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KPUTEPUI KPUCTAJLIA
U JIOKAJIbHO AHTUITIOIAJIBHBIE MHOKECTBA JIEJIOHE’

H. II. Toa6unun

JlokasbIBaeTcst, 4TO B JUCKPETHOM MHOXKECTBE TOUEK IIOBTOPSIEMOCTD JIOKQJIBHBIX KOH(UIYpaluii
IIPU OTIPe/IeJIEHHBIX YCJIOBUSX MMILIHIUPYET TAaK HA3bIBAEMbBIH <«TJIO0ATBHBIN TOPSIOK>, KOTOPDII
BKJIIOYAeT B ce0sl Hamdue y MHOKECTBA KPUCTAJLIOrpaduuecKoil rpynibl cuMMeTpuii. [loka3biBaeTcs
TaK:Ke, YTO MHOXKeCTBO /lesloHe, B KOTOpOM Bce 2R-Kiactepbl aHTHIOAAJIBHDBI, TO €CTb HEeHTPAJbHO-
CUMMETPHYHBI, CaMO SBJSETCS EHTPAJIbHO-CUMMETPUYHBIM B 11€JI0M OTHOCUTEJIHHO Ka3K/JOH CBOEH
Touku. BoJiee TOTO, €ci KPOME ATOTO KJIACTEPbI WIEHTHYHBI, TO MHOXKECTBO SIBJISIETCS] TPABHUJILHBIM,
TO €CTb TaKWM, 4TO €r0 I'PYyIIa CUMMETPUI JeHCTBYyeT TPAaH3UTHUBHO.

Crarpg Hammcana 10 MaTepHajaM JIeKIMH, TTPOYMTAHHOW HA MEXK/IYHAPOIHOW KOH(MEpEeHINH
«KBanrosas Tonosiorust» (5—17 wiosna 2014 1.), opranusoBanHoii JabopaTopreil KBAHTOBON TOIO-
gorun HYerssOGMHCKOTO TOCY/IapCTBEHHOTO YHUBEPCHUTETA.

KooueBbie cJioBa: mMHOKeCcmeo ﬂeflOHe, Kjaacmep, npasuivnas cucmemd, Kpucma/zﬂozpacﬁuue—
CKas zpynnda.

BBenenune

B pa6ote mpoposkaercs Havatoe B [1] mcciemoBaHme JOKAJbHBIX YCJIOBHH, TPU KOTOPBIX
JTAaHHOE MHOJKECTBO SBJIAETCS MPABUJIbHOW CHCTEMOIW. IJTO HarpasJeHue ObLIO MOTUBUPOBAHO
MIOTIBITKOI OTBETUTH HA BOIIPOC, TIOYEMY B IIpollecce KPUCTAIIN3AINN U3 aMOP(HOr0 COCTOSTHUS,
B KOTOPOM HAXO/IATCSI aTOMbI PACTBOPA WJIM PACILIaBa, POXKAAETCS KPUCTAIMYECKAsk CTPYKTYpa,
06J1a/1atoNast MPOCTPAHCTBEHHON TPYIIIION CUMMETPHIA.

®usuku, kpucramiorpadsr (JI. IMomunr, P. MeiiHMan 1 Ap.) CYUTAIOT, YTO II0OATHHBIA MO~
PSITIOK aTOMHOW CTPYKTYPbI KPUCTAJLJIA BBITEKAET M3 MOBTOPSIEMOCTH JIOKAJIbHBIX KOHMUTYpAIHii,
KOTOpbIE€ BO3HUKAIOT B OKPECTHOCTU aTOMOB OJIHOTO copra. B wactHoctu, P. Delinman nuiier:

«Ecam aTombl B BelecTBe ABUIKYTCS HE CJAUNIKOM aKTUBHO, OHU CIIETLISIOTCS U PACIIOIAraoTcs
B KOH(UTYpaIUu ¢ MUHUMAJIbHO BO3MOXKHO sHeprueii. Eciu aToMBbI r/ie-To pa3MecTuInCh Tak,
YTO MX PACHOJIOKEHUS OTBEYAIOT CaMO HU3KOW 9HEPIuH, TO B JPYTOM MeCTe aTOMbI CO3/a/lyT
Takoe e pacnoJoxenue. [losTomy B TBep/loM BelllecTBe PacCIIOIOXKEeHNE aTOMOB IIOBTOPSIETCS.

WupiMu cioBamMu, ycJIOBUS B KPUCTAJLJIE TaKOBbBI, YTO KXK/BIH aTOM OKPY’KEH OIpeeJeHHO
PaCIIOJIOKEHHBIMU JIPYTUMU aTOMaMM, U €CJIM TIOCMOTPETb Ha aTOM TaKOro ke COpTa B JIPYrOM
MecTte, TO OGHAPYKUTCS, 9TO OKPY’KEHIEe ero M B HOBOM MecTe TOUHO Takoe >ke. Eciin BbI BbiGe-
peTe aToM ellle Jajibllie, TO €lle pa3 Haiijiere TOYHO Takue ke ycJuoBus. llopsmaok moBTopsercs
CHOBA M CHOBA, M KOHEYHO, BO BCEX TPEX U3MEPEHUSX...».

OHaKko HUKAKUX CTPOIUX PACCyK/EHUI B M10JIb3Y 3TOW KOHIIEIIUU He TpuBouock. B 1974 r.
b. H. [lenone (coBmectHo ¢ P. B. TamuyuHbIM) MHUIMUPOBAJ 33124y HOKMCKA JOKAJIbHBIX YCJIO-
BUI, BBINOJTHEHHE KOTOPBIX TapaHTHPYET TaK HAa3bIBAEMYIO MIPABUJIBHOCTD CTPYKTYPbI (IIPaBHJIbHbBIE

" Pa6ora noziep:kata rpantom Poccuiickoro nayunoro dona Ne 14-11-00414.
” P. ®eiinman, P. Jleiiton, M. Conge. eiinmanosckue gexiu 110 ¢usuke. 1965. Bour. 7. C. 5.
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CHCTEMBI TOUEK €CTh BaKHBIN C/Iydaii KpUCTammdeckoii crpykrypsl). Kpucramnorpad H. B. Benos
TaK’Ke BbIJIBUTAJI, XOTS U HE BIIOJIHE OTUYET/IMBO, HEUTO 1o 106H0e B 3a/aue <1po S01-ii ajieMeHTs .

CBs13b MEXK/1y JIOKQJIBHOI MIEHTHYHOCTBIO CTPYKTYPBI U ee TJ106aTbHON MPaBUJIbHOCTBIO TTPe/i-
CTaBJISIJIACH COBEPIIEHHO OYEBH/IHOW, W TIOUCK TOYHOI (DOPMYJUPOBKU U CTPOTOTO TOKA3ATEIH-
CTBa, Ka3aJoCh, MMeJ JIUIIb OTBJIEYEeHHBbIH mHTepec. OHAKO MPUOIU3UTENBHO B TO K€ BpeMs
(1977 r.) P. Ilenpoys npecTaBu/I 3HAMEHUTbIE HbIHE MO3AaUKH, B KOTOPBIX, C OJHO CTOPOHBI,
JIOKQJIbHbIE KOH(UTYPAIUU TIOBTOPSIOTCS, MOJOOHO TOMY, KaK 3TO MPOUCXOJUT B KPUCTAJLIE.
C npyroii ctopoHbl, B Mo3ankax IleHpoy3a oTCyTCTBYeT MEPHOAMYHOCTD U MPUCYTCTBYIOT MOBTO-
pSIIoNecs CKOJIb YTOAHO GoJibiue hparMeHThl ¢ MATUYTOJNbHOM CHMMETpUeEil, 4TO He BO3MOXKHO
B KPHCTAJJIMYECKUX CTPYKTYpax.

B 1982 r. ¢usuk /[I. llextman mosy4yus B J1abOPATOPHBIX YCJIOBHUSAX ObICTPOOXJIAK/IEHHBIN
CILJIaB AJIIOMUHMS U MapraHiia ¢ TPeXMepPHOH KBa3MKPHUCTAJINYECKOH CTPYKTYPOi, o6saaonieit
cummerpusmu 5-ro nopsaaka (HoGenesckas npemus 2011 r.).

Orkpoitus [lenpoysa u IllextmMana ykasbiBalOT HA TO, YTO CBSI3b MEXK/AY OJUKHUM U JIAJIbHUM
HOPSI/IKAaMH B CTPYKTypaxX He SBJISETCS CTOJb OYEBUAHON. 3ajava 37ieCb COCTOUT B TOM, YTOOBI
HANTH MpaBUJIbHbIE (POPMYIUPOBKU U IOKA3ATH HX.

B crenyiomem nmaparpadge Mbl BBefeM HeOOXOAMMbIE MOHATUS U cHOPMYJTUPYEM OCHOBHbBIE
pe3yJIbTaThl, TMOJYYeHHbIE TI0 JIOKAJbHOW TeOpUU KPUCTAJIIOB paHee, a TakKe TPHU Pe3yJbTarTa,
JIOKA3aTeJbCTBO KOTOPBIX OyJIeT IaHO B 3aKJIIOYUTEJNbHBIX TPeX naparpadax atoii paGoThl.

1. OcHoBHbBIE omipe/iesieHUs] M Pe3yJIbTaThl

MHuosxectBo X — R? masbiBaercst muoxecmseom [Jdenone ¢ napamerpamu » u R (mmm (7, R)-
cucmemott, cM. [2; 3]), tme r, R > 0, ec/i s HErO BBITOJHSIOTCS /[Ba YCJIOBUS:
o 0 “ d
(1) orxpwiTeiii d-map B;(r) paamyca r ¢ IIEHTPOM B RPOU3EOAbHOU TOUKe y € RY comepikut
He 6oJiee OTHOI TOYKHM U3 X:

#(B,)(r) n X) <1; (r
(2) mo6oti samkuyTeit d-map B,(R) paanyca R copepskut Xotst 6bl 0ty TOuKy u3 X:
#(B,(R)nX) >1. (R)

3ameTum, uTO B cuay ycaosus () paccrosHue Mex/y JI0ObIMU JABYMsI TOYKaMK He MEHbIIIE 7.

[Iycrb x € X, o6osuaunm C (p) := X N B, (p) u Gyaem
roBoputh, 4to moaMuokectso C (p) ectb p-kaacmep ToU-
ki x. B npumnnune, nog p-kiaacrepom C (p) monumaercst
mapa (rientp, muoxkecTBO Touek): (x, C (p)). MHpopmMa-
st 0 Helt coziepkutest B camoM o6osuavernn C (p). Hog-
e uepKHeM, 4T0 Mbl passmdaeM p-kiaacrepsl C (p) u C.(p)
Pas3HbBIX TOYEK X, X', asKe eCJIM MHOKECTBA TOYEK, BXO/IA-
X B 9TU KJjacrepsl, coBrajganor (puc. 1).

IBa p-xaacrepa C(p) u C.(p) HasoBeM IK6uUGA-
JLeHMHBIMU, €CJI CYIIECTBYET ABWKEHHE ¢ TaKOe, uTo
g:x—>x" ug:C(p)—>C.(p).

[ToxuepkHeM, 4To TpeGoBaHUe HKBUBAJIECHTHOCTH KJla-
CTEPOB HECKOJIbKO CHJIbHEe, ueM TpeGOBaHKe TOJbKO
KOHTPYDHTHOCTH MHOYKECTB TOYEK, BXOJIANIMX B HHUX.
JleficTBUTEIBHO, MHOYKECTBA TOYEK B KJacTepax, pac-
cMOTpeHHbIX B mpuMmepe (puc. 1), coBHAgaOT ¥, CJeJ0BATEJIbHO, KOHIPYSHTHBI. XOTS CaMu
p-kaacrepbl C.(p) u C.(p) He 5KBUBAJEHTHBI, TaK KaK HET M30METPUH MPOCTPAHCTBA, OJHO-
BPEMEHHO COBMEIIAIONIEro MeHTPhl X U X', a Takske ux kaacrepbl C (p) u C.(p).

s
N

Puc. 1
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Ecou nog mannoro muoxkectBa /lemone X mpu kaxaom p > () 4MCI0 KJIACCOB 3KBUBAJEHTHBIX
P-KJIACTEPOB KOHEYHO, TO TOBOPST, YTO MHOXKECTBO X Koneunozo mund. Ilyctb X — MHOXKeCTBO
JlesioHe KOHEYHOro THIa, 0603HAYMM YUCJIO KJIAcCOB p-KJaacTepos uepe3d N(p).

Herpy/Ho nmokasaTh, 4TO KOHEYHOCTh yncaa KaaccoB 2R-knactepoB N(2R) < oo rapantupyer
KOHEYHOCTD YMCJIa KJACCOB P-KJIACTEPOB [ JI000T0 (PUKCHPOBAHHOTO p >0, TO ecTh

N(2R) <o = N(p) <oVp>2R.

OcHOBHO# aprymenT 3aech caeayiomuii. M3 ycnosus N(2R) < oo BbiTekaer, 4To B pazbueHun
[lenone ans muoskectBa X [3] umeercss Juiib KOHEYHOE YUCJIO MOTTAPHO HEKOHT'PYIHTHBIX MHO-
rorpaHHuKoB /lesone. 3ameTnM, 4TO BepiinHbI paz6uenust /lesone cytb MHOXecTBa X. [laee,
3aMeTHM, 4YTO JlBa BBINYKJbIX MHororpanuumka P u Q moryt ckieusatbea no (d —1)-mepnoit
IpPaHy JIMIIb B KOHEYHOE YNCJO HEKOHI'PYIHTHBIX MEXK/y cOOO0I Tmap.

Bosbmem Touky x € X u kaacrep C (2R). Touku, BXOAAIME B KJIACTEP, OJHO3HAYHO OIpe-
JIeJISIIOT Bce MHOTOrpaHHuKH [lesjoHe pazbueHnsi OTHOCUTENbHO X, CXO/sINKecs: B Touke x. Tak
kak N(2R) < 00, TO 4nC/I0 MOMAPHO HEKOHTPYSHTHBIX MHOTOTPAHHUKOB J[e10He, BCTpeYaronx-
cs B paz6buenun [lesone s ganHoro X, KOHEUHO. B culy KOHEYHOCTH YHCJIa HEKOHTPYIHTHBIX
MHOTOTPaHHUKOB /lesloHe 1 ynOMSHYTOlH paHee KOHEYHOCTH YMCJIA CKJEeK 110 TUIIePrPaHsaM Ipu
nantom kaacrepe C, (2R) [OIMyCKaeTcs JIMITh KOHEYHOE YUCJIO PA3JNYHBIX 3aMOJHEeHNil mapa
paanyca p MHOTOTpaHHUKamu [lesoHe, cCMeXXHBIMU 10 11eJibiM TpaHsMm. OTcioja ciaenyer, 4To
Kbl 2R-kimacrep C (2R) [0MyCKaeT JIMIb KOHEYHOE YUCJIO PAasJMYHbIX PACHIMPEHuil 10
p-kaacrepa C (p). A Tak Kak MONapHO He KOHTPYIHTHBIX 2R-KJIACTEPOB, MO TIPEIIOJIOKEHHIO,
KOHEYHOEe YHCJIO, TO U P-PACIIUPEHUIl TakKe KOHEYHOe YHCJIO0 st Jo6oro p > 0.

Wrtax, mMbr 6y/eM paccMaTpuBarh JIMITbL MHOXKeCTBA /lesloHe KOHEYHOro Tuma. 3aMeTuM, 4TO
grcsio N(p) KIaccoB p-KJACTEPOB B TAaKOM MHOKecTBe [leToHe ecTh TOJIOKUTETbHAS, 1eI0TNC-
JieHHasd, HeyObIBaoIast, KyCOUHO-TTIOCTOSTHHASI, HeTIPEePbIBHAS cIIpaBa (PyHKITHS.

BasxupiMu npumepamMu MHO:KeCTB /lesloHe KOHEYHOTO THUIIa SIBJSIOTCS TIOHSATHS TPABUJIbHOMN
CUCTEMbI M KPUCTAJLIA.

IIpasunvnas cucmema — >T0 MHOKecTBO [lesoHe, Tpylnmna cCUMMeTpPUl KOTOPOTO J1eHCTBYeT
TPAH3UTUBHO, TO €CThb /g JIIOOOH mapbl Touek x u x' n3 X HaiijeTcs ABUKEHNe ¢ MPOCTPAHCTBA
R Taxoe, uto g:x > x' u g: X > X.

MuoskectBo X < RY apistercs MMPaBUJIbHON CUCTEMOU TOTJ|a U TOJIbKO TOT/JA, KOTJa OHO SB-
ngercsa opburtoii Touku x € R orHocurenpno mexkoropoii kpucramtorpadgudeckoil rpymmsr G,
neiicrytomteii B R

Hanomunm, yro noarpynmna G < Iso(d), rae Iso(d) ectb rpyimia Bcex M30MeTPHUl TPOCTPaH-
crBa RY, HasblBaeTcs Kpucmaiiozpaguueckoii 2pynnoii:

(1) ecn G aeficTByeT paspbIBHO B Kaxk/10il Touke x € R?, 10 ectb ecsi op6uta G - x JUCKPETHA;

(2) umeercs kommakTHas (ymaMeHTa bHasg 06J1acThb.

Kpucmannom naspiBaercs MHOXecTBO [leloHe, KOTOpoe sBJisseTcsi OpOUTOIl KOHEYHOTO MHO-
skectBa X, OTHOCUTEJbHO HEKOTOPOIl kpucTamiorpadudeckoii rpynnel G: G- X,.

Takum o6pasoM, NpaBuUJIbHAS CHCTEMa SIBJISETCS Ba)KHBIM cJydaeM KpucTajia. B tepMuHax
nepeuncJstionieit Gyukimn N(p) 9T MHOXKeCTBA BBIJIEJSIOTCS cJaeayonumM o6pazoM. MHosxke-
cTBO [lesoHe KOHEYHOTO THUIA SBJSETCS MPABUJIbHONW CHUCTEMON TOTZa M TOJBKO TOT/a, KOrja
N(p) =1 na R,. MuokectBO [le/ioHe SBJISI€TCS KPUCTAJIJIOM TOT/Ia M TOJBKO TOT/A, KOT/Aa mepe-
yucasiomas Gyukims orpanndena: N(p) <m < oo, rae m < #(X,). Ecau m = 1, T0 Kpucramun
ABJIETCS IIPABUJIBHON CHCTEMOI.

[IpuBenenHoe ormpejesieHrie TPABUIbHON cucTeMbl U KpucTtasina Bocxoaut Kk E. C. dDenopo-
By [4]. /o Hero kpucraji paccMaTpUBAJICS KaK COBOKYITHOCTb KOHI'PYHTHBIX U TapaJliebHbIX
apyT apyry peietok. DegopoBckoe ompe/iesieHe KpUCTadaa Kak OObeUHEHUs TPaBUJIbHBIX
CUCTEM He OTPHIlaeT, KaK MOTJI0 Obl TMOKa3aTbCs HA TEPBBIH B3TJIS, WCXOIHYIO PENIETOYHYIO
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KOHIenio Kpucrtaaia. Mexopos 6bLI yBepeH, UTO BCsKasg KpucTajaorpadmieckas rpyma co-
JIEP’KUT TOJTPYIITY TpaHCsIuii. bosiee TOro, oH Ipe/CcTaBUI paccyskieHue, KOTOpoe CUUTAJI JI0-
Ka3aTeJbCTBOM. B /1elicTBUTENBHOCTH €r0 pacCcysK/IeHue COAepPKaI0 MPUHITUITHAIbHBIN po6e..
TeMm He MeHee yTBepsKAEHUE O CYIIeCTBOBAHUU HOATPYIIIbI TpaHcasimii BepHo (eM. Huske). [lus
d = 2 ero mokaszaTesnbcTBO HecoxHO. [l d = 3 Teopema Gbiia nokaszana A. Illendsucom [S].
3amaua nokasatb Teopemy Illendnca s moboro d > 3 comep:kanach B 18-it mpo6aeme ['iib-
Gepra [6] (Bonpoc o koneuHoctn unciaa (HeM30MOP(HBIX) KPUCTAIIOrPADUIECKUX TPYII JIJIst
KasKJ0l ganHoil pasmepHocTy d).

Teopema 1. [[llendpsmc: d = 3 [5], bubepbax: Vd >4 [7]]. Kpucmannozpaguueckas epyn-
na G c Iso(R?) codepsxum nodzpynny T napaiieivnvix nepernocos npocmpancmed KoHeuHozo
undexca h: G=TuTg,v...uTg,, 2de undexc h ozpanuuen Koncmanmou, 3asucswei om
d: h<H().

B cuny sroii Teopembl kpucrasn G- X, pacnagaercs B KoHeuHoe 4yncyio (< mh ) KOHIPYSHT-
HBIX U TapaJjijieJIbHO PACIIOJIOKEHHBIX PENIeTOK paHra d:

G-X,=U"(T -2,0T-g,(x)U...0uT-g,(x;)),x, € X,.

Jlns manbHeiiero paccMoOTpeHUst BBefieM zpynny p-kiaactepa C (p) kak moxarpymmy S, (p)

rpynimbl 1so(d), cocTosIyIo U3 TeX U30MEeTPHil S, IJIsI KOTOPHIX
ssxx,s:C.(p)— C.(p).

Yepes M (p) o6Gosnauum mopsiok rpymmsr S (p). HoustHo, yro dyukuus M (p) >1 —
nestouncIentas GyHkims, onpeaesnentnasa na [0,00). Ona HenpepbIBHA CJI€BA, KyCOYHO-TIOCTOSH-
Ha, He Bospacraet. [locJe/iHee CBSI3aHO ¢ TEM, YTO IPHU yBeaudennu paanyca p B kiaacrep C (p)
BOBJIeKaIOTCsl HOBbIe Touku. [loaromy rpymmna S (p") Goubiiero kaacrepa C (p"), p' > p, au6o
cosnazaer ¢ S (p), 6o sABJsIETCS €e COOCTBEHHON MOATPYTITIOi.

[Iycte X — MHOKECTBO KOHEYHOTO Tuma. Torga MHOKecTBO X pa3buBaercs B KOHEYHOE YIC-
g0 N(p) HenepeceKarouxcst Mo MHOKECTB Y1,Yz,...,YN(p) TaKMUX, YTO TOYKM X U X' U3 OJHOIrO
Y, nmetor sxBuBaseHTHble p-kaacteppl C (p) n C.(p), a y TOYeK U3 PA3HBIX MOAMHOXKECTB Y,
1 Y, p-KJIactepbl He 9KBUBAJEHTHBI. [loguepkHeM, 4TO IPyNIbl 9KBUBATEHTHBIX P-KJIACTEPOB
conpsikenbl B [so(d) u, cieoBaTebHO, UMEIOT OANHAKOBBII TOpsigok M, (p), T/ie i — WHIEKC
MOJIMHOKECTBA Y; TOUEK C JJAHHBIM KJIACCOM p-KJjacTepoB. B nampueiiniem y nac Y, 6ymer o603Ha-
4aTh MHOKECTBO TOYEK, P-KJACTEPbI KOTOPbIX MPUHA/JIEKAT KJAACCY, TOMEYEHHOMY MH/IEKCOM i.

Tenepp Bce roTOBO K TOMY, 4TOOBI C(HOPMYIUPOBATH HEKOTOPBIE PE3YJIbTAThI JIOKATBHON TEOPHH
Kpucrasia. PesybraTbl 6blin OTydeHbl B ocHOBHOM B padotax M. U. rtorpuna u H. I1. on6u-
smHa. [lepBbIii cTpormii pe3yabrar — KpUTEpHUil MPaBUJIBHOIN CUCTeMbI — OBLI TTOoJy4YeH B padote [1].

Teopema 2. [Kpurepuii npasuiabHoii cuctembi]. Muoxecmeo [enone X — R ¢ napame-
mpamu v, R seasemcs npasuivnotl cucmemou mozda u moJivko mozod, K0z0d 0k HeKOMOpozo
po > 0 swinoansaiomes dea ycaosusi:

() N(p, +2R) = 1;

(I M(p,) = M(p, +2R) .

Ycaosue (1) osnauaer, uto (p, + 2R)-kmacrepst C, (p, +2R) assi Bcex x € X 5KBUBAJIEHTHBI.
[TosToMy Takue KJacTepbl MMEIOT COIPSKEHHbIe Ipyiinbl cumMerpuii. Ycaosue (I1) osnauaer,
YTO MPU ITOM JIJISI KAXK/OTO X TPYIIBI Py- U P, + 2R-KIacTepoB, cOOTBETCTBEHHO, COBIA/IAIOT.

N3 xputepusi npaBUIbHOI CHCTEMbBI MOXKHO BBIBECTU CJIE/IYIOIIEE.

Teopema 3. /[ns mo6wix d,r,R cywecmeyem maxoe p = p(d,r, R), umo 015 1106020 MHoxecmea
Jenone X < R ¢ napamempamu v u R umeen: ecmu N(p) =1,mo X — npasunvnas cucmena.

TpeGoBanue 5KBUBAJEHTHOCTH KJACTEPOB OY€Hb OOJIBIIOTO Pajnyca p OOBICHSETCS TEM, UYTO
2R-xmacTepbl MOTYT UMETh OU€Hb GOTATbIe IPYIIbI CUMMETPHIl, a TapAaHTUPOBATH CTAOUTM3AIINIO
B TI0CJIEZIOBATEIbHOCTH TPYII KJIACTEPOB Ha 2R-11are Mbl MOKEM JIUIIb B TOT MOMEHT, KOT/a
MOCJIEIOBATETHHOCTD I'PYII «IIQ/IA€T» 10 TPUBUATHHOI.
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Hamporus, ecau sxe rpymma S (2R) 2R-kjiactepa TPUBHATIbHA, TO M3 JIOKAJBHOTO KPHTEPHUST
BBITEKAET CJIe/lyIollee MPeIJIoKeHue.

Caenctue 1. ITycmo Onsa mmuoxecmsa /Jenone X < R umeem N(4R)=1 u M(Q2R) =1
(mo ecmwv 2pynna 2R-xaacmepa mpusuarvna). Tozda N(p) =1 npu kaxdom p > 2R, mo ecmo
X — npasunvnas cucmemd.

OtTMeTuM, uTo B cuay caeayionieil Teopembl Tpe6oBanue N(4R) =1 Henb3s ocnabuTh.

Teopema 4. [O 4R —¢ . [ns mobozo € > 0 cywecmeyem mnoxecmso /enrone X RY d > 2,
¢ napamempanu r u R maxoe, umo N(4R —¢) =1, no X ne seasemcs npasuivnoil cucmemol.

Teopema ji0Ka3bIBaeTCs TPEAbSBIEHNEM KOHCTPYKIMKU. OTMETUM, YTO UMEIONIAsCs KOHCTPYK-
M JaeT MHO)KecTBa /[lesione ¢ acummeTpuuHbiMEU 2R-Kjaactepamu. Takum oO6pa3om, B KJacce
JIOKAJIbHO ACUMMETPUYHBIX MHOKeCTB /le/loHe MHOKeCTBO — TIPaBUJIBHOE TOT/A M TOJIHKO TOT/IA,
Korjia Bce 4R-KJacTepbl SKBUBAJIEHTHDI, IPUYEM 3HaueHue 4R HeJb3sl YMEHbBIIUTD.

B 9TOM KOHTEKCTE yIOMsSHEM HOBbII pedyJsbrar (cM. TeopeMy 8) 0 TOM, 4TO €CJIii BO MHOJKe-
crBe [lenone X Bce 2R-KJacTepbl EHTPATHHO CUMMETPUYHbBI, TO UX 9KBUBAJIEHTHOCTb, TO €CTb
N(2R) = 1, rapantupyer npaBu/JIbHOCTb MHOKECTBA X.

Opnnako Hasmune y 2R-Kjiactepa HETPUBUAIBHON TPYIIbI CUMMETPHIl, KOTOpas TPH 9TOM He
COJIEPKUT MEHTPAJIBHOI CUMMETPUU, SIBJISETCS MPENSATCTBUEM [IJIs1 MOJyYeHUsT XOPOIIUX 3Haue-
HUIT [JIs1 paJiyca p, KOTOPbIE TAPAHTUPYIOT MPaBUJIbHOCTH X, TO ecTh Takoro p, uto N(p) =1
u, cjaenoBaTesibHO, X — IMpaBUJIbHAS CUCTEMA.

Teopema 5. [M. W. IIrorpun, H. II. Jlon6umn]. Hycme X c R — muoxecmso /Jenone
¢ napamempamu v u R. Tozda npu d =2 u3 pasencmea N(4R) =1 caedyem,umo X — npa-
eunvnas cucmema; a npu d =3 uz N(1OR) =1 swmexaem npasurvnocmo cucmemv X.

B cumy Teopembl 0 4R — ¢ TocseHsIS TeopeMa S TIJIOCKOCTU JaeT HeyJIydlIaeMblil pe3yJib-
tat. Uto kacaercs ouenkun N(10R) =1 nna d = 3, ona npejcrasisercs 3apbiennoii. J[okasa-
TEJIbCTBO OCHOBAHO Ha JieMMe.

Jlemma 1. [M. 1. Hltorpun [8]]. Tycmos X < R® — muoxecmso Jenone ¢ napamempamu ru R.
Ecau N(2R) =1, mo mobas ocv nosopoma ¢ zpynne S (2R) — ne evuue 6-20 nopsoxa.

[To aroit semme mopsiaok rpynmbsl S (2R) cummerpuii npu yeaosun N(2R) =1 orpannuu-
BaeTCsl HACTOJIBKO, YTO TPUMEHEHUEe KPUTEPUs TPABUIBHOCTH HEMOCPEJICTBEHHO JaeT J0CTaTou-
noctb yeaosug N(14R) =1. Bnarogapst J0IOJHUTENbHBIM apryMeHTaM 5TO TpeGoBaHUe yja-
sock ocaabuts 10 N(10R) =1.

B sakJiiouenue mprBeieM TpU TEOPEMbI, KOTOPbIe OyyT /I0Ka3aHbl B cireyionmx naparpadax. /Ise
u3 HUX, TeopeMbl 7 u 8, HoBbIe. Teopema 6 sBsgeTcst 0606IIEHNEM KPUTEPHS TIPABUJIBHOI CUCTEMBI.

Teopema 6. [ Kpurepuii kpucramia; H. I1. [lon6wmun, M. U. Iltorpun]. Muoxecmso /lenone
X c R ¢ napamempamu r, R aensemcs Kpucmaiiom, cocmosuum u3 m npacuibHblx CucmeM,
mozoa u moavko mozoa, Kozoa npu nexkomopom p, > 0 evnoansromes dsa yciosus:

() N(p,) = N(p, +2R) =m;

(I M (p,) = M,(p, +2R) Vie[l,m].

JlokanpHblil KpuTepwii Kpuctaiana Obl1 copmysupoBan Ge3 MPUBENEHUS 0KA3ATEJbCTBA
(xors oHo u umesoch) B [9]. Huske Mbl IPUBOANM JI0KA3aTeIbCTBO, B KOTOPOM YacTh, OTHOCS-
mascs K /[0Ka3aTesbCTBY KPUCTAJIOrPAPUUHOCTH TPYIIIbI CUMMETPHIl MHOXKECTBA, OIHMPAETCS
Ha JIpyTyIo, 60Jee TTPO3PAYHYIO UJEIO.

Teopema 7. [O6 antunoganbuoctu MmuoxkectBa lenone; H. I1. Jonbumn]. [Tycms X — mno-
sxecmeo /lenone, 6 komopom kaxovii 2R-kaacmep C_(2R) anmunodaien ommocumesvto c6o-
ezoyenmpa x. Tozda éce mnoxecmeo X anmunooaivno omHoOCUMENbHO KAKOOU CE0ell MOUKU.

Teopema 8. [H. II. Jon6umun]. IHycmo X — mnoxecmeo Jerone ¢ N(2R) =1 u nycmo
2R-xnacmep C_(2R) cummempuuern omnocumenvno ceoezo yenmpa x. Tozda X seasemcs npa-
BUNLHBIM MHOKECMEOM.
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2. [loxa3aTebCTBO TeopeMbl 6

[Ipesxae Becero npokommentupyem yeiaosus (I) u (IT) teopembr. Yciosue (I) osHauaer, 4to
IIpU yBeJUYEHUN pajnmyca p, Ha 2R 4YncI0 KJAcCOB KJACTEPOB He yBeJanmumBaercs. B pamkax
yeaosus (IT) HE B OZHOM U3 M KJIaCCOB COOTBETCTBYIOIAS IPYIIAa «He MajaeT» 1pu 2R-paciim-
penun p-kaacrepoB. CMbICT TeOPeMbl COCTOUT B TOM, 4TO OOYyCJIOBJICHHAsS CTaOUIN3ALUsA BYX
napamerpoB (Y4HCJI0 KJIacCoB M MOPS/IOK TPYIIbI KJaacTepa) Ha otpeske [py,p, + 2R] nmmmim-
pyeT Ha caMoM jieJie NX cTaGUIn3aiunio Ha BCell ocTaBIeiics: moaynpsamoii [p, + 2R, ).

Jemma 2. [O 2R-uenouke]. /Jas xaxooit napvr mouex x u x'e€ X, z2de X — muoxe-
cmeo /[lenone ¢ napamempamu r u R, cyuwecmseyem Koneundas nociedosamesvbHOCmy mouex
X, = X,Xy,..., X, =X makas, umo paccmosinue mexdy 08Yyms NOCA008AMEIbHOIMU TMOUKAMU
\x,x,,| <2R ons ie[1,k—1].

Joxasamenvcmeo. Iycts |xx'|>2R. Pacemorpum map B,(R) ¢ uenrpom z € [xx'] Takoii, uro
TOUKa X JIekuT Ha ero rpanuie 0B (R). Tak kak |xx'| > 2R, 1o B B.(R) comepsxurcs Touka x, € X,
e x, # x', x, # x. dcno, uro |xx,| <2R. o HepaBeHCTBY TpeyroJbHUKa X'X, < X'x.

[yctb |x,x'| > 2R. PacemoTpum map BZZ(R) C IEHTPOM 2, € [x,4"] Takoil, 4To TOUKa X, JEKUT HA
rparne 0B,(R). Tak kak |x,2'| >2R, 10 B B, (R) coniepsutes TouKa x; € X, 1/1e Xy # &', X3 # X,
Jlerko BujeTh, uto |X,%,) <2R, M OIATH 10 HEPABEHCTBY TPEYTOJNBHUKA MOJIyYaeM X'X; < XX,
MbI nostyyaeM 1ocJe/[oBaTeIbHOCTb TIONAPHO PA3JINYHbIX TOUYEK x,(= X),X,,X;,... € X € yCJIOBHU-
eM |x1x’| > |x2x'| > |x3x’| >... IlocnemoBaTelbHOCTD Xy, X,,..., MOHOTOHHO TIpUOIIZKAtoONascs K X'
cojepskutes B mape B paauyca | xx' | B Touke x'. Muoxectso [lesone X yaI0BIeTBOPSET yCIOBUIO
(), noaromy nepeceuenne B M X ecTb KOHEYHOE MHOKECTBO TOYeK. Tak Kak BCAKHMI pas, Korjaa
JUISL TOUKH X, paccrosinue Xx,x' > 2R, waiinercst touka X, # X;, X;,, # x". Ho Tak Kak nocJenosa-
TeJIbHOCTb KOHEYHA, TO B Heil Haii/leTcda TodKa X, ,, TaKad 4To x, &' < 2R. Urak, nokazaHo, 4TO
2R-11emouKa OT X K X' CyIIeCTBYeT.

Jemma 3. [O 2R-nponoskenuu]. ITycmo X — muoxecmeo /leone, 015 KOMOPOZO 8biNOIHSIIOM-
csi 0ba ycaosus meopemvl 1, u nycmo x u x' € Y,. Toeda ecau [ € 1so — usomempus maxas, 4mo

i+l

f:xma' uC.(py) > C.(py), (1)
Mo Ma JKe UoOMempus CoeMeudem u KoHyenmpudeckue Kiacmepvl na 2R 6oavuezo paouyca:
f:C.(p, +2R) = C.(p, +2R). )

Aoxasamenvcmeso. Tlo ycaosuio (I) teopembr 6 mast Touek x u x' €Y, uUX p,-KJIactepbi
u p, + 2R-knacrepor skBuBasieHTHbI. BosbmeM uzomerpuio f (13 ycnosus (1) seMMbl) U KaKyto-
HUOy /b u3oMeTpuio g Takyio, uto g :C (p, + 2R) > C.(p, + 2R). V3oMeTpusi g CyiecTByer B
CUJIy SKBUBAJIEHTHOCTH YKa3aHHBIX KJIACTEPOB.

PaccmoTtpuM cymneprosunuio usomerpuii f~' o g (nmopsuok 3aech: cnavana g, satem f'). Torga
f71(g(Cx(p0))) = f71(cx'(p())) =C,(py). Urax, umeem

flog:ixsxuf'og:Clp) C.(p,). (3)

Cootnomrerne (3) mokaswiBaer, 4to f~' og sBisercs cummerpueil s p-kiacrepa C,(p,).
B cuny ycaosusi (11) teopempr 6 s € S, (p, + 2R).

U3 coorrnomenus [ og=s caexyer gos' = f. Torna

f(C.(p, +2R)) = (gos)C,(p, +2R)) = g(s'(C,(p, + 2R))) =
= g(C.(p, +2R)) = C_.(p, + 2R).

JleMMa sokasana. m

O6osuauum s yao6ersa G: = Sym(X).

Jlemma 4. [Ocuoshag nemmal. I[Tycmos mnoxecmeo X yoosaemeopsiem ycaosusm (I) u (IT)
meopemvt 6. Tozda epynna G Oelicmeyem mpan3umusno Ha muoxecmee Y, npu 11060Mm
ie[1,m]. Boxree mozo, 05 nobvix mouex x, x' €Y, u mobou usomempuu [ maxoi, umo
f(C.(p, +2R)) = C_.(p, + 2R), sepno [ € Sym(X)
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Joxaszamenvcmeo. Tak xak x, x' € Y, umeior skBuBasentHbie (p,+ 2R )-KIacTepbl, TO CyIile-
CTBYET M30METPHSI, COBMEIIAIONIask 3TN KJacTepbl. KoamuecTBO TaKuX M30METPUI PaBHO MOPSI/I-
Ky TPYIIIbI KJacTepa, KOTopasi, BOoOIe TOBOPs, MOKeT ObITh HeTpuBuaibHoii. Ilycts [ — omna
U3 Takux maomerpuii. /lokaxkeMm, 4TO OHa SIBJIsIeTCS cuMMeTpuel Bcero X.

CuavaJsia [OKa)keM, 4YTO [IJisI TPOU3BOJIBHOW TOYKU

. <T ye X [(y)e X. CoemnuM TOUKN X U Yy 2R-1€MOYKOil
S . . . . L={x=x%,..,x, =y|xx, |[<2RVie[0,n-1]}.
\/ Uy [To ycioBuio eMMbl 3
- . \\ . f(Cx1 (p, +2R)) = C, (p, +2R). (4)
- p,
J Tak kak |x,x,] < 2R, orcioga cJeayer, uTo
(\\ . <> . C,,(py) = C, (py +2R). Iosromy B cuy (4) nmeem
. \{ . [:C.(p) > C,(py). Io nemme 3
, UQU N F:C,(py+2R) > Cylp, +2R).  (5)
:"\}/3;‘/2 ‘ U3 Ttoro, uro |x,x,|< 2R, ciemyer cooTHOmEHNE
C, (p)cC, (py*+2R). Ioaromy B cumy (5) f:C, (p) -

, C..(py). Tlo nemme 3 mveem f: C, (p,+2R)—C,.(p, +2R).

Puc. 2 [TponBurasch BAOJbL 1eNIOYKU L U TIOBTOPSAS 3TO pac-

CyJK/IeHWe KOHEYHOe YHCJIO pas, IOJyduM, 4to 2R-

nenouka L < X mpu usomerpun [ mepexoqut B HEKOTOpylo 2R-memnouky L'c X, a KoHeuHast
TOUKA ¥ TIEPBOil [IEMOYKU TIEPEXOAUT B KOHEUHYIO TOUKY ¥ BTOpOIi. MTaK, moKasaHo, 4To H30Me-
tpust [ oro6paskaer X B X. [TokaskeM, 4To 3T0 0TOGpasKeHUE SABJSIETCS OTOOpaskeHneM Ha Bee X.
PaccMorpuM mpomsBo/ibHyIo Touky 4" € X u mokaxeMm, uto ee mpoo6pas f'(y") Takke mpu-
Hajnexut X. Jlag aroro paccMorpuM obparHoe aBuskenue f~'. V3 coorHomenus (4) umeem
f :C, (py +2R) > C, (p, +2R). Coenutum touku xj ¢ y" 2R-uenouxoil. /lsurascp BAob
nee, nomydaem [ '(y") = x” € X. Takum 06pazoM, npu 0TOOPaskeHUN [ B TIPOM3BOJIBHYIO TOUKY

y" mepexomut Hekotopas touka x": f(x") = y". Jlemma moKa3zana. m
Jlemma 5. Ecau zpynna G < Iso(d) maxosa, umo oas nexomopoii mouxu x € R ee opbuma
G-x — mHnoxecmso [lenrone, mo G — kpucmaniozpaghuueckas zpynna.

Joxasamervcmeo. O6osnauum X := G- x, a yepe3 V(X) — pasbueHue mpocTpaHcTsa Ha 00-
jgactn Boponoro orHocutembHO op6uThl X. O6sactb Bopororo V11 TOUKH X €CTh BBITYKJIbBIIH
d-MHOTOTPAaHHUK C KOHEYHBIM YUCJIOM THUIEeprpaHeil. ITO YUCJAO MOXKHO OTPAHUYUTH CBEPXY
B TepMHUHax napaMeTpos » 1 R. [Toatomy rpymnmna cummerpuii MHOTOTpaHHUKA V  KOHewyHa, 6oJee
TOTO, ee TOPSIJIOK MOKeT ObITb OIPAaHWYEH B 3aBUCUMOCTHU OT 7 U R.

Tak kax rpynna G geiictByer Ha X TPaH3UTUBHO, TO U HA MHOKECTBE MHOrOTpaHHUKOB (06-
nacreii BopoHoro) aeiictByer TpansutuBHO. I'pytina paséuenns cobnajaer ¢ rpymmoii Sym(X)
muozxectBa X: Sym(X) o G. Ecau Touka X He sSIBJISIETCSI HETOBISKHOI HU JIJisI KAKOTO JIBUYKE-
nust u3 G, to ob6jactb Boponoro sBisiercss GpyHIaMEHTATbHONU 00J1aCThIO, KOTOPask KOMIIAKTHA
(ycaoBue 2 kpucramiorpadudeckoil TpyIbl BbimosHeHo). [lajee, st TPOU3BOJIBHO BbIOPaH-
HOI TOYKM X' BHYTPH WJIM Ha IPaHulle 3aMKHyTOll o6sactu Boponoro V ee opbura Gyner auc-
kperra (yciosue 1 B onpeaenenun Kpucraaiorpapuyeckoi 061acTu).

IIyctb crabumsatop Stab(x) Touxku x B rpynmne G ne tpusuanen. Tak kak Stab(x) c G, To
rpynma Stab (x) Bmecte ¢ pas6uenmnem V(X) ocrap/sger MHBapHaHTHON 061aCTh V. C IEHTPOM X.
[Toatomy crabuimsatop koneueH. DynjgamMeHTasbHasg o6aacTh rpyminbl G — 3To 10A06J1aCTh
MHororpanuuka. ChegoBaresbHo, yHAaMeHTaJdbHas o6JacTh rpymibl G KommakTHa. Opou-
ta G-x' mo6oii Touknm x' TepecekaeTcs ¢ Kaxaoi o6mactbio Boponoro V. gwmib 1o Ko-
HEYHOMY MHOKecTBY, TO ecTb G -x pauckperHa. Mrak, G — kpucramiorpadpuueckas rpyiia.
JleMmma mokasaHa. O
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ITo ntemme S5 st mo6oro i € [1, m] nx € Y, mHOXecTBO Y, = G-x. [loatomy, 4To6b! 10 TeMMe 6
JIoKa3aTb Kpucrajuaorpadguutoctb rpynmbl G, AOCTaTOYHO JOKa3aTb, YTO Y, €CTb MHOXECTBO
Jlenone.

Jemma 6. B pasbuenuu X = HiYi cpedu muosxecms Y;, i € [1,m], xoms 661 00no sersemcs
MHOKecmeom [lesoHe.

/lokazamenvcmeo. 3ameTnM, 4To Tak Kak X ecTh MHOXecTBO [lemone ¢ mapamerpamu 7 n R,
m000e ero MoJMHOXKECTBO Y, TaKKe y/I0BJIETBOPSET YCIOBUIO 7.

[Tpearnosnoxum, 4To MHOKECTBO Y, He Y/IOBJIETBOPSIeT BTOPOMY YCJIOBUIO HU IIPU KaKOM KOHEY-
HOM R'. B artom cuyuae cymiectByeT GeCKOHEUHasi 1OCJIeI0BAaTeNbHOCTD mapoB B, B,,...,B,,...
¢ HeOrpaHU4YeHHO pacTyumMu paauycamun R, <R, <...< R, <... > o0, IIyCTbIX OT TOYeK U3 Y.
Tax kak MHOXXeCTBO Y, JMCKPETHO, TO KaK/IbII U3 9THX MIapoB B, MOXHO CIBUHYTb TaK, YTOODI
Ha ero rpaHuile oKasajach HeKoTopas Touka X, € Y;. Tak Kak Bce TOYKH X, € Y, IpHUHAa/Je-
xkar G-opOuTe, TO TEpeBe/IeM Kaxk/yIo TOUYKY X, BMecTe ¢ mapoM B, msomerpueii f, € Sym(X).
Takum 06pa3oM, MOKHO CYMTATh, YTO JJIs KakA0oro R =1,2,... TOYKa X JI€KUT HA TPAHUIE
ImycToro mapa paauyca R,. Byzem no-npesknemy o6o3nadarh aTH mapbl dyepe3 B,. O6o3Haunm
yepes 7, e[UHUYHbII BEKTOP, OTJIOXKEHHDI U3 TOUKU X, HAallpaBJIeHHbII 0 pajunycy mapa B,. 13
MOCJIEI0BATEIbHOCTH {1,} BBIOEPEM CXOJSIIYIOCS TOAMOCTEA0BATETBHOCTD ny, = n.

Oo6o3naunm yepes Il runepniockocTb, MPOXOAANIYIO Yepe3 TOYKY X TMepIeHANKYJISIPHO HOP-
Maju n, a yepe3 I1° TO U3 JABYX OTKPBITBIX IOJYIIPOCTPAHCTB, B KOTOPOE CMOTPUT HOPMAJIb 7.
[ToaynpoctparcrBo IT° He cofepXuT HU oxHON Touku u3 Y,. [leiicTBUTEIbHO, 1JIsT JIOGOI
dbukcupoBanHoit Toukr z € [1" B MO/IOC/IE0BATENBHOCTH APOB ¢ HEOTPAHUYEHHO YBETMUNBA-
IOIIUMUCS pajilycaMu Halijiercs map B, , KOTOPblil COEePKUT TOUYKY Z. A ITOCKOJIbKY BCe IIapbl
IIyCTbI OT TOYeK u3 Y;, 10 z ¢ Y,. !

