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Abstract. The 3D-index of Dimofte–Gaiotto–Gukov is an interesting collection of q-series
with integer coefficients parametrised by a pair of integers and associated to a 3-manifold
with torus boundary. In this note, we explain the structure of the asymptotic expansions
of the 3D-index when q = e2πiτ and τ tends to zero (to all orders and with exponentially
small terms included), and discover two phenomena: (a) when τ tends to zero on a ray
near the positive real axis, the horizontal asymptotics of the meromorphic 3D-index match
to all orders with the asymptotics of the Turaev–Viro invariant of a knot, in particular
explaining the Volume Conjecture of Chen–Yang from first principles, (b) when τ → 0
on the positive imaginary axis, the vertical asymptotics of the 3D-index involves periods
of a plane curve (the A-polynomial), as opposed to algebraic numbers, explaining some
predictions of Hodgson–Kricker–Siejakowski and leading to conjectural identities between
periods of the A-polynomial of a knot and integrals of the Euler beta-function.
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1. Introduction

1.1. The 3D-index. Quantum invariants attached to 3-dimensional objects, whether de-
fined as functions at complex roots of unity, q-series, or by analytic functions in the cut
plane C′ = C \ (−∞, 0], have many interesting and surprising connections with each other.
Although they are well-defined topological invariants, their relations are largely conjectural
and lead to startling statements and numerical predictions explained in detail in work of
Gukov, Mariño and collaborators [27, 26, 13, 15, 16] and in two papers of Zagier and the
first author [24, 25].

In this paper, we will focus on the asymptotic properties of a very interesting quantum
knot invariant, the 3D-index of Dimofte–Gaiotto–Gukov [10, 11] and its meromorphic version
of [21]. The 3D-index is a collection of q-series with integer coefficients associated to an ideally
triangulated 3-manifold with torus boundary components [10, 11]. These q-series occur in
mathematical physics as BPS counts of sypersymmetric field theories and have fascinating
properties. They are topological invariants [19, 21] that are conjecturally related to other
quantum invariants such as the complex Chern–Simons partition function (also known as
the state-integrals of Andersen–Kashaev [1]) and even the Kashaev invariant itself [30].

One of the discoveries of [25] is that the radial asymptotics of q-hypergeometric series in
general depend on the ray in which q approaches 1 or any complex root of unity. A further
discovery of [15, 16] is that as we move the ray, the asymptotic series changes by linear
combinations of power series in q̃ = e−2πi/τ (when q = e2πiτ ) with integer coefficients.

1.2. Two discoveries for the asymptotics of the 3D-index of the 41 knot. The paper
concerns two numerical discoveries concerning the horizontal and the vertical asymptotics of
the meromorphic 3D-index:
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(a) the horizontal asymptotics of the meromorphic 3D-index Imer(0, 0)(q) matches those
of the Turaev–Viro invariant of a knot and involves algebraic coefficients,

(b) the vertical asymptotics of the meromorphic 3D-index involve periods (in the sense
of Kontsevich–Zagier [32]) of the PSL2(C)-character variety.

Both discoveries stem from the fact that the meromorphic 3D-index is a sum over the integers
of the rotated 3D-index, the latter being a bilinear combination of colored holomorphic
blocks. The first discovery explains the Chen–Yang volume conjecture [5] from first principles
and refines it to all orders in perturbation theory and the second explains some predictions
of Hodgson–Kricker–Siejakowski for the asymptotics of the meromorphic 3D-index [28].

We will present these discoveries in the order they were found for the 41 knot. Our first
experiment was to compute the first few terms of the asymptotics of the meromorphic 3D-
index for the 41 knot,

Imer
41

(0, 0)(q) = 1− 4q− q2 + 36q3 + 70q4 + 100q5 + 34q6− 116q7− 410q8− 808q9 + . . . , (1)

and found out that

Imer
41

(0, 0)(q) ∼ e
2Vol(41)

2πτ
1

3
3
4 2

1
2
√
τ

×

(
1− 19

24
√
−3

3 2πiτ +
1333

1152
√
−3

6 (2πiτ)2 − 1601717

414720
√
−3

9 (2πiτ)3 + . . .

) (2)

when q = e2πiτ and τ → 0 on a ray sufficiently close to the positive real axis. We then
recognised that the number 1333 appeared in the asymptotics of the Turaev–Viro invariant
TV41,m+1/2 (computed years ago in unpublished work of the first author), and in fact the
above series agreeded with the asymptotics of the Turaev–Viro invariant TV41,m+1/2, after
merely replacing τ bym+1/2. Surely, this was not a coincidence, and the matching was then
checked for the next 7 terms, and still held. The Turaev–Viro invariant is a complex-valued
function at roots of unity defined by a state-sum using an ideal triangulation of the knot
complement, placing representations of sl2(C) at the edges, using the quantum 6j-symbols
at each tetrahedron, and summing over the labels.

The observed matching horizontal asymptotics of the meromorphic 3D-index and of the
Turaev–Viro invariant, aside from explaining a volume conjecture, suggests that the two
invariants are realisations of the same quantum invariant, one being a q-series with integer
coefficients, and another being a function at roots of unity. Moreover, it hints that the
Turaev–Viro invariant is one entry of a matrix-valued quantum knot invariant whose rows
and columns are labeled by boundary-parabolic PSL2(C)-representations of the knot com-
plement. A third realisation of this invariant is the bilinear combination of asymptotic series,
and the three realisations are related by an underlying holomorphic function on a cut plane
C′ := C \ (−∞, 0], much in the theme of [24] and [25].

Our second discovery is about the vertical asymptotics of the meromorphic 3D-index
Imer

41
(0, 0)(q) of the 41 knot. This time as τ ∈ iR+ tends to 0 on the imaginary axis, we found



4 STAVROS GAROUFALIDIS AND CAMPBELL WHEELER

out that

Imer
41

(0, 0)(q) ∼ e
2Vol(41)

2πτ
1

3
3
4 2

1
2
√
τ

(
1−

19

24
√
−3

3
2πiτ +

1333

1152
√
−3

6
(2πiτ)2 −

1601717

414720
√
−3

9
(2πiτ)3 + . . .

)

− ie
−2Vol(41)

2πτ
1

3
3
4 2

1
2
√
τ

(
1 +

19

24
√
−3

3
2πiτ +

1333

1152
√
−3

6
(2πiτ)2 +

1601717

414720
√
−3

9
(2πiτ)3 + . . .

)

+ κ41
i

τ
+ κ′41 iτ + . . . .

(3)

The first two series in (3) are exactly those appearing in (2), but the third series is a new
one starting with κ41/(iτ) for an unknown constant

κ41 = 0.4458257949935614977 . . . . (4)

From our previous experience, we tried to recognise this constant as an algebraic number,
after perhaps multiplying it with a small power of the square root of π. But all our attempts
failed. With considerable effort, we computed the number κ41 to higher precision, but the
recognition failed again. We then thought to use a different version of the asymptotic series,
a power series in ~ with coefficients rational functions of the A-polynomial curve. Doing so,
the summation over n ∈ Z corresponds to integration of the 1-loop term of the above series
with respect to u, as in explained in detail in Section 5.9. Much to our surprise, we found
out that κ41 = ($41 +$41)/(2π) where

$41 =

∫
R

1√
e−2u − 2e−u − 1− 2eu + e2u

du . (5)

This explained our failure to recognise (κ41/2π) as an algebraic number. Instead, it is a
period of the A-polynomial curve, where the word period refers to the countable subring
of the complex numbers introduced by Kontsevich–Zagier [32]. What is more, the above
discovery tells us that the vertical asymptotics of the rotated 3D-index involve, in addition
to the asymptotic series with algebraic coefficients, further power series with period coeffi-
cients! Continuing our experiment with 41, and using the exact value of κ41 from before, we
numerically computed the coefficient κ′41 of iτ in (3) and found it to be

κ′41 = 0.10059754907380012789 . . . . (6)

We then theoretically computed the next term in the asymptotic series (which was an explicit
rational function of eu) and checked that κ′41 = 2π($′41 +$′41) where

$′41 =

∫
C

e−3u − e−2u − 2e−u + 5− 2eu − e2u + e3u

(e−2u − 2e−u − 1− 2eu + e2u)7/2
du , (7)

for a suitable contour C. Although the above identity would be impossible to guess from its
numerical values, this was hardly a surprise, and confirmed the theory that we will discuss
at a later section.

This completed our numerical experiments with the 41 knot, which admittedly has a simple
trace field Q(

√
−3) and a rather easy second degree A-polynomial. To test our ideas further,

we then looked for a knot with more interesting trace field, i.e., the 52 knot with cubic trace
field and a cubic A-polynomial. Repeating the analysis for the meromorphic 3D-index of the
52 knot we found that,

Imer
52

(0, 0)(q) = 1−8q+21q2 +92q3 +80q4−95q5−546q6−1092q7−1333q8−756q9 + . . . , (8)
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and that when τ ∈ iR+ tends to zero, we have a similar expansion to (3) involving two
known asymptotic series with algebraic coefficients, as well as a third series that starts with
iκ52/τ +O(1) where the new constant is numerically given by

κ52 = 0.3973476532990492346 . . . . (9)

We then discovered that this constant is also a period of the A-polynomial curve. Let
us summarise our findings here. Let yj(x) for j = 1, 2, 3 denote the three roots of the
equation [16, Eqn.(233)]

y2 = (1− y)(1− xy)(1− y/x) . (10)
These are algebraic functions of x that collide when x is a root of the discriminant of (10)
x8−6x7 +11x6−12x5−11x4−12x3 +11x2−6x+1 with respect to y. This discriminant has
two real roots at a0 = 0.235344 . . . and a1 = 4.249090 . . . that satisfy a0a1 = 1. All three
branches yj(x) are real when x > a1, and they are chosen so that y3(x) real for all x in R
and y1(x) and y2(x) complex-conjugate when x is real with

y1(a1+1) = 1.433146 . . . , y2(a1+1) = 3.823982 . . . , y3(a1+1) = 0.182470 . . . . (11)

Consider the rational function 1/δ52(x, y) on the affine curve (10) where [16, Eqn.(235)]

δ52(x, y) = −y + (1 + x+ 1/x)/y − 2/y2 , (12)

and let fj(x) = 1/δ52(x, yj(x)) denote the three branches for j = 1, 2, 3. Since yj(x) =
yj(1/x), it follows that fj(x) = fj(1/x) for all x and j = 1, 2, 3. Consider the periods

$
(j)
52

=

∫ ∞
log(a1)

fj(e
u)du, j = 1, 2, 3, $

(3+j)
52

=

∫ log(a1)

log(a0)

fj(e
u)du . (13)

These periods are given by absolutely convergent integrals and their numerical value can
easily be computed to high precision (e.g., to 500 digits), and given to 20 digits by

$
(1)
52

= 0.50571950675093952382 . . . , $
(4)
52

= 0.23686545502355828387 · · · − i1.6144780233538382224 . . . ,

$
(2)
52

= −0.47549190713818022860 . . . , $
(5)
52

= 0.23686545502355828387 · · ·+ i1.6144780233538382224 . . . ,

$
(3)
52

= −0.030227599612759295211 . . . , $
(6)
52

= −0.47373091004711656775 . . . .

(14)

The above periods satisfy the relations

$
(1)
52

+$
(2)
52

+$
(3)
52

= 0, $
(4)
52

+$
(5)
52

+$
(6)
52

= 0 , (15)

which is a consequence of the fact that f1(x) + f2(x) + f3(x) = 0 for all x.
We then found numerically that

κ52 =
1

2π
(4$

(1)
52

+$
(4)
52

+$
(5)
52

) . (16)

Our constant is different from the number κHKS
52

= .534186 . . . of [28, Fig.10.2], given to three
digits in the above reference, but three more digits were also given to us by A. Kricker. We
found out that the latter constant also agrees numerically with a period of the A-polynomial
(for the real branch),

κHKS
52

= −2$
(3)
52
−$(6)

52
= −

∫
R

f1(eu)du . (17)
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This leads to a conjectured identity
1

(2πi)2

∫
iR2

B2
(

1
2
− x, 1

3
+ x− y

)
B
(

1
2
− x, 1

3
+ 2y

)
dxdy = −

∫
R

f1(eu)du , (18)

(which we have checked to around 20 digits), where B(x, y) = Γ(x)Γ(y)/Γ(x + y) is Euler’s
beta function. The above identity implies that the double integral on left hand-side is a
period of an elliptic curve (10) over Q.

Identities of the above form should be valid for all hyperbolic knots.

1.3. Horizontal asymptotics and the Turaev–Viro invariant. Our observations dis-
cussed in the previous section lead to conjectures for the horizontal and the vertical asymp-
totics of the meromorphic 3D-index, which not only allow the effective computation of the
asymptotic series, but also explain their structure.

The ingredients of first conjecture are: the meromorphic 3D-index (defined in [21] and
briefly reviewed in Section 2.2 below), the Turaev–Viro invariant of a knot (defined in [5, 9]
and recalled in Section 6), the asymptotic series Φ̂

(σ)
K,n(~) for s = σ1 and s = σ2 of the form

Φ̂
(σ)
K,n(~) = e

Vσ
~ Φ

(σ)
K,n(~), Φ

(σ)
K,n(~) ∈ 1√

δσ
(1 + Fσ[[n, ~]]) (19)

defined in Section 3 below and agreeing when σ = σ1 and n = 0 with the asymptotic series
of the Kashaev invariant of a knot. The labels σ1 and σ2 refer to the geometric PSL2(C)-
representation σ1 of the hyperbolic knot and its complex-conjugate representation. The final
ingredient is a summation over the integers.

