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Abstract. The partition function of complex Chern-Simons theory on a 3-manifold with
torus boundary reduces to a finite dimensional state-integral which is a holomorphic function
of a complexified Planck’s constant τ in the complex cut plane and an entire function of a
complex parameter u. This gives rise to a vector of factorially divergent perturbative formal
power series whose Stokes rays form a peacock-like pattern in the complex plane.

We conjecture that these perturbative series are resurgent, their trans-series involve two
non-perturbative variables, their Stokes automorphism satisfies a unique factorization prop-
erty and that it is given explicitly in terms of a fundamental matrix solution to a (dual)
linear q-difference equation. We further conjecture that a distinguished entry of the Stokes
automorphism matrix is the 3D-index of Dimofte–Gaiotto–Gukov. We provide proofs of
our statements regarding the q-difference equations and their properties of their fundamen-
tal solutions and illustrate our conjectures regarding the Stokes matrices with numerical
calculations for the two simplest hyperbolic 41 and 52 knots.
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1. Introduction

1.1. Chern–Simons theory with compact and complex gauge group. Chern–Simons
gauge theory, introduced by Witten in his seminal paper [Wit89] as a quantum field theory
proposal of the Jones polynomial [Jon87], remains one of the most fascinating quantum field
theories. It gives a powerful framework to study the quantum topology of knots and three-
manifolds, and at the same time it provides a rich yet tractable model to explore general
aspects of quantum field theories.

In [Wit89], Witten analyzed in detail Chern–Simons gauge theory with a compact gauge
group (such as SU(2)). Its partition function on a 3-manifold M with torus boundary
components depends on a quantized version k ∈ Z of Planck’s constant (or equivalently, on
a complex root of unity e2πik), as well as a discrete color (a finite dimensional irreducible
representation of SU(2)) per boundary component of M . A more powerful Chern–Simons
theory with complex gauge group (such as SL(2,C)) was introduced by Witten [Wit91]
and developed extensively by Gukov [Guk05]. A key feature of complex Chern–Simons
theory is that the partition function ZM(u; τ) for a 3-manifold M with torus boundary
components depends analytically on a complex parameter τ (where τ = 1/k in the Chern–
Simons theory with compact gauge group) as well as on a complex parameter u per each
boundary component of M that plays the role of the holonomy of a peripheral curve. The
analytic dependence of ZM(u; τ) on the parameters u and τ allows one to formulate questions
of complex analysis and complex geometry which would be difficult, or impossible, to do in
Chern–Simons theory with compact gauge group.

There is a key difference between Chern–Simons theory with compact versus complex
gauge group: the former is an exactly solvable theory, meaning that the partition function
can be computed by a finite state-sum, a consequence of the fact that it is a TQFT in 3
dimensions. On the other hand, the situation with complex Chern–Simons theory is more
mysterious. For reasons that are not entirely understood, the partition function ZM(u; τ)
for manifolds with torus boundary components reduces to a finite-dimensional integral (the
so called-state integral) whose integrand is a product of Faddeev’s quantum dilogarithm
functions [Fad95], assembled out of an ideal triangulation of the manifold. This was the
approach taken by Andersen-Kashaev [AK14, AK18] and Dimofte [Dim17] following prior
ideas of [Hik07, DGLZ09]. Focusing for simplicity on the case of a 3-manifold with a single
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torus boundary component (such as the complement of a hyperbolic knot in S3), the state-
integral ZM(u; τ) is a holomorphic function of τ ∈ C′ = C\ (−∞, 0] and u ∈ C that satisfies
a pair of linear q-difference equations. The existence of these equations for a state-integral
follows from the closure properties of Zeilberger’s theory of q-holonomic functions and the
the quasi-periodicity properties of Faddeev’s quantum dilogarithm, in much the same way
as the q-holonomicity of the colored Jones polynomial of a knot follows from a state-sum
formula [GL05]. In fact, it is conjectured that the linear q-difference equation satisfied by
the colored Jones polynomial of a knot coincides with the linear q-difference equations of
ZM(u; τ) (see e.g. [AM17] and Sections 5 and 6 below for examples).

1.2. Resurgence and the Stokes automorphism. The global function ZM(u; τ) gives rise
to a vector Φ(x; τ) of perturbative series in τ whose coefficients are meromorphic functions
of u. These series are typically factorially divergent and a key question is a description
of the analytic continuation of their Borel transform in Borel plane, their trans-series and
their Stokes automorphisms. This is a typical question in perturbative quantum field theory
where resurgence aims to reproduce analytic functions from factorially divergent series (for an
introduction to resurgence, see for instance [MS16, ABS19, Mn14, Mn15]), and where Chern–
Simons theory with a compact or complex gauge group is an excellent case to analyze. Some
aspects of resurgence in Chern–Simons theory were studied in [Gar08, CG11, Mn14, GMnP,
GH18, GZa, GZb]. The multi-valuedness of the complex Chern-Simons action dictates that
the transseries are assembled out of monomials in x̃ and q̃ where q̃ = e−2πi/τ and x̃ = eu/τ .

Our discoveries are summarized as follows:

• The singularities of the series Φ(x; τ) in Borel plane are arranged in horizontal lines
2πi apart, and within these lines in finitely many points log x apart. This defines a
collection of Stokes lines in a peacock-like pattern (see Figure 1) whose corresponding
Stokes automorphisms satisfy a unique factorization property with integer Stokes
constants.
• The Stokes automorphism S(x; q) along a half-plane is a fundamental matrix solution
to a (dual) linear q-difference equation, hence fully computable.
• The function ZM(u; τ) is one entry of a matrix-valued collection of descendant par-
tition functions which are a fundamental solution to a q-holonomic system in two
variables.

The arrangement of the singularities in Borel plane is reminiscent of a “stability datum” of
Kontsevich-Soibelman [KS11, KS, KS14] where the corresponding integers are often called
DT-invariants or BPS degeneracies. The Stokes automorphisms along half-planes are analo-
gous to the spectrum generators in Gaiotto-Moore-Neitzke [GMN10, GMN13, GMN12]. Our
integers are locally constant functions of a complex parameter x and their jumping along a
wall-crossing will be the topic of a subsequent publication.

Our paper gives a concrete realization of these abstract ideas of perturbative series and
their resurgence, Stokes automorphisms and their wall-crossing formulas for the case of
complex Chern–Simons theory, and illustrate our results with the 3-manifolds of the two
simplest hyperbolic knot complements, the complements of the 41 and the 52 knots.
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Figure 1. A peacock arrangement of Stokes rays in the complex Borel plane.

1.3. A q-holonomic module of the partition function and its descendants. In this
section we discuss a q-holonomic module associated to the partition function and its de-
scendants. This module and its fundamental solutions are crucial to our exact computation
of the Stokes matrices in Section 1.4 below. One advantage of introducing this module
before we discuss resurgence of perturbative series is that the former has been established
mathematically in many cases, whereas the latter remains a mathematical challenge.

We begin our discussion with a factorization of the state-integral

ZM(ub; τ) = B(x̃, q̃−1)T∆(τ)B(x; q), (τ ∈ C \R) (1)

where
ub =

u

2πb
(2)

(this rescaling is dictated by the asymptotics of Faddeev’s quantum dilogarithm), ∆(τ) is
a diagonal matrix with diagonal entries a 24-th root of unity times an integer power of
e
πi
24

(τ+τ−1), B(x; q) = (B(j)(x; q))rj=1 is a vector of holomorphic blocks, and

q = e2πiτ , q̃ = e−2πi/τ , x = eu, x̃ = eu/τ , τ = b2 . (3)

The above notation is consistent with the literature in modular forms and Jacobi forms [EZ85]
and indicates that u ∈ C can be thought of as a Jacobi variable. The factorization (1) was
first noted in a related context in [Pas12] and further developed in complex Chern–Simons
theory in [BDP14, Dim15]. We find that this factorization persists to descendant state-
integrals parametrized by a pair of (Jacobi-like) variables m and µ (see Equations (125) and
(240) for the definition of descendant state-integrals for the knots 41, 52)

ZM,m,µ(ub; τ) = (−1)m+µqm/2q̃µ/2B−µ(x̃; q̃−1)T∆(τ)Bm(x; q), (m,µ ∈ Z) (4)
where ZM,0,0 = ZM . The holomorphic blocks determine a matrix Wm(x; q) defined by

Wm(x; q) =

 B
(1)
m (x; q) . . . B

(r)
m (x; q)

...
...

B
(1)
m+r−1(x; q) . . . B

(r)
m+r−1(x; q)

 (5)

with the following properties
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(a) The entries of Wm(x; q) are holomorphic functions of |q| 6= 1, meromorphic functions
of x ∈ C∗ with poles in x ∈ qZ of order at most r, and have Taylor series expansions
in (1− x)−rZ[x±][[q

1
2 ]] whose monomials xkqn/2 satisfy n = O(k2).

In other words, the support of the monomials in x and q in (1−x)rWm(x; q) is similar to the
one of Jacobi forms (in their holomorphic version of Eichler-Zagier [EZ85, Eqn.(3)] or the
meromorphic version from Zweger’s thesis [Zwe01, Chpt.3]) and of the admissible functions
of Kontsevich-Soibelman [KS11].

(b) The matrix
Wm,µ(u; τ) = W−µ(x̃; q̃−1)∆(τ)Wm(x; q)T (6)

defined for τ = C \ R, extends to a holomorphic function of τ ∈ C′ and u ∈ C for
all integers m and µ.

More precisely, if we define the normalized descendant integral

zM,m,µ(u; τ) = (−1)m+µq−m/2q̃−µ/2ZM,m,µ(u; τ) , (7)

then Wm,µ(u; τ) = (zm+i,µ+j(ub; τ))r−1
i,j=0. The above statement is remarkable in two ways: (i)

Wm(x; q) is a holomorphic function of τ ∈ C \R that cannot be extended holomorphically
over the positive reals, yet Wm,µ(u; τ) holomorphically extends over the positive reals and
(ii) Wm(x; q) is a meromorphic function of u with singularities, yet Wm,µ(u; τ) is an entire
function of u. Property (ii) is common in quantum mechanics, where the wave-function is
often entire whereas its WKB expansion is singular at the turning points. The same behavior
is also observed in the case of open topological strings in [MnZ17].

(c) We have an orthogonality relation

W−1(x; q)W−1(x; q−1)T ∈ GL(r,Z[x±]) . (8)

(d) The columns of Wm(x; q), as functions of (x,m), form a q-holonomic module of rank
r.

The factorization (4) and (d) implies that the annihilator IM of zM,m,µ(ub; τ) as a function
of (x,m) coincides with the annihilator of Wm(x; q). The latter is a left ideal in the Weyl
algebraW over Q[q±] generated by the pairs (Sx, x) and (Sm, q

m) of q-commuting operators
which act on a function f(x,m; q) by

(Sxf)(x,m; q) = f(qx,m; q) (xf)(x,m; q) = xf(x,m; q) (9)
(Smf)(x,m; q) = f(x,m+ 1; q) (qmf)(x,m; q) = qmf(x,m; q) . (10)

Properties (a)-(d) above define meromoprhic quantum Jacobi forms, a concept which is
further studied in [GMZ]. Although the above statements are largely conjectural for the
partition function of complex Chern–Simons theory, we have the following result (see Theo-
rems 14, 16, 22, 24 below).

Theorem 1. The above statements hold for the 41 and 52 knots.

We also study the Taylor series expansion of Equations (4), (6) and (8) at u = 0 noting
that the left hand side of the above equations are entire functions of u whereas the right hand
side are a priori meromorphic functions of u with a pole of order r at zero. More precisely,
in Sections 3.1 and 3.2 we prove the following.
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Theorem 2. For the 41 and 52 knots, Equations (4), (6) and (8) can be expanded in Taylor
series at u = 0 whose constant terms are expressed in terms of the q-series of [GGMn].

1.4. Perturbative series and their resurgence. We now discuss the resurgence prop-
erties of the asymptotic expansion of the state-integral ZM(u; τ). Once we fix an integral
presentation of ZM(u; τ), the critical points of the integrand are described by an affine curve
S defined by a polynomial equation

S : p(x, y) = 0 . (11)

We denote by P the labeling set of the branches y = yσ(x) of S. The perturbative expansion
of the state-integral has the form

Φ(x, y; τ) = e
V (u,v)
2πiτ ϕ(x, y; τ), ϕ(x, y; τ) ∈ 1√

iδ
Q[x±, y±, δ−1][[2πiτ ]] (12)

where V : S∗ → C/(2πi), S∗ is the exponentiated defined by p(x, y) = 0 with x = eu, y = −ev

and δ ∈ Q(x, y) is the so-called 1-loop invariant. The asymptotic series ϕ(x, y; τ) satisfies
ϕ(x, y; 0) = 1. The 8-th root of unity that appears as a prefactor in φ(x, y; τ) exactly matches
with one appearing in the asymptotics of the Kashaev invariant noticed in [GZb, Sec.1]. After
choosing local branches, we define the vector ϕ(x; τ) = (ϕσ(x; τ))σ∈P = (ϕ(x, yσ(x); τ))σ∈P
of asymptotic series. Recall the vector of holomorphic blocks B(x; q) from (4). We now
discuss the relation between the asymptotics of B(x; q) when q = e2πiτ and τ approaches
zero (in sectors) and the Borel resummation s(Φ) of the vector of power series Φ(x; τ).

The next conjecture summarizes the singularities of Φ(x; τ) in the Borel plane, the relation
between the asymptotics of the holomorphic blocks with the Borel resummation sθ(Φ)(x; τ)
as well as the properties of the Stockes automorphism matrices S, whose detailed definition
is given in Section 2.

Conjecture 3. (a) The singularities of Φσ(x; τ) in the Borel plane are a subset of

{ι(`,k)
σ,σ′ | σ′ ∈ P , k, ` ∈ Z, k = O(`2)} (13)

where

ι
(`,k)
σ,σ′ =

V (σ)− V (σ′)

2πi
+ 2πik + ` log x (σ, σ′ ∈ P , k, ` ∈ Z) . (14)

In particular, the set of trans-series is labeled by three indices, σ ∈ P and k, ` ∈ Z, and they
are of the form Φσ(τ)q̃kx̃`.
(b) On each ray ρ in the complement of the singularities of Φ(x; τ) in Borel plane, there exist
a matrix Mρ(x̃; q̃) with entries in Z[x̃±][[q̃]] such that

∆(τ)B(x; τ) = Mρ(x̃; q̃)sρ(Φ)(x; τ) . (15)

(c) The Stokes matrices S+(x, q), S−(x, q−1) are given by

S+(x; q)
·

= W−1(x−1; q−1) ·W−1(x; q)T , S−(x; q−1)
·

= W−1(x; q) ·W−1(x−1; q−1)T (16)

where ·
= means equality up to multiplication on the left and on the right by a matrix in

GL(r,Z[x±]).
(d) The Stokes matrix S uniquely determines the Stokes matrices at each Stokes ray, and
the Stokes constants are integers corresponding to the Donaldson–Thomas invariants in
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[KS11, KS14, KS] and the BPS degeneracies in [GMN10, GMN13].
(e) The Stokes matrices satisfy the inversion relation

S+(x; q)TS−(x−1; q) = 1 . (17)

The Stokes automorphism matrix has an interesting connection to physics which we now
discuss. Given a hyperbolic knot K in S3, one can construct a three-dimensional N = 2
supersymmetric theory TM associated to the knot complement M = S3\K [DGG14] (see
also [TY13]), whose BPS invariants are conjectured to coincide with the Stokes constants of
s(Φ)(x; τ). This conjecture can be made more precise in the following manner. The BPS
invariants of TM are encoded in the 3D-index IK(m, e)(q) labeled by two integers (m, e) called
magnetic and electric fluxes respectively [DGG14]. One can further define the 3D-index in
the fugacity basis (also known as the rotated index) by [DGG13]

Indrot
K (m, ζ; q) =

∑
e∈Z

IK(m, e)(q)ζe. (18)

The 3D-index is a topological invariant of hyperbolic 3-manifolds with at least one cusp
(see [GHRS15]). And it can be evaluated using holomorphic blocks Bα

K(x; q) by [BDP14]

Indrot
K (m, ζ; q) =

∑
α

Bα
K(qm/2ζ; q)Bα

K(qm/2ζ−1; q−1). (19)

We have observed the following relation between the Stokes matrix and the rotated 3D-index,
and have proven it for the case of the 41 and 52 knots using the explicit formulas for the
Stokes matrices.

Conjecture 4. For every hyperbolic knot K, we have

S+(x; q)
··
=
(
Indrot

K (j − i, q j+i2 x; q)
)
i,j=0,1,...

(20)

where ··
= means equality up to multiplication on the left and on the right by a matrix in

GL(r,Z(x, q)). In particular, we find
S+
σ1σ1

(x; q) = Indrot
K (0, x; q) , (21)

where the equality is exact. This holds true for the 41 and the 52 knots.

One consequence of (15) is that (after multiplying both terms of (15) by the inverse of
MR(x̃; q̃)), we can express the Borel resummation of the factorially divergent series Φ(τ)
in terms of descendant state-integrals which are holomorphic functions in the cut plane
C′ = C \ (−∞, 0].

Another consequence of the q-holonomic module defined by the annihilation ideal IM is a
refinement of the Â-polynomial of a knot as well as a new B̂-polynomial whose classical limit
is new. The refinement comes in the form of a new variable qm where m is the descendant
variable, whose geometric meaning is not understood but might be related to some kind
of quantum K-theory, or perhaps related to the Weil-Gelfand-Zak transform of [AK]. This
refinement does not seem to be directly related to other refinements of the Â-polynomial, as
those considered in [AV12, FGS13, GLL18]. At any rate, the q-holonomic ideal IM contains
unique polynomials ÂM(Sx, x, q

m, q) ∈ W and B̂M(Sm, q
m, x, q) (of lowest degree, content-

free) that annihilate the functions zM,m,k(u; τ) in the variables (m,x).
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Conjecture 5. When M = S3 \K is the complement of a knot K, then
(a) ÂM(Sx, x, 1, q) is the homogeneous Â-polynomial of the knot [Gar04] and ÂM(Sx, x, 1, 1)

is the A-polynomial of the knot with meridian variable x2 and longitude variable
Sx [CCG+94]

(b) B̂M(y, x, 1, 1) is the defining polynomial of the curve S.

In theorems 17 and 25 we prove the following.

Theorem 6. Conjecture 5 holds for the 41 and 52 knots.

1.5. Disclaimers. We end this introduction with some comments and disclaimers.
The first is that that there is no canonical labeling of holomorphic blocks by P . Instead,

the holomorphic blocks B(x; q) is an r× 1 vector, MR are r×P matrices for all R, Wm(x; q)
are r × r matrices and S are P × P matrices and where r is the cardinality of P .

The second is that the entries of the matrix Wm(x; q) are holomorphic functions of q1/N

for |q| 6= 1, where N is a natural number (the “level” of the knot) being one for the 41 and
52 knots, but being 2 for the (−2, 3, 7)-pretzel knot. For instance, the entries of the matrix
W0(x; q) are power series in q1/2 [GZb]. This phenomenon was observed first in [GZb] in a
related matrix-valued Kashaev invariant of the knot as well as in [GZa] in a matrix of q-series
associated to the three simplest hyperbolic knots, and replaces the modular group SL(2,Z)
by its congruence subgroup SL(2, N). In our current paper, we will assume that N = 1.

The third comment involves the crucial question of topological invariance. Strictly speak-
ing, the curve S in Equation (11) and the vector of power series Φ(x; τ) depend on an integral
representation of ZM(u; τ), determined for instance by a suitable ideal triangulation of M
as was done in [AK14]. On the other hand, the vector of power series Φ(x; τ), its Stokes
matrix S(x; q) and the q-holonomic module generated by the matrix Wm(x; τ) are expected
to be topological invariants of M . Even if we fix an ideal triangulation, and we fix the
q-holonomic module, the fundamental solution matrix Wm(x; τ) in general has a potential
ambiguity, which we now discuss.

Lemma 7. Suppose that a matrix Wm(x; q) satisfies the following properties:
• It factorizes the state-integral (4),
• It is a fundamental solution matrix to a q-holonomic module,
• It satisfies the orthogonality equation (8)
• It satisfies the analytic conditions of (a) above.

Then, Wm(x; q) is uniquely determined up to right multiplication by a diagonal matrix of
signs.