Wrak, Bce Toukn u3 Y, Jexar B 3aMKHYTOM Tosyripoctpanctse [17. Mbl He HCKJI0O4aeM, 4TO
BCe TOYKHM U3 Y; MOryT Jjexarb Ha camoil runepisockoctu II. Tak kak X ectb MHOkecTBO /[le-
JioHe, TO TmoJiyrpoctpancTBo I1° Hemycto oT Touek u3 X.

Hnst kaxxporo j €[1,m], j#1i, u toukn x € Y, BbiGepeM TOUKY 2z € Y, 6JIKANIIYIO K X. 3ame-
THM, YTO B CUJTy TOTO, uTo X — MHOKecTBO /lesioHe, GimKailiime TOYKK K X CYIIECTBYIOT, BOOOIIE
TOBOPSI, MX MOXKET ObITh HECKOJIBKO, HO KOoHewHOe unc/o. Ilycrs munmmym |xz| = 8. Ouesno,
YTO B CHJIy TPAH3UTUBHON rpynmbl G 3TOT MUHUMYM He 3aBUCHT OT BbIOOpa TOYKH X € Y;: /s

apyroii Toukn x' € Y; Haiinercsa Touka 2z’ € Y, ¢ ycjouem lx'z'| = |xz| = 9. fcno, uro §,; =39
O6o3HaunM 81’ = max 81
Jjell,m],j=i

Pacemorpum mtockocts I+ 8;n. Tak kak ay1a kaxoro j, j # i, a aas mo6oro z € X, 6amkaii-
mas K zZ TOYKa U3 Y; y/ajeHa He jajee 4eM Ha ,, TO BCe MHOXKECTBO X JIEKHUT B IIOJIyIIPOCTPAH-
crBe (IT+ §;n)", uro mporuBopeunt yciosuio (R) muokectBa [lesone. Jlemma joka3aHa. O

Onupasich Ha JOKa3aHHbIe JIEMMbI, JejaeM BbIBOA: MHOxecTBo X ¢ ycaousmu (1) u (1)
teopembl 1 MokHO mpejcTaButh Kak X =G-x, UG- -x,U...0UG-x,, Tie G — Kpucrajjiorpa-
dbuueckas rpynmmau G-x; =Y, i €[1,m]. Takum o6pazom, X — 3TO KPUCTAJLT U3 M TPABUJIH-

1

HBIX cucteM = opout. Teopema /1oKasaHa.

3. [loka3aTeabCTBO TeopeMbl 7

OrmernM, 4TO MBI He TpeGyeM 3/ech BbimoJHeHNst paBeHcTBa N (p) = 1. Bosee Toro, He Tipe/-
nosiaraeM jaxke, 4to X — MHOKECTBO KOHEYHOTO THUIIA.

Pacemorpum TouKy X € X U ONpEAeSuM [/l Hee CReKMp PACCMOSHULL KaK YIIOPSIIOYEHHOE 110
BO3PACTAHUIO MHOKECTBO TOJIOKUTEBHBIX YHCEN Takoe, 4To Re .= {p € R, | 3y € X xy |= p}.

B cuny yenosust (r) cnekrp paccrosinuii (it 11060 gaHHON TOYKM 3 X) €CTh CTPOro BO3-
pacTaoias MOCACAOBATETbHOCTD  {Py,Pos- s Pir---ty Piy < P;, CXOAAMAACA K OECKOHEUHOCTH.
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Opmnako oObeuHenre Takux crekTpoB Re, (1o Bcem toukam x € X) UCKPETHO TOT/IA U TOJBKO
torjaa, korga X — MHOXKECTBO KOHEYHOTO THIIA, YTO, HAIIOMHUM, He 00yCJIOBJIEHO B TeopeMme 7.

PaccMorpum 71 JaHHON TOYKH X, CIIEKTP RexO= {p,} W moKakeM aHTHUTIOAATBHOCTH KJIACTEPOB
Cx0 (p;) mnpykimeii o unzgekcy i. Ilyerp yoke st Bcex @ < k JI0Ka3aHo, 4TO p,-KJIACTEPHI Cx0 (p,)
TOYEK aHTHUIIOAATbHBI. 3aMETHM, YTO TaK KaK MO YCJOBUIO TeopeMbl 2R-Kjactep J0O0H TOUKN
AHTUTIOAATIEH, TO MOXKHO CYUTATh, YTO P, = 2R, a cjexyfonmii 3JeMeHT p,,, € Re,, yXe cTporo
Gouibiie 2R. YcTaHOBUM aHTUIOAAJIBHOCTD P, -KJIacTepa CxO (Ppat) -

Jlns mpoctoThl ob6o3HavyeHWit Oy/leM CUYUTATh,
yro X, = O, TO ecTb IEHTP KJacTepa COBIIA/IAET
¢ HavaiaoM O koopauHaT. VTak, paccMOTpPUM KJia-
crep C,(p,,;), B KOTOPOM uMeercst Touka (Xotst bl

B — ]
// /u ‘\ onna) x, Takas, uro |Ox,|=p,,, > p, = 2R.
To® /2
/

O6osnaunm wepe3 B,(R) map paanyca R Takoii,
YTO OH KACAETCSI TOYKHU X, U [IEHTP Z €T0 JIEKUT Ha OT-
TZs* 0 23] peske [0x,], a wepe3 B,(2R) — map h(B.(R)), rze
\ / h — TOMOTETHsI ¢ IIEHTPOM B X, 1 ¢ KO3 dUIHEHTOM
I 2 (puc. 3). Oueuano, uro mapet B,(R) n B,(2R)
e KacatoTcsi rpanndyHoil cepnt mapa B,(p,,,). Tak
Kak P, > 2R, uenrp z' Goibliero mapa Takke Je-
UT Ha oTpeske [Ox,]. IloaTromy mmeem nocsenoBa-
tesbhbie Baoxkenus: B,(R) < B,(2R) < B,(p,,,).

Puc. 3 Bonee Toro, Bech miap BZ,(ZR) 3a UCKJIIOUYEeHHEM
TOYKH X,, JIEKUT CTPOro BHYTpH mmapa B,(p).

ITo ycaosuio (R) map B,(R) moMuMO X, COAEPXKHUT, 10 KpaiiHeil Mepe, elle OJHY TOUYKY

x, € X: x, € B,(R). fcHo, ut0

| 2,2, < 2R. (6)
Knacrep C, (2R) 10 yc/10BHIO T€OPEMbl aHTUIIO/AICH OTHOCUTEJIBHO €I LEHTPA X), a B CH-
ny Hepasenctsa (6) x; € C, (2R). lloaToMy 1 aHTHIIOANBHAS TOYKE X, OTHOCHTENBHO X, TOUKA Xy

X, +

x .
(x, :TS) TaKKe [PUHAJJIEKNUT sz(ZR)‘ C JApyroil CTOPOHbBI, JIETKO BHETH, 4YTO

x5 € B,(2R) u x,; # x,. Hoartomy |x,0| < |x,0| = p,,,. Ananoruuno nmeem |x,0| < p,.,.

Urak, o6e Touku X, u X, npuHajiexar kiaacrepy C,(p,), KOTOPbIA 10 MPEAION0KEHUIO
MH/YKIINN aHTUIo/aaeH oTHocutesbHO O. IloaToMy aHTHNOAA/IbHBIE OTHOCUTEIBHO IIEHTPA 3TO-
ro KJacrtepa TOYKM —X, U —X; Takxe npuHajiaexar kuaacrepy C,(p,). fcHo, uTo TOuka —x,
IIPUHA/JIEKUT KJIacTepy C%Z(ZR). Tak xak C__ (2R) TakiKe aHTUIIOJAJEH OTHOCUTEIBHO —X,,
TO TOUKA —X; UMeeT B KJacTepe C,x2(2R) CUMMETPHYHYIO TOYKY, KOTOpasi, KakK JIeTKO BHU/IETb,
CUMMeTpUYHA TouKe X, oTHocuTesabHO O. Taxmm ob6pasom, B kiacrepe C,(p,,;) Kakaas Touka
x, Takas, uto | x,0 |= p,,,, MIMEET AHTUIIOJAJIbHYIO TOUKY —%,. Takum 06pa3oM, J0Ka3aHo, 4TO
ecn C,(p,) aurumoganen, to C,(p,,,) Takxe antunojgatex. Teopema 7 nokasana.

4. [loka3aTeabCTBO TeopeMbl 8

Wtax, Mbl peinoiaraeM, 4to Bce 2R-Kaactepbl B X 1IEHTPAJIbHO CUMMETPHYHBI U, 60Jiee TOTO,
Bce 2R-kyactepbl aKkBuUBasienTHbI. 3adukcupyem x € X, Ha3oBeM TOuKy x' € X t-akeusanrenm-
HOU TOYKE X, €CJU CYNIECTBYeT TaKas IOCJIEI0BATETBHOCTD TOYEK X, = X,X,,...,X, = &' € X,
X+ Xy

5 e X u, 6ogee ToOrO,

4yTOo Y, =

X Nlxx,  1=4{x, 2,9}, |xiyi|£2R, ie[l,n-1]. 7)
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3ametum, ut0 X, ¥, € C, (2R). O603naunm yepes X, K1acc BCEX TOUEK, {-OKBUBAJIEHTHDIX X.
HaszoseM omnucaHHyio 1OCJIe/10BaTeIbHOCTD {-4enouKot ¢ HauajoM B X.

Jlemma 7. Kaacc X, awmunodanen omuocumenvno aoboi mouku x' € X, , a maxxe 110601
mouku y, ¢ ycaosuem (7).

/loxazamenvcmeo. 1lo Teopeme 7 TeHTpaJbHAsg CUMMETpUs T, B Touke x' € X TepeBOIUT
X B ce6s. Tlpu artom, ecim x' € X, To mo6ast t-1€MOYKa, HAYMHAIOMASCS B X', TMEPEXOANT
‘xi + xi+1

2
peBoAuT JM06YI0 {-1eMOYKY ¢ HAuaJoM B X, B {-IEIIOYKY C HAYAJOM B X,,,, TaK KakK XX, € X,
a t-1ernovyKaMu, HAYMHAOMUMUCS B JI060H Touke Kjacca X, JOCTUTAIOTCS Bce TOUKM n3 X,
1 TOJIBKO u3 X . O

Jemma 8. Kaacc X, aeasemcsa mnoxecmeon [lesone ¢ napamempom R, npuvem R < 2R, z2de
R u R — paduycot noxpvimus ors mnoxecms X, u X, coomeemcmeenio.

Jloxasamenncmeo. 3aMeTiM, uTo 3HauenHne R ABJAETCA PaiycoM TIOKPHITHS MHOKecTBa X, TOT/Ia
¥ TOJIBKO TOTJIa, KOTJIa /Ui Kavkzioit Toukn x' € X, moGoil map paauyca R, comepsKarmii Touky x'
Ha cBoell TpaHmIle, KpoMe Hee COZIEPXKUT elle XoTs Obl ofiHy TouKy y u3 X . Muoxecrtso X nmeer pa-
mnyc R mokpbitug. PaccMoTpuM ITPOM3BOJIBHBIN TTAp, Kacaommuiics Toukn X. OH COAepKUT TIOMUMO
Hee 110 Kpaiineii Mepe eme oany Touky y € X. Tak kak |xy| < 2R, 1o y € C,(2R) c X. BosbMeM
Terepb Iap paaumyca 2R, KOTOPBIH MO-TIPEeKHEMY KacaeTcs TOUYKU X ¥ I[EHTP KOTOPOTO JIEXKUT Ha

TOM JK€ Jy4de, 4TO 1 Hpe[[bll[yu[ﬂfl map. On COIEPIKUT TOUKY X, € X , CAHMMETPpHUYHYIO TOYKE X OT-

B aHTHIOJAJIbHYIO LENOYKY ¢ TeM ke HadanoM. CUMMETpus B TOYKe T,, L€ Y; = , T1e-
1

Xt 6 6oii D)
HOCHUTEJHHO TOYKH ¥, TO €CTh Y 5 TaxmmM 06pas3oM, 0KaszaHo, 4To 060N map paanyca 2R,

Kacaloluiicst TOUKK X u3 X, COAEPIKUT APYTHe TOYKU U3 3TOro Kiacca. Jlemma jiokasaHa. O

Jemma 9. Kaace X ecmo peuemxa u 1106as mpancasyus 3mot peuemxu ecmy mpancisiyust
6cezo muoxecmea X.

Jloxasamevcmeo. Muosxkectso X, siBJsieTcss MHOKecTBoM JleJione ¢ mapamerpamu 7,R , Tak Kak
r2rBeury X, c X u R < R < 2R 1o jemme 8.

ITokaskeM, 4To JUIS KaXK/0i Tapbl Touek X,x' € X CyllecTByeT mapaJie/bHblil IepeHoc ¢, sSB-
Jsmomuiicss cuMMerpueii kinacca X takoit, uro x +t =x', X, +t=X,.

X

PaccMoTpuM 1enouky {x = x,,...,x = X,} ¥ M0CJeI0BATETBHOCTD IEHTPATHHBIX CUMMETPUN T,
X, +X;
2
KaXk/1asg U3 3TUX CUMMeTPHil ecTb CUMMeTpHsl Bcero MHOXKecTBa X, a B CHJIy JIeMMbl 7 3TO €CTb
cummerpus kiacca X . IlocpescTBoM cynepriosuiiny f CMMMETPHIl T, MOXXHO OTOGPa3nuTh X B X'.
Ecam uncno cumMMeTpuii, BXOASIMINX B CYNEPHO3UINIO, HEYETHO, TO MOKHO J0OABUTb K CyIep-
TO3UINN eTle OJIHY CUMMeTpUIo T,. Toraa f aBisercs mapaieJbHbIM TTepeHocoM. MbI TTOJIydnM

napaJiiesibHbIi TiepeHoc [ Takoit, uro f: x + ¢ = x'; X+t= X, X+t=X.

Tak kak kaacc X ABISeTCS AMCKPETHBIM MHOMECTBOM, Ha KOTOPOM TPYIIA TapaJijie/bHbIX
[IePEHOCOB JICHCTBYET TPAH3UTUBHO, TO X SBJSETCS PEUICTKON. m

Jemma 10. IIycmv z € X\X , mozda cywecmsyem usomempus g maxas, 4mo §:XxX > z
ug X > X

Joxasamenvcmso. Tax kak N(2R) =1, To cyuecrtByer ABUKEHHE ¢, KOTOpOe HEpeBOAUT 2R-
kiaacrep C (2R) B axBuBaznentHoiii kiaacrep C(2R). Tlokaxem, uro ¢g: X, — X,. Paccvorpum
x' e X, nokaxkem, uro ¢g(x') € X,. JIjs 3TOr0 mOCTPOUM (-IEMOUKY {X; = X, X,,..., %, = X'} < X,

B TOUKAX ¥; = ¢ ycaosueM (7), a Takyke CUMMETPUIO T, B TOYKe x. B cuuy teopembr 7

X, + X,

CBSI3BIBAIONIYIO X ¢ x'. PaccMOTpUM TOUKY ¥y, = ¢ yciosuem (7). SIcuo, uto y, € C,(2R).

V3omerpusi g nepeBOJUT TOUKY ¥, B HEKOTOpYIo Touky yie C,(2R). Orpesok [zy,], kax u orpe-
30K [xy,], myct BHYyTpH OT TOoUek u3 X.
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Paccmorpum ksacrep Cy;(ZR). Tak Kak OH IIEeHTPAJbHO CUMMETPUYEH, TO CYIIECTBYET TOUKA

z,+z

z, € C, < X raKas, uTo Y = 2. §IcHo, 4TO MO TIOCTPOEHHIO 2, € X,

OG6osnaunm t, = x, —x, u t{ =z, — 2, 3nech z, = z. Torza o nemme 9

sz (2R) = CX1(2R) +t u CZ2 (2R) = CZ1 (2R) +1t. (8)
C npyroii cTOpOHbBI, UMEEM
g(Cj62 (2R)) = g(Cx1 (2R) +t) = C, (2R) + ¢(t,) = C, (2R) +¢/. 9)

13z (8) u (9) sbrrekaer, uto g(C, (2R)) =C, QR) +t{ = C, (2R).
ITH PacCysKACHUA MOKHO IPUMEHNTD K Kinactepy C, (2R). [lnst atoro o6o3HaumM t, := Xy — X,
u t, = z; — z,. Coornommenue (9) nepenucbBaeTcss Kak

g(CxB(ZR)) = g(Cx2 (2R) +t,)) = C, (2R) + g(t,) = C, (2R) +t, = C, (2R). (10)

[ToBTOpSIsT 9TH pacCysKAeHUsT TPU TPOABMKEHUH BJOJb (-IEMOYKH {X,...,x'}, TOaydaeM JJist

x'e X, uro g(x') =z € X,. Bosee toro, g oro6pakaer kaxkayio Touky x' € X, B 2’ € X, BMe-
cre ¢ ee p-kjaacrtepoM Bo BceM MHOXecTBe X: g(C,(2R)) = C,(2R). Iloatomy

g U,y C.Q2R) > U, C,(2R). (11)
C npyroil croponbl, B cumiay Jemmbl 8 2R-oxkpecTHOCTH ToueK U3 X, 00pasyioT IOKPbITHE:
U,y B.(2R) = R’. CienoBarennio, o6bemnenne 2R-KIacTepoB BCex Touek u3 X, uin us X,

cosmagaer ¢ X: U, ¢ C.Q2R)=u,  C,(2R) = X.
[Toatomy us (11) caeayer, uro g: X — X. O
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CRYSTAL CRITERION AND ANTIPODAL DELAUNAY SETS
N. P. Dolbilin

It is proved that a discrete set of points repeatability local configurations under certain condi-
tions implies the so-called «global orders, which includes the presence of a plurality of crystal-
lographic symmetry group. It is also proved that the set of Delaunay, in which all 2R-clusters
are antipodal, that is centrally symmetric, is itself a centrally symmetric with respect to each of
its points. Moreover, if in addition to this cluster are identical, then the set is correct, i. e. its
symmetry group acts transitively.

This article based on a lecture delivered at the International Conference «Quantum topology»
(5-17 July 2014), organized by the Laboratory of Quantum Topology of Chelyabinsk State University.

Keywords: Delaunay set, cluster, the right system, crystallographic group.
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TEOMETPUYECKHE NNPEJCTABJIEHUA
JAJII YETHBIX KYBUJIAIUU

dD. I'. Kopabaés

s mo6oit YeTHON KyOUIAIUN 3aMKHYTOTO TPEXMEPHOTO MHOT000pasusi CTPOUTCS IMpeACTaBJIe-
Hue ero (pyH/JaMeHTATbHON TPYIINbI B CUMMETPUYECKYIO TPyIiy crerienn 6. Boruncrsiioress o6pasbpi
TaKUX MPEJCTABJIEHUI IJI BCeX YeTHBIX KyOUJIAII caokHoCTH 1.

KioueBble coBa: xyounsyus, MHozoobpasue, pynoamenmaivnas pynnd, npeocmasienue, Cum-
MempudecKas epynnd.

1. IlpeaBapurebHbIE CBEAEHHUS

| Kybunsuuei 3aMKHYTOrO OPHUEHTHPYEMOTO TPEXMEPHOTO MHOTr006-
pas3usl Has3blBaeTcsl ero IIpe/iCTaBjeHue B BUJE pe3yJibTaTa IOIapHOI
CKJIEHIKY TpaHeil HeCKOJbKUX KyOoB. Ilon croxnocmvio Kyoumsimu Gy-
JleM TIOHUMaThb 4ucyo Ky6oB B Heil. Kaxk/piii ky6 ky6ussiun C MHOTO-
o6pasusi M paspesaercss TpeMs TIOTapHO MePIEeHANKYISPHbIMU AUCKAMU
Ha 8 ky6os (puc. 1). B pesy/ibrate nomapHoii ckJeliku rpaneii Ky6os
9TU JUCKU CKJIEUBAIOTCA B MOJUAP S, KOTOPbHII AB/AETCA IIOBEPXHO-
CTBIO C caMollepecedeHusIMI, TIOTPyKeHHol B MHOTOOOpasue M. Byaem
TOBOPHTD, YTO 3TOT momap S, u Kybusamus C deolicmeentot.

Onpeneaenue 1. /[Bymepnbiii mommsap P HasbiBaeTcst C-crieliMaJbHBIM, €CJIM OH Y/IOBJIETBO-
pSeT CJAeAYIONM YCAOBUSIM.

Puc. 1. Pas6uenue xyba

1. Kaxxpast Touka x € P uMeeT OKPeCTHOCTh OZHOIO U3 cjeAyomux Tpex Tunos (puc. 2).

2. O6beanHeHnEe MHOKECTBA TOYEK TI€PBOrO THUIIA ABJIAETCS HAGOPOM OTKPBITHIX JUCKOB, KO-
TOPbIE HA3bIBAIOTCS 2-KOMNOHEHIAMU.

3. O0beanHeHne MHOXKECTBA TOYEK BTOPOTO THUIA ABJSETCS HAaGOPOM OTKPBITHIX WHTEPBAJIOB,
KOTOPbIE HA3bIBAIOTCS YCTNGEPHOIMU JUHUSAMIU.

P a4 %

Puc. 2. Tpu muna oxpecmunocmeti mouxu ¢ C-cneyuaivnom noaudope

Touku, UMeoIIIe OKPECTHOCTD TPETHETO TUTIA, HA3BIBAIOTCS KYOUUCCKUMU BePULUHAMU, & OOD-
e/INHEHNEe YETBEPHBIX JIMHUHA M KyOWMYeCKUX BepiirH C-CIENUaJbHOrO Mojmsapa P — ocobvim
2pacghom 3TOTO TOTMA/IPA.

[TousaTre C-ClIenua bHOTO MOINPa aHAJOTHYHO HOHATHUIO crienuanbHoro moausapa (em. [1]).
Otriuune COCTOMT B TOM, YTO CHEIMAJIbHbIE MOJUIIPbI 33JAI0T TPUAHTYJISIIMN MHOro06pasuii
(B o6mieM ciydae CHHTYJISIpHBIE), a C-CllelnaIbHbIe TOJUdAPbI — KyOUJISIINN,

Omnpenenenue 2. C-crieluaJbHBIN TOMM3/P P Ha3bIBaeTCS ymoauldeMvim, eCJu CyIecTByeT
Takas Kyonsausa C 3aMKHYyTOro MHOoroo6pasust M, 4to nommasap P romeoMopdeH TOMusapy S..

" Pa6ora BbimosHena npu mojjepikke rpanta POM®U (mpoextr Ne 14-01-00441) u rpaHTa MOJOIEKHBIX TPOEKTOB
(Ne 14-1-HIT-17)
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OtMeTuM, uTO KaXK/1blil yTOJIIaeMblil C-crieliaabHblil OJIUd/IP OJHO3HAYHO 3a/laeT 3aMKHYTOe
TpexMepHOe MHOTooOpasne, KOTOpoe OTBeYaeT KyOUJISINN, TBONCTBEHHOW 3TOMY TOJUS/IPY .

Omnpepaenenne 3. C-criena bHBIN MOTMAP P HA3bIBAETCS 4eMHbLM, €CJIA BCE €r0 2-KOMIIOHEH-
TBI SBJSIOTCSI MHOTOYTOJbHIUKAMU C YeTHBIM YHCJOM CTOPOH.

B pa6ote [2] Py6unmTeiin mpeaoXua crocob s KaKJIOH TPUAHTYJISIIMA MHOTOOOpPa3us,
B KOTOPOII Kask/10e pe6po NMPUMBIKAET K YeTHOMY YUCJY TETPA3APOB, TIOCTPOECHUS TIPE/CTABICHNUS
ero (OyHJaMeHTaJbHOI IPYIIBI B IPYIILY TOACTaHOBOK S,. Hacrosmas paboTa mocBsiieHa nusy-
YeHWIO aHAJOTUYHBIX Tpe/icTaBIeHnit (hyH/aMeHTaIbHBIX TPy YE€THBIX YTOJIMIAaeMbiX C-Crielu-
AJBHBIX TOJIM3/IPOB B CHMMeTpHueckyio rpymnmy S,. Taxkue mpejcraBienns Mbl Oy/ZieM Ha3bIBaTbh
eeomempuyeckumu. Paszes 2 MOCBAIIEH ONMCAHUIO T€OMETPUYECKUX TIPEICTABICHUI /IS corydast
YeTHBIX KyOussdmmii. Pasmesn 3 cofepKUT pe3yabTaThl SKCIIEPUMEHTA 10 BBIYNCACHUIO TeOMEeTPH-
YeCKUX MPEICTABJICHWI [T YeTHBIX KYyOUJISIHii Ca0KHOCTH 1.

2. TeoMeTpuyecKkue Npe/CTaBICHUS

ITycts P — C-criennaJibHbIi OJMU3P, U IyCTb v — BeplinHa ero ocoboro rpada G,. Okpect-
HOCTH BepumnHbl v B rpade G, COCTOMT U3 MeCTu YT dy,d;,d,,ds,d; W d;. e ayru a; u a;
Gy/ieM Ha3bIBaTbh COCEOHUMU, €CIU B OKPECTHOCTH BEPIIMHBI ¥ B TMOJM3Ape P OHU WHITH/IEHTHBI
OHOMY IUCKYy. B mporuBHOM cirydaem aTh Iyru OyjieM Ha3blBaTb NPOMUGONONOKHbIMU. Pac-
Kpackol BepIINHbI v HasbiBaercs Ouexius col :{a,,a,,a, a,,a;,a5} —{0,1,2,3,4,5}, a uucaa
0,1,...,5 ecTecTBEHHO Ha3bIBATh UBEMAMU.

a; b’L HyCTb 0, — [1B€ BEpLINHbI rpa(ba GP’ NHIN/IEHTHDbIE

a \< j b OJHOMY peépy e. OrmmeM nponenypy nepernocd paCKpacKmn

1 col BepHIMHbI © BAOJIb peépa e. PaCKpaCKa col , BEPHIMHDI
Qo e bO w v w

v W TIOJIYYaeTcsl CJEeIYIONMM 06pa3oM: IyCTb OKPECTHOCTD

BepumHbl v B Tpade G, COCTOUT U3 ayr 4, ..., ds, @ OKPecT-
HOCTb BepimHbl @ B rpade G, cocrout us ayr b,...,bs
Jlns onipezteterHOCTH Gy/IeM CUNTATb, 4TO d,,b, C e, peOpo @, IPOTUBOIOJIOKHO pebpy @, a ayra b,
nporusomnosoxka ayre by. Ioxoxum col (b)) = col (a,) u col (b,) = col (a,). danee, ecru ayra b,
coce/THsIst ¢ iyroii b, To mostoxuM col (b,) = col (@), e a, — Takast jyra, 9T0 B OKPECTHOCTH pe6pa
e B osmazipe P nyru a,, a;,b, u b, nnnugentasr ogpoMy jucky (puc. 3).

[lycrb v, — ukcuposanuas Bepinta rpada G,. [locrpounm orobpaskenne R, : m,(P,v,) — S;.
IIyctb Y — ety ¢ HavyasoM M KOHIIOM B BepimHe ;. C TOUHOCTBIO IO TOMOTOMHI MOXKHO CYHUTATD,
4TO 3TA TIET/IA Y IPoXoauT 110 pebpam rpada G,. BoibepeM HEKOTOPYIO pacKpacKy colvo 1 BBITIOJTHAM
T10CJIe/IOBATEIbHBII TTEPEHOC 9TON PACKPACKH BJI0JIb pebep, COCTaBJSIONMX metso y. [Tomyunm Ho-
BYIO PACKPacKy col'vo Bepimibl 0. O6pasom R, (y) sBisieTcst GUEKIHsT MexK/y 06pa3aMi PACKPACOK
colvo u col'vo, KOTOPYIO MOKHO OTOXK/IECTBHUTD C IIEPECTAHOBKOIl M3 CUMMETPUYECKOIl Tpynibl S;.

Teopema 1. ITycmo P — uemnwiii ymoauwjaemoiti C-cneyuaivrolii noausdp. Tozda omobpaxe-
Hue R, A615emcs Koppexmuo onpedesennvim npedcmasrenuem epynnot ©,(P,v,) 6 epynny S.

/loxasamenvcmeo. JlocTaTOUHO MTPOBEPUTD, UTO €CJN Y — IIyTh 0 peGpam oco6oro rpada G,
noymaszipa P, HaunHaomuiics 1 3aKaHYNBAIONIMICS B BEPIIMHE ¥, 1 OPAHMYMBAIONINIL AUCK D,
10 06pa3 R, (y) sSIBISETCS] TPUBUATBHBIM HJIEMEHTOM B S,.

Puc. 3. Ilepenoc packpacku 6donw pebpa

[Tyctob colvo — HeKOoTOpasl pacKpacka BepIIUHbl 0,
r
, U TyCTb pacKpacka colvo MoJyyaercss M3 Hee MEPEeHOCOM
7/
a\\,” vy Boab mytu y. Ilycrtb oxpecrHocTh Bepmunbl v, B rpade
a5 T G, cocrouT us Ayr d,...,ds. Jna onpegesneHHoctu Oyjem
as cuuTaTh, 4TO dy,d; C Y, Ayra @, IPOTUBOIOJOXKHA Ayre d,

¥ J[yra d, mpoTuBonosoxua jyre a, (puc. 4). ITokaxem, 4to
Puc. 4 col, (@) = col, (@), i=0,1,...,5.
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Tax kax myTb y cocTonT M3 "eTHOTO "ncIa pebep, o col, (a,) = col, (a,) n col, (a,) = col’, (a,).
Taxoke 3aMeTUM, YTO TIPU MEPEHOCE PACKPACKH BJOJIb JI060ro peGpa IBeTa MPOTHBOMOIOKHbBIX
ayr coxpansiorest. Crenosatenbo, col, (a,) = col, (a,) u col, (a;) = col’, (a;). Hakonen, Tax kax
110JMa/p P yToJIiaeM, To Ipu mepeHoce PacKPacKH [BETa BCEX YT, JIEKAIUX [0 OJHY CTOPOHY
ot aucka D, cosnagaior. Caenosatenbno, col, (a,) = col, (a,) u col, (a;) = col, (ay). O

IIpexncrasaenne R, : n,(P,v,) —> S, HaspiBaercsi zeomempuueckum. OTMETHM, UTO €CJIU BbI-
6patb Apyryto 6asucHyio BepuinHy GyHIaMEHTaIbHON IPYIIbI oausapa P, 1160 BbIOpaTh Apy-
VIO PAacKpacKy aTOi GasuCHON BEPIIMHBI, TO B Pe3yJbTaTe MOJYUUTCS [€OMETPUYECKOE MPel-

CTaBJIeHHE, COIPAKEHHOE C NCXOAHDbIM.

3. T'eomerpuyeckue npeacTaBjeHus, 3aJaHHble KYOWISIUAMI CJI0KHOCTH 1

Bbu1 ipoBeieH aKcIiepuMeHT MO BBIYHCIEHIIO TEOMETPUYECKIX TIPEICTABICHUH /ST YeTHBIX KyOu-
JISIWI CTIOXKHOCTH 1, 33/1al0MuX 3aMKHYTble MHOTooOpasus. Beero takux KyOUJIsImii okazauoch 26.
[l Kask10it 13 HUX ObLI BBIYKC/IEH 06pa3 P reOMeTPUIECKOM TIpe/ICTaBaeHnn (hyHIaMEHTATbHON
IPYIIIbI COOTBETCTBYIOLIEr0 MHOro0Opasus B Ipymity Ss. ITOT o6pa3 oKasascs u30MopgeH:

1) rpynne Z, aus 1 kyOussnm;

2) rpymune Z, ajas 2 KyOuIsiuii;

3) rpymne Zg ans 1 kyGussinm;

4) rpynue /{naapa nopsaka 8 a6 KyOuasamii;

5) TPSAMOMY TPOU3BEICHUIO Z, X Z, s 3 KyOUJISIuii;

6) npAMOMY TPOU3BEAEHUIO Z, X Z, NI 8 KyOuasaiumii;

7) NPSAMOMY TPOUBBEACHUIO Z, X Z, X L, st 4 KyOUJISIINI;

8) mpsiMoMy TipousBejieHnto Z, x A, mist 1 KyOuasimn.
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GEOMETRIC REPRESENTATIONS FOR EVEN CUBILATIONS
Ph. G. Korablev

For each even cubulation of closed 3-manifold we construct the representation of its fundamen-
tal group to the symmetric group of degree 6. Images of such representations for all even cubula-
tions with complexity 1 are calculated.

Keywords: cubulation, manifold, fundamental group,representation, symmetric group.
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A NOTE ON THE UNITARITY PROPERTY
OF THE GASSNER INVARIANT

D. Bar-Natan

We give a 3-page description of the Gassner invariant (or representation) of braids (or pure
braids), along with a description and a proof of its unitarity property.

Keywords: braids, unitarity, Gassner, Burau.

The unitarity of the Gassner representation [1] of the pure braid group was discussed by
many authors (e. g. [2; 3; 4]) and from several points of view, yet without exposing how
utterly simple the formulas turn out to be. Partially this is because the formulas are simplest
when extended a “Gassner invariant” defined on the full braid group, but then it is not a rep-
resentation and it is not unitary. Yet it has an easy “unitarity property”; see below. When the
present author needed quick and easy formulas, he couldn’t find them. This note is written in
order to rectify this situation (but with no discussion of theory). I was heavily influenced by
a similar discussion of the unitarity of the Burau representation in [5. Section 3.1.2].

Let n be a natural number. The braid group B, on n strands is the group with generators o,
for 1<i<n-1, and with relations o,6;, = 5,06, when |i —j| > 1 and o,0,,0, =,,0,0,,, when
1<i<n-2. A standard way to depict braids, namely elements of B, is as follows:

2 4 1)3
b0:G1(5;1(523L/f/(\\
1 2 '3 4

Braids are made of strands that are indexed 1 through n at the bottom. The generator o, de-
notes a positive crossing between the strand at position #i as counted just below the horizon-
tal level of that crossing, and the strand just to its right. Note that with the strands indexed at
the bottom, the two strands participating in a crossing corresponding to o, may have arbitrary
indices, depending on the permutation induced by the braids below the level of that crossing.

Let ¢ be a formal variable and let U,(¢) = U, (¢) denote the n x n identity matrix with its

n;i

11—t 1
2 x 2 block at rows i and i + 1 and columns ¢ and i + 1 replaced by ( ; OJ’ as in the fol-

lowing example:

10 0 00
01 0 00
U,)={0 0 1-¢t 1 0
00 ¢t 00
00 0 01

Let U;'(t) be the inverse of U,(¢); it is the nxn identity matrix with the block at

t _
_J, where ¢ denotes ¢ .

{i,i +1} x{i,i+1} replaced by {(1) {7

" This work was partially supported by NSERC grant RGPIN 262178. The full TeX sources are at http://drorbn.net/
AcademicPensieve/2014-06/UnitarityOfGassner/. Updated less often: arXiv:1406.7632.
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Let b be a braid b = Hizlcjg where the s, are signs and where products are taken from left
to right. Let j, be the index of the “over” strand at crossing #a in b. The Gassner invariant
() of b b is given by A
)= Ui, ).

a=1

It is a Laurent polynomial in n formal variables ¢,,...,¢,, with coefficients in Z.

As an example, for the braids in the Fig. 1, TI'(c,0,6,) =U,&)U,t)U(t,) and
['(c,0,0,) = U,(t,)U,(t)U,(t,)). The equality of these two matrix products constitutes the bulk
of the proof of the well-definedness of I', and the rest is even easier. The verification of this
equality is a routine exercise in 3x 3 matrix multiplication. Impatient readers may find it in
the Mathematica notebook [6] that accompanies this note.

\\ L\
U
1\213 1 2 3

Fig.1. The braids 6,0,0, and 6,6,0,

A second example is the braid b, of the first figure. Here and in [6],
1—t, 1-¢, 1 0
t, 0 0
0 0 O
0 ¢ 0 1-F

') = U,@)U; @)U, () =

Given a permutation t = [t1,...,m] of 1,...,n, let Q(t) be the triangular nxn matrix

(1-t)" 0 0
aw-| 1 T
| | L=t

(diagonal entries (1—t¢;)™", 1’s below the diagonal, 0’s above). Let 1 denote the identity per-
mutation [1,2,...,n]

Theorem 1. Let b be a braid that induces a strand permutation t=[t1,...,wn] (meaning,
the strand indices that appear at the top of b are t1,12,...,wn). Let y =T(b) be the Gassner
invariant of b. Then vy satisfies the “unitarity property”

Oty = 700, (1)
orequivalently, v =Q(1) "7 QO),

where ¥ is y subject to the substitution for all i t; > t,:=t;",and ¥" is the transpose matrix
of v.

Proof. A direct and simple-minded computation proves Equation (1) for b=, and for
b =o;', namely for y=U,t) and for y=U;'(t,,) (impatient readers see [6]), and then,
clearly, using the second form of Equation (1), the statement generalizes to products with all
the intermediate Q(t)"'Q(t) pairs cancelling out nicely. u]

If the Gassner invariant I' is restricted to pure braids, namely to braids that induce the
identity permutation, it becomes multiplicative and then it can be called “the Gassner repre-
sentation” (in general I' can be recast as a homomorphism into M, (Z[t,,t])x S,, where S,

(R

acts on matrices by permuting the variables ¢, appearing in their entries).
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For pure braids Q(t) = Q(1) =: Q and hence by conjugating (in the ¢,—1/¢, sense) and
transposing Equation (1) and replacing y by y™', we find that the theorem also holds if Q is
replaced by Q. Hence, extending the coefficients to C, the theorem also holds if Q is replaced
by ¥ :=iQ—iQ", which is formally Hermitian (¥ = ¥).

If the ts are specialized to complex numbers of unit norm then inversion is the same as
complex conjugation. If also the ¢’s are sufficiently close to 1 and have positive imaginary
parts, then ¥ is dominated by its main diagonal entries, which are real, positive, and large,
and hence W is positive definite and genuinely Hermitian. Thus in that case, the Gassner
representation is unitary in the standard sense of the word, relative to the inner product on
C" defined by Y.

We remark is that the Gassner representation easily extends to a representation of pure
v/w-braids. See e. g. [7. Sections 2.1 and 2.2], where the generators o, are described (they
are not generators of the ordinary pure braid group). Simply set I'(c,,)*' =U;' where U, is

1, 1

the nxn identity matrix with its 2x2 block at rows i and j and columns i and j replaced

1 1-¢
by (0 ; ’j. Yet on v/w-braids T' does not satisfy the unitarity property of this note and I'd

be very surprised if it is at all unitary.
We also remark that there is an alternative form I' for the Gassner representation of pure
v/w-braids, defined by T"(s;;)* = V;;' where V; is the nxn identity matrix with its 2x2 block

ij
1-¢,
0 ¢ ]]. Clearly, U, and V,; are conju-

1

i

at rows 7 and j and columns ¢ and j replaced by {

gate; V;, = DU, D, with D the diagonal matrix whose (i,i) entry is 1-¢, for every i. Hence
on ordinary pure braids and for appropriate values of the ¢;’s (as above), T" is also unitary,
relative to the Hermitian inner product defined by the matrix ¥’ := D"¥D =iD"(Q-Q")D
whose printed form is better avoided (yet it appears at the end of [6]).

References

1. Gassner B.J. On Braid Groups. Ph. D. thesis. New York, New York Univeristy Publ., 1959.

2. Long D.D. On the linear representation of braid groups. Transactions of the American
Mathematical Society, 1989, vol. 311, no. 2, pp. 535-560.

3. Abdulrahim M.N. A faithfulness criterion for the Gassner representation of the pure
braid group. Proceedings of the American Mathematical Society, 1997, vol. 125, no. 35,
pp. 1249—1257.

4. Kirk P., Livingston C., Wang Z. The Gassner representation for string links. Communica-
tions in Contemporary Mathematics, 2001, vol. 3, no. 1, pp. 87—136.

5. Kassel C., Turaev C. Braid Groups. Springer GTM Publ., 2008. DOI: 10.1007/978-0-387-
68548-9.

6. Bar-Natan D. Unitarity Of Gassner Demo.nb. Mathematica noteboook. Available at: http:/
drorbn.net/AcademicPensieve/2014-06/UnitarityOfGassner.

7. Bar-Natan D., Dancso Z. Finite Type Invariants of w-Knotted Objects I: w-Knots and
the Alexander Polynomial. Available at: http://drorbn.net/AcademicPensieve/Projects/ WKO1/
and arXiv:1405.1956.

About the author

Dror Bar-Natan, professor, Department of Mathematics of University of Toronto, Toronto,
Canada. drorbn@math.toronto.edu; www.math.toronto.edu/drorbn.



A note on the unitarity property of the Gassner invariant 25

Bulletin of Chelyabinsk State University. 2015. Ne 3 (358).
Mathematics. Mechanics. Informatics. Issue 17. P. 22—25.

O CBOVICTBE YHUTAPHOCTH NHBAPUAHTA TACCHEPA
A. bBap-Hamann

JlaeTcst TpexcTpaHnuHOE onmcanue Koc (mam uncThix Koc) nuBapuanTa laccuepa (ero mpeacras-
JIEHUS1), a TaKyKe Olpe/leIeHne U J0Ka3aTeIbCTBO €ro CBOWCTBA YHUTAPHOCTH.

KumoueBsie ciaoBa: xoca, ynumapnocmo, I'accnep, bypay.

Cnucok JurepaTypbl

1. Gassner, B. J. On Braid Groups / B. J. Gassner // Ph. D. thesis. — New York : New York
Univeristy, 1959.

2. Long, D. D. On the linear representation of braid groups / D. D. Long // Transactions of
the American Mathematical Society. — 1989. — Vol. 311, Ne 2. — P. 535-560.

3. Abdulrahim, M. N. A faithfulness criterion for the Gassner representation of the pure braid
group / M. N. Abdulrahim // Proceedings of the American Mathematical Society. — 1997. —
Vol. 125, Ne 5. — P. 1249-1257.

4. Kirk, P. The Gassner representation for string links / P. Kirk, C. Livingston, Z. Wang //
Communications in Contemporary Mathematics. — 2001. — Vol. 3, Ne 1. — P. 87-136.

5. Kassel, C. Braid Groups / C. Kassel, V. Turaev. — New York : Springer GTM, 2008.

6. Bar-Natan, D. Unitarity Of Gassner Demo.nb [Jaexrponusiit pecypc] / D. Bar-Natan
// Mathematica noteboook. URL: http:/drorbn.net/AcademicPensieve/2014-06/Unitarity Of-
Gassner.

7. Bar-Natan, D. Finite Type Invariants of w-Knotted Objects I: w-Knots and the Alexander
Polynomial [Dnaekrponnbiii pecypc] / D. Bar-Natan, Z. Dancso. URL: http:/drorbn.net/
AcademicPensieve/Projects/WKO1.

Ceenennst 00 aBTOpe

Bap-Haran [Apop, npodeccop, dakysprer MmaTteMaTuku yHuBepcuteta ToponTto, ToponTo,
Kanasa. drorbn@math.toronto.edu; www.math.toronto.edu/drorbn.



Becmuux Yensbunckozo zocyoapcmsenozo ynusepcumema. 2015. Ne 3 (358).
Mamemamuxa. Mexanuxa. Hugpopmamuxa. Bun. 17. C. 26—40.

YK 515.163
BBK B151.5

QUANTUM INVARIANTS OF 3-MANIFOLDS ARISING
FROM NON-SEMISIMPLE CATEGORIES’

M. De Renzi

This survey article covers some of the results contained in the papers by Costantino, Geer and
Patureau and by Blanchet, Costantino, Geer and Patureau. In the first one the authors construct
two families of Reshetikhin—Turaev-type invariants of 3-manifolds, N, and N, using non-semisi-
mple categories of representations of a quantum version of sl, at a 27-th root of unity with r > 2.
The secondary invariants N! conjecturally extend the original Reshetikhin—Turaev quantum sl,
invariants. The authors also provide a machinery to produce invariants out of more general ribbon
categories which can lack the semisimplicity condition. In the second paper a renormalized version
of N, for » # 0 (mod 4) is extended to a TQFT, and connections with classical invariants such as
the Alexander polynomial and the Reidemeister torsion are found. In particular, it is shown that
the use of richer categories pays off, as these non-semisimple invariants are strictly finer than
the original semisimple ones: indeed they can be used to recover the classification of lens spaces,
which Reshetikhin—Turaev invariants could not always distinguish.

Keywords: g-binomial formula, dilogarithm identity.

1. Modular categories

A (strict) ribbon category C is a (strict) monoidal category equipped with a braiding ¢, a twist
9 and a compatible duality (*,b,d). We will tacitly assume that all the ribbon categories we
consider are strict. The category Rib. of ribbon graphs over C is the ribbon category whose objects
are finite sequences (V,,¢,),...,(V,,g,) where V; e Ob(C) and g, = £1 and whose morphisms are
isotopy classes of C-colored ribbon graphs which are compatible with sources and targets.

Theorem 1. I/ C is a ribbon category then there exists a unique (strict) monoidal functor
F: Rib, — C such that (see Fig. 1):

1) F(V,+1)=V and F(V,-1)=V";

2) F(X, ) =cyyw, Flo,)=9,, F([-1] ) =b, and F(~,) =d,;

3) F(T) =1,

The functor F is the Reshetikhin—Turaev functor associated with C.

®
1% U Vi |7
rN
L'y

Ny v

Fig. 1. Elementary C-colored ribbon graphs

Remark 1. Every i. e. Turaev functor F yields an invariant of framed oriented links colored
with objects of C.

* The author aknowledge support from Fondation Sciences Mathématiques de Paris.
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A ribbon Ab-category is a ribbon category C whose sets of morphisms admit abelian group
structures which make the composition and the tensor product of morphisms into Z-bilinear
maps. Then K:= End.(¥) becomes a commutative ring called the ground ring of C and all
sets of morphisms are naturally endowed with K-module structures (the scalar multiplication
being given by tensor products with elements of K on the left).

An object V e Ob(C) is simple if End(V) ~ K.

Remark 2. We will always suppose that all the ribbon Ab-categories we consider have a
field K for ground ring.

A semisimple category is a ribbon Ab-category C together with a distinguished set of simple
objects T'(C) :={V,}._, such that:

1) there exists 0 e I such that V= }¥;

2) there exists an involution i+ i" of I such that V., ~V;;

3) for all V e Ob(C) there exist i,...,i, € I and maf)s o, :Vij -V, B, :V—> Vi]- such that
id,, = Z::P‘;'Bj (we say that the set T(C) dominates C);

4) for any distinct 4,7 € I we have Hom, (Vi,Vj) =0.

In a semisimple category we have the following results.