Conjecture 1. For every hyperbolic knot K in S3, there exists a computable series Φ̂
(σ1)
K,n

which gives the asymptotic expansion of the meromorphic 3D-index (as τ → 0 on a ray
sufficiently close to the positive real numbers), of the Turaev–Viro invariant (as m→∞)

Imer
K (0, 0)(e2πiτ ) ∼

∑
n∈Z

Φ̂
(σ1)
K,n(2πiτ)Φ̂

(σ2)
K,n(−2πiτ) , (20)

TVK,m+1/2 ∼
∑
n∈Z

Φ̂
(σ1)
K,n(2πi/(m+ 1/2))Φ̂

(σ2)
K,n(−2πi/(m+ 1/2)) , (21)

and of the rotated 3D-index (as τ → 0 on a ray sufficiently close to R+):

Irot
K (n, n′)(e2πiτ ) ∼ Φ̂

(σ1)
K,n(2πiτ)Φ̂

(σ2)
K,n′(−2πiτ) . (22)

This conjectured was verified numerically for the 41 and the 52 knots.
We make two remarks. The first is that the meromorphic 3D-index is a sum over the

integers of the rotated 3D-index (Equation (34)), the latter being a bilinear combination
of colored holomorphic blocks (Equation (42)) whose asymptotics are expressed linearly in
terms of a matrix of Φ̂(~)-series (Equation (45)). Thus, the asymptotics of the meromorphic
3D-index are bilinear combinations of asymptotic series. But when τ tends to zero nearly
horizontally, one term (σ1, σ2) of this bilinear combination exponentially dominates all others,
thus explaining Equation (20). On the other hand, the Turaev–Viro invariant of a knot is
Reshetikhin–Turaev invariant of the double of the knot complement, thus doubling occurs
already on the level of topology.
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The second is that the above conjecture can be explained by a conjectural identity among
analytic functions, one being the Borel resummation of the asymptotic series Φ̂

(σ)
n (2πiτ) and

a second being a state-integral; see Section 3.1 below. When τ is nearly horizontal, one
can ignore all q̃-corrections and keep only the dominant bilinear combination of asymptotic
series, leading to the asymptotic statements (20) and (22) of Conjecture 1.

1.4. Vertical asymptotics and periods. In this section, we discuss the vertical asymp-
totics (denoted by τ ↓ 0) of the 3D-index, where τ tends to 0 on the positive imaginary axis.
In this case, we ignore the q̃-corrections which are theoretically unknown and computation-
ally inaccessible. A new ingredient is a collection of asymptotic series parametrised by a
labeling set of boundary parabolic PSL2(C)-representation.1 These series appear as follows.
The rotated 3D-index is a bilinear combination of colored holomorphic blocks. The vertical
asymptotics of the latter are linear combinations of asymptotic series Φ̂

(σ)
n (2πiτ) where σ de-

notes a boundary parabolic PSL2(C)-representation. It follows that the vertical asymptotics
of the rotated 3D-index are bilinear combinations of asymptotic series. However, among
bilinear combinations of all pairs (σ, σ′), only the pairs (σ, σ̄) contribute, where σ̄ denotes
the complex-conjugate of the representation corresponding to σ.

Conjecture 2. When τ ↓ 0 vertically, we have

Irot(n, n′)(e2πiτ ) ∼
∑
σ

εσΦ̂(σ)
n (2πiτ)Φ̂

(σ̄)
n′ (−2πiτ) , (23)

with εσ = −1 when δσ < 0 and 1 otherwise.

Note that after removing the exponential factors, the constant terms of the power series
in τ in (23) will all be positive numbers. Moreover, the asymptotic series are polynomially
bounded with respect to τ–perhaps a consequence of a unitarity property of the rotated
3D-index.

We next discuss the vertical asymptotics of the meromorphic 3D-index, ignoring as above
any q̃-corrections. Here, we find a surprise and a new phenomenon: the coefficients of the
asymptotic series are no longer algebraic numbers, but periods (in the sense of Kontsevich–
Zagier [32]) on a plane curve which is none other than the A-polynomial of the knot [6]. To
phrase our conjecture, instead of the power series Φ

(σ)
n (~) in ~ with coefficients polynomials

in n, we will use the power series Φ(x, y, ~) in ~ with coefficients rational functions in the
A-polynomial curve. The latter are the x-deformed asymptotic series studied in [16]. The
relation between the two types of series is given by Φ

(σ)
n (~) = Φ(σ)(en~, ~) where Φ(σ)(x, ~) =

Φ(x, yσ(x), ~) and yσ = ys(x) is a branch of the A-polynomial curve.

Conjecture 3. When τ ↓ 0 vertically, we have

Imer(0, 0)(e2πiτ ) ∼
∑

σ complex

∑
n∈Z

Φ̂(σ)
n (2πiτ)Φ̂(σ̄)

n (−2πiτ)

+
1

2πiτ

∑
σ

∫
Cσ

Φ̂(σ)(eτu, 2πiτ)Φ̂(σ)(eτu,−2πiτ)du .
(24)

1There are subtleties involved since the latter space can be positive dimensional, however we (and [24, 28])
will ignore such subtleties.
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The above conjecture explains the shape of the vertical asymptotics of the meromorphic
3D-index found by [28]. A bit of mystery remains: our vertical asymptotics include more
terms that those of [28]. For example, for the 41 knot, the series starting with the term κ41

in Equation (3) is missing from [28, Sec.10.1.1], and for the 52 knot, our constant κ52 differs
from the one of [28, Fig.10.2]. We do not understand this discrepancy which involves some
global differences in the contours appearing in Equation (24).

The paper is organised as follows.
In Section 2, we introduce a rotated form of the 3D-index (see Equation (26) below) which

conveniently decouples two commuting actions of the q-Weyl algebra, and also expresses the
meromorphic 3D-index as a trace of the rotated 3D-index (see Equation (34) below). We
next express the rotated 3D-index bilinearly in terms of colored holomorphic blocks h(α)

n (q).
These blocks (which are q-hypergeometric series) can be defined and computed either from
a factorisation of a state-integral, or from a linear q-difference equation and their initial
values at n = 0 given in [25]. A side bonus of the colored holomorphic blocks is an effective
computation of the q-series expansion of the rotated and of the meromorphic 3D-index.

We then compute the asymptotics of the holomorphic blocks in terms of (completed) power
series Φ

(σ)
n (h). These power series can be defined and computed using either formal Gaussian

integration [12] (which amounts to a stationary phase expansion of a state-integral), or from
a linear q-difference equation and their initial values at n = 0 given in [24]. In particular,
the dominant series Φ(σ1)(h) is exactly the asymptotic expansion of the Kashaev invariant
to all orders in h = 2πi/N [24].

Finally, we compute the radial asymptotics of the rotated 3D-index in terms of bilinear
combinations of the completed power series Φ

(σ)
n (h), which, after a formal Gaussian integra-

tion with respect to n, give the horizontal asymptotics of the rotated 3D-index.
Analysing further the possible bilinear asymptotics that can appear, combined with the

fact that the meromorphic 3D-index is bounded when τ tends to zero vertically, allows us to
compute the horizontal asymptotics of the meromorphic 3D-index.

We end this introduction with a remark on rigour. Although the 3D-index (in its original,
or rotated form) is a well-defined collection of q-series [10, 11] which was shown to be a topo-
logical invariant of hyperbolic knots in two different ways [19, 21], its factorisation in terms
of holomorphic blocks or colored holomorphic blocks discussed in Sections 2.3 and 2.4 are
conjectural, and so are our asymptotic statements which form the main body of this paper.
Likewise, the Turaev–Viro invariant of a knot is a well-defined topological invariant, how-
ever the conjecture on its all-orders asymptotic expansion is new, and unproven. However,
the stated conjectures for the 3D-index and for the Turaev–Viro invariant are numerically
testable (and have been tested for the case of the 41 and the 52 knots), and lead to surprising
predictions as well as an explanation of the structure and computation of the asymptotics
of these quantum invariants.

2. A review of the 3D-index

In this section, we review the 3D-index in various forms: the original one of [10, 11],
the rotated one, the one coming from colored holomorphic blocks, and the meromophic
version [21].
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In their seminal papers, Dimofte–Gaiotto–Gukov introduced the 3D-index [10, 11], which
comes from the low energy limit of an N = 2 sypersymmetric conformal theory in 6 dimen-
sions, compactified in 3-dimensions. More concretely, the 3D-index is a collection of Laurent
q-series with integer coefficients attached to every integer homology class of the boundary
of an ideally triangulated 3-manifold with torus boundary components. It is known that
this collection is a topological invariant of hyperbolic 3-manifolds [19], and that it can be
assembled to a meromorphic function on a complex torus [21] which, too, is a topological
invariant.

In a further direction, Beem–Dimofte–Pasquetti studied the relationship between the 3D-
index and a vector space of holomorphic blocks [2].

We next discuss several equivalent formulations of the 3D-index, namely the fugacity
version, the rotated version, the meromorphic version, and the relation with holomorphic
blocks.

2.1. The rotated 3D-index. Recall that the 3D-index of a 3-manifold with a torus bound-
ary component (marked by a meridian and a longitude) is a collection of q-series parametrised
by a pair of integers (m, e). It turns out that the 3D-index is annihilated by two actions of
the q-Weyl algebra, which are acting in the variables (m, e) in a coupled way. The rotated
3D-index is also an equivalent collection of q-series where the two actions are decoupled.
To define the rotated 3D-index, we suppress the ambient 3-manifold M writing I(m, e)(q)

instead of IM(m, e)(q) ∈ Z((q
1
2 )). Recall two commuting actions of the q-Weyl algebra [10,

Eqn.2.29a]:

L+I(m, e)(q) = q
e
2 I(m+ 1, e)(q) , M+I(m, e)(q) = q

m
2 I(m, e− 1)(q) ,

L−I(m, e)(q) = q
e
2 I(m− 1, e)(q) , M−I(m, e)(q) = q

m
2 I(m, e+ 1)(q) .

(25)

It is easy to see that the four operators L± andM± commute except in the following instance:

L+M+ = qM+L+ , L−M− = q−1M−L− .

The two commuting actions of the q-Weyl algebra mix the coordinates of the 3D-index. A
separation of the two actions is possible and this motivates the rotated form of the 3D-index
given by

Irot(n, n′)(q) =
∑
e∈Z

I(n− n′, e)(q)q
e(n+n′)

2 . (26)

When the ideal triangulation has a strict angle structure, it can be shown that the above
series is well-defined. In the above equation, and the ones that follow, convergence is ensured
if the minimum q-degree of I(m, e)(q) is a positive quadratic function of (m, e) bounded below
by O(m2 + e2) except at finitely many directions of linear growth O(|m|, |e|) (parallel to the
normal vectors of the Newton polygon of the A-polynomial). This convergence is deduced
from the results of [19, 18].

Lemma 4. We have:
L+I

rot(n, n′)(q) = Irot(n+ 1, n′)(q) , M+I
rot(n, n′)(q) = qnIrot(n, n′)(q) ,

L−I
rot(n, n′)(q) = Irot(n, n′ + 1)(q) , M−I

rot(n, n′)(q) = q−n
′
Irot(n, n′)(q) .

(27)
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Proof. We have:

L+I
rot(n, n′)(q) =

∑
e

q
e
2 I(n+ 1− n′, e)(q)q

e(n+n′)
2

=
∑
e

I(n+ 1− n′, e)(q)q
e(n+1+n′)

2 = Irot(n+ 1, n′)(q) ,

and

M+I
rot(n, n′)(q) =

∑
e

q
n−n′

2 I(n− n′, e− 1)(q)q
e(n+n′)

2 =
∑
e

I(n− n′, e− 1)(q)q
e(n+n′)+n−n′

2

=
∑
e

I(n− n′, e)(q)q
(e+1)(n+n′)+n−n′

2 =
∑
e

I(n− n′, e)(q)q
e(n+n′)

2 qn

= qnIrot(n, n′)(q) .

The case of (L−,M−) is similar. �

Note that Irot
K (0, 0)(q) coincides with the invariant denoted by Itot

K (q) in Equation (2)
of [19], and with the invariant studied in [25].

We now discuss some symmetries of the 3D-index and its rotated version. The symmetry,

I(m, e)(q) = I(−m,−e)(q) , (28)

of the 3D-index implies one for the rotated version Irot(n, n′)(q) = Irot(−n,−n′)(q). The
rotated 3D-index has two more symmetries

Irot(n, n′)(q) = Irot(n,−n′)(q) = Irot(−n, n′)(q) = Irot(−n,−n′)(q) , (29)

and
Irot(n, n′)(q−1) = Irot(n′, n)(q) , (30)

which are manifest from the expression of the rotated 3D-index in terms of colored holomor-
phic blocks discussed below.

We next discuss how to express the original 3D-index from its rotated version, reversing
Equation (26).

Lemma 5. For all integers m and e we have:

I(m, e)(q) = q−
me
2

∑
k∈Z

Irot(m+ k, k)(q)q−ke . (31)

Proof. We have:∑
k

Irot(m+ k, k)(q)q−ke =
∑
k,e′

I(m, e′)(q)q
e′m
2

+k(e′−e) =
∑
e′

q
e′m
2 I(m, e′)(q)

∑
k

qk(e′−e)

= δe,e′
∑
e′

q
e′m
2 I(m, e′)(q) = q

em
2 I(m, e)(q) .
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For completeness, we can also compute the action of the operators L± and M± on the right
hand side J(m, e)(q) of Equation (31). We have:

L+J(m, e)(q) = q−
me
2

∑
k∈Z

L+I
rot(m+ k, k)(q)q−ke = q−

me
2

∑
k∈Z

Irot(m+ k + 1, k)(q)q−ke

= q
e
2J(m+ 1, e)(q) ,

and
M+J(m, e)(q) = q−

me
2

∑
k∈Z

M+I
rot(m+ k, k)(q)q−ke = q−

me
2

∑
k∈Z

qm+kIrot(m+ k, k)(q)q−ke

= q
m
2 J(m, e− 1)(q) .

The case of L− and M− is similar. �

2.2. The meromorphic 3D-index. We now discuss another realisation of the 3D-index
as a meromorphic function. In [21], it was shown that if a triangulation has a strict angle
structure, then the following function

Imer(z, w)(q) =
∑
m,e∈Z

I(m, e)(q)e2πiτ(mz+ew) (32)

is meromorphic and regular at (z, w) = (0, 0). The relation between the meromorphic and
the rotated 3D-index is given by the next lemma.

Lemma 6. For all integers ` and `′, we have:

Imer(`, `′)(q) = q−2``′
∑
n∈Z

q2`nIrot(n, n− 2`′)(q) . (33)

Proof. Using Equations (32) and (31), we have:

Imer(`, `′)(q) =
∑
e,m

I(m, e)(q)qm`+e`
′

=
∑
e,m

q−
me
2

∑
k

Irot(m+ k, k)(q)qm`+e`
′−ke

=
∑
m,k

qm`Irot(m+ k, k)(q)
∑
e

q−(m
2

+k−`′)e =
∑
m,k

qm`Irot(m+ k, k)(q)δm
2

+k−`′,0 ,

where the last identity follows from the fact that
∑

e q
ae = δa (interpreted distributionally).

