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Abstract

Matrix-valued holomorphic quantum modular forms are intricate objects associated to
3-manifolds (in particular to knot complements) that arise in successive refinements of
the volume conjecture of knots and involve three holomorphic, asymptotic and
arithmetic realizations. It is expected that the algebraic properties of these objects can
be deduced from the algebraic properties of descendant state integrals, and we
illustrate this for the case of the (−2, 3, 7)-pretzel knot.
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1 Introduction
The volume conjecture of Kashaev links the asymptotics of the Jones polynomial of
a hyperbolic knot and its parallels with the hyperbolic geometry of the knot com-
plement [14]. Explicitly, the conjecture (combined with the results of Murakami–
Murakami [15]) asserts that for a hyperbolic knot K in 3-space [18], we have

lim
N→∞

1
N

log |JKN (e2π i/N )| = Vol(S3 \ K )
2π

(1)

where JKN (q) ∈ Z[q±1] is the Jones polynomial of K , colored with the N -dimensional
irreducible representation of sl2(C), and normalized to be 1 for the unknot. The definition
of the colored Jones polynomial, that we omit, may be found in [17]
The volume conjecture is considered one of the main problems of quantum topology.

Although it is currently known only for a handful of knots, it can be strengthened in
numerous ways to include a statement about asymptotics to all orders in N , and with
exponentially small terms included. One of these successive refinements of the quantum
modularity conjecture for the Kashaev invariant of a knot leads to the concept of amatrix-
valuedholomorphic quantummodular forms introduced and studied in [12,13]. The latter
are rather intricate objects that involve matrices of

• holomorphic objects, that is, q-series with integer coefficients convergent when |q| �=
1.

• asymptotic/analytic objects, that is, factorially divergent formal power series that are
Borel resummable and whose Stokes phenomenon is explained in terms of the above
q-series.

• arithmetic objects, that is, collections of functions defined near each complex root of
unity that arithmetically determine each other p-adically.

This sounds like a daunting collection of objects (associated, for example, to knots) that
come from different worlds and are somehow stitched together. Despite this, it turns out
that matrix-valued holomorphic quantummodular forms have algebraic aspects that can
be formulated and proved using the algebraic properties of a variant of the Andersen–
Kashaev invariants [1], namely the descendant state integrals.
The three simplest hyperbolic knots are the 41 knot, the 52 knot and the (−2, 3, 7) pretzel

knot [3,18] shown in Fig. 1.
The corresponding matrices of the 41 and the 52 knot are 2 × 2 and 3 × 3 due to the

fact that all boundary parabolic SL2(C)-representations are conjugates of the geometric
representation which is defined over Q(

√−3) and over the cubic field of discriminant

Fig. 1 The three simplest hyperbolic knots from left to right: 41, 52 and the (−2, 3, 7)-pretzel knot
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−23. The holomorphic quantum modular forms of the first two were studied in detail in
[12,13] as well as in [5–7].
On the other hand, it was pointed out in [13, Sect. 2.1] that the corresponding matrices

associated to the (−2, 3, 7) pretzel knot are 6× 6 due to the fact that the geometric repre-
sentation is defined over the same number field as for 52, but in addition to that there are
three additional boundary parabolic SL2(C)-representations defined overQ(2 cos(2π/7)).
In this paper, we will study the algebraic aspects of the holomorphic quantum modular
forms associated to the (−2, 3, 7)-pretzel knot completing the partial work of [12,13].
Explicitly, we will show that

(a) The factorization of the descendant state integral defines a 6×6matrix of (deformed)
q-hypergeometric series; see Theorem 1.

(b) The matrix is a fundamental solution of a self-dual linear q-difference equation; see
Theorem 2.

(c) The corresponding cocycle is a holomorphic function that extends from τ ∈ C \ R
to the cut-planeC′ = C \ (−∞, 0]; see Theorem 4.

(d) The stationary phase of the descendant state integral determines a 6 × 6 matrix of
asymptotic series; see Theorem 5.

Along with the detailed definitions and proofs, we will give an explanation of why the
proofs work from first principles.

2 The descendant state integral
2.1 The state integral

A key role in our paper is the state integral invariant of three-dimensional manifolds with
torus boundary (in particular knot complements) introduced by Andersen–Kashaev [1].
This is amulti-dimensional integral whose integrand is a product of the Faddeev quantum
dilogarithm�b(x) [4] times an exponential of a quadratic form, assembled out of a suitable
triangulation of the manifold.
In the case of the (−2, 3, 7)-pretzel knot, the Andersen–Kashaev state integral is a four-

dimensional state integral that can be reduced to the following one-dimensional state
integral as shown in [9, Eq. (58)]:

Z(−2,3,7)(τ ) =
∫
R+i cb2 +iε

�√
τ (x)2�√

τ (2x − cb)e−π i(2x−cb)2 dx (2)

where τ = b2 and cb = i(b + b−1)/2. Two key properties of this absolutely convergent
state integral are that

(a) it defines a holomorphic function on the cut-planeC′ = C \ (−∞, 0], and
(b) when τ ∈ C \ R, it can be factorized as a sum of products of q-series and q̃-series

where q = e2π iτ and q̃ = e−2π i/τ .

This factorization property is expected to hold for all state integrals that appear naturally
in complex Chern–Simons theory of knots and 3-manifolds as explained in [2,10], and in
the case of the above state integral, it was given in [12, Prop.12].
The main reason behind this factorization is algebraic and follows from the quasi-

periodicity of the Faddeev quantum dilogarithm which implies that it is a meromorphic
functionwithpoles in the lattice points of a two-dimensional cone andprescribed residues.
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Upon applying the residue theorem, the sum over the cone (which is coupled by the
exponential of a quadratic form with integer coefficients) decouples due to the fact that
e2π ik = 1 for all integers k .

2.2 The descendant state integral and its q-series

A descendant version of the state integral (2) was obtained by inserting in the integrand
of (2) the exponential of a linear form in two integer variables λ, λ′ ∈ Z, in an analogous
way as was done for the 41 and 52 knots in [5, Sect. 4.3]. The descendant state integral of
(−2, 3, 7) pretzel knot is

Z(λ,λ′)
(−2,3,7)(τ ) =

∫
R+i cb2 +iε

�√
τ (x)2�√

τ (2x − cb)e−π i(2x−cb)2+2π (λb−λ′b−1)x dx. (3)

This integral can be factorized as a finite sum of products of q-series and q̃-series for
the same reason that the integral (2) does. Deforming the contour of integration upwards,
applying the residue theorem, collecting the residues and observing the same decoupling
as was done in [9,10], we obtain the factorization into q-series.