Lemma 1. For all V,W € Ob(C):

1) Hom.(V,W) is a finite-dimensional K-vector space;

2) Hom (V,,V) =0 for all but a finite number of ieI;

3) Hom (V,W)~@, Hom.(V,V)) ®, Hom (V,,W) where the inverse isomorphism is
given by f ® gr> gof on direct summands;

4) the K-bilinear pairing Hom. (V,W) ®, Hom.(W,V) - K given by f® g tr.(go[f)
is non-degenerate.

Corollary 1. The quantum dimension of simple objects is non-zero.

Remark 3. Let (f),,...,(f), be a basis for the finite dimensional K-vector space

Hom (V,V,) and let (g,)',...(g)" denote the corresponding basis of Hom.(V,, V) defined
by (), o(g)" =8} -id, , which exists thanks to (iv) of the previous Proposition. Then we
can write

id, = Y Y00 [ o (), ]

iel h,k=1

But now we have & Aidy, = (f), (g) =(f), oid, o (g) =)} -id,,. Therefore

id, = Y3« (f);. (1)

icl j=1

Equation (1) is called the fusion formula.

A premodular category is a semisimple category (C,T'(C)) such that T'(C) is finite. A modu-
lar category is a premodular category (C,T(C) ={V;},.,) such that the matrix S = (F(S,))
with §;; given by Fig. 2 is invertible.

i,jel

Fig. 2. Positive Hopf link colored with V, and V,
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2. The Reshetikhin—Turaev invariants

The construction of Reshetikhin and Turaev associates with every premodular category C
an invariant 1. of 3-manifolds (which will always be assumed to be closed and oriented) pro-
vided C satisfies some non-degeneracy condition. Let us outline the general procedure in this
context: let C be a premodular category, let F: Rib. — C be the associated i. e. Turaev functor
and let Q be the associated Kirby color

Q= > dimc(W)-W.
Wer(C)

It is known that every 3-manifold M” can be obtained by surgery along some framed link L
inside S* (we write S?(L) for the result of this operation) and that two framed links yield the
same 3-manifold if and only if they can be related by a finite sequence of Kirby moves. There-
fore, in order to find an invariant of 3-manifolds, we can look for an invariant of framed links
which remains unchanged under Kirby moves. For example let L < S° be a framed link giving
a surgery presentation for M* and let L(Q) denote the C-colored ribbon graph obtained by
assigning to each component an arbitrary orientation and the Kirby color Q. Then by evaluat-
ing F on L(Q) we get a number in K and, thanks to the closure (up to isomorphism) of T'(C)
under duality, we can prove that F(L(Q)) is actually independent of the chosen orientation
for L. Therefore we have a number F(L(Q)) € K which depends only on the link L giving a
surgery presentation for M. Let us see its behaviour under Kirby moves.

Proposition 1. [Slide]. Let (C,T(C)) be a pre-modular category and let T be a C-colored
ribbon graph. If T' is a C-colored ribbon graph obtained from T by performing a slide of an
arc e =T over a circle component K =T colored by Q, then F(T') = F(T).

This result crucially relies on the semisimplicity of C, which enables us to establish the fu-
sion formula 1, and on the finiteness of T(C), which enables us to define Kirby colors.

Now let us turn our attention towards blow-ups and blow-downs. Let A, denote the
image under F of a +1-framed unknot colored by Q. If L'< S’ is a link obtained from
Lc S’ by a +i-framed blow-up then F(L'(Q))=A, -F(L(Q)). At the same time we
have that the positive and negative signatures of the linking matrices of L' and L satisfy
0. (L)=0,(L)+1 and o_(L') = o_(L). Therefore we are tempted to consider the ratio

F(L(Q))
0. o D’

A _
which is invariant under all Kirby moves. In order to be able to do so we must require from
the premodular category C the following

Condition 1. A, -A_=0.

Therefore, let C be a premodular category satisfying Condition 1 and let (M,T) be a pair
consisting of a 3-manifold M and a closed C-colored ribbon graph T < M. If L < S? is any
framed link yielding a surgery presentation for M and T, is a C-colored ribbon graph in
S?\ L representing T then the Reshetikhin—Turaev invariant associated with C is

FI@ UT,)

RECHCECI
N -

Remark 4. The actual Reshetikhin—Turaev invariant is given by the renormalization
D7t (M) where b,(M) is the first Betti number of M and D is an element of K satis-
fying D* = F(u(Q2)) with u(Q) the Q-colored 0-framed unknot. Note that such a D may not
exists and we may have to manually adjoin it (compare with [3]).

Remark 5. The non-degeneracy condition is automatically satisfied by any modular category.

The most famous example of this construction, which yields the original invariants defined
by Reshetikhin and Turaev, is obtained by considering a representation category of a quantum

1.(M,T) =
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version of sl, at a root of unity. Let us recall the construction: fix an integer r > 2, set
g:=e™" and consider the quantum group Uq(s[z) generated (as a unital C-algebra) by
E,F,K,K™" with relations
KK'=K'K =1,
KEK™ = ¢’E, KFK'=q"F,
-1
Vo o e S Sy R
q-4
and with comultiplication, counit and antipode given by
AME)=E®QK+1®E, &E)=0, S(E)=-EK"',
AMF)=F®1+K'®F, &F)=0, SF)=-KF,
AK)=K"®K", &K*")=1, S(K*")=K".

A representation of U (sl,) is a weight representation, or a weight U, (sl,)-module, if it
splits as a direct sum of eigenspaces for the action of K. The Hopf algebra structure on U (sl,)
endows the category U, (sl,)-mod of finite-dimensional weight representations of U, (sl,) W1th
a natural monoidal structure and a compatible duality. Now let U, ,(sl,) denote the quantum
group obtained from U, (sl,) by adding the relation K* =1. This condition forces all weights
(eigenvalues for the action of K) to be integer powers of ¢ for all representations of Uq(s[z).
Therefore we can consider the operator ¢"®"”* defined on V ® W for all weight U, (sl,)-mod-
ules V and W by the following rule:

g w)=q" v Q@ w

mnm .

™2 stands for e . Set {m}:=q" —q ™" for all m € Z

if Ko=¢q"v and Kw = q"w, where g
and define
{n}
[n]:= =, [n]! = [n]ln-1]---[1].
{1y’
for all n € N. Consider the operator R defined on V ® W for all weight U, (sl,)-modules V

and W as
n(n-1)/2

H®H/22q {1}nEn ®Fn.
n=0 [ ]’
Flnally con51der the operator g /2 determined on each weight U (sl,)-module V by the rule
" 2(v) = ¢ if Ko=q"v, define the operator u as
9 q'j’n(n 1),/2
—H /22 { 1}nFnI<—nEn
n=0 [ ]’

and set v := K" 'u. Then the category U ,(s,)-mod of finite dimensional weight representations
of l_]q(5[2) can be made into a ribbon Ab-category by considering the compatible braidings and

twists given by
o =ToR:VOW SWRV, §,=0v":V->V,

where 1 is the K-linear map switching the two factors of the tensor product. Moreover Uq(slz)—
mod is quasi-dominated by a finite number of simple modules, and thus it can be made into a
modular category by quotienting negligible morphisms. The invariant we obtain is denoted t,.

3. Relative G-premodular categories

To motivate the construction of non-semisimple invariants, let us consider the following dif-
ferent quantization of sl,: let U;'(sl,) denote the quantum group obtained by adding to U, (sl,)
the additional generator H satisfying the following relations:
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HK =KH, |[H,E]l=2E, |[H,F]=-2F,

AH)=H®1+1®H, &H)=0, S(H)=-H.

Remark 6. The new generator H should be thought of as a logarithm of K and, even though
we will not require the relation to hold true at the quantum group level, we will restrict our-
selves to representations where it is satisfied.

The category U,'(sl,) -mod of finite dimensional weight representations of U’ (sl,) where K
acts like the operator ¢ can be made into a ribbon Ab-category by means of the same R-matrix
and ribbon element used for ﬁq(slz)-mod.

Remark 7. The introduction of H is necessary in order to make sense of the formulas defin-
ing the operators R and u because the absence of the relation K* =1 makes room for weights
which are not integer powers of g. The operator ¢”®”/* is then given by the rule

""" w) =g v w

if Ho=»Xv and Hw = pw , where g* stands for e*™" for all a € C. The definition of q'H2
is analogous.

What is different in U: (sl,)-mod is that simple objects are not in a finite number: indeed
for any o € (C\Z) U r- Z the r-dimensional module V, generated by the highest weight vector
vy satisfying Eovy =0 and Hoy = (o +7 —1)vy is simple and projective, and is called a typical
module (see [4] for details). If we could put this richer category into the Reshetikhin—Turaev
machinery we would perhaps find more refined 3-manifold invariants. It is indeed the case,
but we need to face (among other things) the following obstructions:

1) every typical module has zero quantum dimension;

2) we cannot quotient negligible morphisms as this would kill all typical modules, and thus
we are forced to work with a non-semisimple category;

3) typical modules are pairwise non-isomorphic, and therefore we have to deal with infinite-
ly many isomorphism classes of simple objects.

Let us see how we can work around these obstacles. The idea is to generalize the Reshe-
tikhin—Turaev construction to more general ribbon Ab-categories which have the previous
set of obstructions.

/2

Facing obstruction (7): Modified quantum dimension

To begin with let us take care of the vanishing quantum dimension problem. The strategy
will be to use categories C which admit a modified dimension which does not vanish. In or-
der to do so we need an ambidextrous pair (A,d), that is the given of a set of simple objects
AcOb(C) and a map d: A — K  with the following property: if T is an A-graph, i. e.
a closed C-colored ribbon graph admitting at least one color in A, if e c T is an arc colored
by Ve A and if T, denotes the element of EndRibC((V, +)) obtained by cutting open T at e,
then F'(T):=d(V)-(T,) is independent of the chosen A-colored arc e (here (7,) denotes the
unique element of K such that F(T)) =(T,)-id, ).

Definition 1. A ribbon Ab-category C admitting an ambidextrous pair (A, d) is said to have
modified dimension d. F' is the modified A-graph invariant associated with (A,d).

Example 1. In the category U, (sl,)-mod considered before we have indeed an ambidextrous
pair. It is obtained by taking A to be the set of typical modules and by defining

dw,) = f] - @' —q7 _(yyer, sintem /)

a+r—j _ _—a-r+] SiIl((lTE)

Facing obstruction (i7): G-grading relative to X
Moving on to the subject of semisimplicity, we will ask our categories to have a distin-
guished family of semisimple full subcategories nicely arranged, i. e. indicized by an abelian
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group G in such a way that the tensor product respects the group operation. The aim of course
is to work as much as possible in the semisimple part of the category and to leave aside the
non-semisimple part.

Definition 2. Let C be a ribbon Ab-category. A full subcategory C’ of C is said to be se-
misimple inside C if it is dominated by a set I'(C’) of simple objects of C’ such that for any
distinct V, W e I'(C’") we have Hom.(V,W)=0.

Remark 8. We do not ask of T'(C’) to contain ¥ nor to be closed under duality up to isomor-
phism. In particular it may very well happen that the quantum dimension of a simple object
of C' is zero.

Definition 3. We will say that a subset X of an abelian group G is small if G cannot be cov-
ered by any finite union of translated copies of X, i. e. if there exists no choice of g¢,,...,9, € G
such that G c U", (g, + X). Let G be an abelian group and let X ¢ G be a small subset. A
family of full subcategories {C, },; of a ribbon Ab-category category C gives a G-grading
relative to X for C if:

1) C, is semisimple inside C for all g € G\ X;

2) Ve Ob(Cg), V'e Ob(Cg,) =VeV eObC
3) Ve Ob(Cg) =V e Ob(Cfg);

4) V.eOb(C,)),V'e0b(C,), g# g = Hom (V,V)=0.

The elements of g which are not contained in X are called generic and a subcategory C, in-
dicized by a generic g is called a generic subcategory. A category C with a G-grading relative
to X will be called a G-graded category for the sake of brevity.

Example 2. In the category Uf (sl,) -mod considered before we have a relative G-grading
too. Indeed we can take G = C/2Z, X = Z/27Z and set C, equal to the full subcategory of
modules whose weights are all congruent to o modulo 2. Then every C_ with o not integer
is semisimple inside U, ,(sl,)-mod, being dominated by the typical modules it contains.

);

g+g'

Facing obstruction (#i7): Periodicity group

Finally, for the finiteness issue, we will proceed as follows: for a G-graded category C we
will ask the sets of isomorphism classes of simple objects of all generic subcategories to be
finitely partitioned in a way we can control.

Definition 4. A set C < Ob(C) of objects of a ribbon Ab-category is a commutative family
if the braiding and the twist are trivial on C, i. e. if we have ¢, , o ¢, y, =id} e, and 9, =id,
forall VW eC.

Definition 5. Let Z be an abelian group and C be a ribbon Ab-category. A realization of Z
in C is a commutative family {&'},_, satisfying

=K =" dim(e)=1 Vt,seZ

Any free realization of Z gives isomorphisms between the K-vector spaces Hom.(V,W) and
Hom (V ® &',W ®¢') for all choices of V,W € Ob(C) and t € Z. Indeed the inverse of the
map [ f®idst is simply given by g+ g®id87t. Therefore if V is simple then V ® ¢’ is
simple too for all ¢t € Z. Thus any realization of Z induces an action of Z on (isomorphism
classes of) objects of C given by the tensor product on the right with &'. Such a realization is
free if this action is free.

Definition 6. An abelian group Z is the periodicity group of the G-graded category C if
there exists a free realization of Z in C; whose action on T'(C,) has a finite number of orbits
forall g € G\ X.

In this case there exists some finite set of representatives of Z-orbits O(C,) c I'(C,) for all
generic g such that each simple module in T(C,) is isomorphic to some tensor product W ® ¢’
for WeO(C,)) and teZ.
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Example 3. Once again the category U (’7(5[2)—m0d considered before gives us an instance of
this structure. Namely the periodicity group is Z = Z and its free realization in C; is given
by a 1-dimensional module &' for every t € Z which is spanned by the non-zero vector ©' such
that Eo' = Fo' =0 and Ho' = 2rto’ .

The categories which will allow us to extend the Reshetikhin—Turaev construction to the
non-semisimple case admit all of the structures we just introduced.

Definition 7. A relative G-premodular category is (C,G > X,(A,d),Z) where C is a G-grad-
ed category with modified dimension d and periodicity group Z satisfying the following com-
patibility conditions:

1) Ao F(Cg) for all ge G\X;

2) c, .= y(g,t)- c;V forall Ve Ob(C,),t € Z and for some Z-bilinear pairing y : G x Z - K
(see Fig. 3). ’

Example 4. U: (sl,) -mod is a relative C/Z-premodular category as it can be shown that a
skein relation like the one required in condition 2 of the previous definition holds.

AN /
N
V € Ob(%,) gt % et

Fig. 3. Skein-type relation for G and Z
(the = sign stands for equality under F)

= Y(g,t)

4. Construction of non-semisimple invariants

We are ready to sketch a construction analogous to the one of Reshetikhin and Turaev which
associates with each relative G-premodular category C an invariant of 3-manifolds provided C
satisfies some non-degeneracy conditions. The idea will be to use the modified invariant F’ as
a basis for this construction exactly as the functor F was used as a basis for the standard case.
Remember however that in order to compute F’' on a C-colored ribbon graph T we will need
to make sure that T is actually an A-graph.

Let us fix a relative G-premodular category C. The first thing we did in the construction of
Reshetikhin—Turaev invariants was to color a framed link giving a surgery presentation for a 3-man-
ifold M with the Kirby color Q associated with some premodular category. Now, in C we do not
have the concept of a Kirby color, but we can define an infinite family of modified Kirby colors.

Indeed if g € G is generic then the formal sum

Qg . Weg(:cg)d(W) v
is a modified Kirby color of degree g.

Remark 9. It can be easily proved using the properties of the periodicity group Z that the
modified dimension d factorizes through a map defined on Z-orbits on all generic subcatego-
ries, i.e. we have d(W ®¢') = d(W) for all W € O(C,) and all t € Z. In particular the coef-
ficients in the formal sum Q, are independent of the choice of the representatives of Z-orbits
in I'(C,) . Of course W and W ®¢' are not isomorphic if ¢ #0 but we will see that under
certain circumstances this choice will not affect the value of F'.

Since we defined an infinite family of modified Kirby colors it is not clear which one should
be used to color the components of a surgery link L for M. The right choice is to let the col-
oring be determined by a cohomology class ® € H'(M \ T;G) ~ Hom,(H,(M \ T,G) which is
compatible with the C-coloring which is already present on T.
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Definition 8. Let T be a C-colored ribbon graph inside M and ® be an element of
H'(M \T;G). For every arc ec T let n, denote the homology class of a positive meridian
around e. The triple (M, T,®) is compatible if the color of e is an object of Clon,) -

We will now look for an invariant of compatible triples (M,T,®), where two triples
(M,,T,,®,) for i =1,2 are considered to be equivalent if there exists an orientation preserving
diffeomorphism f : M, — M, such that f(T;) =T, as C-colored ribbon graphs and f (®,) = o,.

Remark 10. We will have to be more careful and to keep track of the (isotopy class of the)
diffeomorphism induced by each Kirby move.

The idea is to color each component L, of a surgery link L with a modified Kirby color
whose degree is determined by the evaluation (w,p,;), where p, denotes the homology class
corresponding to a positive meridian of L,. Thus, since modified Kirby colors are defined only
for generic degrees, not all surgery presentations can be used to define the new invariant.

Definition 9. A compatible triple (M,T,») admits a computable surgery presentation
L=Luv..uL, c S’ if one of the following holds:

1) L=@ and (o,u,) is generic for all i=1,...,m;

2) L=¢ and T is an A-graph.

If L is a link yielding a computable surgery presentation for a compatible triple (M,T,®)
and we denote by L(w) the C-colored link obtained by coloring each component L, of L with
Qo then F' can be evaluated on L(w) UT,, where T, represents T inside S°\ L.

Remark 11. It can be shown that a sufficient condition for the existence of a computable
surgery presentation for a compatible triple (M,T,®) is that the image of ® is not entirely
contained in the critical set X (when we regard » as a map from H,(M\T) to G).

Let us see what happens when we perform Kirby moves.

Remark 12. In order to be able to evaluate F’' we can only consider Kirby moves between
computable surgery presentations of (M,T,®).

The slide of an arc e c L UT, over a component I, of L corresponds to a change of basis
in H'(M\T) which amounts to susbstituting p, with u, +pu, (depending on orientations). This
operation preserves F'(L(w) UT,).

Proposition 2. [Slide]. Let T be an A-graph,let e c T be an arc colored by V e Ob(Cg),
let K < T be a knot component colored by Q, for some generic h € G and suppose that g+ h
is generic too. If T' is an A-graph obtained from T by sliding e along K and switching the
color of K to Q,,, (like in Fig. 4) then F'(T") = F'(T).

. , . . To prove this proposition we need to establish

‘ ' ‘ . a fusion formula (which can be done in the se-

V e Ob(%,) Qv Q,.n misimple part of C exactly as before) and to use

L,J the skein-type relation in the definition of C in

order to handle closed components colored with

’ \ ¢ for teZ. The color of K changes because

Koo K V®W is an object of C ,, for all W e O(C,).

/ \ / - For what concerns blow-ups and blow-downs,

we cannot compute F’ directly on a detached

+1-framed unknot as such a component should

be colored with the modified Kirby color of degree 0 and it may very well happen that 0 e X
(which is the case in our previous example).

Proposition 3. [Blow-up and blow-down]. Let T, be the C-colored ribbon graph given by

Fig. 5 (a) with g generic in G. Then A, :=(T.) does not depend on the generic g nor on the

object U € Ob(C,). The same holds for the analogous graph T (obtained by turning each
overcrossing of T, into an undercrossing) and for A_:=(T).

g+h

Fig. 4. Subtraction
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Remark 13. The operation of blowing up a pos-
v e A itive meridian of an arc in a ribbon graph T can

™~ replace the operation of blowing up an isolated
unknotted componend provided T is non-empty.

\ This is always the case for computable surgery

U € Ob(%,) F WeaA presenta.tions since there is always at least one arc
colored in A.

Thus what we need in order to be able to define

(a) (b) the invariant is once again to ask the condition

Fig. 5. Blow-up of +1-framed meridian (a) A, -A_#0. However, this time we need also an-

and H-stabilization (b) other non-degeneracy condition which allows us

to perform an operation called H-stabilization which is needed in the proof of the invariance
of our construction. Namely, let H(V,W) denote the C-colored ribbon graph given by Fig. 5
(b) for V,W e A. Then:

Condition 2.

1. A, -A #0.

2. (HWV, W) =0 forall V,W eA.

Now we can state our result.

Theorem 2. Let C be a relative G-premodular category satisfying the non-degeneracy Con-
dition 2. Let L be a framed link giving a computable surgery presentation for a compatible
triple (M,T,®) and let T, be a C-colored ribbon graph inside S°\ L representing T. Then

F'(L(w)uT,)
Nc(M,T, ) := W

is a well-defined invariant of (M,T,®).
Remark 14. When C = U/ (sl,)-mod with ¢ =e™" we write N, instead of N

r U,/ (sty)-mod’

The subtlety in the proof of this result is the following: if we have two different computable
surgery presentations L and L' it may happen that the sequence of Kirby moves connecting
them passes through some non-computable presentation. What we have to prove is that, up to
passing to a different sequence of Kirby moves, we can make sure to get a computable presen-
tation at each intermediate step.

This turns out to be true, but we have to allow an operation, called H-stabilization, which
modifies the triple (M,T,®) and which is defined as follows: let e = T be an arc colored by
W eA, let a be a positive 0-framed meridian of e disjoint from T and colored by V e T(C,)
for some generic g and let D* = S® be a disc intersecting e once and satisfying éD* = .
Now let T, denote the A-graph T Ua and let ®, be the cohomology class coinciding with
® on homology classes contained in M\ (T U D?) and satisfying {(®,,un,) =g where n, is
the homology class of a positive meridian of a. Then the compatible triple (M,T,,w»,) is
said to be obtained by H-stabilization of degree g from (M,T,®), and o is called the sta-
bilizing meridian. Now (M,T,,®,) is not equivalent to (M,T,®) but we have the equality
N (M, T, 0,) = (HWV,W)) -N.(M,T,o) .

Returning to the proof of the Theorem, we split the argument into three steps: we begin by
first proving the result in the case that T itself is an A-graph, that the initial and final surgery
presentations are the same and that the sequence of Kirby moves involves only isotopies of T,
inside S*(L), i. e. slides of arcs of T, over components of L (we call this sequence of moves
an isotopy inside S*(L)). This case can be easily treated by performing a single H-stabilization
on (M,T,®) whose degree is sufficiently generic. Indeed if we slide a stabilizing meridian on
some component L; of the computable link L which is colored by th we change the color of
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L,, provided the degree g of the H-stabilization satisfies g + 2, € G\ X. This would impose a
condition on the choice of the degree, but there surely exists a ¢ € G which satisfies it because
X is small. More generally, if C = G denotes the finite set of (degrees of) colors appearing
on L during the sequence of slides, we can choose the degree g of the H-stabilization in such
a way that (g + C) n X = . Thus, we can begin by sliding the stabilizing meridian o over all
components of L, then we can follow the original sequence of Kirby moves and finally we can
slide back a to its original position. What we will get is an equality of the form

F(L)uT) (HV,W)) _ F'(L{0) vT}) - (HV,W))

AT’(L) . Acs_(L) A:Jr(L) . Af_(L) y

for some V,W e A, which proves the first step.

U s, - —rs, ['OT: The second step f:onsis'ts in proving the Th'eorem when T
is an A-graph. If Fig. 6 is our sequence of Kirby moves, we

! ! perform an H-stabilization for each Kirby move s, which
LoT, L'OT:  makes some non-generic color appear. If s, is a non-admis-
Fig. 6 sible slide over some component L}}’1 we precede it by a

slide of the corresponding stabilizing meridian o, over L. If s, is a non-admissible blow-up
around some arc we perform it on the corresponding stabilizing meridian o, instead and then
we slide the arc over the newly created component. All degrees can be chosen so to adjust all
colors, and the use of different stabilizations ensures the independence of the conditions. The
tricky point is that a move s, which in the original sequence was a blow-down of a £1-framed
meridian of some arc or link component may now have become the blow-down of a component
which is also linked to some of the stabilizing meridians we added. In this case, though, we
can slide all these stabilizing meridians off, and this operation is an isotopy inside S*(L'™"). Re-
mark that the configuration we get at this point is not necessarily admissible, but problems can
arise only for blow-downs of meridians of arcs in T';'. Thus in this case we can perform a new
H-stabilization, slide the arc off and slide the new stabilizing meridian over. This operation is
yet another isotopy inside S°(L™") which yields a computable presentation. Therefore, thanks
to the first step, the invariant does not change. In the end we get the original final presentation
plus some stabilizing meridian linked to the rest of the graph. All these meridians can be slid
back to their initial positions, and once again this operation is an isotopy inside S°(L’).

The third step is the general case: now what we have to do is to blow-up two meridians of
a component of L in such a way that its framing does not change. Then we can consider these
new curves as part of T, falling back into the previous case, we can prove that we can undo
our initial operation and that the result is not affected by our changes.

Extension to all compatible triples

There exist of course compatible triples which do not admit computable presentations. In
order to include also this case in the construction we can build a second invariant N¢, which
is defined for all compatible triples.

Remark 15. In categories where the quantum dimension of the objects of A is always zero
(such as the categories in our example) this second invariant will vanish on all triples which
admit computable presentations. Therefore in this case one should continue to use N, to get
topological informations.

For the definition of N we will need the concept of connected sum of compatible triples.
Let (M,,T,,»,) and (M,,T,,»,) be two compatible triples, let M, = M #M, be the connected
sum along balls B, inside M, \ T, for i =1,2 and set T, =7, UT,. Then we have the chain of
isomorphisms

H(M,\T) ~H (M, \(B,uT,) ® H(M,\(B, UT,)) ~ H(M,\T,) & H(M,\T,)
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where the first one is induced by a Mayer—Vietoris sequence and the second one comes from
excision. These maps induce an isomorphism
H'(M,\T;G) ~ H(M,\T,;G) ® H'(M,\T,;G).

Finally let ®, be the unique element of H'(M,\ T,;G) which restricts to ; on H'(M,\T,;G)
for i =1,2 via the previous isomorphism. The connected sum of (M,,T;,»,) and (M,,T,,®,) is
defined as (M;,T;,»;) . Now if the compatible triple (M, T,®) does not admit any computable
presentation consider the triple (§°,u,,®,) where u, is a 0-framed unknot in S* colored by
V eA and w, is the unique cohomology class in H'(S* \ u,;G) which makes the previous
triple into a compatible one. Then we can define NX(M,T,®) to be

N. (M, T, 0)#(S°,u,,0,))
d(v) '

Remark 16.
1. Just like before, when C = U, (s[,)-mod with g = ™" we write N instead of N’

Ul (sty)-mod *
As claimed earlier, N vanishes on computable presentations because in this category F'
vanishes on split A-graphs, i. e. if T and T’ are completely disjoint A -graphs then we have
F(TuT)=F{@FT)=0.

2. As it was mentioned in the abstract, N” coincides with t, in a lot of cases, though in
general their equality remains conjectural.

5. Case r = 2: Alexander polynomial, Reidemeister torsion and lens spaces

For the special case » = 2 we have that ¢ = i and the modified A-graph invariant F' associat-
ed with the category U/ (sl,)-mod can be related to the multivariable Alexander polynomial.
This fact, which was first observed by Murakami in [5], is exposed in detail in Viro’s paper
[6]. He defines an Alexander invariant A’ for oriented trivalent graphs equipped with the
following additional structure:

1) a half-integer framing (half-twists are allowed too);

2) a coloring with typical U/ (sl,)-modules satisfying a condition like the ones shown in
Fig. 7 around each vertex;

3) a cyclic ordering of the (germs of the) edges around each vertex.

(x+B+y::I:1 (x-{—B—y::l:] (x—B—'y:il O(,-I-B—Fy::l:l
Fig. 7. Admissible colorings

Viro’s construction uses a functor which is similar to the Reshetikhin—Turaev one, though
the source category is not the category of colored ribbon graphs. It is indeed a category G

whose objects are the objects of RibUH( oo which feature only typical colors and whose
i 52 —mo

morphisms are (isotopy classes of) a non-closed version of the graphs mentioned above. In
particular all vertices are either 3-valent (internal vertices) or 1-valent (boundary vertices).
If such a graph T is closed, i.e. if it does not contain boundary vertices, and if its framing
yields an orientable surface, then we can associate with it an A-graph T, defined as follows:
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consider the ordered basis
5
[oo +1]

o (O
0y,0) =

o
Fo,

of the typical module V, and let {o,¢.} be its dual basis in V, . Then we have an iso-

a+l . '
morphism w, : V, - V', given by o} i ( 2 ])(p'_jj for j=0,1. Moreover, every time
o, B,y e C\(2Z+ 1) satisty o+ +y = £1, we can consider the morphism W, :C >V, @V, ®V,

By
mapping 1 to z C]‘f;f;f o} ® v} ® v} where the coefficients C]“,f,f are derived from the
2(j+k=h)=a+B+y+1
Clebsch—Gordan quantum coefficients (compare with [7]) and are defined as

—D=a(+1)+2(k+h—j—1)+j2 k> -1
(_1)16_}11'[3(/3 D-a(j+1) 2;/3 h—j—1)+j° -k 1_,Y 1_,Y y
1-y=h| |a+B—-y+2

<3 1)t.(2t”1)(22’y”1’ OH'B;Y+1 a—j+t+1][p-k+s+1
-1)% .
t+s=h ; (X.—].+1 B_k+1
Jj—t
Then we can construct 7, by replacing each edge of I' which is not a connected component as
shown in Fig. 8 (a) and each trivalent vertex of T'" as shown in Fig. 8 (b).

(a)
Fig. 8. C-colored ribbon graph T, obtained from trivalent graph T

Proposition 4. F'(T.) = (<2i)'"?A*(T) where v is the number of vertices of T and T is
obtained from T by inverting the orientation on each edge.

This result is obtained by checking that the two expressions coincide for a set of elementary
graphs (the trivial one, the ®@-graph and the tetrahedron graph) and by checking that they
both satisfy the same set of relations which reduce the computation for an arbitrary graph to
elementary ones (see [1] and [2] for details).

If L=1L,u...UL, is an oriented colored framed link whose j-th component L, is colored
with the typical module Vaj then Viro shows that

m
ot]»ah—1

/@k(L]-,Lh)
A=V, G ,
where V, is the Alexander—Conway function of L. Therefore, if the framing is integral, Prop-
osition 4 immediately gives
. ooy, -1
F'(L) = (=20V, G, ... ,i' 7 )i
Now since C; is semisimple inside U;"(sl,)-mod we can take the critical set X < C/2Z
to be just {0}. Therefore, thanks to Remark 11, every triple of the form (M,d,®) with @ = 0

is compatible and admits a computable presentation. In particular some computation (compare
with [2]) yields

Zk(Lj Ly
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m

o (ay+2)
T )
m Z 2 TR

o, (L)-6_(L) .6_(L)-c, (L)-m—1 1 . . Ny
N, (M, @, @) = 2. 4" P70 (o (Bme, (o -(Hﬂ—JVL(la%...,z“m)-1]"’1 ,

- e
FRe R A

where L =1L, U...U L, is a surgery presentation for M and a; :=(o,u;). Thus N, recovers
the Alexander — Conway function, which is known to be related to the Reidemeister torsion.
Moreover N, yields a canonical normalization of the Reidemeister torsion which fixes the sca-
lar indeterminacy. Indeed recall that the refined abelian Reidemeister torsion of M defined by
Turaev (see [8] for example) is determined by the choice of a homomorphism ¢ : H (M) — C,
of a homology orientation ®,, for M and of a Spin‘-structure o € Spin°(M) (or equivalently
of an Euler structure on M). We write t*(M,®,,,c) or, if M is oriented and we pick the
canonical homology orientation associated with the orientation of M, simply t*(M,c) . Now,
if (M,J,®) is a compatible triple as above, we can use the non-zero cohomology class @ to
define the homomorphism ¢, : H,(M) — C" given by /> ™" ="

Theorem 3. Let M be a closed oriented 3-manifold endowed with a non-trivial cohomology
class o € H'(M;C/27). Then for any complex spin structure o € Spin°(M) we have

by (M) +4 "’M,cs(‘”)”

" (M,c) = eN,(M, 3, 0),

9. 40D
where v, - H'(M;C/2Z) — C/Z is the homomorphism obtained by first extending De-
loup — Massuyeau’s quadratic linking function ,, : H,(M;Q/Z) — Q/Z (compare with
[91, Definition 2.2) to a homomorphism ¢, : H,(M;C/Z) — C/Z,and then by considering

the composition @y, . o%oD where D: H(M;C/2Z) — H'(M;C/2Z) is Poincaré duality,

% :H'(M;C/27) — H'(M;C/Z) is induced by the “division by 2” isomorphism between C /27
and C/7Z and & is the image of o under the standard involution of Spin°(M)

This is proven by using the surgery formula for the Reidemeister torsion (see [8], section
VIIIL.2, equation (2.b)): if L is a computable surgery presentation for (M,J,®) then

m iaj(k]- -1)

T‘Pw (M, G) — (_1)2711—6+(L)6Hﬁ . VL(T:%,...,Z'am ),

i —q
where o; :=({w,n;) and k,...,k, are the charges of the Spin‘-structure o (see [8], section
VII.2.2 for a definition).
We conclude with a Proposition which gives the value of N, for lens spaces and can be used
to follow the path of the classical proof of their classification.
Proposition 5. Let p > g > 0 be two coprime integers,let L(p,q) be a lens space and con-
sider a non zero cohomology class w € H'(L(p,q);C /27Z). Then

(_1 )k(w) eink(w)2 p/q

No(Lp, @), ) = —— s k@)
in Sin

p p

2is

for some k(®) e Z\ pZ.
Corollary 2. N, classifies lens spaces.
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KBAHTOBbBIE NTHBAPUAHTbBI TPEXMEPHDbIX MHOI‘OOBPA,SI/IIL/’I,
BO3HUKRAIOIINE N3 HEIIOJYIIPOCTBIX KATETOPUU

M. /e Pensu

Ira 0630pHAst CTaThsl OXBATbIBAET HEKOTOPDIE U3 PE3YJIbTATOB, cojiepKaimxcs B paborax Kocranru-
Ho, ['mp, [latypeay n bmanmie. B nepBoit paboTe aBTOpPbI CTPOAT Ba ceMeiicTBa MHBAPHAHTOB Tuma Pe-
meTHxuHa — TypaeBa [ TpeXMepHBIX MHOroo6pasuii, N, n N(r’, NCITOJIb3YST JIJISL 3TOTO HETIOJIYITPOCThIE
KaTeropuu Ipe/cTaBleHUil KBAaHTOBOW Bepcuu sl, B MHOXKECTBO KOPHeil U3 eANHNIIbI CTelleHu 27, ¥ > 2.
Bropoe cemeiicTBo naBapuanToB N IIPEINON0KUTETBHO 0600IAeT OPUTHHATBHBIC KBAHTOBBIE 5[, MHBa-
puanTsl Pemeruxuaa — TypaeBa. ABTOPBI TakyXe Pa3BUBAIOT TEXHUKY I MTOCTPOEHNST MHBAPUAHTOB,
BO3HUKAIONMX U3 6oJiee OOMIUX JIEHTOYHBIX KATErOpHUil, KOTOpPbIe MOTYT U He 00JiaJiaTh CBONCTBOM
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HOJIYIIPOCTOTBI. Bo BTOpoii paGote nepeHopmupoBanHasi Bepcusi nHBapuanta N 1pu 7 # 0 (mod 4)
npogospkaercst 10 TQFT, a Takske yCcTaHABIMBAIOTCS CBSI3U € KJACCUIECKUMHI WHBAPHAHTAMM, TAKUMHU
Kak I0JUHOM AJjiekcanzepa u kpydenue Peiiemelicrepa. B yacTHOCTH IOKa3aHO, YTO UCIOJIb30BaHHE
6osiee GOTaTHIX KATETOPUII UMEET CMbICJ, TAK KAK 3TH HEMOJYNPOCTble MHBAPUAHTBI 60siee mH(popMa-
TUBHDI, YeM OPUTUHAJbHBIE TIOJYIIPOCTbIE MHBAPHAHTBI: B CAMOM /IeJie, OHU MOTYT GbITh MCIIOJb30BAHBI
JUIS KJaccu(UKAIUU JIMH30BBIX TPOCTPAHCTB, B TO BpeMs KaK MHBapuaHTbl PemeruxuHa — TypaeB
He BCeTJa UX pa3ImyarorT.

KmoueBsie cioBa: g-Ounomuaivnas opmy.ia, moxdecmeo duiozapugma.
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LINKS WITH TRIVIAL ALEXANDER MODULE
AND NONTRIVIAL MILNOR INVARIANTS’

S. Garoufalidis

Cochran constructed many links with Alexander module that of the unlink and some nonvanishing
Milnor invariants, using as input commutators in a free group and as an invariant the longitudes of the
links. We present a different and conjecturally complete construction, that uses elementary properties
of clasper surgery, and a different invariant, the tree-part of the LMO invariant. Our method also
constructs links with trivial higher Alexander modules and nontrivial Milnor invariants.

Keywords: Alexander module, Milnor invariants, claspers, Aarhus integral, LMO invariant.

1. Introduction

1.1. History of the problem

Two of the best studied topological invariants a link L in S* are its Alexander module A(L)
which measures the homology of the universal abelian cover of S* — L, and its collection of
Milnor invariants p(L), which are concordance (and sometimes link homotopy) invariants,
defined modulo a recursive indeterminacy. Let us say that L has trivial Alexander module
(resp. Milnor invariants) if A(L) = A(O) (resp. @(L) = p(O) = 0) for an unlink O. Despite
the indeterminacy of the Milnor invariants, note that the vanishing of all Milnor invariants
is a well-defined statement.

Using the language of longitudes A, of components of L, Milnor showed that a link L has
vanishing Milnor invariants iff A,(L) c =, for all i, where n =r,(S*-L) and n, = "2 =, is
the intersection of the lower central series m, of m, defined by =, == and =n,, =[=n,, 7], see
[1]. L has trivial Alexander module iff there is a map nm — F/[[F,F],[F,F]] which induces an
isomorphism = /[[=n,n],[=,n]] = F /[|F,F],[F,F]].

It is natural to ask how independent are the conditions of trivial Alexander module and
trivial Milnor invariants. In a sense, this question asks for a comparison between the lower
central series and the commutator series of a link group.

In one direction, Levine showed that the vanishing of the Milnor invariants of a link L im-
plies that a localization A(L), of its Alexander module (although not the Alexander module
itself) vanishes, where S < Z[t,",...,t"'] is the multiplicative set of polynomials that evaluate
to £1 at ¢, =...=t =1; see [2]. A boundary link has vanishing Milnor invariants, and its Al-
exander module splits as a direct sum of a trivial module and a torsion module. It was shown
in [3] that all torsion modules with the appropriate symmetry can be realized.

In the opposite direction, if L has trivial Alexander module, then it is known that some low
order Milnor invariants vanish [2; 4]. For example, all nonrepeated (link homotopy) invari-
ants with at most 5 indices vanish. On the other hand, Cochran constructed a class of links
with trivial Alexander module and nontrivial Milnor invariants; such links are not even be
concordant to homology boundary links.

Cochran’s construction used iteration, and used as a pattern certain elements in the lower
central series of the free group. There is enough explicitness and control on the iteration that
enabled Cochran to compute the longitudes directly and verify that these links have vanishing
Alexander modules. Further, a geometric interpretation of Milnor invariants in terms of cycles

* Work supported in part by the National Science Foundation.
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on Seifert surfaces allowed Cochran to conclude that the constructed links have nontrivial

Milnor invariants.

As an elementary application of the calculus of claspers, we will construct a plethora of
links with vanishing Alexander module. For these links, we can compute the tree part of the
LMO invariant (which can be identified with Milnor invariants, [5]), using formal Gaussian
integration. As a result, we will construct many (and conjecturally all) links with trivial Al-
exander module and nontrivial Milnor invariants. The next definition explains the patterns
that we will use in our construction.

Definition 1. Let A"(r) (or simply, A", in case 7 is clear) denote the vector space over
Q generated by vertex-oriented unitrivalent trees, whose univalent vertices are labeled by r
colors, modulo the AS and THX relation. A"(r) is a graded vector space, where the degree
of a graph is half the number of vertices. We will call a tree of degree 1 (with two univalent
vertices and no trivalent ones) a strut.

A pattern B is an element of A"(r) which is represented by a tree which has a trivalent
vertex o such that p—o has no strut components.

Fig. 1 gives some examples of nonvanishing pat-
terns.

2 5 Theorem 1. For every nonvanishing pattern
Be A" (r) there exists a link L(B) with r com-
ponents such that ACL(B)) = A(O), all Milnor in-
variants of degree less than m vanish and some
Milnor invariant of degree m do not.

Fig. 1 Our construction adapts without change to the
case of links with trivial higher Alexander modules. Although classical, these modules ap-
peared only recently in work of Cochran-Orr-Teichner [6] and subsequent work of Cochran,
[7]. Given a group =, consider its commutator series defined by 7 =gx and 7" = [z, 7"].

Definition 2. We will say that a link L in a homology sphere M has trivial nth Alexander
module if it has a map 1 — F/F""" which induces an isomorphism /7" = F/F“*"  where
n=n(M-L).

The next definition explains the n-patterns which we will use.

Definition 3. Let ¢ be a unitrivalent tree defined by

- Y Y
(¢} C(2) C(B)

In other words, we are adding two univalent vertices in ¢™" to each of the univalent vertices
of ¢™. An n-pattern p™ is an element of A"(r) which is represented by a tree B such that
¢ < B and B —¢™ has no strut components.

The proof of Theorem 1 generalizes without change to the following

Theorem 2. For every nonvanishing n-pattern p™ e A" (r) there exists a link L(B™) with
r components with trivial nth Alexander module, such that all Milnor invariants of degree
less than m vanish and some Milnor invariant of degree m do not.

1 6

C

2. Constucting links by surgery on claspers

2.1. What is surgery on a clasper?
As we mentioned in the introduction, we will construct links of Theorem 2 using surgery
on claspers. Since claspers play a key role in geometric constructions, as well as in the theory
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of finite type invariant s, we include a brief discussion here. For a reference on claspers and
their associated surgery, we refer the reader to [8; 9] and also to [10. Section 2] (where clasp-
ers were called clovers instead). It suffices to say that a clasper is a thickening of a trivalent
graph, and it has a preferred set of loops, called the leaves. The degree of a clasper is the num-
ber of trivalent vertices (excluding those at the leaves). With our conventions, the smallest
clasper is a Y-clasper (which has degree one and three leaves), so we explicitly exclude struts
(which would be of degree zero with two leaves).

A clasper G of degree 1 is an embedding
G:N —> M of a regular neighborhood of the
graph T' in a 3-manifold M. Surgery on G can
be described by cutting G(N) from M (which is
a genus 3 handlebody), twisting by a fixed dif-
feomorphism of its boundary (which acts trivial-
ly on the homology of the boundary) and gluing
back. We will denote the result of surgery by M. Alternatively, we can describe surgery
on G by surgery on a framed six component link (the image of L) in M. The six component
link consists of a 0-framed Borromean ring and an arbitrarily framed three component link,
the so-called leaves of G. If one of the leaves bounds a 0-framed disk disjoint from the rest
of G, then surgery on G does not change the ambient 3-manifold M, although it can change
an embedded link in M. In particular, surgery on a clasper of degree 1 is shown as follows:

Fig. 2

In general, surgery on a clasper G of degree n can be described in terms of simultaneous sur-
gery on n claspers G,,...,G,, which are obtained from G after breaking its edges and inserting

Hopf links as follows:

2.2. A basic principle
Surgery on a clasper is described by twisting by a surface diffeomorphism that acts trivially
on homology, thus we have the basic principle:

| Clasper surgery preserves the homology |

Surgery on claspers with leaves of a resticted type has already been studied and used suc-
cessfully in [11] (where the leaves were assumed null homologous in a knot complement),
[12] (and where the leaves where null homotopic) and [13] (where the leaves where in the
kernel of a map to a free group). It is important to study not only 3-manifolds but rather pairs
of 3-manifolds together with a representation of their fundamental group into a fixed group.
Claspers adapt well to this point of view, as we explain next.

Consider a pair (N,p) of a 3-manifold N (possibly noncompact) and a representation
p:m,(N) - T for some group I'. Consider a clasper G ¢ N whose leaves are mapped to 1 un-
der p. We will call such claspers p-null, or simply null, if p is clear. Surgery on G gives rise
to a 4-manifold W whose boundary consists of one copy of N and one copy of N,. We may
think that W is obtained by attaching 6n 2-handles on N x I, where n = degree(G) . Since the
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cores of these handles lie in the kernel of p, it follows that p extends over W, and in particular
restricts to a representation p; on the end N; of W.

Lemma 1. We have H,(N,p) = H,(N,,p,) .

Proof. Let N (resp. N, ) denote the cover of N (resp. N ) corresponding to p (resp. p,).
Surgery on G is equivalent to surgery on a collection {G,,...,G,} of degree 1 claspers, con-
structed by inserting Hopf links in the edges of G. Each G, lifts to a collection G: of claspers
in N;let G=GiuU...Ge. Then, N, can be identified with (ﬁ)a. Since clasper surgery pre-
serves homology, the result follows. O

We will adapt the above lemma in the following situation. Suppose that G is a clasper in
the complement of an unlink X, = S° — O of r components whose leaves are null homologous
in X,, and let (M, L) denote the result of surgery along G on the pair (S*,0). It follows that
G lifts to a family G of claspers in X, (the universal abelian cover of X) and that X is
obtained from X, by surgery on G, where X = M — L. Since A(L) = H,(X,x), and clasper
surgery preserves homology, it follows that A(M, L) = A(O).

Remark 1. There are two known cases where surgery on a null clasper G < X, gives rise to
a link (M, L) with vanishing Milnor invariants.

(a) If the leaves of G are null homotopic in X, , then the constructed links would be bound-
ary links, as was observed and used in [13]. Boundary links have vanishing Milnor invariants.

(b) If G is a connected clasper with at least one loop, then (M, L) is concordant to (S*,0),
[14] and also [15]. Concordance preserves Milnor invariants.

With a bit more effort, we can arrange that M = S°. For this, it suffices to assume that
each connected component G, of G has a O-framed leaf [, such that the union of the leaves
{L} is an unlink in S°.

To finalize the construction of Theorem 1, consider a pattern B, and a vertex v of B such
that B—o =T, UT, UT, where T, are rooted trees which are not struts. Each rooted tree T

1

corresponds to an element ¢(T) € F via a map defined in pictures by:

2
1 1 2 1\%
x>t el x —t,t,]eF ¥ - [t,lt,, 61l e F

If T is not a strut, then ¢§(T) e [F,F]. Given B as above, we will choose a clasper G(B) of
degree 1 such that its three leaves [, satisfy I = ¢(T}) e [F,F], for i=1,2,3. Then, L(B) is
obtained from the unlink by clasper surgery on G(B).