When m is odd the delta function vanishes, and for m = 2m′, we obtain that

Imer(`, `′)(q) =
∑
m′,k

q2m′`Irot(2m′ + k, k)(q)δm′+k−`′,0 =
∑
m′

q2m′`Irot(m′ + `′, `′ −m′)(q)

=
∑
m′

q2m′`Irot(m′ + `′,m′ − `′)(q) =
∑
n

q2n`Irot(n+ `′, n− `′)(q) ,

where the next to last equality follows from Equation (29). The result follows. �

In [28], the asymptotics of Imer(0, 0)(q) when q ∈ (0, 1) tends to 1 were studied. The
relation of this q-series and the rotated 3D-index follows from the lemma above, and is given
by

Imer(0, 0)(q) =
∑
n∈Z

Irot(n, n)(q) . (34)
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2.3. Holomorphic blocks. Consider the 3D-index in the so-called fugacity basis [10, Eqn.2.5]:

I](ζ,m)(q) =
∑
e

I(m, e)(q)ζe . (35)

Its expression in terms of holomorphic blocks is given below Eqn.6.46 of [2]. Comparing
Equations (26) and (35), and keeping in mind that I](ζ,m) is a meromorphic function of ζ
with potential singularities at ζ ∈ qZ, it follows that

Irot(n, n′)(q) = lim
x→1

I](q
n+n′

2 x, n− n′)(q) . (36)

Now, according to [2, Eqn.1.3] (see also [2, Eqn.6.46] for a similar statement for state-
integrals), we have

I](ζ,m)(q) =
∑
α

B(α)(x; q)B(α)(x̃; q̃), x = q
m
2 ζ, x̃ = q

m
2 ζ−1, q̃ = q−1 , (37)

where B(α)(x, q) are holomorphic blocks, meromorphic functions of x which are defined both
inside and outside the unit q-disk, and are annihilated by the homogeneous Â-polynomial.
Equations (36) and (37) imply that

Irot(n, n′)(q) = lim
x→1

∑
α

B(α)(q−n
′
x−1; q−1)B(α)(qnx; q) . (38)

This is our starting point for the asymptotics of the 3D-index, which in particular predicts
that the rotated 3D-index satisfies the equation

Â(M+, L+)Irot = Â(M−, L−)Irot = 0 . (39)

2.4. Colored holomorphic blocks. The holomorphic blocks B(α)(x; q) are meromorphic
functions of x with poles at x ∈ qZ, which makes the limit in equation (38) difficult to
compute. Instead, we will introduce colored holomorphic blocks h(α)(q) and express the
rotated 3D-index as follows:

Irot(n, n′)(q) =
∑
α

Bα,ᾱh
(α)
n (q)h

(ᾱ)
n′ (q−1) , (40)

where B = Bt ∈ GLr(Q) and α 7→ ᾱ is an involution corresponding to the complex conjuga-
tion of the set of σ. The colored holomorphic blocks, defined for |q| 6= 1 form a fundamental
solution to the linear q-difference equation

Â(M+, L+)H(q) = Â(M−, L−)H(q−1) = 0 , (41)

which can be defined and computed by applying the Frobenius method. In particular, this
implies that the labeling set of α’s consists of the pairs of edges of the lower Newton polygon
of the A-polynomial, together with with a root of the edge polynomial (the latter known to
be product of cyclotomic polynomials).

Going one step further, we can define a Z × Z matrix Irot(q) whose (n, n′) entry is
Irot(n, n′)(q), and a Z × r matrix H(q) whose (n, α) entry is h(α)

n (q), and then write the
above equation in the matrix form

Irot(q) = H(q)BH(q−1)t . (42)
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Equations (42) and (34) give that

Imer(0, 0)(q) = tr(H(q)BH(q−1)t) . (43)

The symmetry,
h(α)
n (q) = h

(α)
−n(q) , (44)

of the colored holomorphic blocks (for all α and all integers n) and Equation (42) implies
the symmetries (29) and (30) for the rotated 3D-index.

To use equation (42) effectively, we need a method to compute the colored holomorphic
blocks. We can do so either from the polar decomposition of the holomorphic blocks when
the latter are available (this is the case of the 41 and 52 knots), or by applying the Frobenius
method (see, [14]) to the linear q-difference equation that they satisfy when the latter is
available (this is also the case of the 41 and 52 knots). Either way, there is an ambiguity in
the normalisation of the colored holomorphic blocks.

3. Asymptotics

The previous section expressed the rotated and the meromorphic 3D-index of a knot
bilinearly in terms of a matrix of colored holomorphic blocks–see equations (42) and (43). In
this section, we discuss the structure of the horizontal asymptotics of the colored holomorphic
blocks, and consequently of the rotated and of the meromorphic 3D-index.

3.1. A matrix of asymptotic series. We begin by defining a matrix of asympototic series
which ultimately expresses the asymptotics of the colored holomorphic blocks and of the 3D-
index, in all of its forms. Let H(q) and Φ̂(h) denote the Z× r matrix with H(q)n,α = h

(a)
n (q)

and Φ̂(h)n,α = Φ̂
(α)
n (h). For an integer n, let Hn(q) and Φ̂n(h) denote the r × r matrices

whose rows are the nth, n+ 1, . . .n+ r− 1 rows of H(q) and Φ̂(h), respectively. The entries
of the matrix Φ̂(h) are completed formal power series of the form given in Equation (19)
where σ labels a boundary parabolic PSL2(C)-representation of the knot complement, and
Vσ = iVol(σ)+CS(σ) denotes its complexified volume whose imaginary part is the volume and
the real part is the Chern–Simons invariant [35]. The Borel resummation of the completed
formal power series Φ̂, whose definition we omit, will be denoted by (sΦ̂)(h) (for a detailed
definition, see [34]). The Borel resummation depends on a ray in a sector that does not
contain Stokes lines. In our case, the sector is in the upper or lower half-plane and close to
the positive real axis, in which case it is conjectured that there are no Stokes lines in such a
sector [15], and that Borel resummation is well-defined.

The relation between the colored holomorphic blocks and the asymptotic series is the
following conjectural identity:

Hn(q) = (sΦ̂n)(2πiτ)M(q̃)H0(q̃)diag(τκα), (0 < | arg(τ)| < ε) (45)

valid for some ε > 0 (which depends on the knot), where M(q) ∈ GLr(Q(q)). This equality
was conjectured in [15, 16] together with [25, 24]. The first papers conjectured that state
integrals give rise to Borel re-summation and the second essentially conjecture that state
integrals come as cocycles of associated quantum modular forms in this case Hn. Both of
these statements are known to hold in examples [7, 20]. The above equality of exact functions
allows us to compute the matrix Φ̂n(h) of asymptotic series in several ways:
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(a) via numerical asymptotics of the colored holomorphic blocks as τ tends to zero nearly
horizontally.

(b) via WKB, using that fact that both matrices Hn(q) and Φ̂n(h) are fundamental
solutions of the same linear q-difference equation, namely the Â-equation. In fact,
it appears that Φ̂n(h) is the unique discrete WKB solution to the Â equation with
initial condition Φ̂0(h).

(c) via the formulas of [12], where a power series was defined by formal Gaussian integra-
tion using the Neumann–Zagier matrices of an ideal triangulation of a knot comple-
ment and a solution to the Neumann–Zagier equations, whose developing map is α.
In that paper, if we let the solution of the Neumann–Zagier equation vary infinitesi-
mally around α, we obtain a power series in h whose coefficients are polynomials in
n.

(d) via the asymptotics of state-integrals that equal to a suitable matrix-valued cocycle.
In the present paper, we will mostly use the WKB ansatz since the linear q-difference

equation (i.e., the Â-polynomial) of the 41 and the 52 knots are known. Recall that the
WKB ansatz

Φn(~) = exp

(
∞∑

`=−1

S`(n~)

)
= Φ0(~) exp

(
∞∑

`=−1

∞∑
k=1

ak,`(n~)k~`
)
. (46)

substitutes the above power series in the linear q-difference equation, and solves for the
coefficients, one degree of ~ at a time. The Weyl symmetry n ↔ −n of the linear q-
difference equation implies that we get polynomials in n2, thus ak,` = 0 for all odd k. The
first unknown to be determined is a2,−1, which satisfies a polynomial equation obtained by
setting q = 1 in the linear q-difference equation, qn = 1 + u+ O(u2) and replacing the shift
operator by 1 + a2,−1u + O(u2). This polynomial equation is identical to the polynomial
equation for the cusp-shape c of the hyperbolic knot, obtained by replacing M = 1 + u,
L = 1 + cu in the A-polynomial of a knot and equating the lower power of u arising to zero.
The coincidence of the polynomial equations for a2,−1 and of the cusp shape is consistent
with the AJ-Conjecture which states that the specialisation of q = 1 to the Â-polynomial is
the A-polynomial. Once a2,−1 is known, the remaining coefficients ak,` for k ≥ 2 are obtained
from the WKB ansatz as a solution to a block triangular linear system.

3.2. Horizontal asymptotics of the rotated 3D-index. Equation (45), together with
Equation (42) implies that

Irot(q) = (sΦ̂)(2πiτ)M(q̃)Irot
0 (q̃)M(q̃−1)(sΦ̂)∗(−2πiτ) , (47)

where ∗ means the conjugate transpose. The above is an exact identity that gives the q → 1
asymptotics all the q-series Irot(n, n′)(q) to all orders in τ and with all exponential terms q̃
included. Ignoring the q̃ terms, and assuming that τ → 0 in a fixed ray with 0 < | arg(τ)| < ε,
we obtain that

Irot(q) ∼ Φ̂(2πiτ)diag(M0)(Φ̂)∗(−2πiτ) , (48)
for a matrix M0 ∈ GLr(Q). Even further, when τ → 0 in a ray arg(τ) = θ0 with θ0 positive
and sufficiently small, this implies the asymptotic expansion of Equation (22).
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3.3. Horizontal asymptotics and Gaussian integration. Equations (43) and (22) imply
that when τ → 0 in a ray arg(τ) = θ0 with θ0 positive and sufficiently small, Equation (20)
holds. In this section, we explain how to expand the sums over the integers of the bilinear
asymptotic series in (20), as power series in ~.

We will use the form (46) for the two asymptotic series Φ
(σ)
n (~) and Φ

(σ′)
n (~), and abbreviate

βk,` = a
(σ)
k,` + (−1)k+`a

(σ′)
k,` and β = 2β2,−1. Of course, β and βk,` depend on (σ, σ′). Then, we

have

Φ(σ)
n (~)Φ(σ′)

n (−~) = exp

(
∞∑

`=−1

∞∑
k=1

(a
(σ)
k,` + (−1)k+`a

(σ′)
k,` )(n~)k~`

)

= Φ
(σ)
0 (~)Φ

(σ′)
0 (−~)e

1
2
βn2~ exp

(
∞∑

`=−1

∞∑
k=1

βk,`(n~)k~`
)

= Φ
(σ)
0 (~)Φ

(σ′)
0 (−~)e

1
2
βn2~I(n, ~) ,

(49)

where I(n, ~) = exp
(∑∞

`=−1

∑∞
k=1 βk,`(n~)k~`

)
. The coefficient of ~k in I(n, ~) is a polyno-

mial in n of degree 4k/3 (resp., 4k/3− 4/3, 4k/3− 2/3) if k = 0 mod 3 (resp., k = 1 mod 3,
k = 2 mod 3), with the first few terms given by

I(n, ~) = 1 + n2β2,0~2 + (n2β2,1 + n4β4,−1)~3 + (
1

2
n4β2

2,0 + n2β2,2 + n4β4,0)~4

+ (n4β2,0β2,1 + n2β2,3 + n6β2,0β4,−1 + n4β4,1 + n6β6,−1)~5

+ (
1

6
n6β3

2,0 +
1

2
n4β2

2,1 + n4β2,0β2,2 + n2β2,4 + n6β2,1β4,−1

+
1

2
n8β2

4,−1 + n6β2,0β4,0 + n4β4,2 + n6β6,0)~6 +O(~7) .

(50)

To sum over n ∈ Z, we can use either Poisson summation, or the modular transformation
property

Θ(e(τ)) = ζ8τ
−1/2 Θ(e(−1/τ)) , (51)

of the theta function
Θ(q) =

∑
n∈Z

qn
2/2 , (52)

where ζ8 = e(1/8) so that (ζ8)8 = 1. Differentiating Equation (51), we find that

∑
n∈Z

n2ke

(
1

2
n2τ

)
∈ ζ8

k−1∑
j=0

1

τ k+j+1/2
Q

[[
e

(
− 1

2τ

)]]
(53)

is polynomial in τ−1/2 with coefficients a power series of e(−1/τ). When τ ∼ 0, ignoring all
the powers e(−1/τ), we obtain that

∑
n∈Z n

ke
(

1
2
n2τ
)
∼ 〈nk〉2πiτ to all orders in τ , where

〈n2k〉2πiτ =
(−1)kζ8(2k − 1)!!

(2πi)kτ (2k+1)/2
, 〈n2k+1〉2πiτ = 0 (54)
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and (2k − 1)!! = (2k)!/(k!2k) for k ≥ 0. The above equation can also be written in terms of
a formal Gaussian integration as follows:

〈n2k〉2πiτ =

∫
R

u2ke

(
1

2
u2τ

)
du . (55)

Using the above asymptotics with 2πiτ = β~ and Equation (50) we find that∑
n∈Z

Φ(σ)
n (~)Φ(σ′)

n (−~) = Φ
(σ)
0 (~)Φ

(σ′)
0 (−~) 〈1〉β~ ×

(
1 +

(
− β2,0

β
+

3β4,−1

β2

)
~

+
(
3
β2

2,0

2β2
− β2,1

β
− 15

β2,0β4,−1

β3
+ 105

β2
4,−1

2β4
+ 3

β4,0

β2
− 15

β6,−1

β3

)
~2 +O(~3)

)
.

(56)

From the bounds of the n-degree of each coefficient of ~k in I(n, ~), it follows that the
coefficient of ~k in the sum over n depends only on I(n, ~) +O(~3k+1).

4. Further discussion

In this section, we discuss briefly three further aspects of the 3D-index: its relation with
Stokes matrices, following [15, 16], its relation to stability, following [22], and its possible
relation with topological recursion [4].