Theorem 1 For all τ ∈ C \ R, we have

2e
π i
4 q− λ

2 q̃− λ′
2 Z(λ,λ′)

(−2,3,7)(τ )

= − 1
2τ

hλ,0(τ )hλ′ ,2(τ−1) + hλ,1(τ )hλ′ ,1(τ−1) − τ

2
hλ,2(τ )hλ′ ,0(τ−1)

− i
(1
2
hλ,3(τ )hλ′ ,4(τ−1) − 1

2
hλ,4(τ )hλ′ ,3(τ−1) + hλ,5(τ )hλ′ ,5(τ−1)

)
.

(4)

In the above theorem,

hλ,j(τ ):=Hλ,j(e2π iτ ), Hλ,j(q) =
⎧⎨
⎩
H+

λ,j(q) if |q| < 1

(−1)δjH−
−λ,j(q

−1) if |q| > 1
(5)

whereHλ,j(q) are q-series defined in Sect. 3.2 for |q| �= 1 and δ = (0, 1, 2, 0, 0, 0) is a weight
vector. H±

λ,j(q) are power series of q
1/8 whose first few terms are given by

H+
0,0(q) = 1 + q3 + 3q4 + 7q5 + 13q6 + · · ·

H−
0,0(q) = 1 + q2 + 3q3 + 7q4 + 13q5 + · · ·

H+
0,1(q) = 1 − 4q − 8q2 − 3q3 + 3q4 + · · ·

H−
0,1(q) = 1 − 4q − 5q2 + q3 + 7q4 + · · ·

H+
0,2(q) = 2

3
− 6q + 6q2 + 242

3
q3 + 200q4 + · · ·

H−
0,2(q) = 5

6
− 10q + 17

6
q2 + 141

2
q3 + 971

6
q4 + · · ·

H+
0,3(q) = q1/8(q + 2q3/2 + 4q2 + 6q5/2 + · · ·)

H−
0,3(q) = q−1/8(q + 2q3/2 + 4q2 + 6q5/2 + · · ·)

H+
0,4(q) = 1 + q3 − q4 + 3q5 − 3q6 + · · ·

H−
0,4(q) = 1 + q2 − q3 + 3q4 − 3q5 + · · ·

H+
0,5(q) = q1/8(q − 2q3/2 + 4q2 − 6q5/2 + · · ·)

H−
0,5(q) = q−1/8(q − 2q3/2 + 4q2 − 6q5/2 + · · ·)

(6)
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2.3 A self-dual linear q-difference equation

As we saw in the previous section, the factorization of the state integral (3) produced
six sequences Hλ,j(q) of q-hypergeometric series for j = 0, . . . , 5 indexed by λ ∈ Z and
defined for |q| �= 1. We now show that these six sequences are solutions of a common
sixth order linear q-difference equation. The algebraic reason for this is that the integrand
of the descendant state integral is a q-holonomic function of three variables x, λ and λ′,
as follows from the quasi-periodicity of the Faddeev quantum dilogarithm (see Eq. (17)).
Zeilberger theory implies that the integral is a q-holonomic function of λ and λ′ [20]. Due
to the factorization of the integral, it follows that its λ-dependent part is a q-holonomic
function. An alternative explanation for the linear q-difference equation would be to use
the explicit q-hypergeometric formulas for the six q-series. In fact, in this case we can do
the corresponding algebraic calculation by elementary telescoping methods and obtain
the following.

Theorem 2 For each j = 0, . . . , 5, the sequence Hλ,j(q) for |q| �= 1 and λ ∈ Z satisfies the
linear q-difference equation

yλ+6(q) + 2 yλ+5(q) − (q + qλ+4) yλ+4(q) − 2(q + 1) yλ+3(q)

− yλ+2(q) + 2q yλ+1(q) + q yλ(q) = 0.
(7)

Consider the truncated Wronskian

Wλ(q) = (
Hλ+i,j(q)

)
0≤i,j≤5 |q| �= 1 (8)

of the six solutions to the q-difference equation (7). Technically, the Wronskian is a
Z × 6 matrix whose block indexed by the raws corresponding to i = 0, . . . , 5 is the above
matrix Wλ. We next give an orthogonality property of the truncated Wronskian, which
implies that the six sequences of q-series form a fundamental solution set of (7) and satisfy
quadratic relations.

Theorem 3 The determinant of the truncated Wronskian is given by

det(Wλ(q)) = 32qλ+ 11
4 . (9)

The truncated Wronskian satisfies the orthogonality property

Wλ(q)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1
2 0 0 0

0 1 0 0 0 0
1
2 0 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 1

4 0
0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
W−λ−5(q−1)T

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−12 8 −4 2 0 0
8 −4 2 0 0 0

−4 2 0 0 0 2
2 0 0 0 2 −4
0 0 0 2 −4 8 + 2qλ+2

0 0 2 −4 8 + 2qλ+3 −12 − 4qλ+2 − 4qλ+3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (10)

Equations (9) and (10) were first guessed by explicit computations of the q-series. But
once they were guessed, they were proved algebraically, i.e., by reducing them to identities
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among rational functions inQ(q, qλ). This concludes our last algebraic aspect of matrix-
valued holomorphic quantum modular forms, discussed in detail in Sect. 3.4.
A consequence of Eq. (10) (in fact, of its (1, 6)-entry) is that the collection of q-series

H±
λ,j(q) satisfies the quadratic relation

1
2
H+

λ,0(q)H
−
λ,2(q) − H+

λ,1(q)H
−
λ,1(q) + 1

2
H+

λ,2(q)H
−
λ,0(q)

− H+
λ,3(q)H

−
λ,3(q) + 1

4
H+

λ,4(q)H
−
λ,4(q) − H+

λ,5(q)H
−
λ,5(q) = 0.

(11)

A second consequence of Eq. (10) (and in fact, an equivalent statement to it) is that
the q-holonomic module associated with the linear q-difference Eq. (7) is self-dual. For a
detailed definition of self-dual q-holonomicmodules, we refer the reader to [11, Sect. 2.5].

2.4 A cocyle

The last topic of our paper concerns the analytic continuation of a cocycle, defined in two
forms (Eqs. (12) and (13)), from a holomorphic function on C \ R to one on C′ = C \
(−∞, 0]. This remarkable statement, which concerns the holomorphic aspects of matrix-
valued holomorphic quantummodular forms, follows immediately from the factorization
of the descendant state integrals (Theorem 1), the self-duality property (Theorem 3) and
the fact that state integrals are holomorphic functions in the cut-planeC′.

