces F and G carried by C
are isotopic if their lattice points differ by an element of WC . See Sect. 3 and
especially Theorem 3.5 for details, including the key notion of dep(C). This
translates the problem of counting essential surfaces carried by a complete
face to one of counting projections of lattice points in the cone over C after
we quotient out by WC . This is exactly the setting of recent work of Nguyen
and Pak [52], which we use in Sect. 4 to complete the proof of Theorem 1.3.

1.8 Making Theorem 1.3 algorithmic

Since Haken, normal surfaces have played a key role in the study of algorith-
mic questions about 3-manifolds. Despite this, Tollefson in [64] did not give an
algorithm for finding the lw-faces of PT nor determining their properties such
as completeness. Section 5 here focuses on establishing Theorem 5.1, which
gives an algorithm for computing all complete lw-faces. One important tool for
this is Theorem 5.3, which shows that if F and G are isotopic lw-surfaces then
there is a sequence of isotopic lw-surfaces F = F1, F2, . . . , Fn−1, Fn = G
with each pair (Fi , Fi+1) disjoint and cobounding a product region. Com-
bined with results from Sect. 3, especially Theorem 3.3, we can strengthen the
arguments behind Theorem 1.3 to prove Theorem 1.4.

1.9 Ideal triangulations and almost normal surfaces

When the 3-manifold M has nonempty boundary, the proofs of Theorems 1.3
and 1.4 use ideal triangulations rather than finite ones (see Sect. 4.9). Our
computations were with M where ∂M is a single torus whose interior admits a
complete hyperbolic metric of finite-volume, and we used ideal triangulations
there as well, especially as they have several advantages. For example, they
typically have fewer tetrahedra than finite triangulations, which speeds up
normal surface computations. Most importantly, when the ideal triangulation
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admits a strict angle structure, Lackenby showed [45] that the number of
connected normal surfaces of a fixed genus is finite and described how they
can be enumerated. In Sect. 6, we explain how to exploit this to give a practical
version of the algorithms in Theorem 1.4. Unlike the proof of Theorem 1.4,
we make heavy use of almost normal surfaces, including those with tubes,
and in particular the process of tightening (also called normalizing) an almost
normal surface.

The usual method for testing if a normal surface F in M is essential is to
cut M open along F , triangulate the result, and then use normal surfaces to
search for a compressing disk; a key difficulty with this is that the triangulation
of M \ F is usually much more complicated than the original one. Here, we
introduce a completely new method for determining when F is essential that
does not require cutting M open but rather uses almost normal surfaces in the
original triangulation (Sect. 6.8).

Our implementation of the algorithm in Sect. 6 can be found at [23] and
makes heavy use of Regina [8], SageMath [57], and Normaliz [11]. It includes
code for tightening almost normal surfaces, as well as dealing with general
normal surfaces with tubes, both of which have explored extensively in theory
but never before in practice.

1.10 Computations and patterns

Sections 7 and 8 detail our experiments using the algorithm of Sect. 6. In
particular, we applied it to more than 59,000 manifolds, including more than
4,300 where dimLWT > 0.We include overall statistics about the complexes
LWT , the generating functions BM(x), and the sequences aM(g) in Tables 2,
3, 4, 5 and 6 and 7, 8 and 9, as well as detailed examples of LWT in Figs. 1,
2, 3 and 4. In Sect. 8.1, we give examples showing that, perhaps surprisingly,
neither of BM(x) and aM(g) determines the other.

For themoremysterious aM(g), whilewe are unable to find a pattern in these
sequences in many cases, there are some M where we conjecture relatively
simple formulae for aM(g); see Conjecture 8.2 and Table 9. In Conjecture 8.9,
we posit the existence of general asymptotics for (a smoothed version of)
aM(g) based on the striking plots in Figs. 6 and 7, where we computed aM(g)
out to g = 200 in many cases.

1.11 The view from measured laminations

For surfaces, a central tool for studying their topology, geometry, and dynamics
is measured laminations; for example, the space ML(F) of all measured
laminations on a surface F plays a key role in [49]. In 3-dimensions, building
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726 N. M. Dunfield et al.

onwork ofMorgan and Shalen [50,51], independentlyHatcher [34] andOertel
[55] studied measured laminations on 3-manifolds in detail, organizing them
into a topological space ML(M). Note here an essential surface, with or
without boundary, can be viewed as a measured lamination, and the set of
all essential surfaces nearly injects into ML(M) (see page 6 of [34] for the
caveat which involves the two nonorientable surfaces in a semifibration) with
its image being a discrete set of points. While for a surface F of genus g the
space ML(F) is just homeomorphic to R

6g−6, for a general 3-manifold M
the spaceML(M) can be singular, being built from open strata each of which
is a PL manifold. The charts on the individual strata come from branched
surfaces; specifically, one uses the polyhedral conesML(Bi ) associated with
certain essential branched surfaces Bi as sketched in Sect. 1.7; see [34,55] for
details.

Let ML0(M) denote the subset of measured laminations that are dis-
joint from ∂M . The topological dimension of ML0(M) is the maximum of
dim(ML(B)) for the appropriate class of essential branched surfaces B with-
out boundary. Because of the theory of Oertel [54] that underlies [64], we are
highly confident that:

1.12 Conjecture The dimension of ML0 is the maximum of dimC −
dimWC + 1 where C is an essential lw-face of PT and WC is defined in
Theorem 3.5.

If Conjecture 1.12 holds, then in Corollary 1.6 where bM(−2n) ∼ cnd one has
d = dim(ML0), thus giving an intrinsic characterization of that exponent.We
further posit that the coefficient c in these asymptotics has the following natural
interpretation. Asmentioned, the PL structure on the strata ofML0(M) comes
from charts to ML(Bi ) for certain branched surfaces Bi ; in particular, one
gets PL coordinate change maps between (possibly empty) subsets of each
pair ML(Bi ) and ML(B j ), see Proposition 4.1 of [34]. These coordinate
change maps must take lattice points to lattice points, since these correspond
to the special measured laminations that come from essential surfaces. Hence
the coordinate change maps should have derivatives that are in GLnZ and so
are (unsigned) volume preserving. This would give a well-defined measure
(in the Lebesgue class) on each strata of ML0(M); this is a direct analog
of Thurston’s notion of volume on ML(F) where F is a surface, which is
defined in terms of the integral PL structure on ML(F) coming from train
track charts.

Recall for any branched surfaceBi , there is a linear map χ : Bi → Rwhich
gives the Euler characteristic of the corresponding surface at each lattice point.
These should piece together to give a PL map χ : ML0(M) → R. In the
setting of Theorem 1.3, the subset P = χ −1

([−1, 0]) in ML0(M) will be
compact. We conjecture that the coefficient c is precisely vol(P).
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1.13 Understanding counts by genus

The key problem to overcome in understanding aM(g) is to determine, for
a complete lw-face C , which lattice points in C̃ = R≥0 · C correspond to
connected surfaces. Agol, Hass, and Thurston showed in [3, §4] how counting
the number of connected components of a normal surface can be reframed
as counting the number of orbits of a family of interval isometries acting
on {1, 2, . . . , N }. Such families of interval isometries include both classical
and non-classical interval exchange transformations on surfaces [27], but are
considerably more general. Geometrically, a family of interval isometries can
be thought of as an interval I of some length L to which finitely many bands of
specified widths are attached, without any restriction on how many bands are
glued to any subinterval of I . For normal surfaces, the interval I is basically
an arbitrary concatenation of the edges of the ambient triangulation T , and the
bands correspond to families of normal arcs in the corners of each face of T 2;
see Corollary 13 of [3] for details. (For each admissible face C of PT , one can
also think about this in terms of the associated branched surface BC .) Thus, a
general theory of the number of orbits of the integer points of such a family
of isometries should allow one to develop a detailed picture for aM(g).

Currently, the best understood case is for a suitable train track τ on a sur-
face F , where Mirzakhani [49] gives asymptotics on the portion of integer
points in ML(τ ) that correspond to connected curves, see also [10] for a
detailed discussion. (Here, one uses the total weight of a point in ML(τ ) as
the “length” of the associatedmulticurve, rather than Euler characteristic in the
3-dimensional setting.) Even for simple train tracks, it seems that the counts
of connected curves can be irregular in the sense of Sect. 8.4, so there is work
to be done even in that setting.

2 Background and conventions

2.1 Numbers

We use N to denote the nonnegative integers, i.e. N = {0, 1, 2, . . . }.

2.2 Surfaces in 3-manifolds

Throughout the rest of this paper, every 3-manifold M will be compact, ori-
entable, irreducible (every embedded sphere bounds a ball) and ∂-irreducible
(every properly embedded disk bounds a ball with some disk in ∂M). Surfaces
need not be orientable, but will always be embedded in any ambient 3-mani-
fold, and in particular be compact. Moreover, a surface F in a 3-manifold M
will be assumed to be properly embeddedwith F∩∂M = ∂F , except for com-
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pressing disks and ∂-compressing disks which we define next. A compressing
disk for a surface F in a 3-manifold M is a disk D ⊂ M where D ∩ F = ∂D
and ∂D does not bound a disk in F . An orientable surface F in M is incom-
pressible when it has no compressing disks and is neither a sphere nor a disk.
(A more general notion of incompressibility allows certain spheres and disks,
but none such exist in an irreducible and ∂-irreducible manifold.) Since M is
∂-irreducible, any parallel copy of a component of ∂M is incompressible.

A ∂-compressing disk D for a surface F in M is one where ∂D consists of
an arc α in F and an arc β in ∂M , the interior of D is disjoint from F ∪ ∂M ,
and α does not bound a disk in F with a segment of ∂F . An orientable surface
F in M is ∂-incompressible when it has no ∂-compressing disks and is not
itself a disk. A surface F in M is ∂-parallel when every connected component
of F is isotopic, keeping ∂F fixed, into ∂M ; when ∂F = ∅, this is equivalent
to F being ambient isotopic to a union of parallel copies of components of
∂M .

An orientable surface F in M is essential when it is incompressible,
∂-incompressible, and no connected component is ∂-parallel. A 3-manifold
is atoroidal when it does not contain an essential torus (this is sometimes
called geometrically atoroidal). Similarly, it is acylindrical when it does not
contain an essential annulus (also called anannular).

2.3 Nonorientable surfaces

For a nonorientable surface F inM ,we define it to be incompressible, ∂-incom-
pressible, or essential when the boundary of a regular neighborhood of F has
that same property. One could instead apply the above definitions directly to
nonorientable surfaces, which give significantly weaker conditions in general.
Sources such as [26,64] use the terms injective and ∂-injective for what we
here call incompressible and ∂-incompressible to distinguish the possible def-
initions in the nonorientable case. Some corner cases are worth mentioning.
First, with our conventions, a connected surface F in M is incompressible if
and only if π1F → π1M is injective and F is not a sphere, a disk, or RP2.
Also, if M is the twisted interval bundle over a nonorientable closed surface
F , then F is incompressible but not essential.
In our main results, we require that M contain no closed nonorientable

essential surfaces, and the following proposition provides an easily checkable
sufficient condition for this to be the case:

2.4 Proposition Suppose M is a compact orientable 3-manifold. Every closed
embedded surface in M is orientable if and only if H2(∂M;F2) → H2(M;F2)

is onto.
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Thus a closed M contains only orientable surfaces if and only if H2(M;F2) =
0. Using the long exact sequence of the pair, you can check that the homo-
logical condition in Proposition 2.4 is equivalent to dim H1(M;F2) =
1
2 dim H1(∂M;F2).

Proof of Proposition 2.4 It suffices to consider the case when M is connected.
First, note that any closed surface F inM gives a class in H2(M;F2).Moreover,
any c in H2(M;F2) can be represented by a closed surface F that is connected
(by adding tubes between components if needed) and nonempty (by adding a
sphere bounding a ball if c = 0). In the rest of this proof, all surfaces will be
connected, nonempty, and embedded in M .

As M is orientable, any nonorientable surface F is nonseparating. Also,
given a nonseparating orientable surface F we can build a nonorientable sur-
face as follows: take an embedded arc α inM that meets F only at its endpoints
and goes from one side of F to the other; attaching a tube to F along α gives
the desired nonorientable surface. Thus every closed surface F in M is ori-
entable if and only if every closed surface is separating. So we will prove
that the homological hypotheses of the proposition are equivalent to every
closed surface in M being separating. When M is closed, the proposition is
now immediate since a closed surface F is 0 in H2(M;F2) if and only if it is
separating.

To prove the proposition when M has boundary, it suffices to show that the
class [F] of a closed surface F is in the image of H2(∂M;F2) if and only if F is
separating. If F is separating, then F dividesM into two pieces A and B andwe
have [F] = [A∩∂M] = [B∩∂M], so [F] comes from H2(∂M;F2) as claimed.
If instead F is nonseparating, let γ be a loop disjoint from ∂M that meets
F in a single point; hence the homology intersection pairing H2(M;F2) ×
H1(M;F2) → F2 has [F] · [γ ] = 1. As any c ∈ H2(∂M;F2) has c · [γ ] = 0,
it follows that [F] does not come from H2(∂M;F2). So we have characterized
which F give classes coming from H2(∂M;F2), completing the proof. �


2.5 Triangulations

A triangulation of a compact 3-manifold is a cell complex made from finitely
many tetrahedra by gluing some of their 2-dimensional faces in pairs via
orientation-reversing affine maps so that the link of every vertex is either a
sphere or a disc. (For such face gluings, the link condition is equivalent to the
complex being a 3-manifold, see e.g. [62, Prop. 3.2.7].) In particular, a trian-
gulation is not necessarily a simplicial complex, but rather what is sometimes
called a semi-simplicial, pseudo-simplicial, or singular triangulation.

An ideal triangulation of a compact 3-manifold with nonempty boundary
is a cell complex T made out of finitely many tetrahedra by gluing all of their
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2-dimensional faces in pairs as above with no conditions on the vertex links.
Here, the manifold M being triangulated is not the underlying space of T
but rather the subset of it gotten by removing a small regular neighborhood
of each vertex. Put another way, the manifold M is what you get by gluing
together truncated tetrahedra in the corresponding pattern. Hence M will be a
compact 3-manifold with nonempty boundary, and T \ T 0 is homeomorphic
to the interior of M , where T i denotes the i-skeleton of T . See e.g. [63] for
more background on ideal triangulations.

We will work with both kinds of triangulations in this paper and will some-
times refer to the first kind as finite triangulations for clarity.