4.1. The 3D-index and Stokes matrices. A discovery of [15, 16] was that the rotated
3D-index essentially determines the Stokes constants of the Borel resummation of the as-
ymptotic series that appear in complex Chern–Simons theory. For a precise statement, see
Conjecture 4 of [16]. A further extension that includes the so-called trivial flat connection
was proposed in [17]. An explanation of this relation between the BPS counts of the 3D-
index and the Stokes constants of perturbative power series from first principles is currently
missing. Without doubt, the Stokes constants of the Borel resummation of the matrix Φn(h)
of factorially divergent h-power series can be expressed in terms of the rotated 3D-index,
in a manner analogous to the results of [16], only that the descendant variable m there is
replaced by the variable n here. We will not pursue this numerical investigation further.

4.2. Stability. In this short subsection, which is independent of our asymptotic results,
we make some comments regarding the q = 0 expansion of the colored holomorphic blocks
and their relation with the 3D-index. Whereas the 3D-index is a well-defined topological
invariant, computable from the Neumann–Zagier matrices of an ideal triangulation of a 3-
manifold, the Z× r matrix H(q) of the colored holomorphic blocks has not been defined in
terms of an ideal triangulation, nor is a priori a topological invariant. Yet, as we will see in
examples, the matrix of colored holomorphic blocks satisfies some stability properties and
this makes possible to recover it from the matrix of the rotated 3D-index.

Perhaps stability properties of Irot(n, n′)(q) as n or n′ are large allow one to determine the
colored holomorphic blocks H(q) (in a suitable normalisation) from the rotated 3D-index. If
so, it would give a definition of the colored holomorphic blocks in terms of Neumann–Zagier
matrices as well as conclude their topological invariance, something which is currently miss-
ing. This works for 41 (whose details we give) and 52 (whose details we omit). Unfortunately,
this hope has not been realised so far for all knots.
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4.3. Periods from Topological Recursion? We have seen in the introduction that pe-
riods of the A-polynomial curve appear in the vertical asymptotics of the meromorphic
3D-index (but not of the rotated, or the original 3D-index). On the other hand, the ro-
tated 3D-index satisfies (in two variables) a linear q-difference equation whose q = 1 limit is
conjectured to be the A-polynomial of [6].

Since periods are nonperturbative (and classical) information of the A-polynomial curve,
is there an explanation of their appearance in the context of topological recursion? Note
that the latter can explain the asymptotics of the Kashaev invariant of a knot [4].

5. The 3D-index of the 41 knot

In this section, we give a detailed and computable description of the 3D-index of the
41 knot and of its asymptotics, illustrating the conjectures of Section 1.3. All quantities
(functions and numbers) in this section refer to the 41 knot, which will be omitted from the
notation.

5.1. Holomorphic blocks. The 41 knots has two colored holomorphic blocks B(1)(x; q) and
B(2)(x; q) are given by (see [2, Eqn.6.45] and [16, Sec.5.2])

B(1)(x; q) =
(qx2; q)∞

θ(x; q)θ(−q1/2x; q)

∞∑
k=0

(−1)k
qk(k+1)/2xk

(q; q)k(qx2; q)k
,

B(2)(x; q) = B(1)(x−1; q) ,

B(1)(x; q−1) =
θ(x; q)θ(−q−1/2x; q)

(x2; q)∞

∞∑
k=0

(−1)k
qk(k+1)/2x−k

(q; q)k(qx−2; q)k
,

B(2)(x; q−1) = B(1)(x−1; q−1) ,

(57)

where
θ(x; q) = (−q1/2x; q)∞(−q1/2x−1; q)∞ . (58)

Since the two holomorphic blocks are given by 1-dimensional proper q-hypergeometric sums,
it follows by Wilf-Zeilberger theory [41], implemented by Koutschan in [33], that they both
satisfy the second order linear q-difference equation

P0(x, q)B(α)(x; q) + P1(x, q)B(α)(qx; q) + P2(x, q)B(α)(q2x; q) = 0 , (59)

for α = 1, 2, where

P0(x, q) = q2x2(q3x2 − 1) ,

P1(x, q) = −q1/2(1− q2x2)(1− qx− qx2 − q3x2 − q3x3 + q4x4) ,

P2(x, q) = q3x2(−1 + qx2) .

(60)

Our normalisation of the above q-difference equation differs slightly from [16, Eqn.(140)].
Our choice was dictated by the facts that it annihilates in two ways the rotated 3D-index,
the latter being canonically normalised, and by the fact that it respects the Z/2Z Weyl
symmetry, (i.e., it is invariant under the map x 7→ 1/x), which when x = qn, (n being the
weight of an sl2(C) representation), means invariance under the map n 7→ −n.
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5.2. Colored holomorphic blocks. The holomorphic blocks are meromorphic functions
of (x, q). We now define the colored holomorphic blocks by looking at their expansions at
x = qneu at u = 0. Explicitly, we define the colored holomorphic blocks h(0)

n (q) and h(1)
n (q)

for |q| < 1 by

B(1)(qneu; q) =
1

(q; q)∞(−q1/2; q)2
∞
h(0)
n (q)u−1 +O(u0) ,

B(1)(qneu; q) +B(2)(qneu; q) =
1

(q; q)∞(−q1/2; q)2
∞
h(1)
n (q) +O(u1) ,

(61)

and for |q| < 1 by

B(1)(q−ne−u; q−1) =
(q; q)∞(−q1/2; q)2

∞
2

h(0)
n (q−1) +O(u1) ,

B(1)(q−ne−u; q−1)−B(2)(q−ne−u; q−1) =
(q; q)∞(−q1/2; q)2

∞
2

h(1)
n (q−1)u+O(u2) .

(62)

Since the holomorphic blocks B(α)(x; q) satisfy the q-difference equation (59), it follows
that the colored holomorphic blocks, defined in (61) and (62) satisfy the linear q-difference
equation

P0(qn, q)h(α)
n (q) + P1(qn, q)h

(α)
n+1(q) + P2(qn, q)h

(α)
n+2(q) = 0 (α = 0, 1, n ∈ Z) . (63)

Next, we give q-hypergeometric formulas for the colored holomorphic blocks for |q| 6= 1.
To do so, we use the next lemma which can be deduced from [20, Prop.2.2] or from [25]. For
a positive integer `, consider the function

E`(q) =
ζ(1− `)

2
+
∞∑
s=1

s`−1 qs

1− qs
, (64)

(where ζ(s) is the Riemann zeta function), analytic for |q| < 1 and extended to |q| > 1 by
the symmetry E`(q−1) = −E`(q).

Lemma 7 ([20, 25]). We have:

(qeε; q)∞
(q; q)∞

1

(qeε; q)m
=

1

(q; q)m

√
−ε

1− exp(ε)
exp

(
−
∞∑
`=1

(
E`(q)−

m∑
n=1

Li1−`(q
n)

)
ε`

`!

)
,

(q−1eε; q−1)∞
(q−1; q−1)∞

1

(q−1eε; q−1)m
=

1

(q−1; q−1)m

−1

ε

√
−ε

1− exp(ε)

exp

(
−
∞∑
`=1

(
E`(q

−1)−
m∑
n=1

Li1−`(q
−n)

)
ε`

`!

)
.

(65)

Proposition 8. We have:

h(0)
n (q) = (−1)nq|n|(2|n|+1)/2

∞∑
k=0

(−1)k
qk(k+1)/2+|n|k

(q; q)k(q; q)k+2|n|
, (66)
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and

h(1)
n (q) = (−1)nq|n|(2|n|+1)/2

∞∑
k=0

−4E1(q) +

k+2|n|∑
`=1

1 + q`

1− q`
+

k∑
`=1

1 + q`

1− q`

 (−1)k
qk(k+1)/2+|n|k

(q; q)k(q, q)k+2|n|

− 2(−1)nq|n|(2|n|−1)/2

2|n|−1∑
k=0

(−1)k
qk(k+1)/2−|n|k(q−1, q−1)2|n|−1−k

(q; q)k
,

(67)
for |q| 6= 1. The colored holomorphic blocks satisfy the symmetries

h(0)
n (q−1) = h(0)

n (q), h(1)
n (q−1) = −h(1)

n (q) , (68)

and
h

(α)
−n(q) = h(α)

n (q), α = 0, 1 . (69)

Proof. The proof of the above formulas (66) and (67) follows from the definitions of the
colored holomorphic blocks combined with the expansions of Lemma 7 above. One simply
collects terms associated to each piece of the sum to deduce the proposition. For example,

1

θ(qneu; q)
=

qn
2/2

(−q1/2; q)2
∞

(1 + nu+O(u2)) , (70)

or when n ≥ 0,

(q2n+1x2; q)∞
(q2n+1x2; q)k

=
(q; q)∞

(q; q)k+2n

(
1−

(
1

2
+ 2E1(q) + 2

k+2n∑
`=1

q`

1− q`

)
u+O(u2)

)
, (71)

or when k − 2n < 0,

(q−2n+1x−2; q)∞
(q−2n+1x−2; q)k

= −2(q−1; q−1)2n−k−1u+O(u2) . (72)

The q ↔ q−1 symmetry of h(0)
n (q) follows from the definition and the symmetry of its sum-

mand itself and similarly for h(1)(q) using the first few coefficients in the u expansion, where
we also use the definition of E1(q−1). �

The colored holomorphic blocks when n = 0 agree with the pair of q-series in [25]:

h
(0)
0 (q) = g(q), h

(1)
0 (q) = G(q) . (73)

This is manifest from the definitions of these q-series. The relation to the descendant q-series
of [15, Eqn.(13)] is given by

g
(i)
0 (q) = h

(i)
0 (q) ,

(1− q)g(i)
1 (q) = h

(i)
0 (q)− q1/2h

(i)
1 (q) .

(74)

This follows from the relation for the two Wronskians [16, Eqn.(156)] noting the −q1/2

difference as seen in Equation (59). Note that the colored Jones polynomial of the 41 knot
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is given

Jn(q) =
n−1∑
k=0

q−kn(qn−1; q−1)k(q
n+1; q)k

=
1

1− qn
−1∑

k=−n

qnk+n (q; q)n−k−1

(q; q)k+n

=
1

1− qn
n∑
k=1

qn−nk
(q; q)n+k−1

(q; q)n−k
.

(75)

The last formula appears up to some simple factor in the expression for h(1)
n (q). The first

few values of the colored holomorphic blocks are given by

h
(0)
0 (q) = 1− 2− 2q2 − 2q3 − 2q4 + q6 + 5q7 + 7q8 + 11q9 + . . . ,

h
(0)
1 (q) = q1/2(−q − q2 − q3 + q5 + 3q6 + 5q7 + 7q8 + 9q9 + . . . ) ,

h
(0)
2 (q) = q5 + q6 + 2q7 + 2q8 + 3q9 + . . . ,

(76)

and

h
(1)
0 (q) = 1− 7q − 14q2 − 8q3 − 2q4 + 30q5 + 43q6 + 95q7 + 109q8 + 137q9 + . . . ,

h
(1)
1 (q) = q1/2(−2q−1 − 5q − 3q2 + 3q3 + 16q4 + 33q5 + 51q6 + 73q7 + 77q8 + 81q9 + . . . ) ,

h
(1)
2 (q) = 2q−3 − 2q−2 + 2q + 2q2 + 2q3 + 2q4 + 11q5 + 9q6 + 14q7 + 6q8 + 3q9 + . . . .

(77)
The colored holomorphic blocks have the q-degree (i.e., minimum power of q)

degq h
(0)
n (q) = n2 +

1

2
|n|, h(1)

n (q) = −n2 +
1

2
|n| . (78)

The above statement for the degree follows easily from Equations (66) and (67). Alterna-
tively, observe that the two colored holomorphic blocks are fundamental solutions of the
linear q-difference equation (63) obtained by the Frobenius (or the WKB) method (one
power of qn at a time, as explained in [14]), and their degrees are quadratic polynomials
whose slopes are 4 and −4, those of the Newton polygon of the A-polynomial.

5.3. The rotated and the meromorphic 3D-index. We next express the rotated 3D-
index in terms of the colored holomorphic blocks.

Proposition 9. For all integers n and n′ we have:

Irot(n, n′)(q) = −1

2
h

(1)
n′ (q−1)h(0)

n (q) +
1

2
h

(0)
n′ (q−1)h(1)

n (q) . (79)
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Proof. Equation (38), and the definition of the colored holomorphic blocks imply that

Irot(n, n′)(q) = lim
u→0

(B(1)(q−n
′
e−u; q−1)B(1)(qneu; q) +B(2)(q−n

′
e−u; q−1)B(2)(qneu; q))

= lim
u→0

(−1

2
h

(1)
n′ (q−1)h(0)

n (q) +
1

2
h

(0)
n′ (q−1)h(1)

n (q) +O(u1))

= −1

2
h

(1)
n′ (q−1)h(0)

n (q) +
1

2
h

(0)
n′ (q−1)h(1)

n (q) .

(80)

This and Equation (34) imply (1). Note that the sum over the integers in (1) is a convergent
q-series since degq h

(1)
n (q)h

(0)
n (q) = |n| (as follows from (78)). �

Using Equations (66) and (67) and the above proposition, it follows that the first few
values of Irot(n, n)(q) = h

(0)
n (q)h

(1)
n (q) are given by

Irot(0, 0)(q) = 1− 8q − 9q2 + 18q3 + 46q4 + 90q5 + 62q6 + 10q7 − 170q8 − 424q9 + . . . ,

Irot(1, 1)(q) = 2q + 2q2 + 7q3 + 8q4 + 3q5 − 22q6 − 67q7 − 132q8 − 206q9 + . . . ,

Irot(2, 2)(q) = 2q2 + 2q4 + 4q6 + 2q7 + 8q8 + 8q9 + . . . ,
(81)

and their degree is given by degq I
rot(n, n)(q) = |n|. This, together with Equation (34), gives

the first few terms of the meromorphic 3D-index as stated in Equation (1). Incidentally, the
diagonal Irot(n, n)(q) of the rotated 3D-index satisfies the following third order recursion

0 =− q4+4n(−1 + q2+n)(1 + q2+n)(−1 + q5+2n)(1− q2+n − q3+2n − q5+2n − q6+3n + q8+4n)Irot(n, n)(q)

+ q(−1 + q1+n)(1 + q1+n)(−1 + q5+2n)(1− q1+n − q1+2n − q3+2n − q3+3n + q4+4n)

× (1− q1+n − q2+n − q1+2n − q2+2n + q3+2n − q4+2n − q5+2n + q3+3n + q6+3n + q3+4n + q5+4n

+ 3q6+4n + q7+4n + q9+4n + q6+5n + q9+5n − q7+6n − q8+6n + q9+6n

− q10+6n − q11+6n − q10+7n − q11+7n + q12+8n)Irot(n+ 1, n+ 1)(q)

− (−1 + q2+n)(1 + q2+n)(−1 + q1+2n)(1− q2+n − q3+2n − q5+2n − q6+3n + q8+4n)

× (1− q1+n − q2+n − q1+2n − q2+2n + q3+2n − q4+2n − q5+2n + q3+3n + q6+3n + q3+4n + q5+4n

+ 3q6+4n + q7+4n + q9+4n + q6+5n + q9+5n − q7+6n − q8+6n + q9+6n − q10+6n − q11+6n − q10+7n

− q11+7n + q12+8n)Irot(n+ 2, n+ 2)(q)

+ q9+4n(−1 + q1+n)(1 + q1+n)(−1 + q1+2n)(1− q1+n − q1+2n − q3+2n − q3+3n + q4+4n)Irot(n+ 3, n+ 3)(q) ,

(82)

for all integers n.

