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Abstract. We introduce the notion of modular q-holonomic modules whose fundamental
matrices define a cocycle with improved analyticity properties and show that the generalised
q-hypergeometric equation, as well as three key q-holonomic modules of complex Chern–
Simons theory are modular. This notion explains conceptually recent structural properties
of quantum invariants of knots and 3-manifolds, and of exact and perturbative Chern–
Simons theory [26, 27, 28, 37], and in addition provides an effective method to solve the
corresponding linear q-difference equations. An alternative title of our paper, emphasising
the equations rather than the modules, is:

Modular linear q-difference equations
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1. Introduction

1.1. Summary. We introduce a new class of linear q-difference equations and (correspond-
ing q-holonomic modules) which we call modular, with several key features.

• Their fundamental solutions at 0 and infinity have explicitly computable monodromy.
• A natural SL2(Z)-cocycle constructed from a fundamental solution extends fromC\R

to the complex plane minus a ray in the real numbers.
• Their fundamental solutions are meromorphic and their residues are expressed in

terms of the solutions themselves (kind of ’resurgence’).

Modular q-holonomic modules are abundant. We show that the generalised q-hypergeometric
equation (11) (and in particular the q-hypergeometric equation) is modular and self-dual;
see Theorem 1.4 below. Among other things, this implies an improved analyticity for the
q-hypergeometric function

2φ1(a, b; c; q, t) =
∞∑
k=0

(a; q)k(b; q)k
(c; q)k(q; q)k

tk , (1)

namely, that the bilinear combination

(q; q)∞(c; q)∞
(a; q)∞(b; q)∞

(q̃ã; q̃)∞(q̃b̃; q̃)∞
(q̃; q̃)∞(q̃c̃; q̃)∞

2φ1(a, b; c; q, t)2φ1(ã
−1, b̃−1; c̃−1; q̃, q̃ãb̃c̃−1t̃)

+ τ
θ(q−1ct; q)(q; q)3∞
θ(t; q)θ(q−1c; q)

(q2c−1; q)∞(q; q)∞
(qac−1; q)∞(qbc−1; q)∞

θ(q̃c̃; q̃)θ(t̃; q̃)

θ(q̃c̃t̃; q̃)(q̃; q̃)3∞

(ãc̃−1; q̃)∞(b̃c̃−1; q̃)∞
(q̃−1c̃−1; q̃)∞(q̃; q̃)∞

× 2φ1(qac
−1, qbc−1; q2c−1; q, t)2φ1(q̃ã

−1c̃, q̃b̃−1c̃; q̃2c̃; q̃, q̃ãb̃c̃−1t̃)

(2)

(which a priori is a meromorphic function of τ ∈ C\R) extends to τ ∈ C\ (−∞, 0]. We also
show that modular linear q-difference equations and the corresponding q-holonomic mod-
ules appear naturally in complex Chern-Simons theory. We illustrate with three examples
(Theorems 1.5, 1.6 and 1.7 below) whose corresponding cocycles are the Faddeev quantum
dilogarithm, the Appell-Lerch sums, and the Andersen–Kashaev state integrals of the 41

knot.
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We expect that all proper (i.e., basic) q-hypergeometric modules are modular, and in par-
ticular the ones that appear in the quantum differential equation in Quantum Cohomology,
or the linear q-difference equation for the small J-function of Quantum K-Theory.

1.2. Motivation. In a recent talk [59, 60], Okounkov asked the question:

What does it take to solve a q-difference equation?

Solving a linear equation usually means giving a basis of solutions, say at t = 0 and
t = ∞ (the only two canonical points, fixed under the shift transformation t 7→ qt), and
to compute the monodromy (i.e., the connection) between t = 0 and t = ∞ in terms of
“known” functions. This problem has a rich history with an interesting balance between
concrete special functions and the abstract, which the reader may consult in Okounkov’s
talks and their references.

A key to the solution is to choose linear q-difference equations of natural origin, for instance
the ones appearing in quantum cohomology [61], in Kontsevich’s talks on resurgence [48], or
in quantum topology and Chern–Simons theory [25, 34].

Recently, it was observed that the solutions of some linear q-difference equations con-
cerning quantum knot invariants [36, 37] or resurgence and Borel resummation of pertur-
bative Chern–Simons theory [26, 27, 28], have an improved analyticity property. Roughly
speaking, this means that some holomorphic functions on C \ R extend on the cut plane
C′ = C \ (−∞, 0]. This extension property has been formalised recently by Zagier as
holomorphic quantum modular forms [70]. This extends previous ideas around quantum
modularity [72] that appeared in Chern–Simons theory [11, 14, 43, 50].

Our attempt to understand the mechanism behind this property abstractly led us to the
notion of a modular q-holonomic module. Quite by accident, this suggests an answer to the
question posed above, namely:

Modularity can solve effectively a q-difference equation.

1.3. Definition and properties. To explain the new concept, consider the linear q-difference
equation

σX = AX (3)

for a vector-valued function X = X(t, q), where (σX)(t, q) = X(qt, q) denotes the shift
operator, A(t, q) ∈ GLr(Q(t, q)) and q is a nonzero complex number with |q| 6= 1. Fix a
fundamental matrix solution U to (3) at t = 0, which we assume is filtration-preserving and
of weight κU = diag(τκU,1 , . . . , τκU,r) and define

ΩU,γ = (U |κUγ)U−1, γ =
(
a b
c d

)
∈ SL2(Z) (4)

where the slash operator |κUγ is defined in Section 2.4 below. The map γ 7→ ΩU,γ is a cocycle
of SL2(Z), i.e., it satisfies

ΩU,γγ′(z, τ) = ΩU,γ(γ
′(z, τ))ΩU,γ′(z, τ) (5)

for all γ, γ′ ∈ SL2(Z). Likewise, let V denote a filtration-preserving fundamental solution at

t = ∞, and
−→
M = V −1U denote the monodromy matrix (often called “connection matrix”).

The monodromy is always an elliptic function (i.e., σ-invariant). If it satisfies the equation
−→
M = ∆κV ,γ(

−→
M |κUγ), γ =

(
a b
c d

)
∈ SL2(Z) (6)
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for some γ =
(
a b
c d

)
∈ SL2(Z) then the cocycle matrices associated to U and V are equal:

ΩU,γ = ΩV,γ γ =
(
a b
c d

)
∈ SL2(Z) . (7)

(The converse holds, too, and the equivalence of (7) and (6) holds for each fixed γ). A priori,
Ωγ = ΩU,γ = ΩV,γ is a holomorphic function of τ ∈ C \ R and a meromorphic function of
z (with t = e(z)) with poles in a finite union of translates of the lattice Z + τZ. For an
element γ =

(
a b
c d

)
∈ SL2(Z), we let Cγ denote the cut plane C \ (−∞,−d/c] (if c > 0),

C \ [−d/c,∞) (if c < 0) and C \R when c = 0. The next definition concerns an improved
analytic property of Ωγ.

Definition 1.1. We say that a q-difference equation is modular if for all γ ∈ SL2(Z), its
cocycle Ωγ extends to a meromorphic function of (z, τ) ∈ C × Cγ with potential poles at
z ∈ Sγ + Z+ τZ for a finite set Sγ.

We make several comments concerning this definition.
1. For a modular q-difference equation, the two sides of τ ∈ C\R communicate: the restric-
tion of Ωγ on the one side of the plane Im(τ) > 0 uniquely determines (and is determined
by) the function on the other side Im(τ) < 0.
2. In a sense, our notion of modular linear q-difference equation is a q-analogue of the
second, third and fourth order modular linear differential equations studied by Kaneko,
Nagatomo, Zagier and others [4, 45, 46] in relation to Conformal Field Theory and Vertex
Operator Algebras. The characters of a VOA (under a mild C2-condition) are solutions to
a modular linear differential equation [19, 73]. An alternative title of our paper could be
“Modular linear q-difference equations” in direct analogy with the modular linear differential
equations of CFTs and VOAs. On the other hand, the current title emphasises the “module”
aspect as opposed to the “equation aspect”.
3. Our notion explains conceptually the improved analyticity properties conjectured in
relation to the structure of exact and perturbative invariants of Chern–Simons theory [26,
27, 28, 36, 37], as well as the work of Gukov et al relating logarithmic CFTs and VOAs to
Chern–Simons theory [13].
4. Our notion leads to a different perspective on quantum Jacobi forms [10]. While the
matrix valued aspect is more general, the analytic conditions are much stricter. However,
many examples, with some refinements, are expected to fit into our definition.
5. Modular linear differential equations seem rare. On the other hand, modular linear q-
difference equations appear abundant: we conjecture (see the end of Section 1) that the

Â-polynomial of a knot (i.e., the linear q-difference equation satisfied by the colored Jones
polynomial of a knot [34]) is a modular linear q-difference equation. This brings a new
perspective to the Jones polynomial of a knot.
6. The modularity of the monodromy for modular q-holonomic modules is a restricted condi-
tion, which leads to the complete determination of the monodromy even when a fundamental
solution is defined by q-Borel resummation. This in turn completely determines the so-called
q-Stokes phenomenon coming from the change of the ray of the q-Laplace transform.
7. The cocycle ΩU,γ as a function of a fundamental solution of a linear q-difference equation
appears new and different from the matrices considered in Etingof [22] that generate the
Galois group of the equation.
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8. The above definition involves all elements of SL2(Z), although it imposes no improved
extension when γ2,1 = 0. The third part of the next theorem (under the hypothesis that
ΩT = I which is satisfied in all of our examples), rephrases the modularity of Definition 1.1
in terms of ΩS alone, where S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
of SL2(Z) are the standard generators

of SL2(Z). Recall that C′ = CS = C \ (−∞, 0].

Theorem 1.2. (a) If Equation (6) for the monodromy holds for γ = S and γ = T , then it
holds for all γ ∈ SL2(Z).
(b) If Ω is an SL2(Z)-cocycle with ΩT = I, then ΩS satisfies the 4-term and the 3-term
functional equations

1 = ΩS

(
−z
τ
,−1

τ

)
ΩS (−z, τ) ΩS

(
z

τ
,−1

τ

)
ΩS(z, τ) (8a)

ΩS(z, τ) = ΩS

(
z

τ + 1
,

τ

τ + 1

)
ΩS(z, τ + 1) . (8b)

Conversely, given ΩT = I and ΩS that satisfies the above functional equations, there is a
SL2(Z)-cocycle with those values.
(c) If Ω is a cocycle such that ΩT = I and ΩS extends as a meromorphic function of (z, τ) ∈
C×C′, then Ωγ extends as a meromorphic function of (z, τ) ∈ C×Cγ for all γ ∈ SL2(Z).

Note that with the assumptions of part (c) above, we have

Ω−I(z, τ) = ΩS

(
z

τ
,−1

τ

)
ΩS(z, τ) (9)

which is meromorphic on C×(C\R), in general does not extend any further; see for instance
the cocycle of Theorem 1.5 below.
9. Our final comment concerns the distinction between a linear q-difference equation to a
q-holonomic module. A linear q-difference equation leads to a pair (M, e) of a q-holonomic
module M over the q-Weyl algebra W = Q(q, t)〈σ〉/(σt − qtσ) and a cyclic vector e of M .
The categoryM of q-holonomic modules is an abelian category, which admits a multivariable
extension closed under the usual operations on sheaves. For a detailed introduction, see [16]
and [65], and also [33]. Whereas D-modules over the Weyl algebra have only one dual (see
for example, [67, Sec.2.2]), modules over the q-Weyl algebra have two duals M∧ (the usual
Hom-dual as in the case of D-modules) and a dual M∨ coming from the involution q 7→ q−1,
discussed in Section 2.5 below. The next lemma summarises some categorical properties of
modular q-holonomic modules.

Lemma 1.3. (a) Modularity of a q-holonomic module is independent of the choice of a cyclic
vector.
(b) If 0→M ′ →M →M ′′ → 0 is a short exact sequence of q-holonomic modules and M is
modular, then M and M ′ are also modular.
(c) M is a modular, then M∧ and M∨ are modular with cocycles given by

Ω∧(z, τ) := Ω(z,−τ), and Ω∨ = (Ω−1)t (10)

where Ω is a cocycle of M .
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1.4. The generalised q-hypergeometric equation is modular. Contrary to what one
might expect, modular q-holonomic modules are abundant. This section concerns the gen-
eralised q-hypergeometric equation(

r−1∏
j=0

(1− q−1bjσ)− t
r∏
j=1

(1− ajσ)

)
f = 0 (11)

for a function f = f(t, a, b, q) where a = (a1, . . . , ar) and b = (b0, . . . , br−1) with b0 = q, where
σ is the operator that shifts t to qt. This equation is a q-deformation of the hypergeometric
equation (a regular singular linear differential equations with singularities at 0, 1,∞), itself
a generalisation of the Gauss hypergeometric equation. The hypergeometric equation has a
rich history related to, among other things, periods in algebraic geometry and in the Gauss-
Manin connection of the middle cohomology of the Dwork family of smooth hypersurfaces;
see for example [7, 47] and references therein.

