

PII: S0040-9383(97)00009-8

APPLICATIONS OF QUANTUM INVARIANTS IN LOW DIMENSIONAL TOPOLOGY

STAVROS GAROUFALIDIS[†]

(Received 12 November 1992; in revised form 1 November 1996)

In this short note we give lower bounds for the Heegaard genus of 3-manifolds using various TQFT in 2+1 dimensions. We also study the large k limit and the large G limit of our lower bounds, using a conjecture relating the various combinatorial and physical TQFTs. We also prove, assuming this conjecture, that the set of colored SU(N) polynomials of a framed knot in S^3 distinguishes the knot from the unknot. © 1997 Elsevier Science Ltd

1. INTRODUCTION

In recent years a remarkable relation between physics and low-dimensional topology has emerged, under the name of *topological quantum field theory* (TQFT for short).

An axiomatic definition of a TQFT in d + 1 dimensions has been provided by Atiyah-Segal in [1]. We briefly recall it:

- To an oriented d dimensional manifold X, one associates a complex vector space Z(X).
- To an oriented d + 1 dimensional manifold M with boundary ∂M , one associates an element $Z(M) \in Z(\partial M)$.

This (functor) Z usually satisfies extra compatibility conditions (depending on the dimension d), some of which are:

• For a disjoint union of d dimensional manifolds X, Y

$$Z(X \sqcup Y) = Z(X) \otimes Z(Y).$$

• For a change of orientation of a (unitary) TQFT we have:

$$Z(\overline{X}) = Z(X)^*$$

(where V^* is the dual vector space of V.)

• For $M = M_1 \cup_X M_2$ where $\partial M_1 = X_1 \sqcup X$, $\partial M_2 = X_2 \sqcup \overline{X}$, one has

$$Z(M) = \langle Z(M_1), Z(M_2) \rangle \in Im(Z(X_1 \sqcup X_2 \sqcup X \sqcup \overline{X}) \to Z(X_1 \sqcup X_2))$$

The above-mentioned axioms for a TQFT in d + 1 dimensions come from an attempt to axiomatize the path integral (nonperturbative) and the Hamiltonian approach to a quantum field theory.

An axiomatic definition of a *perturbative* TQFT in d + 1 dimensions is still missing, but in the case of the Chern-Simons theory in 2 + 1 dimensions there are some attempts [2-4].

From now on, we will concentrate on topological quantum field theories in 2+1 dimensions. For a precise definition of them, the reader is referred to [6, 14].

[†] The author was partially supported by an MSRI-NSF grant DMS-90-22140. This and related preprints can also be obtained by accessing the WEB in the address http://www.math.brown.edu/~stavrosg/.

Any such theory gives invariants of closed 3-manifolds (with values in \mathbb{C}), invariants of framed (labeled) links in 3-manifolds (with values in \mathbb{C}), as well as finite-dimensional representations of the mapping class groups.

The first such theory was constructed using path integrals in the seminal paper of Witten [15]. We briefly recall the definition, fixing some notation:

Let G be a compact simple simply connected group, and k an integer. Let M be a (2-framed) closed 3-manifold with a framed colored link L. A coloring of the link is the assignment of a representation of the loop group ΩG at level k [7]. Let $G \hookrightarrow P \to M$ be the trivial principal G-bundle. We consider the space \mathscr{A} of all G-connections on P. Let

$$CS: \mathscr{A} \to \mathbb{R}/\mathbb{Z}$$

be the Chern-Simons action. The gauge group $\mathscr{G} = \operatorname{Map}(M, G)$ of G-automorphisms of P acts on \mathscr{A} , and for any framed link L colored by λ , the holonomy around it gives

$$\mathcal{O}_{L,\lambda}: \mathscr{A} \to \mathbb{C}.$$

The invariant of the framed colored link L is the following partition function:

$$Z_{\mathrm{ph},G,k}(M,L,\lambda) = \int_{\mathscr{A}} \mathscr{D}A \mathrm{e}^{2\pi \mathrm{i} k C \mathrm{S}(A)} \mathscr{O}_{L,\lambda}(A).$$

The subscript ph stands for physics. Needless to say, the above path integrals have not yet been defined.

