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Abstract. A recurrent sequence of polynomials is a sequence of polynomials that satisfies
a linear recursion with fixed polynomial coefficients. Our paper proves that the sequence
of Newton polytopes of a recurrent sequence of polynomials is quasi-linear. Our proof uses
the Lech-Mahler-Skolem theorem of p-adic analytic number theory with recent results in
tropical geometry. A subsequent paper lists some applications of our result to TQFT.
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1. Introduction

1.1. Recurrent sequences of polynomials. Consider the ring R = Q[x±1
1 , . . . , x±1

r ] of
Laurent polynomials in r variables x = (x1, . . . , xr). A sequence pn ∈ R is recurrent if
it satisfies a linear recursion with coefficients in R. In other words, there exists a natural
number d and ck ∈ R for k = 0, . . . , d with cd 6= 0 such that for all integers n we have:

(1)

d
∑

k=0

ckpn+k = 0
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For a polynomial p ∈ R, let N(p) denote its Newton polytope, i.e., the convex hull of the
exponents of the nonzero monomials of p. Polytopes can be described in several ways. One
popular descriptions is as the convex hull conv(S) of a finite set S of vectors in Rr. Another
description is as a solution to a linear system of inequalities Ax ≤ b for suitable matrices A
and vectors b.

Our goal is to describe the structure of the sequence of Newton polytopes N(pn) of a recur-
rent sequence (pn) of polynomials. This requires to introduce quasi-linear vectors/matrices.
A quasi-linear vector is a sequence v : N → Qr of vectors of the form

v(n) = v1(n)n + v0(n)

for all but finitely many n, where v0, v1 : N → Qr are periodic sequences.

Definition 1.1. We say that a sequence (Pn) of polytopes is eventually quasi-linear if there
exists a finite set S of quasi-linear vectors such that for all but finitely many n we have:

Pn = conv({v(n) |v ∈ S})

Equivalently Lemma 2.1 shows that (Pn) is eventually quasi-linear if there exist a matrix A
and quasi-linear vector b such that for all but finitely many n we have:

Pn = {x ∈ Rr |Ax ≤ b(n)}

1.2. Our results.

Theorem 1.1. If (pn) is a recurrent sequence of polynomials, then the set {n ∈ N : pn(x) =
0} differs from a finite union of full arithmetic progressions by a finite set. Moreover, if

pn(x) 6= 0 for all n, then N(pn) is quasi-linear.

The proof of Theorem 1.1 uses the Lech-Mahler-Skolem theorem of p-adic analytic number
theory together with some recent results in tropical geometry.

Recurrent sequences of polynomials occur naturally in classical and quantum topology;
see for example [HS04, GM11, Gar13]. Quasi-linear sequences of polytopes occur in recent
work of Calegari-Walker [CW13] and in lattice point counting problems, old [Ehr62] and
new [CLS12]. Quasi-polynomials appear in lattice point counting problems [Ehr62, CLS12]
and also in Quantum Topology [Gar11b, Gar11a]. The next corollary of Theorem 1.1 follows
from some recent results of Chen-Li-Sam which generalize the Ehrhart theory; see [CLS12].

Corollary 1.2. If (Pn) is a quasi-linear sequence of polytopes, the volume and the number
of lattice points of Pn is a quasi-polynomial function of n.

We end this section with an example.

Example 1.3. Consider the sequence of polynomials pn ∈ Q[x1, x2] that satisfy the linear
recursion

pn+2 + x1pn+1 − (x3
1 + x2)pn = 0

with initial conditions p0 = p1 = 1. The Newton polytope Pn of pn is a triangle given by

Pn = conv ({(0, ⌊n/2⌋), (n − 1, 0), (n + ⌊n/2⌋, 0)})
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where ⌊x⌋ is the biggest integer which is less than or equal to x. For example, the lattice
points of P30 are shown here

Out[101]=
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The number of lattice points |Pn ∩ Z2| and the area A(Pn) are given by

|Pn ∩ Z2| =
n2

8
+

{

3n
4

+ 2 if n is even
n
2

+ 11
8

if n is odd
A(Pn) =

n2

8
+

{

n
4

if n is even

−1
8

if n is odd

Acknowledgment. The author wishes to thank J. Yu for useful conversations. An earlier
version of this article, titled The Newton polygon of a recurrent sequence of polynomials and
its role in TQFT, was separated in two short articles, the present one and [Gar13].