The generalised q-hypergeometric equation (11) was introduced and studied by Heine, who
shows that this equation has a solution, analytic at t = 0, given by the q-hypergeometric
series

rφr−1(a; b; q, t) =
∞∑
k=0

(a1; q)k . . . (ar; q)k
(b1; q)k . . . (br−1; q)k(q; q)k

tk . (12)

The generalised q-hypergeometric equation and the q-hypergeometric series are classical ex-
amples of functions that appear in many areas of research, and for a comprehensive treat-
ment, we refer the reader to the book of Gasper–Rahman [38] and references therein.

Consider the matrices

U = W (f (1), f (qb−1
1 ), . . . , f (qb−1

r−1)), V = W (g(a
−1
1 ), . . . , f (a−1

r )) (13)

where W denotes the Wronskian of r functions f1, . . . , fr, which is an r × r matrix defined
by W (f1, . . . , fr)ij = (σi−1fj) for i, j = 1, . . . , r and

f (q−1bj)(t, a, b, q) = Bj(a, b, q)
θ(q−1bjt; q)

θ(t; q)
rφr−1(qa/bj; qb/bj; q, t) (14)

for j = 0, . . . , r − 1 with B0 = 1 and, for j > 0,

Bj(a, b, q) =

(
r∏
i=1

(ai; q)∞(qbi−1/bj; q)∞
(qai/bj; q)∞(bi−1; q)∞

)
(q; q)3∞

θ(q−1bj; q)
, (15)

and

g(a
−1
j )(t, a, b, q) = Aj(a, b, q)

θ(q−1ajt; q)

θ(q−1t; q)
rφr−1(qai/b; qai/a; q, qb1 . . . br−1a

−1
1 . . . a−1r t−1) (16)

for j = 1, . . . , r with

Aj(a, b, q) =
(q; q)2∞

θ(q−1aj; q)
∏r

i=1,i 6=j(ai/aj; q)∞

r∏
i=1

(ai; q)∞(bi−1/aj; q)∞
(bi−1; q)∞

. (17)
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The calculation of the monodromy is a classical result and follows from [38, Eq.(4.5.2)]. The

monodromy
−→
M(t, a, b, q) = V (t, a, b, q)−1U(t, a, b, q) is given explicitly by

−→
M(t, a, b, q) =


1 (q;q)3∞θ(b1t;q)θ(a1/b1t;q)θ(a1;q)

θ(t;q)θ(a1t;q)θ(b1;q)θ(a1/b1;q)
. . . (q;q)3∞θ(br−1t;q)θ(a1/br−1t;q)θ(a1;q)

θ(t;q)θ(a1t;q)θ(br−1;q)θ(a1/br−1;q)

1 (q;q)3∞θ(b1t;q)θ(a2/b1t;q)θ(a2;q)
θ(t;q)θ(a2t;q)θ(b1;q)θ(a2/b1;q)

. . . (q;q)3∞θ(br−1t;q)θ(a2/br−1t;q)θ(a2;q)
θ(t;q)θ(a2t;q)θ(br−1;q)θ(a2/br−1;q)

: : : . . .

1 (q;q)3∞θ(b1t;q)θ(ar/b1t;q)θ(ar;q)
θ(t;q)θ(art;q)θ(b1;q)θ(ar/b1;q)

. . . (q;q)3∞θ(br−1t;q)θ(ar/br−1t;q)θ(ar;q)
θ(t;q)θ(art;q)θ(br−1;q)θ(ar/br−1;q)

 . (18)

Then from the modularity of the Dedekind η-function and the Jacobi θ-function the matrix
−→
M

satisfies the modular transformation (6) with weights κU = (0, 1, . . . , 1) and κV = (0, . . . , 0).
When a, b are specialised at points where there are singularities, one can take coefficients

of the expansion around these points to define U, V .
Theorem 1.4 states that the generalised q-hypergeometric equation is modular. The the-

orem will also hold when we specialise the values of a, b. This is because the integral repre-
sentations of the cocycle will be regular at these specialisations and the factorisation of the
integral will similarly involve the expansion around these points as it will involve computation
of residues of higher order.

Theorem 1.4. The two cocycles (4) ΩU and ΩV are equal and modular.

The proof of the above theorem is given in Section 3 and uses an integral representation of
the solutions of Equation (11) in terms of a special function, the Faddeev quantum diloga-
rithm [23, 24], the factorisation of the corresponding integrals (so-called state integrals) as a
bilinear combination functions of z, τ and (z/τ,−1/τ) along the lines of [30], combined with
an explicit description of the self-duality of the corresponding q-holonomic module. What
is more, the U and the V cocycles are obtained by moving the contour of integration of
the state integral upwards or downwards, respectively, and this is one explanation of their
equality. We also remark that the above theorem is valid for r = 1, where the corresponding
cocycle is none other than a ratio of two Faddeev quantum dilogarithms.

1.5. Modular q-holonomic modules in Chern–Simons theory. In this section we
present three q-holonomic modules whose cocycles play a key role in complex Chern–Simons
theory and prove their modularity. We will not need a detailed knowledge of Chern–Simons
theory, but focus on the fact that it is a gauge theory with gauge group a complex Lie group,
whose partition function can be identified by a finite dimensional integrals of products of
the Faddeev quantum dilogarithm. A detailed exposition of Chern–Simons theory is given
in the work of Andersen–Kashaev and Beem, Dimofte and Pasquetti [3, 18, 5, 62]. The
quasi-periodicity of the Faddeev quantum dilogarithm implies that the partition function of
complex Chern–Simons theory satisfies a q-holonomic module of linear q-difference equations.

In the modular q-holonomic modules discussed below, we prove their modularity and at the
same time define and compute fundamental matrices U and V of solutions algorithmically,
and give explicit formula for their monodromy. This is possible because of two key features,
namely:

(a) The fundamental matrices U and V are meromorphic functions with explicit poles
and with residues expressed linearly in terms of U and V . This is some kind of
resurgence property and it is ultimately responsible for determining the monodromy.
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(b) The monodromy is uniquely determined by its elliptic property, the explicit poles
and principle parts, and its limiting values at t = 0 or t =∞.

Our first module, the linear q-difference equation for the infinite Pochhammer symbol

(1− qt)f(qt, q)− f(t, q) = 0 , (19)

has trivial monodromy but its cocycle is a very interesting function, the Faddeev quantum
dilogarithm function which is the building block of the partition function of complex Chern–
Simons theory. With the definition of f (0) and g(1) given in Equations (156) and (161) below,
we define the fundamental matrices U(t, q) and V (t, q) of solutions at t = 0 and t =∞ by

U(t, q) = W (f (0)(t, q)), V (t, q) = W (g(1)(t, q)) , (20)

with equal weights κ = 0. In our theorems below, we will use the terms “a q-holonomic
module is modular” and “its cocycle in modular” interchangeably.

Theorem 1.5. The monodromy matrix is
−→
M(t, q) = (1). The two cocycles (4) ΩU and ΩV

are equal, modular and when γ = S, they are given explicitly by

ΩS(z, τ) = Φb

(
iz

b
+
ib

2
+

1

2ib

)−1
(21)

where Φ is the Faddeev quantum dilogarithm function [23, 24].

In forthcoming work [31], the cocycle Ωγ will be identified with an SL2(Z)-extension of
the Faddeev quantum dilogarithm, and its modularity will be deduced independently, using
properties of the odd Eisenstein series.

Our second module is the q-difference equation of the Appell-Lerch sums studied in [9, 74]
and given by

f(q2t, q) + (qt− 1)f(qt, q)− tf(t, q) = 0 . (22)

The cocycle of (22) is the Appell-Lerch sum, which is the building block for the extension
of the partition function of complex Chern–Simons theory that detects the trivial flat con-
nection, see [28]. In the above equation, some formal power series solutions are divergent,
and their q-Laplace resummation is expressed in terms of an Appell-Lerch sum that depends
on an additional elliptic variable. The monodromy of this equation is an explicit product
of theta functions that depends on two elliptic variables, but the cocycle is independent of
them, and is expressed explicitly in terms of the Mordell integral. Our results give a new
interpretation of the Mordell integral and Appell-Lerch sums emphasising the role of the lin-
ear q-difference equations as opposed to the aspects of modular forms advocated by Zwegers
in his thesis [74] and by Dabholkar–Murthy–Zagier [17] in the study of mock modular forms
and their incarnations in the mathematical physics of black holes.

With the definition of f (−1), f (0), g(0) and g(1) given in Equations (175), (170), (177)
and (178) below, we define the fundamental matrices U(t, λ, q) and V (t, µ, q) of solutions at
t = 0 and t =∞ by

U(t, λ, q) = W (f (0)(t, λ, q), f (−1)(t, q)), V (t, µ, q) = W (g(0)(t, µ, q), g(−1)(t, q)) , (23)

with equal weights κ = (0, 1).
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Theorem 1.6. (a) The monodromy matrix
−→
M(t, λ, µ, q) = V (t, µ, q)−1U(t, λ, q) is given by

−→
M(t, λ, µ, q) =

(
1 0
∗ 1

)
(24)

where
−→
M2,1(t, λ, µ, q) = −(q; q)3∞θ(q

−1t; q)θ(λ−1µ; q)θ(λ−1µ−1t−1; q)

θ(λ−1; q)θ(µ; q)θ(λ−1t−1; q)θ(µ−1t−1; q)
. (25)

The matrix
−→
M satisfies the modular transformation (6).

(b) The two cocycles (4) ΩU and ΩV are equal, modular, independent of λ and µ and when
γ = S, are given explicitly by

ΩS(z, τ) =

(
0 1
1 −t̃

)( τ−1 0
e( 1

8)√
τ
t̃−

1
2 q̃

1
8 e
(
z2

2τ

)
h(z, τ)

e( 1
8)√
τ

e
(
− (z+1/2−τ/2)2

2τ

))(0 1
1 −t

)−1
(26)

where

h(z, τ) =

∫
R

eπi(τx
2+2izx)

2 cosh(πx)
dx. (27)

is the Mordell integral.

Our third module is a linear q-difference equation associated to quantum invariants of the
simplest hyperbolic knot 41,

tqf(qt; q) + (1− 2t)f(t; q) + tq−1f(q−1t; q) = 0 . (28)

This equation, which is also related to the q-Hahn Bessel function, appeared in homogeneous
form in [27, Eqn.(11)]. With the definition of f (−1), f (1) and g(0,0) and g(0,1) given in Equa-
tions (201), (205) and (209) below, we define the fundamental matrices U(t, λ, q) and V (t, q)
of solutions at t = 0 and t =∞ by

U(t, λ, q) = W (f (1)(t, λ, q), f (−1)(t, q)), V (t, q) = W (g(0,0)(t, q), g(0,1)(t, q)) , (29)

and equal weights κ = (1, 0).

Theorem 1.7. (a) The monodromy matrix
−→
M(t, λ, q) = V −1(t, q)U(t, λ, q) is given by

−→
M(t, λ, q) =

(
−1 0

−→
M2,1(t, λ, q) 1

)
(30)

where

−→
M2,1(t, λ, q) =

θ(qt; q)θ(tλ; q)θ(tλq−1/2; q)θ(tλ2q−1/2; q)

θ(tλq1/4; q)θ(−tλq1/4; q)θ(tλq−1/4; q)θ(−tλq−1/4; q)θ(q−1λ; q)θ(q−3/2λ; q)
.

(31)
The matrix M satisfies the modular transformations

∆T 2,κ

−→
M |κT 2 =

−→
M, ∆STS,κ

−→
M |κSTS =

−→
M, ∆TST,κ

−→
M |κTST =

−→
M . (32)

It follows that the SL2(Z)-orbit of M consists of three functions M,∆T,κ

−→
M |κT,∆S,κ

−→
M |κS.

(b) The two cocycles (4) ΩAv(U) and ΩV , defined by the averaging

Av(U) = VAv(
−→
M), Av(

−→
M) =

1

3

(−→
M + ∆T,κ

−→
M |κT + ∆S,κ

−→
M |κS

)
, (33)
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are equal, modular, independent of λ and when γ = S, they are given by elementary functions
times the state integrals ∫

R+iε

Φb(x)2 exp
(
−πix2 − 2πb−1zx

)
dx. (34)

The above can be phrased by saying that M is modular on an index three subgroup Γ′ of
SL2(Z) (conjugate to the θ subgroup and to the congruence subgroup Γ0(2) of SL2(Z)) and if
γ ∈ Γ′ then ΩU,γ = ΩV,γ is independent of λ and modular. The corresponding state integrals
are defined in forthcoming work [31]. However, the modularity of the module follows from
Theorem 1.2.