Shortly afterwards, a number of topological (combinatorial) definitions appeared in [11, 13]. They depended on a simple Lie group G and a primitive complex root of unity q, and will be denoted by $Z_{G,q}$.

The main conjecture is that:

CONJECTURE 1.1. If h is the dual Coxeter number of G, then

$$Z_{\text{ph},G,k} = Z_{G,\exp(2\pi i/(k+h))}$$

The above conjecture seems ill-defined, as the left-hand side has not yet been defined. However, taking the large k limit (as $k \to \infty$) and using stationary phase approximation of the path integral, we arrive at the following conjecture:

CONJECTURE 1.2. If M is a closed 3-manifold, as $k \to \infty$ we have:

$$Z_{G,\exp(2\pi i/(k+h))}(M) \sim_{k\to\infty} k^{\theta_G(M)\dim(G)/2}$$

where $f(k) \sim_{k\to\infty} g(k)$ means $0 < a_1 \leq |f(k)/g(k)| \leq a_2$ as $k \to \infty$ and $\theta_G(M)$ is as in the following definition.

Definition 1.3. For a closed 3-manifold M, and a compact Lie group G, let

$$\theta_G(M) := \max_{\alpha \in \mathscr{R}_G^{\rm sm}(M)} \frac{h^1(M, \alpha) - h^0(M, \alpha)}{\dim(G)} + 1$$

where $\mathscr{R}_G^{sm}(M)$ is the smooth part of the moduli space $\mathscr{R}_G(M) = \text{Hom}(\pi_1(M), G)/G$ and $h^k(M, \alpha)$ is the dimension of the kth cohomology of M with twisted coefficients.

220

Remark 1.4. We will actually only use Conjecture 1.2 in the case of a subsequence of k approaching infinity. The normalization of $\theta_G(M)$ used in Conjecture 1.2 is chosen so that Corollary 2.3 has a simple form.

Let us give one more definition that we will need in the next section:

Definition 1.5. For a closed 3-manifold M let

$$\theta(M) = \lim_{N \to \infty} \theta_{SU(N)}(M).$$

2. LOWER BOUNDS FOR THE HEEGAARD GENUS OF 3-MANIFOLDS

We first begin with a lemma:

LEMMA 2.1. If Z is a TQFT in 2 + 1 dimensions, and M,N are closed 3-manifolds, then

- $Z(M^{\ddagger}N)Z(S^3) = Z(M)Z(N),$
- $Z(S^2 \times S^1) = 1$.

Proof. It follows easily from the glueing axioms, as in [15]. \Box

Now we are ready to state the following theorem:

THEOREM 2.2. If Z is any unitary TQFT in 2 + 1 dimensions, and M is a closed 3-manifold, then

$$|Z(M)| \leqslant Z(S^3)^{-g(M)+1}$$

where g(M) is the Heegaard genus of M, i.e. the genus of a minimal Heegaard splitting. Furthermore, we have $0 < Z(S^3) < 1$, thus

$$g(M) - 1 \ge -\frac{\log |Z(M)|}{\log Z(S^3)}.$$

Proof. Let $M = H \cup_f H$ be a Heegaard splitting of M, where H is a handelbody of genus $g(\partial(H) = \Sigma_q)$, and $f \in \text{Diff}^+(\Sigma_q)$. Let $u := Z(H) \in Z(\Sigma_q)$. Then, we have

$$|Z(M)| = |\langle u, f_{\star}(u) \rangle|$$

$$\leq \sqrt{\langle u, u \rangle \langle f_{\star}(u), f_{\star}(u) \rangle} \quad \text{(by Cauchy Schwarz)}$$

$$= \langle u, u \rangle \quad \text{(since } Z \text{ is unitary)}$$

$$= Z(\sharp_{i=1}^{g} S^{2} \times S^{1})$$

$$= Z(S^{2} \times S^{1})^{g} Z(S^{3})^{-g+1} \quad \text{(by Lemma 2.1)}$$

$$= Z(S^{3})^{-g+1}.$$

The above implies that $0 < Z(S^3) < 1$. Indeed, otherwise we necessarily have that $Z(S^3) > 1$. Then, for any 3-manifold M, by choosing a Heegaard splitting of large enough genus, the above implies that Z(M) = 0, which contradicts the fact that $Z(S^2 \times S^1) = 1$. Thus, we deduce that $0 < Z(S^3) < 1$, and taking a minimal genus Heegaard splitting concludes the proof of the theorem.