2. The support function of a polytope

2.1. Properties of the support function. Let us review some standard facts of polyhedral

geometry regarding the support function hP of a convex body P in Rr. For a detailed
discussion, see [Sch93, Sec.1.7] and also [Grü03, Zie95]. The support function is defined by

hP : Rr \ {0} −→ R, hP (u) = sup{u · x |x ∈ P}

where u · v denotes the standard inner product of two vectors u and v of Rr. Given a unit
vector u, there is a unique hyperplane with outer normal vector u that touches P , and
entirely contains P in the left-half space. The value hP (u) of the support function is the
signed distance from the origin to the above hyperplane. This is illustrated in the following
figure:

Let us list some useful properties of the support function:

• hP uniquely determines the convex body P . This is the famous Minkowski recon-

struction theorem. For a detailed proof, see [Sch93, Thm.1.7.1] and also [Kla04].
Moreover,

(2) P = {x ∈ Rr | x · u ≤ hP (u) for all u ∈ Rr \ {0}}

• hP is homogeneous and subadditive.
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• When P is a convex polytope with vertex set VP , then

(3) hP (u) = max{u · v |v ∈ VP}

In particular, hP is a piece-wise linear function.
• The support function recovers the vertices of the polytope. Indeed, if

hP (u) = max{u · v |v ∈ V }

then P = conv(V ).
• The support function recovers the normals to the facets of the polytope. Indeed, the

corner locus of hP (i.e., the locus of points where hp is not differentiable) is a fan F
whose rays are outer pointing normals to the facets of P . The maximal cones of F
are in 1-1 correspondence with the vertices of P .

• The projection of P to the line Ru is the line segment [−hP (−u), hP (u)]. See the
above figure for an illustration.

Given a sequence (Pn) of polytopes, we say that their support function hPn
is piece-wise

quasi-linear if there exists a a finite set S of quasi-linear vectors such that for all but finitely
many n and all u ∈ Rr we have:

(4) hPn
(u) = max{u · v(n) |v ∈ S}

We say that a vector ω ∈ Rr is generic if it has Q-linearly independent coordinates.

Lemma 2.1. The following are equivalent for a sequence (Pn) of polytopes:
(a) There exists a finite set S of quasi-linear vectors such that for all but finitely many n we
have:

(5) Pn = conv({v(n) |v ∈ S})

(b) There exists a matrix A and a quasi-linear vector b such that for all but finitely many n
we have:

(6) Pn = {x ∈ Rr |Ax ≤ b(n)}

(c) (hPn
) is piece-wise quasi-linear.

(d) There exists a rational fan F in Rr and a quasi-linear vector δσ for each maximal cone
σ of F such that for all but finitely many n and all ω ∈ σ generic, we have:

(7) hPn
(ω) = δC(n) · ω

Proof. (a) implies (c) by Equation (3). (c) implies (b) by Equation (2). (b) implies (a) by
the description of the vertices of a polytope from inequalities. If (7) holds for ω generic, then
it follows by the continuity of hPn

that it holds for all ω. Equation (4) defines a constant
coefficient tropical hypersurface, i.e., a fan which implies that (c) is equivalent to (d). �

Remark 2.2. Note that if Equation (4) (resp., (7)) holds for u (resp., ω) generic, then by
the continuity of hPn

, it holds for all u (resp., ω).
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3. Generalized power sums and their zeros

Generalized power sums play a key role to the Lech-Mahler-Skolem (in short, LMS) theo-
rem. For a detailed discussion, see [vdP89] and also [EvdPSW03]. Recall that a generalized

power sum an for n = 0, 1, 2, . . . is an expression of the form

(8) an =
m
∑

i=1

Ai(n)αn
i

with roots αi, 1 ≤ i ≤ m, distinct nonzero quantities, and coefficients Ai(n) polynomials of
degree mi − 1 for positive integers mi, 1 ≤ i ≤ m. The generalized power sum an is said to
have order

d =

m
∑

i=1

mi

and satisfies a linear recursion with constant coefficients of the form

an+d = s1an+d−1 + · · · + sdan

where

s(x) =
m
∏

i=1

(1 − αix)mi = 1 − s1x − · · · − sdx
d.