Proof. Any two fundamental solutions of a q-holonomic system differ by multiplication by a
diagonal matrix diag(E(x; q)). If both fundamental solutions satisfy (4) and (8), it follows
that each E(x; q) satisfies

E(x̃; q̃−1)E(x; q) = 1, E(x; q)E(x; q−1) = 1 . (22)

Thus, E(x; q−1) = E(x̃; q̃−1) and after replacing b by b−1, it implies that E(x; q) = E(x̃; q̃).
It follows that E(qx; q) = E(x; q) and E(q̃x̃; q̃) = E(x̃; q̃). In other words E is elliptic.
Condition (a) implies that the poles of E(x; q) are a subset of ibZ + ib−1Z for |q| 6= 1. It
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follows from E(x; q)E(x; q−1) = 1 that both the poles and the zeros of E(x; q) are a subset
of ibZ + ib−1Z and each pole and zero has order at most r. Thus, E(x; q) and 1/E(x; q) is
a polynomial in the Weierstrass polynomial p(x; q) with coefficients independent of x, and
this implies that E(x; q) = g(q) is independent of x, where g is a modular function with no
zeros in the upper half-plane, hence g is a modular unit [KL81]. There is none for SL(2,Z)
(see [KL81]), hence g(q) = ±1. Hence, Wm(q;x) is well-defined up to right multiplication by
a diagonal matrix of signs. �

1.6. Further directions. In this short section we make some comments about future direc-
tions. The factorization of the state-integral (1) and its descendant version (4) into a matrix
points towards a TQFT in 4 dimensions where the vector space associated to a 3-manifold
is labeled by P .

In another direction, as shown in [KLM+96, GMN13], inN = 2 theories in four dimensions,
the BPS invariants can be studied by applying WKB methods to their Seiberg–Witten curve.
Since, in complex Chern–Simons theory, the A-polynomial curve plays in a sense the rôle of a
Seiberg–Witten curve [Guk05], one could study it with the techniques of [KLM+96, GMN13],
further extended in [ESW17, BLR19a, BLR19b] to curves in exponentiated variables. It
would be interesting to see one can obtain in this way the BPS invariants directly from the
A-polynomial of the hyperbolic knot.

Peacock patterns of Borel singularities, with integer Stokes constants, are likely to appear
in problems controlled by a quantum curve in exponentiated variables. An important exam-
ple is topological string theory on Calabi–Yau threefolds, and indeed, peacock patterns can
be observed in e.g. [CSMnS17]. It would be very interesting to understand the resurgent
structure in these examples, and work along this direction is in progress.

Acknowledgements. The authors would like to thank Jorgen Andersen, Maxim Kontse-
vich, Pietro Longhi and Don Zagier for enlightening conversations. The work of J.G. has been
supported in part by the NCCR 51NF40-182902 “The Mathematics of Physics” (SwissMAP).
The work of M.M. has been supported in part by the ERC-SyG project “Recursive and Ex-
act New Quantum Theory" (ReNewQuantum), which received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
program, grant agreement No. 810573.

2. Borel resummation and Stokes automorphisms

2.1. Borel resummation. In this section we briefly review the process of Borel resumma-
tion of a factorially divergent series, its Laplace integral along rays and the corresponding
Stokes automorphism across a Stokes ray. The material in this section is classical and well-
known and is explained in detail in the books [Cos09, Mil06, MS16], and in the references
therein. We will be following the physics convention of Borel resummation as found for ex-
ample in [Mn15, Sec. 3.2] and [ZJ93, Sec.42.5], which differs by a factor of τ from the Borel
resummation found in the math literature.

Borel resummation is a 2-step process to pass from a factorially divergent series F (τ) to
the analytic function s(F )(τ) defined in the right half-plane Re(τ) > 0 summarized in the
following diagram

F (τ) F̂ (ζ) s(F )(τ) . (23)
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Here one starts with a Gevrey-1 a formal power series F (τ)

F (τ) =
∞∑
n=0

fnτ
n, fn = O(Cn n!) (24)

and defines its Borel stransform F̂ (ζ) by

F̂ (ζ) =
∞∑
n=0

fn
n!
ζn . (25)

It follows that F̂ is the germ of an analytic function at ζ = 0. If it analytically continues
to an L1-analytic function along the ray ρθ := eiθR+ where θ = arg τ , we define its Laplace
transform by

sθ(F )(τ) =

∫ ∞
0

F̂ (τζ)e−ζdζ =
1

τ

∫
ρθ

F̂ (ζ)e−ζ/τdζ (26)

The function s(F )(τ) is often called the Borel resummation of the formal power series F , and
we often suppress the subscript θ = 0 when τ is real and positive. If we vary θ = arg τ and
we do not encounter singularities of F̂ , the function sθ(F )(τ) is locally analytic. Thus, the
problem is to understand the analytic continuation of F̂ and to analyze what happens to the
Borel resummation sθ(F )(τ) when θ = arg(τ) crosses a Stokes ray, i.e., a ray in Borel plane
that contains one or more singularities of F̂ . This is described by a Stokes automorphism.

2.2. Stokes automorphism. We will specialize our discussion to the series of interest,
namely to the Borel transform Φ̂(x; ζ) of the vector of series Φ(x; τ). The singularities
of Φ(x; τ) are conjectured to be in the set (13) that generates a set of Stokes rays whose
complement is a countable union of open cones in Borel plane. When θ is in a fixed such cone
C, the Laplace transform sθ(Φ)(x; τ) depends on C but not on θ. To compare two adjacent
such cones, let ι(`,k)

σ,σ′ denote one of the singularities of Φσ(x; τ), θ denote its argument and
ρ = eiθR+ denote the corresponding Stokes ray. When x is generic, a Stokes ray contains a
single singularity and the Laplace integrals to the right and the left of ρ are related by

sθ+(Φσ)(x; τ) = sθ−(Φσ)(x; τ) + S(`,k)
σ,σ′ x̃

`q̃ksθ−(Φσ′)(x; τ), (27)

where S(`,k)
σ,σ′ is the Stokes constant. In matrix form, the above formula reads

sθ+(Φ)(x; τ) = Sθ(x̃; q̃)sθ−(Φ)(x; τ) (28)

where
Sθ(x̃; q̃) = I + S(`,k)

σ,σ′ x̃
` q̃k Eσ,σ′ (29)

where Eσ,σ′ is the elementary matrix with (σ, σ′)-entry 1 and all other entries zero.
More generally, consider two non-Stokes rays ρθ+ and ρθ− whose arguments satisfy 0 ≤

θ+ − θ− ≤ π. Then, the Laplace integrals are related by

sθ+(Φ)(x; τ) = Sθ−→θ+(x̃; q̃)sθ−(Φ)(x; τ) (30)
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where the Stokes matrices satisfy the factorization property

Sθ−→θ+(x̃, q̃) =
←−∏

θ−<θ<θ+

Sθ(x̃, q̃). (31)

where the ordered product is taken over the Stokes rays in the cone genarated by ρθ− and
ρθ+ . This factorization is well-known in the classical litetature on WKB (see for instance
Voros [Vor83, p.228] who called it the “radar method” for obvious visual reasons). In our
case, there are four special non-Stokes rays denoted by

I = eiεR+, II = ei(π−ε)R+, III = ei(π+ε)R+, IV = ei(2π−ε)R+ (32)

(for ε > 0 and sufficently small) that belong to the four distinguished cones (labeled
I, II, III, IV ) adjacent to the real axis and free of Stokes lines. The corresponding Stokes
matrices

S+(x̃; q̃) = SI→II(x̃; q̃)SIV→I(x̃; q̃), S−(x̃; q̃) = SIII→IV (x̃; q̃)SII→III(x̃; q̃) (33)

that swap two complementary and nearly horizontal half-planes separated by a line L are
the ones that appear in Conjecture 3. They are related to the matrices Mρ in the second
part of that conjecture by

SI→II(x̃; q̃) = (MII(x̃; q̃))−1 ·MI(x̃; q̃), |q̃| < 1

SIII→IV (x̃; q̃) = (MIV (x̃; q̃−1))−1 ·MIII(x̃; q̃−1), |q̃| < 1

SIV→I(x̃; q̃) = (MI(x̃; q̃))−1 ·MIV (x̃; q̃),

SII→III(x̃; q̃) = (MIII(x̃; q̃))−1 ·MII(x̃; q̃) . (34)

We now come to an important feature of our resurgent series, a unique factorization prop-
erty for the Stokes matrices reminiscent of the “stability data” description of DT-invariants in
Kontsevich-Soibelman [KS11, KS, KS14]), and of the properties of BPS spectrum generators
in Gaiotto-Moore-Neitzke [GMN10, GMN13, GMN12].

Lemma 8. S uniquely determines Sθ for all θ.

Proof. Without loss of generality, we will show that S+ uniquely determines the Stokes
matrices Sθ for all θ such that −ε < θ < π − ε for ε > 0 and sufficiently small. We have

S+(x̃; q̃) =
←−∏

σ,σ′,k,`

(I + S(`,k)
σ,σ′ x̃

` q̃kEσ,σ′) (35)

where the product is over all the singularities above the line L. The entries of the above
matrices are in the ring Z[x̃±][[q̃]]. For each fixed natural number N , there are only finitely
many horizontal lines of singularities in Borel plane, of height at most N and within those,
there are finitely many x̃-dots. It follows by induction on k that the finite collection {S(`,k)

σ,σ′ }`
is uniquely determined from S+(x̃; q̃). �

It follows that we can repackage the information of the Stokes constants in two matrices
S+ and S− defined by
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S±(x̃; q̃) =
∑
`,k

S(`,k)
σ,σ′ x̃

` q̃kEσ,σ′ (36)

where the sum in S+ (resp. S−) is over the singularities above (resp., below) L. The matrices
S±(x̃; q̃) appear to have some positivity properties; see Sections 5.4 and 6.4 below for the 41

and the 52 knots.

3. A summary of the story when u = 0

In this section we recall briefly the results from [GGMn] for our two sample hyperbolic
knots, the 41 and the 52 knot.

3.1. The 41 knot when u = 0. The state integral of the 41 at u = 0 is given by

Z41(0; τ) =

∫
R+i0

Φb(v)2 e−πiv2dv . (37)

The critical points of the integrand are the logarithms of the solutions ξ1 = e2πi/6 and
ξ2 = e−2πi/6 of the polynomial equation

(1− y)(1− y−1) = 1 . (38)

The labeling set P = {σ1, σ2}, where σ1 corresponds to the geometric representation of the
41 and σ2 to the complex conjugate of the geometric representation. Observe that ξ1 (resp.,
ξ2) lie in the trace fieldQ(

√
−3) (resp., its complex conjugate) of the 41 knot, whereQ(

√
−3)

is a subfield of the complex numbers with
√
−3 taken to have positive imaginary part.

The first ingredient is a vector of formal power series

Φ(τ) =

(
Φσ1(τ)
Φσ2(τ)

)
(39)

defined by the asymptotic expansion of the state-integral (37) at each of the two critical
points, and which has the form

Φσ(τ) = exp

(
V (σ)

2πiτ

)
ϕσ(τ), (40)

satisfies the symmetry Φσ2(τ) = iΦσ1(−τ), where

V (σ1) = iVol(41) = i 2Im Li2(eiπ/3) = i 2.029883 . . . . (41)

with Vol(41) being the hyperbolic volume of 41 and the first few terms of ϕσ1(τ/(2πi)) ∈
3−1/4Q(

√
−3)[[τ ]] are given by

ϕσ1

( τ

2πi

)
=

1
4
√

3

(
1 +

11τ

72
√
−3

+
697τ 2

2 (72
√
−3)2

+
724351τ 3

30 (72
√
−3)3

+ · · ·
)
. (42)
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The second ingredient is a vector G(q) =
(
G0(q)

G1(q)

)
of q-series defined for |q| < 1 by

G0(q) =
∞∑
n=0

(−1)n
qn(n+1)/2

(q; q)2
n

(43a)

G1(q) =
∞∑
n=0

(−1)n
qn(n+1)/2

(q; q)2
n

(
E1(q) + 2

n∑
j=1

1 + qj

1− qj

)
, (43b)

where E1(q) = 1 − 4
∑∞

n=1 q
n/(1 − qn) is the Eisenstein series, and extended to |q| > 1 by

G0(q−1) = G0(q) and G1(q−1) = −G1(q). These series are motivated by, and appear in, the
factorization of the state-integral of the 41 knot given in [GK17, Cor.1.7]

Z41(0; τ) = − i

2

(
q

q̃

) 1
24
(√

τG0(q̃)G1(q)− 1√
τ
G0(q)G1(q̃)

)
, (τ ∈ C \R) (44)

where
q = e2πiτ , q̃ = e−2πi/τ . (45)

The above factorization follows by applying the residue theorem to the integrand of (37),
a meromorphic function of v with prescribed zeros and poles. In particular, the integrand
of (37) determines the q-hypergeometric formula for the vector G(q) of q-series. Below,
given a q-series H(q) defined on |q| 6= 1, we denote by h(τ) = H(e2πiτ ) the corresponding
holomorphic function in C \R.

The vector G(q) of q-series and the vector of asymptotic series Φ(τ) come together when
we consider the asymptotics of diag( 1√

τ
,
√
τ)g(τ) in the τ -plane (as was studied in [GZa]) and

compare them with the Borel summed vector Φ. Recall that when the Borel transform of an
asymptotic series has singular points ιi in the Borel plane, the rays (Stokes rays) emanating
from the origin with angle θ = arg ιi divide the complex plane into different sectors. When
one crosses into neighboring sectors, the Borel sum of the asymptotic series undergoes Stokes
automorphism. In the case of the vector of asymptotic series Φ(τ), the singularities of the
Borel transforms of its two component asymptotic series are located at

ιi,j =
V (σi)− V (σj)

2πi
, i, j = 1, 2, i 6= j, (46)

as well as
2πik, ιi,j + 2πik , k ∈ Z6=0, (47)

forming vertical towers as illustrated in Figure 2. In particular, the two singularities ι1,2, ι2,1
are on the positive and the negative real axis. We pick out four sectors which separate the
two singularities on the real axis and all the others, and label them by I, II, III, IV , as
illustrated in Figure 3. The relation between the vector G(q) and the Borel summed vector
Φ(τ) depend on the sector R. In [GGMn], we found out that we do not get an agreement,
but rather both sides agree up to powers of the exponentially small quantity q̃, and what
is more, several coefficients of those powers were numerically recognized to be integers. In
other words, we found that

diag(
1√
τ
,
√
τ)g(τ) = MR(q̃) sR(Φ)(τ) . (48)
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where diag(v) denotes the diagonal matrix with diagonal given by v and MR(q) is a matrix
of q-series with integer coefficients.

ι1,2 = Vol(41)/π

ϕσ1(τ )

ι2,1 = −Vol(41)/π

ϕσ2(τ )

Figure 2. The singularities in the Borel plane for the series ϕσj(0; τ) for
j = 1, 2 of knot 41.

III

IVIII

L

Figure 3. Four different sectors in the τ -plane for Φ(0; τ) of knot 41.

To identify the matrices MR, we used the third ingredient, namely the linear q-difference
equation

ym+1(q)− (2− qm)ym(q) + ym−1(q) = 0 (m ∈ Z) . (49)
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It has a fundamental solution set given by the columns of the following matrix

Wm(q) =

(
G0
m(q) G1

m(q)
G0
m+1(q) G1

m+1(q)

)
, (|q| 6= 1) (50)

where Gm(q) =
(
G0
m(q)

G1
m(q)

)
, and G0

m(q) and G1
m(q) are defined by

G0
m(q) =

∞∑
n=0

(−1)n
qn(n+1)/2+mn

(q; q)2
n

(51a)

G1
m(q) =

∞∑
n=0

(−1)n
qn(n+1)/2+mn

(q; q)2
n

(
2m+ E1(q) + 2

n∑
j=1

1 + qj

1− qj

)
, (51b)

for |q| < 1 and extended to |q| > 1 by Gj
m(q−1) = (−1)jGj

m(q). Observe that G0(q) = G(q),
the vector that appears in the factorization (44) of the state-integral Z41(0; τ). The matrix
Wm(q) of holomorphic functions in |q| 6= 1 satisfies several properties summarized in the
following theorem.

Theorem 9. Wm(q) is a fundamental solution of the linear q-difference equation (49) that
has constant determinant

det(Wm(q)) = 2 , (52)
satisfies the symmetry

Wm(q−1) = W−m(q)

(
1 0
0 −1

)
, (53)

the orthogonality property

1

2
Wm(q)

(
0 1
−1 0

)
Wm(q)T =

(
0 1
−1 0

)
(54)

as well as
1

2
Wm(q)

(
0 1
−1 0

)
W`(q)

T ∈ SL(2,Z[q±]) (55)

for all integers m, ` and for |q| 6= 1.

Conjecture 10. Equation (48) holds where the matricesMR(q) are given in terms ofW−1(q)
as follows

MI(q) = W−1(q)T
(

0 −1
1 −1

)
, |q| < 1 , (56a)

MII(q) =

(
1 0
0 −1

)
W−1(q)T

(
1 0
1 −1

)
, |q| < 1 , (56b)

MIII(q) = W−1(q−1)T
(

1 0
1 1

)
, |q| > 1 , (56c)

MIV (q) =

(
1 0
0 −1

)
W−1(q−1)T

(
0 1
1 1

)
, |q| > 1 . (56d)
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Assuming the above conjecture, we can now describe completely the resurgent structure
of Φ(τ). The Stokes matrices are given by

S+(q) = SI→II(q)SIV→I , S−(q) = SIII→IV (q)SII→III , (57)

where

SI→II(q) = MII(q)
−1MI(q) SIII→IV (q) = MIV (q−1)−1MIII(q

−1) (58a)

SIV→I = MI(q)
−1MIV (q) SII→III = MIII(q)

−1MII(q) . (58b)

(Compare with Equations (33) and (34) after we set x̃ = 1 and replace q̃ by q). Note that
since MI(q),MII(q) and MIII(q),MIV (q) are given respectively as q-series and q−1-series in
(56a),(56b) and (56c),(56d), analytic continuation as discussed below (51b) is needed when
one computes SIV→I ,SII→II in (58b). Using (52)–(55) we can express the answer in terms
of W−1(q). Explicitly, the Stokes matrices are given by

S+(q) =
1

2

(
0 −1
1 1

)
W−1(q)

(
0 1
1 0

)
W−1(q)T

(
0 −1
1 2

)
, |q| < 1 , (59a)

S−(q) =
1

2

(
−1 −1
0 1

)
W−1(q)

(
0 1
1 0

)
W−1(q)T

(
1 0
−2 1

)
, |q| < 1 . (59b)

In the q → 0 limit,

S+(0) =

(
1 3
0 1

)
, S−(0) =

(
1 0
−3 1

)
(60)

whose off-diagonal entries −3,+3 are Stokes constants associated to the singularities ι2,1
and ι1,2 on the negative and positive real axis respectively, and they agree with the matrix
of integers obtained numerically in [GH18, GZb]. In addition, we can assemble the Stokes
constants into the matrix S of Equation (36) (after we set x̃ = 1 and replace q̃ by q). The
resulting matrix S+(q) has entries in qZ[[q]], and we find

S+
σ1,σ1

(q) =S+(q)1,1 − 1

=− 8q − 9q2 + 18q3 + 46q4 + 90q5 + 62q6 +O(q7), (61)

S+
σ1,σ2

(q) =S+(q)1,2/S
+(q)1,1 − S(0)

σ1,σ2

=9q + 75q2 + 642q3 + 5580q4 + 48558q5 + 422865q6 +O(q7), (62)

S+
σ2,σ1

(q) =S+(q)2,1/S
+(q)1,1

=− 9q − 75q2 − 642q3 − 5580q4 − 48558q5 − 422865q6 +O(q7), (63)

S+
σ2,σ2

(q) =S+(q)2,2 − 1− S+(q)1,2S
+(q)2,1/S

+(q)1,1

=8q + 73q2 + 638q3 + 5571q4 + 48538q5 + 422819q6 +O(q7). (64)

We notice the symmetry
S(k)

1,2 = −S(k)
2,1 , for k ∈ Z>0 , (65)

which is due to the reflection property ϕσ1(−τ ∗) = ϕσ2(τ)∗ of the asymptotic series. Also
experimentally it appears that the entries of the matrix S+(q) = (S+

σi,σj
(q)) (except the

upper-left one) are (up to a sign) in N[[q]]. Similarly we can extract the Stokes constants
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S(−k)
σi,σj associated to the singularities in the lower half planes and collect them in q−1-series
S−σi,σj(q−1) accordingly, and we find

S(−k)
σi,σj

= −S(+k)
σj ,σi

, i 6= j , and S(−k)
σ1,σ1

= S(+k)
σ2,σ2

, S(−k)
σ2,σ2

= S(+k)
σ1,σ1

, for k ∈ Z>0. (66)

A nontrivial consistency check in the above calculation is that the matrices SIV→I(q) and
SII→III(q) should come out to be independent of q, and coincide with S−(0) and S+(0).
That is exactly what we find.