2.6 Normal surfaces

Our conventions and notation for normal surfaces closely follow [64, §2],
which the reader should consult for additional details beyond the sketchwegive
here. Throughout, we consider a fixed triangulation T of a compact 3-manifold
M , which can be either finite or ideal. However, in the ideal case, we only
consider closed normal surfaces, not the spun-normal ones of [63,67]. An
elementary disk E in a tetrahedron 	 is a disk meeting each face of ∂	 in
either a straight line or the empty set; note ∂E is determined by E ∩ 	1, and
[64, pg. 1089] gives a convention so that the interior of E is determined by
E ∩ 	1 as well. A surface F in M is normal when it is in general position
with the skeleta of T and meets each tetrahedron of T in elementary disks. A
normal surface F is completely determined by F ∩ T 1. A normal isotopy of
M is one that leaves every simplex in T invariant. The normal isotopy classes
of elementary disks in a tetrahedron 	 are called the disk types, of which
there are seven: three kinds of triangles and four kinds of quadrilaterals (or
quads for short). Fixing an ordering of the t tetrahedra in T and the seven disk
types, a normal surface F gives a tuple �F ∈ N

7t by counting the number of
occurrences of each disk type; these are called the normal coordinates of F ,
or more precisely the triangle-quad normal coordinates. Note that the vector
�F determines F up to normal isotopy.
The coordinates of �F satisfy a system of homogenous linear equations,

called thematching equations in [64], one for each arc type in a face of T 2. In
the vector spaceR7t , the intersection of the solutions to thematching equations
with the positive orthant gives a polyhedral coneST called the normal solution
space.Avector �x ∈ ST isadmissiblewhen for every tetrahedronofT there is at
most one quad coordinate of �x that is nonzero. The points in ST corresponding
to normal surfaces are precisely the admissible integral points.

A key property of a normal surface F is its weight wt(F) which is the
number of times it intersects T 1 and can be viewed as its combinatorial area.
This notion of weight extends to a linear function wt : R

7t → R as follows.
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For an elementary disk Ei corresponding to coordinate i , each vertex of Ei
is incident on an edge of T 1; take ci to be the sum of the reciprocals of the
valences of those edges. Defining wt(�x) = ∑

i ci xi , we have wt(F) = wt( �F)

for every normal surface F .
The projective solution space PT for T is abstractly the quotient of ST \

{0} modulo positive scaling. It is useful to concretely identify PT with a
subset of ST , and here [64] uses the points of ST whose coordinates sum to
1. However, we instead use the convention that PT = {�x ∈ ST | wt(�x) = 1}
as this simplifies the statement of a key result of [64]. We will use �F∗ =
(1/wt( �F)) �F to denote the projectivization of �F and call it the projective
normal class of F .

The carrier CF of a normal surface F is the unique minimal face of PT
containing �F∗. The faces of ST and hence PT correspond to having some of
the defining inequalities xi ≥ 0 become equalities. Thus the carrier CF is the
face of PT cut out by the requirement that xi = 0 whenever Fi = 0.

If normal surfaces F and G are compatible in the sense that they never have
distinct quad types in a single tetrahedron, then they have a natural “cut and
paste” geometric sum that is also a normal surface. This new surface is called
their normal sum and denoted F + G. Its normal coordinates are �F + �G and
in particular the normal sum is determined up to normal isotopy by the normal
isotopy classes of F and G, even though F ∩ G can change under normal
isotopy of the surfaces individually.

2.7 Short generating functions and quasi-polynomials

Throughout this subsection, see Chapter 4 of [59] for details and further back-
ground. We can encode a function s : N → Q by its generating function
S(x) = ∑∞

n=0 s(n)xn in the ring Q[[x]] of formal power series. This gener-
ating function is short when S(x) = P(x)/Q(x) for polynomials P and Q
in Q[x] where Q is a product of cyclotomic polynomials. Equivalently, the
generating function is short if and only if

S(x) =
k∑

i=1

ci xai

(1 − xbi )di
for some ci ∈ Q and ai , bi , di ∈ N.

If s has a short generating function S = P/Q where further deg P < deg Q,
then we say that s is a quasi-polynomial. Equivalently, a function s : N → Q

is quasi-polynomial if and only if there exists L ∈ N and polynomials
f0, f1, . . . , fL−1 ∈ Q[x] such that s(n) = fk(n) if n ≡ k mod L , see Propo-
sition 4.4.1 of [59]. When s has a short generating function, it is equal to a
fixed quasi-polynomial except for finitely many inputs [59, Proposition 4.2.2].
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We will be interested exclusively in s where s(n) ∈ N for all n. When such
an s has a short generating function S(x) = P(x)/Q(x), where Q ∈ Z[x]
is a product of cyclotomic polynomials, then P must also be in Z[x]; this is
because P(x) = S(x)Q(x) as elements of Q[[x]] and S(x)Q(x) is a product
of elements in Z[[x]].

We end this section with the lemma that gives Corollary 1.6 from Theo-
rem 1.3:

2.8 Lemma Suppose s : N → Q with all s(n) ≥ 0 has a short generating
function and consider s(n) = ∑n

k=0 s(k). Then either s(n) = 0 for all large
n or there exists d ∈ N and c > 0 in Q such that s(n) ∼ cnd .

Proof Since we only care about asymptotics, assume that s is a quasi-
polynomial with f0, f1, . . . , fL−1 ∈ Q[x] where s(n) = f
(n) if n ≡

 mod L . Assume some f
 �= 0 as otherwise we are done. Set e =
max(deg f
), which is at least 0, and let c
 be the coefficient on xe in f
,
so that f
(n) = c
ne + O(ne−1). Then as s(n) ≥ 0 for all n it follows that
c
 > 0 if deg f
 = e and otherwise c
 = 0; in particular, all c
 ≥ 0 and∑


 c
 > 0. Separating the sum in s(n) into congruence classes modulo L , we
write

s(n) =
L−1∑


=0

s(
)(n) where s(
)(n) =
n∑

j=0
j≡
 mod L

s( j) =
�(n−
)/L�∑

k=0

f
(
 + Lk)

(2.9)

Using that (
 + Lk)e is a polynomial in k with leading term Leke, we get
f
(
+Lk) = c
(
+Lk)e+O(ne−1) = c
Leke+O(ne−1)where n = 
+Lk.
Thus

s(
)(n) =
�(n−
)/L�∑

k=0

(
c
L

eke + O(ne−1)
) = c
L

e

⎛

⎝
�(n−
)/L�∑

k=0

ke

⎞

⎠ + O(ne)

= c
Le

e + 1

⌊
n − 


L

⌋e+1

+ O(ne) = c


(e + 1)L
ne+1 + O(ne)

where we have used
∑m

k=0 k
e = me+1

e+1 + O(me). Set d = e + 1 and c =
1
dL

∑

 c
 > 0, and it now follows from (2.9) that s(n) ∼ cnd as required. �


3 Isotopy classes of essential normal surfaces

In this section, we discuss and refine Tollefson’s work on isotopy classes of
incompressible surfaces from the point of view of normal surface theory. In
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particular, this allows us to build a bijection between isotopy classes of such
surfaces and certain equivalence classes of lattice points in a collection of ratio-
nal cones. We will use this framework to prove Theorem 1.3 in Sect. 4. We
begin by explaining some key facts from Tollefson [64] using the notation that
we reviewed in Sect. 2.6. Throughout, we consider a compact orientable irre-
ducible ∂-irreducible 3-manifold M equipped with a fixed finite triangulation
T .

A lw-surface is a compact orientable incompressible ∂-incompressible nor-
mal surface that is least weight among all normal surfaces in its isotopy class;
such surfaces play a key role in [64]. (The term lw-surface is not actually used
in [64] but makes its results easier to state.) A face C of PT is a lw-face when
every orientable normal surface carried by C is a lw-surface. We use LWT to
denote the set of all lw-faces of PT . Clearly, LWT is a subcomplex of PT . A
lw-face C is complete if whenever it carries an orientable normal surface F it
also carries every lw-surface isotopic to F . A key fact for us is:

3.1 Theorem [64, Theorem 4.5] Every lw-surface is carried by a complete
lw-face. In particular, any lw-face is contained in some complete lw-face.

On a complete lw-face, Tollefson characterizes the various possible forms for
isotopy relations among the surfaces that it carries. As we will describe, these
have to be relatively simple on the interior C◦ of C , but proper faces of C
can have different isotopy relations. Tollefson introduces the notion of a PIC-
partition to encode all of these. We will not work with PIC-partitions directly,
but reframe the underlying structure in a way more suited for the proof of
Theorem 1.3. To give our structure theorem, we first need some definitions
and a useful characterization of when a face of LWT is complete.

If F is an orientable surface in M and m a positive integer, a disjoint union
of m parallel copies of F is called a multiple of F and denoted mF . When F
is normal, we always take mF to be a normal surface whose normal coordi-
nates are m �F . To mirror what happens algebraically in the normal case, for a
nonorientable surface F one defines 2F as the boundary G of a regular neigh-
borhood of F and thenmF as either m

2 G or F∪ m−1
2 G depending on the parity

ofm. Surfaces F andG are projectively isotopicwhen they have multiples that
are isotopic. We say two normal surfaces are projectively normally isotopic if
they have multiples that are normally isotopic. Note here that the admissible
rational points of PT correspond exactly to projective normal isotopy classes
of normal surfaces.

3.2 Remark Our definitions of least-weight and completeness for a face C
differ from those in [64] in that we only look at orientable normal surfaces F
carried by C whereas [64] allows nonorientable F . However, it is easy to see
our definitions are equivalent to the originals. For example, if C is a lw-face
with our definition and F is a nonorientable surface carried by C , then 2F
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is a lw-surface and hence F itself is incompressible and ∂-incompressible.
Moreover, if G is any normal surface isotopic to F then 2G is isotopic to 2F
and hence wt(2G) ≥ wt(2F) which implies wt(G) ≥ wt(F); thus F is least
weight among all normal surfaces in its isotopy class. The equivalence of the
two definitions of completeness is similar, using that if C carries 2G then it
carries G.

Important for us throughout this paper is that whether a face is (complete)
least-weight is determined by any one surface carried by its interior:

3.3 Theorem Suppose F is an orientable normal surface carried by the inte-
rior of a face C of PT . Then the following are equivalent:

(a) C is a lw-face.
(b) F is a lw-surface.
(c) Every connected component of F is a lw-surface.

If C is a lw-face, the following are equivalent:

(d) C is complete.
(e) C carries every lw-surface isotopic to F.
(f) C carries every lw-surface isotopic to a connected component of F.

We will prove Theorem 3.3 below in Sect. 3.10.

3.4 Dependent faces

A face D of a lw-face C is C-dependent if there exists a surface carried by
D that is projectively isotopic to one carried by C◦; otherwise, the face D is
C-independent. The collection of C-independent faces of C clearly forms a
subcomplex D of ∂C and we define dep(C) to be C \ ⋃

D∈D D. Note that if
D is a C-dependent face of C , then D◦ ⊂ dep(C) since if any �x ∈ D◦ was
in a C-independent face E then D would be a face of E , contradicting that D
is C-dependent. As any point of C is in the interior of some face, we see that
dep(C) is also the union of D◦ over all C-dependent faces D of C .

Tollefson completely characterized the isotopy relations among the surfaces
carried by each dep(C). We rework this as:

3.5 Theorem For each face C ofLWT there is a rational linear subspace WC
such that the following holds. Any two surfaces F and G carried by dep(C)

are projectively isotopic if and only if �F∗ − �G∗ is in WC. Moreover, if F and
G are orientable then they are isotopic if and only if �F − �G is in WC. Also,

dep(C) = {�x ∈ C
∣
∣ �x + WC meets C◦ }

(3.6)

so that in particular any F carried by dep(C) is projectively isotopic to one
carried by C◦. Finally, the subspace WC is contained in ker(wt) and given
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any F carried by C◦ there exist surfaces F1, . . . , Fk projectively isotopic to
F and carried by C◦ such that the �F∗ − �F∗

i span WC.

The example in Sect. 7.4 may help you understand the statement of Theo-
rem 3.5.

For the practical algorithms in Sect. 6, we will need the following additional
properties of WC :

3.7 Corollary Suppose C is a face of LWT . If surfaces F and G carried by
C are projectively isotopic, then �F∗ − �G∗ ∈ WC. Also, if D is a face of C,
then WD ⊂ WC. Finally, if F is any orientable surface carried by C◦, then
WC is spanned by all �G − �H where G is a connected component of F and H
is isotopic to G and carried by C.

Combined with Theorem 3.5, the next result will be key to proving Theo-
rem 1.3:

3.8 Theorem The complex LWT is the disjoint union of the dep(C) as C
ranges over the complete lw-faces of PT . Moreover, if C and C ′ are distinct
complete lw-faces, then no surface carried by dep(C) is projectively isotopic
to one carried by dep(C ′). Consequently, for an orientable incompressible
∂-incompressible surface F, there is a unique complete lw-face C such that
dep(C) carries a surface (non-projectively) isotopic to F.

3.9 Remark We defined PT = {�x ∈ ST | wt(�x) = 1} rather than P ′
T ={�x ∈ ST

∣
∣
∑

xi = 1
}
in order to state Theorem 3.5 in the above form. Tollef-

son usesP ′
T , and ends up with a partition of dep(C) along a family of typically

nonparallel affine subspaces whereas our partition is along parallel affine
subspaces. While both PT and P ′

T are projectivizations of ST , the map that
identifies them is not affine but rather projective and so this is not a contradic-
tion.

3.10 Complete lw-faces in detail

We begin with the proof of Theorem 3.3 as it is needed to prove Theorem 3.8.

Proof of Theorem 3.3 First, recall that faces of PT are defined by setting a
subset of the normal coordinates to 0. Consequently, a normal surface G is
carried by C if and only if every connected component of it is carried by C .
More generally, if K and L are compatible normal surfaces, then C carries
K + L if and only if it carries K and L individually.
A normal surface F is carried by C◦ if and only if the carrier of F is equal

to C ; the equivalence of (a) and (b) is thus Theorem 4.2 of [64]. From the
definition it is clear that (c) implies (b), so to complete the proof of the first
part of the theorem we will show (a) implies (c). This holds because if F ′ is a
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component of F then, as noted above, C carries F ′ and thus F ′ is a lw-surface
as C is a lw-face.

For the second part, by definition (d) implies (e), and (d) implies (f) since
every component of F is also carried byC . SinceC carries a surface if and only
if it carries all of its components, we see that (f) easily gives (e). So it remains
to prove (e) implies (d). So suppose C is a least-weight face of PT such that
every lw-surface projectively isotopic to F is carried byC . We must show that
C is complete, so suppose K is a lw-surface carried byC and L is a lw-surface
isotopic to K . As �F∗ ∈ C◦, we can pick a lw-surface E with �E∗ ∈ C◦ and �F∗
in the interior of the line segment joining �K ∗ to �E∗. Then there are positive
integers {m, a, b} with mF = aK + bE . Applying Corollary 4.3 of [64] with
G = aK , G ′ = aL , and H = H ′ = bE , we conclude that aL and bE are
compatible and that aL + bE is isotopic to mF . By hypothesis, as aL + bE
is projectively isotopic to F , it is carried by C . Then aL is carried by C and
hence L is carried by C as well as a > 0. Hence C is complete as claimed. �


We now turn to the proof of Theorem 3.5 for which we will need:

3.11 Lemma Suppose C is a compact convex polyhedron in R
n and W a

subspace of Rn. Set dep(C,W ) = {�x ∈ C | �x + W meets C◦ }. If D is a face
of C, then the intersection D ∩ dep(C,W ) is either empty or contains D◦.
Proof Passing to a subspace if necessary, we assume that dimC = n
and hence C◦ is open in R

n . There are finitely many nonzero linear func-
tionals 
i on R

n , say indexed by a set I , and αi ∈ R, such that C =
{�x ∈ R

n | 
i (�x) ≥ αi for all i ∈ I }. Then C◦ = {�x ∈ R
n | 
i (�x) > αi } for

all i ∈ I . For a face D of C , define ID to be the indices in I where 
i (�x) = αi
on all of D.