Theorem 4 (a) The matrix-valued function

Fλ,λ′ (τ ):=W−λ′−5(q̃−1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 − τ
2 0 0 0

0 −1 0 0 0 0
− 1

2τ 0 0 0 0 0
0 0 0 0 i

2 0
0 0 0 − i

2 0 0
0 0 0 0 0 −i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
Wλ(q)T (12)

defined for τ = b2 ∈ C\R has entries given by the descendant state integrals up to
a prefactor given by (4), and therefore extends to a holomorphic function on the cut
planeC′.

(b) The matrix-valued function

Wλ,λ′ (τ ):=
(
Wλ′ (q̃)T

)−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
τ

0 0 0 0 0
0 −1 0 0 0 0
0 0 −τ 0 0 0
0 0 0 0 − i

2 0
0 0 0 −2i 0 0
0 0 0 0 0 i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
Wλ(q)T (13)

extends to a holomorphic function of τ ∈ C
′.

Note that Eq. (13) follows from (12) and (10).
To make contact with the results of the paper [11], Eq. (13) becomes the cocycle

U (−1/τ )−1D(τ )U (τ ) where Uλ(τ ) = (Wλ(e2π iτ )T )−1 and D(τ ) is the automorphy fac-
tor in the middle matrix of the right-hand side of (13).
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3 The q-series
3.1 Algebraic properties of the Faddeev quantum dilogarithm

As stated in Introduction, all of our theorems follow from algebraic properties of state
integrals, which in turn follow from some well-known properties of the Faddeev quan-
tum dilogarithm function; see [4] as well as [1, App.A]. In this section, we review these
properties briefly and highlight their algebraic aspects.
To begin with, the Faddeev quantum dilogarithm function is defined by

�b(x) = exp
(1
4

∫
R+iε

e−2ixw

sinh(bw) sinh(b−1w)
dw
w

)
(14)

When Im(b2) > 0, the Faddeev quantum dilogarithm is given by a ratio of two infinite
Pochhammer symbols as follows

�b(x) = (e2πb(x+cb); q)∞
(e2πb−1(x−cb); q̃)∞

, (15)

where

q = e2π ib
2
, q̃ = e−2π ib−2

, cb = i
2
(b + b−1), Im(b2) > 0. (16)

Remarkably, the ratio (15) admits an extension to all values of b with b2 ∈ C \ (−∞, 0].
�b(x) is a meromorphic function of x with poles in the set cb + iNb + iNb−1. In other
words, the poles are given by xm,n = i

(
m + 1

2 )b + i
(
n + 1

2 )b
−1 withm and n nonnegative

integers.
The Faddeev quantum dilogarithm satisfies the quasi-periodicity

�b(x + cb + ib)
�b(x + cb)

= 1
1 − qe2πbx

,
�b(x + cb + ib−1)

�b(x + cb)
= 1

1 − q̃−1e2πb−1x
. (17)

Quasi-periodicity among other things explains the structure of the set of poles, and that
the residue of �b(x) at the pole xm,n is given by [10, Lem.2.1]

Resx=xm,n�b(x) = − b
2π

(q; q)∞
(q̃; q̃)∞

1
(q; q)m

1
(q̃−1; q̃−1)n

. (18)

Notice that the poles are parametrized by a pair (m, n) of natural numbers and the residue
decouples, i.e., it is the product of a function ofm times a function of n.
Although itwill not play inourpaper,wemention that theFaddeevquantumdilogarithm

satisfies the functional equation

�b(x)�b(−x) = eπ ix
2
�b(0)2, �b(0)2 = q

1
24 q̃− 1

24 (19)

which implies that its set of zeros is the negative of its set of poles, and also allows us to
move �b(x) from the denominator to the numerator of the integrand of a state integral.

3.2 Factorization

To prove Theorem 1, we observe that the integrand is a meromorphic function of x. We
then deform the contour of integration upwards, apply the residue theorem and collect
residues. The poles of the Faddeev quantum dilogarithms were discussed in the previ-
ous section, and they are parametrized by the lattice points xm,n in a two-dimensional
cone, and the residues are decoupled functions of m (involving q) and n (involving
q̃), see Eq. (18). This decoupling persists when we evaluate the exponential function
e−π i(2x−cb)2+2π (λb−λ′b−1)x at xm,n. Thus, the sum over the lattice points (m, n) of a two-
dimensional lattice becomes a product over the lattice pointsm of one-dimensional lattice
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times a product over the lattice points n of the other one-dimensional lattice. Taking into
account that the integrand of (3) is the product of three Faddeev quantum dilogarithms,
this gives the proof of Theorem 1.
The details of the factorization of the original state integral (2) were given in [12,

Sect. A.6]. Following the same proof mutatis mutandis and inserting the integers λ and λ′

produce the definition of the q-series given in Eqs. (20) and (23) and conclude the proof
of Theorem 1 	

Thecorresponding series are given as follows.WedefineH±

λ,j(q) for |q| < 1 and j = 0, 1, 2
by:

H+
λ,j(q) = (−1)λ

∞∑
m=0

tλ,m(q)pλ,j,m(q), H−
λ′ ,j(q) = (−1)λ

′
∞∑
n=0

Tλ′ ,nPλ′ ,j,n(q), (20)

with

tλ,m(q) = qm(2m+1)+λm

(q; q)2m(q; q)2m
, Tλ′ ,n(q) = qn(n+1)+λ′n

(q; q)2n(q; q)2n
, (21)

and
pλ,0,m(q) = 1, pλ,1,m(q) = 4m + λ + 1 − 2E(m)

1 (q) − 2E(2m)
1 (q),

pλ,2,m(q) = pλ,1,m(q)2 − 2E(m)
2 (q) − 4E(2m)

2 (q) − 1
3
E2(q),

Pλ′ ,0,n(q) = 1, Pλ′ ,1,n(q) = 2n + λ′ + 1 − 2E(n)
1 (q) − 2E(2n)

1 (q),

Pλ′ ,2,n(q) = Pλ′ ,1,n(q)2 + 12E(0)
2 (q) − 1

2
− 2E(n)

2 (q) − 4E(2n)
2 (q) + 1

3
E2(q),

(22)

and for j = 3, 4, 5 by:

H+
λ,3(q) = (−1)λq1/8

(1 − q1/2)2
∞∑

m=0

q(2m+1)(m+1)+λ(m+1/2)

(q3/2; q)2m(q; q)2m+1

H−
λ′ ,4(q) =

∞∑
n=0

qn(n+1)+λ′n

(−q; q)2n(q; q)2n

H+
λ,4(q) =

∞∑
m=0

q(2m+1)m+λm

(−q; q)2m(q; q)2m

H−
λ′ ,3(q) = (−1)λ′q−1/8

(1 − q−1/2)2
∞∑
n=0

qn(n+2)+λ′(n+1/2)

(q3/2; q)2n(q; q)2n+1

H+
λ,5(q) = q1/8

(1 + q1/2)2
∞∑

m=0

q(2m+1)(m+1)+λ(m+1/2)

(−q3/2; q)2m(q; q)2m+1

H−
λ′ ,5(q) = q−1/8

(1 + q−1/2)2
∞∑
n=0

qn(n+2)+λ′(n+1/2)

(−q3/2; q)2n(q; q)2n+1
.