The fourth and last ingredient, which makes a full circle of ideas, is the descendant state-
integral of the 41 knot

Z41,m,µ(0; τ) =

∫
D

Φb(v)2 e−πiv2+2π(mb−µb−1)v dv (m,µ ∈ Z) . (67)

The integration contour D asymptotes at infinity to the horizontal line Imv = v0 with
v0 > |Re(mb − µb−1)| but is deformed near the origin so that all the poles of the quantum
dilogarithm located at

cb + ibr + ib−1s, r, s ∈ Z≥0, (68)
are above the contour. The integral Z41,m,µ(0; τ) is a holomorphic function of τ ∈ C′ that
coincides with Z41(0; τ) when m = µ = 0 and can be expressed bilinearly in Gm(q) and
Gµ(q̃) as follows

Z41,m,µ(0; τ) = (−1)m−µ+1iq
m
2 q̃

µ
2

(
q

q̃

) 1
24 1

2

(√
τ G0

µ(q̃)G1
m(q)− 1√

τ
G1
µ(q̃)G0

m(q)

)
. (69)

It follows that the matrix-valued function

Wm,µ(τ) = (Wµ(q̃)T )−1

(
1/
√
τ 0

0
√
τ

)
Wm(q)T (70)

defined for τ = C\R, has entries given by the descendant state-integrals (up to multiplication
by a prefactor of (69)) and hence extends to a holomorphic function of τ ∈ C′ for all integers
m and µ. Using this form = −1 and µ = 0 and the orthogonality relation (54), it follows that
we can express the Borel sums of Φ(τ) in a region R in terms of descendant state-integrals
and hence, as holomorphic functions of τ ∈ C′ as follows. For instance, in the region I we
have

sI(Φ)(τ) = MI(q̃)
−1

(
1√
τ
g0

0(τ)√
τg1

0(τ)

)
= i

(
q

q̃

)− 1
24
(
Z41,0,0(0; τ)− q̃1/2Z41,0,−1(0; τ)

Z41,0,0(0; τ)

)
(71)

This completes the discussion of u = 0 for the 41 knot.

3.2. The 52 knot when u = 0. The state integral of the 52 at u = 0 is given by

Z52(0; τ) =

∫
R+i0

Φb(v)3 e−2πiv2dv . (72)

The critical points of the integrand are the logarithms of the solutions ξ1 ≈ 0.78492+1.30714i,
ξ2 ≈ 0.78492− 1.30714i and ξ3 ≈ 0.43016 of the polynomial equation

(1− y)3 = y2 . (73)
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The trace field of the 52 knot is Q(ξ1), the cubic field of discriminant −23, which has three
complex embeddings labeled by σj for j = 1, 2, 3 corresponding to the xj, and the labeling
set is P = {σ1, σ2, σ3}, where σ1 corresponds to the geometric representation of the 52 knot,
σ2 to the complex conjugate of the geometric representation and σ3 for the corresponding
real representation.

The first ingredient is a vector of formal power series

Φ(τ) =

Φσ1(τ)
Φσ2(τ)
Φσ3(τ)

 (74)

where

ImV (σ1) = −ImV (σ2) = Vol(52) = 2.82812 . . . (75)

is the hyperbolic volume of the knot 52 and the first few terms of ϕσj(τ/(2πi)) ∈ δ−1/2
j Q(ξj)[[τ ]]

are given by

ϕσj

( τ

2πi

)
=

(
−3ξ2

j + 3ξj − 2

23

)1/4(
1 +
−242ξ2 + 209ξ − 454

22 · 232
τ +

12643ξ2 − 22668ξ + 25400

25 · 233
τ2

(76)

+
−35443870ξ2 + 85642761ξ − 164659509

27 · 3 · 5 · 235
τ3 + . . .

)
.

The second ingredient is two vectors H+(q) = (H+
0 (q), H+

1 (q), H+
2 (q))T and H−(q) =

(H−0 (q), H−1 (q), H−2 (q))T of q-series defined for |q| < 1 by

H+
0 (q) =

∞∑
n=0

qn(n+1)

(q; q)3
n

, (77a)

H+
1 (q) =

∞∑
n=0

qn(n+1)

(q; q)3
n

(
1 + 2n− 3E

(n)
1 (q)

)
, (77b)

H+
2 (q) =

∞∑
n=0

qn(n+1)

(q; q)3
n

(
(1 + 2n− 3E

(n)
1 (q))2 − 3E

(n)
2 (q)− 1

6
E2(q)

)
. (77c)

and

H−0 (q) =
∞∑
n=0

(−1)n
q

1
2
n(n+1)

(q; q)3
n

, (78a)

H−1 (q) =
∞∑
n=0

(−1)n
q

1
2
n(n+1)

(q; q)3
n

(
1

2
+ n− 3E

(n)
1 (q)

)
, (78b)

H−2 (q) =
∞∑
n=0

(−1)n
q

1
2
n(n+1)

(q; q)3
n

((1

2
+ n− 3E

(n)
1 (q)

)2 − 3E
(n)
2 (q)− 1

12
E2(q)

)
, (78c)
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where

E
(n)
l (q) =

∞∑
s=1

sl−1qs(n+1)

1− qs . (79)

The two sets of q-series can be extended to |q| > 1 and are in fact related by H+
k (q−1) =

(−1)kH−k (q), and define a q-series Hk(q) for |q| 6= 1 by

Hk(q) =

{
H+
k (q) |q| < 1

(−1)kH−k (q−1) |q| > 1 .
(80)

Likewise, we define holomorphic functions hk(τ) in C \R by

hk(τ) =

{
H+
k (e2πiτ ), Im(τ) > 0

(−1)kH−k (e−2πiτ ), Im(τ) < 0
, k = 0, 1, 2 . (81)

These series appear in the factorization of the state-integral of the 52 knot given in [GK17,
Cor.1.8]

Z52(0; τ) = −e
πi
4

2

(
q

q̃

) 1
8 (
τH−0 (q̃)H+

2 (q)− 2H−1 (q̃)H+
1 (q) + τ−1H−2 (q̃)H+

0 (q)
)
, (τ ∈ C\R).

(82)
The above factorization follows by applying the residue theorem to the integrand of (72),
a meromorphic function of v with prescribed zeros and poles. In particular, the integrand
of (72) determines the q-hypergeometric formula for the vectors H+(q), H−(q) of q-series.

As in the case of the 41 knot, multiplying the vector h(τ)T = (h0(τ), h1(τ), h2(τ))T by the
automorphy factors diag(τ−1, 1, τ) (dictated by (82)), and looking at the asymptotics as τ
approaches zero in sectors, we found that

e
3πi
4 diag(τ−1, 1, τ)h(τ) = MR(q̃) sR(Φ)(τ) , (83)

where the right hand side depends on the sectors of Borel resummation. The Borel plane
singularities of the component series of the vector Φ(τ) are similarly located at

ιi,j =
V (σi)− V (σj)

2πi
, i, j = 1, 2, 3, i 6= j , (84)

as well as
2πik, ιi,j + 2πik, k ∈ Z6=0, (85)

which form vertical towers as illustrated in Figure 4. In particular, the two singularities
ι1,2, ι2,1 are on the positive and negative real axis. We pick out the four sectors which separate
the two singularities on the real axis and all the others, and label them by I, II, III, IV , as
illustrated in Figure 5.

To identify the matrices MR, we consider the third ingredient, the linear q-difference
equation

ym(q)− 3ym+1(q) + (3− q2+m)ym+2(q)− ym+3(q) = 0 (m ∈ Z) , (86)
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ϕσ1(τ )

ι1,2

ι1,3

ϕσ2(τ )

ι2,1

ι2,3

ϕσ3(τ )

ι3,1 ι3,2

Figure 4. The singularities in the Borel plane for the series ϕσj(0; τ) for
j = 1, 2, 3 of knot 52.

III

IVIII
L

Figure 5. Four different sectors in the τ -plane for Φ(0; τ) of knot 52 and the
line L that divides the τ -plane.

They have fundamental solution sets given by the columns of the following matrix

Wm(q) =


W+
m(q), |q| < 10 0 1

0 1 0

1 0 0

W−
−m−2(q−1)

1 0 0

0 −1 0

0 0 1

 , |q| > 1 .
(87)
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where the matrices W ε
m(q) with ε = ± are respectively

W ε
m(q) =

 Hε
0,m(q) Hε

1,m(q) Hε
2,m(q)

Hε
0,m+1(q) Hε

1,m+1(q) Hε
2,m+1(q)

Hε
0,m+2(q) Hε

1,m+2(q) Hε
2,m+2(q)

 , (|q| 6= 1) (88)

with entries the q-series

H+
0,m(q) =

∞∑
n=0

qn(n+1)+nm

(q; q)3
n

, (89a)

H+
1,m(q) =

∞∑
n=0

qn(n+1)+nm

(q; q)3
n

(
1 + 2n+m− 3E

(n)
1 (q)

)
, (89b)

H+
2,m(q) =

∞∑
n=0

qn(n+1)+nm

(q; q)3
n

(
(1 + 2n+m− 3E

(n)
1 (q))2 − 3E

(n)
2 (q)− 1

6
E2(q)

)
, (89c)

and

H−0,m(q) =
∞∑
n=0

(−1)n
q

1
2
n(n+1)+nm

(q; q)3
n

, (90a)

H−1,m(q) =
∞∑
n=0

(−1)n
q

1
2
n(n+1)+nm

(q; q)3
n

(
1

2
+ n+m− 3E

(n)
1 (q)

)
, (90b)

H−2,m(q) =
∞∑
n=0

(−1)n
q

1
2
n(n+1)+nm

(q; q)3
n

((1

2
+ n+m− 3E

(n)
1 (q)

)2 − 3E
(n)
2 (q)− 1

12
E2(q)

)
,

(90c)

for |q| < 1 and extended to |q| > 1 by the relation H+
k,m(q−1) = (−1)kH−k,−m(q). Observe

that Hε
k,0(q) = Hε

k(q). The matrixWm(q) of holomorphic functions in |q| 6= 1 satisfies several
properties summarized in the following theorem.

Theorem 11. Wm(q) is a fundamental solution of the linear q-difference equation (86) that
has constant determinant

det(Wm(q)) = 2 , (91)

satisfies the orthogonality property

1

2
Wm−1(q)

0 0 1
0 2 0
1 0 0

W−m−1(q−1)T =

1 0 0
0 0 1
0 1 3− qm

 . (92)

as well as

1

2
Wm(q)

0 0 1
0 2 0
1 0 0

W`(q
−1)T ∈ SL(3,Z[q±]) (93)

for all integers m, ` and for |q| 6= 1.
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Conjecture 12. Equation (83) holds where the matricesMR(q) are given in terms ofW−1(q)
as follows

MI(q) = W−1(q)T

 0 0 1
−1 3 0
0 −1 0

 , |q| < 1 , (94a)

MII(q) =

1 0 0
0 −1 0
0 0 1

 W−1(q)T

 0 0 1
3 −1 0
−1 0 0

 , |q| < 1 , (94b)

MIII(q) = W−1(q)T

 0 0 1
−1 −1 0
−1 0 0

 , |q| > 1 , (94c)

MIV (q) =

1 0 0
0 −1 0
0 0 1

 W−1(q)T

 0 0 1
−1 −1 0
0 −1 0

 , |q| > 1 . (94d)

Assuming the above conjecture, we can now describe completely the resurgent structure
of Φ(τ), following the same computation as in the case of the 41 knot. The Stokes matrices
are given by (57)–(58b). Note that since MI(q),MII(q) and MIII(q),MIV (q) are given re-
spectively as q-series and q−1-series in (94a),(94b) and (94c),(94d), analytic continuation as
discussed below (79) is needed when one computes SIV→I ,SII→II in (58b). Using (91)–(93)
we can express the answer in terms ofW−1(q). Once again, we find that the the Stokes matri-
cesSIV→I(q) andSII→III(q) are independent of q, consistent with semiclassical asymptotics.
The Stokes matrices are given by

S+(q) =
1

2

 0 1 0
0 1 1
−1 0 0

W−1(q−1)

0 0 1
0 −2 0
1 0 0

W−1(q)T

0 0 −1
1 1 0
0 1 0

 , |q| < 1 (95a)

S−(q) =
1

2

0 3 −1
0 −1 0
1 0 0

W−1(q)

0 0 1
0 −2 0
1 0 0

W−1(q−1)T

 0 0 1
3 −1 0
−1 0 0

 , |q| < 1.

(95b)

These Stokes matrices completely describe the resurgent structure of Φ(τ). They also satisfy
other statements in Conjectures 3 and 4 when x = 1. The q → 0 limit of the Stokes matrices
factorizes

S+(0) =Sσ3,σ1Sσ3,σ2Sσ1,σ2 =

 1 0 0
0 1 0
−3 0 1

1 0 0
0 1 0
0 3 1

1 4 0
0 1 0
0 0 1

 , (96)

S−(0) =Sσ1,σ3Sσ2,σ3Sσ2,σ1 =

1 0 3
0 1 0
0 0 1

1 0 0
0 1 −3
0 0 1

 1 0 0
−4 1 0
0 0 1

 , (97)
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where the non-vanishing off-diagonal entry of Sσi,σj is the Stokes constant associated to the
Borel singularity ιi,j. Assembling these off-diagonal entries in a matrix, we obtain the matrix 0 4 3

−4 0 −3
−3 3 0

 (98)

that was found numerically in [GZb, Sec.3.3]. In addition, we can assemble the Stokes
constants into the matrix S of Equation (36) (after we set x̃ = 1 and replace q̃ by q). The
resulting matrix S+(q) has entries in qZ[[q]], and we find

S+
σ1,σ1

=S+(q)1,1 − 1

=− 12q + 3q2 + 74q3 + 90q4 + 33q5 +O(q6), (99a)

S+
σ1,σ2

=12q + 141q2 + 1520q3 + 17397q4 + 191970q5 +O(q6), (99b)

S+
σ1,σ3

=q + 3q2 + 9q3 + 30q4 + 99q5 +O(q6), (99c)

S+
σ2,σ1

=− 12q − 141q2 − 1520q3 − 17397q4 − 191970q5 +O(q6), (99d)

S+
σ2,σ2

=12q + 141q2 + 1582q3 + 17583q4 + 194703q5 +O(q6), (99e)

S+
σ2,σ3

=− 21q − 235q2 − 2586q3 − 28593q4 − 316104q5 +O(q6), (99f)

S+
σ3,σ1

=− q − 3q2 − 9q3 − 30q4 − 99q5 +O(q6), (99g)

S+
σ3,σ2

=21q + 235q2 + 2586q3 + 28593q4 + 316104q5 +O(q6), (99h)

S+
σ3,σ3

=0. (99i)

The Stokes constants enjoy the symmetry

S(k)
σi,σj

= −S(k)
σϕ(i),σϕ(j)

, i 6= j, for k ∈ Z>0 , (100)

with ϕ(1) = 2, ϕ(2) = 1, ϕ(3) = 3. We notice that the entries of the matrix S+(q) =
(S+

σi,σj
(q)) (except the upper-left one) are (up to a sign) in N[[q]]. Similarly we can extract

the Stokes constants S(−k)
σi,σj associated to the singularities in the lower half plane, and we find

S(−k)
σi,σj

= −S(+k)
σj ,σi

, i 6= j, and S(−k)
σi,σi

= S(+k)
σϕ(i),σϕ(j)

, for k ∈ Z>0 . (101)

The fourth and last ingredient, which makes a full circle of ideas, is the descendant state-
integral of the 52 knot

Z52,m,µ(0; τ) =

∫
D

Φb(v)3 e−2πiv2+2π(mb−µb−1)v dv (m,µ ∈ Z) . (102)

Here the same contour D as in (67) is used. It is a holomorphic function of τ ∈ C′ that
coincides with Z52(0; τ) when m = µ = 0 and can be expressed bilinearly in H+

k,m(q) and
H−k,µ(q̃) as follows

Z52,m,µ(0; τ) =(−1)m−µ+1 e
πi
4

2
q
m
2 q̃

µ
2

(
q

q̃

) 1
8

(103)(
τ H−0,µ(q̃)H+

2,m(q)− 2H−1,µ(q̃)H+
1,m(q) + τ−1H−2,µ(q̃)H+

0,m(q)
)
.
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It follows that the matrix-valued function

Wm,µ(τ) = (Wµ(q̃)T )−1

τ−1 0 0
0 1 0
0 0 τ

Wm(q)T (104)

defined for τ = C\R, has entries given by the descendant state-integrals (up to multiplication
by a prefactor of (103)) and hence extends to a holomorphic function of τ ∈ C′ for all integers
m and µ. Using this form = −1 and µ = 0 and the orthogonality relation (92), it follows that
we can express the Borel sums of Φ(τ) in a region R in terms of descendant state-integrals
and hence, as holomorphic functions of τ ∈ C′ as follows. For instance, in the region I we
have

sI(Φ)(τ) = e
3πi
4 MI(q̃)

−1

τ−1h0(τ)
h1(τ)
τh2(τ)

 = i

(
q

q̃

)− 1
8

Z52,0,0(0; τ)− q̃1/2Z52,0,−1(0; τ)
Z52,0,0(0; τ)

q̃−1/2Z52,0,1(0; τ)

 (105)

This completes the discussion of u = 0 for the 52 knot.

4. Holonomic and elliptic functions inside and outside the unit disk

An important property for the functions of a complex variable q in our paper (such as the
holomorphic blocks considered below) is that they can be defined both inside (|q| < 1) and
outside (|q| > 1) the unit disk, in such a way that they have the same annihilator ideal. Recall
that if L and M denote the operators that act on functions f(x; q) by (Lf)(x; q) = f(qx; q)
and (Mf)(x; q) = xf(x; q), then LM = qML, hence L−1M = q−1ML−1. It follows that
if P (L,M, q)f(x; q) = 0, then P (L−1,M, q−1)f(x; q−1) = 0 where P (L,M, q) denotes a
polynomial in L with coefficients polynomials in M and q.

A first example of a function to consider is (x; q)∞ =
∏∞

j=0(1− qjx), which is well-defined
for |q| < 1 and x ∈ C and satisfies the linear q-difference equation

(1− x)(qx; q)∞ = (x; q)∞ (|q| < 1) . (106)

We can extend it to a meromorphic function of x when |q| > 1 (by a slight abuse of notation)
by defining

(x; q−1)∞ := (qx; q)−1
∞ (|q| < 1) , (107)

so that Equation (106) holds for |q| 6= 1. Our second example is the theta function

θ(x; q) = (−q 1
2x; q)∞(−q 1

2x−1; q)∞ (|q| < 1) (108)

which satisfies the linear q-difference equation

θ(qx; q) = q−
1
2x−1θ(x; q) (|q| < 1) (109)

and can be extended to θ(x; q−1) = θ(x; q)−1 when |q| > 1 so that Equation (109) holds for
|q| 6= 1. θ(x; q) is a meromorphic function of x ∈ C∗ with the following (simple) zeros and
(simple) poles

|q| < 1 zeros(θ) = −q 1
2

+Z poles(θ) = ∅ (110)

|q| > 1 zeros(θ) = ∅ poles(θ) = −q 1
2

+Z .
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An important property of the theta functions is that they factorize the exponentials of a
quadratic and linear form of u. This fact is a consequence of the modular invariance of the
theta function and was used extensively in the study of holomorphic blocks [BDP14].

