
Pergamon Topo/ogy Vol. 37, No. I, pp. 219-224, 1598 

Q 1997 Elsevier Science Ltd 

Printed in Great Britain. All rights resewed 

0040-9383197 $19.00 + 0.M) 

PII: soo4o-9383(97)00009-8 

APPLICATIONS OF QUANTUM INVARIANTS IN LOW 
DIMENSIONAL TOPOLOGY 

STAVROS GAROUFALIDIS + 

(Received 12 November 1992; in revised form 1 November 1996) 

In this short note we give lower bounds for the Heegaard genus of 3-manifolds using various TQFT in 2+1 

dimensions. We also study the large k limit and the large G limit of our lower bounds, using a conjecture relating 

the various combinatorial and physical TQFTs. We also prove, assuming this conjecture, that the set of colored 

SU(N) polynomials of a framed knot in S’ distinguishes the knot from the unknot. 0 1997 Elsevier Science Ltd 

1. INTRODUCTION 

In recent years a remarkable relation between physics and low-dimensional topology has 
emerged, under the name of fopological quantum field theory (TQFT for short). 

An axiomatic definition of a TQFT in d + 1 dimensions has been provided by Atiyah- 
Segal in [l]. We briefly recall it: 

l To an oriented d dimensional manifold X, one associates a complex vector space Z(X). 
l To an oriented d + 1 dimensional manifold M with boundary 8M, one associates an 

element Z(M) E Z(&V). 

This (functor) Z usually satisfies extra compatibility conditions (depending on the di- 
mension d), some of which are: 

l For a disjoint union of d dimensional manifolds X, Y 

Z(X u Y) = Z(X) @ Z(Y). 

l For a change of orientation of a (unitary) TQFT we have: 

Z(X) = z(X)* 

(where V* is the dual vector space of V.) 
l For M = Mi UX Ml where 3M, = XI L. X, i?Mz = X2 U x, one has 

Z(M) = (Z(M1),Z(Mz)) E Zm(Z(& UX, UX UT) --f Z(XI ~1x2)) 

The above-mentioned axioms for a TQFT in d + 1 dimensions come from an attempt to 
axiomatize the path integral (nonperturbative) and the Hamiltonian approach to a quantum 
field theory. 

An axiomatic definition of a perturbariue TQFT in d + 1 dimensions is still missing, but 
in the case of the Chem-Simons theory in 2 + 1 dimensions there are some attempts [2-41. 

From now on, we will concentrate on topological quantum field theories in 2 + 1 dimen- 
sions. For a precise definition of them, the reader is refered to [6,14]. 

t The author was partially supported by an MSRI-NSF grant DMS-90-22140. This and related preprints can also 
be obtained by accessing the WEB in the address http: //wuw.math.brown.edu/‘stavrosg/. 
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Any such theory gives invariants of closed 3-manifolds (with values in C), invariants 

of framed (labeled) links in 3-manifolds (with values in C), as well as finite-dimensional 

representations of the mapping class groups. 

The first such theory was constructed using path integrals in the seminal paper of Witten 

[ 151. We briefly recall the definition, fixing some notation: 

Let G be a compact simple simply connected group, and k an integer. Let M be a 

(2-framed) closed 3-manifold with a framed colored link L. A coloring of the link is the 

assignment of a representation of the loop group QG at level k [7]. Let G cf P + A4 

be the trivial principal G-bundle. We consider the space d of all G-connections on P. 

Let 

be the Chem-Simons action. The gauge group 9 = Map(A4, G) of G-automorphisms of P 

acts on d, and for any framed link L colored by 1, the holonomy around it gives 

The invariant of the framed colored link L is the following partition function: 

The subscript ph stands for physics. Needless to say, the above path integrals have not 

yet been defined. 

Shortly afterwards, a number of topological (combinatorial) definitions appeared 

[ 11,131. They depended on a simple Lie group G and a primitive complex root of unity 

and will be denoted by ZG,~. 