(23)

Here, E1(q) and E2(q) denote the Eisenstein series of weights 1 and 2

E1(q) = 1 − 4
∞∑
n=1

qn

(1 − qn)
, E2(q) = 1 − 24

∞∑
n=1

qn

(1 − qn)2
(24)

and

E(m)
l (q) =

∞∑
s=1

sl−1qs(m+1)

1 − qs
(25)

are some series that appear in the factorization of one-dimensional state integrals [10].
When (λ, λ′) = (0, 0), this factorization can be connected to that in [9, Eq. (52)] (see

Appendix A).
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3.3 The linear q-difference equation

In this section, we prove Theorem 2.We will use elementary telescoping summation than
the more elaborate methods of [20].
We begin with the case j = 0 and |q| < 1; hence,

Hλ,0(q) = H+
λ,0(q) = (−1)λ

∞∑
m=0

qm(2m+1)+λm

(q; q)2m(q; q)2m
.

Since (q; q)m = ∏m
i=1(1 − qi), we have

qλ
∞∑

m=0

qm(2m+1)+λm

(q; q)2m(q; q)2m
=

∞∑
m=0

qm(2m+1)+λ(m+1)

(q; q)2m(q; q)2m
=

∞∑
m=1

q(m−1)(2m−1)+λm

(q; q)2m−1(q; q)2m−2

=
∞∑

m=1

qm(2m+1)+λm

(q; q)2m(q; q)2m
(1 − qm)2(1 − q2m−1)(1 − q2m)

q4m−1 .

Since 1− qm = 0 whenm = 0, we can replace the summation in the above equation from
m = 0 tom = ∞. Since

(1 − qm)2(1 − q2m−1)(1 − q2m)
q4m−1 = q1−4m − 2q1−3m − q−2m + 2q1−m

+2q−m − q − 2qm + q2m, (26)

we obtain

qλH+
λ,0(q) = (−1)λ

∞∑
m=0

qm(2m+1)+λm

(q; q)2m(q; q)2m
(q1−4m − 2q1−3m − q−2m

+ 2q1−m + 2q−m − q − 2qm + q2m)

= qH+
λ−4,0(q) + 2qH+

λ−3,0(q) − H+
λ−2,0(q) − (2 + 2q)H+

λ−1,0(q) − qH+
λ,0(q)

+ 2H+
λ+1,0(q) + H+

λ+2,0(q).

This gives the q-difference equation for Hλ,j(q) when j = 0 and |q| < 1. Similarly one
proves the q-difference equation for the cases j = 0, 3, 4, 5 and whenever |q| �= 1.
For j = 1 and |q| < 1, we have

Hλ,1(q) = H+
λ,1(q) = (−1)λ

∞∑
m=0

qm(2m+1)+λm

(q; q)2m(q; q)2m
p(1)λ,m(q) ,

where

pλ,1,m(q) = 4m + λ + 1 − 2E(m)
1 (q) − 2E(2m)

1 (q).

Hence,

qH+
λ−4,1(q) + 2qH+

λ−3,1(q) − H+
λ−2,1(q) − (2 + 2q)H+

λ−1,1(q)

− qH+
λ,1(q) + 2H+

λ+1,1(q) + H+
λ+2,1(q) = (−1)λ

∞∑
m=0

qm(2m+1)+λm

(q; q)2m(q; q)2m
gλ,m(q),

where

gλ,m(q) = q1−4mpλ−4,1,m(q) − 2q1−3mpλ−3,1,m(q) − q−2mpλ−2,1,m(q)

+ (2 + 2q)q−mpλ−1,1,m(q) − qpλ,1,m(q)

− 2qmpλ+1,1,m(q) + q2mpλ+2,1,m(q).

(27)
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We are going to show that (−1)λ
∑∞

m=0
qm(2m+1)+λm

(q;q)2m(q;q)2m
gλ,m(q) = qλH+

λ,1(q). Noticing the
recursive relation that

E(m)
1 (q) − E(m−1)

1 (q) =
∞∑
s=1

(
qs(m+1)

1 − qs
− qsm

1 − qs

)
=

∞∑
s=1

−qsm = − qm

1 − qm
, (28)

we convert pλ,1,m(q) into the following form

pλ,1,m(q) = 4m + λ + 1 − 2E(m−1)
1 (q) − 2E(2m−2)

1 (q)

+ 2qm

1 − qm
+ 2q2m−1

1 − q2m−1 + 2q2m

1 − q2m

= 4(m − 1) + λ + 1 − 2E(m−1)
1 (q) − 2E(2m−2)

1 (q) + f1,m(q) + 4

= pλ,1,m−1(q) + f1,m(q) + 4,

(29)

where

f1,m(q) := 2qm

1 − qm
+ 2q2m−1

1 − q2m−1 + 2q2m

1 − q2m
. (30)

Substituting the (29) into (27), combining the common factors pλ,1,m−1(q) + f1,m(q) and
applying the identity (26), we see that

gλ,m(q) = (1 − qm)2(1 − q2m−1)(1 − q2m)
q4m−1 (pλ,1,m−1(q) + f1,m(q))

− (
2q1−3m + 2q−2m − 6(q + 1)q−m + 4q + 10qm − 6q2m

)
.

Since
(1 − qm)2(1 − q2m−1)(1 − q2m)

q4m−1 f1,m(q) = 2q1−3m + 2q−2m − 6(q + 1)q−m

+4q + 10qm − 6q2m,

we conclude that

gλ,m(q) = (1 − qm)2(1 − q2m−1)(1 − q2m)
q4m−1 pλ,1,m−1(q).

Therefore,

(−1)λ
∞∑

m=0

qm(2m+1)+λm

(q; q)2m(q; q)2m
gλ,m(q) = (−1)λ

∞∑
m=1

q(m−1)(2m−1)+λm

(q; q)2m−1(q; q)2m−2
pλ,1,m−1(q)

= (−1)λqλ
∞∑

m=0

qm(2m+1)+λm

(q; q)2m(q; q)2m
pλ,1,m(q) = qλH+

λ,1(q),

as desired. Similarly one proves the q-difference equation for j = 1, 2 and |q| �= 1, using
the recursive relation (28) and

E(m)
2 (q) − E(m−1)

2 (q) =
∞∑
s=1

(
sqs(m+1)

1 − qs
− sqsm

1 − qs

)
=

∞∑
s=1

−sqsm = − qm

(1 − qm)2
. (31)

This completes the proof of Theorem 2. 	