Lemma 13. For integers r and s we have:

eπi(u+rcb)2 = e−
πi
12

(τ+τ−1)θ((−q 1
2 )rx; q)θ((−q̃− 1

2 )rx̃; q̃−1) (111a)

eπiru2+2πiscbu = ise
πi
12

(3s−r)(τ+τ−1)θ(x; q)r−sθ(−q 1
2x; q)s × θ(x̃; q̃−1)r−sθ(−q̃− 1

2 x̃; q̃−1)s (111b)

for integers r and s.

Note that we the above factorization formulas are by no means unique, and this is a
reflection of the dependence of the above formulas on a theta divisor.

Proof. When x = e2πbu, q = e(τ), q̃ = e(−1/τ) and |q| < 1, then we claim

e−
1

4πiτ
(log x)2 = eπiu2 = Φb(0)−2Φb(u)Φb(−u) = e−

πi
12

(τ+τ−1)θ(x; q)θ(x̃; q̃−1) . (112)

The first equality is easy, the second one follows from the inversion formula of Faddeev’s quan-
tum dilogarithm, and the third one follows from the product expansion of Faddeev’s quantum
dilogarithm or from the modular invariance of the theta function. Note also that Φb(0)2 =

(q/q̃)
1
24 = e

πi
12

(τ+τ−1). Equation (111a) follows easily from the above and Equation (111b)
follows from the above using for example, eπiru2+2πiscbu = e(r−s)πiu2esπi(u+cb)2e−sπic2b . �

5. The 41 knot

5.1. Asymptotic series. Our starting point will be the state-integral for the 41 knot [AK14,
Eqn.38] (after removing a prefactor that depends on u alone)

Z41(u; τ) = e−2πiu2
∫
R+i0

Φb(v) Φb(u+ v) e−πi(v2+4uv)dv . (113)

The above state-integral (and all the subsequent ones) is a holomorphic function of τ ∈ C′
and u when |Im(u)| < |b + b−1|/2 and extends to an entire function of u (see Theorem 14
below).

After a change of variables u 7→ u/(2πb) (see Equation (2)) and v 7→ v/(2πb) the asymp-
totic expansion of the quantum dilogarithm (see for instance [AK14, Prop.6]) implies that
the integrand of Z41(ub; τ) has a leading term given by eV (u,v)/(2πiτ) where

V (u, v) = Li2(−ev) + Li2(−eu+v) +
1

2
(v)2 + 2uv . (114)

Taking derivative with respect to v gives the equation for the critical point

2u+ v − log(1 + ev)− log(1 + eu+v) = 0 (115)

which implies that (x, y) = (eu,−ev) is a complex point points of the affine curve S given by

S : −x2y = (1− y)(1− xy) (116)
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and (u, v) is a point of the exponentiated curve S∗ given by the above equation where
(x, y) = (eu,−ev). Moreover, we have

V (u, v) = Li2(y) + Li2(xy) +
1

2
(log(−y))2 + 2 log x log(−y) . (117)

Note that (115) has more information than (116) since it chooses the logarithms of 1+ev and
1 + eu+v such that (115) holds. This ultimately implies that V is a holomorphic C/2π2Z-
valued function on the exponentiated curve S∗. Note that when u = 0, Equation (116)
becomes (38).

The constant term of the asymptotic expansion is given by the Hessian of V (u, v) at a
critical point (u, v), and it is a rational function of x and y is given by

δ(x, y) = −1− xy2

x2y
. (118)

Note that δ(x, y) = 0 on S if and only if x is a root of the discriminant of S with respect to
y, i.e.,

(1− 3x+ x2)(1 + x+ x2) = 0. (119)

In other words, δ vanishes precisely when two branches of y = y(x) coincide.
Beyond the leading asymptotic expansion and its constant term, the asymptotic series has

the form Φ(x, y; τ) where

Φ(x, y; τ) = exp

(
V (u, v)

2πiτ

)
ϕ(x, y; τ), ϕ(x, y; τ) ∈ 1√

iδ
Q[x±, y±, δ−1][[2πiτ ]] (120)

where δ is given in (118) and
√

iδ ϕ(x, y; 0) = 1. In other words, the coefficient of every power
of 2πiτ in

√
δ ϕ(x, y; τ) is a rational function on S. There is a natural projection S → C∗

given by (x, y)→ x and we denote by yσ(x) the choice of a local section (an algebraic function
of x), for σ ∈ P = {σ1, σ2}. We denote the corresponding series Φ(x, yσ(x); τ) simply by
Φσ(x; τ). Note that

δ(x, y1,2(x)) = ±
√

(1− x− x−1)2 − 4

x
(121)

and that the two series are related by

Φ2(x; τ) = iΦ1(x;−τ) . (122)

The power series
√

iδϕσ(x; τ) can be computed by applying Gaussian expansion to the state-
integral (113). One can compute up to 20 terms in a few minutes, and the first few terms
agree with an independent computation using the WKB method (see [DGLZ09, Eqn.(4.39)]
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as well as [GG06]), and given by
√

iδϕσ(x; τ)

√
iδϕ1,2

(
x;

τ

2πi

)
=1− 1

24γ3
1,2(x)

(
x−3 − x−2 − 2x−1 + 15− 2x− x2 + x3

)
τ

+
1

1152γ6
1,2(x)

(
x−6 − 2x−5 − 3x−4 + 610x−3 − 606x−2 − 1210x−1 + 3117

− 1210x− 606x2 + 610x3 − 3x4 − 2x5 + x6
)
τ 2 +O(τ 3), (123)

where
γ1,2(x) = xδ(x, y1,2(x)) = ±

√
x−2 − 2x−1 − 1− 2x+ x2. (124)

On the other hand, if one sets x to numerical values, one can compute 300 terms of this
power series.

5.2. Holomorphic blocks. In this section we give the definition of the holomorphic blocks
(and their descendants) which factorize the state-integral (and its descendants), and discuss
their analytic properties, and their linear q-difference equations. Note that in this section,
as well as in Section 5.3, all the statements are theorems, whose proofs we provide.

Motivated by the state-integral Z41(u; τ) of the 41 knot given in (113), and by the descen-
dant state-integral Z41,m,µ(0; τ) given in (67), we introduce the descendant state-integral of
the 41 knot

Z41,m,µ(u; τ) = e−2πiu2
∫
D

Φb(v) Φb(u+ v) e−πi(v2+4uv)+2π(mb−µb−1)v dv (125)

for integers m and µ, which agrees with the Andersen-Kashaev invariant of the 41 knot when
m = µ = 0. Here the contour D was introduced in (67). It is expressed in terms of two
descendant holomorphic blocks, which we denote by Am and Bm instead of Bσ1

m and Bσ2
m , in

order to simplify the notation. For |q| 6= 1, Am(x; q) and Bm(x; q) are given by

Am(x; q) = θ(−q 1
2x; q)−2x2mJ(qmx2, x; q) , (126a)

Bm(x; q) = θ(−q− 1
2x; q)xmJ(qmx, x−1; q) , (126b)

where J(x, y; qε) := Jε(x, y; q) for |q| < 1 and ε = ± is the q-Hahn Bessel function

J+(x, y; q) = (qy; q)∞

∞∑
n=0

(−1)n
q

1
2
n(n+1)xn

(q; q)n(qy; q)n
, (127a)

J−(x, y; q) =
1

(y; q)∞

∞∑
n=0

(−1)n
q

1
2
n(n+1)xny−n

(q; q)n(qy−1; q)n
. (127b)

The next theorem expresses the descendant state-integrals bilinearly in terms of descendant
holomorphic blocks.
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Theorem 14. (a) The descendant state-integral can be expressed in terms of the descendant
holomorphic blocks by

Z41,m,µ(ub; τ) =(−1)m+µqm/2q̃µ/2
(

e−
3πi
4
−πi

6
(τ+τ−1)Am(x; q)A−µ(x̃; q̃−1) (128)

+ e
3πi
4

+πi
3

(τ+τ−1)Bm(x; q)B−µ(x̃; q̃−1)
)
. (129)

(b) The functions Am(x; q), Bm(x; q) are holomorphic functions of |q| 6= 1 and meromorphic
functions of x ∈ C∗ with poles in x ∈ qZ of order at most 1.
(c) Let

Wm(x; q) =

(
Am(x; q) Bm(x; q)
Am+1(x; q) Bm+1(x; q)

)
(|q| 6= 1) . (130)

For all integers m and µ, the state-integral Z41,m,µ(u; τ) and the matrix-valued function

Wm,µ(u; τ) = W−µ(x̃; q̃−1)∆(τ)Wm(x; q)T , (131)

where

∆(τ) =

(
e−

3πi
4
−πi

6
(τ+τ−1) 0

0 e
3πi
4

+πi
3

(τ+τ−1)

)
, (132)

are holomorphic functions of τ ∈ C′ and entire functions of u ∈ C.
Proof. Part (a) follows by applying the residue theorem to the state-integral (125), along the
lines of the proof of Theorem 1.1 in [GK17]. A similar result was stated in [Dim15].

Part (b) follows from the fact that when |q| < 1, the ratio test implies that J+(x, y; q) is
an entire function function of (x, y) ∈ C2 and J−(x, y; q) is a meromorphic function of (x, y)
with poles in y ∈ qZ.

For part (c), one uses parts (a) and (b) to deduce thatWm,µ(u; τ) is holomorphic of τ ∈ C′
and meromorphic in u with potential simple poles at ibZ + ib−1Z. An expansion at these
points, done by the method of Section 5.3, demonstrates that the function is analytic at the
points ibZ+ ib−1Z. �

Note that the summand of J+ (a proper q-hypergeometric function) equals to that of J−
after replacing q by q−1. This implies that J± have a common annihilating ideal IJ with
respect to x, y which can be computed (rigorously, along with a provided certificate) using the
creative telescoping method of Zeilberger [PWZ96] implemented in the HolonomicFunctions
package of Koutschan [Kou09, Kou10]. Below, we will abbreviate this package by HF.

Lemma 15. The annihilating ideal of IJ of J± is given by

IJ = 〈(−x+ y) + xSy − ySx, 1 + (−1− x+ qy)Sy + xS2
y〉 (133)

where Sx and Sy are the shifts x to qx and y to qy.

The next theorem concerns the properties of the linear q-difference equations satisfied by
the descendant holomorphic blocks.

Theorem 16. (a) The pair Am(x; q) and Bm(x; q) are q-holonomic functions in the variables
(m,x) with a common annihilating ideal

I41 = 〈qmx2 + (−qm + q1+2mx2)Sm + x3Sx, (1− x−1Sm)(1− x−2Sm) + q1+mSm〉 (134)
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where Sm is the shift of m to m + 1 and Sx is the shift of x to qx. I41 has rank 2 and the
two functions form a basis of solutions of the corresponding system of linear equations.
(b) As functions of an integer m, Am(x; q) and Bm(x; q) form a basis of solutions of the linear
q-difference equation B̂41(Sm, x, q

m, q)fm(x; q) = 0 for |q| 6= 1 where

B̂41(Sm, x, q
m, q) = (1− x−1Sm)(1− x−2Sm) + q1+mSm . (135)

(c) The Wronskian Wm(x; q) of (135), defined in (130), satisfies

det(Wm(x; q)) = x3m+3 (m ∈ Z) . (136)

(d) The Wronskian satisfies the orthogonality relation

W−1(x; q)

(
1 0
0 −1

)
W−1(x; q−1)T =

(
x−2 + x−1 − 1 1

1 0

)
. (137)

It follows that for all integers m and `

Wm(x; q)

(
1 0
0 −1

)
W`(x; q−1)T ∈ GL(2,Z[q±, x±]) (138)

(e) As functions of x, Am(x; q) and Bm(x; q) form a basis of a linear q-difference equation
Â41(Sx, x, q

m, q)fm(x; q) = 0 where

Â41(Sx, x, q
m, q) =

2∑
j=0

Cj(x, q
m, q)Sjx , (139)

Sx is the operator that shifts x to qx and

C0 =q2+3mx2(−1 + q3+mx2) (140a)

C1 =− qm(−1 + q2+mx2)(1− qx− q1+mx2 − q3+mx2 − q3+mx3 + q4+2mx4) (140b)

C2 =q2x2(−1 + q1+mx2) . (140c)

(f) The Wronskian of (139)

Wm(x; q) =

(
Am(x; q) Bm(x; q)
Am(qx; q) Bm(qx; q)

)
, (|q| 6= 1) (141)

satisfies
det(Wm(x; q)) = qmx3m(1− qm+1x2) (m ∈ Z) . (142)

Proof. Since Am(x; q) and Bm(x; q) are given in terms of q-proper hypergeometric multi-
sums, it follows from the fundamental theorem of Zeilberger [Zei90, WZ92, PWZ96] (see
also [GL16]) that they are q-holonomic functions in both variables m and x. Part (a) follows
from an application of the HF package of Koutschan [Kou09, Kou10].

Part (b) follows from the HF package. The fact that they are a basis follows from (c).
For part (c), Equation (135) implies that the determinant of the Wronskian satisfies the

first order equation det(Wm+1(x; q)) = x3 det(Wm(x; q)) (see [GK13, Lem.4.7]). It follows
that det(Wm(x; q)) = x3m det(W0(x; q)) with initial condition a function of x given by Swart-
touw [Swa92]

det(W0(x; q)) = x3 (|q| 6= 1) . (143)
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We recall the details of the proof which will be useful in the case of the 52 knot. When
|q| < 1, the q-Hahn Bessel function J(x, y; q) satisfies the recursion relation

yJ(qx, y; q)− (1 + y − x)J(x, y; q) + J(q−1x, y; q) = 0. (144)

This follows from [Swa92], and can also be proved using the HF package. It then follows that

Jν,1(z; q) := J(z, qν ; q), Jν,2(z; q) := z−νJ(q−νz, q−ν ; q) (145)

are two independent solutions to

qνJ (qz; q)− (1 + qν − x)J (z; q) + J (q−1z; q) = 0. (146)

The corresponding Wronskian

Wν(z; q) =

(
Jν,1(z; q) Jν,2(z; q)
Jν,1(qz; q) Jν,2(qz; q)

)
(147)

satisfies the recursion relation (see [GK13, Lem.4.7])

detWν(z; q) = q−ν detWν(q
−1z; q) (148)

which implies that the determinant of U(z; q) = zνWν(z; q) is an elliptic function

detU(qz; q) = detU(z; q). (149)

It can be computed by the following limit

detU(z; q) = lim
k→∞

detU(qkz; q) = lim
z→0

detU(z; q)

= lim
z→0

(
q−νJ(z, qν ; q)J(q1−νz, q−ν ; q)− J(q−νz, q−ν ; q)J(qz, qν ; q)

)
=(q−ν − 1)(q1+ν ; q)∞(q1−ν ; q)∞, (150)

where in the last step we just used the q-expansion definition of the q-Hahn Bessel function.
We thus have

zν detWν(z; q) = −(qqν ; q)∞(q−ν ; q)∞. (151)
Using the substitution

z 7→ x2, zν 7→ x (152)
in the above equation and cancelling with the θ-prefactors of Am(x; q) and Bm(x; q) we obtain
Equation (143) for |q| < 1. The case of |q| > 1 can be obtained by analytic continuation on
both sides of (143).

For part (d), Equation (135) implies that

Wm+1(x; q) =

(
0 1
−x3 x2 + x− q1+mx3

)
Wm(x; q) . (153)

Hence, Equation (138) follows from (137). The latter is a direct consequence of the analytic
continuation formula

J(x, y; q) = θ(−q1/2y; q)J(y−1x, y−1; q−1) (154)
which one easily sees by comparing (127a) and (127b).

Part (e) follows from the HF package. The fact that they are a basis follows from (f).
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For part (f), since Am(x; q) (as well as Bm(x; q)) are annihilated by the first generator
of (134), it follows that

qmx2Am(x; q)− qm(1− q1+mx2)Am+1(x; q) + x3Am(qx; q) = 0 . (155)

After solving for the above for Am(qx; q) (and same for Bm(qx; q)) and substituting into the
Wronskian (141), it follows that the two Wronskians are related by

Wm(x; q) =

(
1 0

−qmx−1 qmx−3(1− q1+mx2)

)
Wm(x; q) . (156)

After taking determinants, it follows that

det(Wm(x; q)) = qmx−3(1− q1+mx2) det(Wm(x; q)) (157)

This, together with (136) concludes the proof of (142). �

We now come to Conjecture 5 concerning a refinement of the Â-polynomial. Combining
Theorems 14 and 16 we obtain explicit linear q-difference equations for the descendant inte-
grals with respect to the u and the m variables. To simplify our presentation keeping an eye
on Equation (129), let us define a normalized version of the descendant state-integral by

z41,m,µ(u; τ) = (−1)m+µq−m/2q̃−µ/2Z41,m,µ(u; τ) . (158)

Theorem 17. z41,m,k(ub; τ) is a q-holonomic function of (m,u) with annihilator ideal I41

given in (134). As a function of u (resp.,m) it is annihilated by the operators Â41(Sx, x, q
m, q)

and B̂41(Sm, x, q
m, q) (given respectively by (139) and (135)), whose classical limit is

Â41(Sx, x, q
m, 1)

= (−1 + qmx2)(x2S2
x − qm(1− x− 2qmx2 − qmx3 + q2mx4)Sx + q3mx2)

(159)

and

B̂41(Sm, x, q
m, 1) = (1− x−1Sm)(1− x−2Sm) + qmSm. (160)

Â41(Sx, x, 1, 1) is the A-polynomial of the knot, Â41(Sx, x, 1, q) is the (homogeneous part) of
the Â-polynomial of the knot and B̂41(x

2y, x, 1, 1) is the defining equation of the curve (116).

Note that although the two equations (135) and (139) look quite different, they come
from the common annihilating ideal (134) of rank 2. This explains their common order,
assuming that the ideal is generic. The annihilating ideal is easier to describe than the Sm-
free element (139) of it. In fact, the first generator of I41 expresses Sx as a polynomial in Sm,
and eliminating Sm, one obtains equation (139) from (135). The characteristic variety of I41

is a complex is a 2-dimensional complex surface in (C∗)4 and its intersection with a complex
3-torus contains two special curves, namely the A-polynomial and the B-polynomial of the
41 knot.
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5.3. Taylor series expansion at u = 0. The descendant state-integral is a meromophic
function of u which is analytic at u = 0 and factorizes in terms of descendant holomorphic
blocks (129). In this section we compute the Taylor series of the holomorphic blocks and of
the state-integral at u = 0 and show how the factorization of the descendant state-integral
(129) reproduces (69).

We begin with some general comments valid for descendant holomorphic blocks and state-
integrals. Since the descendant holomorphic blocks are products of theta functions times
q-hypergeometric sums, we need to compute the Taylor expansion of each piece. For Taylor
expansion of the q-hypergeometric sums, we

φn(u) :=
(q1+neu; q)∞
(q1+n; q)∞

= exp

(
−
∞∑
l=1

1

l!
E

(n)
l (q)ul

)
(161a)

φ̃n(u) :=
(q̃; q̃)∞

(q̃eu; q̃)∞

(q̃−1; q̃−1)n
(q̃−1eu; q̃−1)n

= exp

(
∞∑
l=1

1

l!
Ẽ

(n)
l (q̃)ul

)
(161b)

from [GK17, Prop.2.2], where

E
(n)
l (q) =

∞∑
s=1

sl−1qs(n+1)

1− qs (162)

and

Ẽ
(n)
l (q̃) =


−n+ E

(n)
l (q̃) l = 1

E
(n)
l (q̃) l > 1 odd

2E
(0)
l (q̃)− E(n)

l (q̃) l > 1 even .
(163)

For the Taylor series of the theta functions, we use the well-known identity that expresses
them in terms of quasi-modular forms (see, eg. [CMZ18, Sec.8, Eqn(76)], or alternatively
observe that the theta functions that appear in the bilinear expressions of the holomorphic
blocks are exponentials of quadratic and linear forms in u; see for instance (111a)–(111b).
Yet alternatively (and this is the method that we will use below), when r and s are nonzero
integers with r odd and positive, we can use the identity

θ(−q r2xs; q) = (−1)
r+1
2 q

r2−1
8 x−

s(r+1)
2 (1− xs)φ0(su)φ0(−su) (164)

whereas when r is odd and negative, we can use the q-difference equation (109) to bring it
to the cass of r odd and positive.

One last comment is that the descendant holomorphic blocks are in general meromorphic
functions of u. However, their bilinear combination that appears in the descendant state-
integrals is regular at u = 0.