It is well-known that a sequence is recurrent i.e., satisfies a linear recursion with constant
coefficients if and only if it is a generalized power sum. Observe that the monic polynomial
polynomial s(x) of smallest possible degree is uniquely determined by (an).

The LMS theorem concerns the zeros of a generalized power sum.

Theorem 3.1. [Sko35, Mah35, Lec53] The zero set of a generalized power sum is the union

of a finite set and a finite set of arithmetic progressions.

A detailed proof of this important theorem is discussed in [vdP89], for recurrent sequences
with values in an arbitrary field of characteristic zero. In the next section we will need a
slightly stronger form of the LMS theorem. We say that a recurrent sequence (an) is non-

degenerate if the ratio of two distinct roots of (an) is not a root of unity; see [EvdPSW03,
Sec.1.1.9].

The LMS theorem in the case of number fields follows from the following two theorems.

Theorem 3.2. [EvdPSW03, Thm.1.2] If (an) is recurrent sequence there exists M ∈ N such

that for every r with 0 ≤ r ≤ M−1, the subsequence (anM+r) is either zero or non-degenerate.

Although we will not need this fact, if (an) takes values in a number field K, there are
absolute bounds for M in terms of the degree of K/Q and the order of (an).

Theorem 3.3. [EvdPSW03, Cor.1.20] If (an) is non-degenerate recurrent sequence with

values in a number field K, then it has finitely many zero terms.

In fact, the number of zeros is bounded above by the degree of K/Q and the order of (an);
see [ESS02, Eqn.1.18].
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4. Fatou’s Lemma

Recurrent sequences (an) of rational numbers are well-known, they satisfy linear recursion
of the form

(9)

d
∑

k=0

ckan+k = 0

for all n where ck are rational numbers with cd 6= 0. In [Fat06, p.369-370] Fatou proved that
if (an) is a recurrent sequence of integers, then it satisfies a monic linear recursion, i.e., one
of the form (9) where ck are integers for k = 0, . . . , d and cd = 1. More precisely, Fatou
proved the following lemma, quoted by several authors, e.g. [Sta97, Exerc.4.2(a)].

Lemma 4.1. [Fat06] Consider a power series G(y) =
∑

∞

n=0 any
n ∈ Z[[y]] ∩ Q(y). Then,

there exist A(y), B(y) ∈ Z[y] polynomials with B(0) = 1 such that

G(y) =
A(y)

B(y)

Moreover, if B(y) = 1 +
∑d

k=1 bky
k, then (an) satisfies the monic linear recursion

an+d +
d
∑

k=1

bkan+d−k = 0

for all n.

Let R = Q[x±1
1 , . . . , x±1

r ] and K = Q(x1, . . . , xr). Fatou’s proof also proves the following.

Lemma 4.2. Consider a power series G(y) =
∑

∞

n=0 pnyn ∈ R[[y]]∩K(y). Then, there exist
A(z), B(z) ∈ R[z] polynomials with B(0) = 1 such that

G(y) =
A(y)

B(y)

Moreover, if B(y) = 1 +
∑d

k=1 bky
k, then (pn) satisfies the monic linear recursion

(10) pn+d +
d
∑

k=1

bkpn+d−k = 0

for all n.

5. Laurent series solutions to polynomial equations

In this section we recall some results regarding Laurent series solutions of polynomial
equations whose coefficients are polynomials in several variables. These results are a gener-
alization of the Newton-Puiseux algorithm.

Laurent power series in one variable form a field, whereas they only form a ring in the case
of several variables. McDonald [McD95] constructed multivariate Laurent series solutions
to a polynomial equation p(x, y) where x = (x1, . . . , xr). Unlike the univariate (i.e., r = 1)
case, McDonald’s solutions depend on a generic weight vector ω ∈ Rr. Aroca-Ilardi [AI09]
extended McDonald’s results and constructed an algebraically closed field Kω((x)) which
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depends on ω. In [GY14], Yu and the author free the above Laurent series from their
dependence on a weight vector ω. Let us recall the necessary definitions and notation to
state the results of [GY14].