The equation (28) has two important extensions, each containing important information
about the knot. The first extension is an inhomogeneous version, which for the 41 knot,
takes the form (see [37, Eqn.(98)] and [28, Sec.2.2])

tqf(qt; q) + (1− 2t)f(t; q) + tq−1f(q−1t; q) = 1 . (35)

The solution f (0) at t = 0 given in Equation (255) below is a resummation of the Kashaev
invariant of the 41 knot, whereas the solution g(0,2) given in Equation (258) below is a q-
series that appeared recently in [28] in relation to the asymptotic expansion of the Kashaev
invariant at the trivial representation. With those two solutions, we define the fundamental
matrices

U(t, λ1, λ2, q) = W (f (1)(t, λ1, q), f
(−1)(t, q), f (0)(t, λ2, q))

V (t, q) = W (g(0,0)(t, q), g(0,1)(t, q), g(0,2)(t, q)) ,
(36)

with equal weights κ = (2, 1, 0). The monodromy matrix involves the Weierstrass elliptic
function ℘, a well-known function discussed in detail for example in [2].

Theorem 1.8. (a) The monodromy matrix
−→
M(t, λ1, λ2, q) = V (t, q)−1U(t, λ1, λ2, q) is given

by

−→
M(t, λ1, λ2, q) =

 −1 0 ℘(t, q)
−→
M2,1(t, λ1, q) 1 1

2
℘′(t,q)−℘′(λ2,q)
℘(t,q)−℘(λ2,q)

0 0 1

 (37)

where
−→
M2,1 is given by (31). The matrix M satisfies the modular transformations (32) with

weight κ = (2, 1, 0).
(b) The two cocycles (4) ΩAv(U) and ΩV are equal, modular, independent of λ1, λ2 and when
γ = S, they are given by combinations of elementary functions times the state integrals∫

R+iε

Φb(x)2
exp (−πix2 − 2πb−1zx)

1 + q̃1/2 exp (−2πb−1x)
dx . (38)

The second and last extension of equation (35) is the addition of an x-variable in C×,
which topologically measures the holonomy of the meridian of the knot, or the color of the
colored Jones polynomial, and behaves like a Jacobi variable. The new equations are now a
two variable holonomic system and take the form

tqf(qt, x, q) + (1− (x−1 + x)t)f(t, x, q) + tq−1f(q−1t, x, q) = 1 (39a)
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(1− qx)(1− q−1x2)f(t, qx, q)

−(x− 1)2(x+ 1)(x2t− x− (q−1 + q)t− x−1 + x−2t)f(t, x, q)

+(1− qx2)(1− q−1x)f(t, q−1x, q) = (1 + x−1)(1− qx2)(1− q−1x2) ,
(39b)

(1− xq)(f(t, qx, q)− x−1f(qt, qx, q)) = (1− x−1)(f(t, x, q)− qxf(qt, x, q)) . (39c)

This is not a random system of equations, instead they are the defining equations of the
descendant colored Jones polynomial of the 41 knot, and appeared explicitly in [28, Eqn.(97)].
This is a q-holonomic module of rank 3, with fundamental solutions f (j)(t, x, q) for j =

−1, 0, 1 at t = 0 and g(0,x
j)(t, x, q) for j = −1, 0, 1 at t = ∞ defined in Equations (283),

(290) and (291). With these solutions we can define the fundamental matrices with respect
to the shift in t as

U(t, x, λ1, λ2, q) = W (f (1)(t, x, λ1, q), f
(−1)(t, x, q), f (0)(t, x, λ2, q)) ,

V (t, x, q) = W (g(0,x
−1)(t, x, q), g(0,x)(t, x, q), g(0,1)(t, x, q)) ,

(40)

with weights κU = (0, 1, 0) and κV = (1, 1, 0). The next theorem gives the properties of this
monodromy.

Theorem 1.9. (a) The monodromy matrix is given by

−→
M(t, x, λ1, λ2, q) =

 1 −1 0
−1 −1 0
0 0 1

×


θ(x−2;q)θ(t;q)2(q;q)3∞
2θ(q−1x;q)2θ(tx;q)θ(tx−1;q)

0 θ(x−2;q)θ(t;q)2(q;q)3∞
2θ(q−1x;q)2θ(tx;q)θ(tx−1;q)

m2,1(t, x, λ1, q) 1
(
θ′(tλ2)
θ(tλ2)

− θ′(tx)
2θ(tx) −

θ′(tx−1)
2θ(tx−1)

− θ′(λ2)
θ(λ2)

− 1
2

)
0 0 1


(41)

where m2,1(t, x, λ1, q) is the unique elliptic function in t satisfying m2,1(1, x, λ1, q) = 0 with

simple poles at t0 ∈ {x±qZ,±λ−1q
1
2
Z} and residues ρt0 := Rest=t0m2,1(t, x, λ1, q)

dt
2πit

given by

ρx±qZ =
−1

2

ρ±λ−1
1 q−1/4−Z =

θ(±q3/4λ−11 ; q)θ(±q−1/4x; q)θ(±q−3/4x; q)θ(±q−3/4λ1; q)
2θ(x; q)θ(x−1; q)θ(q−1λ1; q)θ(q−3/2λ1; q)

ρ±λ−1
1 q−3/4−Z =

θ(±q1/4λ−11 ; q)θ(±q−1/4x; q)θ(±q−3/4x; q)θ(±q−1/4λ1; q)
2θ(x; q)θ(x−1; q)θ(q−1/2λ1; q)θ(q−1λ1; q)

.

(42)

The monodromy satisfies the following modular transformations

∆T 2,κV

−→
M |κUT 2 =

−→
M, ∆STS,κV

−→
M |κUSTS =

−→
M, ∆TST,κV

−→
M |κUTST =

−→
M . (43)

(b) The two cocycles (4) ΩAv(U) and ΩV are equal, modular, independent of λ1, λ2 and when
γ = S, they are given by combinations of elementary functions times the state integrals∫

C
Φb(x+ ibu)Φb(x− ibu)

exp (−πix2 − 2πb−1zx)

1 + q̃1/2 exp (−2πb−1x)
dx . (44)
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An explicit formula for the function m2,1 is given in Equation (296) below.
The next theorem identifies the function f (0)(t, x, λ1, q) with the q-Borel resummation of

the descendant of the colored Jones polynomial, and provides a lift of the colored Jones
polynomial (as a function of N and q) to an analytic function of x and q. Its extension to
all knots will be discussed in forthcoming work.

Theorem 1.10. The N-th colored Jones polynomial JN(q) of 41 for |q| < 1 is given by

JN(q) = f (0)(1, qN , λ2, q) . (45)

Note that there is no λ2 dependence on the left hand side of (45) and that λ2 parametrises
a family of analytic continuations of the colored Jones polynomial as we vary x away from
qN .

The cocycles given in the previous theorems reveal the relation of the following three
special functions (all being entries of a matrix-valued S-cocycle of a modular q-difference
equation)

(a) the Fadeev quantum dilogarithm
(b) the Mordell integral
(c) the Andersen-Kashaev state integral.

We end this section with some comments regarding modular q-holonomic modules. It is
not obvious that q-holonomic modules exist or occur naturally. Yet, they are abundant, for
instance all proper q-hypergeometric multidimensional sums are q-holonomic; see Zeilberger–
Wilf [69]. A detailed introduction of q-holonomic modules and their functional and closure
properties can be found in [33, 49, 63].

Regarding the occurence of q-holonomic modules, they are often given in the form Mf =
Wf where f : Zr → Q(q) is a quantum invariant. For instance, if f denotes the colored Jones
polynomial of a link (colored with an arbitrary representation of a fixed simple Lie group),
or the colored HOMFLY-PT polynomial of a link (colored by arbitrary partitions with a
fixed number of rows or columns), the corresponding modules Mf are q-holonomic; see [34]
and [32]. In addition, the special q-hypergeometric sums (so-called Nahm sums) studied
in [37, Sec.4.7] that depend on the upper-half of a symplectic matrix, are q-holonomic.
Moreover, the linear q-difference equations in quantum cohomology or in quantum K-theory
are often (and perhaps always?) specialisations of q-hypergeometric series; see [61, 35, 44,
68]. Finally, the q-GKZ modules of Gelfand–Kapranov–Zelevinsky [39, 40, 41] which are
constructed by combinatorial data (a matrix of integers) together with some “charge vectors”
are q-holonomic.

The above discussion leads naturally to the following conjecture.

Conjecture 1.11. Every q-holonomic module associated to a proper q-hypergeometric
multi-dimensional sum is modular.

2. A review of linear q-difference equations

2.1. Preliminaries. It is well-known that formal power series solutions to linear difference
equations with a small parameter are typically factorially divergent series, which lead to
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analytic solutions to the difference equation after applying the process of a Borel transfor-
mation, followed by a Laplace transformation. This subject is classical and well-studied, see
for example [6, 15, 52, 53].

A corresponding theory for linear q-difference equations was developed recently by di Vizio,
Sauloy, Ramis and others [20, 42, 64], with particular emphasis given on the arithmetic
and the Galois theoretic aspects of the theory. A q-holonomic module has two canonical
filtrations, one from t = 0 and another from t = ∞. These filtrations can be computed
concretely choosing a cyclic vector which converts the q-holonomic module into a linear
q-difference equation.

To explain the solutions of linear q-difference equations, let us recall the Jacobi theta
function which is given by a one dimensional lattice sum, and by an infinite product (known
as the Jacobi triple product identity) by

θ(t; q) =
∑
k∈Z

(−1)kqk(k+1)/2tk = (qt; q)∞(t−1; q)∞(q; q)∞ . (46)

From the above representation, it is easy to see that it satisfies the functional equations

θ(t−1; q) = θ(q−1t; q) = −tθ(t; q) (47)

which imply that
θ(q`t; q) = (−1)`q−`(`+1)/2t−`θ(t; q), (` ∈ Z) . (48)

The Jacobi theta function is modular. Its transformation under the element S of SL2(Z) is
given by

θ(t̃; q̃) = e(−3/8)e

(
z2

2τ

)
t
1
2 t̃−

1
2 q

1
8 q̃−

1
8
√
τ θ(t; q) . (49)

The derivative of θ with respect to td/dt = 1/(2πi)d/dz,

θ′(t; q) =
∑
k

(−1)kkqk(k+1)/2tk (50)

satisfies the q-difference equation

θ′(q`t; q)

θ(q`t; q)
=
θ′(t; q)

θ(t; q)
− ` . (51)

It has transformation under the element S of SL2(Z) given by

θ′(t; q)

θ(t; q)

∣∣∣
1
S :=

1

τ

θ′(t̃; q̃)

θ(t̃; q̃)
=
θ′(t; q)

θ(t; q)
+
z

τ
+

1

2
− 1

2τ
. (52)

2.2. An algorithm for a fundamental matrix. In this section we review an algorithm to
obtain a fundamental matrix solution to a q-holonomic module given by Dreyfus [20] using
the q-Borel and the q-Laplace transform. Let us describe the main steps here.
• Choose a cyclic vector to present a q-holonomic module in the form of a linear q-difference
equation

r∑
j=0

ajσ
jf = 0 (53)
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where f = f(t, q), (σf)(t, q) = f(qt, q) and aj(t, q) ∈ Q(q)[t±1], with ar 6= 0. The rest of the
algorithm depends on (53) alone.
• The lower Newton polygon of (53) is the lower convex hull of the points (j, v0(aj)) for
j = 0, . . . , r, where v0(p) denotes the minimum t-exponent of a Laurent polynomial p(t)
(with the convention that v0(0) = ∞). The boundary of the lower Newton polygon is a
finite sequence of edges with increasing slopes.
• For each edge of the lower Newton polygon, we replace our function by a ratio of theta
functions times a new function, so that the corresponding edge is now horizontal, and then
apply the Frobenius method to get t-formal power series solutions, once for each root of the
indicial polynomial of the edge. If κ is the slope of the edge and an integer, the solutions
have the form

θ(t; q)κ
∞∑
k=0

αk(q)t
k θ(ρ

−1t; q)

θ(t; q)
(54)

where ρ is determined by the roots of the indicial polynomial of the edge. A special feature
in the equations that we study is that the roots of the indicial polynomials are roots of unity
times a fractional power of q times a monomial in any additional variables.
• If a solution is not convergent at t = 0, apply a q-Borel transform, followed by an iterated
q-Laplace transform (defined below), to construct a fundamental matrix U(t, q) of analytic
solutions at t = 0. The q-Borel and q-Laplace transforms preserve linear q-difference equa-
tions and change their Newton polygons by an affine linear transformation.
• Repeat the above steps using the upper Newton polygon of (53), that is the upper convex
hull of the points (j, v∞(aj)) for j = 0, . . . , r, where v∞(p) denotes the maximum t-exponent
of a Laurent polynomial p(t) (with the convention that v∞(0) = −∞). Call the corresponding
fundamental matrix V (t, q).

The ratio M = V −1U is a matrix of elliptic functions. These functions depend on addi-
tional elliptic parameters that come from the q-Laplace transform, a feature of q-difference
equations which is absent in the world of linear differential equations. The connection prob-
lem, i.e., the determination of this matrix, is largely unsolved, with partial success for the
case of many q-hypergeometric difference equations; see Ohyama, Morita [55, 56, 57, 58].