Now assume D ∩ dep(C,W ) is nonempty, and pick �x ∈ D and �w ∈ W
with �x + �w in C◦. For any i ∈ I , we have 
i (�x + �w) > αi , which for
those i ∈ ID implies 
i ( �w) > 0 since 
i (�x) = αi . Given �y in D◦ =
{�x ∈ D | 
i (�x) > αi for all i /∈ ID }, we need to show that it is in dep(C,W ).
For ε > 0, consider �v = �y+ε �w. For i /∈ ID , we have 
i (�v) = 
i (�y)+ε
i ( �w);
since 
i (�y) > αi , we can thus make 
i (�v) > αi as well by choosing ε small
enough. On the other hand, for i ∈ ID we have 
i (�v) = αi + ε
i ( �w) > αi
for any positive ε as 
i ( �w) > 0 for such i . Thus �v is in C◦ for small ε and so
�y ∈ dep(C,W ) as needed. �

Proof of Theorem 3.5 This result is essentially a reframing of Theorem 5.5 of
[64] on the existence of a PIC-partition for C , but to see this one must use a
number of details from the proof of that theorem. Hence we will simply prove
Theorem 3.5 directly relying on results earlier in that paper. Suppose F is any
lw-surface carried by C◦. Let VF be the subspace of R7t spanned by all �G
where G is carried byC and projectively isotopic to F . Using that VF is finite-
dimensional, we can find mutually isotopic lw-surfaces F1, . . . , Fk carried by
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C , each projectively isotopic to F with �F∗
1 = �F∗, such that { �F1, . . . , �Fk} is

a basis for VF . Then Theorem 5.3 of [64] implies that every normal surface
carried by AF = C ∩ VF is projectively isotopic to F .

Consider the affine subspace X = {�x ∈ R
7t

∣
∣ wt(�x) = 1

}
and note PT =

ST ∩ X where ST is the normal solution space. Define XF = X ∩ VF which
is also the smallest affine subspace containing { �F∗

1 , . . . , �F∗
k }. Note here that

AF is also C ∩ XF . If �G is another orientable normal surface carried by C◦,
then either AF = AG or AF ∩ AG = ∅ depending on whether or not F and G
are projectively isotopic. When AF and AG are disjoint, we claim that XF and
XG are still parallel; formally, the tangent space to an affine subspace Y ⊂ R

7t

is TY = {�y1 − �y2 | �y1, �y2 ∈ Y } and we will show T XF = T XG .
As �G∗ ∈ C◦, we can find a lw-surface H with �H∗ ∈ C◦ and �G∗ on the

interior of the line segment between �F∗
1 and �H∗. Hence there are positive

integers {m, a, b} such that mG = aF1 + bH . Set Gi = aFi + bH . By
Corollary 4.3 of [64], all the Gi are isotopic to G1 = mG and hence lie in VG .
The Fi are isotopic lw-surfaces and so have the sameweight, and consequently
so do the Gi and hence

�F∗
i − �F∗

j = wt(G1)

a · wt(F1)
( �G∗

i − �G∗
j

)
for all i, j.

In particular, we have T XF ⊂ T XG . Reversing the roles of F and G shows
T XG = T XF as claimed.

Now set WC = T XF for any orientable F carried by C◦. Note that WC is
spanned by the �Fi − �Fj = wt(F1)

( �F∗
i − �F∗

j

)
from above, and hence by the

�F∗ − �F∗
i since �F∗

1 = �F∗. As F is arbitrary, this verifies the claims in the last
sentence of the statement of the theorem since in addition each �Fi − �Fj is in
ker(wt).

We extend our notion of AF to all �y ∈ C◦ by setting A�y = (�y + WC ) ∩ C .
Let Ã = ⋃

�y∈C ◦ A�y . We will show:

3.12 Claim Ã = dep(C).

Before proving the claim, let us show that Theorem 3.5 follows from it. First,
the Eq. (3.6) holds since Ã is also {�x ∈ C | �x + WC meets C◦ }. Second, the
claim that surfaces F and G carried by Ã are projectively isotopic if and only
if �F∗ − �G∗ ∈ WC follows because Ã is partitioned by the A�y which for
rational �y correspond exactly to projective isotopy classes of surfaces carried
by C . Finally, if F and G are orientable surfaces carried by dep(C), we need
to show they are isotopic if and only if �F − �G ∈ WC . If they are isotopic,
they must have the same weight and so �F − �G is a multiple of �F∗ − �G∗, and
the latter must be in WC as F and G are projectively isotopic. Conversely, if
�F − �G ∈ WC , the surfaces are projectively isotopic and as WC ⊂ ker(wt) it
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follows wt(F) = wt(G). As F and G are orientable, least weight, of the same
weight, and projectively isotopic, they are actually isotopic as needed.

To prove Claim 3.12, note both sets contain C◦, so for each face D of ∂C
we will check that both sets agree on D◦. By Lemma 3.11, either Ã ∩ D is
empty or it contains D◦. If the former, then no surface carried by D can be
projectively isotopic to one carried by C◦, and so D is C-independent and
hence dep(C)∩D = ∅ as well. If the latter, then any rational point in D◦ gives
a surface projectively isotopic to one carried by C◦; hence, D is C-dependent.
As noted in Sect. 3.4, this implies D◦ ⊂ dep(C). This proves the claim and
hence the theorem. �

Proof of Corollary 3.7 First, suppose F and G are projectively isotopic and
carried by C . Since this does not change �F∗ − �G∗, we will assume F and G
are orientable and actually isotopic. Let H be an orientable surface carried by
C◦. Then by Corollary 4.3 of [64], we have H + F and H + G are isotopic,

and hence by Theorem 3.5 above we have
−−−−−→
(H + F) − −−−−−→

(H + G) = �F − �G =
wt(F)( �F∗ − �G∗) is in WC as needed.

Second, if D is a face of C , then by the last part of Theorem 3.5 we have
WD is spanned by certain �F∗ − �F∗

i where F and Fi are carried by D. By what
we just showed, all of these are in WC as well, proving WD ⊂ WC .

Finally, fix an orientable surface F carried byC◦ and define Z to be the span
of all �G− �H whereG is a connected component of F and H is isotopic toG and
carried by C . We need to show WC = Z . By the first part of this corollary, we
know Z ⊂ WC . From Theorem 3.5, there are surfaces F1, . . . , Fk projectively
isotopic to F where the �F∗ − �F∗

i spanWC . We can moreover arrange that each
Fi is isotopic to F so that the �F − �Fi span WC . To see �F − �Fi is in Z , let
G1, . . . ,Gn be the connected components of F . Under an isotopy between F
and Fi , let G ′

j be the connected component of Fi corresponding to G j . Then
�F − �Fi = ∑

( �G j − �G ′
j ) which is in Z , giving WC = Z and completing the

proof of the corollary. �

Turning now to the proof of Theorem 3.8, we begin with a lemma:

3.13 Lemma Suppose C is a complete lw-face. A maximal C-independent
face D of C is also complete.

Proof Pick a lw-surface F carried by D◦. By Theorem 3.3, it suffices to show
that given a lw-surfaceG isotopic to F thenG is carried by D. By completeness
ofC , we knowG is carried byC . By Theorem 5.3 of [64], every normal surface

carried by the segment L = [ �F∗, �G∗] in C is projectively isotopic to F . Let E
be the minimal face of C containing L; since L is just a segment, it meets E◦.
We cannot have E be C as then F is projectively isotopic to some surface in
C◦, violating that D is C-independent. For the same reason, the face E cannot
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be C-dependent as then E ◦ ⊂ dep(C) and hence by Theorem 3.5 any surface
carried by E ◦ is projectively isotopic to one carried by C◦. Thus E must be
C-independent and we know that it contains �F∗ which is an interior point of
the maximal C-independent face D; consequently, we must have E = D and
so G is carried by D. Thus D is complete as claimed. �

Proof of Theorem 3.8 We start with:

3.14 Claim Any lw-surface F is carried by dep(C) for some complete lw-face
C.

By Theorem 3.1, the surface F is carried by some complete lw-face. It is
immediate from the definition that the intersection of two complete lw-faces
is again complete, so there exists a minimal complete lw-face C carrying F .
Let D be the face of C containing F in its interior. If D is C-dependent, then
D◦ ⊂ dep(C) and so F ∈ dep(C) as desired. So assume D is C-independent.
Let E be a maximal C-independent face of C containing D, and note E �= C
as C is C-dependent. By Lemma 3.13, the face E is complete and so we have
found a smaller complete face containing F than C , a contradiction. So we
have proven Claim 3.14.

To prove Theorem 3.8 it remains to show:

3.15 Claim If C1 and C2 are distinct (but perhaps not disjoint) complete lw-
faces, then no surface carried by dep(C1) is projectively isotopic to one carried
by dep(C2). In particular, the sets dep(C1) and dep(C2) are disjoint.

Suppose not and that F1 and F2 are projectively isotopic normal surfaces
carried by dep(C1) and dep(C2) respectively. By Theorem 3.5, we can further
assume each Fi is carried by C◦

i . Replacing them with multiples if necessary,
we can assume that they are actually isotopic. By Corollary 4.6 of [64], it
follows that both F1 and F2 must be carried by C1 ∩ C2; as each Fi is carried
by C◦

i , we must have C1 = C2, a contradiction. This proves Claim 3.15 and
hence the theorem. �


4 Surface counts are almost quasi-polynomial

The first of this section’s two main results is:

4.1 Theorem Suppose M is a closed irreducible atoroidal 3-manifold that
contains no nonorientable essential surfaces and C is a complete lw-face of
PT . Let bC(n) be the number of isotopy classes of closed essential surfaces
F carried by dep(C) with χ(F) = n, and let BC (x) = ∑∞

n=1 bC (−2n)xn be
the corresponding generating function. Then BC (x) is short.

The other main result of this section is Theorem 4.12, which is the analog of
Theorem 4.1 when M has boundary. Combining Theorem 4.1 with the results
from the last section, we can now give:
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Proof of Theorem 1.3 when M is closed AsM is closed, a (necessarily closed)
surface in M is essential exactly when it is incompressible. Therefore, by The-
orem 3.8, each isotopy class of essential surface is carried by dep(C) for a
unique complete lw-face C . As sums of short generating functions are also
short, Theorem 1.3 now follows from Theorem 4.1. �


4.2 Counting surfaces via lattice points

We now turn to the proof of Theorem 4.1, so let M be a closed irreducible
atoroidal 3-manifold with triangulation T . From now on, fix a complete
lw-face C of PT and consider the cone C̃ ⊂ ST , that is R≥0 · C ={
t �x ∣

∣ t ∈ R≥0, �x ∈ C
}
. Recall that dep(C) ⊂ C is the complement of its

C-independent faces, and define dep(C̃) = (
R≥0 · dep(C)

) \ {�0}. Now bC(n)

in Theorem 4.1 is the number of isotopy classes of normal surfaces F with
�F ∈ dep(C̃) and χ(F) = n.
As motivation, let us start with the easy case when the subspace WC from

Theorem 3.5 is zero. Then dep(C̃) = C̃
◦
, and two surfaces F and G carried

by dep(C̃) are isotopic if and only if �F = �G. In our triangle-quad coordinates,
there is a linear function χ : R

7t → R such that the Euler characteristic of
a normal surface F is given by χ( �F), see [42, Algorithm 9.1]. Every normal
surface F carried byC is incompressible and henceχ(F) ≤ −1 asM is closed,
irreducible, and atoroidal. Thus χ < 0 on every vertex of C which implies
χ is proper on C̃ and so the set X = {�x ∈ C̃

∣
∣ χ(x) = −1

}
is a compact

polyhedron.NowbC(−n) is simply the size of the set (nX◦)∩Z7t , and counting
lattice points in dilations of a compact polyhedron has been studied extensively
starting with the work of Ehrhart in the 1960s. In particular, Theorem 4.6.26
of [59], whose proof uses Ehrhart-Macdonald reciprocity, tells us that the
generating function BC(x) is short, proving Theorem 4.1 when WC = 0.

WhenWC is nonzero, to count isotopy classes of surfaceswe need to identify
lattice points in dep(C̃) that differ by an element of WC . We do so in the
following way. Let V be the linear subspace of R7t spanned by all vectors in
C , and let W be WC . Define V (Z) = V ∩ Z

7t and W (Z) = W ∩ Z
7t . Using

Smith normal form, we can find a complementary rational subspace L ⊂ V to
W such that the lattice V (Z) is the direct sum of W (Z) and L(Z) = L ∩ Z

7t .
Let T : V → L be the projection operator associated with the decomposition
V = W ⊕ L . We can now turn our question of counting isotopy classes of
surfaces into one about counting certain lattice points in L(Z):

4.3 Lemma The set T
(
dep(C̃) ∩ Z

7t
)
is in bijection with isotopy classes of

normal surfaces carried by dep(C).

Proof Normal surfaces carried by dep(C) correspond to lattice points in
dep(C̃). As W is the kernel of T , the claim is equivalent to saying that if
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F and G are normal surfaces with �F and �G in dep(C̃), then F is isotopic to
G if and only if �F − �G ∈ W . As we are assuming that all incompressible
surfaces in M are orientable, this follows immediately from Theorem 3.5. �


To prove Theorem 4.1, we will need a tool for counting points in sets such
as T

(
dep(C̃) ∩ Z

7t
)
. Recently, Nguyen and Pak [52], building on [19], estab-

lished exactly the result we need here. To apply [52], we need the linear map
T to be integral in the sense that its matrix with respect to any Z-bases of
V (Z) and L(Z) has integer entries, but that is clear from its definition. Since
we want to count by Euler characteristic, we first study χ : V → R:

4.4 Lemma The restriction χ : V (Z) → R is integral and, since M is closed,
irreducible, andatoroidal, the functionχ is proper on C̃ andnegative on C̃\{�0}.
Proof Forχ |V , note that C̃ has nonempty interior as a subset of V and contains
open balls of arbitrary size. Hence, given any �v ∈ V (Z), we can find �x, �y ∈
C̃(Z) with �v = �x − �y. There are normal surfaces F and G with �F = �x and
�G = �y, and so χ(�v) = χ(F)−χ(G) is inZ as needed to show χ |V is integral.
For χ |C̃ , every normal surface F carried by C is incompressible and hence

χ(F) ≤ −1 as M is closed, irreducible, and atoroidal. Thus χ < 0 on every
vertex of C which implies it is proper on C̃ and negative on C̃ \ {�0}. �


Now we combine χ and T as follows. Define T : V → L ⊕ R by T (�x) =
(T (�x), −χ(�x)), which is integral as both its component functions are, and we
have:

4.5 Lemma The set T
(
dep(C̃) ∩ Z

7t
)
is in bijection with isotopy classes of

normal surfaces carried by dep(C).