The main conjecture is that: 

CONJECTURE 1.1. If h is the dual Coxeter number of G, then 

zph,G,k = ZG,exp(2rri/(k+h)) 

in 

99 

The above conjecture seems ill-defined, as the left-hand side has not yet been defined. 

However, taking the large k limit (as k + co) and using stationary phase approximation of 

the path integral, we arrive at the following conjecture: 

CONJECTURE 1.2. If M is a closed 3-manifold, as k + cc we have: 

ZG,exp(2rri/(k+h))(M) Nk-oo kBG(M)dim(G)'2 

where f(k) Nk+m g(k) means 0 < al dLtVMk)l da2 as k -+ 00 and 8G(M) is as in 

the following dejinition. 

Dejinition 1.3. For a closed 3-manifold M, and a compact Lie group G, let 

where W?(M) is the smooth part of the moduli space go(M) = Hom(rrt(M), G)/G and 

hk(M, LX) is the dimension of the kth cohomology of A4 with twisted coefficients. 
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Remark 1.4. We will actually only use Conjecture 1.2 in the case of a subsequence of k 
approaching infinity. The normalization of Bo(A4) used in Conjecture 1.2 is chosen so that 

Corollary 2.3 has a simple form. 

Let us give one more definition that we will need in the next section: 

Definition 1.5. For a closed 3-manifold A4 let 

2. LOWER BOUNDS 

We first begin with a lemma: 

FOR THE HEEGAARD GENUS OF 3-MANIFOLDS 

LEMMA 2.1. If Z is a TQFT in 2 + 1 dimensions, and M, N are closed 3-manifolds, then 

l Z(M#N)Z(S3) = Z(M)Z(N), 
0 Z(S2xS’)= 1. 

ProoJ It follows easily from the glueing axioms, as in [ 151. 0 

Now we are ready to state the following theorem: 

THEOREM 2.2. Zf Z is any unitary TQFT in 2 + 1 dimensions, and M is a closed 3- 
manifold, then 

lZ(M)I <Z(S3)-g(M)+1 

where g(M) is the Heegaard genus of M, i.e. the genus of a minimal Heegaard splitting. 
Furthermore, we have 0 < Z(S3) < 1, thus 

ProoJ Let M = H Uf H be a Heegaard splitting of M, where H is a handelbody of 
genus g (a(H) = C,), and f E Di@(C,). Let u := Z(H) E Z(C,). Then, we have 

lZ(M)I = I (u, f*(u)) I 

< d(u, 4 (f+(u), f+(u)) (by Cauchy Schwarz) 

= (u,u) (since Z is unitary) 

= z(#;+P x S’) 

= Z(S2 x S’)gZ(S3)-g+’ (by Lemma 2.1) 

= Z(ss)-g+‘. 

The above implies that 0 < Z(S3) < 1. Indeed, otherwise we necessarily have that Z(S3) > 1. 
Then, for any 3-manifold M, by choosing a Heegaard splitting of large enough genus, the 
above implies that Z(M) = 0, which contradicts the fact that Z(S2 x S’) = 1. Thus, we 
deduce that 0 < Z(S3) < 1, and taking a minimal genus Heegaard splitting concludes the 
proof of the theorem. 0 
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Table 1 

Manifold M 

S3 0 0 0 
L /w 1 -Icldc + 1 I 

S(Ul,... , a,) n-l 2npcldc - 1 n-l 
s’ x c, 2g + 1 2g- 1 2g - 1 

Note: dG, lo, pi are the dimension, rank and number of 
positive roots of the Lie group G. L,., is a Lens space 
with nl(L,,,) = Z/pH and S(UI,. ,a,) is a Seifert fibered 
integral homology 3-sphere with singular fibers of orders 
al,. ,a,, (where a; are coprime integers) [IO]. 