Finally, let us modify the above discussion for the construction of Theorem 2. Given an n-pat-
tern p™, let G(B™) be a tree clasper of degree n in X,, which consists of ¢ and 2"*' leaves
I, (one in each univalent vertex of ¢*"). There is a 1-1 correspondence between the connected
components T, of B —c™ and the leaves [, of G(B™). We will choose these leaves so that
. = §(T)) € F, and we will let L(b™) be obtained from the unlink by clasper surgery on G(3”).

We need to show that L(b™) has trivial nth Alexander module. Indeed, using the figures
above that describe clasper surgery, it follows that clasper surgery on G(B™) is equivalent
to surgery on a clasper G'(B™) of degree 1 whose leaves lie in F™. This implies that the nth
Alexander module of L(b™) is trivial.

We end this section with a comment on pictures. To get pictures of the constructed links,
one may use various descriptions of surgery on a clasper that were discussed at length by Gous-
sarov and Habiro at [8; 9]. From our point of view though, these pictures are complicated and
unnecessary, since not only claspers describe surgery adequately, but also the invariants which
we will use behave well with respect to clasper surgery. This is the content of the next section.
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3. Computing the tree part of the Aarhus integral

3.1. The Aarhus integral in brief

As was stated in the discussion of Theorem 1, we will not compute the Milnor invariants
of the links L(B) constructed via clasper surgery, but rather we will compute the tree-part
of their Aarhus integral. The Aarhus integral is a graph version of stationary phase approxi-
mation that was introduced at [16—18]. Despite its intimidating name, it is a rather harmless
combinatorial object which we now describe.

Consider a framed link C < S - O and let (M, L) = (5°,0),, denote the result of surgery on
C. That is, M is the 3-manifold obtained from S* by surgery on C and L is the image of O
after surgery. Assuming that M is a rational homology sphere (i.e., that the linking matrix of
C has nonzero determinant) the Aarhus integral Z(M, L) can be computed by the Kontsevich
integral of the link O U C by integration as follows:

Z(M,L) = jdXZ(SS,o UC)

(where X is a set of variables in 1-1 correspondence with the components of C). Let us briefly
recall from [17] how this integration works. Consider an element

X
1
S:eXp EZ |Qx1/ R,

x,yeX

with R a series of graphs that do not contain a strut whose legs are colored by X. Notice that Q
and R, the X-strutless part of s, are uniquely determined by s. Then, the integration jdX (s)
glues all the X-colored legs of R pairwise, using the negative inverse of the matrix Q. That
is, when two legs x,y of R are glued, the resulting graph is multiplied by —Q", the negative
inverse of the matrix Q,,.

It follows immediately that the tree-part Z"(M,L) of Z(M,L) depends only on the tree-
part Z"(S*,0UC) of Z(S*,0uUC).

3.2. Claspers and the Aarhus integral

Let us adapt the above discussion when the link C is one that describes clasper sur-
gery. Consider a null clasper G < S* -~ of degree 1 constructed from a pattern B and
let (M,L)=(S5°,0),. Let Z™(M,L) denotes the lowest degree nonvanishing tree part of
Z"(M,L). Assuming that the pattern is nonvanishing, and after we choose string-link repre-
sentatives of L U G, we will prove

Proposition 1. We have Z™"(M,L)=p e A".

It is clear that this concludes Theorem 1.

Proof. (Of Proposition 1). Surgery on G is equivalent to surgery on a 6 component link
C =C°uC" see Subection 2.1. C° is a borromean link and C' consists of the leaves of G.
In the obvious basis, the linking matrix of C is given by

0 1

I 1k(C[,C)) |,
and its negative inverse is given by

Ik(C/,C}) -I

-1 0 |
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In particular, a univalent vertex labeled by a leaf has to be glued to a univalent vertex labeled
by the corresponding edge. Let A, ={C{,C!} denote the arms of G for i=1,2,3. It is a key
fact that surgery on any proper subcollection of the set {4, A,, A;} of arms does not change
the pair (S°,0) . In other words, alternating with respect to the 8 subsets of the set of arms
we have that Z([(5°,0),G]) = Z([(S?,0),{4,, A,, A,}]) . The nontrivial contributions to the
left hand side come from the (O u C)-strutless part of Z(S°,0 U C) that consists of graphs
with legs on A, and on A, and on A,.

What kind of diagrams in Z"(S°,0 U C) contribute to the above sum? Consider a disjoint
union D of trees whose legs are labeled by O U C. D must have a leg (i. e., univalent vertex)
labeled by C! or by C! for each i =1,2,3. If D has a leg labeled by C!, then due to the shape
of the gluing matrix, D must have a C/-labeled leg. Thus, in all cases, D must have legs la-
beled by all three edges C; of G.

Consider a tree T labeled by O U C. If T has a C/-labeled leg, then it must either have legs
labeled by all three edges of G, or else it must have a leg labeled by C. Indeed, C; is an un-
knot in a ball disjoint from O w C —-{C/}, thus the rest of the trees have vanishing coefficient
in Z"(5°,000).

Consider further a vortex Y (that is, a unitrivalent graph of the shape Y with three uni-
valent vertices and one trivalent one) whose legs are labeled by three leaves of G. Then, the
coefficient of Y in Z(S*,0 U CC) is 1.

Consider further a tree T with one univalent vertex labeled by a leaf C; of G and all other
vertices labeled by O . Recall the corresponding rooted tree T, which is a component of f—ov
. Then the coefficient of T in Z"(S°,0UC) is zero if deg(T) < deg(T;) and equals to 1 if
T =T,. This, together with the above discussion and the gluing rules concludes the proof of

Proposition 1. The argument is best illustrated by the Fig. 3. O
1 6
2 L /5 1 6
¢ .« 2 5
Yoo ——
C;.
L
3 4
3 4
Fig. 3

The above proposition and its proof generalize easily to the case of claspers G corresponding
to nonvanishing n-patterns p™. In that case, if (M,L) denote the corresponding link, we
still have that Z™"(M,L) =B e A" which implies Theorem 2.

Remark 2. In the above discussion we have silently chosen dotted Morse link representa-
tives (or equivalently, string-link representatives) and we ought to have normalized the Aar-
hus integral. But this does not affect the lowest degree nonvanishing tree part.

The links constructed by clasper surgery in Theorem 1 include the links that Cochran con-
structed via Seifert surfaces.

Example 1. Does Section 2 construct every link with trivial Alexander module?
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SAIEIIVIEHUA C TPUBUAJIBHBIM MOAYJIEM AJTEKCAHAEPA
N HETPUBUAJIbHBIE UHBAPUAHTbBI MUJIHOPA

C. 'apydaruduc

Kokpan nocTpowsi MHOTO 3allelyieHuil, JJiss KOTOPbIX MOJYJib AJIeKCaH/epa COBIAJIET C MOJyJeM
JUUIST TPUBHAJIBHOTO 3allellJIeHlsI, HO HeKOTOpble MHBApHaHTbl MuHOpa HeTpUBHAIbHBL. [y aTOTO OH
UCIIOJIb30BAJI KOMMYTATOPbI B CBOGO/HOW TPYIIle ¥ TMapaJIIe]u JJis 3aleryennii. Mbl jaeM Apyryio
W THMOTETHYECKH TOJHYI0O KOHCTPYKIIMIO, KOTOPas MCIIOJb3yeT 3JIeMEHTapHBbIe CBONCTBA KJACHEPHBIX
MEPECTPOEK, a TaKyKe CTPOUM HOBBIM MHBApUAHT, sBJstonmiics yactbio LM O-unBapuanTa. Haim meton
TaK»Ke M03BOJISET MOCTPOUTD 3ATIETIEHNS C TPUBHATBHBIMU MOLYJIAMH AJIeKCaH/Iepa BBICOKHUX TTOPS/IKOB
U HETPUBUAJBHBIMYU MHBApHAHTaMU MUJIHOPA.

KaroueBbie cioBa: modenv Anexcandepa, uneapuanmol Muinopa, kiacnepol, unmezpan Apxyca,
LMO-uneapuanm.
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ALGEBRAIC G-FUNCTIONS ASSOCIATED
TO MATRICES OVER A GROUP-RING"

S. Garoufalidis, J. Bellissard

Given a square matrix with elements in the group-ring of a group, one can consider the sequence
formed by the trace (in the sense of the group-ring) of its powers. We prove that the corresponding
generating series is an algebraic G-function (in the sense of Siegel) when the group is free of finite
rank. Consequently, it follows that the norm of such elements is an exactly computable algebraic
number, and their Green function is algebraic. Our proof uses the notion of rational and algebra-
ic power series in non-commuting variables and is an easy application of a theorem of Haiman.
Haiman’s theorem uses results of linguistics regarding regular and context-free language. On the
other hand, when the group is free abelian of finite rank, then the corresponding generating series
is a G-function. We ask whether the latter holds for general hyperbolic groups.

Keywords: rational function, algebraic function, holonomic function, G-function, generating
series, non-commuting variables, moment, hamiltonian, resolvant, reqular language, context-free
language, Hadamard product, group-ring, free probability, Schur complement method, free group,
von Neumann algebra, polynomial Hamiltonian, spectral theory,norm.

1. Introduction

1.1. Algebricity of the Green’s function for the free group
Given a group G, consider the group-algebra Q[G], and define a trace map:

Tr: Q[G] - C, Tr(P)=constant term of P,

where the constant term is the coefficient of the identity element of G. Let M, (R) denote
the set of N by N matrices with entries in a ring R. We can extend the trace to the algebra

M (@QIG] by:
Tr: M, (Q[G]) » C, Tr(P)= ZTr(ij).

j=1

Definitiom 1. Given P € M (Q[G]), consider the sequence (a, ), a,, =Tr(P"), and the
generating series R,(2) = a,,2".

n=0

Let F, denote the free group of rank 7.

Theorem 1. The Green’s function R,(2) of every element P of M(QIFE.]) is algebraic.

Theorem 1 appears in the cross-roads of several areas of research:

(a) operator algebras;

(b) free probability;

(¢) linguistics and context-free languages;

(d) non-commutative combinatorics;

(e) mathematical physics.

In fact, Woess proves Theorem1 when N = 1 using linguistics and context-free languages;
see [1; 2]. In [3] Sauer also gives a proof using linguistics, with emphasis the rationality of
the Novikov—Shubin invariants. Voiculescu proves Theorem 1 using the R and S transforms
of free probability; see [4; 5]. For additional results using free probability, see [6; 7] and also
[8—10].

* Work is supported in part by the National Science Foundation.
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It is well-known that Theorem 1 provides an exact calculation of the norm of
PeM,(@QIF]D c M(L(E)), where L(F,) denotes the reduced C -algebra completion of the
group-algebra C[F,]. For a detailed discussion, see the above references.

Our proof of Theorem 1 uses the notion of an algebraic function in non-commuting variables
and a theorem of Haiman, which itself is based on a theorem of Chomsky — Schiitzenberger on
context-free languages. A by-product of our proof is the fact that the moment generating series
is a matrix of algebraic power series in non-commuting variables (see Proposition 1), which is
a statement a priori stronger than Theorem 1.

An alternative proof of Theorem 1 uses methods from functional analysis, and most notably
the Schur complement method (see below). We will discuss in detail the first proof and post-
pone the third proof to a later publication. Either proof explains the close relation between
the differential properties of the generating function R,(z) and the word problem in G.

Our aim is to give a proof of algebraicity in the case of the free group, discuss holonomicity
in the case of the free abelian group and formulate a question regarding holonomicity for hy-
perbolic groups. As it turns out, algebricity is well-studied in the above mentioned literature
whereas holonomicity is largely absent.

1.2. Related work

Our paper was completed in the summer of 2007, and posted on the arxiv arXiv:0708.4234.
In the fall of 2008, M. Kontsevich brought to the attention of the second author a related
earlier paper of Sauer [3] from 2003 that gives a proof of Theorem 1 with emphasis on the
Novikov—Shubin invariants. Sauer’s and our work has been cited by M. Kontsevich in the
Arbeitstagung talk Bonn 2011, and (from what we have heard) in other talks too. Theorem 1
keeps attracting attention in diverse areas of mathematics. In the summer 2013, C. Kassel
informed the second author of related article of Kassel-Reutenauer [11] around the theme
of Theorem 1. Kassel was unaware of Sauer’s work and of our work. In view of the interest
of Theorem 1 and its connections to several branches of mathematics, we were encouraged to
submit our article for publication.

2. The case of the free abelian group

2.1. Holonomic, algebraic and G-functions

A priori, R,(2) is only a formal power series. However, it is easy to see that (a,,) is bound-
ed exponentially by n, which implies that R,(z) defines an analytic function in a neighborhood
of z = 0. The paper is concerned with differential / algebraic properties of the function R,(2).
Algebraic and holonomic functions are well-studied objects. Let us recall their definition here.

Definition 2. (a) A holonomic function f(z) is one that satisfies a linear differential equa-
tion with polynomial coefficients. In other words, we have:

¢, (Df (D) +...+¢,(Df(2) =0

where ¢,(2) € Q2] for all j=0,...,d and fP2) = (d’/dz)f(2).

(b) An algebraic function f(z) is one that satisfies a polynomial equation Q(f(2),z) =0
where Q(y,2) € Qly, z].

Lesser known to the combinatorics community are G-functions, which originated in the
work Siegel on arithmetic problems in elliptic integrals, and transcendence problems in num-
ber theory; see [12]. G-functions originate naturally in:

(a) algebraic geometry, related to the regularity properties of the Gauss—Manin connection,
see for example [13—15];
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(b) arithmetic, see for example [16—18];
(¢) enumerative combinatorics, as was recently shown in [19].

Definition 3. A G-function f(z) = Zanz" is one which satisfies the following conditions:
n=0

(a) for every n e N, we have a, e Q;

(b) there exist a constant C, >0 such that for every ne N we have: |a, |<C; (for every
conjugate of @,) and the common denominator of q,,...,a, is less than or equal to C};

(¢) f(2) is holonomic.

The next theorem summarizes the analytic continuation and the shape of the singularities of
algebraic functions and G-functions. Part (a) follows from the general theory of differential
equations (see eg. [20]), parts (b) and (d) follow from [21. Lem. 2.2] (see also [18] and [22])
and (c¢) follows from a combination of Katz’'s theorem, Chudnovsky’s theorem and André’s
theorem; see [16. P. 706] and also [23].

Theorem 2. (a) A holonomic function f(z) can be analytically continued as a multivalued
function in C \ §, where §, c Q is the finite set of singular points of f(2).

(b) Every algebraic function f(z) is a G-function.

(c) In a neighborhood of a singular point A €§,, a G-function f(z) can be written as a
finite sum of germs of the form:

(z =" og(z = W) I (z = 1) (2.1)
where a, € Q, B, € N,and h,_ a holonomic G-function.

(d) In addition, B, =0 if f(2) is algebraic.

Remark 1. Local expansions of the form (2.1) are known in the literature as Nilsson series
(see [24]), and minimal order linear differential equations that they satisfy are known to be
regular singular, with rational exponents {g,} and quasi-unipotent monodromy. For a discus-
sion, see [14; 15; 19] and references therein.

It is classical and easy to show that the existence of analytic continuation of a function im-
plies the existence of asymptotic expansion of its Taylor series; see for example [12; 25] and
also [26. Sec. 7] and [19].

Lemma 1. If f(2) = Zanz” is holonomic and analytic at z = 0, then the nth Taylor coeffi-
n=0

cient a, has an asymptotic expansion in the sense of Poincaré

0

a, ~ Y2 (logm)* Y. Cg—f

re§ s=0

where §; is the set of singularities of f, o,,B, € Q,and ¢, €C.

2.2. The case of the free abelian group

In this section we will summarize what is known about the generating functions R,(z)
when G =7Z" is the free abelian group or rank ». The next theorem is shown in [19], using
André main theorems from [16]. An alternative proof uses the regular holonomicity of the
Gauss — Manin connection and the rationality of its exponents. This was kindly communicated
to us by C. Sabbah (see also [27]). Holonomicity of R,(z) also follows from a fundamental
result of Wilf—Zeilberger, explained in [19].

Theorem 3. [19]. For every P e M, (Q[Z']), R,(2) is a G-function.

2.3. A complexity remark

Given P e M (Q[FE.]) (resp. P e M, (Q[F.])), one may ask for the complexity of a minimal
polynomial Q(y,z) € Qly,z] (resp. minimal degree differential operator D(z,0,) € Q(z,0z)) so
that Q(R,(2),2) =0 (resp. D(z,0,)R,(z) =0). One expects that the y-degree of Q(y,z) and
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the 0,-degree of D(z,0,) is exponential in the complexity of P, where the latter can be defined
to be the degree of P and the maximum of the absolute values of the coefficients of the enrties
of P. This prohibits explicit calculations in general.
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3. A theorem of Haiman and a proof of Theorem 1

In [28] Haiman proves the following theorem.

Theorem 4. [28]. Let K be a field with a rank 1 discrete valuation v; K, its completion
with respect to the metric induced by o. Let f(x,,...,x,,Y,,...,y,) be a rational power series
over K in non-commuting indeterminants. Any coefficient of f(x,,...,x,,x;",...,x.') converg-
ing over K, is algebraic over K.

Letting K = Q(z2), and K, = Q((2)) the ring of formal Laurent series in z, and considering
the element (1—zP)™', where P e M, (Q[F.]), gives an immediate proof of Theorem 1.

In the next section we will give a detailed description of Haiman’s argument which exhibits
a close relation to linguistics, as well as an obstruction to generalizing Theorem 1 to groups
other than the free group.

4. Algebraic and rational functions in noncommuting variables

4.1. Rational, algebraic and holonomic functions in one variable

In this section all functions will be analytic in a neighborhood of z = 0. Let Q" (2), Qj*(2)
and Q”'(z) denote respectively the set of rational, algebraic and holonomic functions, analyt-
icat z=0. Let Q[[z]] denote the set of formal power series in z. Using the injective Taylor
series map around z = 0, we will consider Q{"(2), Qj*(z) and Q}”(z) as subsets of Q[[z]]:

B(2) € Qi (2) c Q)" (2) c Ql[z]]. QI[z]] has two multiplications:

- the usual multiplication of formal power series

(Zanz"J . (anz"j = Z(Zakbn_kj z",
n=0 n=0 n=0 \ k=0
- the Hadamard product
(Zanz"J ® (anz"J =>ab,".
n=0 n=0 n=0

With respect to the usual multiplication, Q[[z]] is an algebra and Q7 (2), Qi*(2) and Q" (2)
are subalgebras. In case two power series are convergent in a neighborhood of zero, so is their
Hadamard product. Hadamard, Borel and Jungen studied the analytic continuation and the
singularities of the Hadamard product of two functions; see [25; 29]. Their method used an
integral representation of the Hadamard product, and a deformation of the contour of integra-
tion; see [25. Fig. 2, p. 303]. Let us summarize these classical results.

Theorem 5. (a) If f and g are rational,so is f ® g.

(b) If [ is rational and g is algebraic,then f ® g is algebraic.

(¢) If f and g are holonomic (resp. reqular holonomic with rational exponents),so is [ ® g.

(d) If f and g are algebraic,then f ® g is not necessarily algebraic.

For a proof, see Thm. 7, 8, E and the example of p. 298 from [25].
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4.2. Rational and algebraic functions in noncommuting variables

In this section we discuss a generalization of the previous section to non-commuting variables.
Let X be a finite set, and let X~ denote the free monoid on X. In other words, X consists of the
set of all words in X, including the empty word e. Let Q(X) (resp. Q({X))) denote the algebra
of polynomials (resp. formal power series) in non-commuting variables. In [30], Schiitzenberger
defines the notion of a rational and an algebraic power series in non-commuting variables. Let
Q™(X) and Q"#(X) denote the sets of rational (resp. algebraic) power series. Then, we have
an inclusion: Q™ (X) c Q™(X) c Q((X)). Q(X)) has two multiplications:

- the usual multiplication of formal power series in non-commuting variables:

PEIERSEP

weX weX weX \Ww"ww'=w

- the Hadamard product:

[ Z*awa ®[ Z*bwwj - S a.bw.

weX weX weX
With respect to the usual multiplication, Q((X)) is a non-commutative algebra and Q™ (X)
and Q"#(X) are subalgebras. We have the following analogue of Theorem 5.
Theorem 6. [30. Pro. 2.2]. (a) If f € Q"(X) and g e Q"(X), then [ ® g e Q™(X).
(D) If f e Q™X) and g e Q"(X),then f® ge Q"(X).
Remark 2. The notion of rational and algebraic functions works for an arbitrary ring R of
characteristic zero, instead of Q. Theorem 6 is still valid.

4.3. Proof of Theorem 1
Let F, denote the free group of rank » with generating set {u,,...,u, }, and
X ={x,,..., %, X1,..., %}
Consider the monoid map:
X > F, nalx)=u, nlx)=u"
The kernel Ker(n) of = is the set of those words in X which reduce to the identity under
the relations xi}i = ;ixi =e. Let A= Z we QUX)). The next proposition is attributed to

weKer(n)

Chomsky—Schiitzenberger by Haiman. For a proof, see [28. Sec. 3].

Proposition 1. [31]. A is algebraic.

The map = has a right inverse (that satisfies to1=1.) 1: F, - X, defined by mapping a
reduced word in u; to a corresponding word in X. For evrery f € Q[F. ] we have a key relation
between trace and Hadamard product: Tr(f) = ¢(u(f) ® A), where ¢ is a Q-linear map defined by:

¢ QUX) > Q d(w) =1 forwe X .
Now, fix Pe M (Q[F]) . Let A, denote the N by N matrix with entries equal to A, and

R =Q(2). Let P, = z2u(P) e M (R(X)), P = ZPZ" e M, (R{(X))). Notice that P, is well-de-
fined since P, has no z-constant term. "0
Lemma 2. We have P. € M, (R™(X)).

Proof. P. satisfies the matrix equation (1- P,)P, =1 with entries in R(X) . O

Lemma 2, together with Propositions 1 and part (b) of 6 imply the following result, which
we can think as a noncommutative analogue of Theorem 1.

Proposition 2. For every P € M (QIF,]), we have ) z"((P))" ® Ay € M (R"(X)).

n=0
Consider the abelianization ring homomorphism wy : R{(X)) »> R[[X]], where R[[X]] is
the formal power series ring in commuting variables. Haiman proves the following.
Proposition 3. [28. Prop. 3.3]. If f € R™(X), then y(f) is algebraic over R(X).
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It follows that w(P’ ® A,) e M, (R"¥(X)). Consider now the subalgebra R“™[[X]] of
R[[X]] that contains all elements of the form Zaww where a, € 2”Q[[z]], I(w) denotes

weX

the length of w. Then, we can define an algebra map:
o, : RM[IX]] - Q[[z]], o (w) =1.
for x € X.
Haiman shows that if f e R™(X)nR“™[[X]], then ¢,(f) € Q. To state our final con-

clusion, we define for 1 <, j <N, the sequence (ag,n) by a,’Zm = Tr((P")ij) and the matrix of
generating series A,(z) € M (Q[[z]]D by (4,(2), =Da} 2"
n=0

Lemma 3. We have: (o, o w)(P, ® Ay) = A,(2). Thus, A,(z) e M (Q}%(2)).
Proof. The conclusion follows from the above discussion. m
Thus, the entries of A,(z) are algebraic functions, convergent at z = 0. Since by definition we have

N
R,(2) = Y (4,(2)), it follows that R,(2) € Q{*(2). This completes the proof of Theorem 1. o

i=1

5. Some Linguistics

5.1. Regular and context-free languages
Haiman’s proof uses the key Proposition 1 from linguistics. Let us recall some concepts
from this field. See for example [32—34] and references therein. Given a finite set X (the al-
phabet), a language L is a collection of words in X. In other words, £ < X . The generating

series I, of a language is F, = Zw € Q((X)). It follows that for two languages £, and £, we

wel

have F, . =F, ®F,. A language L is called rational (resp. context-free) iff F, e Q™ (X)

(resp. F, € Q"#(X) ). In this context, Theorem 6 takes the following form.

Theorem 7. [31]. (a) If L, and L, are rational languages,so is L, N L,.

(b) If L, is rational and L, is (unambiguous) context-free,then L, N L, is (unambiguous)
context-free.

It was pointed out to us independently by D. Zeilberger and F. Flajolet that the above the-
orem essentially proves Theorem 1.

5.2. Some questions

Let us end this short paper with some questions. Despite the similarity in their statements
and the multitude of proofs, Theorems 1 and 3 have different assumptions, different proofs
and different conclusions.

Consider a generating set X for a group G such that every element of G can be written as
a word in X with nonnegative exponents. Given X and G, let £, denote the set of all words
in X that map to the identity in G. Deciding membership in £, is the word problem in G.

Definition 4. A group G has context-free word problem if it has a generating set X such
that the language L is context-free.

The proof of Theorem 1 applies to groups with a context-free word problem. Muller-Schupp
classified those groups. In [35] Muller-Schupp prove that G has context-free word problem
iff G has a free finite-index subgroup.

On the other hand, if G is the fundamental group of a hyperbolic manifold of dimension not
equal to 2, then G does not have a free finite-index subgroup.

Thus, the linguistics proof of Theorem 1 does not apply to the case of hyperbolic groups in
dimension three. Neither does it apply to the case of Z" since the latter does not have con-
text-free word problem.
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Example 1. If P is a hyperbolic group and P € M, (Q[G]), is it true that R,(2) is a G-function?

The question may be relevant to low dimensional topology, when one tries to compute the
¢*-torsion of a hyperbolic manifold using Luecke’s theorem; [36]. In that case, the matrix P
comes from Fox (free differential) calculus of a presentation of the fundamental group G of
the hyperbolic manifold. See also [37].

Example 2. Given P e M, (Q[F.]), consider the abelianization P* € M, (Q[Z']), and the
G-functions R,(z) and R, (z). How are the singularities of R,(2) and R ,,(2) related?

Example 3. What is a holonomic function in non-commuting variables?

6. A functional analysis interpretation of Theorem 1

The present paper is focusing on results and techniques inspired by algebra, non-commuta-
tive algebraic combinatorics. However it is worth mentioning that Theorem 1 has applications
to problems coming from functional analysis, spectral theory, and the spectrum of Schroding-
er operators. For instance, the Schrodinger equation describing the electron motion in a d-
dimensional periodic crystal, can be well approximated by the difference equation on a lattice
of same dimension. The corresponding operator can be seen as an element of the group ring
of Z?. The function R,(z) defined previously is noting but the diagonal element of the resol-
vent and is used to compute the spectral measure, through the Charles de la Vallée Poussin
theorem. There are instances for which, this operator is better approximated by the free group
analog. For instance the retracable path approximation was used by Brinkman and Rice [38]
in 1971 to treat the effect of spin-orbit coupling in the Hall effect, while it was used in [39]
to compute the electronic Density of States when the electron is submitted to a random mag-
netic field. The same operator, seen as an element of the free group ring, is used to describe
various infinite dimension approximations. The seminal work of Georges and Kotliar [40] used
this free group approximation to give the first model known with a Mott—Hubbard transition.

Another domain in which the Theorem 1 may apply is the Voiculescu Theory of Free Prob-
ability |5; 41]. The so-called R-transform used to treat the convolution of free random vari-
ables, is also based upon the Schur complement formula. In particular the free central limit
theorem asserts that a sum of identically distributed free random variable obey the semicircle
law, is a special case of the present result.

Besides the two proofs of Theorem 1 discussed in this paper, the algebraic character of R,(2)
can also be deduced from the used of the Schur complement method [42]. This is what makes
the free group approximation so attractive to theoretical physicists. This method, also known
under the name of Feshbach method [43 —45] is used in many domains of Physics, Quantum
Chemistry, Solid State Physics, Nuclear Physics, to reduce the Hilbert space to a finite di-
mensional one and make the problem amenable to numerical calculations. However, very few
Mathematical Physicists have paid attention to the fact that algebraicity or holonomy can give
rise to results concerning the explicit computation of the spectral radius, or more generally, to
the band edges, of the Hamiltonian they consider. This later problem is known to be notably
hard with other methods.

For the benefit of the reader, we include some history of that method. The Schur comple-
ment method [42] is widely used in numerical analysis under this name, while Mathematical
Physicists prefer the reference to Feshbach [43]. In Quantum Chemistry, the common refer-
ence is Feshbach—Fano [46] or Feshbach—Lowdin [47]. This method is used in various algo-
rithms in Quantum Chemistry (ab initio calculations), in Solid State Physics (the muffin tin
approximation, LMTO) as well as in Nuclear Physics. The formula used above is found in the
original paper of Schur [42. P. 217].
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The formula has been proposed also by an astronomer Tadeusz Banachiewicz in 1937, even
though closely related results were obtained in 1923 by Hans Boltz and in 1933 by Ralf Rohan
[48]. Applied to the Green function of a selfadjoint operator with finite rank perturbation, it
becomes the Kren formula [49].

Let us end this section with a small dictionary that compares our notions with those in physics:
He M, (Q[F,] |Hamiltonian

1/(z—-H) resolvant

1/zR,(1/z) |trace of the resolvant

Tr(H") nth moment of H
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AJITEBPAUYECKUE G-®YKHIINU, ACCOIINNPOBAHHDIE
C MATPUIIAM HA/l TPYIIIIOBBIM KOJIbIIOM

C. I'apygparuduc, ;K. Bearucapo

Mg ka0l MaTpullbl € 3JIeMEHTAaMM M3 IPYIIIOBOIO KOJIbI[A HEKOTOPOH TPYIIIbI MOXKHO IOCTPO-
UTh TOCJIEA0BATEILHOCTD ¢J1e/IoB (B CMBIC/IE IPYIIIOBOrO KOJIbIA) MX CTereHeil. Mbl J0Ka3bIBaeM, uTo
COOTBETCTBYIOINMI TTPOM3BOISIINE Psifi siBJsieTcst anreOpandeckoit G-yHKIiueit (B cMbIcae 3urens) B
cJIydae, KOTJa TPYIIIA SIBJISIETCST CBOOOAHON KOHeuHOro panra. CjeoBaTelbHO, HOPMa TAKUX 3JIEMEHTOB
SIBJISIETCSI TOYHO BBIYUCJUMBIM ajre6panvyecKuM 4ducjoM, u ux ¢dyHkims [puna siBisiercst anrebpande-
ckoii. Hairre mokasaTesbCTBO MCHOJIb3YeT TIOHATUS PAIIMOHATIBHBIX W aare6pandecKiX CTENEHHbIX PS/IOB
C HEKOMMYTHUPYIOIMMHU IIePEMEHHbIMU U OllupaeTcs Ha TeopeMy XaliMana. B ocHoBe 3Toii TeopeMbl Jie-
JKaT Pe3yJIbTaThl O PETYJIIPHBIX U KOHTEKCTHO-CBOOOAHBIX A3bIKaX. C APYTOil CTOPOHBI, KOT/Ia TPYIIA SIB-
Jisiercst CBOGOIHON abesieBoil KOHEYHOTO PAHTa, TO COOTBETCTBYIOIINI TIPOU3BOSIIMN DS/l TIPE/ICTABIISIET
coboii G-pyHKIMO. Borpoc cocTouT B TOM, BBITIOJTHSIETCS JIA 3TO [T JII0O0H THITEPOOTMIECKON TPYIIITBI.

KioueBbie cioBa: pauuonanivnas pynxuus, aizedpauieckas (ynKyus, 20J10HOMHAS QYHKYUSI,
G-ynxuyuss, npoussodswuii psid, HeKOMMYMUPYIOUUE NEPEeMEHHBLe, MOMEH, 2AMULLIMOHUAN, PE30-
bBEHMbL, PELYNAPHBLU A3bIK, KOHMEKCMHO-C80000HBLI A3blK, npoussedenue Adamapa, pynnogoe
KObUY0, C80000HASE 8ePOIMHOCIb, Memod donoanenutl [ypa,ceo600nas epynna,arzedpa gon Heii-
Mana, NOJUHOMUANLHBLU | aMurbmonuan, cnekmpaivids meopus, HopMd.
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THE Q-BINOMAL FORMULA
AND THE ROGERS DILOGARITHM IDENTITY"

R. M. Kashaev

The g-binomial formula in the limit ¢ — 1" is shown to be equivalent to the Rogers five term
dilogarithm identity.
Keywords: g-binomial formula,dilogarithm identity.

1. Introduction

For any ¢g,x €]0,1[ define a g-exponential function as an infinite product

o) =1/, (e, =[](1-¢"v.
n=0

The finite product
k-1
(), =[](1-¢"0), VkeZ,
n=0

can be expressed as a ratio of two g-exponentials:

(r;9), _ ®xqg")
(xg" ), o)
The g-binomial formula (see, for example, [1]) is given by the following identity

(), =

(@), . _Cazq), 1 1
;‘(q;q)nz (), Iz]<t, v

which, by using the above notation, can also be written entirely in terms of the function ®(x):

Z ®(aq") = d(a)D(2) )
= o(g™") ()P (az)
The following expansion formulae
o=y 3)
Z:? (G,
and
A (1) /2 n

o(x) = (g9,
are both particular cases of the g-binomial formula.
The asymptotic formula
(D(_X') ~ e—LiQ(x)/lnq, q N 1_

where g — 17 means that g approaches 1 from inside of the unit disk,

00 n

Li,(x) =) xz

n=1

* Author would like to thank Yu. Manin for posing this question.
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is the Euler dilogarithm function, has been used in [2; 3] to give an interpretation to ®(x)
as a quantum version of the dilogarithm function. In particular, by using a formal reasoning
coming from quantum mechanics, it has been shown that the quantum five term identity
O(WD(v) = O(V)DO(—vu)d(u) (5)
where ®(u), ®(v), and ®(-vu) are elements in the algebra A, = C [[u,v]] of formal power
series in two elements u,v satisfying the commutation relation uv = gvu, in the limit ¢ - 1~
reduces to the Rogers pentagonal identity for the dilogarithm
Li,(a) + Li,(2) = Liz(az)+Liz(a_az)+L12[Z j +1 g( —2 jlog( 1-a j (6)
1-az 1 1-az

—-az 1—-az

The purpose of this paper is to make the statement of the paper [2] mathematically rigorous.
Namely, we first show that the identity (5) is related to the g-binomial formula (1) and then
derive from the latter the Rogers identity (6) in the limit ¢ — 1°. The main result follows.

Theorem 1. Let q,a,z €]0,1[. Then in the limit q — 1" the g-binomial identity (2) repro-
duces the Rogers pentagonal identity (6).

The rest of this paper is organized as follows. In Section 2 the equivalence between he
g-binomial formula and the quantum pentagonal identity is explained, while Section 3 con-
tains the proof of Theorem 1.

2. The g-binomial formula and the quantum pentagonal identity

The relation between the formulas (1) and (5) can be established by comparing the expan-
sion coefficients of @”z" in (1) and v"u” in (5), respectively.
Proposition 1. The g-binomial formula is equivalent to the following set of identities

T
@9, G, & G0, @D, (G,
Proof. Let us write the g-binomial formula in the form

3 ®(aq") o D(a)D(2)

= (G, ®(az)
or, using formula (3) in the left hand side, we have

mn min(m,n) (_1 )k qk(k—i)/Z

Vm,n € Z.,. (7

)3 g"a"z"  _ (@)D(2)
20 (G ., (G, ®(az)

Again, by using the expansion formulas (3), (4) in the right hand side, and equating the
coefficients of the monomials @"z" in both sides of the equality, we arrive at formula (7). o

Proposition 2. The set of identities (7) is equivalent to the quantum five term identity (5).

Proof. We multiply the both sides of (7) by v"u” and sum over m and n. The result can be
easily written in the form of equation (5) by using the commutation relation uv = gvu, and,
in particular, the formula v*u*g** "2 = (vu)*.

3. Proof of Theorem 1

Lemma 1. Let k, [ € Z be such that k<1 and [, :|k,1+1] > R, be functions, where f is
decreasing and f, is increasing. Then

Z f (< j f(dt < Zf (n), (8)
Zf (n) <'f f (tdt < Zf (n). 9)

n=k+1
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Proof. The inequality
fn+D)<f)<f), VneZnlkl],Vxelnn+1],

implies that f (n+1) < In+1f_(x)dx < f.(n). Thus, summing over all possible n we arrive at

formula (8). The proof of formula (9) is similar. O
Remark 1. The variables & and / in Lemma 1 can take infinite values k= -0 or [ =
In what follows, for any function f: R,, — R,, we shall use the notation

S =>[ ), I(f):= J':f(t)dt.
n20
If a decreasing function f : R,, - R,, isintegrable on R, then, as a particular case of Lemma 1,
we have S(f)—f(0) <I(f) < S(f) or equivalently
0<S(H-1(f) < fQ0). (10)

Example 1. The function f(#) =-In(1-¢'x) is decreasing and integrable on R.,, and
S(f) =1nd(x),

I ‘ _ 1 g dz _ Li,(x)
I(f) - _J.O 111(1 —-q .X')dt = EJ‘O 1I1(1 —2)7 - —W.
Thus, for any q,x €]0,1[, inequalities (10) imply that
< D)@ < L (11)
1-x

Lemma 2. Let g:R,, > R,, be an integrable function increasing in the segment [0, x,]
and decreasing on the interval [x,,[. Let also n, € Z,, be such that g(n) < g(n,) for all
n e Z,, (n,is equal either to [x,] (the integer part of x,) or [x,] +1). Then

g(ny) <Y g(n) < | "gl)da + gln,). (12)
n0

Proof. The inequality g(n)) <>  g(n) follows directly from the positivity of g(x). To
prove the second part of (12), note that we can apply Lemma 1 to functions f, =g |[01[x0” and

f =g |[[x()1+1v°°[' Thus, the left hand sides of the inequalities in Lemma 1 take the forms

L 11

N > @
> g < [ gz, n_%:mg(n)ﬁ [l @z

Adding these to each other, we obtain

[xo 1+1

nzz(;g(n) —g([x, D) = g([x, ] +1) < jo g(x)dx - I[xOJ g(x)dx
which, combined with the inequality
f[[xomg(x)dx > g(ng)

xol

where {ny,n)} {ny,ny} ={[x,1,[x,]1+1}, is equivalent to the second part of (12). ]
Proposition 3. There exists € €|0,1[ such that for any q €)1 -¢ [ the function

_ ®laq) .
(x) ®(q1+x) Z

where a,z €l0,1[,satisfies the conditions of Lemma 2
Proof. The integrability of g(x) is evident. We have the following formula for its derivative

g _ Inz - In(g)(g - @)S(h,)

where
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qx+t
h (t) =
x( ) (1_q1+x+t)(1_aqx+t)

satisfies the conditions of Lemma 1 so that
S(h,) > I(h,) = - ! In Z““f?x Al
“ In(¢)(g - a) 1—-gq
Evidently, the function S(%,) is decreasing in x. Assuming that g >1-z(1-a), we obtain

g'(0) . ln(z(l—a)) >0
g(0) 1-qg '

Besides, it is easy to see that
ACY)
lim

=lnz<0.

Thus, we have shown that for ¢ =2(1-a) and any q €]1—¢,1[ the continuous function
g'(x) / g(x) is decreasing, positive at x = 0 and negative for sufficiently large x, i. e. there
exists unique x, € ]0,[ such that ¢g'(x,) =0 and all conditions of Lemma 2 are satisfied. ©

Proposition 4.

1—
lim In(q) In S(9) = F(&,), & = —— (13)

gt 1-az

where F(&) = Li, (&) — Li,(a€) + In(€) In(2) .

Proof. For any & €]0,1[ equation (11) implies that 1im In(¢) In(g(In&/Ing)) = F(E). Thus,
qg—>1"
F()
one has asymptotically g((In&/Ing) ~ e™ , g = 17, and, by using the steepest decent method,
F(é())
one has also I(g) ~e ™ , g —> 1", where §,= (1 — z) /(1 — az) e ]0,1[ is the unique solution

of the equation F'(§) =0. The asymptotic formula for S(g) follows immediately from Lem-
Ing

ma 2 after taking into account the fact that x, ~n, ~—2%, ¢ — 17, and, correspondingly,

g(ny) ~ glx) ~I(g), g —>1. O
Proof of Theorem 1. Using Lemma 1, we have immediately
() D(2) . , . .
im 1 In| ————|=Li,(1)+L -L -L .
if{l n(q) n[d)(q)d)(az)] i,(1) + Li,(az) — Li, (@) — Li,(y)

Combining this formula with equation (13), we conclude that the g-binomial identity (2)
leads to the following identity: F(g;) = Li,(1) + Li,(az) — Li, (@) — Li,(2) or explicitly,

Li,(§,) — Li,(ag,) + In(§,) In(2) = Li, (1) + Li,(az) — Li, (@) — Li, (2)
which we rewrite in the form
Li,(@) + Li,(2) = Li,(a2) + Li,(a§,) + Li,(1) — Li,(§,) — In(§,) In(2).
Using the identity
Li,(x) + Li,(1-x) = Li, (1) = In(x) In(1-x), Vx e[0,1],
we rewrite it further

Li,(@) + Li,(2) = Li,(a2) + Li,(a&,) + Li,(1-&,) + In(§,) In ((1 -£)/ z)
which is exactly the Rogers identity (6). O
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O-BMHOMUAJIBHAA ®OPMYVJIA
N INJTOTAPUOMHNYECKOE TOXKIECTBO POAKEPCA

P. M. Kawmaes

[TokasbiBaercs, 4to g-6MHOMHMATIbHAS (hOpPMYyJa B mpesese mpu q — 17 aKBUBaJIeHTHA NATHYJICH-
HOMY AniorapudMudecKoMy TOXIeCTBY Pomskepca.

KitoueBbie cioBa: g-6unomuanvras gopmyaa, durozapughmuieckoe moxoecmso.

Cmncok Jureparypbl

1. Gasper, G. Basic hypergeometric series / G. Gasper, M. Rahman // Encyclopedia of Math-
ematics and its Applications. — Second edition. — Cambridge : Cambridge University Press,
2004.

2. Faddeev, L. D. Quantum dilogarithm / L. D. Faddeev, R. M. Kashaev / Modern Phys.
Lett. A. — 1994. — Vol. 9, Ne 5. — P. 427-434.

3. Kirillov, A. N. Dilogarithm identities / A. N. Kirillov // Progr. Theoret. Phys. Suppl. —
1995. — Vol. 118. — P. 61-142.

Ceeznenust 00 aBTope

Kamaes M. Punat, npodeccop, matemarnyecknii gaxkyabrer yHuBepcutera sKenenb, sKene-
Ba, IlIBeiinapus. Rinat.Kashaev@unige.ch.



Becmuux Yensbuncxozo zocyoapcmsenozo ynusepcumema. 2015. Ne 3 (358).
Mamemamuxa. Mexanuxa. Hugpopmamuxa. Bun. 17. C. 67—117.

YK 515.163
BBK B151.5

AN INTRODUCTION TO FINITE TYPE INVARIANTS OF KNOTS
AND 3-MANIFOLDS DEFINED
BY COUNTING GRAPH CONFIGURATIONS

C. Lescop

The finite type invariant concept for knots was introduced in the 90’s in order to classify knot in-
variants, with the work of Vassiliev, Goussarov and Bar-Natan, shortly after the birth of numerous
quantum knot invariants. This very useful concept was extended to 3-manifold invariants by Ohtsuki.

These introductory lectures show how to define finite type invariants of links and 3-manifolds
by counting graph configurations in 3-manifolds, following ideas of Witten and Kontsevich.

The linking number is the simplest finite type invariant for 2-component links. It is defined in
many equivalent ways in the first section. As an important example, we present it as the algebraic
intersection of a torus and a 4-chain called a propagator in a configuration space.

In the second section, we introduce the simplest finite type 3-manifold invariant, which is the
Casson invariant (or the ®-invariant) of integer homology 3-spheres. It is defined as the algebraic
intersection of three propagators in the same two-point configuration space.

In the third section, we explain the general notion of finite type invariants and introduce rele-
vant spaces of Feynman Jacobi diagrams.

In Sections 4 and 5, we sketch an original construction based on configuration space integrals
of universal finite type invariants for links in rational homology 3-spheres and we state open
problems. Our construction generalizes the known constructions for links in R* and for rational
homology 3-spheres, and it makes them more flexible.

In Section 6, we present the needed properties of parallelizations of 3-manifolds and associated
Pontrjagin classes, in details.

Keywords: knots, 3-manifolds, finite type invariants, homology 3-spheres, linking number, Theta

invariant, Casson-Walker invariant, Feynman Jacobi diagrams, perturbative expansion of Chern—
Simons theory, configuration space integrals, parallelizations of 3-manifolds, first Pontrjagin class.
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Foreword

These notes contain some details about talks that were presented in the international con-
ference "Quantum Topology" organized by Laboratory of Quantum Topology of Chelyabinsk
State University in July 2014. They are based on the notes of five lectures presented in the
ICPAM-ICTP research school of Meknés in May 2012. I thank the organizers of these two
great events. I also thank Catherine Gille and Kévin Corbineau for useful comments on these
notes.

These notes have been written in an introductory way, in order to be understandable by
graduate students. In particular, Sections 1, 2 and 6 provide an elementary self-contained
presentation of the ®-invariant. The notes also contain original statements (Theorems 5, 6, 7
and 8) together with sketches of proofs. Complete proofs of these statements, which generalize
known statements, will be included in a monograph [1].

1. Various aspects of the linking number

1.1. The Gauss linking number of two disjoint knots in R’ the ambient space

The modern powerful invariants of links and 3-manifolds that will be defined in Section 4
can be thought of as generalizations of the linking number. In this section, we warm up with
several ways of defining this classical basic invariant. This allows us to introduce conventions
and methods that will be useful througout the article.

Let S' denote the unit circle of C: S'={zzeC,|z=1}. Consider two C” embeddings
J: S'o R and K: S" < R*\ J(S")
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and the associated Gauss map
P S'xS o S

@,2) ! (K(2) - J(@))

| K(z) - J(w@). ||

ij g
—

Denote the standard area form of S* by 4nwg so that op is the homogeneous volume
form of S* such that I52m52 =1. In 1833, Gauss defined the [linking number of the disjoint

knots J(S') and K(S"), simply denoted by J and K, as an integral [2]. With modern notation,
his definition reads

Ik (J,K) = _[S1x51p;1<(°352)-
It can be rephrased as lk;(J,K) is the degree of the Gauss map p,.

1.2. Some background material on manifolds without boundary, orientations, and degree

A topological n-dimensional manifold M without boundary is a Hausdorff topological space
that is a countable union of open subsets U, labeled in a set I (iel), where every U, is iden-
tified with an open subset V, of R” by a homeomorphism ¢, :U, =V, called a chart. Manifolds
are considered up to homeomorphism so that homeomorphic manifolds are considered identical.

For » = 0, ...,%, the topological manifold M has a C'"-structure or is a C"-manifold, if, for
each pair {i,j} <1, the map ¢, o¢;" defined on ¢,(U, "U,) is a C"-diffeomorphism to its image.
The notion of C*-maps, s < 7, from such a manifold to another one can be naturally deduced
from the known case where the manifolds are open subsets of some R", thanks to the local
identifications provided by the charts. C’-manifolds are considered up to C’-diffeomorphisms.