Proof ByLemma 4.3, it suffices to show that projecting away the second factor
of L ⊕ R gives a bijection between T

(
dep(C̃) ∩ Z

7t
)
and T

(
dep(C̃) ∩ Z

7t
)
.

This projection is clearly onto, so this reduces to showing that for normal
surfaces F and G with �F and �G in dep(C) and T ( �F) = T ( �G) then −χ( �F) =
−χ( �G). But the latter holds since �F − �G ∈ W implies the surfaces F and G
must be isotopic by Theorem 3.5 and thus homeomorphic. �


To apply [52], we will need one more property about T and T :

4.6 Lemma There is a lattice L ′(Z) containing L(Z)which has aZ-basis such
that T (C̃) ⊂ R

d≥0 under the induced identification of L with R
d . Moreover,

the same holds for T .

Proof The claim for T follows immediately from that for T since −χ(C̃) =
[0, ∞) by Lemma 4.4. So now we consider only T .

Fourier-Motzkin elimination tells us that the image T (C̃) is again a poly-
hedral cone. We first show that T (C̃) is a pointed cone, that is, one that does
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not contain a line. By Theorem 3.5, we know W ⊂ ker(wt). Therefore, the
map wt : V → R factors through the projection T : V → L . Hence all of
T (C̃) \ {�0} is strictly to the positive side of the hyperplane (wt |L)−1(0) and
so T (C̃) is a pointed cone.

We will now find a basis for L(Q) as a Q-vector space with the property
that T (C̃) lies in the postive orthant; this suffices to prove the lemma as we
can scale the basis elements by a > 0 in Q so that the lattice they generate
contains L(Z). Let {�vi } denote the vertices of C . Note that if we can find a
basis {
 j } of L(Q)∗ = Hom

(
L(Q),Q

)
where 
 j (�vi ) > 0 for all i and j , then

the algebraically dual basis �ek of L(Q), that is, the one where 
 j (�ek) = δ jk , is
the basis we seek. Fix any basis {β j } of L(Q)∗ where β1 = wt and for ε ∈ Q

×
consider the new basis {
 j } where 
1 = β1 and all other 
 j = β1 + εβ j . Since
we showed above that β1(�vi ) = wt(�vi ) > 0 for each i , for small enough ε we
have 
 j (�vi ) > 0 for all i and j as needed to prove the lemma. �


Next, we introduce the language needed to state the conclusion of [52]. A
set A of points in Nn has an associated generating function:

f A(t) =
∑

�a∈A

t�a in Z[[t1, . . . , tn]]

where t�a = ta11 · · · tann for �a = (a1, . . . , an).

We say that A has a short generating function when there are ci ∈ Q and
�ai , �bi j ∈ Z

n such that:

f A(t) =
N∑

i=1

ci t�ai
(
1 − t�bi1

) · · · (1 − t
�biki )

. (4.7)

These multivariable short generating series were introduced by Barvinok and
play a key role in polynomial time algorithms for counting lattice points in
convex polyhedra [7].

Using the lattice L ′(Z) ⊕Z ⊂ L ⊕R, where L ′(Z) is from Lemma 4.6, we
henceforth view T

(
dep(C̃) ∩Z

7t
)
as subset of Nd+1. The key to Theorem 4.1

is:

4.8 Lemma The set T
(
dep(C̃) ∩ Z

7t
)
has a short generating function.

Proof We will construct a rational polyhedron Q ⊂ C̃ such that

Q ∩ Z
7t = dep(C̃) ∩ Z

7t .

By Lemma 4.6, we have T (Q) ⊂ R
d+1
≥0 using the basis of L ′(Z) given there.

Additionally, the projection T is integral with respect to the lattices V (Z) and
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L ′(Z) since L ′(Z) ⊃ L(Z). Therefore, Theorem 1.1 of Nguyen–Pak [52] will
apply and give that the generating function for T

(
Q ∩ Z

7t
)
is short, proving

the lemma.
Now dep(C̃) is simply C̃ with some closed faces removed, and we can

use the following standard trick to construct Q. For a face D of C its active
variables are

ID = {i ∈ [1, 2, . . . , 7t] | xi = 0 on D but xi > 0 somewhere on C}.
Thus D is the subset of C cut out by xi = 0 for i ∈ ID , or equivalently the
locus where

∑
i∈ID xi = 0 since each xi ≥ 0 on C . Then dep(C̃) consists of

those �x ∈ V where:

(a) all xi ≥ 0,
(b) for each C-independent face D one has

∑
i∈ID xi > 0,

(c) and finally
∑7t

i=1 xi > 0 as the origin is not in dep(C̃).

If we define Q to be those �x ∈ V where all xi ≥ 0, where for each C-
independent face D one has

∑
i∈ID xi ≥ 1, and finally where

∑7t
i=1 xi ≥ 1,

then we have Q ∩ Z
7t = dep(C̃) ∩ Z

7t as needed. �

Proof of Theorem 4.1 Let f (t)be the generating function forT

(
dep(C̃)∩Z7t

)
.

The variable td+1 in f (t) corresponds to −χ and by Lemma 4.4 the function
χ is proper on C̃ ; thus, there are only finitely many terms of f (t) with any
given power of td+1. Hence g(t) = f (1, . . . , 1, t) is a well-defined element of
Z[[t]], and indeed by Lemma 4.3 it is the generating function BC (x) we seek
with x replaced by t2.

Since f (t) is short byLemma4.8, it remains to use this to see that g(t) is also
short. Provided no denominator in (4.7) has a factor of

(
1 − ta11 ta22 ta33 . . . tadd

)
,

that is, has no td+1-term, then this is immediate. To handle the general case,
we will use results from [68], noting that our notion of a generating function
being short is equivalent to rationality in the sense of Definition 1.4 of [68].
First, set S = T

(
dep(C̃) ∩Z

7t
)
. As the generating function f (t) of S is short,

Theorem 1.5 of [68] gives that S is a Presburger set, that is, there is a Presburger
formula F which tests points in N

d+1 for membership in S. Writing points
in N

d+1 as (�c, p) with �c ∈ N
d and p ∈ N, we see from Definition 1.6 of

[68] that g(t) is the generating function of the Presburger counting function
p �→ #

{�c ∈ N
d

∣
∣ F(�c, p)}. Therefore, by Theorem 1.10 of [68], specifically

A ⇒ C , the generating function g(t) is short. �


4.9 Ideal triangulations

Our proof of Theorem 1.3 when ∂M is nonempty will use ideal triangulations
instead of finite ones. The theory of closed normal surfaces in ideal triangula-
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tions is nearly identical to that of normal surfaces in finite triangulations; after
all, normal surfaces stay away from the vertices of the ambient triangulation,
which is the only place where the topology differs between the two cases.
Indeed, we claim that all the results of [64] hold for closed normal surfaces in
ideal triangulations without any changes to the proofs. Manifolds with bound-
ary are allowed in [64], so switching from finite to ideal triangulations can be
viewed as using a slightly different type of finite cellulation as the background
to do normal surface theory, specifically a cellulation by truncated tetrahedra.
The combinatorics of closed normal surfaces in truncated tetrahedra is almost
indistinguishable from standard normal surface theory in a finite triangulation,
and hence the proofs in [64] work as written in our new context. Consequently,
the results of Sect. 3 also hold for closed surfaces in ideal triangulations.

From now on, suppose M is a compact irreducible ∂-irreducible 3-manifold
with nonempty boundary and T an ideal triangulation of M , which exists by
e.g. [41, Proposition 3]. The vertex link Hv of a vertex v ∈ T 0 is the normal
surface consisting of one triangle in each tetrahedron cornerwhere the vertex in
that corner corresponds to v. The vertex link Hv should be viewed as a parallel
copy of the corresponding boundary component of M . An ideal triangulation
T is ∂-efficient when the only connected normal surfaces that are boundary
parallel are the vertex links. For example, if T has a positive angle structure
then it is ∂-efficient by [44, Proposition 4.4]. Provided M is acylindrical, then
any minimal ideal triangulation is ∂-efficient by [41, Theorem 4], so such
triangulations always exist for the manifolds we consider in Theorem 1.3.

Our goal now is to weed out the inessential incompressible surfaces,
i.e. those with a ∂-parallel component, from our counts. When ∂M includes
a torus, this is not just an aesthetic preference but a requirement since there
are infinitely many isotopy classes of (disconnected) incompressible surfaces
with the same Euler characteristic.

4.10 Lemma Suppose T is a ∂-efficient ideal triangulation of a 3-manifold
M that contains no nonorientable closed incompressible surfaces. Let C be a
lw-face of PT . If C carries no vertex link then every normal surface carried
by C is essential. If C carries some vertex link then no normal surface carried
by dep(C) is essential.

Proof Let IC ⊂ {1, 2, . . . , 7t} be the indices of the coordinates on R7t which
vanish on all of C . Then C = {�x ∈ PT | xi = 0 for all i ∈ IC } and C◦ =
{�x ∈ C | xi > 0 for all i /∈ IC }.

First, supposeC carries an inessential normal surface F . As T is ∂-efficient,
the surface F is the disjoint union of a normal surface G (possibly empty) and
some vertex link Hv; in particular F = G + Hv . From the above description
of C , it is clear that as G + Hv is carried by C , both G and Hv are also carried
by C . This proves the first claim.
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Second, suppose C carries some vertex link Hv . Since Hv is carried by C ,
for each index i corresponding to a triangle in Hv we have i /∈ IC . Hence, for
any normal surface F carried by C◦, each triangle that appears in Hv also has
positive weight in F . Consequently, the surface F has a component which is
normally isotopic to some Hv and in particular is inessential. More broadly,
suppose G is a normal surface carried by dep(C). As C is least-weight, by
Theorem 3.5, the surface G is projectively isotopic to some F carried by C◦,
and by the previous argument the latter has a component which is Hv . By the
hypotheses on M , both G and F are orientable since they are incompressible;
as they are projectively isotopic, it follows thatG also has a component isotopic
to Hv . In particular, the surface G is inessential. This proves the second claim.

�


We call a lw-face C essential if every normal surface carried by C is essen-
tial. By Lemma 4.10, a lw-face C is either essential or every normal surface
carried by dep(C) is inessential. Hence Theorem 3.8 gives:

4.11 Theorem Suppose T is a ∂-efficient ideal triangulation of a 3-manifold
M that contains no nonorientable closed incompressible surfaces. For each
orientable essential surface F there exists a unique complete essential lw-face
C such that dep(C) carries a surface (non-projectively) isotopic to F.

We can now prove the analog of Theorem 4.1 for manifolds with boundary:

4.12 Theorem Suppose M is an irreducible ∂-irreducible atoroidal acylindri-
cal 3-manifoldwith ∂M �= ∅ that contains no nonorientable essential surfaces.
Suppose T is a ∂-efficient ideal triangulation of M and C is a complete essen-
tial lw-face ofPT . The generating function BC(x) corresponding to the counts
of isotopy classes of closed essential surfaces carried by dep(C) is short.

Proof AsC carries only essential surfaces, we haveχ : C̃ → R is proper since
all essential surfaces have χ ≤ −1. This gives the analog of Lemma 4.4 in our
setting, and the proof of the theorem is now identical to that of Theorem 4.1.

�


We now complete the proof of the first main theorem of this paper:

Proof of Theorem 1.3 when M has boundary Take T to be a minimal ideal
triangulation of M , which is ∂-efficient by [41, Theorem 4] since M is acylin-
drical. By Theorem 4.11, every isotopy class of essential surface is carried by
dep(C) for a unique complete essential lw-faceC . As sums of short generating
functions are also short, Theorem 1.3 now follows from Theorem 4.12. �
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4.13 Whither nonorientable and bounded surfaces

Wewould of course like to remove the hypothesis in Theorem 1.3 that M con-
tains no closed nonorientable essential surfaces, and also broaden the count to
allow essential surfaces with boundary.We now outline some of the difficulties
inherent in such extensions.

For nonorientable closed essential surfaces, what prevents us from just
including them in the count is that while LWT can carry nonorientable essen-
tial surfaces, it need not carry all of them. (This distinction is also present in
the branched surface perspective of [54].) The issue is that you can have a
nonorientable essential normal surface F which is least weight in its isotopy
class but where its double 2F , while normal and essential, may not be least
weight. This does not happen for an orientable F since the double is just two
parallel copies of F . One could sidestep this issue by just counting orientable
surfaces, but picking those out of each lw-face seems tricky for the following
reason. Note that F is orientable if and only if 2F has twice the number of
connected components as F . As we see from the aM versus bM discussion
in Sects. 1 and 8, counting components is subtle. Consequently, we suspect
there are examples where the count of orientable surfaces does not have a short
generating function.

A key obstruction to counting surfaces with boundary is actually the issue
of orientability. Unlike in the closed case with Proposition 2.4, there is no
homological condition we can impose that a priori eliminates the possibility
of nonorientable essential surfaces with boundary. For example, the exterior of
a knot in S3 can contain such nonorientable surfaces (e.g. many checkerboard
surfaces for alternating knots). As [64] and our Sect. 3 do allow orientable
surfaces with boundary, we are hopeful that if nonorientable closed surfaces
can be dealt with, then counting bounded surfaces will also be possible.

5 Proof of the decision theorem

This section is devoted to proving Theorem 1.4, which says that there are
algorithms for finding the generating function in Theorem 1.3 as well as
enumerating representatives of the isotopy class of essential surfaces and deter-
mining which isotopy class a given surface belongs to. In this section, we do
not worry about the efficiency of these algorithms, merely their existence; the
actual method used to compute the examples in Sect. 7 uses some of the ideas
here but in the modified form of Sect. 6 which is specific to when ∂M is a
nonempty union of tori.

Throughout this section, let M be a compact orientable irreducible ∂-
irreducible 3-manifold with a fixed triangulation T , which is a finite triangula-
tion when M is closed or an ideal triangulation otherwise. With the exception
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of the proof of Theorem 1.4 itself at the very end, in this section we do not
require that M is acylindrical or atoroidal, nor that T is ∂-efficient; moreover,
themanifoldM may contain nonorientable closed essential surfaces. The algo-
rithms in Theorem 1.4 follow the approach of the proof of Theorem 1.3 closely,
so the first thing we will need is:

5.1 Theorem There exists an algorithm for computing the collection CLWT
of complete lw-faces of PT .

Given a normal surface F in T , one can algorithmically determine whether
or not it is incompressible and ∂-incompressible; indeed, this is essentially
Haken’s original application of normal surface theory, see e.g. [42, Algorithm
9.6]. The tricky part of computing CLWT is figuring out the isotopy relation-
ships between different such normal surfaces.