2.3. The q-Borel and the q-Laplace transforms. We now recall the q-Borel transform
Bκ (for a rational number κ) defined by

Bκ

(
∞∑
`=0

a`t
`

)
(ξ, q) =

∞∑
`=0

(−1)`qκ`(`+1)/2a`ξ
` . (55)

Its role is to convert divergent series, e.g., of the form
∑∞

`=0 q
−κ`(`+1)/2a`t

` (where a` is
bounded and κ > 0) to convergent ones at ξ = 0.

An inverse of the q-Borel transform is the q-Laplace transform, whose role is to construct
analytic solutions to the linear q-difference equation with prescribed asymptotics. It is
defined for κ > 0 by

Lκ(f)(t, λ, q) =
1

θ(λ; qκ)

∑
`∈Z

(−1)`qκ`(`+1)/2λ`f(qκ`λt, q) =
∑
`∈Z

f(qκ`λt, q)

θ(qκ`λ; qκ)
, (56)
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and for κ < 0, by

Lκ(f)(t, q) =

∮
f(ξ, q)θ(t/ξ; q−κ)

dξ

2πiξ
. (57)

The q-Laplace transform for positive κ is more common, however, in the computation of the
monodromy of the 41 knot, we will use κ < 0, following analogous computations of Morita
[54].

In some sense, the two tranformations are inverse to each other. More precisely, for all κ
and all natural numbers n, we have

LκBκ(tn)(t, λ, q) = tn . (58)

(Interestingly, the right hand side is independent of λ.) Indeed, for κ > 0, we have

LκBκ(tn) =
1

θ(λ; qκ)

∑
`∈Z

(−1)`qκ`(`+1)/2λ`(−1)nqκn(n+1)/2qκ`nλntn

=
1

θ(λ; qκ)

∑
`∈Z

(−1)`+nqκ(`+n)(`+n+1)/2λ`+ntn

=
1

θ(λ; qκ)

∑
`∈Z

(−1)`qκ`(`+1)/2λ`tn = tn .

(59)

A similar calculation using the residue theorem shows (58) for κ < 0. More generally, the
fact solutions constructed by Borel transforms followed by iterated Laplace transforms are
asymptotic to the original formal power series is known in the literature as Watson’s lemma,
a modern proof of which may be found for instance in Miller [52, p. 53, Prop. 2.1]. An
analogous lemma holds for the q-case, see [20, Prop.2.9].

By its very definition, Lκ for κ > 0 depends on the variable λ in an elliptic way

Lκ(f)(t, qκλ, q) = Lκ(f)(t, λ, q) (60)

whereas Lκ for κ < 0 does not involve a variable λ. The next lemma, whose proof follows
from an elementary application of the residue theorem, concerns the dependence of the
q-Laplace transform on the auxiliary variable λ, and may be of independent interest.

Lemma 2.1. Assuming that

lim
ε→0

∮
|ξ|=ε±

f(ξt, q)θ(µ−1λ−1ξ; q)

θ(ξµ−1; q)θ(ξλ−1; q)

dξ

2πiξ
= 0 (61)

where ε avoids the poles of the integrand we have

L1(f)(t, λ, q)− L1(f)(t, µ, q)

=
θ(λ−1µ; q)(q; q)3∞
θ(λ−1; q)θ(µ; q)

∑
x∈poles of f

Resξ=x
f(ξ, q)θ(λ−1µ−1t−1ξ; q)

θ(ξλ−1t−1; q)θ(ξµ−1t−1; q)
.

(62)

Note that the assumption on f is mild since as t approaches 0 or ∞ bounded away from
the poles, the quotient of θ’s approaches 0. Note also that the lemma can be extended to
the case of Lκ for κ > 0 by substituting q 7→ qκ except in the argument of f .
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Proof. We compute

0 =
∑
ξ∈poles

Resξ
f(ξt, q)θ(µ−1λ−1ξ; q)

θ(ξµ−1; q)θ(ξλ−1; q)

dξ

2πiξ

=
∑
k

Resξ=qkλ
f(ξt, q)θ(µ−1λ−1ξ; q)

θ(ξµ−1; q)θ(ξλ−1; q)

dξ

2πiξ
+
∑
k

Resξ=qkµ
f(ξt, q)θ(µ−1λ−1ξ; q)

θ(ξµ−1; q)θ(ξλ−1; q)

dξ

2πiξ

+
∑

x∈poles of f

Resξ=t−1x

f(ξt, q)θ(µ−1λ−1ξ; q)

θ(ξµ−1; q)θ(ξλ−1; q)

dξ

2πiξ

=
∑
k

(−1)kqk(k+1)/2λk
f(qkλt, q)θ(µ−1; q)

θ(µ−1λ; q)(q; q)3∞
+
∑
k

(−1)kqk(k+1)/2µk
f(qkµt, q)θ(λ−1; q)

θ(µλ−1; q)(q; q)3∞

+
∑

x∈poles of f

Resξ=t−1x

f(ξt, q)θ(µ−1λ−1ξ; q)

θ(ξµ−1; q)θ(ξλ−1; q)

dξ

2πiξ

=
θ(µ−1; q)θ(λ; q)

θ(µ−1λ; q)(q; q)3∞
L1(f)(t, λ, q) +

θ(µ; q)θ(λ−1; q)

θ(µλ−1; q)(q; q)3∞
L1(f)(t, µ, q)

+
∑

x∈poles of f

Resξ=x
f(ξ, q)θ(µ−1λ−1t−1ξ; q)

θ(ξµ−1t−1; q)θ(ξλ−1t−1; q)

dξ

2πiξ
.

(63)

�

This type of residue formula for the Laplace transform is similar to the definition of the
Laplace transform for κ < 0. We can find a similar expression for a single Laplace transform
using a special function. The Appell-Lerch sum will be studied later in Section 4.2 but we
will define it here.

L(t, λ, q) =
1

θ(λ; q)

∑
k∈Z

(−1)k
qk(k+1)/2λk

1− qkλt
. (64)

Using this we have the following integral expression for the Laplace transform for κ > 0.

Lemma 2.2. For κ > 0, we have

(Lκf)(t, λ, q) =
∑
k∈Z

Resξ=qκkL(ξ−1λ−1, λ, qκ)f(ξλt, q)
dξ

2πiξ
. (65)

Deforming the contour and the residue theorem give the following lemma.

Lemma 2.3. Assuming that

lim
ε→0

∮
|ξ|=ε±

L(ξ−1λ−1, λ, qκ)f(ξλt, q)
dξ

2πiξ
= 0 (66)

where ε avoids the poles of the integrand we have

(Lκf)(t, λ, q) = −
∑

x∈poles of f

L(x−1t, λ, q)Resξ=xf(ξ, q)
dξ

2πiξ
(67)
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Notice that all the dependence on t and λ is now in the arguments of the Appell-Lerch
sums. This illustrates the important role the residues of the Borel transform play in the
resummation. An application of this lemma leads to the following remarkable formula.

Corollary 2.4.

f (1)(t, λ, q) = −θ(t; q)
∞∑
k=0

(
L(q1/4+k/2t, λ, q1/2)R+(k, q) + L(−q1/4+k/2t, λ, q1/2)R−(k, q)

)
(68)

where f (1) is given in Equation (205) and R± is given in Equation (235).

2.4. The slash operator and proof of Theorem 1.2. In this section we recall the slash
operator, an important ingredient to express modularity. We will use the usual conventions
for the modular q = e(τ) and the Jacobi t = e(z), λi = e(ui), µi = e(vi), x = e(w) variables,
i.e., q̃ = e(−1/τ), t̃ = e(z/τ) and e(x) = e2πix. Now recall the slash operator f |κγ (see,
eg. [12, p.13] and [21]) for γ =

(
a b
c d

)
∈ SL2(Z) acting on a function f(z, τ) by

(f |κγ)(z, τ) = (cτ + d)−κf(γ(z, τ)), γ(z, τ) =

(
z

cτ + d
,
aτ + b

cτ + d

)
. (69)

This action can be extended to a matrix-valued function F (z, τ) of weight κ = diag(κ1, . . . , κr)
by

(F |κγ)(z, τ) = F (γ(z, τ))diag((cτ + d)−κ) . (70)

This extension satisfies
(F |κγ)|κγ′ = F |κγγ′

(FG)|κγ = (F |κγ)∆γ(G|κγ)
(71)

for matrix-valued functions F and G and for γ, γ′ ∈ SL2(Z) where ∆γ(τ) = diag((cτ + d)κ).
We can extend these definitions to include half integral weight using a multiplier system as
done for the Dedekind η-function. In all our examples the relative weights κi−κj are integers
and the absolute weights are either always integers, or always half-integers. Our choice of
absolute weight depends on the normalisation of our solutions, and multiplying them by
η-functions leads to a shift of the absolute weights by half-integers, but has no effect on the
modularity of the linear q-difference equation.

Recall the cocycle ΩU,γ from Equation (4), and the corresponding cocycle ΩV,γ. If the
monodromy matrix M = V −1U satisfies Equation (6), it follows that the cocycle matrices
associated to U and V are equal:

ΩU,γ = (V
−→
M |κUγ)(V

−→
M)−1 = (V |κV γ)∆κV ,γ(

−→
M |κUγ)(V

−→
M)−1

= (V |κV γ)∆κV ,γ(
−→
M |κUγ)

−→
M−1V −1 = (V |κV γ)V −1 = ΩV,γ .

(72)

We remark that sometimes the monodromy matrix of the fundamental bases U and V
that come from the algorithm of Section 2.2 satisfies Equation (6) on a finite index subgroup
of SL2(Z) (this happens, e.g., in Theorem 1.7) which contains a conjugate of a congruence
subgroup of SL2(Z). In this case, an averaging of the monodromy leads to fundamental
solutions whose cocycle extends for all γ ∈ SL2(Z).

In the rest of this subsection, we give a proof of Theorem 1.2
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Proof of Theorem 1.2. Using the behaviour of the slash operator on the product of two ma-
trices (71), it is easy to see that if Equation (6) holds for two elements of SL2(Z), it also
holds for their product. Since S and T generate SL2(Z), part (a) follows.

Part (b) follows from the presentation of SL2(Z) given by

SL2(Z) = 〈S, T | S4 = I, TSTST = S〉 (73)

and from the cocycle property, which implies that if γ = T a0ST a1ST a2 . . . ST arST ar+1 , then

Ωγ(z, τ) =
r∏
j=1

ΩS((T ajST aj+1 . . . T arST ar+1)(z, τ)) . (74)

The idea for part (c) is to use reduction theory, with attention paid to the domain of
extension. Fix a cocycle Ω that satisfies ΩT = I and ΩS extends as a meromorphic function
to C ×C′. Below, when we say that Ωγ extends, we will mean that it extends to C ×Cγ.
We will give the proof in several steps.
Step 1. The cocycle property implies that

Ωγ−1(z, τ) =
(
Ωγ(γ

−1(z, τ))
)−1

. (75)

This, together with the fact that γ−1(τ)− γ−1(∞) = 1/(c(−cτ + a)) imply that Ωγ extends
if and only if Ωγ−1 extends. In particular, applying it to γ = S, where γ−1 = −S, we obtain
that

Ω−S(z, τ) = (ΩS(−z/τ,−1/τ))−1 . (76)

Using our assumptions on ΩS, it follows that Ω−S extends.
Step 2. Suppose now that γ =

(
a b
c d

)
∈ SL2(Z) with a > 0 and c > 0. It follows by Gauss

reduction theory that we can write

γ = T a0ST a1S . . . T arST ar+1 (77)

for integers ai where a0 ≥ 0 and a1, . . . , ar > 0. Moreover, a0, . . . , ar can be obtained from
the negative continued fraction expansion (using nearest integers from above, rather than
from below)

a

c
= [a0, a1, . . . , ar] := a0 − 1/(a1 − 1/(a2 − . . . )) . (78)

The continued fraction expansion shows that the first column of γ agrees with that of the
product T a0ST a1S . . . T arS, and the last integer ar+1 is chosen so that Equation (77) holds.
Equation (74) implies that Ωγ(z, τ) is a product of r matrices ΩS matrices evaluated suitably,
and Ωγ extends to real τ that satisfy (T ajST aj+1 . . . T arST ar+1)(τ) > 0 for all j = 1, . . . , r.
The key property is that the first column of the matrices T ajST aj+1 . . . T arST ar+1 for j =
1, . . . , r consists of positive integers (with the possible exception of j = r + 1 where the
(2, 1) entry may be zero). It follows that the system of inequalities cascades, and becomes
equivalent to the single inequality τ > −d/c. It follows that Ωγ extends in the case when
γ =

(
+ ∗
+ ∗
)
∈ SL2(Z).

The above argument is best explained by an example. Consider the matrix γ =
(
17 29
7 12

)
.