5.4. Stability. In this section, we discuss briefly the stability properties of the colored
holomorphic blocks of the 41 knot. By stability, we mean the limit as n→∞ of a sequence
of q-series, as explained in detail in [22]. Equations (66) and (67) imply easily that

lim
n→∞

h(0)
n (q)q−n(2n+1)/2 =

1

(q; q)∞
,

lim
n→∞

h(1)
n (q)qn(2n−1)/2 = 2(q; q)∞ .

(83)
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It follows that

lim
n′→∞

qn
′(2n′+1)/2Irot(n, n′)(q) = lim

n′→∞

qn
′(2n′+1)/2

2
h

(1)
n′ (q)h(0)

n (q) +
qn
′(2n′+1)/2

2
h

(0)
n′ (q)h(1)

n (q)

= (q; q)∞h
(0)
n (q) ,

(84)
which implies that

Irot(n, n)(q)

(q; q)∞h
(0)
n (q)

=
h

(1)
n (q)

(q; q)∞
. (85)

In other words, the degree (78) of the colored holomorphic blocks h(α)
n (q) for α = 0, 1 and

the rotated 3D-index determines thm up to multiplication by a power of (q; q)∞.

5.5. Numerical asymptotics of the meromorphic 3D-index. In this section, we dis-
cuss the numerical computation of the asymptotics of the meromorphic 3D-index at q → 1
following closely the ideas and the numerical methods of [24, 25]. We first fix a ray and use
τ in that ray with absolute value |τ | = 1/N for N = 200, . . . , 300. For these values of τ ,
we compute numerically the values of the colored holomorphic blocks h(α)

n (q) for n = 0, 1
and α = 0, 1 with precision about 20000 digits using their q-hypergeometric definition (66)
and (67). We then use the q-difference equation (63) to compute the values of the colored
holomorphic blocks h(α)

n (q) for n = 0, . . . , 25N and α = 0, 1, and sum up these terms us-
ing (1), keeping in mind that the error is O(qN). Having done so, we obtain the values of
the meromorphic 3D-index at the above range of τ to about 30 digits. We then numerically
extrapolate the coefficients of each power of τ in the asymptotic series, and finally recognise
them exactly. After doing so, we find numerically the following asymptotic expansion given
in Equation (2), as arg(τ) is fixed, positive and small, and τ tends to zero.

5.6. Asymptotic series. In this section, we will explain how to compute the asymptotic
series Φ(α)(~) using the discrete WKB applied to the Â-equation of the figure-eight knot.

Proposition 10. If the ansatz (46) satisfies

P0(en~, e~)Φ(σ)
n (~) + P1(en~, e~)Φ

(σ)
n+1(~) + P2(en~, e~)Φ

(σ)
n+2(~) = 0 , (86)

it follows that a2,−1 is a root of the polynomial equation 4a2
2,−1 + 3 = 0. A choice of such a

root and the initial condition at n = 0 uniquely determines the power series Φ
(σ)
n (h) .
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The first few terms of the asymptotic series are given by

Φ̂
(σ1)
n (~) = (−3)−1/4e

iVol
~ exp

(√
−3~

n2

2

)(
1−

11

24
√
−3

3
~

+
(
−

9

2
√
−3

6
n2 +

697

1152
√
−3

6

)
~2

+
(
−

81

4
√
−3

9
n4 +

285

16
√
−3

9
n2 −

724351

414720
√
−3

9

)
~3

+
( 4185

32
√
−3

12
n4 −

19825

256
√
−3

12
n2 +

278392949

39813120
√
−3

12

)
~4

+
( 12879

20
√
−3

15
n6 −

129933

64
√
−3

15
n4 +

5481733

5760
√
−3

15
n2 −

17049329117

209018880
√
−3

15

)
~5

+
( 6561

8
√
−3

18
n8 −

646461

80
√
−3

18
n6 +

18984649

1280
√
−3

18
n4 −

1718762189

276480
√
−3

18
n2 +

39021801798779

75246796800
√
−3

18

)
~6 +O(~7)

)
.

(87)

We have computed 300 terms of the series Φ̂
(σ1)
0 (~), obtained either by extrapolation, and

matching the stationary phase of the corresponding state-integral. Using 10 terms of the
above series, one can compute the series Φ̂

(σ1)
n (~) up to O(~11).

Proof. To determine a2,−1 (which satisfies the same polynomial equation as the cusp shape)
note that

P0(1 + u, 1) = u4 + 4u3 + 5u2 + 2u ,

P1(1 + u, 1) = u6 + 5u5 + 7u4 − 2u3 − 10u2 − 4u ,

P2(1 + u, 1) = u4 + 4u3 + 5u2 + 2u ,

(88)

and so

P0(1+u, 1)+P1(1+u, 1)(1+2a2,−1u)+P2(1+u, 1)(1+2a2,−1u)2 = (8a2
2,−1+6)u3+O(u4) . (89)

Therefore, a2,−1 = 1
2

√
−3. Choosing a root, substituting into (46), and then expanding (86)

to O(~6) we find((
16a4,−1 + 8

√
−3a2,0 −

8

3

√
−3
)
n3 + . . .

)
~4

+
((

24
√
−3a4,−1 − 12a2,0 + 8

)
n5 + . . .

)
~5 +O(~6) = 0 ,

(90)

which give two independent equations for a4,−1 and a2,0 which have solution

a4,−1 =

√
−3

12
, a2,0 =

1

6
. (91)

This shows that

Φ0(~)−1Φn(~) +O(~3) = 1 +

√
−3

2
n2h+

(
−3

8
n4 +

1

6
n2

)
h2 +O(h3) . (92)

We can continue inductively in N computing ak,` where k + 2` = 2N . The coefficients of
n3~3+N , . . . , n3+2N~ form a linear system in ak,` with k+ 2` = N which depends on ak,` with
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k + 2` < N . Using the initial condition

Φ̂
(σ1)
0 (~) = (−3)−1/4e

iVol
~

(
1− 11

24
√
−3

3~ +
697

1152
√
−3

6~
2 − 724351

414720
√
−3

9~
3

+
278392949

39813120
√
−3

12~
4 − 17049329117

209018880
√
−3

15~
5 +

39021801798779

75246796800
√
−3

18~
6 +O(~7)

)
,

(93)

taken from [24], together with the above discussion gives (87). �

Finally, we define the second asymptotic series Φ̂
(σ2)
n (~) by using the other choice of a2,−1

in the WKB. It is easy to see that the two asymptotic series are related by

Φ̂(σ2)
n (~) = iΦ̂(σ1)

n (−~) , (94)

from which it follows that they trivially satisfy the quadratic relation

Φ̂(σ1)
n (~)Φ̂(σ1)

n (−~) + Φ̂(σ2)
n (~)Φ̂(σ2)

n (−~) = 0 . (95)

5.7. Asymptotics of the colored holomorphic blocks. Having defined the asymptotic
series Φ̂

(σ1)
n (~) and Φ̂

(σ2)
n (~), we now use them to give the asymptotics of the colored holo-

morphic blocks in suitable rays, with exponentially small terms included. To Borel resum
the above two asymptotic series, we use about 300 coefficients of ~ when n = 0, and about
170 coefficients (each a polynomial of n) for general n. Using for example τ = e(0.001)/50,
one can check the following identities (96) to 10 to 20 coefficients of q̃ within the accuracy
of the numerical Borel resummation.

For τ in a cone C = arg(θ) ∈ (θ0, θ1) with 0 < θ0 < θ1 sufficiently small, we find
numerically that

h(0)
n (q) = ζ8τ

1/2

2∑
k=1

sΦ̂(σk)
n (2πiτ)H(0)

σk
(q̃), h(1)

n (q) = ζ8τ
−1/2

2∑
k=1

sΦ̂(σk)
n (2πiτ)H(1)

σk
(q̃) , (96)

where

H(α)
σ1

(q̃) = h
(α)
0 (q̃), H(α)

σ2
(q̃) =

2q̃ − 1

1− q̃
h

(α)
0 (q̃)− q̃1/2

1− q̃
h

(α)
1 (q̃) , (97)

for α = 0, 1. The above identities were found in [16, Sec.5] when n = 0 and were verified for
general n here. We stress that Equation (96) is an identity of analytic functions on the cone
C. Writing the above identity in matrix form, we obtain that(
h

(0)
n (q) h

(1)
n (q)

h
(0)
n+1(q) h

(1)
n+1(q)

)
=

(
sΦ̂

(σ1)
n (2πiτ) sΦ̂

(σ2)
n (2πiτ)

sΦ̂
(σ1)
n+1(2πiτ) sΦ̂

(σ2)
n+1(2πiτ)

)(
H

(0)
σ1 (q̃) H

(1)
σ1 (q̃)

H
(0)
σ2 (q̃) H

(1)
σ2 (q̃)

)(
τ 1/2 0

0 τ−1/2

)
,

(98)
where(

H
(0)
σ1 (q̃) H

(1)
σ1 (q̃)

H
(0)
σ2 (q̃) H

(1)
σ2 (q̃)

)
=

(
1 0

2−q̃
1−q̃ −

q̃1/2

1−q̃

)(
h

(0)
0 (q̃) h

(1)
0 (q̃)

h
(0)
1 (q̃) h

(1)
1 (q̃)

)

=

(
1− q̃ − 2q̃2 − 2q̃3 − 2q̃4 + . . . 1− 7q̃ − 14q̃2 − 8q̃3 − 2q̃4 + . . .
−1 + 2q̃ + 3q̃2 + 2q̃3 + q̃4 + . . . 1 + 10q̃ + 15q̃2 + 2q̃3 + 19q̃4 + . . .

)
.

(99)
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Although we will not use this in our current paper, we point out that the entries of(
h

(0)
n′ (q̃) h

(1)
n′ (q̃)

h
(0)
n′+1(q̃) h

(1)
n′+1(q̃)

)−1(
τ−1/2 0

0 τ 1/2

)(
h

(0)
n (q) h

(1)
n (q)

h
(0)
n+1(q) h

(1)
n+1(q)

)
(100)

can be expressed as combinations of the elementary functions holomorphic for τ ∈ C′ times
state integrals (see [20, 16] with the notation as in those papers)∫

Φb(x+ ib−1(mb +m′b−1))Φb(x− ib−1(mb +m′b−1)) exp
(
−πix2

)
dx , (101)

and therefore extend to analytic functions for τ ∈ C′.
Now for τ ∈ C, the above discussion and Equation (79) imply that the rotated 3D-index

is given by

Irot(n, n′)(q) = −1

2
h

(1)
n′ (q−1)h(0)

n (q) +
1

2
h

(0)
n′ (q−1)h(1)

n (q)

=
1

2
h

(1)
n′ (q)h(0)

n (q) +
1

2
h

(0)
n′ (q)h(1)

n (q)

=
i

2
(sΦ̂

(σ1)
n′ (2πiτ)H(1)

σ1 (q̃) + sΦ̂
(σ2)
n′ (2πiτ)H(1)

σ2 (q̃))(sΦ̂(σ1)
n (2πiτ)H(0)

σ1 (q̃) + sΦ̂(σ2)
n (2πiτ)H(0)

σ2 (q̃))

+
i

2
(sΦ̂

(σ1)
n′ (2πiτ)H(0)

σ1 (q̃) + sΦ̂
(σ2)
n′ (2πiτ)H(0)

σ2 (q̃))(sΦ̂(σ1)
n (2πiτ)H(1)

σ1 (q̃) + τ1/2sΦ̂(σ2)
n (2πiτ)H(1)

σ2 (q̃)) .

(102)
Now, let τ → 0 with arg(τ) fixed, positive and sufficiently small. Then, q̃ is exponentially
small compared to τ , and ignoring the exponential small corrections in the above identity,
and using the constant terms of the series in (99) and the quadratic relations (95) we obtain
that

Irot(n, n)(q) ∼ Φ̂(σ1)
n (2πiτ)Φ̂

(σ2)
n′ (−2πiτ) . (103)

5.8. Asymptotics of the meromorphic 3D-index. In the previous sections we gave
“horizontal” asymptotic expansion of the colored holomorphic blocks and of the rotated 3D-
index. We now discuss the horizontal asymptotics of the meromorphic 3D-index

Imer(0, 0)(q) =
∑
n∈Z

Irot(n, n)(q) ∼
∑
n∈Z

Φ̂(σ1)
n (2πiτ)Φ̂(σ2)

n (−2πiτ) .

Equation (87) implies that Φ̂
(σ1)
n (~)Φ̂

(σ2)
n (−~) up to O(~7) is given by

3−1/2e
2iVol

~ exp
(

2
√
−3~

)n2/2(
1−

11

12
√
−3

3
~

+
( −9
√
−3

6
n2 +

409

288
√
−3

6

)
~2

+
( −81

2
√
−3

9
n4 +

159

4
√
−3

9
n2 −

209839

51840
√
−3

9

)
~3

+
( 2403

8
√
−3

12
n4 −

5653

32
√
−3

12
n2 +

39693941

2488320
√
−3

12

)
~4

+
( 12879

20
√
−3

15
n6 −

129933

64
√
−3

15
n4 +

5481733

5760
√
−3

15
n2 −

17049329117

209018880
√
−3

15

)
~5

+
( 6561

8
√
−3

18
n8 −

646461

80
√
−3

18
n6 +

18984649

1280
√
−3

18
n4 −

1718762189

276480
√
−3

18
n2 +

39021801798779

75246796800
√
−3

18

)
~6 +O(~7)

)
.