An orientation of a real vector space V of positive dimension is a basis of V up to a change of
basis with positive determinant. When V = {0}, an orientation of V is an element of {—1,1}. For
n>0, an orientation of R" identifies A, (R",R"\{x};R) with R. (In these notes, we freely use
basic algebraic topology, see [3] for example.) A homeomorphism /% from an open subset U of R”
to another such V' is orientation-preserving at a point x, if b, :H, (U, U\{x}) > H, (V,V \{h(x)})
is orientation-preserving. If 4 is a diffeomorphism, % is orientation-preserving at x if and only
if the determinant of the Jacobian T 4 is positive. If R" is oriented and if the transition maps
¢, o¢;" are orientation-preserving (at every point) for {i,j} < I, the manifold M is oriented.

For n=0, 1, 2 or 3, any topological n-manifold may be equipped with a unique smooth
structure (up to diffeomorphism) (See Theorem 10, below). Unless otherwise mentioned, our
manifolds are smooth (i. e. C*), oriented and compact, and considered up oriented diffeomor-
phisms. Products are oriented by the order of the factors. More generally, unless otherwise
mentioned, the order of appearance of coordinates or parameters orients manifolds.
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A point y is a regular value of a smooth map p: M — N between two smooth manifolds M
and N, if for any xep'(y) the tangent map T.p at x is surjective. According to the Morse —
Sard theorem [4. P. 69], the set of regular values of such a map is dense. If M is compact, it
is furthermore open.

When M is oriented and compact, and when the dimension of M coincides with the dimen-
sion of N, the differential degree of p at a regular value y of N is the (finite) sum running
over the xep'(y) of the signs of the determinants of 7_p. In our case where M has no bound-
ary, this differential degree is locally constant on the set of regular values, and it is the degree
of p, if N is connected. See [5. Chapter 5].

Finally, recall a homological definition of the degree. Let [M] denote the class of an
oriented closed (i. e. compact, connected, without boundary) n-manifold in H,(M;Z).
H (M;Z) =ZIM]. If M and N are two closed oriented n-manifolds and if f: M— N is a (con-
tinuous) map, then H, (H)([M]) = deg([N]. In particular, for the Gauss map p,, of Subsec-
tion 1.1, H,(p, )([S'*S']D = [k(J,K)[S?].

1.3. The Gauss linking number as a degree
Since the differential degree of the Gauss map p, is locally constant, Ik;(J,K) = L1 S1p},< ()
for any 2-form ® on S* such that J.Sz(x) =1.

Let us compute /k;(J,K) as the differential degree of p,, at the vector Y that points towards us.
The set p,(Y) is made of the pairs of points (w,z) where the projections of J(w) and K(z) co-
incide, and J(w) is under K(z). They correspond to the crossings /5" and “”/ of the diagram.

In a diagram, a crossing is positive if we turn counterclockwise from the arrow at the end of
the upper strand to the arrow of the end of the lower strand like $2. Otherwise, it is negative
like .

For the positive crossing '$2%, moving J(w) along J following the orientation of J, moves
p(w,z) towards the South-East direction, while moving K(z) along K following the orien-

tation of K, moves p]K(w,z) towards the North-East direction, so that the local orientation
)

Tp— 2
induced by the image of p,, around YeS§” is < a; which is < ; Therefore, the contribution of

T E—
pﬁw

a positive crossing to the degree is 1. Similarly, the contribution of a negative crossing is (=1).
We have just proved the following formula

degy(p]]() — #./;7\”( _ #1<'x|./
where # stands for the cardinality — here # /% is the number of occurences of /52" in the
diagram — so that

lk;(J,K) = #/525 — # /.
Similarly, deg_,(p,.) = #*R’ — #/52" so that
lkG(],K) — #K'X‘j _ #/'%K — %(#/,%K + #K,x‘.l) _ %(#K,X‘j + #./,Z‘K)

and [k, (J,K) = Ik ,(K,J).
In our first example, [k,(J,K) = 2. Let us draw some further examples.

For the positive Hopf link J@K, Ik ,(J,K) = 1.
For the negative Hopf link Y, [k (J,K) = —1.

For the Whitehead link Q@ IR (J,K) = 0.
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1.4. Some background material on manifolds with boundary and algebraic intersections

A topological n-dimensional manifold M with possible boundary is a Hausdorff topological
space that is a union of open subsets U, labeled in a set I, (i € I), where every U, is identified
with an open subset V. of ]=00,0]*xR"™* by a chart ¢, :U, = V,. The boundary of ]-w,0]"x R"™*
is made of the points (x,,...,x,) of ]=00,0]*x R"™* such that there exists i < k such that x, = 0.
The boundary of M is made of the points that are mapped to the boundary of ]—e0,0]*xR"*.

For r = 1,..., o, the topological manifold M is a C"-manifold with ridges (or with corners)
(resp. with boundary), if, for each pair {i,j} < I, the map ¢, o¢;" defined on ¢, (U, NU,) is a
C’-diffeomorphism to its image (resp. and if furthermore k < 1, for any 7). Then the ridges of
M are made of the points that are mapped to points (x,,...,x,) of ]=00,0]*xR"™* so that there
are at least two i < k such that x;, = 0.

The tangent bundle to an oriented submanifold A in a manifold M at a point x is denoted
by T A. The normal bundle TM /T, A to A in M at x is denoted by U _A4. It is oriented so that
(a lift of an oriented basis of) U A followed by (an oriented basis of) T' A induce the orienta-
tion of T M. The boundary oM of an oriented manifold M is oriented by the outward normal
first convention. If xe M is not in a ridge, the outward normal to M at x followed by an
oriented basis of T 0M induce the orientation of M. For example, the standard orientation of
the disk in the plane induces the standard orientation of the circle, counterclockwise, as the
following picture shows.

As another example, the sphere S” is oriented as the boundary of the ball B?, which has the
standard orientation induced by (Thumb, index finger (2), middle finger (3)) of the right hand.

N/

Two submanifolds A and B in a manifold M are transverse if at each intersection point x,
TM=TA+TB. The transverse intersection of two submanifolds A and B in a manifold M
is oriented so that the normal bundle to AN B is (TV(A)®UB(B)), fiberwise. If the two man-
ifolds are of complementary dimensions, then the sign of an intersection point is +1 if the
orientation of its normal bundle coincides with the orientation of the ambient space, that is
if TM =0 . A®U B (as oriented vector spaces), this is equivalent to TM =T.A®T.B (as ori-
ented vector spaces again, exercise). Otherwise, the sign is —1. If A and B are compact and if
A and B are of complementary dimensions in M, their algebraic intersection is the sum of the
signs of the intersection points, it is denoted by (A4,B),,.

When M is an oriented manifold, (=M) denotes the same manifold, equipped with the op-
posite orientation. In a manifold M, a k-dimensional chain (resp. rational chain) is a finite
combination with coefficients in Z (resp. in Q) of smooth k-dimensional oriented submanifolds
C of M with boundary and ridges, up to the identification of (—=1)C with (-=C).

Again, unless otherwise mentioned, manifold are oriented. The boundary o of chains is a lin-
ear map that maps a smooth submanifold to its oriented boundary. The canonical orientation
of a point is the sign +1 so that 0[0,1] = {1} — {0}.
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Lemma 1. Let A and B be two transverse submanifolds of a d-dimensional manifold M, of
respective dimensions a. and B, with disjoint boundaries. Then

0(ANB)=(-1)""04NB+ ANEB.

Proof. Note that 6(ANB) < dAU0B. At a point @ € 0A, T ,M is oriented by (U, 4,0,T,04),
where o is the outward normal to A. If @ € 6A "B, then o is also an outward normal to A "B,
and d(ANB) is cooriented by (B, 4,0, B,0) while AN B is cooriented by (U,4,0,°0,B). At a
point b € AndB, (AN B) is cooriented by (U,4,%,B,0) like AnJOB. u|

1.5. A general definition of the linking number

Lemma 2. Let J and K be two rationally null-homologous disjoint cycles of respective dimensions
Jj and k in a d-manifold M,where d = j + k + 1. There exists a rational (j+1)-chain £, bounded by
J transverse to K,and a rational (k+1)-chain X, bounded by K transverse to J and for any two
such rational chains =, and 2, (J,Z),, = (1"(Z,,K),,. In particular, {J,Z,),, is a topological
invariant of (J,K),which is denoted by Ik(J,K) and called the linking number of J and K.

k(J,K) = (=1)"P*VIR(K,J).

Proof. Since K is rationally null-homologous, K bounds a rational (k+1)-chain X,. With-
out loss, X, is assumed to be transverse to £, so that £, NZ, is a rational 1-chain (which is
a rational combination of circles and intervals). (As explained in [4. Chapter 3], generically,
manifolds are transverse). According to Lemma 1,

o, NZ)=CD"MTNZ +2, nK.

Furthermore, the sum of the coefficients of the points in the left-hand side must be zero, since
this sum vanishes for the boundary of an interval. This shows that (J,Z;),, = (—1)(1%(2],K)M ,
and therefore that this rational number is independent of the chosen X, and X.. Since
(_1)d+k<2J’K>M — (_1)j+1(_1)k(j+1)<K,2j>M , lk(],K) — (—1)(j+1)(k+1)lk(K,]). O

In particular, the [linking number of two rationally null-homologous disjoint links / and
K in a 3-manifold M is the algebraic intersection of a rational chain bounded by one of the
knots and the other one.

For K=7Z or Q, a K-sphere or (integer or rational) homology 3-sphere (resp. a K-ball) is
a smooth, compact, oriented 3-manifold, without ridges, with the same K-homology as the
sphere S* (resp. as a point). In such a manifold, any knot is rationally null-homologous so that
the linking number of two disjoint knots always makes sense.

A meridian of a knot K is the (oriented) boundary of a disk that

A intersects K once with a positive sign. Since a chain X, bounded by a
Q/\j knot J disjoint from K in a 3-manifold M provides a rational cobordism
between J and a combination of meridians of K, [J] = Ik(J,K)[m,] in
H (M \K;Q) where m, is a meridian of K.
Lemma 3. When K is a knot in a Q-sphere or a Q-ball M, H,(M \ K;Q) = Q[m, ], so that the equa-
tion [J1=1k(J,K)|m,] in H (M \ K;Q) provides an alternative definition for the linking number.
Proof. Exercise. O
The reader is also invited to check that [k, = [k as an exercise though it will be proved in
the next subsection, see Proposition 1.

1.6. Generalizing the Gauss definition of the linking number and identifying the definitions
Lemma 4. The map

Pe ((R°)*\ diag) — S°
1

—(y-x)
|y —x|

(x,9)
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is a homotopy equivalence. In particular H(py): H,((R°)*\ diag;Z) — H(S*Z) is an isomor-

phism for all i, (R*)*\diag is a homology S°, and [S]= (H2 (pS2 )) 1[SZ] is a canonical generator
of H,((R*)*\ diag;Z) = Z[S].
Proof. The map (x,y) > (x| y —x H,ps2 (x,)) provides a homeomorphism from (R*)*\ diag
to R*x]0,00[xS>. O
As in Subsection 1.1, consider a two-component link J LU K:S'US" < R’. This embedding
induces an embedding

JxK: S'xS" o ((R*)*\diag)
(z,z,) > (J(z),K(z))

the map p, of Subsection 1.1 reads ppo(JxK), and since H,(p,J[S'xS']=
deg(p, I[S°] = Tk, (J,KO[S’] in H,(S*;Z)=Z[S?], [J x K]1= H,(J] x K)[S" x §'] = Ik, (J,K)[S] in
H,((R*)*\diag;Z = (Z[S]. We will see that this definition of [k, generalizes to links in rational
homology 3-spheres and then prove that our generalized definition coincides with the general
definition of linking numbers in this case.

For a 3-manifold M, the normal bundle to the diagonal of M?* in M” is identified with the
tangent bundle to M, fiberwise, by the map

(T.M)’
diag((T.M)*)

A parallelization t of an oriented 3-manifold M is a bundle isomorphism t: M xR’ — TM
that restricts to xx R’ as an orientation-preserving linear isomorphism from xx R’ to T M, for
any x € M. It has long been known that any oriented 3-manifold is parallelizable (i. e. admits
a parallelization). (It is proved in Subsection 6.2.) Therefore, a tubular neighborhood of the
diagonal in M? is diffeomorphic to M xR’

Lemma 5. Let M be a rational homology 3-sphere, let « be a point of M. Let M = (M \{x}).
Then M*\diag has the same rational homology as S°. Let B be a ball in M and let x be a
point inside B, then the class |S] of xx 0B is a canonical generator of H, (M? \diag Q)=Q[S].

Proof. In this proof, the homology coefficients are in Q. Since M has the homolo-
gy of a point, the Kiinneth Formula implies that M? has the homology of a point. Now,
by excision,

(u,0) € > (@-u)eT M.

H,(M*, M*\ diag) = H,(M xR, M x (R*\ 0)) = H.(R*,S?) = {Q if = 3
0 otherwise.
Using the long exact sequence of the pair (M?,M*\diag, we get that H,(M*\ diag;Q)=H,(S*). O

Define the Gauss linking number of two disjoint links J and K in M so that

[(JxK)(S' xS =lk,(J,K)[S]
in H,(M?*\diag;Q. Note that the two definitions of Ik, coincide when M =T’

Proposition 1. [k, = [k.

Proof. First note that both definitions make sense when J and K are disjoint links:
[JxK]=1k,(J,K)[S] and [k(J,K) is the algebraic intersection of K and a rational chain X,
bounded by J.

If K is a knot, then the chain £, of M provides a rational cobordism C between J and
a combination of meridians of K in M\K, and a rational cobordism CxK in M?\diag,
which allow us to see that [k;(-,K) and [k(-,K) linearly depend on [J]e€ H, (M \K). Thus we
are left with the proof that [k (m,,K) = lk(m,,K) = 1. Since lk,(m,,-) linearly depends on
[Kle H(M \m,), we are left with the proof Ik (my, K)=1 when K is a meridian of m,. Now,
there is no loss in assuming that our link is a Hopf link in R’ so that the equality follows
from the equality for the positive Hopf link in R’. m
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For a 2-component link (/,K) in R’, the definition of [k(J,K) can be rewritten as
(LK) = [ ply(@) = (T x K, p 3 (V)

(®3)?\diag
for any regular value Y of p,, and for any 2-form o of S? such that js2w=1. Thus, [k(J,K)

is the evaluation of a 2-form p; (o) of (R*)*\ diag at the 2-cycle [JxK], or it is the intersec-
tion of the 2-cycle [/xK] with a 4-manifold p; (Y), which will later be seen as the interior of
a prototypical propagator. We will adapt these definitions to rational homology 3-spheres in
Subsection 2.3. The definition of the linking number that we will generalize in order to pro-
duce more powerful invariants is contained in Lemma 8.

2. Propagators and the ®-invariant

Propagators will be the key ingredient to define powerful invariants from graph config-
urations in Section 4. They are defined in Subsection 2.3 below after needed preliminaries.
They allow us to define the ®-invariant as an invariant of parallelized homology 3-balls in
Subsection 2.4. The ®-invariant is next turned to an invariant of rational homology 3-spheres
in Subsection 2.6.

2.1. Blowing up in real differential topology

Let A be a submanifold of a smooth manifold B, and let UU(4) denote its unit normal bun-
dle. The fiber U, (4)=(T,(4)\{0})/R* of ULY(4) is oriented as the boundary of a unit ball
of B, (A).

Here, blowing up such a submanifold A of codimension ¢ of B means replacing A by UU(4).
For small open subspaces U, of A, ((R‘ ={0}u]0,oo[><S"")><UA) is replaced by ([0,00[xS"' xU ),
so that the blown-up manifold B/(B,A) is homeomorphic to the complement in B of an open
tubular neighborhood (thought of as infinitely small) of A. In particular, B/(B,A) is homoto-
py equivalent to B\ A. Furthermore, the blow up is canonical, so that the created boundary is
1UU(A) and there is a canonical smooth projection from B/(B,A) to B such that the preimage
of ae 4 is UY,(4). If A and B are compact, then B/(B,A) is compact, it is a smooth compac-
tification of B \ A.

In the following figure, we see the result of blowing up (0,0) in R?, and the closures in
B/(R?,(0,0)) of {0}xR, Rx{0} and the diagonal of R, successively.

0.xR diag l/
Rx0 Blow up (0, 0) Blow up the blown-up lines
unit normal bundle to (0, 0)

2.2. The configuration space C,(M)

See S as R’ U or as two copies of R’ identified along R*\{0} by the (exceptionally ori-
entation-reversing) diffeomorphism x> x/ || x|*. Then B/(S*,o0) =R’ US> where the unit nor-
mal bundle (-=S?) to o in S° is canonically diffeomorphic to S* via p, :S> — §° where xe S’
is the limit of a sequence of points of R* approaching « along a line directed by p, (x) e S?
OB((S®,0) = S,

Fix a rational homology 3-sphere M, a point « of M, and M =M \ {oo}. Identify a neighbor-
hood of o in M with the complement B, of the closed ball B(1) of radius 1 in R’. Let B, be
the complement of the closed ball B(2) of radius 2 in R’, which is a smaller neighborhood of
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o in M via the understood identification. Then BM = M \Ez,w is a compact rational homology
ball diffeomorphic to B/((M,»).

Define the configuration space C,(M) as the compact 6-manifold with boundary and ridges
obtained from M* by blowing up (o,), the closures in B{(M?,(c0,0)) of {oo} x M, M x{o} and
the diagonal of M? successively. Then 8C,(M) contains the unit normal bundle

TM2 e
[ ding \{0}} /R
to the diagonal of M?. This bundle is canonically isomorphic to the unit tangent bundle UM
to M (again via the map ([(x,)]1 [y —x])).

Lemma 6. Let C,(M)=M"\diag. The open manifold C,(M)\oC,(M) is C,(M) and the
inclusion C,(M)— C,(M) is a homotopy equivalence. In particular, C,(M) is a compactifi-
cation of C,(M) homotopy equivalent to C,(M). The manifold C,(M) is a smooth compact
6-dimensional manifold with boundary and ridges There is a canonical smooth projection
P2t Co(M) = M, 3C,(M) = (82 x M) U (=M x §2) UUM % p’', (o0,00).

Proof Let B, , be the complement of the open ball of radlus one of R’ in S°. Blowing up
(00,0) in B}, transforms a neighborhood of (,%) into the product [0,1[xS”. Explicitly, there
is a map w:[0,1[xS* — BU(B},,(»,2)), where B((B],,(»,0)) < BI/(M?,(»,2)), such that when
L €]0,1[ and (x,y) is an element of the unit sphere S° of (R*)* such that x # 0 and y # 0,

1 1
G (2,9)) = g
VY [xuxnxwu yj

and such that y is a diffeomorphism onto its image, Which is a neighborhood of the preima-

ge of (w0,0) under the blow-down map B/(M?,(c0,0)) s M. This neighborhood intersects
wx M, Mxow, and diag(M?) as y(]0,1[x0x S?), (10, 1[xS* x0) and y(]0,1[x(S’ md1ag((R3) ),
respectively. In particular, the closures of wx M, Mxo, and diag(M?) in B{(M?,(0,0)) in-
tersect the boundary wy(0x S*) of BO(M?,(0,0)) as three disjoint spheres in S, and they read
ox Bl(M ,0), BI(M,0)xo and diag(B/(M,»)*). Thus, the next steps will be three blow-ups
along these three disjoint smooth manifolds.

These blow-ups will preserve the product structure y([0,1[x-). Therefore, C,(M) is a smooth
compact 6-dimensional manifold with boundary, with three ridges S*xS* in P;z (00,00).
A neighborhood of these ridges in C,(M) is diffeomorphic to [0,1[*xS* xS, O

Lemma 7. The map Po of Lemma 4 smoothly extends to C,(S’), and its extension Py satisfies:

~p.op; on S; xR,
Pp =1P.op, on R7 xS,
P, on UR® = R’ x S,
where p, and p, denote the projections on the first and second factor with respect to the above
expressions.
Proof. Near the diagonal of R’, we have a chart of C,(S”)
v, 1 R? x[0,00[xS* — C,(S7)
that maps (xeR’,A€]0,0o[,y€S*) to (x,x+Ay)e(R’). Here, p, extends as the projection
onto the S* factor.

Consider the orientation-reversing embedding ¢,

o :R* o S%
0 if n=0,
wxeS?) = <1

—x otherwise.
u
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Note that this chart induces the already mentioned identification p_ of the ill-oriented unit
normal bundle S? to {o} in S® with S*. When p # 0,

P, (o) ,y e R = P
Iy —x|

Then p, can be smoothly extended on S? xR’ (where p = 0) by p,(x e S2,yeR’) =—x.
Sunllarly, set p. L(xeR’yeS?)=y. Now, with the map y of the proof of Lemma 6, when
x and y are not equal to zero and when they are distinct,

y _ X
[ [x | y=1ly | x
P, ow((h(x,y))) = =
s* y2_ sz Nl g=1lyl* x|
Iyl x|l

when A # 0. This map naturally extends to B{(M*,(w,)) outside the boundaries of o x B{(M ),
Bl(M ,0)x© and diag(B{(M,»)) by keeping the same formula when A = 0.
Let us check that Py smoothly extends over the boundary of the diagonal of Bl(M,o).
There is a chart of C,(M) near the preimage of this boundary in C,(M)
), :[0,00x[0,00[xS* x §* — C,(S”)
that maps (A €]0,00[,u €]0,00[,x € S*,y € S*) to (¢, (Ax),d, (AM(x+wy))) where p,, reads

Y= 2% y)x - px
Iy =2, gy —pa ||’
and therefore smoothly extends when p=0. We similarly check that Py smoothly extends
over the boundaries of (c0x B/(M ,»)) and (B/(M,0)x®). m

Let 1, denote the standard parallelization of R’. Say that a parallelization

T:M xR > TM

of M that coincides with t, on B, is asymptotically standard. According to Subsection 6.2,
such a parallelization exists. Such a parallelization identifies UM with M x S*.

Proposition 2. For any asymptotically standard parallelization t of M, there exists a
smooth map p,:0C,(M)— S* such that

P on p. 1, (e0,00),

2, 9)

|=paep on SIxM,
P P, op, on M x S2,

D, on UM =M x §?,
where p, and p, denote the projections on the first and second factor with respect to the above
expressions.
Proof. This is a consequence of Lemma 7. m

Since C,(M) is homotopy equivalent to (M*\diag), according to Lemma 35,
H,(C,(M);Q)=Q[S] where the canonical generator [S] is the homology class of a fiber of
UMC@Cz(M). For a 2-component link (J,K) of M, the homology class [J*K] of JxK in
H,(C,(M);Q) reads [k(J,K)[S], according to Subsection 1.6 and to Proposition 1.

Define an asymptotic rational homology R* as a pair (M,t) where M is 3-manifold that
reads as the union over ]1,2]x8? of a rational homology ball B, and the complement B, of
the unit ball of R’, and T is an asymptotically standard parallelization of M. Since such a
pair (M,1) canonically defines the rational homology 3-sphere M =M U{w}, "Let (M,1) be
an asymptotic rational homology R*" is a shortcut for "Let M be a rational homology 3-sphere
equipped with an asymptotically standard parallelization © of M".
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2.3. On propagators

Definition 1. Let (M,t) be an asymptotic rational homology R®. A propagating chain of
(C,(M),7) is a 4-chain P of C,(M) such that 6P = p.'(a) for some a € S* A propagating form
of (C,(M),1) is a closed 2-form ®, on C,(M) whose restriction to 0C,(M) reads p;(®) for some
2-form o of S” such that I o=1. Propagatlng chains and propagating forms are simply called

propagators when their nature is clear from the context.
Example 1. Recall the map p e :C,(S?)—> 8% of Lemma 7. For any a eSS’ pi1 (a) is a propa-

gating chain of (C,(S5%),t,), and for any 2-form o of S* such that I o=1,p 2(co) is a propa-
gating form of (C,(S5°),t,).

Propagating chains exist because the 3-cycle p.'(a) of 0C,(M) bounds in C,(M) since
H,(C,(M);Q)=0. Dually, propagating forms exist because the restriction induces a surjective
map H’(C,(M);R)— H?(6C,(M);R) since H’(C,(M),0C,(M);R)=0. Explicit constructions of
propagating chains associated to Morse functions or Heegaard diagrams can be found in [6].

Lemma 8. Let (M,t) be an asymptotic rational homology R’. Let C be a two-cycle of
C,(M). For any propagating chain P of (C,(M),7) transverse to C and for any propagating

form o, of (C,(M),1), [C]=ICmP[S]=(C,P)CZ(M)[S] in H,(C,(M);Q)=Q[S]. In particular, for
any two-component link (J,K) of M [k(J,K) :Ijkap = (XK, P,y

Proof. Fix a propagating chain P, the algebraic intersection (C, P)e,on only depends on the
homology class [C] of C in C,(M). Similarly, since o, is closed, Icwp only depends

on [C]. (Indeed, if C and C' cobound a chain D, CNP and C' P cobound (D NP), and
—J. do, according to the Stokes theorem.) Furthermore, the dependance on [C] is

.[aD c-c ©p
linear. Therefore it suffices to check the lemma for a cycle that represents the canonical gen-
erator [S] of H,(C,(M);Q). Any fiber of UM is such a cycle. O

2.4. The ®-invariant of (M,1)

Note that the intersection of transverse (oriented) submanifolds is an associative operation, so
that ANBNC is well defined. Furthermore, for a connected manifold N, the class of a 0-cycle in
H,(M;Q)=Q[m]=Q is a well-defined number, so that the algebraic intersection of several trans-
verse submanifolds whose codimension sum is the dimension of the ambient manifold is well defined
as the homology class of their (oriented) intersection. This extends to rational chains, multilinearly.
Thus, for three such transverse submanifolds A, B, C in a manifold D, their algebraic intersection
(4,B,C), is the sum over the intersection points @ of the associated signs, where the sign of a is
positive if and only if the orientation of D is induced by the orientation of B, A® UV B®Y,C .

Theorem 1. Let (M,t) be an asymptotic rational homology R’. Let P, P, and P. be three
pairwise transverse propagators of (C,(M),t) with respective boundaries p_'(a), p.'(b) and
p.'(¢) for three distinct points a,b and ¢ of S°,then O(M,t)= (Fo B Py does not depend
on the chosen propagators P, P, and P.. It is a topological invariant of (M,t). For any three
propagating chains o, o, and o, of (C,(M),7),

OWM,1)= IC D0 N Dy A O
2

Proof. Since H,(C,(M))=0, if the propagator P, is changed to a propagator P, with the same
boundary, (P, -7P,) bounds a 5-dimensional chain W transverse to B, WP. The 1-dimensional
chain WnNPE NP does not meet 0C,(M) since B, NP, does not meet 0C,(M). Therefore, up to
a well-determined sign, the boundary of WNB NP is P NP NP. -P. NP NP. This shows
that (%, . P, is independent of P, when a is fixed. Similarly, it is independent of P, and P,
when b and ¢ are fixed. Thus, (P,R,,P) c,an IS @ rational function on the connected set of trlples
(a,b, c) of distinct point of S* It is easy to see that this function is continuous. Thus, it is constant.
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Let us similarly prove that L o Q0 N Dy A O is independent of the propagating forms o, ®,
2

and o,. Assume that the form ®,, which restricts to 0C,(M) as p;(®,), is changed to o/, which
restricts to 0C,(M) as pi(w)).
Lemma 9. There exists a one-form n, on S* such that o',= o, +dn,. For any such v,, there
exists a one-form n on C,(M) such that ®',— o, = dn, and the restriction of n to dC,(M) is p.(n,).
Proof. Since ®, and o, are cohomologous, there exists a one-form n on C,(M) such that
o' =0, +dn. Similarly, since sz'A = IszmA, there exists a one-form m, on S* such that
o, =o,+dn,. On dC,(M), dn— p:(n,))=0. Thanks to the exact sequence
0=H'(C,(M))— H'(0C,(M)) — H*(C,(M),0C,(M)) = H,(C,(M)) =0,
H'(6C,(M)) = 0. Therefore, there exists a function ffrom 6C,(M) to R suchthat df =n- p(t)"(n,)
on 0C,(M). Extend fto a C* map on C,(M) and change n into (n—df). O
Then
M)d(n A, AD,)=

® A® /\a),—J. ® A®, AO =I
J.Cz(M) a b c €, (M) a b c C2(

= GCZ(M)T]/\O% AN @, :-[OC2(M)p(T) My Aoz 0.)=0

since any 5-form on S* vanishes. Thus, IC P N O A O, is independent of the propagating
2

forms ®,, ®, and . Now, we can choose the propagating forms ®,, ®, and o, Poincaré dual
to P,, P, and P,, and supported in very small neighborhoods of P,, P, and P, respectively, so
that the intersection of the three supports is a very small neighborhood of P nB, NP, where
it can easily be seen that _[CZ(M)(D‘, Ao, A0, =P Ry - O

In particular, ®(M,1) reads IC (M)oas for any propagating chain ® of (C,(M),t). Since such a
2

propagating chain represents the linking number, ®(M,1) can be thought of as the cube of the
linking number with respect to t.

When t varies continuously, ®(M,t) varies continuously in Q so that ®(M,1) is an invari-
ant of the homotopy class of .

2.5. Parallelisations of 3-manifolds and Pontrjagin classes

In this subsection, M denotes a smooth, compact oriented 3-manifold with possible bound-
ary 0M. Recall that such a 3-manifold is parallelizable.

Let GL'(R’) denote the group of orientation-preserving linear isomorphisms of R®. Let
C°((M,8M),(GL*(R3),1)) denote the set of maps g:(M,0M)— (GL'(R*),1) from M to GL'(R®)
that send oM to the unit 1 of GL'(R*). Let [(M,0M),(GL'(R*),1)] denote the group of homoto-
py classes of such maps, with the group structure induced by the multiplication of maps, using
the multiplication in GL(R’). For a map ¢ in Cc’ ((M,@M),(GL+ (]R{3),1)), set

vp(@): MxR® — MxR’

) B (ag)y).
Let t,, : M xR* - TM be a parallelization of M. Then any parallelization t of M that coincides
with t,, on 6M reads t=1,, oy,(g) for some geC’ ((M,@M),(GL*(]RS),I)),

Thus, fixing t,, identifies the set of homotopy classes of parallelizations of M fixed on
oM with the group [(M,0M),(GL (R*),1)]. Since GL'(R*) deformation retracts onto the group
SO(3) of orientation-preserving linear isometries of R®, [(M,0M),(GL" (R*),1)] is isomorphic to
[(M,0M),(SO(3),1)].

See S* as B*/0B® where B is the standard ball of radius 2r of R’ seen as ([0,21]x5%)/(0~{0}x.S5?).
Let p:B’ — SOB3) map (0€[0,2n],veS*) to the rotation p(6,v) with axis directed by v and
with angle 6. This map induces the double covering p:S° — SO(3), which orients SO(3) and
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which allows one to deduce the first three homotopy groups of SO(3) from the ones of S°.
They are w,(SO(3))=7Z/2Z, m,(SO(3))=0 and n,(SO(3)) = Z[p]. For ve S, n,(SO(3)) is gener-
ated by the class of the loop that maps exp(i0) € S' to the rotation p(6,v).

Note that a map ¢ from (M,0M) to (SO(3),1) has a degree deg(g), which may be defined as
the differential degree at a regular value (different from 1) of g. It can also be defined homo-
logically, by H,(g)[M,0M] = deg(g)[SO(3),1].

The following theorem is proved in Section 6.

Theorem 2. For any smooth compact connected oriented 3-manifold M, the group
[(M,0M),(SO(3),1)] is abelian, and the degree deg:[(M,0M),(SO3),1)]—>Z is a group homo-
morphism, which induces an isomorphism deg:[(M,0M),(SO(3),1)]®, Q > Q. When oM = &,
(resp. when oM =S*), there exists a canonical map p, from the set of homotopy classes
of parallelizations of M (resp. that coincide with T, near S*) such that for any map g in
C°((M,0M),(SO(3),1)), for any trivialization t© of TM

pi(teyp(g)) — p(1)=2deg(g).

The definition of the map p, is given in Subsection 6.5, it involves relative Pontrjagin class-
es. When oM = &, the map p, coincides with the map % that is studied by Kirby and Melvin
in [7] under the name Hirzebruch defect. See also [8. § 3.1].

Since [(M,0M),(SO(3),1)] is abelian, the set of parallelizations of M that are fixed on M is
an affine space with translation group [(M,0M),(SO(3),1)].

Recall that p: B> — SO(3) maps (0<€[0,2n],0eS?) to the rotation with axis directed by v and
with angle 0. Let M be an oriented connected 3-manifold with possible boundary. For a ball
B’ embedded in M, let p,, (B*)eC®((M,aM),(SO(3),1)) be a (continuous) map that coincides
with p on B® and that maps the complement of B® to the unit of SO(3). The homotopy class
of p, (B’) is well-defined.

Lemma 10. deg(p,, (B))=2.

Proof. Exercise. m

2.6. Defining a Q-sphere invariant from ©

Recall that an asymptotic rational homology R® is a pair (M,t) where M is 3-manifold that
reads as the union over ]1,2]xS” of a rational homology ball B,, and the complement B, of
the unit ball of R*, and that is equipped with an asymptotically standard parallelization <.

In this subsection, we prove the following proposition.

Proposition 3. Let (M,t) be an asymptotic rational homology R’. For any map g in
Cc’ ((BM,BM mél’m),(SOB),l)) trivially extended to M,

1
®(M,T°\|1R(g))—®(M,T)=E deg(g).
Theorem 2 allows us to derive the following corollary from Proposition 3.
1
Corollary 1. O(M)= @)(M,T)—Zpl(l') is an invariant of Q-spheres.

Lemma 11. O(M,toy,(2))—O(M,1) is independent of t. Set
0'(g) = 0(M, 1oy, (9) - O(M,1).
Then ©’ is a homomorphism from [(B,,,B,, N5, ,),(SO(3),1)] to Q.
Proof. For d =a, b or c, the propagator P, of (C,(M),t) can be assumed to be a prod-
uct [—1,0]xp;‘i,BM (d) on a collar [-1,0]xUB,, of UB,, in C,(M). Since H,([-1,0]xUB,,;Q)=0,

(6([—1 ,0]x p;;j,,M (@) \ (0 x pr“fj,gM (d))) U (0 x p:wR<g>\U1)’M (d)) bounds a chain G,.

The chains G,, G, and G, can be assumed to be transverse. Construct the propagator P,(g)
of (C,(M),toy,(¢g)) from P, by replacing [—I,O]Xp;;,BM (d) by G, on [-1,0]xUB,,. Then
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O(M,1oy,(g)) — O(M,1) is equal to (G,,G,,G ) ¢.up,- Using 7 to identify UB,, with B, xS
allows us to see that O(M,toy,(g))—-0O(M,1) is independent of t. Then it is easy to observe
that ®' is a homomorphism from [(B,,,0B,,),(SO(3),1)] to Q. o

According to Theorem 2 and to Lemma 10, it suffices to prove that ®'(p,,(8°))=1 in order to
prove Proposition 3. It is easy to see that ®'(p,,(B’))=® (p). Thus, we are left with the proof
of the following lemma.

Lemma 12. ©'(p)=1.

Again, see B’ as ([0,2n]xS%)/ (0~ {0} xS*). We first prove the following lemma:

Lemma 13. Let a be the North Pole. The point (—a) is regular for the map

p,: B — §°
mo o plm)a)

and its preimage (cooriented by S* via p,) is the knot L, ={n}xE ,where E is the equator
that bounds the Southern Hemisphere.

Proof. 1t is easy to see that p,'(—a)=*{n}xE .

a Let xe{n}xE . When m moves along the great circle that contains a
and x from x towards (—a) in {n}xS? p(m)(@) moves from (—a) in the
same direction, which will be the direction of the tangent vector v, of

i S? at (—a), counterclockwise in our picture, where x is on the left. Then
1 in our picture, S” is oriented at (=a) by v, and by the tangent vector v,

v1  at (—a) towards us. In order to move p(0,v)(a) in the v, direction, one
increases 0 so that L, is cooriented and oriented like in the figure. o
Proof of Lemma 12. We use the notation of the proof of Lemma 11 and we construct an

—a

explicit G, in [-1,0]xUB* =[-1,0]x B® x 5.

When p(m)(a)# —a, there is a unique geodesic arc [a,p(m)(a)] with length (¢ <€[0,n[) from a
to p(m)(a) =p,(m). For t €[0,1], let X,(m) €[a,p,(m)] be such that the length of [X,(m) = a, X,(m)]
is ¢/ . This defines X, on (M \L,), X,(m)=p,(m). Let us show how the definition of X, smoothly
extends on the manifold B¢(B*,L,) obtained from B® by blowing up L,.

The map p, maps the normal bundle to L, to a disk of S$* around (-a), by an orienta-
tion-preserving diffeomorphism on every fiber (near the origin). In particular, p, induces a
map P, from the unit normal bundle to L, to the unit normal bundle to (=) in S*, which
preserves the orientation of the fibers. Then for an element y of the unit normal bundle to L,
in M, define X,(y) as before on the half great circle [a,~a]; (., from a to (—a) that is tangent
to p,(—y) at (—=a) (so that p,(—y) is an outward normal to [a,—a], _,, at (—=a)). This extends
the definition of X,, continuously.

The whole sphere is covered with degree (=1) by the image of ([0,11xU%_(L,)), where
the fiber UY, (L,) of the unit normal bundle to L, is oriented as the boundary of a disk in

P, -y

the fiber of the normal bundle. Let G,(a) be the closure of (Ute[o B )(m,X,(m))) in UB’®
1e[0,1],meBI(B3 L )(pB3 (m), X, (m)) Then

0G, =~(B'xa)+ U (m,p,(m))+ U, X,(-0BI(S",L,))

G,(a)=U

where (-0B((S’,L,)) is oriented like 0N(L,) so that the last summand reads (=L, xS*) because
the sphere is covered with degree (—1) by the image of ([0,11xU%_ (L,)).
Let D, be a disk bounded by L, in B®. Set G(a)=G,(a)+ D, xS* so that

0G(a)= —(B’ x a)+ Vo s (m,p,(m)).
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Now let 1 be the endomorphism of UB® over B’ that maps a unit vector to the opposite one.
Set G, =[-1,-2/3]xB*xa+1{-2/3}xG(a) +[-2/3,0]x U (m,p,(m)) and G_, = [-1,-1/3] x

Bx(-a) + {(-1/3}x(G(@) +[-1/3,0]xU__ (mp(m)(-a)). Then G, \G_, =[~2/3,~1/3]x L,
(—a)+{=2/3}x D, x(=a) = {=1/3}x\, (m,p,(m)). Finally, ®(p) is the algebraic intersec-

tion of G, "G_, with P.(p) in C,(M). This intersection coincides with the algebraic intersec-
tion of G, "G _, with any propagator of (C,(M), 1) according to Lemma 8. Therefore ®'(p) =

(P,G, ﬁG_d>[71 opstasd deg (p, : D, — S*). The orientation of L, allows us to choose
(=D,) as the Northern Hemisphere, the image of this hemisphere under p, covers the sphere
with degree 1 so that ®'(p)=1. O

3. An introduction to finite type invariants

This section contains the needed background from the theory of finite type invariants. It al-
lows us to introduce the target space generated by Feynman—Jacobi diagrams, for the general
invariants presented in Section 4, in a progressive way.

Theories of finite type invariants are useful to characterize invariants. Such a theory allowed
Greg Kuperberg and Dylan Thurston to identify ®/6 with the Casson invariant A for integer
homology 3-spheres, in [9]. The invariant A was defined by Casson in 1984 as an algebraic
count of conjugacy classes of irreducible representations from m, (M) to SU(2). See [10-12].
The Kuperberg—Thurston result above was generalized to the case of rational homology
3-spheres in [13; Theorem 2.6 and Corollary 6.14]. Thus, for any rational homology 3-sphere M,
O(M)=6M(M), where A is the Walker generalization of the Casson invariant to rational homol-

1
ogy 3-spheres, which is normalized like in [10—12] for integer homology 3-spheres, and like EKW

for rational homology 3-spheres with respect to the Walker normalisation A, of [14].

For invariants of knots and links in R?, the base of the theory of finite type invariants was
mainly established by Bar-Natan in [15]. A more complete review of this theory has been writ-
ten by Chmutov, Duzhin and Mostovoy in [16]. For integer homology 3-spheres, the theory
was started by Ohtsuki in [17] and further developed by Goussarov, Habiro, Le and others.
See [18—20]. Delphine Moussard developed a theory of finite type invariants for rational ho-
mology 3-spheres in [21]. Her suitable theory is based on the Lagrangian-preserving surgeries
defined below.

3.1. Lagrangian-preserving surgeries

Definition 2. An integer (resp. rational) homology handlebody of genus g is a compact
oriented 3-manifold A that has the same integral (resp. rational) homology as the usual solid
handlebody H, of Fig. 1.

Fig. 1. The handlebody H,

Exercise 1. Show that if A is a rational homology handlebody of genus g, then 0A is a genus
g surface.
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The Lagrangian L, of a compact 3-manifold A is the kernel of the map induced by the in-
clusion from H,(04;Q) to H,(04;Q).

In Fig. 1, the Lagrangian of H, is freely generated by the classes of the curves a;.

Definition 3. An integral (resp. rational) Lagrangian-Preserving (or LP) surgery (A'/A)
is the replacement of an integral (resp. rational) homology handlebody A embedded in the
interior of a 3-manifold M by another such A" whose boundary is identified with 0A by an
orientation-preserving diffeomorphism that sends £, to £,. The manifold M(A'/A) obtained
by such an LP-surgery reads M(A'/A) = (M \Int(4)) U, A'. (This only defines the topological
structure of M(A'/A), but we equip M(A'/A) with its unique smooth structure.)

Lemma 14. If (A'/A) is an integral (resp. rational) LP-surgery, then the homology of
M(A'/A) with Z-coefficients (resp. with Q-coefficients) is canonically isomorphic to H,(M;Z)
(resp. to H,(M;Q)). If M is a Q-sphere,if (A'/A) is a rational LP-surgery, and if (J,K) is a
two-component link of M \ A,then the linking number of J and K in M and the linking number
of J and K in M(A'/A) coincide.

Proof. Exercise. m

3.2. Definition of finite type invariants
Let K=Q or R. A K-valued inovariant of oriented 3-manifolds is a function from the set

of 3-manifolds, considered up to orientation-preserving diffeomorphisms to K. Let ]_ISi1 de-
i=1
note a disjoint union of n circles, where each S, is a copy of S'. Here, an n-component link

in a 3-manifold M is an equivalence class of smooth embeddings L:]_[;Si1 < M under the

equivalence relation that identifies two embeddings L and L’ if and only if there is an orienta-
tion-preserving diffeomorphism % of M such that 2(L) = L'. A knot is a one-component link.
A link invariant (resp. a knot invariant) is a function of links (resp. knots). For example,
O is an invariant of Q-spheres and the linking number is a rational invariant of two-component
links in rational homology 3-spheres.

In order to study a function, it is usual to study its derivative, and the derivative of its
derivative The derivative of a function is defined from its variations. For a function f from

Z‘ =@ Ze, to K, one can define its first order derivatives s—f 7' > K by
e.

1

i(z) =f(z+e¢)-f(2)
oe,

and check that all the first order derivatives of f vanish if and only if f is constant. Induc-
tively define an n-order derivative as a first order derivative of an (n—1)-order derivative for
a positive integer n. Then it can be checked that all the (n+1)-order derivatives of a function
vanish if and only if fis a polynomial of degree not greater than n. In order to study topolog-
ical invariants, we can similarly study their variations under simple operations.

Below, X denotes one of the following sets:

. Zd;

+ the set K of knots in R, the set K, of n-component links in R’

* the set M of Z-spheres, the set M, of Q-spheres.

And O(X) denotes a set of simple operations acting on some elements of X.

For X =7, O(X) will be made of the operations (z = zte,).

For knots or links in R?, the simple operations will be crossing changes. A crossing change
ball of a link L is a ball B of the ambient space, where L "B is a disjoint union of two arcs
a, and a, properly embedded in B, and there exist two disjoint topological disks D, and
D, embedded in B, such that, for i€{l,2}, a, 0D, and (6D, \a,) = 0B. After an isotopy, the
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projection of (B,a,,a,) reads | 5\ or K (the corresponding pairs (ball,arcs) are isomorphic,
but they are regarded in different ways), a crossing change is a change that does not change L
outside B and that modifies L inside B by a local move (§< 5{) or (5{ "{) For the move

(5{ K) the crossing change is positive, it is (; K 5\) negative for the move ( K 5\)

For integer (resp. rational) homology 3-spheres, the simple operations will be integral (resp.
rational) LP-surgeries of genus 3.

Say that crossing changes are disjoint if they sit inside disjoint 3-balls. Say that LP-sur-
geries (A'/A) and (B'/B) in a manifold M are disjoint if A and B are disjoint in M. Two
operations on Z‘ are always disjoint (even if they look identical). In particular, disjoint
operations commute, (their result does not depend on which one is performed first). Let
n=1{1,2,...,n}. Consider the vector space F, (X) freely generated by X over K. For an element
x of X and n pairwise disjoint operations o,,...,0, acting on x, define

[X;Ola' "’On] = Z(_l)#lx((oi)iel) € f;)(X)
Icn
where x((¢,),.,) denotes the element of X obtained by performing the operations o, for i€l
on x. Then define F,(X) as the K-subspace of F,(X) generated by the [x;0,,...,0,], for all xe X
equipped with n pairwise disjoint simple operations. Since

[x;0,,...,0,,0,,, 1= [x;0,,...,0,]-[x(0,,,);0,,...,0,],

F . (X)c F(X), for all neN.

Definition 4. A K-valued function f on X, uniquely extends as a K-linear map of

Fo(X)" =Hom(F,(X);K),

which is still denoted by f. For an integer n €N, the invariant (or function) f is of degree
<n if and only if AF,, (X))=0. The degree of such an invariant is the smallest integer ne N
such that f(F,,,(X))=0. An invariant is of finite type if it is of degree n for some n € N. This
definition depends on the chosen set of operations O(X). We fixed our choices for our sets X,
but other choices could lead to different notions. See [18].

Let Z,(X)=(F(X)/F, (X)) be the space of invariants of degree at most n. Of course, for
allneN, Z (X)c Z,,,(X).

Example 2. Z (Z") is the space of polynomials of degree at most n on Z‘. (Exercise.)

Lemma 15. Any n-component link in R® can be transformed to the trivial n-component link
below by a finite number of disjoint crossing changes.

Proof. Let L be an n-component link in R’. Since R’ is simply connected, there is a homot-

opy that carries L to the trivial link. Such a homotopy h:[0,1]><]_ISl»1 — R’® can be chosen, so

i=1
that A(t,-) is an embedding except for finitely many times ¢, 0<¢ <...<t, <t,, <t, <1 where
h(t,,-) is an immersion with one double point and no other multiple points, and the link A(Z,-)
changes exactly by a crossing change when ¢ crosses a ¢,. (For an alternative elementary proof
of this lemma, see [22. Subsection 7.1].) O
In particular, a degree 0 invariant of n-component links of R* must be constant, since it is
not allowed to vary under a crossing change.

o ) wl ) w0

Exercise 2. 1. Check that Z,(K) =Kc,, where ¢, is the constant map that maps any knot to 1.