5.2 Graph of incompressible surfaces

We use the following framework for understanding isotopies among normal
surfaces. Let GT be the graph whose vertices are connected incompressible
closed normal surfaces, more precisely the normal isotopy classes of such
surfaces, and where there is an edge between surfaces F and G exactly when
F andG can be normally isotoped to be disjoint and cobound a product region.
Given an integer w, we use G≤w

T to denote the subgraph whose vertices are
all surfaces F ∈ GT of weight at most w. Since there are only finitely many
normal surfaces of bounded weight, each G≤w

T is finite. Moreover, givenw, the
graph G≤w

T can be algorithmically constructed as follows. First, the vertices
of G≤w

T can be found by enumerating all connected normal surfaces of weight
at most w and then testing each for incompressibility. Second, for each pair
of surfaces F and G in G≤w

T , one can test if they can be normally isotoped to
be disjoint using Algorithm 9.5 of [42]; specifically, this can be done if and
only if F and G are compatible and the normal sum F + G consists of two
connected components where one is normally isotopic to F and the other to
G. When they can be made disjoint in this way, there is a unique way to do
so up to normal isotopy. Finally, for each pair of surfaces F and G that can
be normally isotoped apart, we test all components of M cut along F ∪ G for
being products using Algorithm 9.7 of [42]. This completes the algorithm for
constructing G≤w

T .
Any two surfaces in the same connected component of GT are of course

isotopic. It turns out the converse is true as well, in the following strong form:

5.3 Theorem If F and G are two vertices of GT that are isotopic, then they
are joined by a path in GT passing only through vertices H with wt(H) ≤
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max(wt(F),wt(G)). In particular, the isotopy classes of surfaces in any G≤w
T

correspond precisely to the connected components of G≤w
T .

We prove this theorem in Sect. 5.4 below, but we first use it to derive Theo-
rem 5.1.

Proof of Theorem 5.1 First, compute the polytopePT from the normal surface
equations. For each face C ofPT , fix a normal surface FC that is carried by its
interior. Compute the graph G≤w

T where w is the maximum weight of any FC .
The incompressible FC are those that are vertices ofG≤w

T , and, byTheorem5.3,
we know exactly which FC are least-weight.When FC is least-weight, we also
know every other least-weight surface isotopic to it. Applying Theorem 3.3
now identifies exactly the faces C that are in CLWT . �


5.4 Isotopic normal pairs

Throughout, let M be a compact orientable irreducible 3-manifold with a fixed
triangulation T as in the previous section. An isotopic normal pair (F,G) is
an isotopic pair of closed incompressible normal surfaces F and G that meet
transversely in the sense of [64, Page 1091]. Define the complexity of such a
pair by

c(F,G) = (
max(wt(F),wt(G)), min(wt(F),wt(G)), #(F ∩ G)

)
,

where #(F ∩ G) denotes the number of connected components of F ∩ G. We
will compare complexities lexicographically.

If (F,G) is an isotopic normal pair where F and G are disjoint, then by
Lemma 5.3 of [66] the surfaces F and G are parallel, i.e. cobound a region
homeomorphic to F × I . In this case, the pair (F,G) gives rise to an edge of
GT . The key result of this subsection is:

5.5 Theorem If (F,G) is an isotopic normal pair with F ∩ G �= ∅ then,
after possibly interchanging F and G, there exists a normal surface F ′ that is
isotopic to F and disjoint from it that meets G transversely with c(F ′,G) <

c(F,G).

Given any (F,G) isotopic normal pair withw = max(wt(F),wt(G)), we can
apply Theorem 5.5 repeatedly until we arrive at a pair (F ′′,G ′′) where F ′′
and G ′′ are disjoint. This proves Theorem 5.3 above, since each application of
Theorem 5.5 gives an edge in G≤w

T and there is also an edge from F ′′ to G ′′.
Suppose F̃ and G̃ are subsurfaces of F and G respectively, with ∂ F̃ = ∂G̃.

Here is one way to make precise the notation that F̃ and G̃ are “parallel
rel boundary”. Given a compact surface H , define P(H) as the quotient of
H × I where for each h ∈ ∂H the set {h} × I has been collapsed to a
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point. A product region between F̃ and G̃ is an embedding f : P(H) → M
where f (H × {0}) = F̃ and f (H × {1}) = G̃; here we do not insist that
P = f (P(H))meets F∪G only in F̃∪G̃. Thefirst step in provingTheorem5.5
is to show:

5.6 Lemma Suppose (F,G) is an isotopic normal pair with F ∩ G �= ∅.
After possibly interchanging F and G, there exist subsurfaces F̃ ⊂ F and
G̃ ⊂ G where G̃ ∩ F = ∂G̃ and ∂ F̃ = ∂G̃ and wt(G̃) ≤ wt(F̃) with G̃ and
F̃ bounding a product region P with P ∩ F = F̃ .

Proof Suppose all components of F ∩ G are essential in both F and G. Then
by Proposition 5.4 of [66], there exist subsurfaces F̃ ⊂ F and G̃ ⊂ G with
F̃ ∩G = ∂ F̃ = ∂G̃ = F ∩ G̃ where F̃ ∪ G̃ bounds a product region P where
P ∩ F = F̃ and P ∩G = G̃. Relabeling, we can arrange that wt(G̃) ≤ wt(F̃)

to prove the lemma in this case.
Suppose instead some component of F ∩ G is inessential in one of F or

G. Among all disks contained in one of F or G bounded by a component of
F ∩ G, let D be one of least weight, which exists since the weight (i.e., the
number of intersection points with the 1-skeleton of T ) of any subsurface is
a nonnegative integer. By passing to an innermost component, we can assume
D meets F ∩ G only along ∂D. After relabeling, we can assume this D is
contained in G and then set G̃ = D. As F is incompressible, the curve ∂G̃
must bound a disk F̃ in F . Together the disks F̃ ∪ G̃ form a sphere which
must bound a ball as M is irreducible, and hence F̃ and G̃ bound the required
product region P . By our initial choice of G̃, we must have wt(G̃) ≤ wt(F̃)

as desired. �

Proof of Theorem 5.5 Let F̃ and G̃ be given by Lemma 5.6. Set F0 = (F \
F̃) ∪ G̃ which is isotopic to F via the product region P . Move F0 slightly so
that it is disjoint from F , and notice that wt(F0) = wt(F)−wt(F̃)+wt(G̃) ≤
wt(F). If F ′ is a normalization of the incompressible surface F0, we have
wt(F ′) ≤ wt(F0); by the barrier theory [40, Theorem 3.2(1)], the surface F ′
is disjoint from F , and we can perturb F ′ slightly to be transverse to G.

If wt(F ′) < wt(F)wenowhave our desired (F ′,G) as c(F ′,G) < c(F,G)

where the two complexities differ in one of the first two components. If instead
wt(F ′) = wt(F), then we must have wt(F0) = wt(F). This means that F0
is normally isotopic to F ′ as all normalization moves that change the normal
isotopy class strictly reduce the weight. Then #(F ′ ∩ G) = #(F0 ∩ G) =
#(F ∩ G) − #∂ F̃ < #(F ∩ G) and hence c(F ′,G) < c(F,G) with the
complexities differing only in the last component. �


Weturnnow to the proof ofTheorem1.4, so now themanifoldM is atoroidal,
acylindrical, and does not contain a nonorientable essential surface.
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Proof of Theorem 1.4 As input, we are given a triangulation T of M which
will be finite if M is closed or could be finite or ideal if M has boundary. If M
has boundary and we are given a finite triangulation, convert it to an ideal one
using the procedure described in the proof of [47, Theorem 1.1.13], which is
relevant as per [41, Proposition 3].When M has boundary, apply the algorithm
of [39, Theorem 4.7] so that the ideal triangulation T we are working with is
∂-efficient.

Start by computingCLWT via Theorem5.1.As in the proof of Theorem1.3,
the claim that we can compute the overall generating function algorithmically
follows if we can implement Theorem 4.1 or Theorem 4.12 as appropriate
for a particular face C of CLWT . (In the case when M has boundary, by
Lemma 4.10 we can skip any C which carries a vertex link, which is easy to
test.) From the proofs of those theorems, we need algorithms for two things:
finding the subspaceWC from Theorem 3.5 and applying Theorem 1.1 of [52].
The latter is provided by [52] itself, so we focus on the former.

To compute WC , first let F0 be any normal surface carried by the interior
of C and compute G≤wt(F0)

T . Now apply Theorem 5.3 to find all least-weight
surfaces F1, . . . , Fk that are isotopic to F . As C is complete, all the Fi are
carried by C and hence are mutually compatible. By Lemma 3.5, we have that
WC is spanned by the �F0 − �Fk , giving us the needed description of WC .

The second claim of the theorem, that we can give unique normal repre-
sentatives of the isotopy classes of incompressible surfaces with χ = −2n, is
easy by looking at the lattice points in the sublevel sets of χ on C̃ ⊂ ST for
each face C of CLWT and modding out by WC . The final claim, that we can
determine the isotopy class of a given incompressible surface F , can be done
using this list and G≤wt(F)

T because of Theorem 5.3. �


6 Almost normal surfaces in ideal triangulations

This section discusses the algorithm used to implement Theorem 1.4 for the
computations in Sect. 7. The key difference compared to the proof of Theo-
rem 1.4 in Sect. 5 is that we use almost normal surfaces, rather than normal
ones, to determine which normal surfaces are incompressible and to find iso-
topies between them.

In this section, we study manifolds with boundary a union of tori using
ideal triangulations admitting a partially flat angle structure in the sense of
[45]. Since we are restricting to M with χ(∂M) = 0, we require the angles
at each ideal vertex to sum to exactly π rather than at most π as in (i) on
page 916 of [45]. Such triangulations impose restrictions on the topology of
the underlying manifold M . The only connected closed normal surfaces in T
with χ ≥ 0 are vertex links, and M is irreducible, ∂-irreducible, atoroidal,
and acylindrical [45, Theorem 2.2]; in particular, the interior of M admits a
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finite-volume complete hyperbolic metric, and T is a ∂-efficient triangulation
of M . A general algorithm for finding such a T in this setting is given in [45,
§2] and in practice one easily finds a T admitting the stronger notion of a strict
angle structure from [35].

6.1 Tightening almost normal surfaces

An almost normal surface is a surface S in T built from the same elementary
discs as normal surfaces except for exactly one piece, which is either an almost
normal octagon or made by joining two elementary discs in the same tetra-
hedron by an unknotted tube. Given a transverse orientation of an orientable
almost normal surface A in T , we can “destabilize” the exceptional piece
in that direction and then perform normalization moves. This process, called
tightening the surface A, moves it in only one direction and terminates in a nor-
mal surface which we denote T+(A), see [58, Chapter 4] for details. While the
sequence of normalization moves is not unique, the tightened surface T+(A)

is well-defined: together A and T+(A) bound the canonical compression body
of A defined in [58, §4.1] which we denote V+(A). Here, the compression
body V+(A) is built from A × I by adding 2- and 3-handles, so that A is
the minus boundary of V+(A) and T+(A) is the plus boundary. In particu-
lar, we have χ(A) ≤ χ (T+(A)) with equality if and only if V+(A) is just
A × I . Moreover, since T contains no normal 2-spheres, every component of
T+(A) has genus at least 1. We will use T−(A) to denote the tightening of A
in the opposite transverse direction with V−(A) the corresponding canonical
compression body.

As per [58], the tightening process can be followed by tracking just the
intersection of each surface with the 2-skeleton of T . Thus it amounts to
looking at a family of arcs in T 2, which need not all be normal, and then
doing a sequence of bigon moves across edges of T 1 until one is left only
with normal arcs. It is thus straightforward to implement once one creates an
appropriate data structure to do the bookkeeping, though our code is the first
time this has been done.

6.2 Sweepouts and thin position

Thenotions of sweepouts [56] andGabai’s thin position [61] can independently
be used to prove the existence of almost normal surfaces in many situations.
We will need the following two such results, which are quite standard.

6.3 Lemma Suppose N and N ′ are normal surfaces cobounding a product
region V . Then there are disjoint surfaces N = N0, A1, N1, A2, . . . , Nn−1,
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An, Nn = N ′ in V with the Nk normal and the Ak almost normals such that
T−(Ak) = Nk−1 and T+(Ak) = Nk.

Proof Since T is ideal and the surfaces N and N ′ are closed, the product
region V between them contains no vertices of T . The usual sweepout or thin
position argument for a product, see e.g. [58, Theorem 6.2.2], gives the needed
sequence of surfaces. �

6.4 Lemma Suppose V is a nonproduct compression body in M where both
∂−V and ∂+V are normal surfaces in T . Then there exists an almost normal
surface A ⊂ V such that T−(A) and A are parallel inside V to ∂−V and
T+(A) is a (proper) compression of ∂−V .

Proof As T is ideal, there are no vertices of T inside V , and a push off of
∂−V into V is a strongly irreducible Heegaard surface for V . By a slight
strengthening of [56,60] in the same manner as [45, Theorem 4.2], we can
find an almost normal surface A in V that is parallel to ∂−V . Transversely
orient A away from ∂−V . Since A is incompressible in the negative direction,
we have T−(A) is parallel to ∂−V . We are done if T+(A) is a compression of
A. Otherwise, the region between ∂−V and T+(A) is a product, and we repeat
the argument on the compression body bounded by the normal surfaces T+(A)

and ∂+V . As there is a bound on the number of disjoint normal surfaces in T ,
none of which are normally isotopic, this will terminate and so produce the
surface we seek. �


6.5 Finiteness of (almost) normal surfaces

For g ≥ 2, we define N g
T to be the set of connected normal surfaces of genus

g in T , up to normal isotopy. Correspondingly, the set of such almost normal
surfaces isAg

T , again up to normal isotopy. A key result for us is Theorem 4.3
of [45]

6.6 Theorem [45] When T has a partially flat angle structure, both N g
T and

Ag
T are finite and algorithmically computable.