We now give the details of the Taylor series expansion of Z41,m,µ(u; τ) and of the descendant
holomorphic blocks for the 41 knot. Using the definition of J(x, y; q) and (161a)–(161b), we
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find

Am(eu; q) = (1− e−u)−2(q; q)−3
∞ φ0(u)−2φ0(−u)−2

∞∑
n=0

qnm

(q; q)n(q−1; q−1)n
φn(u)e(2n+2m)u

= u−2(q; q)−3
∞

(
α

(m)
0 (q) + uα

(m)
1 (q) +O(u2)

)
(165)

where

α
(m)
0 (q) = G0

m(q), (166a)

α
(m)
1 (q) =

∞∑
n=0

qnm

(q; q)n(q−1; q−1)n
(1 + 2n+ 2m− E(n)

1 (q)), (166b)

and

Bm(eu; q) = (1− eu)(q; q)3
∞φ0(u)φ0(−u)

∞∑
n=0

qnm

(q; q)n(q−1; q−1)n
φn(−u)e(n+m)u

= −u(q; q)3
∞

(
β

(m)
0 (q) + uβ

(m)
1 (q) +O(u2)

)
(167)

where

β
(m)
0 (q) = G0

m(q), (168a)

β
(m)
1 (q) =

∞∑
n=0

qnm

(q; q)n(q−1; q−1)n

(
1

2
+ n+m+ E

(n)
1 (q)

)
. (168b)

We notice that
β

(m)
1 (q)− α(m)

1 (q) = −1

2
G1
m(q). (169)

Similarly, using the definition of J(x, y; q−1), we find

Am(eu; q−1) = (1− eu)(q; q)3
∞φ0(u)2φ0(−u)2

∞∑
n=0

q−nm

(q; q)n(q−1; q−1)n
φ̃n(u)e(2n+2m)u

= −u(q; q)3
∞

(
α̃

(m)
0 (q) + uα̃

(m)
1 (q) +O(u2)

)
(170)

where

α̃
(m)
0 (q) = G0

−m(q), (171a)

α̃
(m)
1 (q) =

∞∑
n=0

q−nm

(q; q)n(q−1; q−1)n

(
1

2
+ n+ 2m+ E

(n)
1 (q)

)
, (171b)

and

Bm(eu; q−1) =
φ0(u)−1φ0(−u)−1

(1− e−u)2(q; q)3
∞

∞∑
n=0

q−nm

(q; q)n(q−1; q−1)n
φ̃n(−u)e(n+m)u

= u−2(q; q)−3
∞

(
β̃

(m)
0 (q) + uβ̃

(m)
1 (q) +O(u2)

)
(172)
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where

β̃
(m)
0 (q) = G0

−m(q), (173a)

β̃
(m)
1 (q) =

∞∑
n=0

q−nm

(q; q)n(q−1; q−1)n
(1 + 2n+m− E(n)

1 (q)). (173b)

We also notice
β̃

(m)
1 (q)− α̃(m)

1 (q) =
1

2
G1
−m(q). (174)

Applying these results to the right hand side of (129), we find the O(1/u) contributions
from (170) and (172) cancel, and the O(u0) contributions reproduce exactly (69). Notice
that the

√
τ terms that appear in (69) come from expanding in terms of 2πbu and 2πb−1 u

in (129).
As an application of the above computations, we obtain proof of a simplified formula for

the q-series G1(q) from (43b) which was found experimentally in [GZa].

Proposition 18. For |q| < 1, we have:

G1(q) =
∞∑
n=0

(−1)n
qn(n+1)/2

(q; q)2
n

(6n+ 1) . (175)

Proof. We first show that the definition (43b) can equally be written as

G1(q) =
∞∑
n=0

(−1)n
qn(n+1)/2

(q; q)2
n

(
1 + 2n− 4E

(n)
1 (q)

)
. (176)

By definition

E
(n)
1 (q) =

∞∑
s=1

qs(n+1)

1− qs , (177)

they satisfy the recursion relation

E
(n)
1 (q)− E(n−1)

1 (q) = − qn

1− qn , (178)

and therefore

E
(n)
1 (q) = E

(0)
1 (q)−

n∑
j=1

qj

1− qj . (179)

Using the identification E1(q) = 1 − 4E
(0)
1 (q), one can then easily show that (176) is the

same as (43b).
(175) follows from (176) thanks to the non-trivial identity

∞∑
n=0

n+ E
(n)
1 (q)

(q; q)n(q−1; q−1)n
= 0, |q| < 1, (180)

which now we prove. The crucial fact we use is that when |q| < 1, J(x, y; q) is symmetric
between x and y (see a proof in [BDP14]). Let us consider the following expansion in small
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u

J(e−u, eu; q) =
∞∑
n=0

(q1+neu; q)∞
e−nu

(q−1; q−1)n
= (q; q)∞

∞∑
n=0

φn(u)e−nu

(q; q)n(q−1; q−1)n

=(q; q)∞

∞∑
n=0

1− (n+ E
(n)
1 (q))u

(q; q)n(q−1; q−1)n
+O(u2). (181)

Since J(e−u, eu; q) = J(eu, e−u; q), the coefficient of u (and in fact, of any odd power of u) in
the expansion above vanishes, which leads to (180). �

As a second application, we demonstrate that Theorem 9, especially the identities (52),
(55), as well as the recursion relation (49), can be proved by taking the u = 0 limit of the
analogue identities in Theorem 16.

Using the expansion formulas of holomorphic blocks (165), (167), (170), (172), the Wron-
skians can be expanded as

Wm(eu; q) =

(
G0
m(q) + uα

(m)
1 (q) G0

m(q) + uβ
(m)
1 (q)

G0
m+1(q) + uα

(m+1)
1 (q) G0

m+1(q) + uβ
(m+1)
1 (q)

)(
u−2(q; q)−3

∞ 0
0 −u(q; q)3

∞

)
,

(182)

Wm(eu; q−1) =

(
G0
−m(q) + uα̃

(m)
1 (q) G0

−m(q) + uβ̃
(m)
1 (q)

G0
−m−1(q) + uα̃

(m+1)
1 (q) G0

−m−1(q) + uβ̃
(m+1)
1 (q)

)(
−u(q; q)3

∞ 0
0 u−2(q; q)−3

∞

)
(183)

Taking the determinant of (182), we find

detWm(eu; q) =
1

2
detWm(q) +O(u) (184)

which together with the u-expansion of the right hand side of (136) leads to the determinant
identity (52). Furthermore, by substituting (182), (183) into the Wronskian relation (137),
the latter also reduces in the leading order to the determinant identity (52). On the other
hand, the Wronskian relation (54) is equivalent to

Wm(q) = 2

(
0 −1
1 0

)(
Wm(q)−1

)T ( 0 1
−1 0

)
(185)

which can be proved directly by expressing the inverse matrix on the right hand side by
minors and determinant, using the explicit value of the determinant given by the identity
(52).

Finally, from the expression (166a),(168a) of the leading order coefficients α(m)
0 (q), β(m)

0 (q)
of Am(eu; q), Bm(eu; q) in the expansion of u, one concludes that the recursion relation (49)
should be the u = 0 limit of the recursion relation (135) in m, and one can easily check it is
indeed the case.
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ϕσ1(τ ) ϕσ2(τ )

Figure 6. The singularities in the Borel plane for the series ϕσj(x; τ) with
j = 1, 2 of knot 41 where x is close to 1. The shortest vertical spacing between
singularities is 2πi, and the horizontal spacing between neighboring singulari-
ties in each cluster is log x.

5.4. Stokes matrices near u = 0. In this section we conjecture a formula for the Stokes
matrices of the asymptotic series ϕ(x; τ). When we turn on the non-vanising deformation
parameter u, the resurgent structure discussed in Section 3.1 undergoes significant changes.
Compared to Figure 2 there are many more singular points in the Borel plane whose positions
depend on u in addition to τ , and the Stokes matrices also become u-dependent. However, if
we focus on the case when u is not far away from zero, equivalent to x not far away from 1,
the resurgent data is holomorphic in u and reduces to those in Section 3.1 in the u = 0 limit.
For instance, each singular point in Figure 2 splits to a cluster of neighoring singular points
separated with distance log x as shown in Figure 6. In particular, each singular point ιi,j on
the real axis splits to a cluster of three, in accord with the off-diagonal entries ±3 in (60),
and if we choose real x, the split singularities still lie on the real axis. As in Section 3.1, we
label the four regions separating singularities on real axis and all the others by I, II, III, IV
(see Figure 7). In each of the four regions, we have the following the results.

Conjecture 19. The asymptotic series and the holomorphic blocks are related by (15) with
the diagonal matrix ∆(τ) as in (132), where matrices MR(x; q) are given in terms of the
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III

III IV

Figure 7. Four different sectors in the τ -plane for Φ(u; τ) of knot 41 with u
close to zero.

matrices W−1(x; q) as follows

MI(x; q) =

(
1 0
0 −1

)
W−1(x; q)T

(
0 1
−x−1 1

)
, |q| < 1 , (186a)

MII(x; q) =W−1(x−1; q)T
(
−x−1 0
−x−1 1

)
, |q| < 1 , (186b)

MIII(x; q) =W−1(x−1; q)T
(
−x−1 0
1 + x 1

)
, |q| > 1 , (186c)

MIV (x; q) =

(
1 0
0 −1

)
W−1(x; q)T

(
0 1
−x−1 −x−1 − x−2

)
, |q| > 1 . (186d)

The above conjecture completely determines the resurgent structure of Φ(τ). Indeed, it
implies that the Stokes matrices, defined in Equations (34) and (33), are explicitly given by:

S+(x; q) =

(
0 −1
x−1 −1− x

)
·W−1(x−1; q−1) ·W−1(x; q)T ·

(
0 x
−1 −1− x−1

)
, |q| < 1 ,

(187a)

S−(x; q) =

(
x x
0 −1

)
·W−1(x; q) ·W−1(x−1; q−1)T ·

(
x−1 0
x−1 −1

)
, |q| < 1 . (187b)

We remark that since s(Φσ)(x; τ) for σ = 1, 2 transform under the reflection π : x 7→ x−1

uniformly by (210) (see the comment below), the Stokes matrices should be invariant under
π, and we have checked that (187a),(187b) indeed satisfy this consistency condition.
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In the q 7→ 0 limit,

S+(x; 0) =

(
1 x−1 + 1 + x
0 1

)
, S−(x; 0) =

(
1 0

−x−1 − 1− x 1

)
(188)

A curious corollary of our computation is that the matrices of integers (60) from [GH18, GZb]
which relates the asymptotics of the coefficients of ϕ(τ) to the coefficients themselves, spreads
out to the matrices (188) with entries in Z[x±1].

Using the unique factorization Lemma 8 and the Stokes matrix S from above, we can
compute the Stokes constants and the corresponding matrix S of Equation (36) to arbitrary
order in q, and we find that

S+
σ1,σ1

(x; q) =S+(x; q)1,1 − 1

=(−2− x−2 − 2x−1 − 2x− x2)q + (−3− x−2 − 2x−1 − 2x− x2)q2 +O(q3),
(189)

S+
σ1,σ2

(x; q) =S+(x; q)1,2/S
+(x; q)1,1 − (S(1,0)

σ1,σ2
x+ S(0,0)

σ1,σ2
+ S(−1,0)

σ1,σ2
x−1)

=(3 + x−2 + 2x−1 + 2x+ x2)q

+ (17 + x−4 + 4x−3 + 9x−2 + 15x−1 + 15x+ 9x2 + 4x3 + x4)q2 +O(q3),
(190)

S+
σ2,σ1

(x; q) =S+(x; q)2,1/S
+(x; q)1,1

=(−3− x−2 − 2x−1 − 2x− x2)q

+ (−17− x−4 − 4x−3 − 9x−2 − 15x−1 − 15x− 9x2 − 4x3 − x4)q2 +O(q3),
(191)

S+
σ2,σ2

(x; q) =S+(x; q)2,2 − 1− S+(x; q)1,2S
+(x; q)2,1/S

+(x; q)1,1

=(2 + x−2 + 2x−1 + 2x+ x2)q

+ (17 + x−4 + 4x−3 + 9x−2 + 14x−1 + 14x+ 9x2 + 4x3 + x4)q2 +O(q3).
(192)

They enjoy the symmetry
S+
σ1,σ2

(x; q) = −S+
σ2,σ1

(x; q) , (193)

and experimentally, it appears that the entries of the matrix S+(x; q) = (S+
σi,σj

(x; q)) (except
the upper-left one) are (up to a sign) in N[x±1][[q]]. Similarly we can extract the Stokes
constants S(`,−k)

σi,σj associated to the singularities in the lower half plane, and assemble into
q−1-series S−σi,σj(x; q−1). We find they are related to S+

σi,σj
(x; q) by

S−σi,σj(x; q) = −S+
σj ,σi

(x; q), i 6= j

S−σ1,σ1(x; q) = S+
σ2,σ2

(x; q), S−σ2,σ2(x; q) = S+
σ1,σ1

(x; q) . (194)

Let us now verify Conjecture 4. From (187a) we find that indeed

S+(x; q)
·

= W−1(x−1; q−1) ·W−1(x; q)T . (195)
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Using the recursion relation (153) and the relation between two Wronskians (156), we further
find

S+(x; q)
··
=W0(x−1; q−1) · W0(x; q)T . (196)

If we use the uniform notation for all holomorphic blocks
(Bα

K(x; q))α=1,2 = (A0(x; q), B0(x; q)), (197)
the right hand side of (196) reads

W0(x−1; q−1) · W0(x; q)T =

(∑
α

Bα
41

(qjx; q)Bα
41

(q−ix−1; q−1)

)
i,j=0,1

. (198)

which is precisely the right hand side of (20) in Conjecture 4 following (19).1 In addition, the
forms of the accompanying matrices on the left and on the right are such that the (1, 1) entry
of S+(x; q) equates exactly the DGG index with no magnetic flux. By explicit calculation,

S+(x; q)1,1 = J(x, x−1; q)J(x, x−1; q−1) + J(x−2, x−1; q)J(x2, x; q−1)

= 1− (2x−2 + x−1 + 2 + x+ 2x2)q − (x−2 + 2x−1 + 3 + 2x+ x2)q2 +O(q3),
(200)

which is the Indrot
41

(0, x; q) given in [BDP14].

5.5. The Borel resummations of the asymptotic series Φ. In this section we ex-
plain how Conjecture 19 identifies the Borel resummations of the factorially divergent series
Φ(x; τ) with the descendant state-integrals, thus lifting the Borel resummation to holomor-
phic functions on the cut-plane C′. This is interesting theoretically, but also practically in
the numerical computation of Borel resummations.

After multiplying the inverse of MR(x̃, q̃) from the left on both sides of (15), we can
also express the Borel sums sR(Φ)(x; τ) in each region in terms of holomorphic functions of
τ ∈ C\R as follows

Corollary 20. (of Conjecture 19) We have

sI(Φ)(x; τ) =

(
−x̃ 1 + x̃−1

0 1

)
W−1(x̃; q̃−1)∆(τ)B(x; q) , (201a)

sII(Φ)(x; τ) =

(
0 −x̃
1 −x̃− x̃2

)
W−1(x̃−1; q̃−1)

(
1 0
0 −1

)
∆(τ)B(x; q) , (201b)

sIII(Φ)(x; τ) =

(
0 −x̃
1 1

)
W−1(x̃−1; q̃−1)

(
1 0
0 −1

)
∆(τ)B(x; q) , (201c)

sIV (Φ)(x; τ) =

(
−x̃ −x̃
0 1

)
W−1(x̃, q̃−1)∆(τ)B(x; q) . (201d)

1Note that because the form of the state integral in [BDP14] is slightly different from that in [AK14],
which we adopt, our convention for holomorphic blocks is also different from [BDP14]. As a result, the
entries of (198) equate the DGG indices computed in [BDP14] up to a prefactor(

W0(x−1; q−1) · W0(x; q)T
)
i+1,j+1

= (−q1/2)j−iIndrot
41

(j − i, q j+i2 x; q), i, j = 0, 1. (199)

If we take this into account, Conjecture 4 should be modified slightly by stating the accompanying matrices
on the left and on the right are in GL(2,Z(x, q1/2)).
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where the right hand side of (201a)–(201d) are holomorphic functions of τ ∈ C′, as they are
linear combinations of the descendants (129).

The asymptotic series of the 41 knot have the symmetry (122) due to the fact that it is
an amphichiral knot. This gives a symmetry of the state-integral.

Proposition 21. (Assuming Conjecture 19) We have:

Z41(u; τ) = e2π(b+b−1)uZ41(−u; τ) . (202)

Proof. The second line of (201a) indicates that in region I

Z41(u; τ) = sI(Φ2)(x; τ). (203)

Recall the structure of Φ2(x; τ) from (120)

Φ2(x; τ) = exp

(
V (x, y2(x))

2πiτ

)
1√

iδ(x, y2(x))

√
iδϕ(x, y2(x); τ). (204)

Here
√

iδϕ2(x; τ) :=
√

iδϕ(x, y2(x); τ) is an asymptotic series in τ with
√

iδϕ2(x; 0) = 1. The
coefficients of the series

√
iδϕ2(x; τ) are invariant under the transformation x 7→ 1/x (see for

instance (123); this is also true for
√

iδϕ1(x; τ) =
√

iδϕ(x, y1(x); τ)), and thus

s(
√

iδϕ2)(1/x; τ) = s(
√

iδϕ2)(x; τ). (205)

On the other hand, from definition (121) of δ2(x) := δ(x, y2(x)), it is clear that

δ2(1/x) = x2δ2(x). (206)

Finally, to study the behavior of V2(x) := V (x, y2(x)) under the transformation x 7→ 1/x, it
is convenient to do the change of variables y = x−1 + ỹ, so that the Equation (116) satisfied
by y becomes

1− (1− x− x−1)ỹ + ỹ2 = 0 (207)
which is manifestly invariant under this transformation, and thus ỹ(1/x) = ỹ(x). Expressed
in terms of this variable

V2(x) =− Li2(−x−1ỹ2)− Li2(−xỹ2)− π

3
− 1

2
log2(xỹ−1

2 )

+ log(1 + xỹ−1
2 ) log(−xỹ−1

2 )− log(1 + xỹ2) log(−xỹ2)

− 1

2
log2(−1− xỹ−1

2 ) +
1

2
log2(−x−1 − ỹ2) + 2 log x log(−x−1 − ỹ2), (208)

and it has the property that
V2(x−1) = V2(x)− 2πix (209)

This can be proven by differentiating both sides with respect to x, and reducing it to an
identity of rational functions on the curve S. Combining (205),(206),(209), we have

sI(Φ2)(x−1; τ) = x−1x̃−1sI(Φ2)(x; τ) (210)

which implies (202). We comment in the passing that the identity (210) is true for both
s(Φ1,2)(x; τ) for any τ ∈ C whenever the asymptotic series is Borel summable.

Once we have established the identity (202) in region I, it can be extended to τ ∈ C′ by
the holomorphicity of (129). �
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5.6. Stokes matrices for real u. In Section 5.4 we only considered the resurgent structure
for x near 1, or equivalently, u = log x near 0. When x is arbitrary, the resurgent structure
of the vector Φσ(x; τ) could be very different. According to the Picard–Lefschetz theory (for
review, see for instance [Wit11]), when a set of asymptotic series originates from a (path)
integral, the Borel sum of each asymptotic series is the evaluation of the integral along a
Lefschetz thimble anchored to a critical point. In the x-plane, there are walls of marginal
stability which start from the roots to the discriminant (119) and which end at infinity.
When we cross such a Stokes line, Lefschetz thimbles jump leading to linear transformations
of the Borel summed asymptotic series. In this section we extend slightly the discussion
of Section 5.4 by considering the resurgent structure of Φσ(x; τ) for generic positive x (see
[BDP14] for a similar discussion in complex Chern-Simons theory). The positive real axis is
divided by the two real solutions to (119)

x± =
1

2
(3±

√
5) (211)

to three intervals
(0, x−), (x−, x+), (x+,∞). (212)

The middle interval is covered by Section 5.4, while the first (labeled by <) and third (labeled
by >) intervals are discussed below.

ϕσ1(τ ) ϕσ2(τ )

Figure 8. The singularities in the Borel plane for the series ϕσj(u; τ) with
j = 1, 2 of knot 41 for x = e2πbu in the first or the third interval of the positive
axis.