2. Check that the linking number is a degree 1 invariant of 2-component links of R’.

3. Check that Z,(K,) =Kc, @ K/k, where ¢, is the constant map that maps any two-compo-
nent link to 1.
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3.3. Introduction to chord diagrams

Let f be a knot invariant of degree at most n. We want to evaluate f([K;o0,,...,0,]) where the
o, are disjoint negative crossing changes

-

to be performed on a knot K. Such a [K;o,,...,0,] is usually represented as a singular knot with
n double points that is an immersion of a circle with n transverse double points @, where
each double point 5 can be desingularized in two ways, the positive one $2 and the negative
one R and K is obtained from the singular knot by desingularizing all the crossings in the

positive way, which is @ in our example. Note that the sign of the desingularization is

defined from the orientation of the ambient space.

Define the chord diagram T'([K;o,,...,0,]) associated to [K;o,,...,0,] as follows. Draw the
preimage of the associated singular knot with n double points as an oriented dashed circle
equipped with the 2n preimages of the double points and join the pairs of preimages of a dou-
ble point by a plain segment called a chord.

.. Formally, a chord diagram with n chords is a cyclic order of the 2n
r ( @) = :>I<: ends of the n chords, up to a permutation of the chords and up to ex-
changing the two ends of a chord.

Lemma 16. When f is a knot invariant of degree at most n, f([K;o,,...,0,]) only depends
on I'([K;o0,,...,0,]).

Proof. Since [ is of degree n, f([K;o0,,...,0,]) is invariant under a crossing change outside the
balls of the o,, that is outside the double points of the associated singular knot. Therefore, f
([K;0,,...,0,]) only depends on the cyclic order of the 2n arcs involved in the o, on K. m

Let D, be the K-vector space freely generated by the n chord diagrams on S'. Then

Dy =K » D =K{|} D, =Kt @ K%,
D =KidokSdokd g ok ok

£, ()
T (K)

Lemma 17. The map ¢, from D, to that maps T to some [K;o,,...,0,] whose diagram

is T is well-defined and surjective.
Proof. Use the arguments of the proof of Lemma 16. m

For example, ¢, (:%Z) o [@w

The kernel of the composition of ¢, and the restriction below

In(,@:(};(m] %};(/@] by oy
‘,’E;z+l(lc) ]:rH-l(]C)

(K
is Z,_(K). Thus, (0 injects into D, and Z,(K) is finite dimensional for all n. Furthermore,

Z,.(K)
Z,(K) :Hom( F(K) ;KJ'
7,.,(K) Foa(K)
An isolated chord in a chord diagram is a chord between two points of S' that are consec-
utive on the circle.
Lemma 18. Let D be a diagram on S' that contains an isolated chord. Then ¢,(D)=0. Let
D', D*, D°, D" be four n-chord diagrams that are identical outside three portions of circles
where they look like:
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Ar 7L N o
D= 5% D= N>, D= *—. and D'= —

) " - ) a ) - )

then ¢,(-D' + D’ + D’ = D*)=0. .

Proof. For the first assertion, observe that ¢,( I) = [“\/g} — [>o]. For the second one, see
[22. Lemma 2.21], for example. o

Let D, denote the quotient of D, by the four-term relation, which is the quotient of D, by
the vector space generated by the (-D'+D?+ D’ —D*) for all the 4-tuples (D',D?,D*,D*) as
above. Call (1T) the relation that identifies a diagram with an isolated chord with 0 so that
D, /(1T) is the quotient of D, by the vector space generated by diagrams with an isolated
chord.

According to Lemma 18 above, the map ¢, induces a map
£(K)
Foa(K)

The fundamental theorem of Vassiliev invariants (which are finite type knot invariants)
can now be stated.

Theorem 3. There exists a family of linear maps (Zf :F(K)—> D, )neN such that:

" Z (Fa(K)=0;

o,:D, /(1T) -

£, (K)
‘EHI (IC)

—‘7:” (k) =D /(I1T) and —In *)
Fra(K) 7,.(K)

This theorem has been proved by Kontsevich and Bar-Natan in [15] using the Kontsevich inte-
gral Z*¥ =(ZF),_ described in [23] and in [16. Chapter 8], for K=R. It is also true when K= Q.

Remark 1. The Kontsevich integral has been generalized to a functor from the category of
framed tangles to a category of Jacobi diagrams by Le and Murakami in [24]. Le and Mu-
rakami showed how to derive the i. e.Turaev quantum invariants of framed links in R* defined
in [25; 26] from their functor, in [24. Theorem 10].

- Z¥ induces the inverse of ¢, from to D,/ (1T);

In particular =(D,/(T))".

3.4. More spaces of diagrams

Definition 5. A uni-trivalent graph T is a 6-tuple (H(T'), E(I),U("),T("), p., p,) where H(T),
E(), U() and T(I') are finite sets, which are called the set of half-edges of T, the set of
edges of T, the set of univalent vertices of I" and the set of trivalent vertices of T, respectively,
p :H(I)—> E) is a two-to-one map (every element of E(T") has two preimages under p,) and
p, HT)->U (F)HT (T') is a map such that every element of U(T") has one preimage under p,,
and every element of T(I') has three preimages under p,, up to isomorphism. In other words,
[is a set H(I') equipped with two partitions, a partition into pairs (induced by p,.), and a
partition into singletons and triples (induced by p,), up to the bijections that preserve the
partitions. These bijections are the automorphisms of T.

Definition 6. Let C be an oriented one-manifold. A Jacobi diagram T with support C, also
called Jacobi diagram on C, is a finite uni-trivalent graph I' equipped with an isotopy class of
injections i of the set U(I") of univalent vertices of I' into the interior of C. A vertex-orienta-
tion of a Jacobi diagram I is an orientation of every trivalent vertex of I, which is a cyclic order
on the set of the three half-edges which meet at this vertex. A Jacobi diagram is oriented if it
is equipped with a vertex-orientation.

Such an oriented Jacobi diagram T is represented by a planar immersion of I'UC where the
univalent vertices of U(I") are located at their images under i, the one-manifold C is repre-
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sented by dashed lines, whereas the diagram T is plain. The vertices are represented by big
points. The local orientation of a vertex is represented by the counterclockwise order of the
three half-edges that meet at it.

Here is an example of a picture of a Jacobi diagram T on the disjoint union M = S‘]_[S1 of

two circles: &——%% S

The degree of such a diagram is half the number of all the vertices of T.
Of course, a chord diagram of D, is a degree n Jacobi diagram on S' without trivalent vertices.
Let D, (C) denote the K-vector space generated by the degree n oriented Jacobi diagrams on C.

DL(SY) = K(l} oKD 0 KE 0 K 0 KIZ 1
Let D!(C) denote the quotient of D!(C) by the following relations AS, Jacobi and STU:

AS: Y+ \Vz()

Jacobi: j/+ 37+ fﬁ: 0
Say i S B G

As before, each of these relations relate oriented Jacobi diagrams which are identical outside
the pictures where they are like in the pictures.

Remark 2. Lie algebras provide nontrivial linear maps, called weight systems from D;(C)
to K, see [15] and [22. Section 6]. In the weight system constructions, the Jacobi relation for
the Lie bracket ensures that the maps defined for oriented Jacobi diagrams factor through the
Jacobi relation. In [27], Pierre Vogel proved that the maps associated to Lie (super)algebras
are sufficient to detect nontrivial elements of D;(C) until degree 15, and he exhibited a non
trivial element of Dj(<J) that cannot be detected by such maps. The Jacobi relation was origi-
nally called THX by Bar-Natan in [15] because, up to AS, it can be written as I —++_ X.

Set D, (@) =D, (2;K) =D (D).

When Cz#J, let D, (C)=D,(C;K) denote the quotient of D!(C)=D!(C;K) by the vector
space generated by the diagrams that have at least one connected component without univa-
lent vertices. Then D,(C) is generated by the oriented Jacobi diagrams whose (plain) connect-
ed components contain at least one univalent vertex.

Proposition 4. The natural map from D, to D,(S") induces an isomorphism from D, to
D,(s").

Sketch of proof. The natural map from D, to D,(S") factors though 4T since, according to

STU,
(e~ (-~ XN 7Y N P~
i A I’A‘: "/L";‘ / ~ :7L:
\ \ \ ' '
S — TN = > = N - N

A

in D!(S"). Since STU allows us to inductively write any oriented Jacobi diagram whose con-
nected components contain at least a univalent vertex as a combination of chord diagrams, the
induced map from D, to D,(S") is surjective. In order to prove injectivity, one constructs an
inverse map. See [22. Subsection 3.4]. o
The Le fundamental theorem on finite type invariants of Z-spheres is the following one.

Theorem 4. There exists a family (Z,fMO :Fo(M)—> D, (@))neN of linear maps such that:
* 2 (P (M) =0;

F, (M)
Fona (M)

LMO
. Zn

induces an isomorphism from to D,(D);
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. ‘En—l (M) — {0}
Fn (M) '
In particular % =D,(9) and % =D (D).

This theorem has been proved by Le [20] using the Le—Murakami—Ohtsuki invariant
Z™MO0 =z, of [28]. As explained in [29], this LMO invariant contains the quantum Wit-
ten—Reshetikhin-invariants of rational homology 3-spheres defined in [30].

In [21], Delphine Moussard obtained a similar fundamental theorem for finite type in-
variants of Q-spheres using the configuration space integral Z,,, described in [9; 31] and in
Theorem 5 below.

As in the knot case, the hardest part of these theorems is the construction of an invariant
Z=(Z)),.x that has the required properties. We will define such an invariant by "counting
Jacobi diagram configurations" in Subsection 4.3 and explain why it satisfies the required
so-called universality properties in Subsection 4.4.

3.5. Multiplying diagrams

Set D'(C)=[],.,P.(C) and D(C)=]] _.D,(O).

Assume that a one-manifold C is decomposed as a union of two one-manifolds C=C, UC,
whose interiors in C do not intersect. Define the product associated to this decomposition:

D'(C)xD(C) > D(O)
as the continuous bilinear map which maps ([T',1,[T,]) to [FIHFZ], if ', is a diagram with

support C, and if ', is a diagram with support C,, where FIHFZ denotes their disjoint union.

In particular, the disjoint union of diagrams turns D(&) into a commutative algebra graded
by the degree, and it turns D'(C) into a D(J)-module, for any 1-dimensional manifold C.

An orientation-preserving diffeomorphism from a manifold C to another one C’ induces an
isomorphism from D,(C) to D,(C’), for all n.

Let 1 =[0,1] be the compact oriented interval. If I = C, and if we identify I with C, =[0,1/2]
and with C, =[1/2,1] with respect to the orientation, then the above process turns D([) into an
algebra where the elements with non-zero degree zero part admit an inverse.

Proposition 5. The algebra D([0,1]) is commutative. The projection from [0,1] to
§'=[0,11/(0 ~1) induces an isomorphism from D,([0,1]) to D,(S") for all n, so that D(S")
inherits a commutative algebra structure from this isomorphism. The choice of a connected
component C; of C equips D(C) with an D([0,1])-module structure #, induced by the inclusion
from [0,1] to a little part of C; outside the vertices,and the insertion of diagrams with sup-
port [0,1] there.

In order to prove this proposition, we present a useful trick in diagram spaces.

First adopt a convention. So far, in a diagram picture, or in a chord diagram picture, the
plain edge of a univalent vertex, has always been attached on the left-hand side of the ori-
ented one-manifold. Now, if k plain edges are attached on the other side on a diagram pic-
ture, then we agree that the corresponding represented element of D!(M) is (=1)* times the
underlying diagram. With this convention, we have the new antisymmetry relation in D.(M):

A, + (r> =0, and we can draw the STU relation like the Jacobi relation:

T WY /A - )

Lemma 19. Let T, be a Jacobi diagram with support C. Assume that '/ U C is immersed
in the plane so that ') UC meets an open annulus A embedded in the plane exactly along
n + 1 embedded arcs o, a,,... ,o, and B,and one vertex v so that:
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1) the a, may be dashed or plain,they run from a boundary component of A to the other one;

2) B is a plain arc which runs from the boundary of A to veo;

3) the bounded component D of the complement of A does not contain a boundary point of C.

Let T, be the diagram obtained from T, by attaching the endpoint v of B to a, instead of o,
on the same side, where the side of an arc is its side when going from the outside boundary
component of A to the inside one 0D. Then zri =0 in D'(C).

i=1

Examples 3.

Proof. The second example shows that the STU relation is equivalent to this relation when
the bounded component D of R*\A intersects T, in the neighborhood of a univalent vertex on
C. Similarly, the Jacobi relation is easily seen as given by this relation when D intersects T,
in the neighborhood of a trivalent vertex. Also note that AS corresponds to the case when D
intersects ', along a dashed or plain arc. Now for the Bar-Natan [15. Lemma 3.1] proof. See
also [27. Lemma 3.3]. Assume without loss that v is always attached on the right-hand-side of
the a’s. Add to the sum the trivial (by Jacobi and STU) contribution of the sum of the dia-
grams obtained from I, by attaching v to each of the three (dashed or plain) half-edges of each
vertex @ of I', UC in D on the left-hand side when the half-edges are oriented towards w.
Now, group the terms of the obtained sum by edges of I', UC where v is attached, and observe
that the sum is zero edge by edge by AS.

Proof of Proposition 5. To each choice of a connected component C; of C, we associate an
D(I)-module structure #, on D(C), which is given by the continuous bilinear map:

D) xD(C)—> D(C)
such that: if T" is a diagram with support C and if T is a diagram with support I, then

([T],[T"D is mapped to the class of the diagram obtained by inserting I' along C; outside the
vertices of T', according to the given orientation. For example,

As shown in the first example that illustrates Lemma 19, the independence of the choice of
the insertion locus is a consequence of Lemma 19, where T, is the disjoint union FHF' and
[, intersects D along T'w/. This also proves that D(/) is a commutative algebra. Since the
morphism from D(I) to D(S") induced by the identification of the two endpoints of I amounts
to quotient out D(I) by the relation that identifies two diagrams that are obtained from one
another by moving the nearest univalent vertex to an endpoint of I near the other endpoint,

a similar application of Lemma 19 also proves that this morphism is an isomorphism from D(/)
to D(S"). (In this application, B comes from the inside boundary of the annulus.) m
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4. Configuration space construction of universal finite type invariants

In this section, we finally describe the promised invariants, which generalize both the
linking number and ®. These invariants count configurations of Jacobi diagrams with sup-
port some link, in an asymptotic rational homology R’. In Subsection 4.1, we introduce the
relevant configuration spaces. In Subsection 4.2, we define integrals over these spaces from
propagating forms. The wanted invariants are obtained by combining these integrals in Sub-
section 4.3. These integrals will be expressed in terms of algebraic intersections, which involve
propagating chains, in Subsection 5.3. Important universality properties of the constructed
invariants are presented in Subsection 4.4.

4.1. Configuration spaces of links in 3-manifolds

Let (M,t) be an asymptotic rational homology R®. Let C be a disjoint union of & cir-
cles S', iek, and let L:C — M denote a C* embedding from C to M. Let T be a
Jacobi diagram with support C. Let U =U(I') denote the set of univalent vertices of T,
and let T =T(I') denote the set of trivalent vertices of I'. A configuration of T is an em-
bedding ¢: UuT <> M whose restriction ¢, to U may be written as Loj for some in-
jection j:U<C in the given isotopy class [i.] of embeddings of U into the interior of

C. Let C(L;T) = {c UUT — M; Jj e [ir],clu =Lo j} denote the set of these configurations.
In C(L;T), the univalent vertices move along L(C) while the trivalent vertices move in the

ambient space, and C(L;T) is naturally an open submanifold of CY x M".

An orientation of a set of cardinality at least 2 is a total order of its elements up to an even
permutation.

Cut each edge of ' into two half-edges. When an edge is oriented, define its first half-edge
and its second one, so that following the orientation of the edge, the first half-edge is met
first. Recall that H(I') denotes the set of half-edges of T'.

Lemma 20. When T is equipped with a vertex-orientation, orientations of the manifold
C(L;T) are in canonical one-to-one correspondence with orientations of the set H(T').

Proof. Since C(L;T) is naturally an open submanifold of CY x M, it inherits R*V***T-
valued charts from R-valued orientation-preserving charts of C and R*-valued orientation-pre-
serving charts of M. In order to define the orientation of R*V***” one must identify its factors
and order them (up to even permutation). Each of the factors may be labeled by an element
of H(I'): the R-valued local coordinate of an element of C corresponding to the image under
7 of an element of U sits in the factor labeled by the half-edge of U; the 3 cyclically ordered
(by the orientation of M) R-valued local coordinates of the image under a configuration ¢ of
an element of T live in the factors labeled by the three half-edges that are cyclically ordered
by the vertex-orientation of T', so that the cyclic orders match. O

The dimension of C(L;T) is #U(T) + 3# T(T') = 2# E(T') where E = E(I') denotes the set of

edges of . Since n=n(I') = %(# UD)+#T@)), # E(T) =3n-#U).

4.2. Configuration space integrals

A numbered degree n Jacobi diagram is a degree n Jacobi diagram I' whose edges are ori-
ented, equipped with an injection j, : E(I')<> 3n. Such an injection numbers the edges. Note
that this injection is a bijection when U(T") is empty. Let D¢(C) denote the set of numbered
degree n Jacobi diagrams with support C without looped edges like —O.

Let I" be a numbered degree n Jacobi diagram. The orientations of the edges of T" induce the
following orientation of the set H(I') of half-edges of T": order E(I") arbitrarily, and order the
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half-edges as (first half-edge of the first edge, second half-edge of the first edge,..., second
half-edge of the last edge). The induced orientation is called the edge-orientation of H(T).
Note that it does not depend on the order of E(T"). Thus, as soon as I is equipped with a ver-
tex-orientation o(I"), the edge-orientation of ' orients C(L; ).

An edge e oriented from a vertex v, to a vertex v, of I" induces the following canonical map

p, . C(L,T) — C(M),
c (o), c(@,)).

For any i € 3n, let (i) be a propagating form of (C,(M),1). Define I(T',o(I"),(0()),.5,) a
I(T,0(),(0(@)) = _[C(L A po(o(j.(e)))

eE(T)

where C(L;T) is equipped with the orientation induced by the vertex-orientation o(I") and by
the edge-orientation of T'.

The convergence of this integral is a consequence of the following proposition, which will
be proved in Subsection 5.1.

Proposition 6. There exists a smooth compactification C(L;T) of C(L;T) where the maps
p, smoothly extend.

According to this proposition, A _.pe(@(j:(e))) smoothly extends to C(L;T), and

j(cu oy Necb@Pe (7 (€))) is equal to .[(c(z 1 on/NectmPe (G ().
Examples 1. For any three propagating forms o(1), ®(2) and o(3) of (C,(M),1),
) = k(K,K), I(S,(0(i)),.,) = 6(M,1)

for any numbering of the (plain) diagrams (exercise).

Let us now study the case of I(‘f—*S (7))
forms, and on the diagram numbering

A dilation is a homothety with positive ratio.

Let U'K; denote the fiber space over K; made of the tangent vectors to the knot K; of M
that orient K;, up to dilation. The fiber of U*K; is made of one point, so that the total space
of this unit positive tangent bundle to K is K;. Let U K, denote the fiber space over K, made
of the opposite tangent vectors to K, up to dllatlon

For a knot K, in M , define the two -point configuration space C(K 'HS1) as

{(Kj(z),Kj(z exp(i0)));(z,0) € S'x]0,2x[}.
Let C, = C(K}; *i-S ) be the closure of C’(K *i-S ) in C,(M). This closure is diffeomor-
phic to S‘x[O 2n] Where §'x0 is identified Wlth U*K S‘x{2n} is identified with UK, and
0C(K; ';_-'S )=U+K~UK,.

Lemma 21 For any ie § let ®(i) and o'(i) =w(i) +dn(i) be propagating forms of
(C,(M), 1), where n(i) is a one-form on C,(M). Then

IS/ »—3S], (o)

ield

), which depends on the chosen propagating

ie3d

) = J‘U+Kv n(k) _IU—K- n(k)'

Proof. Apply the Stokes theorem to JC_ (o'(R) — (k) =J.C‘ dn(k). O

1B S ('), = I(¢5 S (o))

i€l i€l

Exercise 2. Find a knot K; of R’ and a form n(k) of C,(R”) such that the right-hand side
of Lemma 21 does not vanish. (Use Lemma 9, hints can be found in Subsection 5.2.)

Say that a propagating form o of (C,(M),1) is homogeneous if its restriction to 0C,(M) is
p:(w,) for the homogeneous volume form o, of S? of total volume 1.
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Lemma 22. For any i € 3, let ®(i) be a homogeneous propagating form of (C,(M),x). Then

1(¢5S! (0(D)),_;) does not depend on the choices of the w(i), it is denoted by I,(K;,1).
Proof. Apply Lemma 21 with n, =0, so that n(k) =0 in Lemma21. O

4.3. An invariant for links in Q-spheres from configuration spaces
Let K=R. Let [I,0(I')] denote the class in D/(C) of a numbered Jacobi diagram T" of

D, (C) equipped with a vertex-orientation o(T"), then I(I',o(I"),(a(i)),, )T, 0] e D,(C) is
independent of the orientation of o(T'), it will be simply denoted by I(T,(w(:)),,)[T].
Theorem 5. Let (M,t) be an asymptotic rational homology R®. Let L : H;S;. <M be an

embedding. For any i € 3n,let o(i) be a homogeneous propagating form of (C,(M),t). The sum

5 G EO)

Gy LI (@@)ig)IT]

rep(C)

in D! (HiﬁS}) is independent of the chosen o(i). It only depends on the diffeomorphism class of
(M, L),on p,(v) and on the 1,(K;,v),for the components K, of L. It is denoted by Z,(L,M,1).

More precisely, set Z(L,M,tv) =(Z,(L,M,1)),_, € D‘(H;S}). There exist two constants

a e D(S;Q) and B e D(T;Q) such that the product of exp(—%n(r)[}) by

k

[T (exp(-I,(K;, e #,) Z(L, M, D),

j=1
where exp(=I,(K)a) acts on Z(L, M, 1), on the copy S; of S' as indicated by the subscript
J,only depends on the diffeomorphism class of (M,L). It is denoted by Z(L,M),

Z(L,M) e Dt(ﬁS}; Q.

Furthermore,if M =R®,then the projection Z"(L,S*) of Z(L,S*) on D(H;S}) is a uni-

versal finite type invariant of links in R*,i. e. Z" satisfies the properties stated for ZX in
Theorem 3. It is the configuration space invariant studied by Altschvler, Freidel [32], Dylan
Thurston [33], Sylvain Poirier [34] and others”. If k=0, then Z(@,M) is the Kontsevich
configuration space invariant Z...(M),which is a universal invariant for Z-spheres accord-
ing to a theorem of Kuperberg and Thurston [9; 13],and which was completed to a universal
finite type invariant for Q-spheres by Delphine Moussard [21].

The proof of this theorem is sketched in Section 5.

Under its assumptions, let ®, be a homogeneous propagating form of (C,(M),1), let 1 be

the involution of C,(M) that permutes two elements in M?\ diagonal, set ® = %(mo -1,(0y)),

and set o(i) = o for any i.

Let Aut(I") be the set of automorphisms of I', which is the set of permutations of the half-edges
that map a pair of half-edges of an edge to another such and a triple of half-edges that contain
a vertex to another such, and that map half-edges of univalent vertices on a component K; to
half-edges of univalent vertices on K; so that the cyclic order among such vertices is preserved. Set

B = (3n—# E(I))!
r (311)!2#E(r)

" After work of many people including Witten [35], Guadagnini, Martellini and Mintchev [36], Kontsevich
[37; 38], Bott and Taubes [39], Bar-Natan [40], Axelrod and Singer [41; 42].
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Then Zrepe(c)ﬁrl(n (0(2));5,)[T] reads

1
I' unnumbered, unoriented #AUt(F)

where the latter sum runs over the degree n Jacobi diagrams on C without looped edges.

I(T, (0);5,)IT]

Indeed, for a numbered graph T', there are Bi ways of renumbering it, and #Aut(I") of them
r
will produce the same numbered graph.

4.4. On the universality proofs B
Theorem 6. Let y, z e N. Recall y={1,2,...,y}. Set (z+y) ={y+1,y+2,...,y+2z}. Let M
be an asymptotically standard Q-homology R’. Let L be a link in M. Let (Bb)eg be a col-

lection of pairwise disjoint balls in M such that every B, intersects L as a ball of a crossing
change that contains a positive crossing c,, and let L((B,),.,) be the link obtained by chang-

bey

ing the positive crossings c, to negative crossings. Let (A,) be a collection of pairwise

ae(z+y)

disjoint rational homology handlebodies in M\ (L U}_, B,). Let (A’ /A,) be rational LP sur-
geries in M. Set X =[M,L;(A', | A),...,»(B,,¢, ), 1 and define Z,(X) as the sum over all

subsets I of y+z of the terms (-1)"'Z, (L((Bb)bemz),M((A’a /Aa)aelm(§+y)))' If 2n <2y + z,

then Z (X) vanishes.

Sketch of proof. As in [13], one can use (generalized) propagators for the M((A', / 4,),;-..,p)
that coincide for different I wherever it makes sense (for example, for configurations that do
not involve points in surgered pieces A,). See also [9]. Then contributions to the alternate sum
of the integrals over parts that do not involve at least one point in an A, or in an A/, for all
a cancel. Assume that every crossing change is performed by moving only one strand. Again,
contributions to the alternate sum of the integrals that do not involve at least one point on
a moving strand cancel. Furthermore, if the moving strand of ¢, is moved very slightly, and
if no other vertex is constrained to lie on the other strand in the ball of the crossing change,
then the alternate sum is close to zero. Thus in order to produce a contribution to the al-
ternate sum, a graph must have at least (2y + z) vertices. See [32] or [22. Section 5.4], and
[13. Section 3] for more details. o

This implies that Z* is of degree at most n for links in R’, and that Z, is of degree at most
2n for Z-spheres or Q-spheres.

Now, under the hypotheses of Theorem 6, assume

mg‘( ~ that A, is the standard genus 3 handlebody with
three handles with meridians m](-“) and longitudes l](“)
lo ¢ such that (mf“),f(].“))ma =3;. See A, as a thickening

of the trivalent graph on Fig. 2.
Also assume that A’ is an integer homolo-
gy handlebody. In A, u,, (-=A’,), there is a sur-
23 face S, such that o(S, NA)= m”. Assume that
<S1’S2’S3>AauaA can =1L (For example, choose A/

such that 4, Vi, (-A",) =(S")’ like in the case of
the Matveev Borromean surgery of [43].) Assume

4 that the l](-“) bound surfaces D](-“) in M.
Assume that the collection of surfaces

Fig. 2
'8 {D](-“)} reads {D,},., U{D,,},, so that for

ae(z+y),je3



An introduction to finite type invariants of knots and 3-manifolds defined... 93

: _ (a(q,8)) : . :
any ge P, for 8€2, if D, ;= Dj,%", the interior of D, intersects

Lo |J (Aa Vo 3000, D(“)j U Uy, (B,)

ae(z+y)

only in A u D933

a(q,3-8) 7(g,3-8) *

Note that (D, ;, (%%, = k@D, ,,0D,,).

Example 3. Note that these assumptions are realised in the following case. Start with an em-
bedding of a Jacobi diagram I'" whose univalent vertices belong to chords (plain edges between
two univalent vertices) on U, S! in M . Assume that the trivalent vertices of ' are labeled
in (z+y), and assume that its chords are labeled in y. Apply the following operations replace

edges »— without univalent vertices by »{(Q0)~, replace a chord :——: labeled by b by a
crossing change c, v A N VA in a ball B, that is a neighborhood of the plain edge. Thicken

the trivalent graph OEO associated to the trivalent vertex labeled by @, and call it A,. Then the
surfaces D;”) are the disks bounded by the small loops of OEO

Conversely, under the assumptions before the example define the following vertex-oriented
Jacobi diagram T([M, L;(A",/A,) (.., (B,,¢,),., 1) on UL S/, with:

- two univalent vertices joined by a chord for each crossing change ball B, at the corre-
sponding places on U, S! (in L'(B,)),

- one trivalent vertex for each A,, where the three adjacent half-edges of the vertex corre-
spond to the three D}“), with the fixed cyclic order,
such that any pair of half-edges corresponding to some D, and its friend D,, forms an edge
between two trivalent vertices.

Theorem 7. Under the assumptions above, let X =[M,L;(A’,/ A,)
2n=2y+z,

(B,,¢, )y, 1. When

ae(z+y)?

Al (]_[S )

Z(X)= (Hlk(a 1,0 M)J[F(X)]mole or mW :

peP

Sketch of proof. When z =0, the proof of Theorem 6 can be pushed further in order to
prove the result like in [32] or [22. Section 5.4]. In general, when y = 0, it is a consequence
of the main theorem in [13] (Theorem 2.4). The general result can be obtained by mixing the
arguments of [13. Section 3] with the arguments of the link case. u

This theorem is the key to proving the universality of Z“ among Vassiliev invariants for
links in R? and to proving the universality of Z among finite type invariants of Z-spheres.
This universality implies that all finite type invariants factor through Z.

Remark 3. Theorem 7 with Z""° instead of Z is proved in [20], when y =0, when the
Ar /4 ) are Matveev’s Borromean surgeries and when the D(“) are disks such that
k(6D ,1:0D,, ,) =1. Then the main theorem of [44] implies Theorem 7 with Z*™° instead of Z,
when y =0 and when the A, and the A’ are integral homology handlebodies.

5. Compactifications, anomalies, proofs and questions

In this section, we state Theorem 8. This is another version of Theorem 5, which leads to a
definition of Z involving algebraic intersections rather than integrals in Subsection 5.3. It is
based on the concept of straight links introduced in Subsection 5.2.
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This section also contains sketches of proofs of Theorems 5 and 8. We begin with the intro-
duction of appropriate compactifications of configuration spaces to justify the convergence of
our integrals stated in Proposition 6.

5.1. Compactifications of configuration spaces

Let N be a finite set. See the elements of M" as maps m: N — M.

For a non-empty I ¢ N, let E, be the set of maps that map I to «. For I < N such that
#12>2, let A, be the set of maps that map I to a single element of M. When [ is a finite set,
and when V is a vector space of positive dimension, S,(V) denotes the space of injective maps
from I to V up to translation and dilation. When #1I >2, S,(V) embeds in the compact space
S, (V) of non-constant maps from I to V up to translation and dilation.

Lemma 23. The fiber of the unit normal bundle to A, in M" over a configuration m is
ST, ,M).

Proof. Exercise. m

Let C, (M) denote the space of injective maps from N to M. Define a compactification
Cy (M) of C,(M) by generalizing the previous construction of C,(M) = C,(M) as follows.

Start with M". Blow up E,, which is the point m = " such that m (o) = N. Then for
k=#N,#N —1,...,3,2, in this decreasing order, successively blow up the (closures of the
preimages under the composition of the previous blow-down maps of the) A, such that #1 =k
(choosing an arbitrary order among them) and, next, the (closures of the preimages under the
composition of the previous blow-down maps of the) E; such that #J =k -1 (again, choosing
an arbitrary order among them).

Lemma 24. The successive manifolds that are blown-up in the above process are smooth
and transverse to the boundaries. The manifold C,(M) is a smooth compact (3#N)-manifold
independent of the possible order choices in the process. For i,j € N, i # j, the map

pii: Cu(M) — C(M)
m = (m(),m(7))

smoothly extends to C,(M).
Sketch of proof. A configuration m, of M" induces the following partition C(m,) of

N=m'@[] [] m'.

xeMﬁmo(N)

Pick disjoint neighborhoods V_ in M of the points x of m,(N) that are furthermore in M
for x in M and that are identified with balls of R® by C*-charts. Consider the neighborhood

11 Yo' of m, in M". The first blow-ups that transformed this neighborhood are:

xemy(N)™ *
ma1(w)

- the blow-up of E i

mO1 ©)

1 a1
. () 3#my " (0)-1
in) V0 to [0, [xS7"0

- and the blow-ups of the A iy for the x € M such that #m;'(x) =2, which changed
7’10 X

if my'(0) # &, which changed (a smaller neighborhood of oo

— _1 _1 ) _1
(a smaller neighborhood of " in) V"' to [0, [xF(UT ), where U, < V, and FQU )

fibers over U, and the fiber over y e U, is S (T,M).

m ()
0
When considering how the next blow-ups affect the preimage of a neighborhood of m,, we can

restrict to our new factors. .
First consider a factor [0,¢ [xF(U.° “. Picking i em;'(x) and fixing a Riemannian

structure on TU, identifies S , (T,M) with the space of maps c:m,'(x) - T,M such that
x 1 y Y 0 Yy

my - (x
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c(i) = 0 and Z il (o | c(7)|F=1. Then (&,c) is identified with y |Ac in V"™ '@ (where V_is

identified with an open subset of R?), for A # 0. Now, [0,¢ [xF(U. "0 (x)) must be blown-up along

its intersections with the preimage closures of the A, such that #1>2, I cm,'(x) and I is
maximal. These intersections respect the product structure by [0,e [ and the fibration over U,
so that we only need to understand the blow-ups of the intersections of the A, with a fiber of

1
FU! “). These are nothing but configurations in a ball of R’, and we can iterate our process.

3#m61 (o0)—1

Now consider the possible factor [0,¢_[xS and blow up its intersections with the

preimage closures of the E, for J < m,'(,0) maximal and with the preimage closures of the

3# 71161 (o0)—-1

A, with I < m;'(0) in an order compatible with the algorithm. Here, S is the unit

1 —1
sphere of (R?)" . A point d e (R?)" “ is in the preimage closure of E, under the previ-
ous blow-up if d(J) =0. In particular, the E, and the A, again read as products by [0,¢,[,

and we study what happens near a given d of §7"' 7 For such a d, we proceed as before if

d'(0)=@. Otherwise the factor of d7'(0) must be treated differently, namely by blowing up

07" @ in §" 7 Then iterate.

This produces a compact manifold C,(M) with boundary and ridges, which is finally inde-
pendent of the order of the blow-ups (when this order is compatible with the algorithm), since
it is locally independent. The interior of C,(M) is C,(M). Since the blow-ups separate all the
pairs of points at some scale, p, naturally extends there. The introduced local coordinates show
that the extension is smooth. See [31. Section 3] for more details.

Lemma 25. The closure of C(L;T) in C, . (M) is a smooth compact submanifold of C,
which is denoted by C(L;I).

Proof. Exercise. O

Proposition 6 is a consequence of Lemmas 24 and 25.

@) () (M)’

5.2. Straight links

A one-chain ¢ of S* is algebraically trivial if for any two points x and y outside its support,
the algebraic intersection of an arc from x to y transverse to ¢ with ¢ is zero, or equivalently
if the integral of any one form of S* along c is zero.

Let (M,7) be an asymptotic rational homology R®. Say that K ; is straight with respect to t
if the curve p (U'K,) of S*is algebraically trivial (recall the notation from Proposition 2 and
Subsection 4.2). A hnk is straight with respect to t if all its components are. If K| is straight,
then p_(0C(K 'r—-S )) is algebralcally trivial.

Lemma 26. Recall C, = C(K;<>S)), ¢, cC,(M). If p0C)) is algebraically trivial,then for
any propagating cham P of (C (M), 1:) tmnsverse to C; and for any propagating form o, of
(C,(M),7),

chmp =(CpP)ejan = (K ,7)

where 1,(K,,7) is defined in Lemma 22. In particular, 1,(K,,v)eQ and I,(K,,t)eZ when M is
an integer homology 3-sphere.

Proof. Exercise. Recall Lemmas 9 and 21. O

Proposition 7. Let M be an asymptotically standard Q-homology R*. For any parallel K,
of a knot K in M ,there exists an asymptotically standard parallelization T homotopic to 1,
such that K is straight with respect to ©,and 1,(K,,7)=1k(K,K)) or I,(K,,7)=lk(K,K)+1.

For any embedding K :S'— M that is straight with respect to t, I,(K,t) is the linking
number of K and a parallel of K.
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Sketch of proof. For any knot embedding K, there is an asymptotically standard paralleli-
zation T homotopic to t such that p,(U'K) is one point. Thus K is straight with respect to
(M,7). Then 7 induces a parallelization of K, and 1,(K,%) is the linking number of K with
the parallel induced by 7. (Exercise).

In general, for two homotopic asymptotically standard parallelizations t and T such that
K is straight with respect to T and %, I,(K,7)-1,(K,%) is an even integer (exercise) so that
I,(K,7) is always the linking number of K with a parallel of K.

In R’ equipped with 1, any link is represented by an embedding L that sits in a horizontal
plane except when it crosses under, so that the non-horizontal arcs crossing under are in verti-
cal planes. Then the non-horizontal arcs have an algebraically trivial contribution to p (U'K)),
while the horizontal contribution can be changed by adding kinks A\p or »o so that L is
straight with respect to t.. In this case I,(K;,t,) is the writhe of K, which is the number of
positive self-crossings of K; minus the number of negative self-crossings of K. In particular,
up to isotopy of L, I,(K,,t,) can be assumed to be +1. (Exercise).

Similarly, for any number 1 that is congruent mod 2Z to 7,(K,t) there exists an embedding
K’ isotopic to K and straight such that I,(K’,t) = 1. (Exercise).

5.3. Rationality of Z
Let us state another version of Theorem 5 using straight links instead of homogeneous prop-
_ (Bn-#E())!

(Bn)12"*®

Theorem 8. Let (M,t) be an asymptotic rational homology R’. Let L:HI;:IS} M be a
straight embedding with respect to 1. For any ie3n, let o(i) be a propagating form of
(C,(M),t). Then

agating forms. Recall B

> Bl ()T D, (]__[S}j

reDf(C)

is independent of the chosen o(i). It is denoted by Z:(L,M,t). In particular, with the
notation of Theorem 5, Z:(L,M,7)=Z,(L,M,7).

This version of Theorem 5 allows us to replace the configuration space integrals by algebraic inter-
sections in configuration spaces, and thus to prove the rationality of Z for straight links as follows.

For any ie3n, let P(i) be a propagating chain of (C,(M),t). Say that a family (P@)),,, is
in general 3n position with respect to L if for any T'eD:(C), the p.'(P(j.(e))) are pairwise
transverse chains in C(L;T). In this case, define I(T,o(I'),(P(i),,) as the algebraic intersection
in (C(L;T),0(I")) of the codimension 2 rational chains p.'(P(j,(e))) . If the w(i) are propagating
forms of (C,(M),t) Poincaré dual to the P(i) and supported in sufficiently small neighborhoods
of the P(i), then I(T',o(I"),(P(i)),,) = I1(T,0(I'),(w(i)),,,) for any T'e D*(C), and I(T',o(I),(w(i)),_,)
is rational, in this case. - B N

5.4. On the anomalies
The constants a=(a,),.,, and B=(B,),., of Theorem 5 are called anomalies. The anomaly
B is the opposite of the constant & defined in [31. Section 1.6], B,, =0 for any integer n, and

B, =%[@] according to [31. Proposition 2.45]. The computation of B, can also be deduced

from Corollary 1.
We define o below. Let ve S, Let £, denote the linear map
L£: R - R
1 - o
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Let ' be a numbered Jacobi diagram on R. Define C(£,;T) like in Subsection 4.1 where
the line £, of R* replaces the link L of M. Let Q(z;T") be the quotient of C(L,;I") by the
translations parallel to £, and by the dilations. Then the map P o associated to an edge e of

I maps a configuration to the direction of the vector from its origin to its end in S* It factors
through O(v;T"), which has two dimensions less. Now, define Q(I') as the total space of the
fibration over S? whose fiber over v is Q(v;T). The configuration space O(I') carries a natural
smooth structure, it can be compactified as before, and it can be oriented as follows, when a
vertex-orientation o(I') is given. Orient C(L,;T") as before, orient Q(v;I") so that C(ﬁv;l“) is
locally homeomorphic to the oriented product (translation vector z in Ro, ratio of homothety
A €]0,00[) xO(z;T) and orient O(I) with the (base(=S*)@fiber) convention. (This can be
summarized by saying that the S*coordinates replace (z,1).)

Proposition 8. For i € 3n,let o(i,S*) be a two-form of S* such that sz(i, S?) =1. Define
I(T, o), (i, S*)) as

J.Q_(F)geé}r)p:ﬁz ((D(]E (e) ’ 52 )) ’

Let D:(R) denote the set of connected numbered diagrams on R with at least one univalent
vertex, without looped edges. Define the element 2a.,, of A(R) as

> Bn-#ED))!

GorEo 1T, 06 SN, o).

FEDZ(R)
Then o, does not depend on the chosen o(i,S*), a, = %{C ] and o, =0 for all keN.

The series o.= Y _a, is called the Bott and Taubes anomaly.

Proof. The independence of the choices of the (i, $*) will be a consequence of Lemma 27
below. Let us prove that a,, =0 for all ke N. Let I' be a numbered graph and let T be ob-
tained from T' by reversing the orientations of the (# E) edges of I'. Consider the map r from
O() to O(I') that composes a configuration by the multiplication by (=1) in R®. It sends a
configuration over v € S* to a configuration over (—v), and it is therefore a fibered map over
the orientation-reversing antipode of S?. Equip I and T with the same vertex-orientation.
Then our map 7 is orientation-preserving if and only if #7(I') +1+# E(I') is even. Further-
more for all the edges e of T, P,a°r =P, o then since # E=n+#T,

I(T,0(), 0(i,$%)) = (<1)"' I(T,0o(I), 0(i, $*)). O

It is known that a,; =0 and a5 =0 [34]. Furthermore, according to [45], a,,,, iS a combina-
tion of diagrams with two univalent vertices, and Z“(S®,L) is obtained from the Kontsevich inte-
gral by inserting d times the plain part of 2o on each degree d connected component of a diagram.

5.5. The dependence on the forms in the invariance proofs
The variation of I(T,o(T"),(e(7)),_,,) when some w(i = j,(f € E(I'))) is changed to o(i) + dn
for a one-form n on C,(M) reads

J.C(L;l") (p; (dn) A AN p. ((D(]’E (6)))j,

ec(E(D/D

je3n

where C(L;T") is equipped with the orientation induced by o(I'). According to the Stokes
theorem, it reads

I&C(L;F)[p;(n) NN P:((D(]'E (6)))]

ec(E(MKSD
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where the integral along 6(C(L;I"),0(I')) is actually the integral along the codimension one
faces of C(L;I'), which are considered as open. Such a codimension one face only involves one
blow-up.

For any non-empty subset B of V(I'), the codimension one face associated to the blow-up of
E, in M"" is denoted by F(I',c0, B), it lies in the preimage of oo® x M"™"%, in C(L;T).

The other codimension one faces are associated to the blow-ups of the A, in M V@ for sub-
sets B of V(I') of cardinality at least 2. The face of C(L;I') associated to A, is denoted by
F(T;B). Let beB. Assume that b e U if UT) B #&. The image of F(I';B) in M"" is
in the set of maps m of A, that define an injection from (V(I')| B) U{b € B} to M, which fac-
tors through an injection isotopic to the restriction of i. on U(I') N ((V(F) | B) U {b}). This set

of maps C( (M,i.) is a submanifold of C( (M). Thus, F(I;B) is a bundle over

V(DIB)Ab}

C(V(F)lB)u b}(M lr)

When B has no univalent vertices, the fiber over a map m is the space S,(T,
maps from B to T, up to translations and dilations.

When B contains univalent vertices of a component K, the fiber over m is the submanifold
Sy(T,,,M,T) of S,(T,, M), made of the conflguratlons that map the univalent vertices of
B to a line of T, ,,M directed by U*K; at m(b), in an order prescribed by I'. If B does not
contain all the univalent vertices of T'" on S}, this order is unique. Otherwise, F(I',B) has
#(BNU(I')) connected components corresponding to the total orders that induce the cyclic
order of BN U(I).

When B is a subset of the set of vertices V(I') of a numbered graph I, E(I',) denotes the
set of edges of T between two elements of B (edges of T are plain), and T, is the subgraph of
I’ made of the vertices of B and the edges of E(T,).

Lemma 27. Let (M,1) be an asymptotic rational homology R®. Let C = H

For i e 3n, let (i) be aclosed 2-formon [0,1]x C,(M) whose restriction to {t} x CZ(M) isde-
noted by o(i,t), for any t € [0,1]. Assume that for t €[0,1], o(i,t) restricts to (6C,(M)\UB,,)
as pi(o(,t)(S*)), for some two-form o(i,t)(S*) of S* such that J. Lo, t)(S*) =1. Set

Z,(t) = Zrepe(c)BrI(F,(co(i,t)),-@)[ in Dt(Hk SY. Then Z,(1)-Z,(0)= > IT,B) where

(I',B)

V(DIB)UAb}

T, of injective

the sum runs over the set
{(F, B);T e D:(C),Bc V(I),# B> 2T, is a connected component of F}

and
I(T,B) = Br_[w” rm), )/E}r)pé “(o(j,(eNIT].

Under the assumptions of Theorem 5 (where the o(i) are homogeneous) or Theorem 8
(where L is straight with respect to t), when (M, L,7) is fixed, Z,(L,M,t) is independent
of the chosen (). .

In particular, when k=0, Z(M,t) coincides with the Kontsevich configuration space
integral invariant described in [31].

Furthermore, the o, of Proposition 8 are also independent of the forms o(i,S?).

Sketch of proof. Accordlng to the Stokes theorem, for any I'e D¢(C),

I, ((i,1)),.,) — 1T, (0(7,0)),5,) = Zj

[01]xF

A Polo(j:(e)))

ecE(T)

where the sum runs over the codimension one faces F of C(L;T"). Below, we sketch the proof
that the only contributing faces are the faces F(I', B) such that # B>2 and I, is a connected
component of T, or equivalently, that the other faces do not contribute.
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Like in [31. Lemma 2.17] faces F(I",o0,B) do not contribute. When the product of all the p,
factors through a quotient of [0,1]x F(I', B) of smaller dimension, the face F(I',B) does not
contribute. This allows us to get rid of

- the faces F(I',B) such that B is not a pair of univalent vertices of T', and ', is not con-
nected (see [31. Lemma 2.18]);

- the faces F(T,B) such that # B >3 where ', has a univalent vertex that was trivalent in
I" (see [31. Lemma 2.19]).

We also have faces that cancel each other, for graphs that are identical outside their ', part:

- the faces F(I,B) (that are not already listed) such that ', has at least a bivalent vertex
cancel (mostly by pairs) by the parallelogram identification (see [31. Lemma 2.20]);

- the faces F(I',B) where I', is an edge between two trivalent vertices cancel by triples,
thanks to the Jacobi (or ITHX) relation (see [31. Lemma 2.21]);

- similarly, two faces where B is made of two (necessarily consecutive in C) univalent ver-
tices of I' cancel (3n—# E(T)) faces F(I'",B’) where I}, is an edge between a univalent vertex
of T and a trivalent vertex of T, thanks to the STU relation.