We expand the rational number 17/7 of its first column in negative continued fractions

17

7
= [3, 2, 4] = 3− 4

7
= 3− 1

7/4
= 3− 1

2− 1/4
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and obtain that the matrix T 3ST 2ST 4S =

(
17 −5
7 −2

)
, which further adjusting it by multi-

plying it on the right by T 2, gives

γ =

(
17 −5
7 −2

)
T 2 = T 3ST 2ST 4ST 2 .

The cocycle property and the fact that

T 2ST 4ST 2 =

(
7 12
4 7

)
, T 4ST 2 =

(
4 7
1 2

)
, T 2 =

(
1 2
0 1

)
implies that

Ωγ(z, τ) = ΩS

(
z

4τ + 7
,
7τ + 12

4τ + 7

)
ΩS

(
z

τ + 2
,
4τ + 7

τ + 2

)
ΩS(z, τ + 2) . (79)

The right hand side extends when τ is real that satisfies

7τ + 12

4τ + 7
> 0,

4τ + 7

τ + 2
> 0, τ + 2 > 0

which (when reading the inequalities from last to first and simplifying) is equivalent to the
system τ + 2 > 0, 4τ + 7 > 0, 7τ + 12 > 0, which is equivalent to τ > −12/7 = γ−1(∞).
Step 3. We will now use the element ε =

(
−1 0
0 1

)
∈ GL2(Z) of order 2, and observe that

ε
(
a b
c d

)
ε =

(
a −b
−c d

)
∈ SL2(Z) for all

(
a b
c d

)
∈ SL2(Z). In particular, εTε = T−1 and εSε = −S.

It follows that if γ =
(
a b
c d

)
∈ SL2(Z) with a > 0 and c > 0 is given by (77), then

εγε =

(
a −b
−c d

)
= T−a0(−S)T−a1(−S) . . . T−ar(−S)T−ar+1 . (80)

The cocycle property implies that

Ωεγε(z, τ) =
r∏
j=1

Ω−S((T−aj(−S)T−aj+1 . . . T−ar(−S)T−ar+1)(z, τ)) (81)

where Ω−S(z, τ) extends for τ < 0 by Step 1. Thus Ωεγε extends when the inequalities
(T−aj(−S)T−aj+1 . . . T−ar(−S)T−ar+1)(τ) < 0 for j = 1, . . . , r. The key point now is that
these inequalities cascade to a single inequality, namely, τ < d/c = (εγε)−1(∞). It follows
that Ωγ extends when γ =

(
+ ∗
− ∗
)
∈ SL2(Z). In our running example above γ =

(
17 29
7 12

)
, we

have (
17 −20
−7 12

)
= εγε = T−3(−S)T−2(−S)T−4(−S)T−2 (82)

and the cocycle property and the fact that

T−2(−S)T−4(−S)T−2 =

(
7 −12
−4 7

)
, T−4(−S)T−2 =

(
4 −7
−1 2

)
, T−2 =

(
1 −2
0 1

)
implies that

Ωεγε = Ω−S

(
z

−4τ + 7
,

7τ − 12

−4τ + 7

)
Ω−S

(
z

−τ + 2
,

4τ − 7

−τ + 2

)
Ω−S(z, τ − 2) . (83)
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The right hand side extends when τ is real that satisfies

7τ − 12

−4τ + 7
< 0,

4τ − 7

−τ + 2
< 0, τ − 2 < 0

which is equivalent to the system 7τ − 12 < 0, 4τ − 7 < 0, τ − 2 < 0 which is equivalent to
τ < 12/7 = (εγε)−1(∞).
Step 4. The cocycle property and the triviality of ΩT = I implies that ΩTγ = Ωγ. Since
T
(
a b
c d

)
=
(
a+c b+d
c d

)
, it follows that Ωγ (and hence its extension) depends only on the bottom

row (c, d) of γ. When γ2,1 6= 0, the extension follows from either Step 2 or Step 3, depending
on the sign of γ2,1.

This concludes the proof of the theorem. �

2.5. Duality. In this section we review some elementary facts about duality of q-holonomic
modules. Recall that we can write the linear q-difference equation

ar(t, q)f(qrt, q) + ar−1(t, q)f(qr−1t, q) + · · ·+ a0(t, q)f(t, q) = 0 (84)

for a function f(t, q) in matrix form σX = AX where X = Xf = (f, σf, . . . , σr−1f)t is a
column vector and A = comp(−a0/ar, . . . ,−ar−1/ar) is the companion matrix where

comp(c0, c1, . . . , cr−1) =


0 1 0 . . . 0
0 0 1 . . . 0
: : : . . . :
0 0 0 . . . 1
c0 c1 c2 . . . cr−1

 . (85)

We will also write (84) in operator form Lf = 0 where L =
∑r

j=0 ajσ
r−j ∈ W and denote

by Mf = Wf the corresponding module over the q-Weyl algebra W . The module Mf has
two duals. The first one is defined by

M∧
f = Mf∧ , f∧(t, q) = f(t, q−1) (86)

which in matrix form is given by

σXf∧ = A∧Xf∧ , A∧(t, q) = A(qt, q−1)−1 . (87)

Indeed, we have

ar(t, q
−1)f∧(q−rt, q) + ar−1(t, q

−1)f∧(q−r+1t, q) + · · ·+ a0(t, q
−1)f∧(t, q) = 0

and inverting ar, we obtain that

f∧(qt, q) = −ar(qt, q
−1)

a0(qt, q−1)
f∧(q1−rt, q)− ar−1(qt, q

−1)

a0(qt, q−1)
f∧(t, q)− · · · − a1(qt, q

−1)

a0(qt, q−1)
f∧(t, q)

which implies (87). The second dual module is defined by

M∨
f = HomQ(q)[t±1](Mf ,Q(q)[t±1]) (88)

with a basis f∨i for i = 0, . . . r− 1 such that for j = 0, . . . , r − 1 we have f∨i (σjf) = δi,j. We
claim that in matrix form, this dual module is given by

σXf∨ = A∨Xf∨ , A∨(t, q) = (A(t, q)−1)t . (89)
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Indeed, using the basis f∨, we can define an action of W on M∨
f via conjugation with σ. By

definition, the action satisfies σ(λ(v)) = (σ · λ)(σv) for λ ∈ M∨
f and v ∈ Mf . In particular

we have σ · f∨i = σf∨i σ
−1. Notice that for i, j = 0, . . . , r − 1

(σ · f∨i )(σjf) = (σf∨i )(σj−1f) = (σf∨i )

(
r−1∑
k=0

(A(q−1t, q)−1)jkσ
kf

)

= σ

(
r−1∑
k=0

(A(q−1t, q)−1)jkδik

)
= (A(t, q)−1)ji =

(
r−1∑
k=0

(A(t, q)−t)ikf
∨
k

)
(σjf)

which implies (89).
Recall that if two modules with companion matrices A and B are isomorphic, there exists

a change of basis P such that

B = (σP )AP−1 . (90)

Then taking

P∨(t, q) =


1 0 0 . . . 0

a1/a0 1 0 . . . 0

a2/a0 σ(a1/a0) 1 . . . 0
: : : . . . :

ar−1/a0 σ(ar−2/a0) σ(ar−3/a0) . . . 1

 , P∧(t, q) =


0 0 . . . 0 1

0 0 . . . 1 0

: : . . . : :
0 1 . . . 0 0

1 0 . . . 0 0

 (91)

we find that

(σP∨)−1A∨P∨ = comp(−ar/a0, σ(ar−1/a0), . . . , σ
r(a1/a0))

(σP∨)−1A∨P∨ = comp

(
−ar(qt, q

−1)

a0(qt, q−1)
,
ar−1(qt, q

−1)

a0(qt, q−1)
, . . . ,

a1(qt, q
−1)

a0(qt, q−1)

)
.

(92)

We now remark an elementary relation between fundamental solutions of inhomogeneous
linear q-difference equations and their corresponding homogeneous ones. Consider the inho-
mogeneous equation

a0(t, q)f(t, q) + · · ·+ ar−1(t, q)f(qr−1t, q) + f(qrt, q) = c0(q). (93)

We can write it either in the form σXf (in) = A(in)Xf (in) with

Xf(in) =


1
f

:
σr−1f

 , A(in) =



1 0 0 0 . . . 0

0 0 1 0 . . . 0
0 0 0 1 . . . 0

: : : : . . . :

0 0 0 0 . . . 1
c0 −a0 −a1 −a2 . . . −ar−1


or in the form σX = AX with

Xf = (f, σf, . . . σrf)t, A = comp(−a0, σa0 − a1, σa1 − a2, . . . , σar−2 − ar−1, σar−1 − 1) .

The two equations are related by Xf = PXf (in) , A = σPA(in)P−1 where

P = comp(c0,−a0,−a1,−a2, . . . ,−ar−1) .
We end this subsection by discussing the duality

M∨ ∼= M∧ (94)
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which follows from (but is not equivalent to) the existence of matrices P∨, P∧ ∈ GLr(Q(t, q))
such that

σP∧A∧(P∧)−1 = σP∨A∨(P∨)−1 (95)

is a companion matrix. For the q-holonomic modules that come from Chern-Simons theory,
the duality M 7→M∧ corresponds to orientation-reversal of the ambient 3-manifold. On the
other hand, the factorisation of the Andersen–Kashaev state integrals into elements of M
and M∧ suggests that in those examples, we have M∧ ∼= M∨. The following proposition
confirms this for the case of the 41 knot.

Proposition 2.5. The q-difference module M associated to Equation (28) satisfies

M ∼= M∧ ∼= M∨ . (96)

The fundamental matrices satisfy

U(t, λ, q) = P∧(t, q)U∧(t, λ, q)

(
0 1
1 0

)
= P∨(t, q)U∨(t, λ, q)

(
0 −1
1 0

)
,

V (t, q) = P∧(t, q)V ∧(t, q) = P∨(t, q)V ∨(t, q)

(
0 −1
1 0

) (97)

with

P∧(t, q) =

(
1 0

2q−1 − t−1q−1 −q−2
)
, P∨(t, q) =

(
0 −q−1t−2

q−1t−2 0

)
(98)

and cocycle Ω of M satisfies

Ω = (P∧|κγ)Ω∧(P∧)−1 = (P∨|κγ)Ω∨(P∨)−1 . (99)

Equation (99) was called “quadratic relations” in Section 3.3 and equations (68)-(70)
of [37]. An example of a self-dual module is the generalised q-hypergeometric equation (see
Equation (119) below).

Proof. With A as in Equation (238),

A(t, q) =

(
0 1
−q−2 2q−1 − q−2t−1

)
(100)

and the gauge transformations (98), we have

A(t, q) = P∧(qt, q)A∧(t, q)P∧(t, q)−1 = P∨(qt, q)A∨(t, q)P∨(t, q)−1. (101)

Then note that by definition

U∧(t, q) = U(t, q−1) and U∨(t, q) = (U(t, q)−1)t (102)

and similarly for V ∧ and V ∨. We then see that for example

U(t, q)−1P∧(t, q)U∧(t, q) (103)

is elliptic. It can then be shown to be holomorphic for t ∈ C× and therefore constant in
t. Finally checking the behaviour as t → 0 for example we can prove they satisfy equation
(97). Similar arguments hold for the other functions. �
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The extra symmetry with M ∼= M∧ comes from the fact the 41 knot is amphichiral.
However, this symmetry does not persist to the module associated to the inhomogeneous
equation. This can again be seen from the state integrals introduced in [28] whose integrand
lacks the symmetry the Andersen-Kashaev state integrals have.

Proposition 2.6. The q-difference module M∨ associated to Equation (35) is not isomorphic
to M∧.

Proof. The companion matrices of M and M∧ are given by

A∧(t, q) =

 1 0 0
q−1t−1 2q−1 − t−1q−1 −q−2

0 1 0

 , A∨(t, q) =

1 t−1 0
0 2q − t−1 1
0 −q2 0

 . (104)

If there was an isomorphism there would exist P (t, q) ∈ GL3(Q(t, q)) such that

P (qt, q)A∨(t, q) = A∧(t, q)P (t, q) . (105)

It follows that
P1,1(qt, q) = P1,1(t, q), P1,2(qt, q) = P1,3(t, q), (106)

which then implies

tP1,2(t, q) + (1− 2tq)P1,2(qt, q) + q2tP1,2(q
2t, q) = P1,1(qt, q). (107)

Since P1,1 ∈ Q(t, q) satisfies (106), it is independent of t, i.e., P1,1(t, q) = P1,1(q). Therefore,
P1,2 would be a P1,1(q) multiple of a Q(t, q)-valued solution to Equation (35). The only such
solution is zero, thus P1,1 = P1,2 = 0 which, together with (106) gives also P1,3 = 0, which
violates the fact that P is invertible. �

2.6. Categorical aspects. In this section we briefly recall some categorical aspects of mod-
ules over the q-Weyl algebra and give a proof of Lemma 1.3.