If x = (x1, . . . , xr) and α = (α1, . . . , αr), we denote xα = xα1

1 . . . xαr
r . For a field K, let

KP(x) denote the set of series φ of the form φ =
∑

α∈Qr cαxα where cα ∈ K for all α. For
such a series φ, its support E(φ) is the set of α ∈ Qr such that cα 6= 0. KP(x) is not
a ring. However, if C is a line-free cone (i.e., it does not contain a linear subspace) and
x = (x1, . . . , xr), then KC [[x]] and KC((x)) defined by

KC [[x]] = {φ ∈ KP(x) |E(φ) ⊂ C ∩
1

N
Zr for some N ∈ N}

KC((x)) = ∪γ∈QrxγKC [[x]]

are rings.
We say that ω ∈ Rr is generic if its coordinates are Q-linearly independent. From now on,

ω stands for a generic vector. We say that a cone C in Rr is ω-positive if ω ∈ C∨, where the
dual cone is defined by

σ∨ = {x ∈ Rr|x · y ≥ 0, for all y ∈ C}

Let

Kω((x)) = ∪CKC((x))

where the union is over all ω-positive cones C. Aroca-Illardi [AI09] show that Kω((x)) is
algebraically closed for all generic ω. Thus, Kω((x)) is an algebraically closed field which
contains multivariable Laurent series rings KC((x)).

Fix a polynomial

p(x, y) = ad(x)yd + · · ·+ a0(x) ∈ K[x±1
1 , . . . , x±1

r ][y]

of r + 1 variables (x, y) (where x = (x1, . . . , xr) and an algebraically closed field K of
characteristic zero. Let N(p) denote the Newton polytope of p in Rr+1 and Σ(p) denote
the fiber polytope of p with respect to the projection Rr+1 → R, where (x, y) 7→ y [BS92].
Let F denote the normal fan of Σ(p) in Rr. If σ is a maximal cone of F , the dual cone
σ∨ = {x ∈ Rr|x · y ≥ 0, for all y ∈ C} is line-free, i.e., contains no linear subspace.

Theorem 5.1. [GY14, Thm.1] For every cone σ as above, there exist y1(x), . . . , yd(x) ∈
Kσ∨((x)) such that

p(x, y) = ar(x)(y − y1(x)) . . . (y − yd(x))

Corollary 5.1. With the notation of Theorem 1.1, choose ω ∈ σ generic. Then yj(x) ∈
Kω((x)) for j = 1, . . . , r are the roots of the polynomial p(x, y) in the algebraically closed
field Kω((x)). This works even if p(x, y) ∈ Kω((x))[y].

Corollary 5.2. With the notation of Theorem 5.1, if R(y1(x), . . . , yd(x)) is a rational func-
tion of yj(x), then after possible refinement of σ, it follows that R(y1(x), . . . , yd(x)) ∈
Kσ∨((x)).
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6. Proof of Theorem 1.1

Fix a recurrent sequence pn(x1, . . . , xr) ∈ R = Q[x±1
1 , . . . , x±1

r ]. By Fatou’s Lemma 4.2,
we can find a monic recursion relation (10) with coefficients bk ∈ R, and, without loss of
generality, assume bd 6= 0. Consider the characteristic polynomial p(x, y) of (10) and its
factorization from Theorem 5.1

(11) p(x, y) = yd +

d
∑

k=1

bk(x)yd−k =
∏

j

(y − yj(x))mj

for a fixed maximal cone σ of the normal fan F of the fiber polytope Σ(p) of p. Here,
yj(x) ∈ Kσ∨((x)) for j = 1, . . . , d. Thus we can write

yj(x) = αjx
βj

∑

γ∈σ∩ 1

N
Zr

cj,γx
γ , cj,0 = 1, αj 6= 0

for j = 1, . . . , d, where cj,γ, αj ∈ K for a number field K. This partitions the j-indexing set
{1, . . . , d} into a disjoint union J1 ⊔ J2 · · · ⊔ Js such that v(yj(x)) = βi for all j ∈ Ji where
βi 6= βi′ for i 6= i′. Let X = {α1, . . . , αd} ⊂ K∗. Let

S = {0, 1, . . . , d} ×

(

Qr +

(

1

N
σ ∩ Zr

))

Step 1: Laurent series presentation of pn(x) by generalized power sums.