We also have the following: 

COROLLARY 2.3 (Depending on Conjecture 1.2). For a closed 3-manifold A4, und a com- 
pact simple simply connected group G we have 

ProoJ For the first part use the previous corollary for the TQFT Z = Zo,exp(2zi/(k+h)) and 

the fact that Z(S3) is given by an explicit expression of [8]. For the second part use the 

TQFT Z = ZG,exp(2rri!(k+h)), and Lemma 2.1 and the fact that Z(S3) is given by [8]. 

Remark 2.4. In Table 1 we calculate a list of values of do(M) for certain classes of 

3-manifolds A4 for which Conjecture 1.2 has been verified by direct calculation [6]. 

3. DETECTING THE UNKNOT 

In this section we use Conjecture 1.2 to show how the TQFT invariants might detect the 

unknot. Fix a framed knot K in S3. It turns out [9] that given a simple Lie group G, and a 

representation 1, of G, there is a rational function Zc(K, A)(t) such that for every primitive 

complex root of unity q, we have 

z,(K, i)(q) = zc,,(s3,K> 2) 

THEOREM 3.1 (Depending on Conjecture 1.2). Let K c S3 be a framed oriented knot, and 
6 be the zero framed unknot in S3. If 

,for all colors I. and cl11 N 32 then K = CC. 

ProoJ Let S&,, denote the result of a/b Dehn-surgery on K, where a, b are coprime 

integers, with the convention HI (S,&lb, Z) = Z/aZ. Using the above-mentioned property of 

the colored SU(N) polynomials together with the fact that for any coprime integers a, b 
and every primitive complex root of unity q, Z~(I(N),JS&,~) is a linear combination of 

Zsu(~)JS3, K, A) (for suitable A), we deduce that 
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for all n E Z, N 32 and all primitive complex roots of unity q. Now use q = exp(2ni/(k+N)), 

Conjecture 1.2 and the value of Z~(I(N),~(S~) as in [S], to deduce 

&u(N)(S&,) = 0 for all N>2, n E N. 

Lemma 3.2 below implies that 

Hom(n.I(S~,I/n),SU(N)) = (0) 

for all N 3 2 and n E N. Using the fact that ni(Si, ,;n) is a residually finite group for n >> 0 

(as follows by Thurston [12]) we obtain 

“I(S&) = 0 

for all n > 0. Using the cyclic surgery theorem of Gordon-Luecke [5] the result 

follows. 0 

LEMMA 3.2. [f 0~(A4) = 0 for (I simple (simpIy connected) Lie group G and 3-munifold 

44, then Hom(rcl(M), G) = 0. 

Proof: Recall first that for an element x E B?(M) we have that h’(A4, X) is the dimen- 

sion of the stabilizer of the image of c( in G. Thus 

h’(M,cr)<dim(G) 

with equality if and only if the stabilizer of c( is G, in other words c[ E Hom(nr (M),Z(G)) 

where Z(G) is the center of G. Since A4 is an integral homology 3-sphere, we have that 

Hom(ni(M),Z(G)) = (0); thus h’(M,cc) = dim(G) if and only if M = 0, i.e., c( is the trivial 

group homomorphism. 

Recall further that .97(M) is a smooth (possibly noncompact and nonconnected) mani- 

fold. For an element p E .9??(M), the dimension of the component of 9?(M) that contains 

/I is given by h’(M,/?) - h’(M,B). Using the assumption that 8~(A4) = 0 and the above 

equation, we conclude that h’(A4,fi) = 0 and h”(M, fl) = dim(G); thus /I = 0. In other 

words, we have that S??(M) = {0}, and thus (since the singular points in go(M) are of 

codimension at least one, and since isolated points are smooth) the lemma follows. 0 

An equivalent formulation of the previous theorem is the following: 

COROLLARY 3.3 (Depending on Conjecture 1.2). If K C S3 is a framed oriented knot, and 
Z(K) = Z(C’) for ail TQFT Z in 2 + 1 dimensions, then K is the unknot. 
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