First of all, we notice that the first and third intervals are related by the reflection x 7→ x−1.
In fact, due to the property (205) of the asymptotic series, the Borel plane singularities for
Φσ(x; τ) and Φσ(x−1; τ) are identical, and we illustrate them uniformly in Figure 8. The
positions of singularities are still described by (14). However, the difference of action (V (σ1)−
V (σ2))/(2πi) is now imaginary and it describes the vertical spacing between neighoring
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III

III IV

Figure 9. Four different sectors in the τ -plane for Φ(u; τ) of knot 41 with
x = e2πbu in the first or the third interval of the positive axis.

singularities. The shortest horizontal spacing is log x. Finally all singularities are repeated
vertically by the spacing 2πi. Similar to the discussion in Section 5.4, we label in the τ -plane
by I, II, III, IV the four sectors which separate the 12 singularities close to the real axis
and other singularities along the imaginary axis or away from the real axis, as in Figure 9.
In each of the four sectors, the Borel summed vector s≷R(Φ)(x; τ) is a linear transformation
of the Borel summed vector sR(Φ)(x; τ) in the middle interval, as per the Picard-Lefschetz
theory

s≷R(Φ)(x; τ) = T≷R (x̃) · sR(Φ)(x; τ). (213)

It is most convenient to compute the transformation matrix T≷R by comparing the left hand
side with the holomorphic lifts of sR(Φ)(x; τ) summarized in Corollary 20. By doing so, we
find in the first interval

T<I (x̃) =

(
x̃ 0
−x̃ 1

)
, T<II(x̃) =

(
0 1
−x̃ 1

)
(214)

T<III(x̃) =

(
x̃ 1
−x̃ 0

)
, T<IV (x̃) =

(
x̃ 1
0 1

)
, (215)

while in the third interval

T>I (x̃) =

(
x̃−1 0
−x̃−1 1

)
, T>II(x̃) =

(
0 1
−x̃−1 1

)
(216)

T>III(x̃) =

(
x̃−1 1
−x̃−1 0

)
, T>IV (x̃) =

(
x̃−1 1
0 1

)
. (217)

They are indeed related by
T<R (x̃) = T>R (x̃−1). (218)
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Once the linear combinations are known, the Stokes matrices can be computed using the
Stokes matrices in the middle interval given in Section 5.4

S≷R→R′(x; q) = T≷R′(x) ·SR→R′(x; q) ·
(
T≷R (x)

)−1
. (219)

We find

S>
I→II(x; q) =

(
0 1
−x−1 1

)
·SI→II(x; q) ·

(
x 0
1 1

)
(220)

S>
II→III(x) =

(
1− x− x2 x+ x2

−x− x2 1 + x+ x2

)
(221)

S>
III→IV (x; q) =

(
x−1 1
−x−1 0

)
·SIII→IV (x; q) ·

(
x −x
0 1

)
(222)

S>
IV→I(x) =

(
1 + x−1 + x−2 x−1 + x−2

−x−1 − x−2 1− x−1 − x−2

)
, (223)

and thanks to (218),
S<
R→R′(x; q) = S>

R→R′(x
−1; q). (224)

Note that S>
III→I(x) and S>

II→IV (x) encode all the 12 singularities near the real axis
illustrated in Figure 9, as well as the Stokes constants associated to them. Furthermore, the
Stokes matrices also have the property

S>
IV→III(x

−1; q)−1 = S>
I→II(x; q)T , (225)

in accord with Conjecture 5.

5.7. Numerical verification. In this section we explain the numerical verification of Con-
jecture 19. This involves, on the one hand, a numerical computation of the asymptotics of
the holomorphic blocks and on the other hand, a numerical computation of the Borel re-
summation by the Laplace integral of a Padé approximation. Taking the two computations
into account, we found out numerically, integers appearing at two exponentially small scales,
namely q̃ and x̃, and guessing these integers eventually led to Conjecture 19.

We found ample numerical evidence for the resurgent data (186a)–(186d). First of all,
due to the symmetry Φ1(x;−τ) = −iΦ2(x; τ), Φ2(x;−τ) = iΦ1(x; τ), the resurgent behavior
of s(Φ)(x; τ) for τ in the lower half-plane can be deduced from that for τ in the upper
half-plane. We only have to numerically test the resurgent data for τ in regions I, II in the
upper-half plane.

The first piece of evidence comes from analysing the radial asymptotics of the left hand
side of (15). Note that the matrix ∆(τ) = diag(∆σ(τ)) is always diagonal, and each row of
(15) is

∆σ(τ)Bσ(x; q) =
∑
σ′

MR(x̃, q̃)σ,σ′sR(Φσ′)(x; τ). (226)

If we take τ = eiα/k with the argument α depending on a ray in the region R and k a
very large integer, the difference between exp

(
V (σ′)
2πiτ

)
associated to different critical points is

greatly magnified, and the right hand side of (226) is dominated by a single series. Further-
more, when τ is in the upper (lower) half plane, q̃ (1/q̃) is exponentially suppressed and the
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(a) Region I: τ = 1
20e

πi
5

| sI(Φ)(x;τ)
PI(x;τ)

− 1| | sI(Φ)(x;τ)
s′I(Φ)(x;τ)

− 1| |q̃(τ)| |x̃(x, τ)|
σ1 3.2× 10−66 9.7× 10−66

8.3× 10−33 0.05
σ2 1.9× 10−94 5.2× 10−94

(b) Region II: τ = 1
20e

4πi
5

| sII(Φ)(x;τ)
PII(x;τ)

− 1| | sII(Φ)(x;τ)
s′II(Φ)(x;τ)

− 1| |q̃(τ)| |x̃(x, τ)−1|
σ1 1.9× 10−94 5.2× 10−94

8.3× 10−33 0.05
σ2 3.2× 10−66 9.7× 10−66

(c) Region III: τ = 1
20e−

4πi
5

| sIV (Φ)(x;τ)
PIV (x;τ)

− 1| | sIV (Φ)(x;τ)
s′IV (Φ)(x;τ)

− 1| |q̃(τ)−1| |x̃(x, τ)|
σ1 1.9× 10−94 5.2× 10−94

8.3× 10−33 0.05
σ2 3.2× 10−66 9.7× 10−66

(d) Region IV : τ = 1
20e−

πi
5

| sIII(Φ)(x;τ)
PIII(x;τ)

− 1| | sIII(Φ)(x;τ)
s′III(Φ)(x;τ)

− 1| |q̃(τ)−1| |x̃(x, τ)−1|
σ1 3.2× 10−66 9.7× 10−66

8.3× 10−33 0.05
σ2 1.9× 10−94 5.2× 10−94

Table 1. Numerical tests of holomorphic lifts of Borel sums of asymptotic
series for knot 41. We perform the Borel-Padé resummation on Φ(x; τ) with
280 terms at x = 6/5 and τ in four different regions, and compute the relative
difference between them and the right hand side of (201a)–(201d), which we
denote by PR(x; τ). They are within the error margins of Borel-Padé resum-
mation, which are estimated by redo the resummation with 276 terms, denoted
by s′R(•) in the tables. The relative errors are much smaller than |q̃±1|, |x̃±1|,
possible sources of additional corrections.

correction MR(x̃, q̃)σ,σ′ as a series in q̃ (1/q̃) is dominated by the leading term. (226) thus
becomes

∆σ(τ)Bσ(x; q) ∼ exp

(
V (σ̂) + ωσ̂

2πieiα
k − log(iδ(x, yσ̂)) +

∞∑
n=1

Sn(x, yσ̂)eniαk−n

)
, k � 1,

(227)
where ωσ̂ is possible contribution from the leading term of MR(x̃, q̃)σ,ŝ, and the series in k−1

is logϕ(x, yσ̂; τ). As pointed out in [GZa], this equation can be tested numerically with the
help of Richardson transformations (see for instance [BO99]).
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Next, we can test (226) directly. One way of doing this is to compute Borel-Padé re-
summation sR(Φσ′)(x; τ) for various values of x ∈ R and τ in the same region R, and by
comparing with the left hand side extract terms of MR(x̃, q̃)σ,σ′ order by order. To facilitate
this operation, instead of MR(x̃; q̃) we consider

M̃R(x̃; q̃) =

(
θ(−q̃−1/2x̃; q̃)2 0

0 θ(−q̃1/2x̃; q̃)−1

)
MR(x̃; q̃) (228)

whose entries are q̃-series with coefficients in Z[x̃±1] instead of in Z(x̃). Using 280 terms of
Φσ(x; τ), we find the results for τ in the upper half plane

M̃I(x; q) =

(
−x+ (x2 + x3)q + (x2 + x3)q2 1− (x+ x2 + x3)q − (x+ x2)q2

−1 + (x−1 + x)q + (x−1 + x)q2 1− (x−1 + 1 + x)q − (x−1 + x)q2

)
+O(q3)

(229a)

M̃II(x; q) =

(
−x+ (1 + x−1 + x−2)q + (1 + x−1)q2 1− (x−1 + x−2)q − (x−1 + x−2)q2

−1 + (x+ 1 + x−1)q + (x+ x−1)q2 1− (x+ x−1)q − (x+ x−1)q2

)
+O(q3)

(229b)

and they agree with (186a), (186b). Another more decisive way is to compute both sides of
(226) numerically assuming (186a), (186b) and compare them. Alternatively, we can compare
two sides of the equations of holomoprhic lift (201a), (201b). We find that the difference
between the two sides is always within the error margin of Borel-Paé resummation, and much
smaller than q̃±1, x̃±1, i.e. possible additional corrections. We illustrate this comparison by
one example with x = 6/5 and τ = 1

20
e±

πi
5 , 1

20
e±

4πi
5 in four regions in Table 1.

A final way to test these results is to see that in the x 7→ 1 limit, the resurgent data as well
as the Stokes matrices (187a)–(187b) are compatible with the results in section 3.1 where
x = 1. This is a non-trivial test since the matrix W−1(x−1; q−1) (|q| < 1) in (187a)–(187b) is
divergent in the limit x 7→ 1.

6. The 52 knot

6.1. Asymptotic series. Our second example that we discuss in detail will be the case of
the 52 knot. The state-integral for the 52 knot [AK14, Eqn.(39)] (after removing a prefactor
that depends on u alone)

Z52(u; τ) =

∫
R+i0

Φb(v) Φb(v + u) Φb(v − u) e−2πiv2dv . (230)

After a change of variables u 7→ u/(2πb) (see Equation (2)) and v 7→ v/(2πb), it follows that
the integrand of Z52(ub; τ) has a leading term given by eV (u,v)/(2πiτ) where

V (u, v) = Li2(−ev) + Li2(−eu+v) + Li2(−e−u+v) + (v)2 . (231)

Taking derivative with respect to v gives the equation for the critical point

2v − log(1 + ev)− log(1 + eu+v)− log(1 + e−u+v) = 0 (232)

which implies that x = e2πbu and y = −e2πbv are points of the affine curve S given by

S : y2 = (1− y)(1− xy)(1− x−1y) (233)
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and (u, v) are points of the exponentiated curve S∗ given by the above equation with (x, y) =
(eu,−ev). Moreover,

V (u, v) = Li2(y) + Li2(xy) + Li2(x−1y) + (log(−y))2 (234)

is a holomorphic C/2π2Z-valued function on the exponentiated curve S∗. Note that when
u = 0, Equation (233) becomes (73).

The constant term of the asymptotic expansion is given by the Hessian of V (u, v) at a
critical point (u, v), and it is a rational function of x and y is given by

δ(x, y) = y − (1 + x+ x−1)y−1 + 2y−2 . (235)

Note that δ(x, y) = 0 on S if and only if x is a root of the discriminant of S with respect to
y, i.e.,

1− 6x+ 11x2 − 12x3 − 11x4 − 12x5 + 11x6 − 6x7 + x8 = 0 . (236)

This happens at two points in the real line given approximately by x ≈ 0.235344 and
x ≈ 4.24909. Moreover, when x is a root of (236), exactly two out of the three branches of
y = y(x) collide, and the corresponding branch point is simple.

Beyond the leading asymptotic expansion and its constant term, the asymptotic series has
the form Φ(x, y; τ) where

Φ(x, y; τ) = exp

(
V (u, v)

2πiτ

)
ϕ(x, y; τ), ϕ(x, y; τ) ∈ 1√

iδ
Q[x±, y±, δ−1][[2πiτ ]] (237)

where δ is given in (235) and
√

iδ ϕ(x, y; 0) = 1. In other words, the coefficient of every power
of 2πiτ in

√
δ ϕ(x, y; τ) is a rational function on S. There is a natural projection S → C∗

given by (x, y) 7→ x and we denote by yσ(x) the choice of a local section (an algebraic
function of x), for σ ∈ P = {σ1, σ2, σ3}. We denote the corresponding series ϕ(x, yσ(x); τ)
simply by ϕσ(x; τ). When x is close to 1, we order P so that σ1, σ2, σ3 correspond to small
deformations away from geometric, conjugate, and real connections at x = 1. Note for σ3,
we only keep the real part of V . The power series

√
iδϕσ(x; τ) can be computed by applying

Gaussian expansion on the state-integral (230), and one can compute up to 15 terms in a
few minutes. Let us write down the first few terms of ϕσ(x; τ)

ϕσ(x;
τ

2πi
) = 1 +

τ

24δ3
σ

(
81 + 112s− 78s2 − 70s3 + 94s4 − 38s5 + 5s6

+
(
138− 254s+ 127s2 + 44s3 − 89s4 + 38s5 − 5s6

)
yσ

+
(
135− 101s− 11s2 + 61s3 − 33s4 + 5s5

)
y2
σ

)
+O(τ 2) , (238)

where

s = s(x) = x−1 + 1 + x . (239)

On the other hand, if one sets x to numerical values, the power series can be computed to
200 terms.
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6.2. Holomorphic blocks. Motivated by the case of the 41 knot, we define the descendant
state-integral of the 52 knot by

Z52,m,µ(u; τ) =

∫
D

Φb(v) Φb(v + u) Φb(v − u) e−2πiv2+2π(mb−µb−1)vdv (240)

for integers m and µ, which agrees with the Andersen-Kashaev invariant of the 52 knot when
m = µ = 0. Here the contour D was introduced in (67). It is expressed in terms of three
descendant holomorphic blocks, which we denote by Am, Bm and Cm instead of Bσj

m for
j = 1, 2, 3. For |q| 6= 1, Am(x; q), Bm(x; q) and Cm(x; q) are given by

Am(x; q) = H(x, x−1, qm; q) (241a)

Bm(x; q) = θ(−q1/2x; q)−2xmH(x, x2, qmx2; q) (241b)

Cm(x; q) = θ(−q−1/2x; q)−2x−mH(x−1, x−2, qmx−2; q) (241c)

where H(x, y, z; qε) := Hε(x, y, z; q) for |q| < 1 and ε = ± and

H+(x, y, z; q) = (qx; q)∞(qy; q)∞

∞∑
n=0

qn(n+1)zn

(q; q)n(qx; q)n(qy; q)n
(242a)

H−(x, y, z; q) =
1

(x; q)∞(y; q)∞

∞∑
n=0

(−1)n
q

1
2
n(n+1)x−ny−nzn

(q; q)n(qx−1; q)n(qy−1; q)n
. (242b)

Note that the summand of H+ (a proper q-hypergeometric function) equals to that of H−
after replacing q by q−1. This implies that H± have a common annihilating ideal IH with
respect to x, y, z which can be computed as in the case of Lemma 15.

The next theorem expresses the descendant state-integrals bilinearly in terms of descendant
holomorphic blocks.

Theorem 22. (a) The descendant state-integral can be expressed in terms of the descendant
holomorphic blocks by

Z52,m,µ(ub; τ) =(−1)m+µqm/2q̃µ/2
(

e
3πi
4

+ 5πi
12

(τ+τ−1)Am(x; q)A−µ(x̃; q̃−1)

+e−
πi
4

+ πi
12

(τ+τ−1)Bm(x; q)B−µ(x̃; q̃−1) + e−
πi
4

+ πi
12

(τ+τ−1)Cm(x; q)C−µ(x̃; q̃−1)
)
.

(243)

(b) The functions Am(x; q), Bm(x; q) and Cm(x; q) are holomorphic functions of |q| 6= 1 and
meromorphic functions of x ∈ C∗ with poles in x ∈ qZ of order at most 2.
(c) Let

Wm(x; q) =

 Am(x; q) Bm(x; q) Cm(x; q)
Am+1(x; q) Bm+1(x; q) Cm+1(x; q)
Am+2(x; q) Bm+2(x; q) Cm+2(x; q)

 (|q| 6= 1) . (244)

For all integers m and µ, state-integral Z52,m,µ(u; τ) and the matrix-valued function

Wm,µ(u; τ) = W−µ(x̃; q̃−1)∆(τ)Wm(x; q)T , (245)
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where

∆(τ) =

e
3πi
4

+ 5πi
12

(τ+τ−1) 0 0

0 e−
πi
4

+ πi
12

(τ+τ−1) 0

0 0 e−
πi
4

+ πi
12

(τ+τ−1)

 , (246)

are holomorphic functions of τ ∈ C′ and entire functions of u ∈ C.

Proof. Part (a) follows by applying the residue theorem, just as in the proof of part (a) of
Theorem 14. A similar result was stated in [Dim15].

Part (b) follows from the fact that when |q| < 1, the ratio test implies that H+(x, y, z; q) is
an entire function of (x, y, z) ∈ C3 and J−(x, y, z; q) is a meromorphic function of (x, y, z) ∈
C2 ×C with poles at x = qZ and y ∈ qZ.

For part (c), one uses parts (a) and (b) to deduce thatWm,µ(u; τ) is holomorphic of τ ∈ C′
and meromorphic in u with possible poles of second order at ibZ+ ib−1Z. An expansion at
these points, done by the method of Section 6.3, demonstrates that the function is analytic
at the points ibZ+ ib−1Z. �

Note that the holomorphic blocks have the symmetry

Am(x−1; q) = Am(x; q), Bm(x−1; q) = Cm(x; q), (247)

which implies the symmetry of the matrix Wm(x; q)

Wm(x−1; q) = Wm(x; q)

1 0 0
0 0 1
0 1 0

 . (248)

Consequently Wm,µ(u; τ) is invariant under the reflection u 7→ −u.

Lemma 23. (a) The annihilating ideal of IH of H± is given by

IJ =〈yzSx − xzSy + (x2y − xy2)Sz + (−x2y + xy2 + xz − yz), (249)

− xy2S2
z + zSy + (y2 + xy2 − qyz)Sz + (−y2 − z),−qySySz + Sy − 1,

zS2
y + (−x+ qy + qxy − q2y2 − z − qz)Sy + qxySz + (x− qy − qxy + qz)〉

where Sx, Sy and Sz are the shifts x to qx, y to qy and z to qz, respectively.
(b) When |q| < 1, we have

H(x, y, z; q−1) =

det

(
H(x−1, x−1y, x−2z; q) H(y−1, y−1x, y−2z; q)

xH(x−1, x−1y, q−1x−2z; q) yH(y−1, y−1x, q−1y−2z; q)

)
yθ(−q− 1

2x; q)θ(−q− 1
2y; q)θ(−q− 1

2xy−1; q)
. (250)

Proof. Part (a) follows as in the proof of Lemma 15.
For part (b), observe that both sides of the equation are power series in z and q-holonomic

functions of z. Using the HF package, we find that the (i, j)-entry of the determinant is
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annihilated by the operator rij given by

r11 = −yS3
z + (x+ y + xy − q2z)S2

z + (−x− x2 − xy)Sz + x2

r12 = −xS3
z + (x+ y + xy − q2z)S2

z + (−y − xy − y2)Sz + y2

r21 = −yS3
z + (x+ y + xy − qz)S2

z + (−x− x2 − xy)Sz + x2

r22 = −xS3
z + (x+ y + xy − qz)S2

z + (−y − xy − y2)Sz + y2 ,

whereas the left hand side of (250), after being multiplied by the denominator of the right
hand side, is annihilated by the operator

r = S3
z + (−1− x− y)S2

z + (x+ y + xy − qz)Sz − xy . (251)

Using the commands DFiniteTimes and DFiniteTimes, we computed a 9th order operator
R (which is too long to type here) that annihilates the determinant, and using the command
OreReduce, we proved that it is a left multiple of r. It follows that both sides of (250)
satisfy the same 9th order recursion with respect to z, with nonvanishing leading term.
Thus, the identity follows once we prove that the coefficient of zk in both sides agree, for
k = 0, . . . , 8. When |q| < 1, the coefficient of zk in H(x, y, z; q) (resp., H(x, y, z; q−1)) is in
(qx; q)∞(qy; q)∞Q(x, y, q) (resp., (x; q)−1

∞ (y; q)−1
∞Q(x, y, q)), and this implies that the equality

of the coefficient of zk in the above identity reduces to an equality on the field Q(x, y, q)
of rational functions in three variables. The latter is easy to check for k = 0, . . . , 8. This
completes the proof of (250). �

The next theorem concerns the properties of the linear q-difference equations satisfied by
the descendant holomorphic blocks.