Lemma 6.1. After possibly refining σ, there exist a collection (ai,γ(n)) of generalized power
sums (indexed by (i, γ) ∈ S) with roots a subset of X such that for all n we have:

(12) pn(x) =
∑

(i,γ)∈S

ai,γ(n)xnβi+γ

Proof. The general solution pn(x) of a linear recurrence equation with constant coefficients
has the form

(13) pn(x) =
∑

j

cj(x, n)yj(x)n

where cj(x, n) are polynomials in n with coefficients rational functions of y1(x), . . . , yd(x).
Using Corollary 5.2, and after possibly refining σ, it follows that cj(x, n) ∈ Kσ∨((x))[n] for
all j = 1, . . . , d. Using the identity

(

1 +

∞
∑

k=1

ckx
k

)n

= 1 + nc1x +

(

nc2 +
n(n − 1)

2
c2
1

)

x2+

(

nc3 + n(n − 1)c1c2 +
n(n − 1)(n − 2)

6
c3
1

)

x3 + . . .

(14)

where the coefficients of each power of x are polynomials in n, and Equation (13), it follows
that

pn(x) =
∑

(i,γ)∈S

ai,γ(n)xnβi+γ
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where

ai,γ(n) =
∑

j∈Ji

αn
j coeff

(

cj(x, n)

(

yj(x)

αjxβj

)n

, xγ

)

�

Step 2: Reduction to the non-degenerate case.
Let G denotes the subgroup of the abelian group K∗ generated by the finite set X . G

is a finitely generated abelian group, and its torsion subgroup is finite of order, say, M .
It follows that the subset {αM

1 , . . . , αM
d } of K∗, after removing any repetitions, consists of

non-degenerate roots. Therefore, for every (i, γ) ∈ S and every r with 0 ≤ r ≤ M − 1, the
generalized power sum (ai,γ(Mn + r)) is either zero or non-degenerate.

Let us now fix a generic weight ω ∈ σ∨. It gives a total ordering <ω of the set S as follows:
(i, γ) <ω (i′, γ′) if and only if γi · ω < γi′ · ω or i = i′ and γ · ω < γ′ · ω. Since σ is ω-positive,
it follows that S is well-ordered.Let pω,n(t) = pn(tω1 , . . . , tωr), and let v denote the valuation
at t = 0: in other words v(

∑

k ckt
bk) = min{bk |ck 6= 0}.

Step 3: v(pω,nM+r(t)) is a linear function of n with coefficients piece-wise linear functions
of ω for all but finitely many n.

Indeed we have

(15) pω,nM+r(t) =
∑

(i,γ)∈S

ai,γ(nM + r)x(nM+r)βi·ω+γ·ω

If pω,nM+r(t) = 0 for infinitely many n, it follows that for all (i, γ) ∈ S, ai,γ(nM + r) = 0 for
infinitely many n. By non-degeneracy and Theorem 3.3, it follows that ai,γ(nM + r) = 0 for
all (i, γ) ∈ S and all n. Thus, pω,nM+r(t) = 0 for all n. In that case, v(pω,nM+r(t)) = −∞ is
a constant function of n.

Otherwise, pω,nM+r(t) is nonzero for all but finitely many n. Since S is well-ordered by
<ω, it follows that there is a smallest (i, γ) ∈ S such that (ai,γ(nM + r)) is not identically
zero as a function of n. Since (ai,γ(nM + r)) is non-degenerate, Theorem 3.3 implies that
{n ∈ N |ai,γ(nM + r) = 0} is a finite set, and for all n in its complement, Equation (15)
implies that

v(pω,nM+r(t)) = (nM + r)βi · ω + γ · ω

Although (i, γ) depends on ω, it is easy to see that they are locally constant functions of ω
and after possibly refining σ further, the result of step 3 follows.

Since −hpn
(−ω) = v(pω,n(t)), it follows that the restriction of hpn

(ω) to each arithmetic
progression MN + r is a linear function of n (for all but finitely many n) with coefficients
piece-wise linear functions of ω. Lemma 2.1 implies that N(pn) is quasi-linear. This concludes
the proof of Theorem 1.1. �
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