3.4 Self-duality

In this section, we prove Theorem 3. Throughout this section, we assume |q| < 1 and give
the proof for this case only; the proof for |q| > 1 is similar and is omitted. Our method
can be used to give a systematic proof of the self-duality properties of the q-holonomic
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modules that appear in the refined quantummodularity conjecture of knot complements
or of closed 3-manifolds.
We first compute the determinant of the truncated WronskianWλ(q). It is well known

(see eg [8, Lemma 4.7]) that it satisfies the first order linear q-difference equation

det(Wλ+1(q)) − q det(Wλ(q)) = 0.

It follows that det(Wλ(q)) = qλc(q) for some q-series c(q) independent of λ. We claim
that

det(Wλ(q)) = 32qλ+11/4 + O(q3λ/2), (32)

for all sufficiently large natural numbers λ, which implies that c(q) = 32q11/4. To
show (32), recall that Wλ(q) =

(
H+

λ+i,j(q)
)
0≤i,j≤5

when |q| < 1. The definition of H+
λ,j(q)

implies that

H±
λ,j(q) = R±

λ,j(q) + O(q3λ/2), (33)

where R+
λ,j(q) and R−

λ,j(q) are given by

R+
λ,j(q) = (−1)λ

(
pλ,j,0(q) + pλ,j,1

qλ+3

(1 − q)4(1 + q)

)
, j = 0, 1, 2,

R+
λ,3(q) = (−1)λ

q1/8

(1 − q1/2)2
q1+λ/2

1 − q
,

R+
λ,4(q) = 1 + qλ+3

(1 + q)3(1 − q)2
,

R+
λ,5(q) = q1/8

(1 + q1/2)2
q1+λ/2

1 − q
,

(34)

and

R−
λ,j(q) = (−1)λ

(
Pλ,j,0(q) + Pλ,j,1(q)

qλ+2

(1 − q)4(1 + q)

)
, j = 0, 1, 2,

R−
λ,3(q) = (−1)λ

q−1/8

(1 − q−1/2)2
qλ/2

1 − q
,

R−
λ,4(q) = 1 + qλ+2

(1 + q)3(1 − q)2
,

R−
λ,5(q) = q−1/8

(1 + q−1/2)2
qλ/2

1 − q
.

(35)

Thus,

Wλ(q) = Rλ(q) + O(q3λ/2), (36)

where Rλ(q) = (Rλ+i,j(q))0≤i,j≤5. Thus,

det(Wλ(q)) + O(q3λ/2) = det(Rλ(q)) + O(q3λ/2) = 32qλ+11/4 + O(q3λ/2) (37)

Equation (32) follows. It is noteworthy that the Eisenstein series E2(q) which appear in
the entries of Rλ(q) cancel upon taking the determinant. The same happens in the entries
of the matrix (45).
This concludes the proof of (9).Wenext prove the orthogonality property (10) following

the method of [11, Sect. 2.5]. By the q-difference Eq. (11), we have

Wλ+1(q) = A(λ, q)Wλ(q), W−λ−1(q−1) = Ã(λ, q)W−λ(q−1), (38)
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where

A(λ, q) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−q −2q 1 2(1 + q) q + qλ+4 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(39)

and

Ã(λ, q) = A(−λ − 1, q−1)−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 q 2(1 + q) 1 + qλ−2 −2q −q
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Consider

Q(λ, q):=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−12 8 −4 2 0 0
8 −4 2 0 0 0

−4 2 0 0 0 2
2 0 0 0 2 −4
0 0 0 2 −4 8 + 2qλ+2

0 0 2 −4 8 + 2qλ+3 −12 − 4qλ+2 − 4qλ+3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It is easy to see that the matrices A, Q and Ã (all with entries in the polynomial ring
Q[q±1, q±λ]) satisfy

A(λ, q)Q(λ, q)Ã(λ + 5, q) = Q(λ + 1, q). (40)

Note that all the above matrices are invertible, with determinants

det(A(λ, q) = q, det(Ã(λ, q) = q, det(Q(λ, q) = −64q5+2λ. (41)

Using (38) and (40), we see that

Wλ+1(q)−1Q(λ + 1, q)
(
W−λ−6(q−1)−1)T = Wλ(q)−1Q(λ, q)

(
W−λ−5(q−1)−1)T ;

hence,Wλ(q)−1Q(λ, q)
(
W−λ−5(q−1)−1)T is independent of λ. The claim is that we have

Wλ(q)−1Q(λ, q)
(
W−λ−5(q−1)−1)T = D:=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1
2 0 0 0

0 1 0 0 0 0
1
2 0 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 1

4 0
0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (42)

Since we have seen that the left-hand side of (42) is independent of λ, it suffices to show
that

Wλ(q)−1Q(λ, q)
(
W−λ−5(q−1)−1)T = D + O(qλ/2), (43)

for any sufficiently large λ ∈ N. Equation (36) together with (9) gives that
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Wλ(q)−1Q(λ, q)
(
W−λ−5(q−1)−1)T + O(qλ/2) = Rλ(q)−1Q(λ, q)

(
R−λ−5(q−1)−1)T

+O(qλ/2) (44)

and an explicit calculation shows that

Rλ(q)−1Q(λ, q)
(
R−λ−5(q−1)−1)T + O(qλ/2) = D + O(qλ/2) (45)

where R−λ−5(q−1)−1 + O(qλ/2) can be computed by multiplying the adjugate of
R−λ−5(q−1) + O(qλ/2) with the inverse of its determinant (36). Equation (43) follows.
This concludes the proof of Theorem 3. 	


4 Stationary phase of the descendant state integral
4.1 Stationary phase

In this section, we compute the stationary phase of the state integral around its critical
points. This is awell-knownmethod of asymptotic analysis that can be found inmany clas-
sic books (eg., [16]). For convenience, we define a renormalized version of the descendant
state integral (3) given by

Ẑ(λ,λ′)
(−2,3,7)(τ ) = (q̃/q)

1
24Z(λ,λ′)

(−2,3,7)(τ ). (46)

Throughout this section, we will use the notation

h̄:=2π iτ , τ = b2, (47)

and determine the asymptotic expansion of Ẑ(λ,λ′)
(−2,3,7)(τ ) as h̄ → 0.