Theorem 24. (a) They are q-holonomic functions in the variables (m,x) with a common
annihilating ideal

I52 = 〈P1, P2, P3〉 (252)
where

P1 =x(1− q3x2)(1− qx2 − q2x2 − q3+mx3 + q3x4)− (1− qx)(1 + qx)(1− qx2)(1− q3x2)Sm (253a)

− x(1− qx)(1 + qx)(1− qx− qx2 − q3x2 + q2x3 + q4x3 − q3+mx3 − q4+mx3 + q4x4 − q5x5)Sx

− q4+mx4(1− qx2)S2
x

P2 =x− Sm − xSx + qx2SxSm (253b)

P3 =x(1− q1+m − qx2)− (1− q1+m + x− qx2 + q2+mx2 − qx3)Sm (253c)

+ (1− qx2)S2
m + q1+mxSx .

I52 has rank 3 and the three functions form a basis of solutions of the corresponding system
of linear equations.
(b) As functions of an integer m, Am(x; q), Bm(x; q) and Cm(x; q) form a basis of solutions
of the linear q-difference equation B̂52(Sm, x, q

m, q)fm(x; q) = 0 for |q| 6= 1 where

B̂52(Sm, x, q
m, q) = (1− Sm)(1− xSm)(1− x−1Sm)− q2+mS2

m . (254)

(c) The Wronskian Wm(x; q) of (254), defined in (244), satisfies

det(Wm(x; q)) = −θ(−q− 1
2x; q)−2θ(−q− 1

2x2; q) (|q| 6= 1) . (255)
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(d) The Wronskian satisfies the orthogonality relation

W−1(x; q)W−1(x; q−1)T =

1 0 0
0 0 1
0 1 x+ x−1

 . (256)

It follows that for all integers m, `

Wm(x; q)W`(x; q−1)T ∈ PSL(3,Z[q±, x±]) (257)

(e) As functions of x, they form a basis of a linear q-difference equation Â52(Sx, x, q
m, q)fm(x; q) =

0 where

Â52(Sx, x, q
m, q) =

3∑
j=0

Cj(x, q
m, q)Sjx , (258)

Sx is the operator that shifts x to qx and
C0 =− q2+mx2(1− q2x)(1 + q2x)(1− q5x2) (259a)

C1 =(1− qx)(1 + qx)(1− q5x2)×

(1− qx− qx2 − q4x2 + q2+mx2 + q3+mx2 + q2x3 + q5x3 + q5x4 + q5+mx4 − q6x5) (259b)

C2 =qx(1− q2x)(1 + q2x)(1− qx2)×

(1− q2x− q2+mx− q2x2 − q5x2 + q4x3 + q7x3 − q5+mx3 − q6+mx3 + q7x4 − q9x5) (259c)

C3 =q8+mx4(1− qx)(1 + qx)(1− qx2) (259d)

(f) The Wronskian of Equation (258)

Wm(x; q) =

 Am(x; q) Bm(x; q) Cm(x; q)
Am(qx; q) Bm(qx; q) Cm(qx; q)
Am(q2x; q) Bm(q2x; q) Cm(q2x; q)

 , (|q| 6= 1) (260)

satisfies

detWm(x; q) = q−5−2mx−5(1− q2x2)(1− qx2)(1− q3x2)θ(−q− 1
2x; q)−2θ(−q− 1

2x2; q). (261)

Proof. Since Am(x; q), Bm(x; q), and Cm(x; q) are given in terms of q-proper hypergeometric
multisums, it follows from the fundamental theorem of Zeilberger [Zei90, WZ92, PWZ96]
(see also [GL16]) that they are q-holonomic functions in both variables m and x. Part (a)
follows from an application of the HF package of Koutschan [Kou09, Kou10].

Part (b) follows from the HF package. The fact that they are a basis follows from (c).
For part (c), Equation (254) implies that the determinant of the Wronskian satisfies the

first order equation det(Wm+1(x; q)) = det(Wm(x; q)) (see [GK13, Lem.4.7]). It follows that
det(Wm(x; q)) = det(W0(x; q)) with initial condition a function of x given by

det(W0(x; q)) = −θ(−q− 1
2x; q)−2θ(−q− 1

2x2; q) (|q| 6= 1) , (262)

which can be proved in a manner similar to section 5.2. Using Lemma 23 and the HF package
we find the following recursion relation for the q-function H(x, y, z; q) when |q| < 1

xyH(x, y, qz; q)−(x+y+xy−z)H(x, y, z; q)+(1+x+y)H(x, y, q−1z; q)+H(x, y, q−2z; q) = 0.
(263)
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It then follows that

Hµ,ν,1(z; q) = H(qµ, qν , z; q), (264)

Hµ,ν,2(z; q) = z−µH(q−µ, qν−µ, q−2µz; q), (265)

Hµ,ν,3(z; q) = z−νH(q−ν , qµ−ν , q−2νz; q), (266)

are three independent solutions to

qµ+νH(qz; q)− (qµ+ qν + qµ+ν− z)H(z; q) + (1 + qµ+ qν)H(q−1z; q) +H(q−2z; q) = 0. (267)

The corresponding Wronskian

Wµ,ν(z; q) =

Hµ,ν,1(q−1z; q) Hµ,ν,2(q−1z; q) Hµ,ν,3(q−1z; q)
Hµ,ν,1(z; q) Hµ,ν,2(z; q) Hµ,ν,3(z; q)
Hµ,ν,1(qz; q) Hµ,ν,2(qz; q) Hµ,ν,3(qz; q)

 (268)

satisfies the recursion relation (see [GK13, Lem.4.7])

detWµ,ν(z; q) = q−µ−ν detWµ,ν(q
−1z; q) (269)

which implies that the determinant of U(z; q) = zµ+νWµ,ν(z; q) is invariant under the shift
z 7→ qz. We can thus identify it with the limit z 7→ 0, which is easy to compute. Since

lim
z 7→0

H(x, y, z; q) = (qx; q)∞(qy; q)∞, (270)

we have

lim
z 7→0

detU(z; q)

= lim
z 7→0

det

H(qµ, qν , q−1z; q) qµH(q−µ, qν−µ, q−2µq−1z; q) qνH(q−ν , qµ−ν , q−2νqz−1; q)
H(qµ, qν , z; q) H(q−µ, qν−µ, q−2µz; q) H(q−ν , qµ−ν , q−2νz; q)
H(qµ, eν , qz; q) q−µH(q−µ, qν−µ, q−2µqz; q) q−νH(q−ν , qµ−ν , q−2νqz; q)


=(qqµ; q)∞(qqν ; q)∞(qq−µ; q)∞(qqν−µ; q)∞(qq−ν ; q)∞(qqµ−ν ; q)∞ det

1 qµ qν

1 1 1
1 q−µ q−ν


=q−µ−ν(1− qµ)(1− qν)(qµ − qν)
× (qqµ; q)∞(qqν ; q)∞(qq−µ; q)∞(qqν−µ; q)∞(qq−ν ; q)∞(qqµ−ν ; q)∞. (271)

We thus have

zµ+ν detWµ,ν(z; q) = −(qµ; q)∞(qq−µ; q)∞(qqν ; q)∞(q−ν ; q)∞(qqµ−ν ; q)∞(qν−µ; q)∞. (272)

Using the substitution
qµ = x−1, qν = x, z = 1 (273)

in the above equation and cancelling with the θ-prefactors of Bm(x; q) and Cm(x; q) we obtain
Equation (262) for |q| < 1. The case for |q| > 1 can be obtained by analytic continuation on
both sides of (262).
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For part (d), Equation (256) follows from (250). To see this, let us introduce

W̃m(x; q) =

 H(x, x−1, qm; q) xmH(x, x2, qmx2; q) x−mH(x−1, x−2, qmx−2; q)
H(x, x−1, qm+1; q) xm+1H(x, x2, qmx2; q) x−m−1H(x−1, x−2, qm+1x−2; q)
H(x, x−1, qm+2; q) xm+2H(x, x2, qm+2x2; q) x−m−2H(x−1, x−2, qm+2x−2; q)

 .

(274)
Then Equation (256) can equally be written as

W̃−1(x; q−1) =

1 0 0
0 0 1
0 1 x+ x−1

(W̃−1(x; q)−1
)T 1 0 0

0 x−2 0
0 0 x2

 , (275)

consisting of 9 scalar equations. Each of these equations is a specialization of (250), some-
times after applying the recursion relation (254).

Observe that Equation (254) written in matrix form, implies that

Wm+1(x; q) =

0 1 0
0 0 1
1 −s(x) s(x)− q2+m

Wm(x; q) (276)

where

s(x) = x+ x−1 + 1 . (277)

Equation (257) follows from (256) together with (276).
Part (e) follows from the HF package. The fact that they are a basis follows from (f).
For part (f), the first and third generators of the annihilating ideal (252), which an-

nihilate Am(x; q), Bm(x; q), Cm(x; q) allow expressing Am(qx; q), Am(q2x; q) in terms of
Am(x; q), Am+1(x; q), Am+2(x; q), and similarly for Bm(qjx; q), Cm(qjx; q) (j = 1, 2). It fol-
lows that the Wronskian (260) and the Wronskian (244) are related

Wm(x; q) = Mm(x; q)Wm(x; q) (278)
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where Mm(x; q) is a 3× 3 matrix with entries

(Mm(x; q))1,1 =1, (Mm(x; q))1,2 = 0, (Mm(x; q))1,3 = 0,

(Mm(x; q))2,1 =− q−1−m(1− q1+m − qx2)

(Mm(x; q))2,2 =q−1−mx−1(1− q1+m + x+ (−q + q2+m)x2 − qx3)

(Mm(x; q))2,3 =− q−1−mx−1(1− qx2)

(Mm(x; q))3,1 =q−5−2mx−3
(
1 + (−q + q2+m)x− (q + q2 + q3)x2

+(q2 + q3 + q4 − q3+m − 2q4+m − q5+m + q5+2m)x3

+(q3 + q4 + q5)x4 + (−q4 − q5 − q6 + q5+m + q6+m + q7+m)x5 − q6x6 + q7x7
)

(Mm(x; q))3,2 =− q−5−2mx−4(1− qx)(1 + qx)
(
1 + (1− q + q2+m)x+ (−2q − q3 + q2+m)x2

+(−q + q2 − q3 + q4 − 2q3+m − q4+m − q5+m + q4+2m + q5+2m)x3

+(q2 + 2q4 − q3+m − q4+m − q5+m)x4 + (q4 − q5 + q6+m)x5 − q5x6
)

(Mm(x; q))3,3 =q−5−2mx−4(1− qx)(1 + qx)
(
1− qx− (q + q3)x2

+(q2 + q4 − q3+m − q4+m)x3 + q4x4 − q5x5
)

(279)

After taking determinants on both sides, one finds that

det(Wm(x; q)) = −q−5−2mx−5(1− qx)(1 + qx)(1− qx2)(1− q3x2) det(Wm(x; q)) (280)

This, together with (255) concludes the proof of (261). �

We now come to Conjecture 5 concerning a refinement of the Â-polynomial. As in Sec-
tion 5.2, we can use Theorems 22 and 24 to obtain explicit linear q-difference equations for
the descendant integrals with respect to the u and the m variables, and in doing so, we
will obtain a refinement of the Â-polynomial. To simplify Equation (129), let us define a
normalized version of the descendant state-integral

z52,m,µ(u; τ) = (−1)m+µq−m/2q̃−µ/2Z52,m,µ(u; τ) . (281)

Our next theorem confirms Conjecture 5 for the 52 knot.

Theorem 25. z52,m,k(ub; τ) is a q-holonomic function of (m,u) with annihilator ideal I52

given in (252). As a function of u (resp.,m) it is annihilated by the operators Â52(Sx, x, q
m, q)

(resp., B̂52(Sm, x, q
m, q)) given by (254) and (258), whose classical limit is

Â52(Sx, x, q
m, 1) =

− (1− x)2(1 + x)2
(
qmx2 − (1− x− 2(1− qm)x2 + 2x3 + (1 + qm)x4 − x5)Sx

− x(1− (1 + qm)x− 2x2 + 2(1− qm)x3 + x4 − x5)S2
x − qmx4S3

x

)
,

(282)

and
B̂52(Sm, x, q

m, 1) = (1− Sm)(1− xSm)(1− x−1Sm)− qmS2
m . (283)

Â52(Sx, x, 1, 1) is the A-polynomial of the knot, Â52(Sx, x, 1, q) is the (homogeneous part) of
the Â-polynomial of the knot and B̂52(y, x, 1, 1) is the defining equation of the curve (233).
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6.3. Taylor series expansion at u = 0. In this section we discuss the Taylor expansion of
the descendant holomorphic blocks and descendant state-integral of the 52 knots at u = 0.
Using the definition of H(x, y, z; q) and (161a)–(161b), we find

Am(eu; q) = (q; q)2
∞

∞∑
n=0

qn(n+1)+nm

(q; q)3
n

φn(u)φn(−u)

= (q; q)2
∞

(
α

(m)
0 (q) + u2α

(m)
2 (q) +O(u3)

)
(284)

where

α
(m)
0 (q) = H+

0,m(q), (285)

α
(m)
2 (q) =

∞∑
n=0

qn(n+1)+nm

(q; q)3
n

(−E(n)
2 (q)), (286)

and

Cm(e−u; q) = Bm(eu; q)

= (1− e−u)−2(q; q)−2
∞ φ0(u)−2φ0(−u)−2

∞∑
n=0

qn(n+1)+nm

(q; q)3
n

φn(u)φn(2u)e(m+2n)u

= u−2(q; q)−2
∞

(
β

(m)
0 (q) + uβ

(m)
1 (q) + u2β

(m)
2 (q) +O(u3)

)
(287)

where the coefficients satisfy

β
(m)
0 (q) = H+

0,m(q), (288)

β
(m)
1 (q) = H+

1,m(q), (289)

β
(m)
2 (q) =

1

2
H+

2,m(q) + α
(m)
2 (q). (290)

Similarly, using the definition of H(x, y, z; q−1), we find

Am(eu; q−1) =
1

(1− eu)(1− e−u)(q; q)2
∞

∞∑
n=0

(−1)nq
1
2
n(n+1)−nm

(q; q)3
n

φ̃n(u)φ̃n(−u)

= −u−2(q; q)−2
∞

(
α̃

(m)
0 (q) + u2α̃

(m)
2 (q) +O(u3)

)
(291)

where

α̃
(m)
0 (q) = H−0,−m(q), (292)

α̃
(m)
2 (q) =

∞∑
n=0

(−1)nq
1
2
n(n+1)−nm

(q; q)3
n

(
− 1

12
+ 2E

(0)
2 (q)− E(n)

2 (q)

)
, (293)
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and

Cm(e−u; q−1) = Bm(eu; q−1)

= (1− eu)(1− e2u)−1(q; q)2
∞φ0(u)2φ0(−u)2

∞∑
n=0

(−1)nq
1
2
n(n+1)−nm

(q; q)3
n

φ̃n(u)φ̃n(2u)e(2n+m)u

=
1

2
(q; q)2

∞

(
β̃

(m)
0 (q) + uβ̃

(m)
1 (q) + u2β̃

(m)
2 (q) +O(u3)

)
(294)

where the coefficients satisfy

β̃
(m)
0 (q) = H−0,−m(q), (295)

β̃
(m)
1 (q) = −H−1,−m(q), (296)

β̃
(m)
2 (q) =

1

2
H−2,−m(q) + α̃

(m)
2 (q) (297)

Applying these results to the right hand side of (243), as well as using the trick

1

2πi
= − 1

12
(τE2(q)− τ−1E2(q̃)), (298)

we find the O(1/u2) and O(1/u) contributions from (291) and (294) cancel, and the O(u0)
contributions reproduce (103).

As an application of the above computations, we demonstrate that Theorem 11, especially
(91), (93), as well as the recursion relation (86), can be proved by taking the u = 0 limit of
the analogue identities in Theorem 24.

Using the expansion formulas of holomorphic blocks (284), (287), (291), (294), the Wron-
skians can be expanded as

Wm(eu; q) =

(∑
j=0

W+
m,j(q)u

j

)(q; q)2
∞ 0 0

0 u−2(q; q)−2
∞ 0

0 0 u−2(q; q)−2
∞

 , (299)

Wm(eu; q−1) =

(∑
j=0

W−
m,j(q)u

j

)−u−2(q; q)−2
∞ 0 0

0 1
2
(q; q)2

∞ 0
0 0 1

2
(q; q)2

∞

 (300)

where

W+
m,j(q) =

 α
(m)
j β

(m)
j (−1)jβ

(m)
j

α
(m+1)
j β

(m+1)
j (−1)jβ

(m+1)
j

α
(m+2)
j β

(m+2)
j (−1)jβ

(m+2)
j

 (q), W−
m,j(q) =

 α̃
(m)
j β̃

(m)
j (−1)jβ̃

(m)
j

α̃
(m+1)
j β̃

(m+1)
j (−1)jβ̃

(m+1)
j

α̃
(m+2)
j β̃

(m+2)
j (−1)jβ̃

(m+2)
j

 (q).

(301)
Note that α(m)

j (q) = α̃
(m)
j (q) = 0 if j is odd. Taking the determinant of (299), we find

detWm(eu; q) = u−1(q; q)−2
∞ detWm(q) +O(u0) (302)

which together with the u-expansion of the right hand side of (255) leads to the determinant
identity (91). Furthermore, by substituting (299), (300) into the Wronskian relation (256),
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we find the left hand side reduces to

1

2
W−1(q)

0 0 1
0 2 0
1 0 0

W−1(q−1)

0 0 1
0 1 0
1 0 0

+O(u1), (303)

which together with the u-expansion of the right hand side, leads in the leading order to
(92) for m = 1. The more general case follows from the identity of m = 1 by applying the
recursion relations (86) on the Wronskians.

Finally, from the expression (285),(288) of the leading order coefficients α(m)
0 (q), β(m)

0 (q),
of Am(eu; q), Bm(eu; q), Cm(eu; q) in the expansion of u, one concludes that the recursion
relation (86) should be the u = 0 limit of the recursion relation (254) in m, and one can
easily check it is indeed the case.

ϕσ1(τ ) ϕσ2(τ ) ϕσ3(τ )

Figure 10. The singularities in the Borel plane for the series ϕσj(u; τ) with
j = 1, 2, 3 of knot 52 where u is close to zero.

6.4. Stokes matrices near u = 0. In this section we give a conjecture for the Stokes
matrices of the asymptotic series ϕ(x; τ).

We only consider the case when u is not far away from zero, or equivalently x not far
away from 1. To be more precise, we focus on real x and constrain x to be in the interval
containing 1 between the two real solutions to the discriminant (236). In this case, there
are mild changes to the resurgent structure discussed in Section 3.2. Each singular point
in Figure 4 splits to a cluster of neighboring singular points as shown in Figure 10. In
particular, each of the six singular points ιi,j (i 6= j) splits to a cluster of neighboring three
separated from each other by log x. We label the four regions separating singularities on
positive and negative real axis and the other singularities by I, II, III, IV (see Figure 11).
In each of the four regions, we have the following the results.
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III

IVIII

Figure 11. Four different sectors (and additional two auxiliary regions) in
the τ -plane for Φ(u; τ) of knot 52 with u close to zero.