(104)
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As explained in Section 3.3, the coefficent of ~k in A(~) :=
∑

n∈Z Φ̂
(σ1)
n (2πi~)Φ̂

(σ2)
n (−2πi~)

depends on the coefficents of the summand up to order ~3k, and is computed by formal
Gaussian integration. Then as 〈1〉2√−3~ = ζ8

√
2πi

2
√
−3~ we have

A(~) = e
2iVol

~

√
2πi

~
3−

3
4 2−

1
2B(~) , (105)

where B(~) = 1 +O(~). Explicitly, the terms of (104) that contribute to the coefficient of ~
in B(~) are

− 11

12
√
−3

3~−
9

√
−3

6n
2~2 − 81

2
√
−3

9n
4~3 . (106)

It follows that

coeff(B(~), ~) = − 11

12
√
−3

3~−
9

√
−3

6

〈n2〉2√−3~

〈1〉2√−3~
~2 − 81

2
√
−3

9

〈n4〉2√−3~

〈1〉2√−3~
~3

= − 11

12
√
−3

3~−
9

√
−3

6 (−1)
( 1

2
√
−3~

)
~2 − 81

2
√
−3

9 3
( 1

2
√
−3~

)2

~3

=
−19

24
√
−3

3~ .

(107)

Similarly, we obtain that

coeff(B(~), ~2) =
409

288
√
−3

6
~2 +

159

4
√
−3

9

〈n2〉
〈1〉

~3 +
2403

8
√
−3

1
2

〈n4〉
〈1〉

~4 +
12879

20
√
−3

15

〈n6〉
〈1〉

~5 +
6561

8
√
−3

18

〈n8〉
〈1〉

~6

=
409

288
√
−3

6
~2 +

159

4
√
−3

9
(−1)

( 1

2
√
−3~

)
~3 +

2403

8
√
−3

1
2

3
( 1

2
√
−3~

)2
~4

+
12879

20
√
−3

15
(−15)

( 1

2
√
−3~

)3
~5 +

6561

8
√
−3

18
105
( 1

2
√
−3~

)4
~6

=
1333

1152
√
−3

6
~2 .

(108)

Equations (107) and (108) are in complete agreement with the numerical extrapolation (2).
As we will see in Section 6, the same rational numbers with numerator 19 and 1333 will
appear in the asymptotics of the Turaev–Viro invariant of the 41 knot.

5.9. Vertical asymptotics. In this section, we discuss the vertical asymptotics of the col-
ored holomorphic blocks and of the rotated 3D-index. As was mentioned in the introduction,
we have no theoretical or computational control in the q̃-corrections, nor to exponentially
small terms, which we will therefore ignore.

Recall that the two colored holomorphic blocks of 41 coincide, when n = 0 with the pair of
q-series of the 41 studied in [25] (see Equation (73)). In [25] it was found that their vertical
asymptotics τ ↓ 0 were given by

h
(0)
0 (q) ∼ ζ8

√
τ
(

Φ̂
(σ1)
0 (2πiτ)− Φ̂

(σ2)
0 (2πiτ)

)
, h

(1)
0 (q) ∼

ζ8√
τ

(
Φ̂

(σ1)
0 (2πiτ) + Φ̂

(σ2)
0 (2πiτ)

)
. (109)

The factor ζ8 in the above formula is due to a different normalisation of the constant term
of the asymptotic series in [25], a famous eighth root of unity ambiguity arising from the
half integral weight. Note also that the asymptotic series in the above equation involve an
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oscillatory term, namely e±Vol/(2πτ), times a power series in τ . We can complement the above
with the asymptotics τ ↓ 0

h
(0)
0 (q−1) ∼ ζ8

√
−τ
(

Φ̂
(σ1)
0 (−2πiτ) + Φ̂

(σ2)
0 (−2πiτ)

)
, h

(1)
0 (q−1) ∼

ζ8√
−τ

(
−Φ̂

(σ1)
0 (−2πiτ) + Φ̂

(σ2)
0 (−2πiτ)

)
.

(110)
It comes with no surprise that for all integers n, we have

h
(0)
n (q) ∼ ζ8

√
τ
(

Φ̂
(σ1)
n (2πiτ)− Φ̂

(σ2)
n (2πiτ)

)
, h

(0)
n (q−1) ∼ ζ8

√
−τ
(

Φ̂
(σ1)
n (−2πiτ) + Φ̂

(σ2)
n (−2πiτ)

)
,

h
(1)
n (q) ∼

ζ8√
τ

(
Φ̂

(σ1)
n (2πiτ) + Φ̂

(σ2)
n (2πiτ)

)
, h

(1)
n (q−1) ∼

ζ8√
−τ

(
−Φ̂

(σ1)
n (−2πiτ) + Φ̂

(σ2)
n (−2πiτ)

) (111)

as τ ↓ 0. Note that these vertical asymptotics are bounded and oscillatory. This, together
with Equations (79) and (94), implies that for all integers n and n′ we have

Irot(n, n′)(q) ∼ −i(Φ̂(σ1)
n (2πiτ)Φ̂

(σ1)
n′ (2πiτ)− Φ̂(σ2)

n (2πiτ)Φ̂
(σ2)
n′ (2πiτ))

= Φ̂(σ1)
n (2πiτ)Φ̂

(σ2)
n′ (−2πiτ) + Φ̂(σ2)

n (2πiτ)Φ̂
(σ1)
n′ (−2πiτ) ,

(112)

confirming Conjecture 2 for the 41 knot. We now discuss the vertical asymptotics of the
meromorphic 3D-index. There are two key problems: the first is to make sense of the
asymptotic series

∑
n∈Z Φ̂

(σ1)
n (~)Φ̂

(σ1)
n (−~) which has no exponential term and it is simply a

power series in n~ and ~. The second is that the sum of the above series for (σ1, σ1) and
for (σ2, σ2) simply vanishes, if we interchange the summation over n with the terms of the
above series. On the other hand, the numerical vertical asymptotics of the meromorphic
3D-index suggest a non-vanishing contribution. We now explain a solution to this apparent
contradiction. The key idea is to use a version of the asymptotic series whose coefficients
of the powers of ~ are not polynomials in n~ but rather branches of algebraic functions on
an affine curve (the A-polynomial curve). These algebraic functions were discussed in detail
and computed in the paper [16] whose notation we follow here.

Recall the asymptotic series Φ
(σ)
41

(x, ~) from [16, Sec.5.1]: it comes from a power series in ~
of the form

√
δ41(x, y)Φ41(x, y, ~) ∈ Q(X41)[[~]] with first few terms given by [16, Eqn.(123)]

Φ41(x, y, ~) =
1√
δ41

(
1− 1

24 δ3
41

(
x−3 − x−2 − 2x−1 + 15− 2x− x2 + x3

)
~

+
1

1152 δ6
41

(
x−6 − 2x−5 − 3x−4 + 610x−3 − 606x−2 − 1210x−1

+ 3117− 1210x− 606x2 + 610x3 − 3x4 − 2x5 + x6
)
~2 + . . .

)
.

(113)

Here X41 is the affine curve given by the equation [16, Eqn.(116)]

− x2y = (1− y)(1− xy) , (114)

Q(X41) = Q(x)[y]/(x2y + (1− y)(1− xy)) is the field of rational functions of X41 , and [16,
Eqn.(118)]

δ41(x, y) = (xy2 − 1)/(xy) . (115)

Let yj(x) for j = 1, 2 denote the roots of Equation (114); they are algebraic functions that
collide when x is a root of the discriminant (1− 3x+x2)(1 +x+x2) of (114) with respect to
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y. The discriminant has two real roots at a0 = (3 −
√

5)/2 and a1 = (3 +
√

5)/2 satisfying
a0a1 = 1. The two branches are real when x > a1, and they are chosen so that

y1(a1 + 1) = 0.16866 . . . , y2(a1 + 1) = −0.16866 . . . . (116)

Given that (114) is a quadratic equation in y, an easy calculation shows that

δ41(x, yj(x)) = (−1)j−1
√
x−2 − 2x−1 − 1− 2x+ x2 (117)

for j = 1, 2. We now define Φ(σj)(x, ~) = Φ(x, yj(x), ~) for j = 1, 2. In the vertical asymp-
totics of the meromorphic 3D-index, we use the bilinear expression

Φ̂41(x, y, ~)Φ̂41(x, y,−~) =
1

δ41

(
1 +

1

δ6
41

(x−3−x−2−2x−1 + 5−2x−x2 +x3)~2 + . . .
)
, (118)

evaluated at y = yj(x) for j = 1, 2. The branches yj(x) satisfy the symmetry yj(x) = yj(1/x)
for j = 1, 2 and the linear relation

1/δ41(x, y1(x)) + 1/δ41(x, y2(x)) = 0 . (119)

The above was called a quadratic relation of asymptotic series in [24].
The functions yj(x) are analytic functions on R \ {a0, a1} and satisfy the bounds yj(x) =

O(1/x) for |x| � 0 and yj(x) = (x − a0)−1/2 for x near a0 and yj(x) = (x − a1)−1/2 for x
near a1. It follows that the period integrals

∫
Ck
fj(u)du of fj(u) = 1/δj(e

u) for j = 1, 2 and
for C1 = (−∞, log(a0)), C2 = (log(a0), log(a1)) and C3 = (log(a1),∞) are well-defined (i.e.,
absolutely-convergent) and in fact they are integer linear combinations of∫

C3

f1(eu)du = 0.70030152116630101159 . . . ,∫
C2

f1(eu)du = −i1.5962422221317835101 . . . .

(120)

6. The Turaev–Viro invariant of a knot

6.1. Definition. The Turaev-Viro invariant of a closed 3-manifold was defined in [40] using a
triangulation of the manifold where its extension to triangulated 3-manifolds with nonempty
boundary (in particular to link complements), was also discussed. It was noticed by Walker,
Turaev and Roberts [36] independently that the Turaev-Viro invariant of a closed 3-manifold
M equals to the SU(2) Reshetikhin–Turaev invariant of its double D(M) = M]−M . This
relation was extended to 3-manifolds with boundary (where the doubleD(M) = M∪∂M−M)
by Benedetti and Petronio [3]. A careful extension of the above relation from SU(2) to SO(3)
was given by Chen–Yang in [5] and by Detcherry–Kalfagianni–Yang [9, Thm.3.1], and a
Volume Conjecture for them was formulated in [5]. A comparison between the Turaev–Viro
invariants of a knot complement with the Turaev–Viro invariant of the closed 3-manifold
obtained by 0-surgery on the knot was given by Detcherry–Kalfagianni in [8, Cor.5.3]. The
comparison takes the form of an inequality whose proof follows easily from the Cauchy-
Schwarz inequality of an inner product.

In the present paper, we will focus on the Turaev–Viro invariant of a knot, which is defined
by a state-sum formula in terms of colorings of edges of an ideal triangulation of the knot
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complement. Theorem 3.1 of [9] expresses this state-sum in terms of the values of the colored
Jones polynomial of the knot at roots of unity as follows:

TVK,m+1/2 = ev1/(m+1/2)

(
η2

2m+1

m∑
k=1

[k]2|JK,k(q)|2
)
. (121)

Here, JK,n(q) ∈ Z[q±1] denotes the n-th colored Jones polynomial of a knot K in 3-space [31,
39], normalised by Junknot,n(q) = 1, and such that JK,2(q) is the Jones polynomial [29] of
K, and η2m+1 = 2√

2m+1
sin
(

2π
2m+1

)
, e(x) = e2πix, [k] = (qk/2 − q−k/2)/(q1/2 − q−1/2) and

eva/c(f(q)) = f(e(a/c)) for a/c ∈ Q.
We stress that in the definition of the Turaev–Viro invariants of a knot, we choose as our

variable m+ 1/2 rather than 2m+ 1 for reasons that will become clear later.
It is obvious from (121) that the Turaev–Viro invariant of a knot at m+1/2 is a finite sum

of positive m terms. Experimentally it appears that the dominant term is near the end (i.e.,
JK,m(e(1/(m+ 1/2))) and grows exponentially with respect to m and has a full asymptotic
expansion into power series in 1/(m+ 1/2). Moreover, each term for k = m− n with n > 0
fixed and n large also grows exponentially with respect to m, at the same rate as the one
with n = 0, and with subleading corrections which are power series in 1/(m + 1/2) with
coefficients polynomials in n. Moreover, a symmetry of the colored Jones polynomial allows
one to double the sum over m terms to one over 2m terms, and thus consider n to be a fixed
integer. One can replace the sum over n by a formal Gaussian integral and one can further
experimentally observe the expansion of the asymptotics of the Turaev–Viro invariant of a
knot to all orders in m + 1/2. The resulting series have interesting arithmetic and analytic
properties analogous to those in [24] with one key difference: they are the double of the
series of [24].

6.2. Numerical asymptotics. As an illustration of the above discussion, we will give
the asymptotics of the Turaev–Viro invariant of the simplest hyperbolic (41) knot. Let
v = Vol(41)/(2π) = 2 ImLi2(e(1/6))/(2π) = 0.3230659472 . . . denote the volume of the 41

knot [38], divided by 2π.

Observation 11. We have:

TV41,m+1/2 ∼
e2v(m+1/2)

2
1
2 · 3 3

4

(m+ 1/2)
1
2B

(
π

22 · 32 ·
√

3 · (m+ 1/2)

)
, (122)

where B(h) =
∑∞

k=0
bk
k!
hk with bk ∈ Q and the first 10 coefficients are given by

k 0 1 2 3 4 5 6

bk 1 19 1333 1601717
5

704696117
5

683123156521
7

3461441912579591
5·7

and
k 7 8 9

bk
691282346978984873

5
1274507463563873288357

5
164770744067453335344413873

52·11

This is a numerical observation, obtained by numerical computation of the values of the
colored Jones N -th colored Jones polynomials at roots of unity (using either the Le-Habiro
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formula for the colored Jones polynomial, or its recursion, known to exist for all knots,
and which implies that computing the N -th colored Jones polynomial at a root of unity
can be done so in O(N)-steps) for N = 1000, . . . , 1100, to high precision, then numerically
extrapolating the answer and finally recognizing the corresponding elements of the trace
field (which in our case is Q(

√
−3) hence the numbers in question are rational). A detailed

description of this method with numerous examples of asymptotics of quantum invariants is
given in [24] and in [25].