Wewill sketch the proof of Theorem 6.6 as it outlines the algorithm for finding
N g

T and Ag
T , which is an important component of the overall algorithm given

in Sect. 6.12. This discussion is most natural in the setting of the quadrilateral
coordinates for normal surfaces introduced in [65] rather than the standard
triangle-quad coordinates we’ve used so far. We now describe the basics of
quad coordinates, referring to [15] for details. As the name suggests, in these
coordinates a normal surface F is recorded by just the 3t weights on the
quadrilateral discs, where t is the number of tetrahedra of T . It turns out this
determines F up to any vertex-linking components Hv as in Sect. 4.9. There
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are still linear equations, one for each edge of T , characterizing the admis-
sible vectors in N

3t that give normal surfaces; we use S ′
T and P ′

T to denote
the corresponding linear solution space and its intersection with the positive
orthant. (The relationship between the vertices of PT and P ′

T is described in
detail in [15].) Given an admissible vector �v ∈ N

3t carried by P ′
T , we take

the associated normal surface to be the one with those quad weights and no
vertex-linking components; following [15], we call such surfaces canonical.
Two things to keep in mind about quad coordinates:

(a) In standard coordinates, adding vector representatives corresponds to the
geometric Haken sum. In quad coordinates, adding vector representatives
corresponds to geometric Haken sum followed by removing all copies of
the vertex links. Hence the total weight is additive in standard coordinates
but only subadditive in quad coordinates. Correspondingly, the totalweight
of a surface is only piecewise linear in quad coordinates.

(b) Because we have an angle structure on T , the Euler characteristic function
is linear in quad coordinates. (In contrast, it is only piecewise linear in
quad coordinates for finite triangulations.) Specifically, consider the linear
function χ : R

3t → R defined as follows. Consider the basis vector ei
corresponding to a quad Q in a tetrahedron σ . We set

χ(ei ) = −1 + θ1 + θ2 + θ3 + θ4

2π
,

where the θk are the angles assigned to the four edges of σ that Q meets.
Then χ(F) = χ( �F) by [44, Proposition 4.3]. Moreover, for each faceC of
P ′
T that carries only admissible vectors, the function χ : (R+ ·C) → R is

in fact proper, nonpositive, and zero only at the origin [45, Theorem 2.1];
when the angle structure is strict, this is immediate for all ofP ′

T since each
χ(ei ) < 0.

Turning to almost normal surfaces, those with octagons can be described in
terms of lattice points in certain polytopes, and we will use the quad-octagon
coordinates of [16], as opposed to the standard quad-octagon-tri coordinates, to
record them. Almost normal surfaces with tubes will be encoded by a normal
surface together with the pair of adjacent normal discs that the tube runs
between. With these preliminaries in hand, we can now give:

Proof of Theorem 6.6 First, consider the case of N g
T which is contained in

the preimage χ−1(2 − 2g) for the map χ : R
3t → R defined in (b) above.

Since χ is proper on the cone over each admissible face of P ′
T , there are only

finitely many lattice points in χ−1(2 − 2g) corresponding to surfaces. These
can be enumerated and tested for whether the surfaces are connected, giving
us exactly N g

T .
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For Ag
T , we consider the cases of octagons and tubes separately. For

octagons, the map χ is again proper on the relevant polytope, and so this
case works out the same as N g

T . For tubes, one first enumerates all normal
surfaces (not necessarily connected) with χ = 4 − 2g. For each such surface
N , one considers all possible tubes and selects those that produce a connected
surface, i.e. an element of Ag

T . �

6.7 Remark A single normal surface F can give rise to many different almost
normal surfaces with tubes, where we are considering almost normal surfaces
up to normal isotopy. To keep the computation manageable, we considered
non-normal isotopies of tubes for a fixed normal surface F . That is, for an
almost normal surface A made by adding a tube to F , we can “slide” the
attaching points of the tube through one of the faces of the tetrahedron that
contains it to get another almost normal surface built on the same F . In our
actual computations, we considered such surfaces up to this equivalence. It is
not hard to show that two tubed surfaces that are equivalent in this sense have
the same canonical compression body and hence the same tightenings.

6.8 Another graph of normal surfaces

We now turn N g
T into a graph by adding edges as follows. For each A ∈ Ag

T ,
we pick a transverse orientation arbitrarily and consider its two tightenings
T±(A):

(a) If both T±(A) are homeomorphic to A, we add an (undirected) edge joining
T−(A) and T+(A). In this situation, both V±(A) are products and so T−(A)

and T+(A) are isotopic.
(b) If T+(A) is homeomorphic to A but T−(A) is not, mark the vertex T+(A)

in N g
T as compressible. Also do the same with the roles of T+(A) and

T−(A) reversed.

The main result of this subsection is:

6.9 Theorem Isotopy classes of closed essential surfaces in M of genus g are
in bijection with the connected components ofN g

T where no surface is marked
as compressible.

Given how the edges inN g
T were defined, to prove Theorem 6.9, it suffices to

show the following two lemmas:

6.10 Lemma If N ∈ N g
T is essential and isotopic to N ′ ∈ N g

T then there is a
path joining them in N g

T .

Proof Let w = max
(
wt(N ), wt(N ′)

)
and consider the graph G≤w

T from
Sect. 5.2. Temporarily viewing N and N ′ as vertices of G≤w

T , since they
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are isotopic surfaces, Theorem 5.3 gives a sequence of normal surfaces
N = N0, N1, . . . , Nn = N ′ where Nk and Nk+1 can be normally isotoped
to be disjoint and cobound a product region Pk . Applying Lemma 6.3 to Pk
gives a path in N g

T joining Nk to Nk+1. Concatenating these paths together

gives a path in N g
T joining N to N ′ as needed. �


6.11 Lemma If N ∈ N g
T is compressible, it can be joined by a path inN g

T to
a surface N ′ that is marked as compressible.

Proof We first show there exists a nontrivial compression body V in M with
∂−V = N and ∂+V a normal surface. Splitting M open along N and using
the characteristic compression body of [12, §2], we can find a nontrivial com-
pression body V ⊂ M with ∂−V = N and ∂+V is incompressible in the
complement of N . Since N is normal, barrier theory [40, Theorem 3.2(1)]
tells us that we can normalize ∂+V in the complement of N via an isotopy,
giving us the desired compression body.

By Lemma 6.4, there is an almost normal surface A in V so that T−(A) and
A are parallel to N and T+(A) is a compression of A. Set N ′ = T−(A), which
is marked as compressible because of the surface A. As N and N ′ are parallel,
by Lemma 6.3 they are joined by a path in N g

T , completing the proof of the
lemma. �


6.12 Algorithm

The input for the algorithm is an ideal triangulation T with a partially flat
angle structure of a manifold M where H2(∂M;F2) → H2(M;F2) is onto so
M contains no nonorientable surfaces by Proposition 2.4. (Here, the angles are
given as rational multiples of π ; the set of partially flat angle structures form
a convex polytope with rational vertices, so this is not a real restriction.) The
output is the list {(C,WC )} of complete essential lw-faces C of LWT ⊂ PT
together with the corresponding subspaces WC . Before starting, recall that a
vertex surface is a normal surface F where �F is a primitive lattice point on
the ray corresponding to an admissible vertex of PT . Note that every vertex
surface is connected, and that each vertex-linking torus Hv for v ∈ T 0 is a
vertex surface [15, Corollary 4.4].

(1) Enumerate all vertex surfaces for the normal surface equations for T in
standard triangle-quad coordinates via [15, Algorithm 5.17]. Then use
Algorithm 3.2 of [17] to find all admissible faces of PT . Set g0 to be the
maximum genus of any vertex surface.

(2) For each g with 2 ≤ g ≤ g0, enumerate the finite sets N g
T and Ag

T as
described in the proof of Theorem 6.6. Apply the tightening procedure
of Sect. 6.1 to each surface A in Ag

T to compute T−(A) and T+(A). As
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detailed in Sect. 6.8, this informationmakesN g
T into a graphwhere certain

vertices are labeled compressible.
We then compute a complete list of lw-surfaces of genus g from the graph
N g

T using Theorem 6.9 as follows: for each connected component of N g
T

where no surface was marked as compressible, compute the weight of
each surface and then take all those of minimal weight for that component.
This also computes all isotopy relations among the lw-surfaces of genus
g. Because of the angle structure on M , there are no essential tori in M
and the only nonessential lw-surfaces are the vertex links. Thus we now
have a complete list of all essential lw-surfaces of genus at most g0.

(3) From the list of admissible faces of PT which were computed in Step 1,
select thosewhere all vertices are among the essential lw-surfaces enumer-
ated in Step 2. For each such C , select a surface FC carried by its interior,
e.g. take FC to be the sum of the vertex surfaces of C . Use Algorithm 9.4
of [42] to decompose FC into its connected components which are again
normal surfaces. If any component of FC has genus greater than g0, replace
g0 with the maximum genus of any component of FC and re-run Step 2.
By Theorem 3.3, the face C is least-weight if and only if every connected
component of FC is a lw-surface. So we now determine whether or not C
is least-weight by using the list of lw-surfaces of genus at most g0 from
Step 2. Finally, if C is least-weight, it is essential by Lemma 4.10 and the
observation that if C carried a vertex link Hv , then Hv would have to be
one of the vertex surfaces ofC .We now have a complete list of all essential
lw-faces of PT .

(4) Now we determine which essential lw-faces are complete. Given such a
face C , let FC be the preferred surface in its interior. By Step 2, we know
all lw-surfaces isotopic to a connected component of FC . By Theorem 3.3,
the face C is complete if and only if all these other surfaces are carried by
C .

(5) It remains to determine the subspace WC for each complete essential
lw-faceC . LetG1, . . . ,Gk be all lw-surfaces isotopic to a connected com-
ponent of FC , all of which will be carried by C as it is complete. By the
last part of Corollary 3.7, the vectors �Gi − �G j span WC . This concludes
the algorithm.

6.13 Remark It is clearly to our advantage to keep g0 as small as possible,
which suggests several performance improvements. For example, in Step 3
it pays to search the interior of C for an FC whose components have the
least genus. More elaborately, say that a normal surface N has an obvious
compression when there is a chain of quads forming an annulus around a thin
edge. In our setting, such surfaces cannot be essential, and we can discard
in Step 1 any vertex surfaces with obvious compressions before setting g0.
Because the notion of obvious compression can be framed as an admissibility
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criteria on the faces of PT that is compatible with [17, Algorithm 3.2], it is
not hard to check that this does not affect the correctness of the answer.

6.14 Remark The above algorithm in particular determines whether or not
M contains a closed essential surface. It would be very interesting to study
the practical efficiency of this algorithm as compared to the more traditional
approach of [9,13] involving testing for incompressibility by cutting M open
along candidate surfaces. While we did implement Steps 1–3 of our algorithm
for the computations in Sect. 7, we used a high-level but slow programming
language and did not optimize the code extensively. Consequently, we did not
have a good basis for making this comparison.

7 Computations, examples, and patterns

In this section, we describe the results of computing LWT for some 59,096
manifolds with torus boundary. These manifolds were drawn from two cen-
suses. The first was the 44,692 orientable hyperbolic 3-manifolds that have
ideal triangulations with at most 9 tetrahedra where ∂M is a single torus and
H1(M;F2) = 0 [14]. The second was the 14,656 hyperbolic knots in S3 with
at most 15 crossings whose exteriors have ideal triangulations with at most 17
ideal tetrahedra [37]. These two censuses have little overlap, with only 216
manifolds common to both.

Using the default triangulation for each manifold provided by SnapPy [20],
we used Algorithm 6.12 to try to compute LWT . We succeeded except for 36
triangulations where the computation ran out of time or memory. Combined,
the computations took about 8 CPU-months, with the running time for a single
manifold having a mean of 5.85min and a maximum of 3 days. The median
time was 0.8 seconds for the cusped census and 1.3min for the knot exteriors.

With the initial triangulations, some 182 manifolds had distinct essential
lw-surfaces that were isotopic. To avoid computing the generating function
BM(x) in the general case where one is taking the quotient by the subspaces
WC , we replaced 168 of these triangulations with others where there were
no such isotopies. Except for Sect. 7.4, we will unfairly lump the remain-
ing 14 manifolds with distinct isotopic essential lw-surfaces in with the 36
whose computations timed out, and restrict our analysis to the other 59,082. A
summary of these manifolds is given in Table 2, where we use the following
terminology. Recall a 3-manifoldM is largewhen it contains a closed essential
surface and small otherwise. We call a large manifold M barely large when
every closed essential surface is a multiple of a finite collection of such sur-
faces; otherwise M will be very large. In the language of Sect. 1.11, the terms
small, barely large, and very large correspond, respectively, toML0(M) = ∅,
dim(ML0(M)) = 1, and dim(ML0(M)) > 1.
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Table 2 Summary of the manifolds where we tried to computeLWT . There are 216manifolds
common to both samples, which is why the last row is not the sum of the previous two. The 14
knot exteriors where there was a non-normal isotopy of lw-surfaces are all large; they are likely
very large, but we did not check this

Sample Count Small Barely large Very large Isotopy of lw Failed

Cusped census 44,692 38,358 6046 288 0 0

Knot exteriors 14,656 10,554 3 4049 14 36

Combined 59,132 48,703 6049 4330 14 36

Table 3 Statistics about the complexes LWT for the 4330 very large manifolds, broken down
by dimLWT . The properties recorded are: the number of connected components (comps), the
number of vertices (verts), the number of maximal faces (max faces), and the largest number of
vertices in any face (face size). For each numerical property, we give the mean in the μ column
as well as the min-max interval in the range column

Dim Count Comps Verts Max faces Face size

μ Range μ Range μ Range μ Range

1 1697 1.1 [1, 4] 2.8 [2, 14] 1.8 [1, 10] 2 [2, 2]
2 1810 1.1 [1, 2] 5.6 [3, 16] 3.3 [1, 13] 3.1 [3, 4]
3 606 1.2 [1, 3] 10.6 [6, 21] 7.8 [1, 26] 4.8 [4, 7]
4 205 1.0 [1, 2] 16.4 [8, 44] 11.3 [2, 48] 7.7 [5, 12]
5 12 1.0 [1, 1] 19.3 [16, 21] 13.6 [7, 18] 10.8 [10, 12]

It is natural to ask what is the smallest volume of a hyperbolic manifold
that is barely or very large. In our sample, the smallest manifold that is barely
large is m137, which has volume Voct ≈ 3.663862376, and the smallest knot
exterior that is barely large is that of K15n153789, which has volume about
9.077985047. Similarly, the smallest manifold we found that is very large is
s783which has volume about 5.333489566, and the smallest such knot exterior
is that of K10n10 = 10153, which has volume about 7.374343889.

7.1 Very large manifolds

For the 4,330 manifolds where dimLWT ≥ 1, the complexes LWT run
the gamut from a single edge (for 760 manifolds) up to monsters like LWT
for K13n3838 which is connected with 44 vertices and 48 maximal faces
all of dimension 4, where each maximal face has between 5 and 9 vertices.
Basic statistics about the topology and combinatorics of theLWT are given in
Table 3. All but 178 of these complexes are pure, that is, every maximal face
has the same dimension; the exceptions are 140 cases where each component
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Table 4 Statistics about the 88 distinct generating functions BM (x) for the 4330 very large
manifolds, broken down by dimLWT . Here, each BM (x) has rational form P(x)/Q(x) for
some P, Q ∈ Z[x] with deg P = deg Q. The properties recorded are: the number of distinct
BM (x) (count), the values of deg P (degree), the observed periods of BM (x) (periods), and the
range of the 
1-norm of the combined coefficients of the polynomials P and Q (
1-norm)

Dim Count Degree Periods 
1-norm

1 35 2, 3, 4, 6, 8 1, 2, 3, 6 [7, 53]

2 18 3, 6, 7 1, 2, 3 [16, 38]

3 24 4, 5, 6, 7, 8 1, 2 [26, 71]

4 9 5, 6, 8 1, 2 [38, 94]

5 2 7, 8 2 [78, 88]

of LWT is pure but there are components of differing dimensions, and 38
cases where LWT is connected and impure.