To begin with, a gauge transformation X = P−1Y changes (3) to σY = BY where
B = σPAP−1, changes a fundamental solution U of (3) to P−1U , and consequently changes
Ωγ to (P |κγ)−1ΩP . Hence, if P ∈ GLr(Q(t, q)), then modularity is a property of the gauge
equivalence class of a linear q-difference equation, i.e., a property of a q-holonomic module,
independent of a choice of a cyclic vector. This concludes part (a) of Lemma 1.3.

For part (b), we use the convariant function M 7→ Sol(M) := Ker(σ,F ⊗Q(t,q) M) where
F denotes a universal q-difference field; see for example [67, Sec.2.2] for the case of modules
over the Weyl algebra and [42] for its extension for the q-Weyl algebra W . This functor by
definition satisfies [67, Lem.2.16]

Sol(M) ∼= {y ∈ F r | σy = Ay} (108)

where A is the matrix obtained by a choice of a cyclic vector of M . Moreover, if

0→M ′ →M →M ′′ → 0

is a short exact sequence of finitely generated W-modules, then

0→ Sol(M ′)→ Sol(M)→ Sol(M ′′)→ 0 (109)

is a short exact sequence of vector spaces over Q(t, q); see [67, Sec.2.2]. In addition, M
has a canonical filtration at t = 0 (and also at t = ∞) independent of the choice of cyclic
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vector [66] compatible with submodules and quotient modules. Converting the above into
matrices, it follows that the filtration preserving fundamental matrices U , U ′ and U ′′ of M ,
M ′ and M ′′ (and likewise, V , V ′ and V ′′) and their corresponding cocycles are related by

U =

(
U ′ ∗
0 U ′′

)
, ΩU =

(
ΩU ′ ∗
0 ΩU ′′

)
. (110)

It follows that if ΩU extends to the cut plane, so does ΩU ′ and ΩU ′′ , concluding part (b). It
is unlikely that the converse to part (b) holds, namely if extensions of modular q-holonomic
modules are q-holonomic, but not necessarily modular.

For part (c), observe that if U is a fundamental matrix for M , then U∧(t, q) := U(t, q−1)
and U∨ = (U−1)t are fundamental matrices for M∧ and M∨. It follows that if Ω is a cocycle
of M then Ω∧(z, τ) := Ω(z,−τ) and Ω∨ = (Ω−1)t are cocycles for M∧ and M∨. Part (c)
follows. This concludes the proof of Lemma 1.3. �

3. Heine’s q-hypergeometric functions

This section is devoted to the proof of Theorem 1.4.

3.1. Solutions. In this section we describe the solutions of the generalised q-hypergeometric
equation (11). Since that equation depends on parameters, it will be convenient to consider
the following system of equations(

r−1∏
j=0

(1− q−1bjσt)− t
r∏
j=1

(1− ajσt)

)
f = 0(

σ−1ai − q
−1aiσtσ

−1
ai
− (1− q−1ai)

)
f = 0(

1− q−1biσt − (1− q−1bi)σ−1bi
)
f = 0 .

(111)

The first equation describes the q-difference equation in t, namely Equation (11) whose
Newton polygon shown in Figure 1.

g(a
−1
1 ) g(a

−1
r )

f (1) f (qb−1
r−1)

Figure 1. The Newton polygon of the first Equation (111).

We see that there are no slopes of the Newton polygon and therefore all solutions are
determined by the top and bottom edges and their indicial polynomials. We will normalise
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the solutions coming from the Frobenius algorithm so that they satisfy the full system of
Equations (111). The bottom edge of the Newton polygon in Figure 1 has indicial polynomial

(1− ρ)(1− q−1b1ρ) . . . (1− q−1br−1ρ) = 0 . (112)

The solutions corresponding to the roots are given by f (q−1bj) in Equation (14), with the
convention that b0 = q. The top edge of the Newton polygon in Figure 1 has indicial
polynomial

(1− a1ρ) . . . (1− arρ) = 0 . (113)

The solutions corresponding to the roots are given by g(a
−1
j ) in Equation (16). The companion

matrix of Equation (11) is given by

A(t, a, b, q) =


0 1 . . . 0
: : . . . :
0 0 . . . 1

−(−1)r 1−t
er(b/q)−ter(a) (−1)r e1(b/q)−te1(a)

er(b/q)−ter(a) . . . er−1(b/q)−ter−1(a)
er(b/q)−ter(a)

 (114)

where
ek(x) =

∑
1≤j1<···<jk≤r

xj1 . . . xjk (115)

are the elementary symmetric polynomials and so with U and V in Equation (13),

U(qt, a, b, q) = A(t, a, b, q)U(t, a, b, q) and V (qt, a, b, q) = A(t, a, b, q)V (t, a, b, q) . (116)

3.2. Self duality. We will introduce a state integral in Section 3.3 which factorises as a
finite sum of products of solutions of the module M associated to Equations (111) and its
dual M∧ (see Section 2.5 for the definitions of the two duals). To prove modularity we must
factorise the state integral as a finite sum of products of solutions of M and M∨. To do
so, we need to give an explicit isomorphism between M∨ and M∧. This is the content of
the following proposition, which after some change of variables, is equivalent to Beukers–
Jouhet [8, Thm.1.3]. For completeness, we will give an independent proof using the methods
of our paper.

Proposition 3.1. [8, Thm.1.3] If M is the module associated to Equations (111) then

M∨ ∼= M∧ . (117)

Explicitly, there exists Q(t, a, b, q) ∈ GLr(Q(t, a, b, q)) such that

Q(qt, a, b, q)A(qt, a, b, q−1)−1 = A(t, a, b, q)−TQ(t, a, b, q) . (118)

In addition, Q satisfies

U(t, a, b, q)−T = Q(t, a, b, q)U(t, a, b, q−1)diag(1,−1,−1, . . . ,−1) . (119)

Proof. To prove Equation (118) let

(1− q−1b1) . . . (1− q−1br−1)P (t, a, b, q)

=


1− t 0 0 . . . 0
0 −(e2(b/q)− q−1te2(a)) e3(b/q)− q−2te3(a) . . . (−1)r−1(er(b/q)− q−r+1ter(a))

0 (e3(b/q)− q−1te3(a)) −(e4(b/q)− q−2te4(a)) . . . 0
: : : . . . :

0 (−1)r−1(er(b/q)− q−1ter(a)) 0 . . . 0

 .
(120)
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Using the fact that ek(λx) = λkek(x), one can then see that

(1− q−1b1) . . . (1− q−1br−1)P (qt, a, b, q)A(qt, q−1a, q−2b, q−1)−1

= (1− q−1b1) . . . (1− q−1br−1)A(t, a, b, q)
−TP (t, a, b, q)

=


e1(b/q)− te1(a) −(e2(b/q)− q−1te2(a)) . . . (−1)r−1(er(b/q)− q−r+1ter(a))

−(e2(b/q)− te2(a)) e3(b/q)− q−1te3(a) . . . 0

: : . . . :
(−1)r−1(er(b/q)− ter(a)) 0 . . . 0

 .

(121)

Now notice that the second and third Equations (111) give gauge equivalences between the
modules in t thinking of a, b as constants when we shift aj 7→ qaj and bi 7→ qbi. Therefore,
multiplying P by these gauge equivalences gives the desired Q. Now to prove Equation (119)
we note that, from Equation (118)

E(t, a, b, q) := U(t, q−1a, q−2b, q−1)−1P (t, a, b, q)−1U(t, a, b, q)−T (122)

is an elliptic function. However,

H(t, a, b, q) := diag

(
θ(q−2bit; q)

θ(q−1t; q)

)−1
E(t, a, b, q) diag

(
θ(q−1bit; q)

θ(t; q)

)
(123)

is holomorphic at t = 0. Therefore, we see that

Hi,j(t, a, b, q) = −tθ(q
−1bj−1t; q)

θ(q−2tbi−1; q)
Ei,j(t, a, b, q) (124)

is holomorphic. This implies that if i 6= j that Ei,j(t, a, b, q) has at most has simple poles at
q ∈ b−1j−1qZ and must have zeros at t ∈ b−1i−1qZ and there is no such non-zero elliptic function
and therefore Ei,j(t, a, b, q) = 0. Then notice that

Hii(t, a, b, q) = −tθ(q
−1bi−1t; q)

θ(q−2tbi−1; q)
Ei,i(t, a, b, q) = qb−1i−1Ei,i(t, a, b, q) (125)

is holomorphic at t = 0 and so as Ei,i(t, a, b, q) is also elliptic in t it is constant in t. Now
notice that

lim
t→0

U(t, q−1a, q−2b, q−1)diag

(
θ(q−2bit; q)

θ(q−1t; q)

)

=


1 1 . . . 1

1 qb−1
1 . . . qb−1

r−1

: : . . . :

1 (qb−1
1 )r−1 . . . (qb−1

r−1)
r−1



1 0 . . . 0

0 B1(q−1a, q−2b, q−1) . . . 0

: : . . . :
0 0 . . . Br−1(q−1a, q−2b, q−1)

 (126)

and

lim
t→0

diag

(
θ(q−1bit; q)

θ(t; q)

)−1
U(t, a, b, q)T

=


1 0 . . . 0
0 B1(a, b, q) . . . 0
: : . . . :
0 0 . . . Br−1(a, b, q)




1 1 . . . 1
1 qb−11 . . . (qb−11 )r−1

: : . . . :
1 qb−1r−1 . . . (qb−1r−1)

r−1

 .

(127)

Then using the fact that
r∑
j=0

(−1)jej(b/q)ρ
j = (1− ρ)(1− q−1b1ρ) . . . (1− q−1br−1ρ) (128)
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vanishes at ρ ∈ {qb−1i } we can show the matrix

r∏
k=1

(1− q−1bk)


1 1 . . . 1
1 qb−11 . . . (qb−11 )r−1

: : . . . :
1 qb−1r−1 . . . (qb−1r−1)

r−1

P (t, a, b, q)


1 1 . . . 1
1 qb−11 . . . qb−1r−1
: : . . . :
1 (qb−11 )r−1 . . . (qb−1r−1)

r−1


(129)

has (i+ 1, j + 1)-th entry

r−1∑
k=0

(−1)jej(b/q)(qb
−1
j )k

r−1−k∑
`=0

(bib
−1
j )`

= δi,j(1− b0/bj) . . . (1− bj−1/bj)(1− bj+1/bj) . . . (1− br−1/bj)
(130)

where we have used the fact that
r−1∑
k=0

(−1)jej(b/q)x
k
r−1−k∑
`=0

(xy−1)` =
r−1∑
k=0

(−1)jej(b/q)x
k 1− (xy−1)r−k

1− xy−1

=
1

1− xy−1
(
(1− x)(1− q−1b1x) . . . (1− q−1b2x)− xry−r(1− y)(1− q−1b1y) . . . (1− q−1b2y)

)
.

(131)
Therefore, with the convention that (x; q−1)∞ = (qx; q)−1∞ and (q−1; q−1)∞ = (q; q)−1∞ when
|q| < 1, for j > 0

Bj(a, b, q)Bj(q
−1a, q−2b, q−1)

= −q−1bj
(1− q−1b1) . . . (1− q−1br−1)

(1− q/bj)(1− b1/bj) . . . (1− bj−1/bj)(1− bj+1/bj) . . . (1− br−1/bj)
(132)

and we see that
E1,1(t, a, b, q) 0 0 . . . 0

0 qb−11 E2,2(t, a, b, q) 0 . . . 0
: : : . . . :
0 0 0 . . . qb−1r−1Er,r(t, a, b, q)



= lim
t→0

H(t, a, b, q) =


1 0 0 . . . 0
0 −qb−11 0 . . . 0
: : : . . . :
0 0 0 . . . −qb−1r−1


(133)

Therefore, again using the gauge equivalence in the second and third Equations (111) com-
plete the proof. �

Remark 3.2. When r = 2, Proposition 3.1 is equivalent to the identity [38, Eqn.(1.4.3)]

2φ1(a, b; c; q, t) =
(abc−1t; q)∞

(t; q)∞
2φ1(ca

−1, cb−1; c−1; q, abc−1t) (134)

where we note that the ratio of Pochhammers is related to the determinant of U . This is
the q-analogue of Euler’s transformation formula for 2F1 [38, Eqn.(1.4.2)]

2F1(a, b; c; t) = (1− t)c−a−b2F1(c− a, c− b; c; t) (135)
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where

rFr−1(a; b; t) =
∞∑
k=0

(a1)k . . . (ar)k
(b1)k . . . (br−1)k

tk

k!
. (136)

Remark 3.3. The q → 1 limit of Proposition 3.1 is discussed in full generality in [8,
Thm.1.1], where it is shown that the dual of the module associated to rFr−1(a; b; t) is the
module associated to rFr−1(1− a; 2− b; t).

3.3. State integral. Consider the following state integral

I(z, α, β, τ) =

∫
C

Φb(x)
∏r−1

j=1 Φb(x+ ib−1βj + ib−1 − ib)∏r
j=1 Φb(x+ ib−1αj + ib−1 − ib)

exp
(
−2π

zx

b

)
dx . (137)

where C is a contour in the complex plane asymptotic to R+ iε that separates the poles of
the numerator from the zeros of the denominator of the integrand, ai = e(αi), ãi = e(αi/τ),

bi = e(βi) and b̃i = e(βi/τ), and Φb is the Faddeev quantum dilogarithm function [23, 24]
and b =

√
τ .