Note that the growth rate of the Turaev–Viro invariant of the 41 knot is not the volume, but
twice the volume. This doubling has to do with the fact that the Turaev–Viro invariant of a
knot complement is the Reshetikhin–Turaev invariant of the doubled manifold, and matches
the fact that the rotated 3D-index is a bilinear function of the colored holomorphic blocks
(see Equation (43)), and hence its asymptotics is a bilinear (and not linear) combination of
asymptotic series of colored holomorphic blocks.
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Appendix A. The 3D-index of the 52 knot

In this appendix, we discuss in detail the 3D-index of the 52 knot and its holomorphic
blocks and colored holomorphic blocks. All functions and number in this section depend on
the knot 52 which we omit from the notation.

A.1. Holomorphic blocks. The 52 knot has three nontrivial boundary parabolic PSL2(C)
representations, all Galois conjugate to the geometric one, the latter having a cubic trace field
of discriminant -23. Hence, this knot has three holomorphic blocks B(α)(x; q) for α = 1, 2, 3
(see [2, Eqn.6.48] and [16, Sec.6.2])

B(1)(x; q) = θ(x; q)G(x, x−1, 1, q) ,

B(2)(x; q) =
θ(x; q)

θ(−q 1
2x; q)

G(x, x2, x, q) ,

B(3)(x; q) =
θ(x−1; q)

θ(−q 1
2x−1; q)

G(x−1, x−2, x−1, q) ,

(123)

expressed in terms of the function

G(x, y, z, q) =

{
(qx; q)∞(qy; q)∞

∑∞
k=0

zk

(q−1;q−1)k(qx;q)k(qy;q)k
for |q| < 1

1
(x;q−1)∞(y;q−1)∞

∑∞
k=0

zk

(q−1;q−1)k(qx;q)k(qy;q)k
for |q| > 1 .

(124)
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As in the case of the 41 knot, Wilf-Zeilberger theory [41] implemented by Koutschan [33]
implies that the holomorphic blocks satisfy the same q-difference equation

P0(x, q)B(α)(x, q) + P1(x, q)B(α)(q−1x, q) + P2(x, q)B(α)(q−2x, q) + P3(x, q)B(α)(q−3x, q) = 0 , (125)

for α = 1, 2, 3, where
P0(x, q) = −q−2x2(1− q−2x)(1 + q−2x)(1− q−5x2) ,

P1(x, q) = q3/2x−3(1− q−1x)(1 + q−1x)(1− q−5x2)

· (1− q−1x− q−1x2 − q−4x2 + q−2x2 + q−3x2 + q−2x3 + q−5x3 + q−5x4 + q−5x4 − q−6x5) ,

P2(x, q) = q5x−5(1− q−2x)(1 + q−2x)(1− q−1x2)

· (1− q−2x− q−2x− q−2x2 − q−5x2 + q−4x3 + q−7x3 − q−5x3 − q−6x3 + q−7x4 − q−9x5) ,

P3(x, q) = q
11
2 x−5(1− q−1x)(1 + q−1x)(1− q−1x2) .

(126)

Compare with [16, Eqn.(259)] (with m = 0), the slight difference in the coefficients being due
to the fact that we insist our q-difference equation to be satisfied by the rotated 3D-index,
as we already discussed for the case of the 41 knot.

A.2. Colored holomorphic blocks. The holomorphic blocks are meromorphic functions of
(x, q). Now we define the colored holomorphic blocks from the expansions of the expansions
of the holomorphic blocks around x = qn, or equivalently when x = qneu, around u = 0. To
begin with, we define h(0)

n (q) for |q| < 1 by

B(1)(qneu; q) = (−q
1
2 ; q)2

∞(q; q)2
∞h

(0)
n (q) +O(u1) . (127)

One can then show that

B(2)(qneu; q) = (−q
1
2 ; q)2

∞h
(0)
n (q)u−1 +O(u0) ,

B(3)(qneu; q) = −(−q
1
2 ; q)2

∞h
(0)
n (q)u−1 +O(u0) .

(128)

Next, we define h(1)
n (q) for |q| < 1 by

B(2)(qneu; q) +B(3)(qneu; q) = −2(−q
1
2 ; q)2

∞h
(1)
n (q) +O(u1) . (129)

Then, one can show that

−B(1)(qneu; q)
℘′(eu, q)

2℘(eu, q)(q; q)2
∞
−B(2)(qneu; q) = (−q

1
2 ; q)2

∞h
(1)
n (q) +O(u1) , (130)

where ℘ is the Weierstrass ℘-function. Last, we define h(2)
n (q) for |q| < 1 by

−B(1)(qneu; q)
℘′(eu, q)

℘(eu, q)(q; q)2
∞
−B(2)(qneu; q) +B(3)(qneu; q) = (−q

1
2 ; q)2

∞h
(2)
n (q)u+O(u2) .

(131)
Next we define the colored holomorphic blocks when |q| > 1. We begin by defining

h
(0)
n (q−1) for |q| < 1 by

−B(1)(q−ne−u; q−1) =
1

(−q 1
2 ; q)2

∞(q; q)2
∞
h(0)
n (q)u−2 +O(u−1) . (132)
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One can show that

−B(2)(q−ne−u; q−1) =
1

(−q 1
2 ; q)2

∞
h(0)
n (q)u−1 +O(u0) ,

−B(3)(q−ne−u; q−1) = − 1

(−q 1
2 ; q)2

∞
h(0)
n (q)u−1 +O(u0) .

(133)

Then, we define h(1)
n (q−1) for |q| < 1 by

B(2)(q−ne−u; q) +B(3)(q−ne−u; q) =
1

(−q 1
2 ; q)2

∞
h(1)
n (q) +O(u1) . (134)

One can show

− 2B(1)(q−ne−u; q)
℘(eu; q)(q; q)2

∞
℘′(eu; q)

− 2B(2)(q−ne−u; q) =
1

(−q 1
2 ; q)2

∞
h(1)
n (q) +O(u1) . (135)

Finally, we define h(2)
n (q−1) for |q| < 1 by

2B(1)(q−ne−u; q)
℘(eu; q)(q; q)2

∞
℘′(eu; q)

+B(2)(q−ne−u; q)−B(3)(q−ne−u; q) =
h

(2)
n (q)

(−q
1
2 ; q)2

∞
u+O(u2) .

(136)
Since the holomorphic blocks B(α)(x; q) satisfy the q-difference equation (125), it follows that
the colored holomorphic blocks, given in (139), (140), and (141), satisfy the linear q-difference
equation

P0(qn, q)h(α)
n (q) + P1(qn, q)h

(α)
n−1(q) + P2(qn, q)h

(α)
n−2(q) + P3(qn, q)h

(α)
n−3(q) = 0 , (137)

for all α = 1, 2, 4 and all integers n.
Our next lemma gives explicit q-hypergeometric sums for the colored holomorphic blocks of

the 52 knot. Although the derivation of these sums is rigourous, albeit routine, the formulas
are lengthy. To avoid clutter, we will introduce some notation for q-harmonic sums. The
standard notationHn =

∑n
j=1 1/j for harmonic numbers, and its extensionH(k)

n =
∑n

j=1 1/jk

leads to several recent q-generalisations whose notation is not standard, see e.g., Singer [37].
In our formulas for the colored holomorphic blocks of the 52 knot, we will use

Hn(q) =
n∑
j=1

qj

1− qj
, H(2)

n (q) =
n∑
j=1

qj

(1− qj)2
. (138)

Lemma 12. We have:

h(0)
n (q) = (−1)nq|n|/2

∞∑
k=0

q|n|k

(q−1; q−1)k(q; q)k+2|n|(q; q)k+|n|
, (139)
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h(1)
n (q) = −(−1)nq|n|/2

∞∑
k=0

q|n|k

(q; q)k+2|n|(q−1; q−1)k(q; q)k+|n|

×
(
k + |n| − 1

4
− 3E1(q) +Hk(q) +Hk+|n|(q) +Hk+2|n|(q)

)
+ q−n

2/2

|n|−1∑
k=0

(q−1, q−1)|n|−1−k

(q−1, q−1)k(q; q)k+|n|
,

(140)

and

h(2)
n (q) = (−1)nq|n|/2

∞∑
k=0

q|n|k

(q−1; q−1)k(q; q)k+|n|(q; q)k+2|n|

×

(
E2(q) +

1

8
−H(2)

k (q)−H(2)
k+|n|(q)−H

(2)
k+2|n|(q)

−
(
k + |n| − 1

4
− 3E1(q) +Hk(q) +Hk+|n|(q) +Hk+2|n|(q)

)2
)

+ 2q−n
2/2

|n|−1∑
k=0

(q−1, q−1)|n|−1−k

(q−1, q−1)k(q; q)k+|n|

×

(
|n| − 3

4
− 3E1(q) +Hk(q) +Hk+|n|(q) +H|n|−k−1(q)

)

− 2(−1)nq−|n|/2
|n|−1∑
k=0

q−|n|k
(q−1; q−1)2|n|−k−1(q−1; q−1)|n|−k−1

(q−1; q−1)k
,

(141)

for |q| 6= 1. The colored holomorphic blocks satisfy the symmetries

h
(α)
−n(q) = h(α)

n (q), α = 0, 1, 2 . (142)

The first few values of the colored holomorphic blocks are given by
h
(0)
0 (q) = 1− q − 3q2 − 5q3 − 7q4 − 6q5 − 3q6 + 8q7 + 24q8 + 52q9 + . . . ,

h
(0)
1 (q) = −q

1
2 − 2q

3
2 − 3q

5
2 − 3q

7
2 − q

9
2 + 4q

11
2 + 14q

13
2 + 29q

15
2 + 51q

17
2 + . . . ,

h
(0)
2 (q) = q + 2q2 + 5q3 + 8q4 + 14q5 + 19q6 + 26q7 + 29q8 + 30q9 + . . . ,

(143)

h
(1)
0 (q) = −

1

2
+

9

2
q +

21

2
q2 +

19

2
q3 +

9

2
q4 − 27q5 −

133

2
q6 − 156q7 − 252q8 − 384q9 + . . . ,

h
(1)
1 (q) = q−

1
2 +

5

2
q

1
2 + 3q

3
2 −

1

2
q

5
2 −

23

2
q

7
2 −

73

2
q

9
2 − 74q

11
2 − 133q

13
2 −

393

2
q

15
2 −

529

2
q

17
2 + . . . ,

h
(1)
2 (q) = −q−3 − 2q−1 − 2−

15

2
q − 11q2 −

41

2
q3 − 23q4 − 27q5 −

19

2
q6 + 30q7 +

237

2
q8 + 272q9 + . . . ,

(144)

h
(2)
0 (q) = −

1

6
+

37

6
q +

17

2
q2 −

115

6
q3 −

389

6
q4 − 181q5 −

579

2
q6 −

1414

3
q7 − 548q8 −

1418

3
q9 + . . . ,

h
(2)
1 (q) = −2q−

3
2 + 4q−

1
2 +

1

6
q

1
2 −

29

3
q

3
2 −

59

2
q

5
2 −

139

2
q

7
2 −

755

6
q

9
2 −

560

3
q

11
2 −

673

3
q

13
2 −

941

6
q

15
2 + . . . ,

h
(2)
2 (q) = −2q−8 + 4q−7 − 2q−4 − 6q−3 + 6q−2 − 4q−1 + 4 +

11

6
q + . . . ,

(145)
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h
(0)
0 (q−1) = 1 + q2 + 3q3 + 6q4 + 10q5 + 16q6 + 24q7 + 37q8 + 55q9 + . . . ,

h
(0)
1 (q−1) = +q

7
2 + 2q

9
2 + 4q

11
2 + 6q

13
2 + 10q

15
2 + 15q

17
2 + 24q

19
2 + 37q

21
2 + 58q

23
2 + 88q

25
2 + . . . ,

h
(0)
2 (q−1) = q12 + 2q13 + 5q14 + 9q15 + 17q16 + 27q17 + 45q18 + 68q19 + 105q20 + 154q21 + . . . ,

(146)

h
(1)
0 (q−1) = 1− 3q − 3q2 + 3q3 + 6q4 + 12q5 + 5q6 + 3q7 − 12q8 − 25q9 + . . . ,

h
(1)
1 (q−1) = −q

3
2 − q

5
2 + 2q

7
2 + 4q

9
2 + 6q

11
2 + 3q

13
2 − q

15
2 − 9q

17
2 − 18q

19
2 − 23q

21
2 + . . . ,

h
(1)
2 (q−1) = q5 + q7 − q8 − q9 − 4q10 − 6q11 − 6q12 − 6q13 − 2q14 + . . .

(147)

h
(2)
0 (q−1) = −

5

6
+ 5q −

53

6
q2 −

117

2
q3 − 117q4 −

601

3
q5 −

865

3
q6 − 449q7 −

4523

6
q8 −

7547

6
q9 + . . . ,

h
(2)
1 (q−1) = 2q

1
2 + q

3
2 − q

5
2 −

119

6
q

7
2 −

107

3
q

9
2 −

172

3
q

11
2 − 62q

13
2 −

304

3
q

15
2 −

349

2
q

17
2 − 370q

19
2 + . . . ,

h
(2)
2 (q−1) = −2q + 4q2 − 2q3 − 2q4 − 5q5 + 2q6 + 5q7 + 15q8 + 25q9 + . . . .

(148)

The colored holomorphic blocks have q and q−1-degree

degq h
(0)
n (q) = |n|/2 , degq h

(0)
n (q−1) = |n|(5|n|+ 2)/2 ,

degq h
(1)
n (q) = −|n|(2|n| − 1)/2 , degq h

(1)
n (q−1) = |n|(2|n|+ 1) ,

degq h
(2)
n (q) = −|n|(5|n| − 2)/2 , degq h

(2)
n (q−1) = |n|/2 .

(149)

This can easily be deduced from Equations (139), (140), and (141).

A.3. The rotated and the meromorphic 3D-index. We next express the rotated 3D-
index in terms of the colored holomorphic blocks.