While the combinatorics of some of these complexes is quite elaborate,
the underlying topology of all LWT in our sample is simple in that every
connected component is actually contractible. Moreover, for a component Y
of dimension d, each (d−1)–face is glued to atmost two d-faces; consequently,
all components of dimension 1 are homeomorphic to intervals rather thanmore
general trees. Here, contractibility was checked as follows. First, each LWT
was converted to a simplicial complex (some 3,603 of the LWT are in fact
simplicial, for the rest a barycentric subdivision of the polyhedral complexwas
used).We then checked that every component hadvanishing reducedhomology
and trivial fundamental group using [57], which implies contractibility.

7.2 Surface counts by Euler characteristic

For each of the 4,330 very large manifolds, we computed the generating func-
tion BM(x) from Theorem 1.3 starting from LWT by using Normaliz [11].
This resulted in only 88 distinct generating functions whose properties are
summarized in Table 4 and examples of which are given in Tables 5 and 6.

7.3 Sample LW complexes

We next give several examples of LWT for specific triangulations of knot
exteriors. To start off, Fig. 1 gives an example of a simple LWT which is
unusual in having components of different dimensions. Then Fig. 2 describes
one of themost complicated 2-dimensional exampleswe found. Figure 3 shows
the fairly complicated 3-dimensional complex coming from the Conway knot
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Table 5 Nine of the most common BM (x), which together account for 3284 (75.8%) of the
4330 very large manifolds. The properties recorded are the dimension of LWT (dim), the
rational form P(x)/Q(x) of BM (x), the period of BM (x) (per), the 
1-norm of the combined
coefficients of P and Q, an example manifold with this BM (x) (sample M), and the number of
manifolds with this BM (x) (count)

Dim BM (x) Per 
1 Sample M Count

1
−x2 + 2x

(x − 1)2
1 7 K10n10 1009

1
−x4 + 2x2

(x − 1)2(x + 1)2
2 7 K14n11913 259

2
−x3 + 3x2 − 4x

(x − 1)3
1 16 t12766 1459

2
−x6 + 3x4 − 6x2

(x − 1)3(x + 1)3
2 18 K15n93515 82

3
−x4 + 4x3 − 5x2 + 6x

(x − 1)4
1 32 K12n605 219

3
−x5 + 3x4 − 2x3 + 2x2 + 6x

(x − 1)4(x + 1)
2 26 K11n34 139

4
−x6 + 4x5 − 5x4 − 2x3 − 2x2 − 8x

(x − 1)5(x + 1)
2 42 K14n1808 62

4
−x5 + 5x4 − 10x3 + 10x2 − 8x

(x − 1)5
1 66 K12n214 44

5 −x8+4x7−3x6−4x5+14x4+2x3+14x2+10x
(x−1)6(x+1)2

2 88 K15n15582 11

K11n34. In dimension four, we were only able to visualize one of the very
simplest examples in Fig. 4, and for dimension five we simply gave up.

All 38 examples where LWT is connected and impure have dimension 4
or 5; those of dimension 4 also have maximal faces of dimension 2 and those
of dimension 5 also have maximal faces of dimension 3. One of the simplest
such is K13n857whereLWT consists of seven 4-simplices plus two triangles,
where the triangles are glued together to form a square, and then one edge of
that square is glued to the main mass of 4-simplices.

7.4 Isotopies of lw-surfaces

An example of a non-normal isotopy of lw-surfaces occurs in the 13-tetrahedra
triangulation:

T = nvLAAvAPQkcdfgfhkmjlmklmwcadtfaaoaedrg
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Table 6 Six of the most complicated BM (x) in our sample. The properties recorded are the
dimension ofLWT (dim), the rational form P(x)/Q(x) of BM (x), the period of BM (x) (per),
the 
1-norm of the combined coefficients of P and Q (
1), and a manifold with this generating
function (M)

dim BM (x) per 
1 M

1
−2x8 − 4x7 − 2x6 + 6x5 + 13x4 + 8x3 + 2x2

(x − 1)2(x + 1)2(x2 + x + 1)2
6 53 K15n138922

2
−2x6 + 5x4 − 4x3 − 15x2 − 4x

(x − 1)3(x + 1)3
2 38 K15n27228

2
−2x7 + 2x6 − x5 + x4 − 9x3 − 5x2 − 4x

(x − 1)3(x2 + x + 1)2
3 32 K15n86383

3
−3x8 + 13x6 + 2x5 − 14x4 − 4x3 + 17x2 + 2x

(x − 1)4(x + 1)4
2 71 K15n139871

4
−2x8 + 4x7 + 4x6 − 14x5 − 12x4 − 6x3 − 22x2 − 8x

(x − 1)5(x + 1)3
2 94 K13n1795

5
−x7 + 5x6 − 9x5 + 5x4 + 8x3 + 10x

(x − 1)6(x + 1)
2 78 K13n2458

of the exterior of K13n585. To determine LWT , we enumerated normal and
almost normal surfaces down toχ = −8. In this range, there are 138 connected
normal surfaces, 261 connected almost normal surfaceswith octagons, and 603
almost normal surfaces with tubes. By tightening the almost normal surfaces,
we found there are 11 connected essential lw-surfaces with χ ≥ −8 with four
non-normal isotopies among them. Figure 5 shows the complex LWT which
consists of an edge B = [N12, N23] and a triangle C = [N23, N4, N7]. For
the face C it is the surface N116 that plays the role of FC in steps (3–5) of
Algorithm 6.12, and the isotopies N115 ∼ N116 ∼ N118 are what determine
the subspace WC . Here, the subspace WE for E = [N4, N7] is the same as
WC . In general, even if a face E of C is parallel to WC , it could be that
WE is a proper subspace of WC ; see the example at the start of Section 5 of
[64] for more on this important phenomenon. Notice also that dep(C) is the
complement of {N23} ∪ E and that the surfaces N70 and N71 are projectively
isotopic to a surface carried by the interior of C , but not isotopic to such a
surface.

Because WE = WC , every isotopy class of essential lw-surface is uniquely
represented by a surface carried by B ∪ [N23, N4]. This allows us to easily
compute that BM(x) = (−x2 + 2x)/(x − 1)2. This is also what one gets from
the triangulation:

S = nvLALAwAQkedffgiijkmlmlmfvaeetcaangcbn
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Fig. 1 For the knot K15n51747 shown at left, at right is the complexLWT for a triangulation
of its exterior with 17 ideal tetrahedra. This example is unusual in that there are components of
different dimensions. The vertex surfaces are either genus 2 (solid vertices) or genus 3 (open
vertices). Here BM (x) = (−3x7 + 3x6 + 9x5 − 9x4 − 9x3 + 9x2 + 2x)/

(
(x − 1)4(x + 1)3

)

5

5
5

7

Fig. 2 For the knot K15n18579 shown at left, at right is the complexLWT for a triangulation
of its exterior with 17 ideal tetrahedra. It is one of the most complicated examples in our
sample with dimLWT = 2; note that one face is a square rather than a triangle. The vertex
surfaces are genus 2 (solid vertices), genus 3 (open vertices), or genus 5 or 7 as labeled. Here
BM (x) = (−2x6 + 5x4 − 4x3 − 15x2 − 4x)/

(
(x − 1)3(x + 1)3

)

where LWS is two edges sharing a common vertex and there are no isotopies
between essential lw-surfaces.

7.5 Barely large knots and those without meridional essential surfaces

A striking contrast in Table 2 is that there are more than 6,000 barely large
manifolds in the cusped census yet only three such knot exteriors. Many con-
structions of closed essential surfaces in knot exteriors come from tubing
essential surfaces with meridional boundary, and there are classes of knots
where all closed essential surfaces are of this form, including Montesinos
knots [53], alternating knots [48], and their generalizations [1,2]. A connected
meridional surface F in M can be tubed along ∂M in two distinct ways, result-
ing in a pair of disjoint surfaces; hence if both tubings are essential then M
is very large. However, barely large knot exteriors do exist: Baker identified
an infinite family of barely large knots with a single incompressible genus 2
surface in [6, §4.7.1]. Additionally, Adams-Reid [5] and Eudave-Muñoz [25]
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19
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37

38

6

5

18

11

40

8

9

Fig. 3 The complexLWT for a triangulation of the exterior of the Conway knot K11n34. The
11vertex surfaces are N5, N6, N8, N9, N11, N12, N18, N19, N37, N38, N40,where the notation
follows [23]. The first six surfaces have genus 2 (dark vertices above) and the rest genus 3 (white
vertices above). There are seven 3-dimensional faces: four tetrahedra, a pyramid with quadrilat-
eral base (N5, N6, N40, N38, N11), a triangular prism (N11, N12, N38, N8, N9, N37), and the
one in the lower right whose faces are four triangles and two quadrilaterals (N11, N8, N37, N38
and N11, N8, N18, N5). Here BM (x) = (−x5 + 3x4 − 2x3 + 2x2 + 6x)/((x + 1)(x − 1)4)

15

14

16

12

29

251C C2

9

10

15

14

17

13

29

25

9

10

Fig. 4 For a 15-tetrahedra triangulation of the exterior of the knot K13n1019 shown at left, the
complex LWT consists of two 4-dimensional faces C1 and C2 with the same combinatorics
that are glued together along a single 3-dimensional face. The boundary of each Ci is depicted
above via an identification of ∂Ci with S3; hence, in each case there is an additional face of ∂Ci
on the outside, namely a triangular prism whose vertices are N10, N25, N9, N15, N29, N14. It
is these two outside faces that are identified to form LWT . As usual, solid and open vertices
correspond to surfaces of genus 2 and 3 respectively, and the numbering follows [23]. Here
BM (x) = (−x5 + 5x4 − 10x3 + 10x2 − 8x)/(x − 1)5
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4

4

4

5

5

5

5

12 120 73 23

70
115

4

71
118

7

116

Fig. 5 For this triangulation of the exterior of K13n585, there are 11 connected lw-surfaces
down to χ = −8: three of genus 2 (N4, N7, N12), one of genus 3 (N23), three of genus 4
(N70 = N4 + N23 and N71 = N7 + N23 and N73 = N12 + N23), and four of genus 5 (N115 =
2N4+N23 and N116 = N4+N7+N23 and N117 = 2N7+N23 and N120 = 2N12+N23). The
complete list of isotopies between them is: N4 ∼ N7, N70 ∼ N71, and N115 ∼ N116 ∼ N118.
The complex LWT consists of the edge B = [N12, N23] and the triangle C = [N23, N4, N7]
shown above. Here WB = 0, but for the faces C and E = [N4, N7], the subspaces WC and
WE are both 1-dimensional; indeed, WC = WE with the induced decomposition of C into
projective isotopy classes indicated by the dashed vertical lines

gave examples of closed essential surfaces that cannot come from ameridional
tubing construction. Still, the following appears to be new:

7.6 Theorem There exists a knot in S3, namely K15n153789, whose exterior
is large (indeed, barely large) and where the meridian is not the boundary
slope of any essential surface.

Here, the knot K15n153789 is one of the three examples of barely large knots
we found; its exterior contains a unique essential surface, which has genus 2.
We checked the boundary slope condition by noting that there are no spunnor-
mal surfaces with meridional boundary slope in the triangulation:

kLLLzPQkccfegjihijjlnahwdavhqk_bBaB

of its exterior.

7.7 Code and data

Complete data and the code used to compute it are available at [23]. Regina
[8] was used as the underlying engine for triangulations and normal surface
computations, including enumeration of vertex and fundamental (almost) nor-
mal surfaces, and Normaliz [11] was used for computing BM(x), with the
whole computation taking place inside SageMath [57] using the Python wrap-
pings of these libraries. The code for dealing with almost normal surfaces with
tubes, tightening almost normal surfaces (with either tubes or octagons), and
implementing Algorithm 6.12 was all completely new.
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To help validate our code, we started with a sample of 6,510 of the mani-
folds from Table 2 and generated 5 random triangulations of each. Then the
complete algorithm was run on all 32,550 triangulations and the output com-
pared to ensure that each triangulation gave the same surface counts and other
associated data. This technique proved extremely effective at finding bugs in
the code (and, if we are being honest, our thinking), including subtle ones that
only manifest themselves in corner cases. Additionally, we compared our data
to the lists of which knots are small/large from [9]; on the common set of 1,764
knots, our data matched theirs exactly.

8 Patterns of surface counts by genus

We now return to the question of counting connected essential surfaces in a
given 3-manifold in terms of their genus. Aswe knowhow to count all essential
surfaces by Euler characteristic given the complexLWT , we approach this by
identifying the connected surfaces in that larger count. This problem has an
arithmetic flavor, and is related to counting primitive lattice points, as well as
to the work of Mirzakhani discussed in Sect. 1.5.

Let aM(g) denote the number of isotopy classes of connected essential
surfaces of genus g. For each of the 4,330 very large examples in Table 2, we
computed the first 20 values of aM(g) starting fromLWT as follows. Let g be
fixed. For each face C of LWT , let C̃ = R≥0 · C ⊂ ST be the corresponding
cone. We used Normaliz [11] to find all lattice points carried by the interior
of the rational polytope

{�x ∈ C̃
∣
∣ χ(�x) = 2 − 2g

}
. For each corresponding

normal surface, we checked connectivity using Algorithm 9.4 of [42]. As
WC = 0 for all these examples, the number of such lattice points corresponding
to connected surfaces is the contribution of the interior C◦ to aM(g).

We found 94 distinct patterns for
(
aM(2), . . . , aM(21)

)
. Table 7 lists the

most common patterns and Table 8 gives the most complicated. For one man-
ifold exhibiting each pattern, we computed additional values of aM(g), nearly
always up to at least g = 50 and in more than 40 cases up to g = 200. This
data is available at [23], where the largest single value is aM(51) = 3,072,351
for the exterior M of K15n33595.

From now on, we work with n = g − 1 rather than g as the index for
the count of connected surfaces, and so define ãM(n) = aM(n + 1); this
simplifies the arithmetic, for example giving ãM(n) ≤ bM(−2n) rather than
aM(g) ≤ bM(2 − 2g).