Conjecture 26. The asymptotic series and the holomorphic blocks are related by (15) with
the diagonal matrix ∆(u) as in (246) where the matrices MR(x; q) are given in terms of the
W−1(x; q) as follows

MI(x; q) =W−1(x; q)T

0 0 −1
1 −s(x) 0
0 1 0

 , |q| < 1 , (304a)

MII(x; q) =W−1(x−1; q)T

 0 0 −1
−s(x) 1 0

1 0 0

 , |q| < 1 , (304b)

MIII(x; q) =W−1(x−1; q)T

0 0 −1
1 1 0
1 0 0

 , |q| > 1 , (304c)

MIV (x; q) =W−1(x; q)T

0 0 −1
1 1 0
0 1 0

 , |q| > 1 , (304d)

and where s(x) is given in (277).

Just as in the case of the 41 knot, the above conjecture completely determines the resurgent
structure of Φ(τ). Indeed, it implies that the Stokes matrices, given by Equations (34)
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and (33) are explicitly given by:

S+(x; q) =

 0 1 0
0 1 1
−1 0 0

W−1(x−1; q−1)W−1(x; q)T

0 0 −1
1 1 0
0 1 0

 , (305a)

S−(x; q) =

 0 −s(x) 1
0 1 0
−1 0 0

W−1(x; q)W−1(x−1; q−1)T

 0 0 −1
−s(x) 1 0

1 0 0

 (305b)

for |q| < 1. Note that Equations (233), (234), (235), (238) imply that (one can also see this
from (230))

s(Φσ)(x−1; τ) = s(Φσ)(x; τ) (306)

for any τ ∈ C whenever the asymptotic series is Borel summable. It follows that the Stokes
matrices must be invariant under the reflection π : x 7→ x−1. Using the property (248)
of Wm(x; q), it is easy to show that the Stokes matrices (305a),(305b) indeed satisfy this
consistency condition.

The q 7→ 0 limit of the Stokes matrices factorizes

S+(x; 0) = Sσ3,σ1(x)Sσ3,σ2(x)Sσ1,σ2(x)

=

 1 0 0
0 1 0

−s(x) 0 1

1 0 0
0 1 0
0 s(x) 1

1 s(x) + 1 0
0 1 0
0 0 1

 , (307)

S−(x; 0) = Sσ1,σ3(x)Sσ2,σ3(x)Sσ2,σ1(x)

=

1 0 s(x)
0 1 0
0 0 1

1 0 0
0 1 −s(x)
0 0 1

 1 0 0
−s(x)− 1 1 0

0 0 1

 , (308)

where the non-vanishing off-diagonal entries of Sσi,σj(x) encode the Stokes constants asso-
ciated to the Borel singularities split from ιi,j. Using the unique factorization Lemma 8 and
the Stokes matrix S from above, we can compute the Stokes constants and the corresponding
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matrix S of Equation (36) to arbitrary order in q, and we find that

S+
σ1,σ1

=S+(q)1,1 − 1

=(−4− x−2 − 3x−1 − 3x− x2)q + (−1 + x−3 + x−2 + x2 + x3)q2 +O(q3), (309a)

S+
σ1,σ2

=(4 + x−2 + 3x−1 + 3x+ x2)q

+(37 + x−4 + 5x−3 + 16x−2 + 30x−1 + 30x+ 16x2 + 5x3 + x4)q2 +O(q3), (309b)

S+
σ1,σ3

=q + (1 + x−1 + x)q2 +O(q3), (309c)

S+
σ2,σ1

=− (4 + x−2 + 3x−1 + 3x+ x2)q

−(37 + x−4 + 5x−3 + 16x−2 + 30x−1 + 30x+ 16x2 + 5x3 + x4)q2 +O(q3), (309d)

S+
σ2,σ2

=(4 + x−2 + 3x−1 + 3x+ x2)q

+(37 + x−4 + 5x−3 + 16x−2 + 30x+ 30x+ 16x2 + 5x3 + x4)q2 +O(q3), (309e)

S+
σ2,σ3

=− (7 + 2x−2 + 5x−1 + 5x+ 2x2)q

−(59 + 2x−4 + 10x−3 + 27x−2 + 49x−1 + 49x+ 27x2 + 10x3 + 2x4)q2 +O(q3),
(309f)

S+
σ3,σ1

=− q − (1 + x−1 + x)q2 +O(q3) (309g)

S+
σ3,σ2

=(7 + 2x−2 + 5x−1 + 5x+ 2x2)q

+(59 + 2x−4 + 10x−3 + 27x−2 + 49x−1 + 49x+ 27x2 + 10x3 + 2x4)q2 +O(q3),
(309h)

S+
σ3,σ3

=0. (309i)

Note that the series S+
σ1,σ2

and S+
σ2,σ2

are different, even though their first few terms are
coincidental. They differ in higher orders, as one can already see in the u = 0 limit in
Section 3.2. The matrix S satisfies the symmetry

S+
σi,σj

(x; q) = −S+
σϕ(i),σϕ(j)

(x; q), i 6= j, (310)

with ϕ(1) = 2, ϕ(2) = 1, ϕ(3) = 3, and they display the familiar feature that the entries of the
matrixS+(x; q) = (S+

σi,σj
(x; q)) (except the upper-left one) are (up to a sign) in N[x±1][[q]].

Similarly we can extract the Stokes constants S(`,k) (k < 0) associated to the singularities
below ιi,j in the lower half plane and assemble into q−1-series S−σi,σj(x; q−1). We find the
relation

S−σi,σj(x; q) = −S+
σj ,σi

(x; q), i 6= j and S−σi,σi(x; q) = +S+
σϕ(i),σϕ(i)

(x; q) . (311)

Let us now verify Conjecture 4 for the 52 knot. The same logic presented at the end of
Section 5.4 also holds here. From the form of the Stokes matrix (305a) as well as (276),(278),
we immediately conclude that

S+(x; q)
··
=W0(x−1; q−1) · W0(x; q)T . (312)

Using the uniform notation for all holomorphic blocks

(Bα
52

(x; q))α=1,2,3 = (A0(x; q), B0(x; q), C0(x; q)), (313)
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the right hand side of (312) reads2

W0(x−1; q−1) · W0(x; q)T =

(∑
α

Bα
52

(qjx; q)Bα
52

(q−ix−1; q−1)

)
i,j=0,1,2

=
(
Indrot

52
(j − i, q j+i2 x; q)

)
i,j=0,1,2

, (315)

reproducing the right hand side of (20) in Conjecture 4. Furthermore, the forms of the
accompanying matrices on the left and on the right are such that the (1, 1) entry of S+(x; q)
equates exactly the DGG index with no magnetic flux. By explicit calculation,

S+(x; q)1,1 =H(x, x−1, 1; q)H(x−1, x, 1; q−1) +H(x, x2, x2; q)H(x−1, x−2, x−2; q−1)

+H(x−1, x−2, x−2; q)H(x, x2, x2; q−1)

=1− (x−2 + 3x−1 + 4 + 3x+ x2)q + (x−3 + x−2 − 1 + x2 + x3)q2 +O(q3).
(316)

The right hand side of the first two lines in (316) is the formula for the DGG index given in
[BDP14].

6.5. The Borel resummations of the asymptotic series Φ. As in the case of the 41

knot, Conjecture 26 identifies the Borel resummations of the factorially divergent series
Φ(x; τ) with the descendant state-integrals, thus lifting the Borel resummation to holomor-
phic functions on the cut-plane C′.

Corollary 27. (of Conjecture 26) We have

sI(Φ)(x; τ) =

 0 1 1
0 1 0
−1 0 0

W−1(x̃; q̃−1)∆(τ)B(x; q) , (317a)

sII(Φ)(x; τ) =

 0 1 0
0 1 1
−1 0 0

W−1(x̃−1; q̃−1)∆(τ)B(x; q) , (317b)

sIII(Φ)(x; τ) =

 0 1 0
0 −s(x̃) 1
−1 0 0

W−1(x̃−1; q̃−1)∆(τ)B(x; q) , (317c)

sIV (Φ)(x; τ) =

 0 −s(x̃) 1
0 1 0
−1 0 0

W−1(x̃, q̃−1)∆(τ)B(x; q) . (317d)

where the right hand side of (317a)–(317d) are holomorphic functions of τ ∈ C′, as they are
linear combinations of the descendants (243).

2Note that if we compare with the DGG indices computed in [BDP14] we have to modify the last line in
(315) slightly due to different conventions for holomorphic blocks(

W0(x−1; q−1) · W0(x; q)T
)
i+1,j+1

= q
3
2 (i

2−j2)x−3(j−i)Indrot
52

(j − i, q− j+i
2 x−1; q), i, j = 0, 1, 2. (314)

The right hand side of (20) should be modified accordingly. This however does not affect (21).
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(a) Region I: τ = 1
18e

πi
12

| sI(Φ)(x;τ)
PI(x;τ)

− 1| | sI(Φ)(x;τ)
s′I(Φ)(x;τ)

− 1| |q̃(τ)| |x̃(x, τ)−1|
σ1 1.1× 10−38 1.1× 10−38

1.9× 10−13 0.042σ2 2.2× 10−63 1.7× 10−62

σ3 2.7× 10−48 2.5× 10−48

(b) Region II: τ = 1
18e

11πi
12

| sII(Φ)(x;τ)
PII(x;τ)

− 1| | sII(Φ)(x;τ)
s′II(Φ)(x;τ)

− 1| |q̃(τ)| |x̃(x, τ)|
σ1 2.2× 10−63 1.7× 10−62

1.9× 10−13 0.042σ2 1.1× 10−38 1.1× 10−38

σ3 2.7× 10−48 2.5× 10−48

Table 2. Numerical tests of holomorphic lifts of Borel sums of asymptotic
series for knot 52. We perform the Borel-Padé resummation on Φ(x; τ) with
180 terms at x = 6/5 and τ in regions I, II, and compute the relative difference
between them and the right hand side of (317a)–(317b), which we denote by
PR(x; τ). They are within the error margins of Borel-Padé resummation, which
are estimated by redo the resummation with 276 terms, denoted by s′R(•) in
the tables. The relative errors are much smaller than |q̃±1|, |x̃±1|, possible
sources of additional corrections.

6.6. Numerical verification. In this section we explain the numerical verification of Con-
jecture 26, which involves a richer resurgent structure than that of the 41 knot. We found
ample numerical evidence for the resurgent data (304a)–(304d). These numerical tests are
parallel to those performed for knot 41, so we will be sketchy here. Besides, we will mostly
focus on τ in the upper half plane, while the lower half plane is similar.

The first test is the analysis of radial asymptotics of the left hand side of (226), which can
be easily done. The second test is to compute the Borel resummation sR(Φ′σ)(x; τ) and by
comparing with the left hand side extract terms ofMR(x̃, q̃)σ,σ′ order by order. To expediate
the operation of extraction, instead of MR(x̃; q̃) we consider

M̃R(x̃; q̃) =

1 0 0
0 θ(−q̃−1/2x̃; q̃)2 0
0 0 θ(−q̃1/2x̃; q̃)2

MR(x̃; q̃) (318)

whose entries are q̃-series with coefficients in Z[x̃±1] instead of in Z(x̃). Using 180 terms of
Φσ(x; τ) at various values of x and τ , we find entries of M̃I,II(x; q) up to O(q2) following
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results

M̃I(x; q)1,1 =1− (x−1 + x)q − (x−1 − 2 + x)q2 +O(q3) ,

M̃I(x; q)1,2 =− x−1 − x+ (x−2 + 2 + x2)q + (x−2 − 2x−1 + 1− 2x+ x2)q2 +O(q3) ,

M̃I(x; q)1,3 =− 1 + (x−1 − 1 + x)q + (x−1 − 2 + x)q2 +O(q3) ,

M̃I(x; q)2,1 =x2 − (x3 + x4)q − (x3 − x5)q2 +O(q3) ,

M̃I(x; q)2,2 =− x− x2 + (x2 + 2x3 + x4)q + (x2 + x3 − x4 − 2x5)q2 +O(q3) ,

M̃I(x; q)2,3 =− x+ x2q + (x2 − x4)q2 +O(q3) ,

M̃I(x; q)3,1 =x−2 − (x−4 + x−3)q + (x−5 − x−3)q2 +O(q3) ,

M̃I(x; q)3,2 =− x−2 − x−1 + (x−4 + 2x−3 + x−2)q − (2x−5 + x−4 − x−3 − x−2)q2 +O(q3) ,

M̃I(x; q)3,3 =− x−1 + x−2q − (x−4 − x−2)q2 +O(q3) . (319)

and

M̃II(x; q)1,1 =− x− x−1 + (x2 + 2 + x−2)q + (x2 − 2x+ 1− 2x−1 + x−2)q2 +O(q3) ,

M̃II(x; q)1,2 =1− (x+ x−1)q − (x− 2 + x−1)q2 +O(q3) ,

M̃II(x; q)1,3 =− 1 + (x− 1 + x−1)q + (x− 2 + x−1)q2 +O(q3) ,

M̃II(x; q)2,1 =− x− 1 + (1 + 2x−1 + x−2)q + (1 + x−1 − x−2 − 2x−3)q2 +O(q3) ,

M̃II(x; q)2,2 =1− (x−1 + x−2)q − (x−1 − x−3)q2 +O(q3) ,

M̃II(x; q)2,3 =− x+ q + (1− x−2)q2 +O(q3) ,

M̃II(x; q)3,1 =− 1− x−1 + (x2 + 2x+ 1)q − (2x3 + x2 − x− 1)q2 +O(q3) ,

M̃II(x; q)3,2 =1− (x2 + x)q + (x3 − x)q2 +O(q3) ,

M̃II(x; q)3,3 =− x−1 + q − (x2 − 1)q2 +O(q3) . (320)

They are in agreement with (304a),(304b). More decisively, we can compare the numerical
evaluation of both sides of the equations of holomorphic lifts (317a),(317b). We find the
relative difference between the two sides is always within the error margin of Borel-Padé
resummation, and much smaller than q̃±1, x̃±1, possible sources of additional corrections.
We illustrate this by one example with x = 6/5 and τ = 1

18
e
πi
12 , 1

18
e

11πi
12 in regions I, II in

Table 2. Finally we can test the resurgent data by checking that in the x 7→ 1 limit the
Stokes matrices (305a), (305b) reduce properly to (95a), (95b). This is a non-trivial test as
W−1(x; q−1) (|q| < 1) in (305a), (305b) itself diverges in the limit x 7→ 1.

7. One-dimensional state-integrals and their descendants

In a sense, the results of our paper are not about the asymptotics and resurgence of com-
plex Chern–Simons theory, but rather involve power series and q-difference equations that
arise from K2-Lagrangians (clearly advocated in Kontsevich’s talks [Kon20]), or from sym-
plectic matrices (advocated in [GZb, Sec.7]). The connection with complex Chern–Simons
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theory comes via ideal triangulations of a 3-manifold with torus boundary components, a
concept introduced by Thurston for the study of complete hyperbolic structures and their
deformations [Thu77]. The gluing equations of such triangulations are encoded by matrices
which are the upper half of a symplectic matrix (see Neumann-Zagier [NZ85]). The up-
per half of these symplectic matrices define state-integrals, as well as the asymptotic series
Φ(x; τ) (this was the approach taken in [DG13]) and the 3D-index (see [DGG14]).

In this section we discuss briefly general one-dimensional state-integrals and their descen-
dants, and their asymptotic series. We will not aim for maximum generality, but instead
consider the one-dimensional state-integral

ZA,r(u, t; τ) =

∫
R+i0

(
r∏
j=1

Φb(v + uj)

)
e−Aπiv2+2πivtdv , (321)

where u = (u1, . . . , ur) ∈ Cr with |Imuj| < |Imcb| (this ensures that all poles of the integrand
are above the real axis), t ∈ C and A and r integers with r > A > 0. (This ensures that the
integrand decays exponentially at infinity, hence the integral is absolutely convergent.) We
have already encountered two special cases in Equations (125) and (240):

41 : (A, r) = (1, 2), (u1, u2) = (u, 0), w = −2u, (322)
52 : (A, r) = (2, 3), (u1, u2, u3) = (0, u,−u), w = 0 . (323)

We are interested in the descendants of Z defined by

zA,r,m,µ(u, t; τ) = (−1)m+µ q−
1
2
m q̃−

1
2
µ ZA,r(u, t−mib + µib−1; τ) (324)

for integers m and µ, where the extra factor was inserted to simplify the formulas below.
We will express the factorization of the state-integral (324) in terms of the auxiliary

function

GA,r(y, z; q) =
1

(q; q)∞

∞∑
n=0

(−1)Anq
A
2
n(n+1)zn

r∏
j=1

(q1+nyj; q)∞ (325)

for y = (y1, . . . , yr) and its specialization

b(k)
m (x,w; q) =

1

xmk
GA,r

(
1

xk
x, x−Ak w−1qm; q

)
q (326)

for x = (x1, . . . , xr) and its renormalization

B(k)
m (x,w; q) = θ(−q−1/2xk; q)

−A+1θ(−q−1/2xkw; q)−1θ(w; q)b(k)
m (x,w; q) (327)

for k = 1, . . . , r.

Theorem 28. (a) The descendant state-integral can be expressed in terms of the descendant
holomorphic blocks by

zA,r,m,µ(u, t; τ) = B−µ(x̃, w̃; q̃−1)T∆(τ)Bm(x,w; q), (m,µ ∈ Z) (328)

where
xj = e2πbuj , x̃j = e2πb−1uj , w = e2πbt, w̃ = e2πb−1t . (329)

and
∆(τ) = e−

iπ
4

+
(A−2)iπ

12
(τ+τ−1)1 (330)
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and Bm(x,w; q) = (B
(1)
m (x,w; q), . . . , B

(r)
m (x,w; q))T . Consider the matrix Wm(x,w; q) de-

fined by

Wm(x,w; q) =

 B
(1)
m (x,w; q) . . . B

(r)
m (x,w; q)

...
...

B
(1)
m+r−1(x,w; q) . . . B

(r)
m+r−1(x,w; q)

 (331)

(b) The entries of Wm(x,w; q) are holomorphic functions of |q| 6= 1 and meromorphic func-
tions of (x,w) ∈ (C∗)r ×C∗ with poles in xj ∈ qZ (for j = 1, . . . , r) and w ∈ qZ of order at
most r.
(c) The columns of Wm(x,w; q) are a basis of solutions of the linear q-difference equation
B̂(Sm, q

m, x, w, q)fm(x; q) = 0 for |q| 6= 1 and m ∈ Z where

B̂(Sm, q
m, x, w, q) =

r∏
k=1

(1− xiSm)− (−q)Aw−1qmSAm . (332)

In particular, m 7→ zA,r,m,µ(u, t; τ) is annihilated by the operator B̂(Sm, q
m, x, w, q).

Proof. For part (a), summing up all the residues of the integrand of (321) in the upper
half-plane as in [GK17], we find that

zA,r,m,µ(u, t; τ) = e−
πi
12

+ 1
3
πic2b+2πicbt

r∑
k=1

e−Aπi(uk−cb)2−2πiuktb(k)
m (x,w; q)b(k)

µ (x̃, w̃; q̃−1) (333)

= e−
πi
12

+ 1
3
πic2b+ πi

12
(A−1)(τ+τ−1)

r∑
k=1

B(k)
m (x,w; q)B(k)

µ (x̃, w̃; q̃−1) (334)

The last equation follows from (111a) (which takes care of e−Aπi(uk−cb)2) and (111b) (which
takes care of the t-terms under the assumption that ukt = ρku and t = ρu for integers ρ and
ρk)

For part (b), note that GA,r(y, z; q) is symmetric with respect to permutation of the
coordinates of y and that the specialization to yr = 1 is given by

GA,r(y, z; q)|yr=1 =
∞∑
n=0

(−1)An
q
A
2
n(n+1)

(q; q)n
zn

r−1∏
j=1

(q1+nyj; q)∞, (|q| 6= 1) . (335)

It follows that GA,r(y, z; q)|yr=1 is holomorphic for (y, z) ∈ Cr−1×{1}×C when |q| < 1 and
meromorphic in (y, z) ∈ (C∗)r−1 × {1} × C∗ with poles in yj ∈ qN for j = 1, . . . , r. Since
b

(k)
m (x,w; q) are expressed in terms of a specialization of GA,r(y, z; q)|yr=1, part (b) follows.
Part (c) follows from Equation (326) and the fact (proven by a standard creative telescop-

ing argument) that the function z 7→ GA,r(y, z; q) is annihilated by the operator
r∏

k=1

(1− ykLz)− (−q)AzLAz (336)

where Lz shifts z to qz. �
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