Table 1	
---------	--

Manifold M	g(M)	$\theta_G(M)$	$\theta(M)$
S ³	0	0	0
$L_{p,q}$	1	$-l_G/d_G + 1$	1
$S(a_1,\ldots,a_n)$	n-1	$2n\mu_G/d_G-1$	n-1
$S^1 imes \Sigma_g$	2g + 1	2g - 1	2g - 1

Note: d_G, l_G, μ_G are the dimension, rank and number of positive roots of the Lie group G. $L_{p,q}$ is a Lens space with $\pi_1(L_{p,q}) = \mathbb{Z}/p\mathbb{Z}$ and $S(a_1, \ldots, a_n)$ is a Seifert fibered integral homology 3-sphere with singular fibers of orders a_1, \ldots, a_n (where a_i are coprime integers) [10].

We also have the following:

COROLLARY 2.3 (Depending on Conjecture 1.2). For a closed 3-manifold M, and a compact simple simply connected group G we have

- $g(M) \ge \theta_G(M)$,
- $\theta_G(M # N) = \theta_G(M) + \theta_G(N).$

Proof. For the first part use the previous corollary for the TQFT $Z = Z_{G,\exp(2\pi i/(k+h))}$ and the fact that $Z(S^3)$ is given by an explicit expression of [8]. For the second part use the TQFT $Z = Z_{G,\exp(2\pi i/(k+h))}$, and Lemma 2.1 and the fact that $Z(S^3)$ is given by [8].

Remark 2.4. In Table 1 we calculate a list of values of $\theta_G(M)$ for certain classes of 3-manifolds *M* for which Conjecture 1.2 has been verified by direct calculation [6].

3. DETECTING THE UNKNOT

In this section we use Conjecture 1.2 to show how the TQFT invariants might detect the unknot. Fix a framed knot K in S³. It turns out [9] that given a simple Lie group G, and a representation λ of G, there is a rational function $Z_G(K, \lambda)(t)$ such that for every primitive complex root of unity q, we have

$$Z_G(K,\lambda)(q) = Z_{G,q}(S^3, K, \lambda)$$

THEOREM 3.1 (Depending on Conjecture 1.2). Let $K \subseteq S^3$ be a framed oriented knot, and \mathcal{O} be the zero framed unknot in S^3 . If

$$Z_{SU(N)}(K,\lambda) = Z_{SU(N)}(\mathcal{O},\lambda)$$

for all colors λ and all $N \ge 2$ then $K = \emptyset$.

Proof. Let $S_{K,a/b}^3$ denote the result of a/b Dehn-surgery on K, where a, b are coprime integers, with the convention $H_1(S_{K,a/b}^3, \mathbb{Z}) = \mathbb{Z}/a\mathbb{Z}$. Using the above-mentioned property of the colored SU(N) polynomials together with the fact that for any coprime integers a, b and every primitive complex root of unity q, $Z_{SU(N),q}(S_{K,a/b}^3)$ is a linear combination of $Z_{SU(N),q}(S^3, K, \lambda)$ (for suitable λ), we deduce that

$$Z_{SU(N),q}(S^{3}_{K,1/n}) = Z_{SU(N),q}(S^{3}_{\ell,1/n}) = Z_{SU(N),q}(S^{3})$$

for all $n \in \mathbb{Z}, N \ge 2$ and all primitive complex roots of unity q. Now use $q = \exp(2\pi i/(k+N))$, Conjecture 1.2 and the value of $Z_{SU(N),q}(S^3)$ as in [8], to deduce

$$\theta_{SU(N)}(S^3_{K,1/n}) = 0$$
 for all $N \ge 2$, $n \in N$

Lemma 3.2 below implies that

$$Hom(\pi_1(S^3_{K,1/n}), SU(N)) = \{0\}$$

for all $N \ge 2$ and $n \in \mathbb{N}$. Using the fact that $\pi_1(S^3_{K,1/n})$ is a residually finite group for $n \gg 0$ (as follows by Thurston [12]) we obtain

$$\pi_1(S^3_{K,1/n}) = 0$$

for all $n \gg 0$. Using the cyclic surgery theorem of Gordon-Luecke [5] the result follows.