8.1 Independence of aM(g) and BM(x)

Wenext give four examples showing that neither ãM(n) nor BM(x) determines
the other. We start with two manifolds with the same BM(x) but different
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Table 7 The ten most common patterns of aM (g) for 2 ≤ g ≤ 21, which together account for
3629 (83.8%) of the 4330 very large manifolds. A sample manifold for each pattern is given in
the second column, and the final column is the number of times the pattern appears

aM (g) M Count

4, 2, 4, 4, 8, 4, 12, 8, 12, 8, 20, 8, 24, 12, 16, 16, 32, 12, 36, 16 t09753 1473

2, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8 t12198 918

0, 2, 0, 1, 0, 2, 0, 2, 0, 4, 0, 2, 0, 6, 0, 4, 0, 6, 0, 4 K14n11913 259

6, 4, 8, 8, 16, 8, 24, 16, 24, 16, 40, 16, 48, 24, 32, 32, 64, 24,
72, 32

K12n605 219

8, 4, 8, 8, 16, 8, 24, 16, 24, 16, 40, 16, 48, 24, 32, 32, 64, 24,
72, 32

K11n73 169

0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 K14n13645 148

6, 9, 24, 37, 86, 87, 208, 220, 366, 386, 722, 602, 1168, 1039,
1498, 1564, 2514, 1993, 3484, 2924

K11n34 139

6, 7, 18, 29, 64, 73, 156, 177, 290, 321, 550, 521, 896, 865,
1236, 1297, 1950, 1731, 2714, 2499

K11n42 131

2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 o937085 91

0, 6, 0, 5, 0, 12, 0, 16, 0, 31, 0, 28, 0, 58, 0, 53, 0, 82, 0, 79 K15n93515 82

Table 8 The eight of the most complicated patterns of aM (g) for 2 ≤ g ≤ 21. These all come
from examples where dimLWT ≥ 4

aM (g) M

8, 14, 46, 89, 224, 305, 674, 905, 1536, 1955, 3326, 3771, 6150, 7019,
9850, 11611, 16714, 17767, 25490, 27415

K12n214

8, 16, 54, 98, 264, 318, 806, 984, 1794, 2098, 3994, 4074, 7368, 7632,
11552, 12976, 20114, 19396, 30670, 30550

K12n210

12, 21, 61, 109, 261, 320, 721, 880, 1480, 1762, 3094, 3115, 5429, 5666,
8019, 9086, 13596, 13059, 20062, 19841

K13n3763

10, 25, 71, 140, 352, 473, 1058, 1386, 2389, 2939, 5152, 5585, 9422,
10311, 14887, 17057, 25304, 25573, 38238, 39603

K15n15582

12, 16, 51, 99, 235, 345, 711, 999, 1649, 2209, 3551, 4319, 6593, 7919,
10971, 13231, 18275, 20555, 28063, 31485

K15n15220

8, 18, 57, 110, 270, 356, 785, 1013, 1737, 2092, 3667, 3942, 6614, 7134,
10397, 11710, 17426, 17422, 26131, 26891

K15n23198

12, 34, 110, 216, 532, 708, 1558, 2018, 3462, 4176, 7314, 7876, 13204,
14256, 20778, 23404, 34820, 34832, 52226, 53766

K13n3838

12, 30, 109, 231, 549, 861, 1737, 2511, 4059, 5643, 8859, 10941, 16623,
20229, 27303, 33729, 46215, 52455, 71079, 80271

K15n33595

10, 21, 73, 143, 385, 513, 1224, 1605, 2870, 3542, 6409, 7010, 12051,
13231, 19463, 22436, 33614, 34307, 51700, 53862

K13n2458
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ãM(n). Let A and B be the exteriors of the knots K14n22185 and K13n586
respectively, and we use T and S to denote their standard triangulations. Both
LWT andLWS consist of a single edgeC whose vertices correspond to genus
2 surfaces F and G. Moreover, the lattice points in the cone over C are simply
u �F + v �G for u, v ∈ N. Thus, the surfaces with χ = −2n are the lattice points
in N

2 on the line x + y = n, which gives bM(−2n) = n + 1 and hence
BM(x) = (−x2 + 2x)/(x − 1)2.
For T , the surfaces F and G can be made disjoint after a normal isotopy,

and hence every normal surface carried by C is a disjoint union of parallel
copies of F and G. Thus the only connected essential surfaces in A are F and
G, giving ã A(1) = 2 and ã A(n) = 0 for n > 1. In contrast, we find that the
first 30 values of ãB(n) are:

2, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20,

12, 18, 12, 28, 8

Now, if u �F+v �G is connected then gcd(u, v) = 1. The above data is consistent
with the converse being true, or equivalently ãB(n) is exactly the number of
primitive lattice points in N

2 on the line x + y = n, which is the Euler totent
function φ(n) when n > 1. This pattern continues for all n ≤ 500, so we may
safely posit:

8.2 Conjecture For the exterior B of the knot K13n586, one has ãB(n) =
φ(n) for all n > 1.

Since ãB(1) = 2, equivalently the conjecture is that ãB(n) = ε(n) + φ(n) for
all n ≥ 1 where ε(n) is 1 when n = 1 and 0 otherwise. This count of primitive
lattice points can be related to the corresponding count of all lattice points via
the Möbius inversion formula, making Conjecture 8.2 equivalent to:

ãB(n) =
∑

d|n
μ

(n

d

)
(d + 1) (8.3)

for all n ≥ 1, where μ is the Möbius function. Note added in proof: Lee [46]
has recently proved Conjecture 8.2 by analyzing the number of connected
components of u �F + v �G using the method of [3].

A pair with the same ãM(n) but different BM(x) are the census manifolds
X = v3394 and Y = o943058. Both have exactly four connected essential
surfaces, all of genus two, but

BX (x) = −2x2 + 4x

(x − 1)2
and BY (x) = −x2 + 4x

(x − 1)2
.
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For the standard triangulationsX and Y of X and Y , the complexesLWX and
LWY are quite different: the first consists of an edge and a disjoint vertex,
but LWY consists of two edges sharing a common vertex. All vertex surfaces
are connected, and so the vertices of LWX and LWY correspond to three of
the four essential genus 2 surfaces; in both cases, the fourth is hiding as a
fundamental surface in the interior of an edge.

8.4 Regular genus counts and the Lambert series

For the manifold B = K13n586 in Sect. 8.1, while the count ãB(n) does
not have a short generating function, from (8.3) we see its Möbius transform
p(n) = ∑

d|n ãB(d) is a polynomial, specifically p(n) = n+1. Thismotivates
our next definition. Recall that Dirichlet convolution on arithmetic functions
f, g : Z≥1 → C is defined by ( f ∗ g)(n) = ∑

d|n f (n/d)g(d). We say that
ãM(n) is regular if 1 ∗ ãM has a short generating series. Equivalently, if we
set pM = 1 ∗ ãM , regularity is equivalent to pM(n) being a quasi-polynomial
for all large n. Thus, when ãM(n) is regular, we can use Möbius inversion
ãM(n) = (μ∗ pM)(n) = ∑

d|n μ
( n
d

)
pM(d) to compute ãM from the simpler

pM , as we did in (8.3). In the language of generating functions, the count ãM
is regular if and only if its Lambert series

L AM(x) =
∞∑

n=1

ãM(n)
xn

1 − xn
(8.5)

is short, since the coefficients of this series are precisely 1 ∗ ãM .

8.6 Examples

Of the 94 observed patterns for ãM(n) in our sample, we conjecture that
exactly 54 of them are regular, including 7 of the 10 manifolds in Table 7,
with the exceptions being K11n34, K11n42, and K15n93515. Examples of
our conjectured formulae for L AM(x) are given in Table 9. In contrast, we
believe all the examples in Table 8 are irregular.

One example where the count appears irregular, though still highly struc-
tured, is M = o941176. Specifically we conjecture that ãM(n) is equal to
f (n) = φ(n) + 1 for n ≥ 2 (here ãM(1) = 5). While f is quite simple, we
have 1 ∗ f = n + σ0 where σ0(n) is the number of divisors of n, and σ0(n)

does not have a short generating function. For the standard triangulation T of
M , the complex LWT is:
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Table 9 Eight examples of our conjectured Lambert series L AM (x) for manifolds where
ãM (n) appears regular. The first five are from Table 7 and the last three are among the most
complicated we found

L AM (x) Per 
1 M

−2x2 + 4x

(x − 1)2
1 10 t09753

−x2 + 2x

(x − 1)2
1 7 t12198

−x4 + 2x2

(x − 1)2(x + 1)2
2 7 K14n11913

−2x2 + 6x

(x − 1)2
1 12 K12n605

−4x2 + 8x

(x − 1)2
1 16 K11n73

−4x6 + 2x5 + 16x4 + 4x3 − 14x2 − 6x

(x − 1)3(x + 1)3
2 54 K15n67261

−2x8 − 4x7 − 2x6 + 4x5 + 9x4 + 6x3 + 2x2

(x − 1)2(x + 1)2(x2 + x + 1)2
6 45 K15n129923

−2x8 − 4x7 − 2x6 + 6x5 + 13x4 + 8x3 + 2x2

(x − 1)2(x + 1)2(x2 + x + 1)2
6 53 K15n138922

N N9 7

C1 C2 C3 C4 C5

16 5 14 10N N N N

using the conventions of [23]. Here the vertex surfaces N14 and N16 have genus
3 and the others have genus 2. We conjecture that the faces contribute to ãM
as follows:

(a) The interior of C1 carries a single connected surface N8 which has genus
2. Here N7 + N9 = 2N8.

(b) The interior ofC2 carries no connected surfaces as N7 and N16 are disjoint.
(c) The interior of C3 carries a unique surface of genus g for each g ≥ 4,

namely (g − 3)N5 + N16. It is this face that contributes the +1 to ãM(n).
(d) The connected surfaces carried byC4 are exactly uN5+vN14 for u, v > 0

and gcd(u, v) = 1. The situation is the same forC5, with N5 replaced with
N10. Together, these faces contribute the φ(n) to ãM(n).

The manifold N = t12071 is similar in that ãN (n) is irregular but ãN (n) − 4
appears regular.
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In our sample, a simple example where ãM appears irregular and where we
cannot glean any other structure isW = o942517. The first 50 values of ãW (n)

are:

6, 4, 10, 14, 26, 26, 52, 46, 76, 76, 118, 96, 172, 136, 194, 196, 286, 212,

354, 274, 388, 360, 506, 378, 604, 490, 634, 574, 820, 568, 948, 728, 946,

846, 1122, 864, 1356, 1040, 1316, 1146, 1644, 1140, 1800, 1392, 1716,

1570, 2136, 1506, 2332, 1752

and [23] has all values to n = 200.With its usual triangulationW , the complex
LWW is a triangle whose vertex surfaces N3, N9, and N11 all have genus 2.
Here the edge [N3, N9] appears to carry a single connected surface in its
interior, which has genus 2, and the same for [N9, N11]. The remaining edge
[N3, N11] appears to contribute 2φ(n) to ãW (n) for n > 1, and the interior of
the triangle contributes the mysterious:

0, 2, 6, 10, 18, 22, 40, 38, 64, 68, 98, 88, 148, 124, 178, 180, 254, 200, 318,

258, 364, 340

8.7 Asymptotics of genus counts

We now explore the asymptotics of the sequences ãM(n). Since ãM(n) ≤
bM(−2n) and the latter grows polynomially, it is natural to ask whether ãM(n)

does so as well. Even in the regular case, the sequence ãM(n) depends arith-
metically on the divisors of n, so it is better to study the smoothed sequence:

aM(n) =
∑

k≤n

ãM(k). (8.8)

Of the 94 observed patterns for ãM(n), there are 14 where ãM(n) = 0 for all
large n and 4 where we were only able to compute up to ãM(20); we consider
only the remaining 76. The plots in Figs. 6 and 7 together suggest:

8.9 Conjecture Suppose M as in Theorem 1.3. Then either ãM(n) = 0 for
all large n or there exists s ∈ N such that limn→∞ aM(n)/ns exists and is
positive.

In fact, Conjecture 8.9 holds whenever ãM(n) is regular and the correspond-
ing quasi-polynomial has constant leading term as we now show; this includes
all the conjecturally regular examples in our sample.

8.10 Lemma Suppose ãM(n) is regular and the corresponding pM(n) has
constant leading term, with pM(n) = crnr + O

(
nr−1

)
for some r ≥ 1 and

positive cr ∈ Q. Then
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Fig. 6 This log–log plot shows the sequence {aM (n)} for 76 manifolds, up to n = 50, 100, or
200 depending. Those coming from conjecturally regular ãM (n) are in red whereas the likely
irregular ones are in blue. The dotted lines plot csns for the indicated s and some choice of
cs . Each of aM (n) appears nearly parallel to one of these lines, consistent with aM (n) being
asymptotic to cns as n → ∞ for some integer s and cs > 0

lim
n→∞

1

nr+1 aM(n) = cr
r + 1

1

ζ(r + 1)
, (8.11)

where ζ(s) is the Riemann ζ -function.

Proof As
∑m

k=1 k
s = 1

s+1m
s+1+O(ms), we see

∑
k≤m pM(k) = cr

r+1m
r+1+

O(mr ). Now

aM (n) =
∑


≤n

∑

d|

μ(d)pM (
/d) =

∑

d·k≤n

μ(d)pM (k) =
∑

d≤n

(
μ(d)

∑

k≤�n/d�
pM (k)

)

=
∑

d≤n

μ(d)

(
cr

r + 1

⌊ n

d

⌋r+1 + O
(⌊ n

d

⌋r)
)

=
∑

d≤n

μ(d)

(
cr

r + 1

nr+1

dr+1 + O

(
nr

dr

))

,

where we have used that �n/d� = n/d + O(1) and hence by the binomial
theorem �n/d�r+1 = nr+1/dr+1 + O(nr/dr ). Thus

aM (n)

nr+1 =
∑

d≤n

μ(d)

(
cr

r + 1

1

dr+1 + O

(
1

ndr

))

=
⎛

⎝ cr
r + 1

∑

d≤n

μ(d)

dr+1

⎞

⎠ + O

(
log(n)

n

)

,

where we have used in the last step that
∑

d≤n 1/d
r ≤ ∑

d≤n 1/d ≈ log(n).
Now as r ≥ 1, we have

∑
d≤n μ(d)/dr+1 = 1/ζ(r + 1)+ o(n) by [4, Section

11.4], and so the lemma follows. �
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Fig. 7 Using the predicted asymptotic exponent s for each sequence aM (n) from Fig. 6, we
plot aM (n)/ns to test Conjecture 8.9. Here, the top plot shows those where s = 2, 3 and
the bottom where s = 4, 5; again, red and blue correspond to (conjecturally) regular versus
irregular sequences. For better readability, 10 sequences that lie above the given vertical scales
are omitted, 9 from the top plot (all but one regular) and 1 from the bottom; these look very
similar to the 66 sequences shown

8.12 Remark If one allows r = 0, then (8.11) still holds if you interpret the
righthand side as 0, seeing that ζ has a pole at 1; we leave the details in this
case to the reader.
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