It turns out that there are 6 critical points α

(α3 − α − 1)(α3 + 2α2 − α − 1) = 0 (48)

in twoGalois orbits of the cubic number fieldswith discriminants−23 and49, respectively.
After a change of parametrization of these number fields (to match with the conventions
of [13], these critical points are given by

α = −ξ + ξ2, ξ3 − ξ2 + 1 = 0 (49a)

α = −1 − η, η3 + η2 − 2η − 1 = 0 . (49b)

Thenext theoremcomputes the stationary phase expansion of Ẑ(λ,λ′)
(−2,3,7)(τ ) at each critical

point.

Theorem 5 The stationary phase of Ẑ(λ,λ′)
(−2,3,7)(τ ) is given by e

2π iλ′ log α

h̄ �̂(α)(λ,h̄), where

�̂(α)(λ,h̄) = e
V0,0(α)

h̄ �(α)(λ,h̄), �(α)(λ,h̄) = αλ√
i�(α)

∞∑
k=0

ck (α, λ)h̄k (50)

and

V0,0(α) = 2Li2(−α) − Li2(α−2),

�(α) = −2α5 + 12α3 − 2α2 − 16α − 10,
(51)

and ck (α, λ) ∈ Q(α)[λ] are polynomials in λ of degree 2k with coefficients in Q(α) with
c0(α, λ) = 1 given explicitly by a formal Gaussian integration.
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We have computed 400 coefficients of the above series for λ = 0 and 40 coefficients for
general λ. Since there are two number fields involved, we present the asymptotic series
�̂(σ )(λ,h̄) separately for each field. For α as in (49a), we have

�̂(σ )(λ,h̄) = αλe
V0,0
h̄√

i(−6ξ2 + 10ξ − 4)

(
1 +

( (
− 1
46

ξ2 − 7
92

ξ + 3
92

)
λ2

+
(

3
46

ξ2 − 11
92

ξ + 17
46

)
λ + 293

8464
ξ2 + 127

2116
ξ − 681

8464

)
h̄ + O(h̄2)

)
,

(52)

and for α as in (49b), we have

�̂(σ )(λ,h̄) = αλe
V0,0
h̄√

i(−4η2 + 2η − 2)

(
1 +

( (
1
28

η2 + 1
14

η − 1
28

)
λ2

+
(

1
28

η2 − 1
14

η + 3
14

)
λ + 1

16
η2 + 1

16
η − 17

168

)
h̄ + O(h̄2)

)
.

(53)

We can give more terms when λ = 0. For α as in (49a), we have

�̂(σ )(0,h̄) = e
V0,0
h̄√

i(−6ξ2 + 10ξ − 4)

(
1 +

(
293
8464

ξ2 + 127
2116

ξ − 681
8464

)
h̄

+
(

65537
6229504

ξ2 − 50607
6229504

ξ + 2535
778688

)
h̄2 + O(h̄3)

)
,

(54)

and for α as in (49b), we have

�̂(σ )(0,h̄) = e
V0,0
h̄√

i(−4η2 + 2η − 2)

(
1 +

(
293
8464

ξ2 + 127
2116

ξ − 681
8464

)
h̄

+
(

65537
6229504

ξ2 − 50607
6229504

ξ + 2535
778688

)
h̄2 + O(h̄3)

)
.

(55)

4.2 Formal Gaussian integration

Using the identity (19), we convert the descendant state integral into the following form,

Z(λ,λ′)
(−2,3,7)(h̄) =

(
q
q̃

)− 1
24

∫
R+i cb2 +iε

�b(x)2�b(2x − cb)e−π i(2x−cb)2+2π (λb−λ′b−1)x dx

(56)

=
∫
R+i cb2 +iε

�b(x)2

�b(−2x + cb)
e2π (λb−λ′b−1)x dx, (57)

and then apply the approximation [1, Eq. (65)]

�b
( z
2πb

)
= exp

( ∞∑
n=0

h̄2n−1B2n(1/2)
(2n)!

Li2−2n(−ez)
)
.

We begin with a change of variables x �→ z
2πb , so that

�b(x)2 = �b
( z
2πb

)2 ∼ exp
( ∞∑
n=0

h̄2n−1B2n(1/2)
(2n)!

2Li2−2n(−ez)
)
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and

�b(−2x+cb)=�b

(−2z + 2πbcb
2πb

)
∼ exp

( ∞∑
n=0

h̄2n−1B2n(1/2)
(2n)!

Li2−2n(−e−2z+2πbcb )
)

= exp
( ∞∑
n=0

h̄2n−1B2n(1/2)
(2n)!

Li2−2n(e−2z+ h̄
2 )

)
.

Using the identity

Li2−2n(e−2z+s) =
∞∑
k=0

Li2−2n−k (e−2z)
k !

sk ,

we have

Li2−2n(−e−2z+ h̄
2 ) =

∞∑
k=0

Li2−2n−k (e−2z)
k !

(
h̄
2

)k
.

Collecting the above equalities up, we obtain

Z(λ,λ′)
(−2,3,7)(h̄) ∼ i√

2π ih̄

∫
exp

(
λz + 2π iλ′

h̄
z + V (z,h̄)

)
dz,

where

V (z,h̄) =
∞∑
n=0

h̄2n−1 B2n(1/2)
(2n)!

2Li2−2n(−ez) −
∑
n,k≥0

h̄2n+k−1 B2n(1/2)
(2n)!

Li2−2n−k (e−2z)
k !

1
2k

=
∞∑
n=0

h̄2n−1 B2n(1/2)
(2n)!

2Li2−2n(−ez) −
⎛
⎝ ∑

n,k≥0
h̄2n+2k−1 B2n(1/2)

(2n)!
Li2−2n−2k (e−2z)

(2k)!
1
22k

+
∑
n,k≥0

h̄2n+2k B2n(1/2)
(2n)!

Li1−2n−2k (e−2z)
(2k + 1)!

1
22k+1

⎞
⎠

=
∞∑
n=0

h̄2n−1
(
B2n(1/2)
(2n)!

2Li2−2n(−ez) −
n∑

k=0

B2n−2k (1/2)
(2n − 2k)!(2k)!

Li2−2n(e−2z)
22k

)

+
∞∑
n=0

h̄2n
(

−
n∑

k=0

B2n−2k (1/2)
(2n − 2k)!(2k + 1)!

Li1−2n(e−2z)
22k+1

)
.

Therefore, if we define

V2n+1(z) = −
∞∑
k=0

B2n−2k (1/2)
(2n − 2k)!(2k + 1)!

Li1−2n(e−2z)
22k+1 ,

V2n(z) = B2n(1/2)
(2n)!

2Li2−2n(−ez) −
n∑

k=0

B2n−2k (1/2)
(2n − 2k)!(2k)!