LEMMA 3.2. If $\theta_G(M) = 0$ for a simple (simply connected) Lie group G and 3-manifold M, then $Hom(\pi_1(M), G) = 0$.

Proof. Recall first that for an element $\alpha \in \mathscr{R}_G^{sm}(M)$ we have that $h^0(M, \alpha)$ is the dimension of the stabilizer of the image of α in G. Thus

$$h^0(M, \alpha) \leq \dim(G)$$

with equality if and only if the stabilizer of α is G, in other words $\alpha \in \text{Hom}(\pi_1(M), Z(G))$ where Z(G) is the center of G. Since M is an integral homology 3-sphere, we have that $\text{Hom}(\pi_1(M), Z(G)) = \{0\}$; thus $h^0(M, \alpha) = \dim(G)$ if and only if $\alpha = 0$, i.e., α is the trivial group homomorphism.

Recall further that $\mathscr{R}_{G}^{sm}(M)$ is a smooth (possibly noncompact and nonconnected) manifold. For an element $\beta \in \mathscr{R}_{G}^{sm}(M)$, the dimension of the component of $\mathscr{R}_{G}^{sm}(M)$ that contains β is given by $h^{1}(M,\beta) - h^{0}(M,\beta)$. Using the assumption that $\theta_{G}(M) = 0$ and the above equation, we conclude that $h^{1}(M,\beta) = 0$ and $h^{0}(M,\beta) = \dim(G)$; thus $\beta = 0$. In other words, we have that $\mathscr{R}_{G}^{sm}(M) = \{0\}$, and thus (since the singular points in $\mathscr{R}_{G}(M)$ are of codimension at least one, and since isolated points are smooth) the lemma follows.

An equivalent formulation of the previous theorem is the following:

COROLLARY 3.3 (Depending on Conjecture 1.2). If $K \subseteq S^3$ is a framed oriented knot, and $Z(K) = Z(\mathcal{O})$ for all TQFT Z in 2 + 1 dimensions, then K is the unknot.

REFERENCES

- 1. M. F. Atiyah: Topological Quantum Field Theories, IHES Publ. Math. 68 (1988), 175-186.
- 2. S. Axelrod and I. M. Singer: Chern-Simons perturbation theory, in: Proc. XXth DGM Conf. (New York, 1991), World Scientific, Singapore (1992), pp. 3-45.
- S. Axelrod and I. M. Singer: Perturbative aspects of Chern-Simons topological quantum field theory II, J. Diff. Geom. 39 (1994), 173-213.
- 4. D. Bar-Natan: On the Vassiliev knot invariants, Topology 34 (1995), 423-472.
- 5. M. Culler, C. Gordon, J. Luecke and P. Shalen: Dehn surgery on knots, Ann. Math. 125 (1987), 237-300.
- 6. S. Garoufalidis: Relations among 3-manifold invariants. Thesis, University of Chicago (1992).
- 7. V. Kac: Infinite dimensional Lie algebras, Cambridge Univ. Press, Cambridge (1990).
- V. Kac and M. Wacimoto: Modular and conformal invariance in the representation theory of affine Lie algebras, *Adv. in Math.* 40(1) (1988), 156–236.
- 9. C. Kassel: Quantum groups, GTM 155, Springer, Berlin (1995).

Stavros Garoufalidis

- 10. P. Orlik: Seifert manifolds, Lecture Notes in Math. 291, Springer, Berlin (1972).
- N. Reshetikhin and V. Turaev: Invariants of 3-manifolds via link polynomials and quantum groups, *Invent. Math.* 103 (1991), 547-597.
- 12. W. Thurston: The geometry and topology of 3-manifolds, Mimeograph notes 1979.
- 13. V. Turaev and H. Wenzl: Quantum invariants of 3-manifolds associated with classical simple Lie algebras, preprint (1991).
- 14. K. Walker: On Witten's three-manifold invariants, preprint (1990).
- 15. E. Witten: Quantum field theory and the Jones polynomial, Commun. Math. Physics 121 (1989), 360-376.

Department of Mathematics Harvard University Cambridge, MA 02138 U.S.A.