Thus, we are left with the faces F(T,B) such that T, is a (plain) connected component of
[, and we get the wanted formula for (Z, (1) -Z,(0)).

In the anomaly case, the same analysis of faces leaves no contributing faces, so that the a,
are independent of the forms (i, S*) in Proposition 8.

Back to the behaviour of Z(L,M,t) under the assumptions of Theorem 5 or Theorem 8§,
assume that (M, L,t) is fixed and apply the formula of the lemma to compute the variation
of Z,(L,M,t) when some propagating chain «(i,0) of (C,(M),t) is changed to some other
propagating chain o(Z,1) = o(i,0) + dn. According to Lemma 9, under our assumptions, n can
be chosen so that n = p. (”52) on 0C,(M) and N, =0 if ©(0) and «,1) are homogeneous.

Define @(2) = o(i,0) + d(tn) on [0,1]x C,(M) (t €[0,1]), and extend the other @(j) trivially.
Then (Z,(1)—Z,(0)) vanishes if o(;,0) and w(i,1) are homogeneous, as all the involved
I(I,B) do, so that Z,(L,M,t) is independent from the chosen homogeneous propagating
forms (i) of C,(M,1) in Theorem 5. Now, assume that L is straight.
When i¢ j,(E(T)), the integrand of I(I',B) factors through the natural projection of
[0,1]1x F(T, B) onto F(T',B), so that I(I', B) = 0. Assume i = j,(e; € E(T')), then I(T', B) equals

BFI[OJJxF(]‘,B)p:i (d(tn)) ANOA p:(co(jE(e)),

ecE(Dle;

The form A, I “(o(j.(e)) pulls back through [0,1]x F(I',,B), and through F(T,, B)
when e, ¢ E(Tp), so that, for dimension reasons, I(I, B) vanishes unless e, € E(T'). There-
fore, we assume e; € E(T'}).

When B contains no univalent vertices, I(I,B) factors through the integral along
[0,1]xu S,(T T,,,yM) of

p.d@) A A pilol(e)).

ecE(Tg)le;

m(b)eM

m(b)e MS ( m(b)M) with ]\V4><.§B(]R3)7 and the

integrand factors through the projection of [0,1]x M x S,(R*) onto [0,1]x S,(R*) whose
dimension is smaller (by 3). In particular, I(T, B) =0 in this case, the independence of the
choice of the o(i) is proved when k = 0 (when the link is empty), and Z(M,1) coincides with
the Kontsevich configuration space integral invariant described in [31].

Let us now study the sum of the I(T,B), where (I'\T,) is a fixed labeled graph and ', is a
fixed numbered connected diagram with at least one univalent vertex on S}.

Here the parallelization 1 identifies the bundle U
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This sum factors through the integral along [0,1]x Ynirek, Sy(T,,yM,T) of
p.d@) A A pe(j(e))).

ecE(T p)e;

At a collapse, the univalent vertices of TI', are equipped with a linear order, which
makes I, a numbered graph T, on R. The corresponding connected component of

[0, 1]><um(b)€K S,( T,,M,T) reads [0,1]x U . O(p.(x);T,) (O(;T,) was defined in Sub-
xXe ]

section 5.4). This allows us to see the contribution of such a connected component as the in-

tegral of a one-form (defined by partial integrations) over p (U*K;). Such an integral is zero

when K; is straight. m
Now, Theorem 8 is a corollary of Theorem 5 (which is not yet completely proved).

5.6. The dependence on the parallelizations in the invariance proofs
Recall that D!(C) splits according to the number of connected components without univa-
lent vertices of the graphs. Then it is easy to observe that

Z(L,M, 1) = ZZn(L,M,T) =7"(L,M,7)Z(M:1)

neN
where Z"is obtained from Z by sending the graphs with components that have no univalent vertices

to 0, and Z(M;t) = Z(,M,1). According to [31, Theorem 1.9], Z(M) = Z(M;1) exp (—iﬂ(r)ﬁj

is a topological invariant of M. Here, we will now focus on Z"(L, M, 1), and define it with a
given homogeneous propagating form, o = w(i) for all 4, so that Z“(L,M,t) is an invariant of
the diffeomorphism class of (L, M,1). We study its variation under a continuous deformation
of T and we prove the following lemma.

Lemma 28. Let (t(t)),yy, define a smooth homotopy of asymptotically standard paral-

lelizations of M. Then %Z”(L,M, w(t)) is equal to

(i%[e(l<j,t(t))oc #].JZ"(L, M,«(®)).

j=1
Proof. Set Z,(t) = Z"(L,M,(t)), observe that Z, (which is valued in a finite-dimensional
vector space) is differentiable thanks to the expression of Z,(¢)—Z,(0) in Lemma 27 (any

function .[[o c® for a smooth compact manifold C and a smooth form ® on [0,1]xC is dif-

ferentiable with respect to ¢). Now, the forms associated to edges of ', do not depend on
the configuration of (V(I")\B). They will be integrated along [0,1]x (Um(b)eK Sy (T, M,T})),
while the other ones will be integrated along C(L;T'\T,) at u €[0,1].

Therefore, the global variation (Z(¢) — Z(0)) reads

i!g[ Z BFBIB(u)[FB]#]- Z(wdu

T'p D (R)

where D(R) =y, Di(R) and I,(u) is the integral along {ceu
(Averar, Pi(0)) @0
Define I(I',, K;)(#) as the integral along
{(u,c);u e0,t],c e ek Sy(T,, M,T )}

Sy (T, ,yM,T )} of

m(b)eK

of A pilo;)wc), sothat I,(u)= 5 I(FB,Kj)(u)du. Therefore, %Z(t) reads
u

eeE(FB)
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k

X 2 Br,,EI(FB,K]-)(t)[FB]#sz(t)

J=1\ ryen (R) ot
and we are left with the computation of %](FB,K].)(t).

The restriction of p_, from [0,1]xU*K; to S? induces a map

pa,r,l'ﬁ : [0’ 1 ] x Um(b)eKj SB (T;n(b)M’ 1—‘1’3) - Q(1—‘3)
for any T,

IC,K)O=[ A piloy).

a vy "eeE(Ty)

Integrating A,y P (@ )51 along the fiber in O(T'y) yields a two-form on S, which is
homogeneous, because everything is. Thus this form reads 20(T';)o ,[I';] where a(I';) e R,
and where Y @ Pr, (T I ] = a. Therefore ‘

Iy, K)(@) = 2B, a(T'y) j[ P (@,).

0tIxUTK;
Since 2 pi(@,) = 1gle(IC,r(t)), we conclude easily. O
Bt N0abUt & TTONT2 Ty gy TR
Then the derivative of \
[Texp-1,(K,, «®))e) #, Z*(L, M, x(t))

=1
vanishes so that this expression does not change when t smoothly varies.

5.7. End of the proof of Theorem 5

Thanks to [31. Theorem 1.9], in order to conclude the (sketch of) proof of Theorem 5, we
are left with the proof that

k ~
[T(exp(-I,(K;, e #,) 2 (L, M, )
=1
does not depend on the homotopy class of .

When 1 changes in a ball that does not meet the link, the forms can be changed only in the neigh-
borhoods of the unit tangent bundle to this ball. Using Lemma 27 again, the variation will be seen
on faces F(I',B), where T', has at least one univalent vertex, and where the forms associated to the
edges of I', do not depend on the parameter in [0,1] so that their product vanishes. In particular,

k
H(exp(—[e(K]., o) #].)Z“ (L,M,1)

=1
is invariant under the natural action of 7,(SO(3)) on the homotopy classes of parallelizations.
We now examine the effect of the twist of the parallelization by a map ¢ : (B,,,1) = (SO(3),1).
Without loss, assume that p (U*K,) = v for some v of S and that g maps K, to rotations with axis
v. We want to compute Z"(L, M, 1o v () —Z"(L, M,1). Identify UB,, with B, x S? via 1. There
exists a form w on [0,1]x B,, x S* that reads p:(oasz) on 8([0,1]x B,, x $*) 1 (1x B,, x $*) and that

reads p;WR ) g)(‘DSZ) on 1x B,, x §*. Extend this form to a form Q on [0,1]x C,(M), that restricts

to 0x0C,(M) as p (o), and to 1x0C,(M) as p;WR(g)(mSZ), where p_, ) =P oy, (g™ on

B,, x S? so that pfowR<g)((,352) =y, (g ( p: ((,352 )), there. Let D:"(C) denote the set of diagrams
k

of D;(C) without components without univalent vertices. Define ~ Z,(¢) € D,(J [S}) by

j=1

zZ,= 3 B, (Qlth2(M))iE3j)[r]'

FeDi (C)
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For T'ye DY(R), define I(FB,I<j,Q)(t) as the integral along

{(u,c);u el0,t],ce Yninex, ST, M,T )}

of /\eeE(r,,)p:(Q)[rB]'
Set B,;(t) = erepc(R)BrBI(FB,K]-,Q)(t) and y,(t) = %B].(t). Thanks to Lemma 27, like in the

proof of Lemma 28, Z(¢t) is differentiable, and Z'(¢) = (Z];:1Yf(t) #j)Z(t).

By induction on the degree, it is easy to see that this equation determines Z(¢) as a function
of the B,(¢¥) and Z(0) whose degree 0 part is 1, and that Z(¢) = Hf’ﬂ exp(B; () #; Z(0).

Extend Q over [0,2]x C,(M) so that its restriction to [1,2]x B,, x S is obtained by apply-
ing (\VR(QA))* to the Q translated, and extend all the introduced maps, then v;(t +1) = y,;(¢)
because everything is carried by (WR(QA))*- In particular B,(2) = 2p,(1).

Now, Z(2) = Z"(L,M,toy,(g)’) is equal to

k
HeXp((Ie(Kj,T oy (9)*) — I,(K;,v)a) #; Z(0),
=
where Z(0) = Z“(L,M, 1), since ¢* is homotopic to the trivial map outside a ball (see Lemma
29, 2). By induction on the degree of diagrams, this shows

B](z) = (IQ(K]';T ° WR(g)2) - -[9([<]y T))a

Conclude by observing that under our assumptions, where I,(K;,toy,(g)") is the linking
number of K, and its parallel induced by toy,(g), I,(K, 1oy, (g)*)—1,(K,;,1) is equal to
2(I,(K;,toy,(g) - 1,(K;,v)). This finishes the (sketch of) proof of Theorem 5 in general.

5.8. Some open questions

1. A Vassiliev invariant is odd if it distinguishes some knot from the same knot with the
opposite orientation. Are there odd Vassiliev invariants?

2. More generally, do Vassiliev invariants distinguish knots in S$?

3. According to a theorem of Bar-Natan and Lawrence [46], the LMO invariant fails to
distinguish rational homology 3-spheres with isomorphic H,, so that, according to a Moussard
theorem [21], rational finite type invariants fail to distinguish Q-spheres. Do finite type in-
variants distinguish Z-spheres?

4. Find relationships between Z or other finite type invariants and Heegaard Floer homol-
ogies. See [6] to get propagators associated to Heegaard diagrams. Also see related work by
Shimizu and Watanabe [47; 48].

5. Compare Z with the LMO invariant Z,,,,.

6. Compute the anomalies o and B.

7. Find surgery formulae for Z.

8. Kricker defined a lift ZX of the Kontsevich integral ZX (or the LMO invariant) for
null-homologous knots in Q-spheres [49; 50]. The Kricker lift is valued in a space A that is
mapped to D,(S") by a map H, which allows one to recover Z* from Z*. The space A is a
space of trivalent diagrams whose edges are decorated by rational functions whose denomi-
nators divide the Alexander polynomial. Compare the Kricker lift Z*X with the equivariant
configuration space invariant Z° of [51] valued in the same diagram space A. See [52] for
alternative definitions and further properties of Z°.

9. Is Z obtained from Z° in the same way as ZX is obtained from ZX?
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6. More on parallelizations of 3-manifolds and Pontrjagin classes

In order to make the definition of ® complete, we give a detailed self-contained presentation
of p,(7). In this section, M is a smooth oriented connected 3-manifold with possible boundary.

6.1. [(M,0M),(S0O(3),1)] is an abelian group.

Again, see S° as B*/0B” and see B® as ([0,21]x.5%) /(0 ~{0}x.S?). Recall that p: B> = SO(3)
maps (0 €[0,2n],0 € S*) to the rotation p(0,v) with axis directed by v and with angle .

Also recall that the group structure of [(M,0M),(SO(3),1)] is induced by the multiplica-
tion of maps, using the multiplication of SO(3).

Any g e C° ((M,@M),(SO(B),D) induces a map

H,(g): H(M,0M) — [H1(SO(3),1) = %),

where coefficients are in Z unless otherwise mentioned, so that H,(g) = H,(¢;Z) and
H,(M,6M) = H,(M,0M;Z). Since

H, (M, aM;%) = H,(M,0M) / 2H,(M,0M) = H,(M,0M) ®, %,

Hom (H1 (M, aM),%) is isomorphic to

Hom[H1 (M,&M;g),zj =H' (M,&M;gj
27, ) 27 27,

and the image of H,(g) under the above isomorphisms is denoted by H'(¢g;Z/27). (Formal-

ly, this H'(g;Z/27) denotes the image of the generator of H'(SO(3),1;Z/27) = 7/27Z under

H'(g;Z/27) in H'(M,0M;Z/27).)

Lemma 29. Let M be an oriented connected 3-manifold with possible boundary. Recall that
py(B)eC’ ((M,@M),(SO(B),l)) is a map that coincides with p on a ball B’ embedded in
M and that maps the complement of B’ to the unit of SO(3).

1. Any homotopy class of a map g from (M,0M) to (SO(3),1), such that H'(g;Z/27) is
trivial, belongs to the subgroup ([p,,(B*)]) of [(M,0M),(SO(3),1)] generated by [p,(B)].

2. For any [g] € [(M,0M),(SO(3),1)], [g]* € {p,,(B)]).

3. The group [(M,0M),(SO(3),1)] is abelian.

Proof. Let g e C°((M,0M),(SO(3),1)). Assume that H'(g;Z/2Z) is trivial. Choose a cell
decomposition of M with respect to its boundary, with only one three-cell, no zero-cell if
oM = I, one zero-cell if OM = &, one-cells, and two-cells. Then after a homotopy relative to
OM, we may assume that g maps the one-skeleton of M to 1. Next, since m,(SO(3)) =0, we
may assume that g maps the two-skeleton of M to 1, and therefore that g maps the exterior of
some 3-ball to 1. Now g becomes a map from B’/ 0B’ = §° to SO(3), and its homotopy class is
RIp] in m,(SO(3)) = Z[p]. Therefore g is homotopic to p,,(B*)*. This proves the first assertion.

Since H'(¢g*7/27) = 2H'(g;Z/27) is trivial, the second assertion follows.

For the third assertion, first note that [p,,(B°)] belongs to the center of [(M,0M),(SO(3),1)]
because it can be supported in a small ball disjoint from the support (preimage of SO(3)\{1})
of a representative of any other element. Therefore, according to the second assertion any square
will be in the center. Furthermore, since any commutator induces the trivial map on =,(M),
any commutator is in ([p,,(B*)]). In particular, if f and g are elements of [(M,0M),(SO(3),1)],
(gf) =(fg) = ('’ ¢°H(f'g'fg) where the first factor equals f’g*> = ¢°f*. Exchanging f and
g vyields f"'g”'fg = g”'f'gf. Then the commutator, which is a power of [p,,(B*)], has a vanishing
square, and thus a vanishing degree. Then it must be trivial. m
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6.2. Any oriented 3-manifold is parallelizable

In this subsection, we prove the following standard theorem. The spirit of our proof is the
same as the Kirby proof in [53. P. 46]. But instead of assuming familiarity with the obstruc-
tion theory described by Steenrod in [54. Part III], we use this proof as an introduction to
this theory.

Theorem 9. [Stiefel]. Any oriented 3-manifold is parallelizable.

Lemma 30. The restriction of the tangent bundle TM to an oriented 3-manifold M to any
closed (non-necessarily orientable) surface S immersed in M is trivializable.

Proof. Let us first prove that this bundle is independent of the immersion. It is the direct sum
of the tangent bundle to the surface and of its normal one-dimensional bundle. This normal bundle
is trivial when .S is orientable, and its unit bundle is the 2-fold orientation cover of the surface,
otherwise. (The orientation cover of S is its 2-fold orientable cover, which is trivial over annuli
embedded in the surface). Then since any surface S can be immersed in R?, the restriction TM is
the pull-back of the trivial bundle of R? by such an immersion, and it is trivial. O

Then using Stiefel — Whitney classes, the proof of Theorem 9 quickly goes as follows. Let
M be an orientable smooth 3-manifold, equipped with a smooth triangulation. (A theorem of
Whitehead proved in the Munkres book [55] ensures the existence of such a triangulation.)
By definition, the first Stiefel — Whitney class w,(TM)e H'(M;Z /27 = n,(GL(R?))) seen as a
map from 7,(M) to Z/2Z maps the class of a loop ¢ embedded in M to 0 if TM,, is orientable
and to 1 otherwise. It is the obstruction to the existence of a trivialization of TM over the
one-skeleton of M. Since M is orientable, the first Stiefel —Whitney class w,(TM) vanishes
and TM can be trivialized over the one-skeleton of M. The second Stiefel — Whitney class
w,(TM) e H*(M;Z/2Z = n,(GL'(R?))) seen as a map from H,(M;Z/27) to Z /27 maps the
class of a connected closed surface S to 0 if TM; is trivializable and to 1 otherwise. The second
Stiefel — Whitney class w,(TM) is the obstruction to the existence of a trivialization of TM
over the two-skeleton of M, when w,(TM) = 0. According to the above lemma, w,(TM) = 0,
and TM can be trivialized over the two-skeleton of M. Then since m,(GL (R’)) =0, any par-
allelization over the two-skeleton of M can be extended as a parallelization of M. O

We detail the involved arguments below without mentioning Stiefel — Whitney classes,
(actually by almost defining w@,(TM)). The elementary proof below can be thought of as an
introduction to the obstruction theory used above.

Elementary proof of Theorem 9. Let M be an oriented 3-manifold. Choose a triangulation of
M. For any cell ¢ of the triangulation, define an arbitrary trivialization t, : ¢ x R* — TM,, such

that t_induces the orientation of M. This defines a trivialization 1 : M@ xR? — ™, « of

M over the 0-skeleton M@ of M. Let C,(M) be the set of k-cells of the triangulation. Every
cell is equipped with an arbitrary orientation. For an edge e € C,(M) of the triangulation, on
de, 17 reads 1 =1, 0oy, (g,) for a map g, : de - GL (R’). Since GL'(R?) is connected, g,
extends to e, and 1" =1, oy, (g,) extends t” to e. Doing so for all the edges extends t to
a trivialization t*” of the one-skeleton MV of M.

For an oriented triangle ¢ of the triangulation, on 6, 1 reads t =1, oy, (g,) for a map
g, : 0t - GL'(R?). Let E(¢,7") be the homotopy class of g, in (n,(GL*(R*)) =7, (SO(3))=Z/2Z,
E(t,7") is independent of t,. Then E(.,t"):C,(M) —7/2Z is a cochain. When E(.,7") =0,
©” may be extended to a trivialization t® over the two-skeleton of M, as before.

Since m,(GL (R*)) = 0, t¥ can next be extended over the three-skeleton of M, that is over M.

Let us now study the obstruction cochain E(.,t'") whose vanishing guarantees the existence
of a parallelization of M.

If the map g, associated to e is changed to d(e)g, for some d(e): (e,0e) —(GL'(R’),1) for
every edge e, define the associated trivialization ", and the cochain DY 1YY 7/27



An introduction to finite type invariants of knots and 3-manifolds defined... 105

that maps e to the homotopy class of d(e). Then (E(-,7"")—E(-,x")) is the coboundary
of D(‘cm,r(“').

Let us show that E(-,t*") is a cocycle. Consider a 3-simplex T, then 1 extends to T. With-
out loss of generality, assume that t, coincides with this extension, that for any face ¢ of T, 1,
is the restriction of 1, to ¢, and that the above 1V coincides with 1, on the edges of 6T. Then
E(-,t")(8T)=0. Since a coboundary also maps a7T to 0, E(-,t"") (6T)=0.

Now, it suffices to prove that the cohomology class of E(-,7") (which is actually w,(TM))
vanishes in order to prove that there is an extension t" of t” on M‘" that extends on M.

Since H*(M;7/27) = Hom(H,(M;Z/27));7/27), it suffices to prove that E(-,t"”) maps
any 2-dimensional Z/2Z-cycle C to 0.

We represent the class of such a cycle C by a non-necessarily orientable closed surface S as
follows. Let N(M”) and N(M‘") be small regular neighborhoods of M” and M in M, re-
spectively, such that N(M) n (M \ N(M®)) is a disjoint union, running over the edges e, of
solid cylinders B, identified with ]0,1[xD*. The core 10,1[x{0} of B, =10,1[xD? is a connected
part of the interior of the edge e. (N(M") is thinner than N(M®).)

Construct S in the complement of N(M®) U N(M") as the intersection of the support of
C with this complement. Then the closure of S meets the part [0,1]xS' of every E as an
even number of parallel intervals from {0} x.S' to {1}x S". Complete S in M\ N(M®) by con-
necting the intervals pairwise in B, by disjoint bands. After this operation, the boundary of
the closure of S is a disjoint union of circles in the boundary of N(M?), where N(M?) is a
disjoint union of balls around the vertices. Glue disjoint disks of N(M‘®) along these circles
to finish the construction of S.

Extend 1 to N(M), assume that t* coincides with this extension over MV A N(M?),
and extend t” to N(M"). Then TM is trivial, and we may choose a trivialization t of TM
over .S that coincides with our extension of t® over N(M®), over S " N(M®). We have a
cell decomposition of (5,8 " N(M®)) with only 1-cells and 2-cells, where the 2-cells of .S are
in one-to-one canonical correspondence with the 2-cells of C, and one-cells bijectively corre-
spond to bands connecting two-cells in the cylinders B,. These one-cells are equipped with the
trivialization of TM induced by 1P, Then we can define 2-dimensional cochains E 5(-,1(1)) and
E(-,ty) from C,(S) to Z/27Z as before, with respect to this cellular decomposition of S, where
(E,(-,7'") — E((-,1y)) is again a coboundary and E(-,t,) = 0 so that E(C,t”) = 0, and since
E(C,7") = E,(C,x'"), E(C,t") =0 and we are done. 0

6.3. The homomorphism induced by the degree on [(M,0M),(SO(3),1)]

Let S be a non-necessarily orientable closed surface embedded in the interior of M, and let
t be a parallelization of M. We define a twist g(S,1) e C° (M, 6M),(SO(3),1)) below.

The surface S has a tubular neighborhood N(S), which is a [-1,1]-bundle over .S that admits
(orientation-preserving) bundle charts with domains [-1,1]x D for disks D of S so that the
changes of coordinates restrict to the fibers as +Identity. Then

g(S,v) : (M,0M) - (GL (R’),1)
is the continuous map that maps M\N(S) to 1 such that g(S,t)((¢,s) € [-1,1]x D) is the rotation
with angle n(¢+1) and with axis p,(t"'(v,) = (5, p,(z'(v))))) where v, =T, ([-1,1]xs) is the
tangent vector to the fiber [-1,1]x s at (0,s). Since this rotation coincides with the rotation with
opposite axis and with opposite angle n(1—¢), our map ¢g(S,1) is a well-defined continuous map.

Clearly, the homotopy class of g(S,t) only depends on the homotopy class of t and on the isoto-

py class of S. When M=B?, when 7 is the standard parallelization of R’, and when 1 S? denotes the

. . 1
sphere %683 inside B®, the homotopy class of g (5 s?, Tj coincides with the homotopy class of p.
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Lemma 31. H'(g(S,1);Z/27) is the mod 2 intersection with S.

The map H'(.;7Z/27) from [(M,0M),(SO(3),1)] to H'(M,0M;7/27) is onto.

Proof. The first assertion is obvious, and the second one follows since H'(M,0M; 7 /27) is
the Poincaré dual of H,(M;Z/27) and since any element of H*(M;Z/27) is the class of a
closed surface. u

Lemma 32. The degree is a group homomorphism deg: [(M,0M),(SO(3),1)] - Z and deg
(py (B*)) = 2k.

Proof. 1t is easy to see that deg(fg)=deg(f)+deg(g) when f or g is a power of [p,,(B)].
Let us prove that deg(f*)=2deg(f) for any f. According to Lemma 31, there is an unoriented
embedded surface S, of the interior of C such that H'(f;7/27) = H1(g(Sf,r); 7.127) for some
trivialization t of TM. Then, according to Lemma 29, fg(S,,7)™" is homotopic to some power of
p,,(B?), and we are left with the proof that the degree of ¢° is 2deg(g) for g = g(S,,1). This can
easily be done by noticing that g*is homotopic to g(S*, t) where S;Z) isthe boundary of the tubular

neighborhood of S,. In general, deg(fg) = %deg((fg)z) - %deg(]wgz) = %(deg(,ﬂ) +deg(g2)),

and the lemma is proved. O
Lemmas 29 and 32 imply the following lemma.
Lemma 33. The degree induces an isomorphism deg: [(M,0M),(SO(3),1)]1®, Q » Q. Any

group homomorphism ¢ : [(M,0M),(SO(3),1)] > Q reads %(I)(pM (B*))deg.

6.4. First homotopy groups of the groups SU(n)
Let K=R or C. Let n e N. The stabilization maps induced by the inclusions

i: GL(K") < GL(K®K")
g B (i) : (x,) - (x,9(y)))
will be denoted by i. Elements of GL(K") are represented by matrices whose columns contain
the coordinates of the images of the basis elements, with respect to the standard basis of K".
See S? as the unit sphere of C” so that its elements are the pairs (z,2,) of complex numbers
such that |z, } +|z, [’=1.
The group SU(2) is identified with S* by the homeomorphism

mS: S? - SU(©2)
(z,2,) > “ __22
2, 21

so that the first non trivial homotopy group of SU(2) is n,(SU(2)) = Z[m"].
The long exact sequence associated to the fibration

SUGM = 1),5SU() — S

shows that i : 1,(SU(2)) — ;,(SU(n + 2)) is an isomorphism for j < 3 and n > 0, and in particu-
lar, that 7;(SU(4)) = {1} for j < 2 and n,(SU(4)) = Z[i*(m; )] where i*(m,’) is the following map

mS): (5°cC) - SUM4)

100 0
01 0 0
@z) =y g, 3
00 2z =z
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6.5. Definition of relative Pontrjagin numbers

Let M, and M, be two compact connected oriented 3-manifolds whose boundaries have col-
lars that are identified by a diffeomorphism. Let 1, : My x R — TM, and 1, : M, x R* — TM,
be two parallelizations (which respect the orientations) that agree on the collar neighborhoods
of &M, = 0M,. Then the relative Pontrjagin number p,(1,,t,) is the Pontrjagin obstruction to
extending the trivialization of TW ® C induced by 7, and 1, across the interior of a signature
0 cobordism W from M, to M,. Details follow.

Let M be a compact connected oriented 3-manifold. A special complex trivialization of TM
is a trivialization of TM ® C that is obtained from a trivialization t,, : M x R® - TM that
induces the orientation of M by composing (1}, = 1,, ®, C): M xC’ - TM ® C by

yw(G): MxC* - MxC?
() = &, G)(Q)
for a map G: M — SL(3,C). The definition and properties of relative Pontrjagin numbers,
which are given with more details below, are valid for pairs of special complex trivializations.

The signature of a 4-manifold is the signature of the intersection form on its H,(-;R) (number
of positive entries minus number of negative entries in a diagonalised version of this form). Also
recall that any closed oriented three-manifold bounds a compact oriented 4-dimensional mani-
fold whose signature may be arbitrarily changed by connected sums with copies of CP* or —~CP”.
A cobordism from M, to M, is a compact oriented 4-dimensional manifold W with corners whose
boundary OW is equal to =M Uay _o.an, (-10,1]1xoM,) Uan, v, My and is identified with an
open subspace of one of the products [0,1[xM, or ]0,1]x M, near 0W , as Fig. 3 suggests.

{0} X M() = MO ; w4 {1} X M1 = M1

/ - =P
14

[07 ]-] X (_aMO)I/
Fig. 3

Let W = W" be such a cobordism from M, to M,, with signature 0. Consider the complex
4-bundle TW ® C over W. Let v be the tangent vector to [0,1]x{pt} over OW (under the
identifications above), and let t(t,,t,) denote the trivialization of TW ® C over OW that is
obtained by stabilizing either t, or 1, into v@® 1, or v ® t,. Then the obstruction to extending
this trivialization to W is the relative first Pontrjagin class p,(W;t(z,,7,))[W,0W] of the
trivialization, which belongs to H*(W,0W;Z = n,(SU(4))) = Z[W,0W].

Now, we specify our sign conventions for this Pontrjagin class. They are the same as in
[56]. In particular, p, is the opposite of the second Chern class ¢, of the complexified tangent
bundle. See [56. P. 174]. More precisely, equip M, and M, with Riemannian metrics that
coincide near oM, and equip W with a Riemannian metric that coincides with the orthogo-
nal product metric of one of the products [0,1]x M, or [0,1]x M, near 9W. Equip TW ® C
with the associated hermitian structure. The determinant bundle of TW is trivial because W
is oriented, and det(TW ® C) is also trivial. Our parallelization t(t,,1,) over W is special
with respect to the trivialization of det(TW ® C). Up to homotopy, assume that t(t,,t,) is
unitary with respect to the hermitian structure of TW ® C and the standard hermitian form of
C*. Since m,(SU(4)) = {0} when i <3, the trivialization 1(t,,1,) extends to a special unitary
trivialization 1 outside the interior of a 4-ball B* and defines

T: 8 xC’ —)(TW®(C)‘53
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over the boundary S°=0B" of this 4-ball B*. Over this 4-ball B?, the bundle TW ® C admits a
trivialization 1, : B* xC* > (TW ® (C)|B4. Then 15 o (v € §°,w € C*) = (0,¢(v)(w)), for a map

¢ :S8* - SU(4) whose homotopy class reads
[0] = —p,(W;t(z,, t D[ (M) ] € m,(SU(4)).

Define p,(t,,1,) = p,(W;1(t,,1))).
Proposition 9. The first Pontrjagin number p,(z,,t,) is well-defined by the above conditions.
Proof. According to the Nokivov additivity theorem, if a closed (compact, without bound-
ary) 4-manifold Y reads Y =Y U, Y~ where Y and Y~ are two 4-manifolds with boundary,
embedded in Y that intersect along a closed 3-manifold X (their common boundary, up to
orientation) then
signature(Y) = signature(Y") + signature(Y").

According to a Rohlin theorem (see [57] or [58. P. 18]), when Y is a compact oriented
4-manifold without boundary, p,(Y) = 3signature(Y).

We only need to prove that p,(z,,1,) is independent of the signature 0 cobordism W. Let
W, be a 4-manifold of signature 0 bounded by (—-0W). Then W u,,, W, is a 4-dimensional
manifold without boundary whose signature is (signature(W,) + signature(W) = 0) by the
Novikov additivity theorem. According to the Rohlin theorem, the first Pontrjagin class of
W u,,, W, is also zero. On the other hand, this first Pontrjagin class is the sum of the rela-
tive first Pontrjagin classes of W and W, with respect to t(t,,t,). These two relative Pon-
trjagin classes are opposite and therefore the relative first Pontrjagin class of W with respect
to t(t,,7,) does not depend on W.

Similarly, it is easy to prove the following proposition.

Proposition 10. Under the above assumptions except for the assumption on the signature
of the cobordism W, p,(x,,1,) = p,(W;1(1,,7,)) — 3signature(W,).

6.6. On the groups SO(3) and SO(4)

In this subsection, we describe 1,(SO(4)) and the natural maps from 7,(SO(3)) to n,(SO(4))
and to n,(SU(4)).

The quaternion field H is the vector space C® Cj equipped with the multiplication that
maps (z,+z,j,z/+2)j) to (22, -22,)+(2,2, +27,)j, and with the conjugation that
maps (2, +2,j) to z +2zj]=2z-2j. The norm of (z +2z,j) is the square root of
|z, P +1z, = (z + z,))z + 2,7, it is multiplicative. Setting k=ij, (1,4,7,k) is an orthogonal
basis of H with respect to the scalar product associated to the norm. The unit sphere of H is

the sphere S°, which is equipped with the corresponding group structure. There are two group
morphisms from S* to SO(4) induced by the multiplication in H,

m,: §° — (SO(H) = S0(4))
x B mx):ob xo
m : S - SO(H)
y = m@:o-oy).
Together, they induce the group morphism
xS 5 SO0W4)
(x,y) > (@ xoy).

The kernel of this group morphism is Z/27(—1,—1) so that this morphism is a two-fold cover-
ing. In particular, m,(SO(4)) = Z[m,]® Z[m,].
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For K=R or C and ne N, the K (euclidean or hermitian) oriented vector space with the di-
rect orthonormal basis (v,,...,0,) is denoted by K (v,,...,0,). There is also the following group

morphism
p: S > SOR <i,j,k>)=50(3)

x (v - (o> x.v.z))

whose kernel is Z/27(—1). This morphism p is also a two-fold covering.

Lemma 34. This definition of p coincides with the previous one,up to homotopy.

Proof. 1t is clear that the two maps coincide up to homotopy, up to orientation since both
classes generate m,(SO(3)) =Z. We take care of the orientation using the outward normal
first convention to orient boundaries, as usual. An element of S* reads cos(8) +sin(0)v for a
unique 0 €[0,n] and a unit quaternion v with real part zero, which is unique when 0 ¢ {0, }.
In particular, this defines a diffeomorphism ¢ from ]0,n[xS*> to S°\{~1,1}. We com-
pute the degree of ¢ at ¢(n/2,7). The space H is oriented as R ® R(i,j,k), where R(i,7,k)
is oriented by the outward normal to S* which coincides with the outward normal to
S? in R*, followed by the orientation of S In particular since cos is an orientation-re-
versing diffeomorphism at n/2, the degree of ¢ is 1 and ¢ preserves the orientation. Now
(cos(0) + sin(B)v)w(cos(B) +sin(0)v) = R(0,v)(w) where R(0,v) is a rotation with axis v for
any o. Since R(0,7)(j) = cos(20); + sin(20)k, the two maps p are homotopic. One can check
that they are actually conjugate. O

Define

m,: S° — (SO =S0O(4))

r

y b m(y:veoy).

Lemma 35. In n,(SO(4)) = Z[m,]® Z[m,], i.([p]) = [m, ]+ [m.]=[m,]-[m,].

Proof. The m,-product in n,(SO(4)) coincides with the product induced by the group struc-
ture of SO(4). O

Lemma 36. Recall that m, denotes the map from the unit sphere S° of H to SO(H) induced
by the right-multiplication. Denote the inclusions SO(n) = SU(n) by c. Then in n,(SU(4)),
c,(m,]) = 2[*(m")].

Proof. Let H + IH denote the complexification of R* = H = R(1,i,,k). Here, C =R @ IR.
When x e H and v e S? cim)(0)(Ix) = Ixo, and I’ = ~1. Let £ = +1, define

C*(e) = C<§(1+sli),g(j+slk)>.

Consider the quotient C'/C%*(e). In this quotient, Ii= —¢l, Tk = —gj, and since I*> = -1,
I1=c¢i and Ij = gk . Therefore this quotient is isomorphic to H as a real vector space with its
complex structure I =gi. Then it is easy to see that c(m,) maps C*(¢) to 0 in this quotient.
Thus c(m,)(C*(e)) = C*(¢). Now, observe that H + IH is the orthogonal sum of C*(-1) and
C*(1). In particular, C*(¢) is isomorphic to the quotient C'/C*(—¢), which is isomorphic to
(H; I = —&i) and c(m,) acts on it by the right multiplication. Therefore, with respect to the

orthonormal basis gﬂ —Ii,j—TkA+Ti,j+1k), c¢(m)(z +z,7) reads

2, -2 0 0 |
z, oz 0 0

0 0 =zi= x, — 1y, -z,

0 0 22 z, = x, + 1y,
] |
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Therefore, the homotopy class of ¢(m,) is the sum of the homotopy classes of
C
(z;+2,)) > [m’ (31722) (ﬂ

and

(.21+.22j)|—>[1 0 }

0 m owz,z)

where (z,,2,) = (z,,z,). Since the first map is conjugate by a fixed element of SU(4) to i*(m"),
it is homotopic to iZ(m’), and since 1 induces the identity on 7,(S°), the second map is homo-
topic to i2(m"), too. o
The following lemma finishes to determine the maps ¢, : 1,(SO(4)) - n,(SU(4)) and
c.i, : ,(SO(3)) - n,(SU(4)).
Lemma 37. ¢.([m,]) = c.([m,]) = =2[*(m?)], ¢, G.([PD) = —4[*(m)].

Proof. According to Lemma 33, i,([p]) = [m,]+[m,]= [m,]-[m,]. Using the conjugacy of

quaternions, m,(2)(x) = v.x = x.0 = m,(v)(x). Therefore m, is conjugated to m, via the con-
jugacy of quaternions, which lies in (O(4) c U(4)).

Since U(4) is connected, the conjugacy by an element of U(4) induces the identity on
n,(SU(4)). Thus, ¢,([m,]) = c.(Im,]) =—c.([m,]), and ¢,G([p])) = -2¢,([m,]). O

6.7. Relating the relative Pontrjagin number to the degree

We finish proving Theorem 2 by proving the following proposition.

Proposition 11. Let M, and M be two compact connected oriented 3-manifolds whose
boundaries have collars that are identified by a diffeomorphism. Let 1, : My x C* - TM, ® C
and 1: M xC®> - TM ®C be two special complex trivializations (which respect the orien-
tations) that coincide on the collar neighborhoods of oM, = oM. Let [(M,oM),(SU(3),1)]
denote the group of homotopy classes of maps from M to SU(3) that map oM to 1. For any
g:(M,0M) — (SU(3),1), define

w(g): MxC® —» MxC’
() = (g (y)

then p(zty,71ow(g)) - p,(x,,0) = p,(r,10u(g)) = —p,(xoy(g),1) = p',(g) is independent from
1, and 1, p| induces an isomorphism from the group [(M,0oM),(SU(3),1)] to Z, and, if g is
valued in SO(3), then p/(g) = 2deg(g).

In order to prove this proposition, we first prove the following lemma.

Lemma 38. Under the hypotheses of Proposition 11, (p,(ty,7t o w(g)) - p,(x,, 7)) is indepen-
dent from 1, and t.

Proof. Indeed, (p(ty,7°w(g))—p,(1),7)) can be defined as the obstruction to extending
the following trivialization of the complexified tangent bundle to [0,1]x M restricted to the
boundary. This trivialization is T10,1]1@®t on ({0} x M) U ([0,1]xoM) and T[0,1]1@ toy(g)
on {1} x M. But this obstruction is the obstruction to extending the map § from &([0,1]x M)
to SU(4) that maps ({0} x M) U ([0,1]x M) to 1 and that coincides with i(g) on {1}x M, re-
garded as a map from o([0,1]x M) to SU(4), over ([0,1]x M). This obstruction, which lies
in 7,(SU(4)) since 7,(SU(4)) =0, for i < 3, is independent of t, and .

Proof of Proposition 11. Lemma 38 guarantees that p; defines two group homomorphisms
to Z from [(M,0M),(SU(3),1)] and from [(M,0M),(S50(3),1)]. Since n,(SU(3)) is trivial
for i <3 and since n,(SU(3)) =Z, the group of homotopy classes [(M,0M),(SU(3),1)] is
generated by the class of a map that maps the complement of a 3-ball B to 1 and that factors
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through a map that generates n,(SU(3)). By definition of the Pontrjagin classes, p/ sends such
a generator to +1 and it induces an isomorphism from [(M,oM),(SU(3),1)] to Z.
According to Lemma 29 and to Lemma 23, the restriction of p/ to [(M,0M),(SO(3),1)]

must read p’,(p,, (B3))dzig, and we are left with the proof of the following lemma.

Lemma 39. p/(p,,(B*)) = 4.

Let g =p,,(B’), we can extend § (defined in the proof of Lemma 38) by the constant map
with value 1 outside [e,1]x B’ = B* and, in n,(SU(4)) [C(§|EB4)] = —p, (1, T o w(g)[*(m5)].
Since gw is homotopic to ¢ i(p), Lemma 37 allows us to conclude. O

7. Other complements

7.1. More on low-dimensional manifolds

Piecewise linear (or PL) n-manifolds can be defined as the C*-manifolds of Subsection 1.2
by replacing C* with piecewise linear (or PL).

When n < 3, the above notion of PL-manifold coincides with the notions of smooth and topolog-
ical manifold, according to the following theorem. This is not true anymore when n > 3. See [59].

Theorem 10. When n < 3,the category of topological n-manifolds is isomorphic to the cate-
gory of PL n-manifolds and to the category of C" n-manifolds, for r =1,...,0.

For example, according to this statement, which contains several theorems (see [31]), any
topological 3-manifold has a unique C”-structure. Below n = 3.

The equivalence between the categories C',i=1,2,...,00 follows from work of Whitney in
1936 [60]. In 1934, Cairns [61] provided a map from the C'-category to the PL category, which
shows the existence of a triangulation for C'-manifolds, and he proved that this map is onto
[62. Theorem III] in 1940. Moise [63] proved the equivalence between the topological category
and the PL category in 1952. This diagram was completed by Munkres [64. Theorem 6.3] and
Whitehead [65] in 1960 by their independent proofs of the injectivity of the natural map from
the C'-category to the topological category.
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BBEAEHUE B TEOPUIO NHBAPUAHTOB
KOHEYHOTO TUIIA Y3JI0B U TPEXMEPHBIX MHOTOOBPA3UIA,
OINPEJEJAEMBIX KAK YHCJIO KOHOUTYPAIUI B TPADE

K. Jleckon

Konrernysi ”HBApHMAHTOB KOHEYHOTO THIIA JIJist Y3J0B Gblia nipeioxkera B 90-x rr. B paborax Bacu-
JpeBa, ['ycapoBa u bap-Harana ¢ 11es1610 Kiaccudukaimy THBAPIAHTOB Y3JI0B BCKOPE TIOCJIE TIOSBJIEHIS
MHOIOYUCJIEHHBIX KBAHTOBBIX WHBAPHAHTOB Y3JI0B. DTa OYEHb I10Jie3Hast KOHIIENIust ObLIa paciimpeHa
Ortcyku [0 cydas HHBAPUAHTOB TPEXMEPHBIX MHOTO0OPA3uil.

B crarbe 1okaspIBaeTcsi, Kak OINPEAETUTh WHBAPHAHTbI KOHEYHOTO THUIIA /ISl Y3JIOB M TPEXMEPHBIX
MHOroo6pasuil myteM mojicueta KOHpUTypanuili rpada B TPEXMEPHBIX MHOT006pasusax. MBI ciemyeM
nziesim Butrena n Koniieuua.

Uucso 3amerieHnit IBJAeTcsl MPOCTENTINM WHBAPUAHTOM KOHEYHOTO THUTA JIJIT JIBYXKOMIOHEHTHBIX
3ateriennii. OH oIpe/iesisieTcsl HECKOJIbKUME 9KBUBAJIEHTHBIMU clioco6aMu B 1epBoM pasjiesie. B kave-
CTBe BJKHOTO MPUMePA MPUBONUTCS €T0 OTpe/ieieHne KakK aareOpandeckoe Tiepeceveniie Topa u 4-11eTH,
HA3bIBAEMOE TPOIAraTopoM B KOH(HUIYPAIIMOHHOM MPOCTPAHCTBE.

Bo BropoM pasfesie MbI BBOIUM TPOCTENTINI MHBAPUAHT KOHEYHOTO THIIA TSI TPEXMEPHBIX MHOTO-
o6pasuii — wunBapuanT Kaccona (i ©-MHBapMaHT) I€JOYMCIEHHBIX TOMOJornuecknx 3-cep. OH
oTIpesiesisIeTcsT Kak ajgreGpamyeckoe Tiepecevyenre TpeX MpoaraTtopoB B OHOM W TOM K€ BYXTOUYETHOM
KOH(UTYPAIIMOHHOM TIPOCTPAHCTBE.

B tperbeM pasmesie ommcano obiiee MOHATHE WHBAPUAHTA KOHEYHOTO TUTIA U BBEJIEHBI COOTBETCTBYIO-
e rnpoctpanctsa quarpamm Defiamana — SIkobu.

B pasmemax 4 u 5 Mbl gaeM HAOPOCOK OPUTUHATIBHONW KOHCTPYKIMM, OCHOBAHHOW HAa WHTETpasax
KOH(UTYPAIIMOHHOTO TIPOCTPAHCTBA YHUBEPCAIbHBIX MHBAPUAHTOB KOHEYHOIO THIIA JIJIsI 3allellJIeHuil B
PAIOHABHBIX TOMOJIOTUYECKUX cepax, a TakxKe (OpMYJUPYeM HECKOJIbKO HEPENIEHHBIX MPOOJIEM.
Hama KOHCTPYKIMs 06006I1aeT M3BECTHbIE KOHCTPYKIMK IS 3auenienuii B R? u s paluoHa bHbIX
roMoJIOTHYeCKIX 3-cpep, uTo fmemaeT ee 6oJiee THOKOIA.

B pasjesie 6 fetasibHO OIMKMCHIBAHBI HEOOXOMMbIE CBOMCTBA MAapPAJIIeU3alUil TPEXMEPHBIX MHOT000-
pasuii ¥ COOTBETCTBYIOMUX KaaccoB [lonTpsruna.

KioueBbie cioBa: y3/161, mpexmepHvle MHO2000pA3US, UHBAPUAHMBL KOHEUHIX MUNd, 20MOL02U-
yeckue 3-cqhepul, wUCA0 3auenienull, mema-uneapuanm, uneapuanm Kaccona-Yonxepa, duazpammo
Deiinmana-Arxobu, pacwupenue meopuu Yepna-Catimonca, unmezpanvl KOHpU2YPaAUUOHH020 npo-
CMPAHCMEA, NAPAIIETUIAUUSL MPEXMEPHBLL MHO2000pa3utl, nepebvlil Kaacc ITonmpszuna.
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ON KNOTS AND LINKS IN LENS SPACES
M. Manfredi, M. Mulazzani

We shortly review some recent results about knots and links in lens spaces. A disk diagram is
described together with a Reidemeister-type theorem concerning equivalence. The lift of knots/links
in the 3-sphere is discussed, showing examples of different knots and links having equivalent lift.
The essentiality respect to the lift of classical invariants on knots/links in lens spaces is discussed.

Keywords: knot, link, lens space, lift, fundamental quandle, group of the link, twisted Alex-
ander polynomial.

1. Introduction

The interest on knots and links in lens space arises from several topological reasons. One of
the most important is the Berge conjecture about knots in S* admitting lens space surgeries,
that can be translated into a conjecture about knots in lens spaces admitting S’ surgeries [1; 2].
Moreover the interest does not come only from geometric topology, but also from physics [3]
and biology [4].