Proposition 13. For all integers n and n′ we have:

Irot(n, n′)(q) = −1

2
h

(0)
n′ (q−1)h(2)

n (q)− h(1)
n′ (q−1)h(1)

n (q)− 1

2
h

(2)
n′ (q−1)h(0)

n (q) . (150)

Proof. The rotated 3D-index is given by the limit x → 1 in Equation (38). On the other
hand, the expansions of the holomorphic blocks in terms of coloured holomorphic blocks,
imply that

B(1)(q−n
′
e−u; q−1)B(1)(qneu; q) +B(2)(q−n

′
e−u; q−1)B(2)(qneu; q) +B(3)(q−n

′
e−u; q−1)B(3)(qneu; q)

= −
1

2
h
(0)
n′ (q−1)h

(2)
n (q)− h(1)

n′ (q−1)h
(1)
n (q)−

1

2
h
(2)
n′ (q−1)h

(2)
n (q) +O(u) .

(151)

The result follows. �

Using Equations (139), (140), (141) and the above proposition, it follows that the first few
values of the rotated 3D-index Irot(n, n)(q) are given by

Irot(0, 0)(q) = 1− 12q + 3q2 + 74q3 + 90q4 + 33q5 − 288q6 − 684q7 − 1095q8 − 1140q9 + . . . ,

Irot(1, 1)(q) = 2q + 7q2 + 7q3 − 13q4 − 68q5 − 154q6 − 220q7 − 165q8 + 157q9 + 898q10 + . . . ,

Irot(2, 2)(q) = 2q2 + 6q4 + 2q5 + 17q6 + 14q7 + 36q8 + 21q9 + 6q10 − 110q11 + . . . ,

(152)
and their degree is given by degq I

rot(n, n)(q) = |n|. This, together with Equation (34) gives
the first few terms of the meromorphic 3D-index as stated in Equation (8).
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A.4. Quadratic relations. We now discuss a new phenomenon of the coloured holomorphic
blocks of the 52 knot, which was trivial for the case of the amphichiral knot 41, namely
quadratic relations among the colored holomorphic blocks. These relations were originally
discovered in [25], and interpreted in terms of a duality statement of a q-holonomic module
by the authors in [23]. These quadratic relations for 52 are

h
(0)
n′ (q−1)h(2)

n (q)− 2h
(1)
n′ (q−1)h(1)

n (q) + h
(2)
n′ (q−1)h(0)

n (q) = 0 (if n = n′) , (153)

else the left hand-side is in Z[q±1/2] if n 6= n′. For instance, ifH3(q) =

(
h
(0)
0 (q) h

(1)
0 (q) h

(2)
0 (q)

h
(0)
1 (q) h

(1)
1 (q) h

(2)
1 (q)

h
(0)
2 (q) h

(1)
2 (q) h

(2)
2 (q)

)
,

then we have

H3(q)

 0 0 −1

0 2 0
−1 0 0

H3(q−1)t =

 0 −2q
1
2 + 2q

3
2 2q − 6q2 + 2q4 + 2q5 + 2q6 − 4q7 + 2q8

2q−
3
2 − 2q−

1
2 0 −2q

3
2 + 2q

9
2

2q−8 − 4q−7 + 2q−6 + 2q−5 + 2q−4 − 6q−2 + 2q−1 2q−
9
2 − 2q−

3
2 0

 .

(154)

The above relations together with Proposition 13 imply that

Irot(n, n)(q) = −2h(1)
n (q−1)h(1)

n (q) . (155)

A.5. Asymptotic series. Applying the discrete WKB ansatz (46) to the linear q-difference
equation (137), we find that a2,−1 satisfies the polynomial equation

− 32a3
2,−1 − 112a2

2,−1 − 120a2,−1 − 68 = 0 . (156)

It follows that a2,−1 = −3
2

+ ξ, where

ξ3 − ξ2 + 1 = 0 (157)

generates the trace field of 52, the cubic field of discriminant -23. Using the initial condition
Φ0(~) from [24] (see also [15]), we find that for

δ = 3ξ − 2 , (158)

we have,

Φ̂
(σ1)
n (~) =

1
√
δ
e
V (σ1)

~ exp

((
−

3

2
+ ξ

)
n2~

)

×
(

1 +

(
−

33

2116
ξ2 −

121

1058
ξ +

245

2116

)
~

+

((
−

7

46
ξ2 +

7

46
ξ −

1

23

)
n2 +

( 10025

389344
ξ2 −

12643

389344
ξ +

683

97336

))
~2

+

((
−

5

276
ξ2 +

17

276
ξ −

1

69

)
n4 +

(
−

5557

292008
ξ2 +

2609

146004
ξ −

1984

36501

)
n2

+
( 50198891

12357778560
ξ2 −

3544387

1235777856
ξ +

6584729

1029814880

)
~3

+

((
−

251

8464
ξ2 +

67

1587
ξ −

103

3174

)
n4 +

( 175913

26864736
ξ2 −

71191

17909824
ξ +

141915

17909824

)
n2

+
(
−

952485893

1136915627520
ξ2 +

1861268771

4547662510080
ξ +

203137333

909532502016

))
~4

(159)
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+

(( 259

38088
ξ2 −

773

47610
ξ +

2209

190440

)
n6 +

(
−

4897763

80594208
ξ2 +

30391187

322376832
ξ −

13140721

322376832

)
n4

+
( 24639499193

852686720640
ξ2 −

78232585819

1705373441280
ξ +

3754956391

213171680160

)
n2

+
(
−

12690681719899

4393041984737280
ξ2 +

32954346270143

8786083969474560
ξ −

3038166526261

2196520992368640

))
~5

+

(( 1

828
ξ2 −

7

6624
ξ +

7

6624

)
n8 +

( 80599

3504096
ξ2 −

76921

3504096
ξ +

4732

182505

)
n6

+
(
−

5845444967

74146671360
ξ2 +

12028059677

148293342720
ξ −

8174917009

74146671360

)
n4

+
( 208659394649

5457195012096
ξ2 −

1077794714231

27285975060480
ξ +

1449480552719

27285975060480

)
n2

+
(
−

8106425420368231

2694399083972198400
ξ2 +

25148935902272269

8083197251916595200
ξ −

4471134896235023

898133027990732800

))
~6 +O(~7)

)
.

Equation (159) above implies that for 52 and (σ, σ′) = (σ1, σ2), we have

Φ̂
(σ1)
n (~)Φ̂

(σ2)
n (−~)

=
1

√
δ(σ1)δ(σ2)

e
V (σ1)−V (σ2)

~ exp
((
ξ(σ1) − ξ(σ2)

)
n2~

)(
1

+

(
−

33

2116
(ξ(σ1))2 −

121

1058
ξ(σ1) +

33

2116
(ξ(σ2))2 +

121

1058
ξ(σ2)

)
~

+

((
−

7

46
(ξ(σ1))2 +

7

46
ξ(σ1) −

7

46
(ξ(σ2))2 +

7

46
ξ(σ2) −

2

23

)
n2

+
(
−

1089

4477456
(ξ(σ2))2 −

3993

2238728
ξ(σ2) +

246745

8954912
(ξ(σ1))2 −

3993

2238728
(ξ(σ2))2

−
14641

1119364
ξ(σ2) −

172209

8954912
ξ(σ1) + (

246745

8954912
(ξ(σ2))2 −

172209

8954912
ξ(σ2) +

2811

4477456

))
~2

+

((
−

5

276
(ξ(σ1))2 +

17

276
ξ(σ1) +

5

276
(ξ(σ2))2 −

17

276
ξ(σ2)

)
n4

+
(
−

1925

97336
ξ(σ2) −

107

146004
(ξ(σ1))2 +

1925

97336
(ξ(σ2))2 +

1525

292008
ξ(σ1) + (

107

146004
(ξ(σ2))2 −

1525

292008
ξ(σ2))

)
n2

+
( 2843269

823851904
ξ(σ2) +

3001169

3089444640
(ξ(σ1))2 −

2843269

823851904
(ξ(σ2))2

+
220399

2471555712
ξ(σ1) + (−

3001169

3089444640
(ξ(σ2))2 −

220399

2471555712
ξ(σ2))

))
~3 +O(~4)

)
.

(160)

The coefficients of ~k for k = 4, 5, 6 in the above expression can be computed from (159),
but they are lengthy and will not be given here.

As explained in Section 3.3, the coefficent of ~k in A(~) :=
∑

n∈Z Φ̂
(σ1)
n (2πi~)Φ̂

(σ2)
n (−2πi~)

depends on the summand up to O(~3k+1), and is computed by formal Gaussian integration.
Explicitly, we have

A(~) = e
2iVol

~

√
2πi

~
1√

δ(σ1)δ(σ2)(2ξ(σ1) − 2ξ(σ2))

×
(

1 +
(
−

1258

13225
(ξ(σ1) − ξ(σ2)) +

7

1840
(ξ(σ1) − ξ(σ2))3 −

963

211600
(ξ(σ1) − ξ(σ2))5

)
~

+
(
−

226591

19467200
+

88839

7786880
(ξ(σ1) − ξ(σ2))2 +

38187

155737600
(ξ(σ1) − ξ(σ2))4

)
~2 +O(~3)

)
,

(161)

in complete agreement with the numerical extrapolation of the asymptotics of Irot
52

(0, 0)(q).
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A.6. Horizontal asymptotics. We now discuss the horizontal asymptotics of the colored
holomorphic blocks when τ tends to zero just above (resp. below) the positive (resp. nega-
tive) reals. The next identity (162) expresses the holomorphic blocks as Borel resummations
of the three asymptotic series. This identity was discovered and verified in [15, Sec.6.4] when
n = using about 200 coefficients (of powers of ~) of the asymptotic series. When n is an
arbitrary integer, we use about 90 coefficients of the asymptotic series, each a polynomial of
n to numerically evaluate the Borel resummation using Padé approximants. We then find
numerically that for τ in a cone C = arg(θ) ∈ (θ0, θ1) with 0 < θ0 < θ1 sufficiently small, we
have

h(j)
n (q) = τ 1−j

3∑
k=1

sΦ̂(σk)
n (2πiτ)H(j)

σk
(q̃) , (162)

where for |q̃| < 1, we haveH
(j)
σ1 (q̃)

H
(j)
σ2 (q̃)

H
(j)
σ3 (q̃)

 =


2q̃3−2q̃2−2q̃+1
−q̃3+q̃2+q̃−1

−q̃11/2+2q̃9/2−q̃7/2+2q̃5/2−q̃3/2+q̃1/2
−q̃4+q̃3+q̃−1

− q̃7

−q̃5+q̃3+q̃2−1

−1 0 0
−q̃3+q̃−1
−q̃3+q̃2+q̃−1

−q̃11/2+3q̃9/2−q̃7/2+2q̃5/2−2q̃3/2+q̃1/2

−q̃4+q̃3+q̃−1
− q̃7

−q̃5+q̃3+q̃2−1


h

(j)
0 (q̃)

h
(j)
1 (q̃)

h
(j)
2 (q̃)

 , (163)

and H
(j)
σ1 (q̃−1)

H
(j)
σ2 (q̃−1)

H
(j)
σ3 (q̃−1)

 =


−1 0 0

−3q̃3+2q̃2+2q̃−2
−q̃3+q̃2+q̃−1

q̃5−q̃4+2q̃3−q̃2+2q̃−1

−q̃11/2+q̃9/2+q̃5/2−q̃3/2
− 1
−q̃7+q̃5+q̃4−q̃2

−q̃3+q̃2−1
−q̃3+q̃2+q̃−1

q̃5−2q̃4+2q̃3−q̃2+3q̃−1

−q̃11/2+q̃9/2+q̃5/2−q̃3/2
− 1
−q̃7+q̃5+q̃4−q̃2


h

(j)
0 (q̃−1)

h
(j)
1 (q̃−1)

h
(j)
2 (q̃−1)

 . (164)

With around 90 coefficients of Φ̂
(σk)
n , these identities can be checked to about 10 coefficients

of q̃. Using Equation (150) and the above, we obtain a bilinear expression for Irot(n, n′)(q)

in terms of products Φ̂
(σ)
n (2πiτ)Φ̂

(σ′)
n (−2πiτ) times q̃-series. On the fixed ray of τ near

the positive real axis, we can ignore all q̃-terms, and among all bilinear combinations of
asymptotic series, there is precisely one with (σ, σ′) = (σ1, σ2) which is exponentially larger
than the others. In particular, we find that

Irot(n, n′)(q) ∼ Φ̂(σ1)
n (2πiτ)Φ̂

(σ2)
n′ (−2πiτ) , (165)

concluding the one part of Conjecture 1.

A.7. Vertical asymptotics. Following the method of [25] and using a high precision com-
putation of the colored holomorphic blocks when τ is small on the imaginary axis, we find
numerically that the coloured holomorphic blocks have the following vertical asymptotics as
τ ↓ 0

h
(0)
n (q) ∼ τ Φ̂

(σ1)
n (2πiτ)− τ Φ̂

(σ2)
n (2πiτ) , h

(0)
n (q−1) ∼ −τ Φ̂

(σ3)
n (−2πiτ) ,

h
(1)
n (q) ∼ −

1

2
Φ̂

(σ1)
n (2πiτ)−

1

2
Φ̂

(σ2)
n (2πiτ) , h

(1)
n (q−1) ∼ Φ̂

(σ1)
n (−2πiτ) + Φ̂

(σ2)
n (−2πiτ) ,

h
(2)
n (q) ∼ −

1

6τ
Φ̂

(σ1)
n (2πiτ) +

1

6τ
Φ̂

(σ2)
n (2πiτ) , h

(2)
n (q−1) ∼ −

1

6τ
Φ̂

(σ3)
n (−2πiτ) .

(166)

As in the case of the 41 knot, each asympotic statement above involves linear combinations
of asymptotic series of the same exponential growth rate.

Taking the vertical asymptotics of the quadratic relation (153) of the colored holomorphic
blocks gives the following quadratic relation of the three asymptotic series (given in [24,
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Sec.3.3] for n = 0)

Φ̂(σ1)
n (~)Φ̂(σ1)

n (−~) + Φ̂(σ2)
n (~)Φ̂(σ2)

n (−~) + Φ̂(σ3)
n (~)Φ̂(σ3)

n (−~) = 0 , (167)

valid for all integers n.
Equations (150) and (166) imply that

Irot(n, n′)(q) ∼ −Φ̂
(σ1)
n (2πiτ)Φ̂

(σ1)
n′ (−2πiτ) + Φ̂

(σ2)
n (2πiτ)Φ̂

(σ3)
n′ (−2πiτ) + Φ̂

(σ3)
n (2πiτ)Φ̂

(σ2)
n′ (−2πiτ) . (168)

verifying Conjecture (2) for the 52 knot.
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