Li2−2n(e−2z)
22k

,
(58)

then V (z,h̄) = ∑∞
n=0 h̄

n−1Vn(z); hence,

Ẑ(λ,λ′)
(−2,3,7)(h̄) ∼ i√

2π ih̄

∫
exp

(
λz + 2π iλ′

h̄
z +

∞∑
n=0

h̄n−1Vn(z)
)
dz.

Solving d
dz

(
2π iλ′z + V0(z)

) = 0, we find that the critical point equation is

(α3 − α − 1)(α3 + 2α2 − α − 1) = 0, (α = ez). (59)
The expansion Vn(z) = ∑∞

m=0(z − log α)mVn,m(log α) at a critical point z = log α thus
gives

Ẑ(λ,λ′)
(−2,3,7)(h̄) ∼ iαλe

V0,0+2π iλ′ log α

h̄√
2π i

∫
dyeV0,2y2 exp

⎛
⎝λh̄

1
2 y +

∑
m≥3

h̄
m
2 −1ymV0,m

+
∑

n≥1,m≥0
h̄n−1+m

2 ymVn,m

⎞
⎠=:e

2π iλ′ log α

h̄ �̂(λ,h̄),

(60)
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where the change of variables z �→ log α + h̄
1
2 y is applied, and

V0,0 = 2Li2(−α) − Li2(α−2),
V0,1 = −2π iλ′,

V1,0 = −1
2
Li1(α−2) = 1

2
log(1 − α−2),

V0,2 = Li0(−α) − 2Li0(α−2)

= − α2 − α + 2
(α − 1)(α + 1)

= α5 − α4 − 7α3 + α2 + 4α + 5,

V2n,m = 1
m!

(
B2n(1/2)
(2n)!

2Li2−2n−m(−α) − (−2)mLi2−2n−m(α−2)
n∑

k=0

B2n−2k (1/2)
(2n − 2k)!(2k)!22k

)
,

V2n+1,m = − (−2)m

m!
Li1−2n−m(α−2)

n∑
k=0

B2n−2k (1/2)
(2n − 2k)!(2k + 1)!22k+1 .

(61)

Note that for n = 1 andm = 0, we have h̄n−1+m
2 ymVn,m = V1,0. Expand the exponential

in the integrand, collect h̄’s and use the formal Gaussian integrals, we obtain

�̂(λ,h̄) = αλe
V0,0
h̄ eV1,0√
2iV0,2

(1 + O(h̄)) = αλe
V0,0
h̄√

i�
(1 + O(h̄))

where

�:=2V0,2
e2V1,0

= −2α2(α2 − α + 2)
(α − 1)2(α + 1)2

= −2α5 + 12α3 − 2α2 − 16α − 10.

This concludes the proof of Theorem 5. 	

When α satisfies (49a), we have

V1,0 = 1
2
log(1 − ξ2), V0,2 = −3ξ2 + 2ξ , � = −6ξ2 + 10ξ − 4 (62)

whereas when α satisfies (49b), we have

V1,0 = 1
2
log(η2 + η − 2), V0,2 = −η2 − 3η + 3, � = −4η2 + 2η − 2. (63)

Computing out the formal Gaussian integrals in (60), we obtain (53) and (55).

5 Analytic aspects
In this last section, we discuss analytic aspects of matrix-valued holomorphic quantum
modular forms.We have already introduced the descendant state integrals which are ana-
lytic functions of τ ∈ C′, as well as the collection of q-seriesH±

j (q) which are holomorphic
functions of τ (where q = e2π iτ ) in the upper half plane Im(τ ) > 0. In this section, we
discuss the radial asymptotics of these holomorphic functions as τ tends to zero in a
fixed ray (i.e., arg(τ ) = θ ∈ (−π ,π ) is fixed). Naturally, one expects these asymptotics to
be given in terms of the formal power series �̂(α)(λ,h̄) of Sect. 4, up to some elementary
constants.
All results that we report in this section are numerical, and void of proofs.

5.1 Asymptotic expansion of the q-series

Fixing a ray arg(τ ) = θ , we first computed numerically the values of the series (5) when
τ = eiθ /N forN = 800, . . . , 1000 to high precision in pari using the inductive definition
of p0,0,m(q) and P0,0,n(q) obtained easily from their definition (22).
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We then used Richardson and Zagier’s extrapolation methods which are explained in
[13] and in great detail in [19], to extrapolate numerically from these data the coefficients
of their asymptotic expansion. Properly normalized, these are algebraic numbers in a
known number field (one of the cubic fields of (49a)– (49b)) that are known to high
accuracy, which can then be recognized exactly. Having done so, the coefficients that we
found ought to match one of the �̂(σ )(h̄) series, up to some elementary factors, for some
value of σ , which of course depends on the ray.
For example, when arg(τ ) = π/5, we found numerically the following relation between

the radial asymptotics of the q-series (5) and the asymptotic series �̂, where h̄ = 2π iτ and
q = e2π iτ .

H+
0,0(q) =

(
q
q̃

)1/24
τe

π i
4 �̂(σ1)(h̄), H−

0,0(q) =
(
q
q̃

)−1/24
τe

π i
4 �̂(σ2)(−h̄)

H+
0,1(q) =

(
q
q̃

)1/24
e

π i
4 �̂(σ1)(h̄) H−

0,1(q) =
(
q
q̃

)−1/24
e

π i
4 �̂(σ2)(−h̄)

H+
0,2(q) =

(
q
q̃

)1/24 2
3τ

e
π i
4 �̂(σ1)(h̄) H−

0,2(q) =
(
q
q̃

)−1/24 5
6τ

e
π i
4 �̂(σ2)(−h̄)

H+
0,3(q) =

(
q
q̃

)1/24 1
2
e−

π i
4 �̂(σ1)(h̄) H−

0,3(q) =
(
q
q̃

)−1/24 1
2
e−

π i
4 �̂(σ2)(−h̄)

H+
0,4(q) = q̃− 7

8

(
q
q̃

)1/24
2e−

π i
4 �̂(σ6)(h̄) H−

0,4(q) = q̃
7
8

(
q
q̃

)−1/24
2e−

π i
4 �̂(σ3)(h̄)

H+
0,5(q) = q̃− 7

8

(
q
q̃

)1/24
e−

π i
4 �̂(σ6)(h̄) H−

0,5(q) = q̃
7
8

(
q
q̃

)−1/24
e−

π i
4 �̂(σ3)(h̄).