The first step on the study of knots and links in lens spaces is to find a suitable representa-
tion: there are several possible diagrams for links in lens spaces, as mixed link diagrams [5],
band diagrams [6] and grid diagrams [1] among the others. Using band diagrams Gabrovsek
obtained in [7] a tabulation of prime knots up to 4 crossings. For a detailed introduction about
knots and links in lens spaces, together with a vaste bibliography, see [8].

Let L be a link in the lens space L(p,q) and let P: S° — L(p,q) be the (universal) cyclic
covering, the lift of L is the link L = P"'(L) = S°. In [9] is described an algorithm producing a
diagram of L, starting from a disk diagram of L. This paper aims to investigating the behavior
of the lift with respect to other invariants that have already been defined in [10; 11], namely:
the fundamental quandle, the group of the link, the first homology group and the twisted Alex-
ander polynomials. To be more precise, exploiting the different knots and links with equivalent
lift described in [9], we show whether the considered invariants for L are or not essential, that
is to say, whether they cannot or can be defined directly on the lift L. A draft of this work can
be found in [8].

The work about essential invariants extends also to the HOMFLY-PT invariant of Cornwell
[12], the Link Floer Homology [1] (both of these results can be found in [13]) and the Kau-
ffman Bracket Skein Module of [6] (the result can be found in [8]).

The setting of this paper is the Diff category (of smooth manifolds and smooth maps). Every
result also holds in the PL category, and in the Top category if we consider only tame links,
that is to say, we exclude wild knots.

2. Diagrams and equivalence of links in lens spaces

In this section, we describe two equivalent definitions of lens spaces that we are going to
use through the paper. Then we introduce links in lens spaces and their equivalence. At last
we describe a representation of them by disk diagrams and in this context we prove a Reide-
meister-type theorem.
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2.1. Lens spaces

Apart from S°, lens spaces are the simplest class of closed connected 3-manifolds. Usually
they are defined as a quotient of the 3-sphere as follows. Let p, g be two coprime integers such
that 0 < g < p. Regard S’ as the unit sphere in C*. Consider the diffeomorphism that sends

2#1 2#qi
(z,,2,) in (e” z,e ” z,), and the cyclic group G, generated by this diffeomorphism. Clearly
G, is isomorphic to Z, and it acts freely and in a properly discontinuous way on S°. Therefore
the quotient space is a 3-manifold, the lens space L(p,q).

Another possible definition of lens spaces is the following one. Consider B’:=
{(x,,2,,x) eR?|x? + x5 + x5 < 1} and let E, and E_ be respectively the upper and the lower
closed hemisphere of 0B°. Call B the equatorial disk, defined by the intersection of the plane
x, =0 with B’. Let g, : E,—E, be the rotation of 2nq/p around the x, axis as in Fig. 2.1, and let
fy: E.— E_ be the reflection with respect to the plane x, = 0. The lens space L(p,q) is the quotient
of B’ by the equivalence relation on 6B° which identifies x € E, with f509,,(x) € E.. We denote
by F: B> — B*/~ the quotient map. Usually on 6B® there are two points in each equivalence class,
with the exception of the equator 0B; = E,. N E_ where each class contains p points.

Fig. 2.1. Lens model of L(p,q)

It is easy to see that L(1,0) =S’ since g, ,=1d, . Furthermore, L(2,1) is RP’, since we obtain
the usual model of the projective space where opposite points of éB” are identified.

Proposition 1. [14]. The lens spaces L(p,q) and L(p',q") are diffeomorphic (as well as
homeomorphic) if and only if p'=p and q'=+q ' modp.

2.2. Links in lens spaces and their equivalence

A link L in a lens space L(p,q) is a pair (L(p,q),L), where L is a submanifold of L(p,q)
diffeomorphic to the disjoint union of v copies of S', with v > 1. We call component of L each
connected component of L. When v=1 the link is called a knot. We usually refer to L < L(p,q)
meaning the pair (L(p,q),L). A link L < L(p,q) is trivial if its components bound embedded
pairwise disjoint 2-disks in L(p,q).

We consider on the set of links in L(p,q) two different definitions of equivalence. The stronger
one is the equivalence up to ambient isotopy: two links L,L" < L(p,q) are called isotopy-equiva-
lent if there exists a smooth map H: L(p,q)x[0,1] — L(p,q) where, if we define ,(x):= H(x,t),
then %, =id,, ,, #,(L) = L"and £, is a diffeomorphism of L(p,q) for each ¢ € [0,1].

The weaker equivalence is up to diffeomorphism of pairs: two links L and L' in L(p,q) are
diffeo-equivalent if there exists a diffeomorphism of pairs 4: (L(p,q),L) — (L(p,q),L"), that
is to say a diffeomorphism #: L(p,q) — L(p,q) such that 2(L) = L'. This diffeomorphism is
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not necessarily orientation-preserving. Two isotopy-equivalent links L and L' in L(p,q) are
necessarily diffeo-equivalent, since from the ambient isotopy H: L(p,q)*x[0,1] — L(p,q), the
map h,: (L(p,q),L) — (L(p,q),L") is a diffeomorphism of pairs.

The two definitions coincide for links in S” if only orientation preserving diffeomorphisms are
considered. For the lens spaces, this fact is no longer true, as we can see from the structure of
the groups of the isotopy classes of diffeomorphisms of lens spaces obtained in [15] and [16].

When necessary we will specify whether an orientation on the links is considered.

2.3. Disk diagrams

For the case L(1,0) = S’ links may be represented by the usual diagram coming from the reg-
ular projection onto a plane. This idea has been generalized in [11] for every p>1: if the lens
model of L(p,q) is considered and the link is regularly projected onto the equatorial disk, then a
disk diagram for links in lens spaces is this projection together with overpasses and underpasses
specifications for each crossing. The case RP*=L(2,1) is described also in [17]. In order to have
a more comprehensible diagram, we index the boundary points of the projection, so that +i and
—i represent identified endpoints respectively in E, and in E_. An example is shown in Fig. 2.2.

—1

T34
Fig. 2.2. A link in L(9,1) and its corresponding disk diagram

2.4. Generalized Reidemeister moves

The equivalence of links in S° can be studied through the Reidemeister theorem. We gener-
alize this theorem for unoriented links in lens spaces up to isotopy equivalence. The oriented
case is analogous. The generalized Reidemeister moves on a diagram of a link L < L(p,q), are
the moves R,, R,, R;, R,, R;, R and R, of Fig. 2.3. Observe that, when p = 2 the moves R,
and R, are equal, and R, is trivial, thus we re-obtain the result of [17].

Theorem 1. [11]. Two links L, and L, in L(p,q) are isotopy-equivalent if and only if their
diagrams can be joined by a finite sequence of generalized Reidemeister moves R,, ..., R, and
diagram isotopies, when p>2. If p=2, moves R,, ..., R are sufficient.

2.5. Standard form of the disk diagram

A disk diagram is defined standard if the labels on its boundary points, read according to
the orientation on 8B§, are (+1,...,+t,—1,...,—1).

Proposition 2. [9]. Every disk diagram can be reduced to a standard disk diagram.

Indeed, if p=2, the signs of the boundary points of the disk diagram can be exchanged by
performing an isotopy on the link (that preserves the projection); if p>2, a finite sequence
of Ry moves can be applied to the disk diagram in order to bring all the plus-type boundary
points close to each other. An example is shown in Fig. 2.4.
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Fig. 2.4. Example of Ry -reduction to a standard disk diagram

3. Lift and essential invariants

In this section we deal with the following powerful invariant: let L be a link in the lens
space L(p,q), the lift L is the counterimage P"'(L) in S® under the universal cyclic covering
P:S’— L(p,q). Clearly the lift is an isotopy-equivalence invariant for the homotopy lifting prop-
erty. The main result of this section is the construction of a diagram for the lift L from a standard
disk diagram of L. This result is the key to find different links with equivalent lift. Thus the lift
is not a complete invariant for links, but it becomes complete with some further assumption. We
conclude by defining precisely what is an essential invariant of links in lens spaces.

3.1. Lift component number

Let L be a link in L(p,q), denote with v its number of components, and with §,, ..., 3, the
homology class in H,(L(p,q)) =Z, of the i-th component L, of L. In Lemma 1 it will be de-
scribed how to compute the homology classes directly from a disk diagram.

Proposition 3. [9] Given a link L < L(p,q), the number of components of L is ngd(oz,p)

i=1

A knot K< L(p,q) is primitive-homologous if its homology class § is coprime with p; clearly
its lift is still a knot.
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3.2. Diagram for the lift via disk diagrams

The construction of a diagram for Lc S’ starting from a disk diagram of L < L(p,q) is ex-
plained by the following two theorems. The case of L(2,1) = RP’ is outlined in [17]. As usual,
the generators of the braid group on ¢ strands are o,,...,0,_,. The Garside braid A, on ¢ strands
is defined by (c,_,6,_," 6,)(c,_,06,_, " 6,)(c_,) and it is illustrated in Fig. 3.1.

R — —1
I e Wamm N
q : /_ ...... ; 73
+2 — / \ —(t-1)
+1 —t

Fig. 3.1. The braid A,

Theorem 1. [9]. Let L be a link in the lens space L(p,q) and let D be a standard disk di-
agram for L; then a diagram for the lift LcS® can be found as follows (refer to Fig. 3.2):

- consider p copies D, ...,D, of the standard disk diagram D;

« for each i = 1,..., p—1,using the braid A}, connect the diagram D, with the diagram
D, joining the boundary point —j of D,,, with the boundary point +j of D,

« connect D, with D, via the braid A}, where the boundary points are connected as in
the previous case.

The proof can be found in [9] and the example of Fig. 3.4 gives the main idea of the con-
struction.

The planar diagram of the lift of Theorem 2 has not the least possible number of crossings.
Indeed if we reverse upside down D,, reverse twice D,, and so on, the braid A;‘ between the
disks becomes the trivial one, moving the crossings close to A*"' so that a simplification to
A¥"7 is possible. In order to describe this construction, we define the reverse disk diagram D
of D: it is the diagram that can be obtained by considering the image of D under a symmetry
with respect to an external line and then exchanging all overpasses / underpasses.

Theorem 3. [9]. Let L be a link in the lens space L(p,q) and let D be a standard disk
diagram for L; then a diagram for the lift LcS® can be found as follows (refer to Fig. 3.3):

* consider p copies D, ... D, of the standard disk diagram D, then denote F; = D, if i is
odd,and F, = D, if i is even;

* for each i =1,..., p—1,using a trivial braid, connect the diagram F,, , with the diagram
F. joining the boundary point —j of F,,, with the boundary point +j of F;

* connect F, with F, via the braid A7 where the boundary points are connected as in the
previous case.

Fig. 3.2. A diagram of the lift Fig. 3.3. Another diagram of the lift
in S® of a link in L(p,q) in S® of a link in L(p,q)
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Fig. 3.4. Lift in S® of a link in L(5,2)

3.3. Different links with equivalent lift

In [9] a short tabulation of the lifts of a particular class of links in lens spaces — that can
be easily described by a braid — is performed in order to investigate the existence of different
links with equivalent lift. Two pairs of links with such a property are shown in Example 1
and 2. In order to distinguish the links of each pair we will use invariants such as the group
of the link and the Alexander polynomial that will be respectively defined in Sections 5 and 6.

-+

Example 1. Different knots in L(p, %1) with trivial knot lift

The knots K, and K, in L(p, PTﬂj with p odd, depicted in Table 1, both lift to the unknot.

The homology class [K] =8 < H,(L(p,q)) = Z, of a knot in L(p,q) can be 0,1,..., p — 1, but
since we do not consider the orientation of the knots, we have to identify +3, so that the knots
are partitioned into Lp/2J + 1 classes: 8 =0,1, ..., Lp/ 2, where Lx] denotes the integer part of x.
If two knots have different homology classes, they are necessarily not isotopy-equivalent.

Since [K,] =1 and [K,] = 2, the knots are not isotopy-equivalent when p > 3. An interesting
fact is that K, and K, turn out to be diffeo-equivalent for L(5,2). The diffeomorphism realiz-
ing this equivalence is the generator c_ of the group of isotopy classes of diffeomorphisms of
the lens space L(p, PTﬂJ, described in [15]. It is possible to show that for p > 5, the knots

K, and K, are also not diffeo-equivalent.
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Table 1
- . . pti
Geometric invariants of K, and K, in L P
K, K,
—1 —2 —1
11 2
+1
v 1 1
[K]cH (L(p,q)) 1 2
lift unknot unknot
m,(L(p,g)\K) z z
H,(L(p,g)\K) z zZ
A'() 1 1

Example 2. Different links in L(4,1) lifting to the Hopf link

The knot L, and the link L, in L(4,1) described in Table 2 have a different number of com-
ponents, hence they are not diffeo-equivalent (and consequently also not isotopy-equivalent);
beside this, they both lift to the Hopf link.

Table 2
Geometric invariants of L, and L, in L(4,1)
L, L,
—2 —1 —2 —1
+2 +2
+1 +1
v 1 2
[K]lcH (L(p,q)) 2 1,1
lift Hopf link Hopf link
r(L(p,\L) | {a,flaf"af 7 =1) | (a,flaf = fa)
H (L(p,@)\L) Zeoz, ZoL
A'(D) t+1 t—1
A 1

The previous examples consist of pairs of links that are easy to distinguish, because they have
different numbers of components or different homology classes. In [9] a wide family of links that
have got equivalent lift is shown. This family can be found by cabling Example 2 with particular
braids. The simplest example that we can extract from this family, with the same number of
components and the same homology class for each component, is the following one.
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Example 3. Different links in L(4,1) with cables of Hopf link as lift

The links A, , and B, , of Table 3 have the same number of components n =2 and each of these
components has the same homology class 8 =2, anyway the computation of the Alexander poly-
nomial of A,, and B, , (see Section 6 for details) shows that the links are not diffeo-equivalent.
Their lift is equivalent because from the construction, we insert a braid into each arc of L, and
L, so that each component of the Hopf link resulting from the lift has the same cabling.

Table 3
Geometric invariants of A,, and B, , in L(4,1)
Az,z Bz,z
—4—3-2-1 —4-3-2—1
+4 +4
+3 13
+2 +2
+1 +1
% 2 2
[KlcH,(L(p,q)) 2,2 2,2
H,(L(p,@)\L) AV AYA ZOLSZ,
A'(t) T+t —t—1 =+t + - +t—1
A'(t) £ +1 O+ + 2+ 1

3.4. When the lift is a complete invariant

Since the lift of links in lens spaces comes from a cyclic covering, it is a natural question to
ask if it is a complete invariant, at least for some family of knots.

As a consequence of Examples 1, 2 and 3, the lift is not a complete invariant for unorient-
ed knots and links in L(p,q), both up to diffeomorphism and up to isotopy. The problem of
understanding whether the lift is a complete invariant can be referred also to oriented links.
The answer is slightly different.

First of all, an orientation on the previous counter-examples allows us to find new examples,
consisting of different oriented links in lens spaces having equivalent oriented lift.

K —1 e Moreover another family of counter-examples arises

in the case of isotopy-equivalence. If we take an orient-
ed knot K< L(p,q) such that K is invertible (i. e., it is
equivalent to the knot with reversed orientation), then
also the knot —K < L(p, q) with reversed orientation has
the same oriented lift. Usually —K is not isotopy-equiv-
Fig. 3.5. Two not isotopy-equivalent oriented  alent to K because the homology class changes. A really

knots with equivalent trivial lift in L.(3,1) simple example is provided by the two knots in L(3,1)
illustrated in Fig. 3.5: they both lift to the trivial knot, nevertheless they have different homology
classes ([K] =1 and [-K] = 2). For links something similar happens, but you have to be careful
to the orientation of each component.

We can say something more in the case of oriented primitive-homologous knots when they
are considered up to diffeo-equivalence, by the following theorem of Sakuma — also proved
by Boileau and Flapan — about freely periodic knots.

+1 +1
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A knot K in S’ is said to be freely periodic if there is a free cyclic action on S’ that fix K.
Clearly this action produces a lens space and a knot inside it, that lifts to K. In this case, if
Diff (S°,K) is the group of diffeomorphisms of the pair (S°,K), which preserves the orienta-
tion of both S* and K, up to isotopy, then a symmetry G of a knot K in S is a finite subgroup
of Diff (S?,K), up to conjugation.

Theorem 4. [18; 19]. Suppose that a knot K — S® has free period p. Then there is a unique
symmetry G of K realizing it, provided that (i) K is prime, or (ii) K is composite and the
slope is specified.

If we translate this theorem into the language of knots in lens spaces, the specification of
the slope is equivalent to fixing the parameter g of the lens space. As a consequence, two
primitive-homologous knots K and K’ in L(p,q) with equivalent non-trivial lift are necessarily
diffeo-equivalent in L(p,q).

From [15] and [16], we know that the group of the isotopy classes of diffeomorphisms of
L(p,q) is not trivial, thus Theorem 4 does not provide a complete answer about the equiva-
lence of K and K’ up to ambient isotopy.

3.5. Essential invariants

An invariant of links in S’ turns out to be an invariant of links in lens spaces when it is com-
puted on their lifts. This operation produces a lot of invariants. On the contrary, an invariant for
links in lens spaces which can not merely be computed in the lift is called an essential invariant.

Different links with equivalent lift are an useful tool to check whether an invariant I of
links in lens spaces is essential: just find two different links L and L’ with equivalent lift such
that I(L) = I(L'). From now on, the paper will focus on checking whether several geometric
invariants of links in lens spaces are essential or not: the fundamental quandle, the group of
the link, the first homology group of the complement and the twisted Alexander polynomials.

4. Fundamental quandle

The fundamental quandle is a very strong invariant of links in the 3-sphere: in fact it is a
complete diffeo-invariant. The fundamental quandle can be defined also for links in lens spaces
[10; 20]: is it still a complete invariant? This question is strictly related also to the essentiality
of the invariant.

Given an oriented link L < L(p,q), let N(L) denote an open tubular neighborhood of L,
consider the manifold Q = L(p,q)\N(L) and fix a base point * in it. Let I', be the set of
based homotopy classes of paths from * to ON(L) (the homotopy endpoint can move freely on
ON(L)). We can define an operation o on this set: for every @ and b in I, consider the toric
component of ON(L) containing the starting point of b and let m be a meridian of this torus,
the operation aob gives the class of the path bmb™'a. The set ', with the operation o is a dis-
tributive groupoid or equivalently, a quandle (see [10]). The algebraic structure (I',, <) is the
fundamental quandle of an oriented link L in L(p,q).

Proposition 4. The fundamental quandle of a link in a lens space is isomorphic to the fun-
damental quandle of its lift in S°.

Proof. According to [20. Lemma 5.4], the fundamental quandle is invariant under cyclic cover-
ings, and if we consider the cyclic covering P: (S*|L) — (L(p,q)\L), we get the assertion. o

A consequence of this result is the following corollary.

Corollary 1. The fundamental quandle of links in lens spaces is an inessential diffeo-invariant.

The fundamental quandle of a link in a 3-manifold is a geometric invariant that can be ex-
plicitly computed on a diagram only for links in S* [10] and in RP® [21]. Proposition 4 allows
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us to compute the fundamental quandle of a link L in lens spaces by computing the funda-
mental quandle of the lift L.

Theorem 4 can be combined to Proposition 4 to get the following statement.

Corollary 2. The fundamental quandle of oriented primitive-homologous knots in lens spac-
es classifies them up to diffeo-equivalence,unless the fundamental quandle is trivial.

For the case RP’ = L(2,1), this result is directly stated in [22], where it is generalized also
for non primitive-homologous knots.

Theorem 5. [22. Theorem 2]. Two knots in RP’ are diffeo-equivalent if and only if the cor-
responding fundamental quandles are isomorphic.

As a direct consequence of Proposition 4 and Theorem 5 we get the following theorem.

Theorem 6. Two knots in RP® are diffeo-equivalent if and only if the corresponding lifts
are equivalent.

We cannot generalize Corollary 2 to knots in all lens spaces up to diffeomorphism (and
hence also up to isotopy) because of Example 1.

Remark 1. The fundamental quandle of knots in lens spaces is not a complete diffeo-invar-

+
iant for L(p, pTJj with odd p > 5. Moreover it is not a complete isotopy-invariant also in

the case of L(5,2).

A similar statement for L(4,1) follows from Examples 2 and 3.

By [23], we can compute other invariants of links in lens spaces derived from the quandle
theory, such as quandle co-cycles invariants. If they are an invariant of the quandle, then they
are inessential. If we consider bi-quandles instead, there is an example in [21] for links in the
projective space where the co-cycle invariant seems more significant.

If we want a quandle-like structure that results essential we should turn to the oriented aug-
mented fundamental rack [20], which is a complete invariant of framed links in 3-manifolds,
and can be computed using mixed link diagrams.

5. Group of the link and homology

In this section we focus on the properties of the group of the link L in lens spaces, that is to
say, the fundamental group of the complement L(p,q) \ L. After giving a presentation on disk
diagram of the group, we compute it on several examples, in order to show that the group is an
essential diffeo-invariant and that Norwood theorem about knots in S* holds no longer in L(p,q).

5.1. Group of the link

We follow the presentation given in [11], that is a generalization of the Wirtinger theorem
as the presentation of [24] for the case of the projective space L(2,1).

Let L be a link in L(p,q) described by a disk diagram. Assume p > 1. Fix an orientation for
L, which induces an orientation on the projection of the link. We can prove that if we reverse
the orientation, the corresponding group is isomorphic to the former one. In order to find a
presentation, perform an R, move on each overpass of the diagram having both endpoints on
the boundary of the disk; in this way every overpass has at most one boundary point. Then
label the overpasses as follows: A,,..., A, are the ones ending in the upper hemisphere, namely
in +1,...., +¢, while 4,,,,...,A,, are the overpasses ending in —1,...., —t. The overpasses with
no boundary points are labelled by A4,,,,,...,A,. For each i=1,...,¢, let ¢, = +1 if, according
to the link orientation, the overpass A, starts from the point +i; otherwise, if A, ends in the
point +i, let ¢, = —1.



128 M. Manfredi, M. Mulazzani

Associate to each overpass A, a generator a,, which is a loop around the overpass as in the
classical Wirtinger theorem, oriented following the left hand rule. Moreover let f be the gen-
erator of the fundamental group of the lens space illustrated in Fig. 5.1. The relations are the
following:

W: w,,...,w, are the classical Wirtinger relations for each crossing, that is to say ¢,a,a,'a,' = 1
or a,a; 'a;'a, = 1, according to Fig. 5.2;

L: [ is the lens relation a;'...a/ = f";

M: m,,...,m, are relations (of conjugation) between loops corresponding to overpasses with
identified endpoints on the boundary. If £=1 the relation is a,' = a;*'f%a;'f "a;'. Otherwise,
consider the point —i and, according to equator orientation, let +j and +7+1 (modt) be the
plus-type points adjacent to it. We distinguish two cases:

- if —i lies on the diagram between —1 and +1, then the relation m, is

j - i1 i - j
=TT | 7o( i Joo ([T | ro( 1T )
k=1 k=1 k=1 k=1
- otherwise, the relation m;, is
J B i1 i1 - j
=T | ([l Jor (et | 1T |
k=1 k=1 k=1 k=1

Consider the lens space model depicted in Fig. 2.1, let N be the point (0,0,1) of B’ and
F: B> — L(p,q) be the quotient map.

B

Fig. 5.1. Example of overpasses labelling for a link in L(6,1)

o

aaa ta ‘=1 aa tata=1
igji ok 5 ik

Fig. 5.2. Wirtinger relations

Theorem 7. [11]. Let *=F(N),then the group of the link L = L(p,q) is:
n(L(p,q) \L,*) =<a,,...,a, flw,,...©,l,m,...,m).

In the special case of L(2,1) = RP’, the presentation is equivalent (via Tietze transforma-
tions) to the one given in [24].
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5.2. First homology group

At first, a way to compute the homology class of a knot directly from a disk diagram is
shown and it is really useful because it is the easiest isotopy invariant. Then the method to
determine, directly from the diagram, the first homology group of links in L(p,q) is found.
Differently from the S’ case, a non-trivial torsion part may appears and it is useful for the
computation of twisted Alexander polynomials.

Consider a diagram of an oriented knot K = L(p,q) and let ¢, be as defined in the previous
section. Define &, :22:181'-

Lemma 1. If K< L(p,q) is an oriented knot and |K] is the homology class of K in
H (L(p,q)),then [K] = 3.

By abelianizing the presentation of the group of the link of Theorem 7, we get the first ho-
mology group of the complement of a link in lens spaces.

Corollary 3. [11]. Let L be a link in L(p,q), with components L,,...L.. For each j=1,...,v,
let 3, =[L,] € Z,= H(L(p,q)). Then H(L(p,)\L) = Z'DZ,, where d = gsd(3,,...3,,p).

5.3. Norwood theorem

A theorem of Norwood [25] states that every knot in the 3-sphere
admitting a presentation for its group with only two generators is
prime. For every lens space L(p,q) with p>1, we now show a knot
that has a minimal presentation of the group with two generators,
but it is not prime; as a consequence, the Norwood theorem cannot be
generalized to lens spaces.

Example 4. Let T be the trefoil knot in S°. Let K, be the knot of
Fig. 5.3. The knot the previous example and consider the connected sum K #7T in L(p,q),

K#T in L(p,q) as Fig. 5.3 shows.

1, (L(p, D\(K #T) %) = (a,,a,,a,,a,,f |a,aa;'a; =1, aaa,'a;' =1,

a3612a4_1a2_1 =1, a, = fp’ a,= a1_1fqa1f_qa1> = <as;f| f_pa:sfpa?,f_pa; =1).

5.4. Essentiality of the group and the homology

Theorem 8. The group of the link is an essential diffeo-invariant, as a consequence of
Example 2.

Theorem 9. The homology group H (L(p,q)\L) is an essential diffeo-invariant too, as we
can see from Table 2. Moreover the homology class of a knot is an essential isotopy-invariant
(see Table 1).

Example 5. The last example consists of the two links M, and M, in L(5,2) on Table 4.
They have not diffeo-equivalent lift, more precisely, one lift is the link L4a1 of the Knot
Atlas, while the other one is its mirror image. In this case the groups are isomorphic, hence
sometimes the lift may be stronger than the group of the link.

6. Twisted Alexander polynomials

In this section we describe a class of twisted Alexander polynomials of links in lens spac-
es. This class consists of those polynomials with 1-dimensional representation over particular
Noetherian unique factorization domains that take into account the torsion part of the group
of the link. The goal is to investigate whether they are an essential invariant.
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Table 4
Geometric invariants of M, and M, in L(5,2)
M, M,
—4-3-2-1 —2 1
+4 19
+3
+2 +1
+1
v 2 2
[KlcH (L(p,q)) 2,2 11
m,(L(p,g)\L) (a,f |af* = f*a) @ flaf? = f*a)
H,(L(p,g)\L) AW/ AW/
A'(D) =1 £-1

6.1. The computation of the twisted Alexander polynomials
The twisted Alexander polynomials are defined in the following way (for further
references see [11; 26; 27]). Given a finitely generated group =, denote with H = n/ '

its abelianization and let G=H/Tors(H). Take a presentation n = (x,...,x,|7,...,7,)

and consider the Alexander—Fox matrix A associated to the presentation, that is
or, .

Ay = P[ar’ J, where P is the natural projection Z[F(x,,...,x,)] — Z[n] — Z[H] and sr’
x]. x].

is the Fox derivative of 7. Moreover let E(n) be the first elementary ideal of m, which
is the ideal of Z[H] generated by the (m—1)-minors of A. For each homomorphism o:
Tors(H) — C =C\{0} we can define a twisted Alexander polynomial A°(n) of © as follows:
fix a splitting H = Tors(H)xG and consider the ring homomorphism that we still denote with
c: Z[H] — C[G] sending (f,¢), with f € Tors(H) and g € G, to o(f)g, where o(f) € C". The
ring C[G] is a unique factorization domain and we set A°(n) = ged(c(E(n)). This is an element
of C[G] defined up to multiplication by elements of G and non-zero complex numbers. If A(r)
denotes the classical Alexander polynomial we have A'(n) = aA(n), with a € C".

6.2. Twisted Alexander polynomials are essential invariants

If LcL(p,q) is a link in a lens space then the o-twisted Alexander polynomial of L is
A5 = A°(n,(L(p,g)\L)). Since in this case Tors(H) = Z, then o(Tors(H)) is contained in the
cyclic group generated by £, where £ is a d-th primitive root of the unity. Note that A7 € C[G]
is defined up to multiplication by {"g, with g € G.

If L has at least two components we can consider the projection ¢: C[G]=C[¢,,...,t,,
t'...,t '1— C[t,t '], sending each variable ¢, to t. The one-variable twisted Alexander poly-
nomial of L is AS = @(A7). The computation of AS for knots in arbitrary lens spaces has been
implemented in a program using Mathematica code: the input is a knot diagram in L(p,q)
given through a generalization of the Dowker — Thistlewaithe code (see [28; 29]). Thanks to
this program we obtained the results listed in Tables 1, 2, 3 and 4.

Theorem 10. The twisted Alexander polynomials are essential diffeo-invariants (see Tables
2 and 3 even the lift may be stronger than the Alexander polynomial (see Table 4). Moreover
they are not complete invariants (see Table 1).
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6.3. Relationship between Alexander invariants of L and L

The lift of links in the lens space L(p,q) can be seen as a freely p-periodic link (also said a
(p,q)-lens links in S® [30]). Exploiting known results about freely periodic links, we can re-
late the invariants of the link to the corresponding invariants of its lift. The first question that
deserves our interest is the following one: does the Alexander polynomial of the lift depend
on the twisted Alexander polynomials of the link in lens spaces? Hartley provided the answer
for the Alexander polynomial of freely periodic knots: in [31] there is a formula connecting
the twisted Alexander polynomials in the case that both K < L(p,q) and K < S* are knots.
Furthermore, Chbili has shown in [32] an interesting characterization for the multi-variable
Alexander polynomial of the lift of braid links in lens spaces.

Can we find pieces of information about the twisted Alexander polynomials of a link
L < L(p,q) from the Alexander polynomial of its lift? From Tables 2 and 3 we see that this
is not possible, neither for knots nor for links. Another interesting counter-example for this
question is the next one: considering the unknot and the local trefoil in L(2,1), their lifts are
the unlink with two components and two split trefoils respectively. The twisted Alexander
polynomials of these links in L(2,1) are different, their lifts in S® are different, but their lifts
have the same Alexander polynomial (equal to zero).

References

1. Baker K., Grigsby J.E., Hedden M. Grid diagrams for lens spaces and combinatorial knot
Floer homology. Int. Math. Res. Not. (IMRN ), 2008, vol. 10, art. ID rnm024.

2. Berge J. Some knots with surgeries yielding lens spaces. (Unpublished).

3. Stevan S. Torus Knots in Lens Spaces & Topological Strings. Avialable at: http://arxiv.
org/abs/1308.5509.

4. Buck D., Mauricio M. Connect sum of lens spaces surgeries: application to Hin recombi-
nation. Math. Proc. Cambridge Philos. Soc.,2011, vol. 150, pp. 505-525.

5. Lambropoulou S., Rourke C.P. Markov’s theorem in 3-manifolds. Topology Appl., 1997,
vol. 78, pp. 95—122.

6. Hoste J., Przytycki J.H. The (2,00)-skein module of lens spaces; a generalization of the
Jones polynomial. J. Knot Theory Ramifications, 1993, vol. 2, pp. 321-333.

7. Gabrov ek B. Classification of knots in lens spaces. Ph.D. Thesis. Slovenia, University of
Ljubljana, 2013.

8. Manfredi E. Knots and links in lens spaces. Ph D. Thesis. Italy, University of Bologna,
2014.

9. Manfredi E. Lift in the 3-sphere of knots and links in lens spaces. J. Knot Theory Ramifi-
cations, 2014, vol. 23, pp. 1450022.

10. Matveev S.V. Distributive groupoids in knot theory. Math. USSR Sb., 1984, vol. 47,
pp. 73—83.

11. Cattabriga A., Manfredi E., Mulazzani M. On knots and links in lens spaces. Topology
Appl., 2013, vol. 160, pp. 430—442.

12. Cornwell C. A polynomial invariant for links in lens spaces. J. Knot Theory Ramifica-
tions, 2012, vol. 21, pp. 1250060.

13. Cattabriga A., Manfredi E., Rigolli L. Equivalence of two diagram representations of
links in lens spaces and essential invariants. Avialable at: http://arxiv.org/abs/1312.2230.

14. Brody E.J. The topological classification of the lens spaces. Ann. of Math., 1960, vol. 71,
pp. 163—184.

15. Bonahon F. Diffotopies des espaces lenticulaires. Topology, 1983, vol. 22, pp. 305—-314.

16. Hodgson C., Rubinstein J.H. Involutions and isotopies of lens spaces. Berlin : Springer
Publ., 1985.



132 M. Manfredi, M. Mulazzani

17. Drobotukhina Y.V. An analogue of the Jones polynomial for links in RP’ and a general-
ization of the Kauffman—Murasugi theorem. Leningrad Math. J., 1991, vol. 2, pp. 613—630.

18. Sakuma M. Uniqueness of symmetries of knots. Math. Z., 1986, vol. 192, pp. 225—242.

19. Boileau M., Flapan E. Uniqueness of free actions on S’ respecting a knot. Canad. J.
Math., 1987, vol. 39, pp. 969—-982.

20. Fenn R., Rourke C. Racks and links in codimension two. J. Knot Theory Ramifications,
1992, vol. 1, pp. 343—406.

21. Gorkovets D.V. Cocycle invariants for links in projective space. Vestnik Chelyabinskogo
gosudarstvennogo universiteta. Matematika. Mekhanika. Informatica [ Bulletin of Chelyabinsk
State University. Mathematics. Mechanics. Informatics], 2010, vol. 12, pp. 88-97.

22. Gorkovets D.V. Distributive groupoids for knots in projective space. Vestnik Chelya-
binskogo gosudarstvennogo universiteta. Matematika. Mekhanika. Informatica [Bulletin of
Chelyabinsk State University. Mathematics. Mechanics. Informatics], 2008, vol. 10, pp. 89-93.

23. Carter J. Scott. A survey of quandle ideas. Introductory lectures on knot theory. Ser.
Knots Everything,46. Hackensack, World Sci. Publ., 2012.

24. Huynh V.Q., T.T.Q. Le. Twisted Alexander polinomial of links in the projective space.
J. Knot Theory Ramifications, 2008, vol. 17, pp. 411-438.

25. Norwood F.H. Every two-generator knot is prime. Proc. Amer. Math. Soc., 1982,
vol. 86, pp. 143—147.

26. Wada M. Twisted Alexander polynomial for finitely presentable groups. Topology, 1994,
vol. 33, pp. 241-256.

27. Friedl S., Vidussi S. A survey of twisted Alexander polynomials. The mathematics of
knots. Contrib. Math. Comput. Sci. 1. Heidelberg, Springer Publ., 2011.

28. Dowker, C. H., Thistlethwaite M.B. Classifications of knot projections. Topology Appl.,
1983, vol. 16, pp. 19-31.

29. Doll H., Hoste J. A tabulation of oriented link. Math. Comp., 1991, vol. 57, pp. 747-761.

30. Chbili N. A new criterion for knots with free periods. Ann. Fac. Sci. Toulouse Math.,
2003, vol. 12, pp. 465—477.

31. Hillman J.A., Livingston C., Naik S. Twisted Alexander polynomials of periodic knots.
Algebr. Geom. Topol., 2006, vol. 6, pp. 145—169.

32. Chbili N. The multi-variable Alexander polynomial of lens braids. J. Knot Theory Rami-
fications, 2002, vol. 11, pp. 1323-1330.

About the authors

Enrico Manfredi, Department of Mathematics of University of Bologna, Bologna, Italy.
enrico.manfredi3@unibo.it.

Michele Mulazzani, Department of Mathematics of University of Bologna, Bologna, Italy.
michele.mulazzani@unibo.it.

Bulletin of Chelyabinsk State University. 2015. Ne 3 (358).
Mathematics. Mechanics. Informatics. Issue 17. P. 118—134.

Ob Y3JIAX 1 SAIEIIVIEHUAX B JIMH3OBbLIX IITPOCTPAHCTBAX
9. Mangpedu, M. Myaauuanu

[laercst KOpoTKuii 0630p HEKOTOPBIX HEABHUX PE3YJIbTaTOB 00 y3JaX U 3allelJIEHUSIX B JMH30BbIX
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npoctpaHcTBax. OINUCHIBAIOTCS JMCKOBBIE JUATPAMMBI BMECTE € KACAIONIMMCS] 9KBUBAJEHTHOCTH aHA-
JoroM Teopembl Paiiiemaiictepa. PaccMoTpeno mogHsATHE Y37I0B U 3allelIeHUH B TPEXMEpHYIO cdepy,
MIPUBOIUTCS HECKOJIBKO TIPUMEPOB PA3JMYHBIX Y3JI0B U 3alleIIeHHil, 06Ja/1al0IUX SKBUBAJIECHTHBIMU
nogaATHAMI. O6CY’KJaeTCsT CYNIECTBEHHOCTD OTHOCHTENIBHO TTOJHATHS KJIACCHYECKUX WHBAPUAHTOB
y3JIOB ¥ 3alleNJIEHNI B JIMH30BBIX MTPOCTPAHCTBAX.

KimoueBble cioBa: y3en, 3aueniienue, 1UH3060e NPOCMPAHCINGO, hOOHAMUE, PYHOAMEHMATLHYLI
K8AHO, 2pYNNA 3AUENACHUS, CKDYUEHHBLI NOIUHOM AneKkcanopa.
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A NOTE ON THE GROTHENDIECK GROUP
OF AN ADDITIVE CATEGORY"’

D. E. V. Rose

There are two abelian groups which can naturally be associated to an additive category A: the
split Grothendieck group of A and the triangulated Grothendieck group of the homotopy category
of (bounded) complexes in A. We prove that these groups are isomorphic. Along the way, we
deduce that the ‘Euler characteristic’ of a complex in A is invariant under homotopy equivalence,
a result which has implications for (de)categorification.

Keywords: Grothendieck group,additive category, categorification.

1. Introduction

A categorification of an algebraic structure is typically given by an additive category (often
possessing additional structure) from which the original structure can be recovered by taking
the Grothendieck group; see for instance [1] for the abelian case. In certain categorifications
of quantum invariants of tangles, the categorification is accomplished by first finding an addi-
tive category which categorifies an algebraic structure and then passing to the homotopy cat-
egory of complexes to give the categorification of the tangle invariant (see [2] and [3]). The
categorified tangle invariant decategorifies to give the original tangle invariant by taking the
‘Euler characteristic’ of the complex, the alternating sum of the terms in the complex, viewed
as an element of the split Grothendieck group of the additive category. Since the homotopy
category is triangulated, the natural decategorification of this category is its triangulated
Grothendieck group. This posits the question: are these two Grothendieck groups isomorphic?
This question can equivalently be stated: is the Euler characteristic of a complex in an additive
(but not necessarily abelian) category invariant under homotopy equivalence?

We answer both these questions in the affirmative:

Theorem 1. Let A be an additive category and K'(A) denote the homotopy category of
bounded complexes in A. The split Grothendieck group of A is isomorphic to the triangulated
Grothendieck group of K'(A).

Theorem 2. Let A"~ B" be homotopy equivalent complexes in K'(A), then

DD A =Y ) (B,

where () denotes the corresponding element in the split Grothendieck group of A.

Of course, this result is not surprising; indeed, in the case that A is abelian, the analog of
Theorem 2 is an easy exercise in homological algebra. Nevertheless, the proof presented here is
unexpectedly non-trivial and the general result is of interest to the categorification community
as non-abelian additive categories arise naturally in this field. Furthermore, this result seems
to have been implicitly assumed in the categorification literature, while a proof has up to now
not appeared.

We present the relevant background on additive categories and Grothendieck groups in
Section 2. In Section 3 we prove Theorems 1 and 2 and in Section 4 we mention a slight gen-
eralization of Theorem 2 which is used in [4].

* The author was partially supported by NSF grant DMS-0846346 during the completion of this work.
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2. Background

Let A be an additive category. Recall that this means that A has a zero object, finite bi-
products, and that Hom ,(A,,4,) is an abelian group for any objects A,, 4, in A with addition
distributing over composition.

Definition 1. The split Grothendieck group of A, denoted K (A), is the abelian group gen-
erated by isomorphism classes (4) of objects in A modulo the relations (4, A,) = (A,) +(A,)
for all objects A,,4, in A.

Recall that the Grothendieck group of an abelian category is the abelian group generated by
isomorphism classes (A) of objects modulo the relations (4,) = (4,) + (A,) for every short exact
sequence 0—A,—A,—A,—0 in A. We can think of Definition 1 as the analog of this notion
in an additive category where we impose relations corresponding to the only notion of exact
sequence that makes sense, the split exact sequences 0—A,—A,&A4,—A,—0.

Suppose now that C is not only additive, but triangulated.

Definition 2. The triangulated Grothendieck group, denoted K,(C), is the abelian group
generated by isomorphism classes (C) of objects in C quotiented by the relation (C,) =(C,)+(C,)
for all distinguished triangles C,—C,—C,.

Again, we think of distinguished triangles as the analogs of short exact sequences in C.

3. Grothendieck Groups of Additive Categories

Now fix an additive category A. Let K"(A) denote the homotopy category of bounded (co-
chain) complexes in A. Let A° = (4* %> - <5 A") be a bounded complex and let A[m]*
denote the complex shifted up by m in homological degree. We will underline the term in
homological degree zero when it is not clear from the context. The distinguished triangle
A*— 0 — A[—1]" gives that

(A[-1]) =—<A%) (1)
and the triangle A¥ = (A" 5 - 25 A A[-k—1]° shows (via induction) that
(A7) = 1A% (2)

in K,(K"(A)). Here y(A") = Z -1 <Al> and A’ is shorthand for the complex with the object

"in degree zero and all other terms zero. From this, we see that K,(K"(A)) and K (A) are
generated by the same elements.

Given complexes A} and A3, the distinguished triangle A} — A} ® A, — A; shows that

(A & A4, =(A) + (A4). 3)

It follows that there is a surjective map K_(A) — K, (K"(A)).

To prove Theorem 1, it suffices to show that this map is injective or equivalently that there
are no additional relations 1mposed on K,(K"(A)) other than those given in equations (1), (2)
and (3). Given a map A4, ER A,, these equations show that

eonet )= 30 ) 0 41) = ) )

so distinguished triangles of the form
AL A, — cone(f)” (5)
contribute no new relations. Since all distinguished triangles are isomorphic to those of the
form (5) and isomorphism in K"(A) is homotopy equivalence, it suffices to prove Theorem 2.
To this end, suppose that ¢: A} — A; is a homotopy equivalence. The following result from
[5] is given in the context of the category of abelian groups, but the proof sketched there
carries over to arbitrary additive categories.
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Lemma 1. A chain map ¢: A; — A} is a homotopy equivalence iff cone(¢)® is null-homotopic.

The distinguished triangle A7 <> A5 — cone(¢)* together with (4) then show that Theorem
2 (and hence Theorem 1) follows from the next result.

Proposition 1. Let A*be a null-homotopic complex in K'(A), then y(A") = 0 when viewed
as an element of K_(A).

Proof. We may assume that A" = A’ ANy L
terms of A°. It suffices to show that

2% .
5> A contains all of the non-zero

k k
AZi ~ A2i+1
R4=8

in A, which we shall do by explicitly writing down the matrices giving the isomorphism.
Since A* is null-homotopic there exist maps A’ %> A’ so that id; = d’~'h + B 'd’ which
imply the relations A/h"" .. W/ = PRI R ¢ gl TR i gt
Consider now the maps
ko koo . ko
RPA" >PA, L:@A">PAY
i=0 i=0 i=0 i=0

given by the matrices in (6) and (7), where {a,} are integers defined by the recursion o, =1, o, =—1,
i—1

and o, = —Z o0, ;. It is easy to see that in fact o, = (=1)'c; where ¢, is the i"" Catalan number.
j=0
d’ o, o R ol RS o B
0 d? aht oW IR oy Btk
B 0 0 d' o, VR P/
R=1"0v o 0 & a B (6)
0 0 0 0 a*
ah' o hR ok R okt ot R
d' a o RR ok R B
= 0 d’ o/’ o, Wh°h’ oyl (7)
0 0 d’ o’ oy B
0 0 0 0 o !

We now compute the entries of the matrices RL and LR. For i <j we have
(RL),; = o ,d* 07" R+ oo B2 BT A ey ok R
+ oo B2 WA = o (d¥ R B 4 R B g1 — 2 Wy =0
e -

and (RL),; = 0 for i > j. We also compute (RL); = o(d”*h""" + h¥d”™") = id,, , which
shows that RL = id. Similarly, for i <j we have

(LR); = o, d”°h* % . W7+ aga,, B2 R+
oot R o S R =
_ aj_i(dzi—3h21—2 LRETI g el pAIgET2 4opkttpie2y — g
and (LR);; = 0 for i > j. We also see that (LR); = a,(d” "™ + h?"'d”™*) = id,, , so LR = id. ©
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4. An extension to X' (A)

In the categorification of colored link invariants, one has to additionally consider the ho-
motopy category of semi-infinite complexes in an additive category, see [4; 6; 7] (or [8-10]
for the abelian/derived case). We can extend Proposition 1 to the category K (A) of bounded
below complexes in A. If A* is such a complex and is null-homotopic, the infinite stable limit
as k — o of the matrices R and L gives an isomorphism

ﬂA2i ~ ﬁA2i+1

where [] denotes the categorical coproduct (a similar result holds for the category of bounded
above complexes). If the category A is such that we can define a notion of Euler characteristic,
this can be used to show that null-homotopic complexes have zero Euler characteristic; for ex-
ample, see Section 5.2 of [11] for complete details and Section 3.3.1 of [10] for the analogous
result in the setting of the derived category of an abelian category.
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O I'PYIIIE TPOTEHIUKA AAUTUBHBIX KATETOPUI1
A. E. B. Poys3

Ectb /1Be aGesieBbIX IPYIIIbI, KOTOPbIe MOTYT GBITh €CTECTBEHHBIM 06PA30M ACCOIMUPOBAHBI C a/l-
JIUTUBHON KaTeropwueil A: paciiernyientas rpynma ['porenanka Katreropuu A ¥ TPUAHTYIMPOBAHHAS
rpymnna [poreH/uka roMmoTonmueckoii Kateropuu (OrpaHudeHHbIX) KOMILIEKCoB B A. JlokasbiBaeTcs,
4TO 3TH TPyHIbl M3oMopdubl. IlomyTHO mosydaercs, 4To «JiliepoBa XapaKTePUCTHKA» KOMILIEKCA
B A sBJISIETCS WHBAPUAHTOM OTHOCHTENBHO TOMOTOIMYECKON SKBUBAJIEHTHOCTH. IJTOT PE3YJIbTaT
nMeer 3Havenne /st (je)kaTeropuduKarmm.

Kmouessie caoBa: zpynna I'pomenduxa, adoumuenas xamezopus, Kamezopughurxayus.
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