We first discuss convergence of the above integral for τ = b2 in the upper half-plane. Using
the asymptotic behavior Φb(x) ∼ e2πix

2
(resp., 1) when Re(x) � 0 (resp., Re(x) � 0) (see

for example, [3, Eqn.(46)]), it follows that when Re(x)� 0, the integrand of (137) is given

by a constant times e−2πxb
−1(γ+z) where γ =

∑r−1
j=0 βj−

∑r
j=1 αj, and setting x = x0 + it with

t� 0, it follows that the absolute value of the integrand is a constant times e−2πtIm(b−1(γ+z)),
which is exponentially decaying when Im(b−1(γ + z)) < 0. Likewise, when Re(x) � 0, the
integrand is exponentially decaying when Im(b−1z) > 0.

Finally, the state integral satisfies difference equations when we shift α, β, z by either 1
or τ . This can be used to analytically extend to a meromorphic function for τ ∈ C′ and
α ∈ Cr, β ∈ Cr−1, and z ∈ C.

From its very definition, the state integral is a well-defined holomorphic function of τ ∈ C′.
Moreover, after moving the contour of integration upwards and using the residue theorem
(see eg. [30]), the state integral in Equation (137) can be written in the factorised form

I(z, α, β, τ) = −t1/2t̃1/2 τ

2πi
I(z, α, β, τ) (138)

where

I(z, α, β, τ) = f (1)(t, a, b, q)f (1)(t̃, ã, b̃, q̃−1)− τ
r∑
j=1

f (qb−1
j )(t, a, b, q)f (qb−1

j )(t̃, ã, b̃, q̃−1) . (139)

Now I(z + k + jτ, α, β, τ) is nothing but the (j + 1, k + 1) entry of the matrix

U(t, a, b, q)


1 0 . . . 0
0 −τ . . . 0
: : . . . :
0 0 . . . −τ

U(t̃, ã, b̃, q̃−1)T , (140)
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and therefore, by Equation (119), the (j + 1, k + 1) entry of

U(t, a, b, q)


1 0 . . . 0
0 τ . . . 0
: : . . . :
0 0 . . . τ

U(t̃, ã, b̃, q̃)−1Q(t̃, ã, b̃, q̃)−T . (141)

Therefore, inverting Q, we see that the cocycle

Ω(z, α, β, τ) = U(t̃, ã, b̃, q̃)


1 0 . . . 0
0 τ . . . 0
: : . . . :
0 0 . . . τ


−1

U(t, a, b, q)−1 (142)

extends to a meromorphic function for τ ∈ C′. This complete the proof of Theorem 1.4.

Remark 3.4. Note that the state integral (137) is absolutely convergent and its contour of
integration can be pushed either upwards or downwards. Doing so, the integral factorises in
two different ways, one giving the U -cocycle and another giving the V -cocycle. This explains
the equality of the two cocycles from first principles.

3.4. Resonance. In this section we discuss in detail the resonant generalised q-hypergeometric
equation (11), i.e., the case where at least one of the ratios ai/aj (for i 6= j), bi/bj (for i 6= j)
or ai/bj (for some i and j) is an integer power of q. For simplicity, we will consider only the
case of r = 2, although our arguments remain valid for all r. When r = 2, the system of
equations (111) is given by

(1− t)f(t, a, b, c, q)− (q−1c+ 1− t(a+ b))f(qt, a, b, c, q) + (q−1c− tab)f(q2t, a, b, c, q) = 0

f(t, q−1a, b, c, q)− q−1af(qt, q−1a, b, c, q)− (1− q−1a)f(t, a, b, c, q) = 0

f(t, a, q−1b, c, q)− q−1bf(qt, a, q−1b, c, q)− (1− q−1b)f(t, a, b, c, q) = 0

f(t, a, b, c, q)− q−1cf(qt, a, b, c, q)− (1− q−1c)f(t, a, b, q−1c, q) = 0 ,

(143)

with Equation (1) being one such solution. We can specialise a, b, c so that some of a, b,
c, a/b, a/c or b/c lies in qZ. All of these conditions can be seen to be special points of
the monodromy matrix (18) and various special properties of the equations appear like, for
example, submodules.

We now present two examples of these special points in the simplest case or r = 2. These
can all be deduced from Theorem 1.4.
• b = c. The first Equation (143) now takes the form

(1− q−1bσt) ((1− σt)− t(1− aσt))
=
(
(1− σt)(1− q−1bσt)− t(1− aσt)(1− bσt)

)
f

= 0 .

(144)
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This has normalised solutions

f (1)(t, a, b, q) =
∞∑
k=0

(a; q)k
(q; q)k

tk

f (qb−1)(t, a, b, q) =
(a; q)∞(q2b−1; q)∞θ(q

−1bt; q)(q; q)2∞
(qab−1; q)∞θ(q−1b; q)θ(t; q)

∞∑
k=0

(qab−1; q)k
(q2b−1; q)k

tk .

(145)

Note that the first generates a submodule and indeed satisfies(
((1− σt)− t(1− aσt)) f (1)

)
(t, q) = (1−t)f (1)(t, a, b, q)−(1−at)f (1)(qt, a, b, q) = 0 . (146)

We note that for the value at t = 0 and the q-difference equation we see that

f (1)(t, a, b, q) =
(at; q)∞
(t; q)∞

(147)

a classical result known as the q-binomial theorem. From Theorem 1.5 or even Theorem 1.4
with r = 1, we then see that this is a modular q-holonomic submodule. Now the second
solution satisfies the inhomogeneous equation

(1−t)f (qb−1)(t, a, b, q)−(1−at)f (qb−1)(qt, a, b, q) =
(a; q)∞(q2b−1; q)∞θ(q

−1bt; q)(q; q)2∞
(qab−1; q)∞θ(q−1b; q)θ(t; q)

(148)

where we note that the RHS is of course annihilated by (1 − q−1bσt). The full module can
then be shown to be modular using elementary functions holomorphic for τ ∈ C′ times the
state integral ∫

C

Φb(x)

Φb(x+ ib−1α)

exp
(
−2π zx

b

)
1 + q̃1/2 exp

(
−2π x

b

)
e(β/τ)

dx . (149)

Note that this state integral is of course the same as the one in Equation (137) where
β1 = γ = β + 1 = α2 + 1.
• c = q. The first Equation (143) now takes the form

(1− t)f(t, a, b, q)− (2− t(a+ b))f(qt, a, b, q) + (1− tab)f(q2t, a, b, q) = 0 . (150)

Notice that this now has indicial polynomial (1 − ρ)2. Therefore, we expand using the
Frobenius method to find solutions which are the coefficients of ε in the expansion to order
O(ε2) of

f (1,0)(t, a, b, q) =
(qeε; q)2∞

(aeε; q)∞(beε; q)∞

∞∑
k=0

(aeε; q)k(be
ε; q)k

(qeε; q)2k
tk
θ(e−εt; q)

θ(t; q)

= f (1,0)(t, a, b, q) + f (1,1)(t, a, b, q)ε+O(ε2) .

(151)

Then considering the state integral∫
C

Φb(x)2

Φb(x+ ib−1α)Φb(x+ ib−1β)
exp

(
−2π

zx

b

)
dx . (152)

along with Equation (52) we can show that the module is modular with this special value.
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4. Proof of Theorems 1.5 and 1.6

4.1. The q-Pochhammer symbol. This section is devoted to the proof of Theorem 1.5.
The q-difference equation (19) can be written in operator form as ((1− qt)σ− 1)f = 0, with
the Newton polygon shown in Figure 2.

g(1)

f (0)

Figure 2. The Newton polygon of Equation (19).

The lower Newton polygon has one edge of slope zero. Applying the Frobenius method, we
seek a formal power series solution of the form

f (0)(t, q) =
∞∑
k=0

αk(q)t
k θ(ρ

−1t; q)

θ(t; q)
where qkραk(q)− qkραk−1(q)− αk(q) = 0. (153)

Since αk(q) = 0 for k < 0, setting k = 0 in the above equation implies the vanishing of the
indicial polynomial

(ρ− 1)α0(q) = 0, (154)

giving ρ = 1. Then we have

αk(q)

αk−1(q)
= − qk

1− qk
. (155)

Therefore, normalising so that α0(q) = 1,

f (0)(t, q) =
∞∑
k=0

(−1)k
qk(k+1)/2

(q; q)k
tk = (qt; q)∞ . (156)

This solution is convergent at t = 0, in fact it is an entire function of t.
The upper Newton polygon has one edge of slope of one. Therefore, we must multiply by

a θ-function to get a slope zero, i.e. a power series solution. The new Newton polygon is as
follows.
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g(1)

θ(t; q) ĝ(1)

Therefore, the top edge has solution of the form

g(1)(t, q) = θ(t; q)ĝ(1)(t, q), ĝ(1)(t, q) = θ(t; q)
∞∑
k=0

βk(q)t
−k θ(ρ

−1t; q)

θ(t; q)
(157)

where
− q−kρβk−1(q) + q−kρβk(q)− βk(q) = 0. (158)

As βk(q) = 0 for k < 0, we get indicial polynomial

(ρ− 1)β0(q) = 0 (159)

and so ρ = 1. Then we have
βk
βk−1

=
1

1− qk
. (160)

Therefore, normalising so that β0(q) = 1
(q;q)∞

, we obtain that

g(1)(t, q) =
θ(t; q)

(q; q)∞

∞∑
k=0

t−k

(q; q)k
=

θ(t; q)

(t−1; q)∞(q; q)∞
. (161)

It follows that the monodromy is given by

−→
M(t, q) = V (t, q)−1U(t, q) =

(qt; q)∞(t−1; q)∞(q; q)∞
θ(t; q)

= 1 (162)

and the cocycles are equal and given by

ΩU(z, τ) = (U |0S)(z, τ)U(z, τ)−1 = ΩU(z, τ) = (V |0S)(z, τ)V (z, τ)−1 =
(q̃t̃; q̃)∞
(qt; q)∞

. (163)

Notice that
(q̃t̃; q̃)∞
(qt; q)∞

= Φb

(
iz

b
+
ib

2
+

1

2ib

)−1
(164)

where Φ is the Faddeev quantum dilogarithm function [23, 24]. This function extends to
a meromorphic function of (z, τ) ∈ C × C′, with poles at z ∈ Z≥0 + Z≥0τ . Noting that
ΩT = 1, it then follows from Theorem 1.2 that ΩU,γ also extends. This is discussed in detail
in upcoming work [31]. This proves that this is a modular q-holonomic module.
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4.2. The Appell-Lerch sums. This section is devoted to the proof of Theorem 1.6. The
q-difference equation (22) has Newton polygon shown in Figure 3.

f (0)

f (−1)

g(0)

g(−1)

Figure 3. The Newton polygon of Equation (22).

To begin with, the boundary of the lower Newton polygon consists of one edge of slope zero
and one edge of slope 1. The edge of slope zero has a solution of the form

f (0)(t, q) =
∞∑
k=0

αk(q)t
k θ(ρ

−1t; q)

θ(t; q)
where αk(q)q

2kρ2 + qkραk−1(q)− qkραk(q)− αk−1(q) = 0.