(64)

Here σj for j = 1, . . . , 6 are the six roots of the polynomial (48) with the numerical values

σ1 = −0.662 − 0.562i, σ2 = −0.662 + 0.562i, σ3 = 1.325 (65)

corresponding to the field (49a) and

σ4 = −2.247, σ5 = −0.555, σ6 = 0.802, (66)

corresponding to the field (49b), respectively.
Note that inserting the asymptotics (64) to thequadratic relation (11), one simply obtains

that 0 = 0.

5.2 Further aspects

As we explained briefly in Introduction, matrix-valued holomorphic quantum modular
forms are complicated objects with conjectural analytic and arithmetic properties. In
the present paper, we focused on the algebraic aspects of these objects. Our paper does
not include the following analytic aspects of the matrix-valued holomorphic quantum
modular form of the (−2, 3, 7)-pretzel knot:

• Asymptotics of the state integral as τ tends to zero in a fixed ray. A detailed analysis
of the corresponding thimbles will surely identify those asymptotics with Z-linear
combinations of the series q̃λ′

�̂(λ,h̄).
• Borel resummation of the factorially divergent series �̂(λ,h̄), and identification of

their Stokes phenomenon in terms of the series Hλ,j(q). Without doubt, the Borel
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resummation coincides, up to elementary factors, with the descendant state integral
itself.

• Asymptotics of the q-series Hλ,j(q) when τ tends to zero in a fixed ray. This can be
deduced combiningTheorem4with the asymptotics of the state integrals themselves.

The paper also not include the arithmetic aspects related to the matrix of Habiro-like
elements. Those can be obtained by the factorization of the descendant state integral (3)
at rational points, following [9].
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Appendix A : Comparison of the q-series with [12]
Recall the q-series H+

k (q) and H−
k (q) for |q| < 1 from Eqs. (142) and (143) of [12]. When

k = 0, 1, 2, the series H±
k (q) coincide with H±

0,k (q), whereas when k = 3, 4, 5, they are
given by

H+
3 (q) = (q3/2; q)2∞

(q; q)2∞

∞∑
m=0

q(2m+1)(m+1)

(q3/2; q)2m(q; q)2m+1

H−
4 (q) = (q; q)2∞

(−1; q)2∞

∞∑
n=0

qn(n+1)

(−q; q)2n(q; q)2n

H+
4 (q) = (−q; q)2∞

(q; q)2∞

∞∑
m=0

q(2m+1)m

(−q; q)2m(q; q)2m

H−
3 (q) = (q; q)2∞

(q−1/2; q)2∞

∞∑
n=0

qn(n+2)

(q3/2; q)2n(q; q)2n+1

H+
5 (q) = (−q3/2; q)2∞

(q; q)2∞

∞∑
m=0

q(2m+1)(m+1)

(−q3/2; q)2m(q; q)2m+1

H−
5 (q) = (q; q)2∞

(−q−1/2; q)2∞

∞∑
n=0

qn(n+2)

(−q3/2; q)2n(q; q)2n+1
.

(67)

The comparison between the above series with the ones in our paper is given as follows.

Lemma 1 We have:

H+
0,3(q) = q1/8

(1 − q1/2)2
(q; q)2∞

(q3/2; q)2∞
H+
3 (q)
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H−
0,3(q) = q−1/8

(1 − q−1/2)2
(q−1/2; q)2∞
(q; q)2∞

H−
3 (q)

H+
0,4(q) = (q; q)2∞

(−q; q)2∞
H+
4 (q)

H−
0,4(q) = (−1; q)2∞

(q; q)2∞
H−
4 (q)

H+
0,5(q) = q1/8

(1 + q1/2)2
(q; q)2∞

(−q3/2; q)2∞
H+
5 (q)

H−
0,5(q) = q−1/8

(1 + q−1/2)2
(−q−1/2; q)2∞

(q; q)2∞
H−
5 (q) (68)

Proof We need to show the following identities:

(q3/2; q)2∞
(q; q)2∞

(q̃; q̃)2∞
(−1; q̃)2∞

= e− π i
2 q1/8

2(1 − q1/2)2
τ ,

(−q; q)2∞
(q; q)2∞

(q̃; q̃)2∞
(−q̃−1/2; q̃)2∞

= e− π i
2 q̃−1/8

2(1 − q̃−1/2)2
τ ,

(−q3/2; q)2∞
(q; q)2∞

(q̃; q̃)2∞
(−q̃−1/2; q̃)2∞

= e− π i
2 q1/8q̃−1/8

(1 + q1/2)2(1 + q̃−1/2)2
τ . (69)

The modularity of the Dedekind η-function implies that

(q; q)∞
(q̃; q̃)∞

= e
π i
4

(
q
q̃

) 1
24 1√

τ
; (70)

hence,
(q1/2; q1/2)∞
(q̃2; q̃2)∞

= e
π i
4 q̃1/12
q1/48

(√
τ
2

)−1
.

Since

(q2; q2)∞ =(q; q)∞(−q; q)∞
(q1/2; q1/2)∞ =(q1/2; q)∞(q; q)∞

it follows that
(q3/2; q)∞
(q; q)∞

(q̃; q̃)∞
(−1; q̃)∞

= 1
2(1 − q1/2)

(q1/2; q)∞
(−q̃; q̃)∞

(q̃; q̃)∞
(q; q)∞

= 1
2(1 − q1/2)

(q1/2; q1/2)∞
(q̃2; q̃2)∞

(q̃; q̃)2∞
(q; q)2∞

= 1
2(1 − q1/2)

e−
π i
4 q1/16

√
2τ .

Therefore,

(q3/2; q)2∞
(q; q)2∞

(q̃; q̃)2∞
(−1; q̃)2∞

= e− π i
2 q1/8

2(1 − q1/2)2
τ .

The proof for the rest two identities is similar. 	

We end this appendix with a remark that the collection of q-hypergeometric series

H±
λ,j(q) defined and convergent for |q| < 1 extend to |q| > 1 and satisfy the symmetry

H+
λ,j(q

−1) = (−1)δjH−
−λ,j(q), j = 0, 1, 2 (|q| �= 1) (71)

This extension is possible since
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• the terms of (21) satisfy tλ,m(q−1) = T−λ,m(q),
• the Eisenstein series E1(q) and E2(q) can be extended to |q| > 1 satisfying Ej(q) =

−Ej(q−1) for j = 1, 2 [9, Remark 19],
• consequently, the terms (22) satisfy pk,j,m(q) = (−1)jP−k,j,m(q−1) for j = 0, 1, 2. This

follows from the identities

E(0)
1 (q) = 1 − E1(q)

4
E(0)
2 (q) = 1 − E2(q)

24
, (72)

and the recursive relations (28) and (31).

The symmetry for j = 3, 4, 5 is obvious.
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