(165)
Therefore, as αk(q) = 0 for k < 0, we get the indicial polynomial

α0(q)(ρ
2 − ρ) = 0 (166)

and so ρ = 1. Then we have

(q2k − qk)αk(q)− (1− qk)αk−1(q) = 0 so − qkak = ak−1. (167)

Therefore, normalising so that α0(q) = 1,

f̂ (0)(t, q) =
∞∑
k=0

(−1)kq−k(k+1)/2tk. (168)

This is of course divergent for |q| < 1 so we must q-Borel resum. The affect on the Newton
polygon is as follows

f (0)

B1
B1f (0)

Now notice that

B1f̂ (0)(ξ, q) =
∞∑
k=0

ξk =
1

1− ξ
(169)
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and so we find

f (0)(t, λ, q) = L1B1(f̂ (0))(t, λ, q) =
1

θ(λ; q)

∑
`

(−1)`
q`(`+1)/2λ`

1− λtq`
. (170)

This is the Appell-Lerch sum whose modular properties were studied in Zwegers thesis [74].
Now the bottom edge of slope −1 must be divided by a θ-function to get a zero slope. The
effect on the Newton polygon is as follows.

f (−1) θ(q−1t; q)−1

f̂ (−1)

Therefore, the bottom edge of slope minus one has a solution of the form

f (−1)(t, q) = θ(q−1t; q)−1f̂ (−1)(t, q) = θ(q−1t; q)−1
∞∑
k=0

αk(q)t
k θ(ρ

−1t; q)

θ(t; q)
(171)

where
(1− qkρ)αk(q) + qkρ(1− qk−1ρ)αk−1(q) = 0. (172)

Therefore, the indicial polynomial is given by

(1− ρ)α0(q) = 0 (173)

and so ρ = 1. Then we see that
(1− q)α1(q) = 0 (174)

and so αk = 0 for k 6= 0. Therefore,

f (−1)(t, q) = θ(q−1t; q)−1 . (175)

Now following similar calculations we find that

B1ĝ(0)(ξ, q) = −
−1∑

k=−∞

ξk = − ξ−1

1− ξ−1
=

1

1− ξ
(176)

and so

g(0)(t, µ, q) =
1

θ(µ; q)

∑
`

(−1)`
q`(`+1)/2µ`

1− µtq`
. (177)

Then finally, we have

g(−1)(t, q) = θ(q−1t; q)−1 . (178)

Consider the inhomogeneous gauge transformation (see Section 2.6)

U(t, λ, q) =

(
0 1
1 −t

)(
1 0

f (0)(t, λ, q) f (−1)(t, q)

)
(179)

and the similar one for V . With the definition of the fundamental matrices given in Equa-
tions (23) and associated monodromy, we then have that



MODULAR q-HOLONOMIC MODULES 35

−→
M(t, λ, q) =

(
1 0

g(0)(t, µ, q) g(−1)(t, q)

)−1(
1 0

f (0)(t, λ, q) f (−1)(t, q)

)
= θ(q−1t, q)

(
θ(q−1t, q)−1 0
−g(0)(t, µ, q) 1

)(
1 0

f (0)(t, λ, q) θ(q−1t, q)−1

)
=

(
1 0

−→
M2,1(t, λ, µ, q) 1

) (180)

where

−→
M2,1(t, λ, µ, q) = θ(q−1t; q)f (0)(t, λ, q)− θ(q−1t; q)g(0)(t, µ, q)

=
θ(q−1t; q)

θ(λ; q)

∑
`

(−1)`
q`(`+1)/2λ`

1− λtq`
− θ(q−1t; q)

θ(µ; q)

∑
`

(−1)`
q`(`+1)/2µ`

1− µtq`
.

(181)

Using Equation (7) of Proposition 1.4 of [74], we can deduce that

−→
M2,1(t, λ, µ, q) = −(q; q)3∞θ(q

−1t; q)θ(λ−1µ; q)θ(λ−1µ−1t−1; q)

θ(λ−1; q)θ(µ; q)θ(λ−1t−1; q)θ(µ−1t−1; q)
. (182)

We now give a second proof of the above equation using elliptic functions and residues, which
is more general and applicable to our third example. Let m2,1 denote the function defined
by the right-hand side of (182). We need to prove that the function E1, defined by

E1(t, λ, µ, q) := f (0)(t, λ, q)− g(0)(t, µ, q)− m2,1(t, λ, µ, q)

θ(q−1t; q)
(183)

is identically zero. This will follow from the facts, that E1 is holomorphic at C× (see
Lemma 4.2 below), and a solution of a first order equation (184) (see Lemma 4.1).

Lemma 4.1. If h(t, q) is a solution to the equation

h(qt, q) + th(t, q) = 0 (184)

that is holomorphic for t ∈ C× then h(t, q) = 0.

Proof. Every solution is of the form C(t, q)/θ(q−1t; q) for some elliptic function C(t, q).
Therefore, C(t, q) = h(t, q)θ(q−1t; q) is a holomorphic elliptic function and therefore con-
stant. However, this implies that h has simple poles unless C = 0. �

Lemma 4.2. (a) The function f (0)(t, λ, q) has simple poles at t ∈ λ−1qZ with residue

Rest=q−mλ−1f (0)(t, λ, q)
dt

2πit
=

−1

θ(qmλ; q)

Rest=q−mµ−1g(0)(t, µ, q)
dt

2πit
=

−1

θ(qmµ; q)
.

(185)
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(b) The function θ(q−1t; q)−1m2,1(t, λ, µ, q) has simple poles at t ∈ qZλ−1, qZµ−1 with residues

Rest=q−mλ−1θ(q−1t; q)−1m2,1(t, λ, µ, q)
dt

2πit
=

−1

θ(qmλ; q)

Rest=q−mµ−1θ(q−1t; q)−1m2,1(t, λ, µ, q)
dt

2πit
=

1

θ(qmµ; q)
.

(186)

Proof. Part (a) follows from a calculation of the residue of the only term in the sum that
contributes to the residue in Equations (170) (177) and Equation (48). Now for part (b) we
note that

Rest=1
1

θ(t; q)

dt

2πit
=

1

(q; q)3∞
(187)

which follows easily from the Jacobi triple product (46) for example. Therefore, we see

Rest=q−mλ−1

m2,1(t, λ, µ, q)

θ(q−1t; q)

dt

2πit

= (−1)mqm(m+1)/2Rest=1 −
(q; q)3∞θ(λ

−1µ; q)θ(µ−1t−1; q)

θ(λ−1; q)θ(µ; q)θ(t−1; q)θ(λµ−1t−1; q)

dt

2πit

= (−1)mqm(m+1)/2 θ(λ−1µ; q)θ(µ−1; q)

θ(λ−1; q)θ(µ; q)θ(λµ−1; q)

=
−1

θ(qmλ; q)

(188)

where we have repeatedly used Equations (47) and (48). A similar computation calculates
the other residues or using Equation (47) we can show that

m2,1(t, λ, µ, q) = −m2,1(t, µ, λ, q) . (189)

�

Noting that E1(t, λ, µ, q) satisfies Equation (184) these lemmata show that the potential
simple poles of E1(t, λ, µ, q) cancel and therefore it is holomorphic on t ∈ C× and therefore
vanishes.

For completeness, we give a third proof of (182) using Lemma 2.1.

−→
M2,1(t, λ, µ, q) = θ(q−1t; q)L1

(
1

1− ξ

)
(t, λ; q)− θ(q−1t; q)L1

(
1

1− ξ

)
(t, µ; q)

=
θ(q−1t; q)θ(λ−1µ; q)(q; q)3∞

θ(λ−1; q)θ(µ; q)
Resξ=1

θ(λ−1µ−1t−1ξ; q)

θ(ξλ−1t−1; q)θ(ξµ−1t−1; q)(1− ξ)

= −(q; q)3∞θ(q
−1t; q)θ(λ−1µ; q)θ(λ−1µ−1t−1; q)

θ(λ−1; q)θ(µ; q)θ(λ−1t−1; q)θ(µ−1t−1; q)

(190)

concluding the proof of Equation (24). From the explicit expression for
−→
M2,1 from Equa-

tion (25) and the modularity of the Dedekind η-function and the Jacobi θ-function it follows
that M satisfies Equation (6) with weight κ = (0, 1). It follows that the two cocycles of
Equation (23) agree. This implies that neither cocycle depends on λ or µ. This is equivalent
to observations in [74] that the slash operator acting on the Appell-Lerch sums depends only
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on the difference of two Jacobi variables. Then using [74, Proposition 1.5] we can give an ex-
plicit formula for the cocycle in terms of the Mordell integral (27) and elementary functions.
In particular, we have

f (0)(qt, λ, q) + tf (0)(t, λ, q) = 1

f (−1)(qt, q) + tf (−1)(t, q) = 0

f̃ (0)(t, λ, q) e

(
(z + 1/2− τ/2)2

2τ
− 1

8

)√
τ = τf (0)(t, λ, q)− τt−

1
2 q

1
8h(t, q)

f (−1)(t̃, q̃) e

(
(z + 1/2− τ/2)2

2τ
− 1

8

)√
τ = f (−1)(t, q) .

(191)

This means that

detU(t, λ, q) = f (−1)(qt, q)f (0)(t, q)− f (−1)(t, q)f (0)(qt, q)

= f (−1)(t, q)
(
−tf (0)(t, q)− f (0)(qt, q)

)
= −f (−1)(t, q).

(192)

Therefore, we see that

ΩS(z, τ) =

(
0 1
1 −t̃

)( τ−1 0
e( 1

8)√
τ
t̃−

1
2 q̃

1
8 e
(
z2

2τ

)
h(z, τ)

e( 1
8)√
τ

e
(
− (z+1/2−τ/2)2

2τ

))(0 1
1 −t

)−1
.

(193)
We can vary the contour in Equation (27) to get the integral∫

ζR

eπi(τx
2+2izx)

2 cosh(πx)
dx (194)

for |ζ| = 1 and ζ 6= ±i. This is a convergent integral to a holomorphic function in (z, τ)
when Im(τζ2) > 0. Therefore, we see that from the uniqueness properties of the solutions to
the functional equations of h the Mordell integral [74, Proposition 1.2] these functions give
an analytic extension of h the Mordell integral to the cut plane C′. Therefore, the cocycle
ΩU,S(t, q) extends to a holomorphic function for z ∈ C and τ ∈ C′. Since ΩU,T = I, part (c)
of Theorem 1.2 concludes that the cocycle ΩU is modular.

5. A q-difference equation of the 41 knot

This section is devoted to the proof of Theorem 1.7, Theorem 1.8 and Theorem 1.9.

5.1. Solutions. The q-difference equation (28) has Newton polygon shown in Figure 4.
The boundary of the lower Newton polygon has edges of slope −1 and 1. The edge with
slope −1 must be divided by a θ-function to get a power series solution. The effect on the
Newton polygon is as follows.
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g(0,0) g(0,1)

f (−1) f (1)

Figure 4. The Newton polygon of Equation (28).

f (−1) θ(t; q)−1

f̂ (−1)

Therefore, the bottom edge of the Newton polygon with slope −1 has a solution of the form

f (−1)(t, q) = θ(t; q)−1f̂ (−1)(t, q) = θ(t; q)−1
∞∑
k=0

α
(−1)
k (q)tk

θ(ρ−1t; q)

θ(t; q)
(195)

where

(1− q−k−1ρ−1)α(−1)
k (q)− 2α

(−1)
k−1 (q)− qkρα(−1)

k−2 (q) = 0. (196)

Therefore, this edge has indicial polynomial

(1− q−1ρ−1)α(−1)
0 (q) (197)

and so ρ = q−1. Now notice that if we take the (−1)-q-Borel transform we see the effect on
the Newton polygon is as follows.

f̂ (−1)

B−1
B−1f̂ (−1)

This means that this Borel transform will satisfy the q-difference equation

(1− q−1t)2B−1f̂ (−1)(q−1t; q) = B−1f̂ (−1)(t, q). (198)

Therefore, normalising so that α0(q) = −(q; q)2∞ we have

B−1f̂ (−1)(t, q) =
∞∑
k=0

(−1)kq−k(k+1)/2α
(−1)
k (q)tk =

−(q; q)2∞
(t; q)2∞

. (199)
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Therefore, we see that

α
(−1)
k (q) = (q; q)2∞(−1)k+1qk(k+1)/2

k∑
`=0

1

(q; q)`(q; q)k−`
. (200)

In particular, we have

f (−1)(t, q) = (q; q)2∞θ(q
−1t; q)−1

∞∑
k=0

k∑
`=0

(−1)k
qk(k+1)/2

(q; q)`(q; q)k−`
tk . (201)

Now the bottom edge of slope 1 must be multiplied by a θ-function to get a power series
solution. However, this will then be divergent so we must take (1/2)-q-Borel resummation.
The effect on the Newton polygon is as follows.

f (1)
θ(t; q)

f̂ (1)

B1/2
B1/2f̂ (1)

By symmetry of the q-difference equation, one can easily use the previous solution to check
that the formal solution to this edge is given by q 7→ q−1 which gives

f (1)(t, q) =
θ(t; q)

(q; q)2∞
f̂ (1)(t, q) =

θ(t; q)

(q; q)2∞

∞∑
k=0

k∑
`=0

q`
2−`k

(q; q)`(q; q)k−`
tk. (202)

One then sees that

B1/2f̂ (1)(ξ, q) =
∞∑
k=0

k∑
`=0

(−1)k
qk(k+1)/4+`2−`k

(q; q)`(q; q)k−`
ξk =

∞∑
k,`=0

(−1)k+`
qk(k+1)/4−k`/2+`(`+1)/4

(q; q)k(q; q)`
ξk+`

(203)
is holomorphic for |ξ| < |q−1/4|. Then, using the functional equation

(1− q1/2ξ2)B1/2f̂ (1)(ξ, q) + 2ξB1/2f̂ (1)(q1/2ξ, q)− B1/2f̂ (1)(qξ, q) = 0, (204)

we can analytically extend away from ξ ∈ ±q−1/4+ 1
2
Z≤0 and we see that there are poles at

ξ ∈ ±q−1/4+ 1
2
Z≤0 . Therefore, we finally define

f (1)(t, λ, q) =
θ(t; q)

(q; q)2∞
L1/2B1/2f̂ (1)(t, λ, q)

=
θ(t; q)

(q; q)2∞

∑
n∈Z

B1/2f̂ (1)(q
n
2 λt, q)

θ(q
n
2 λ; q

1
2 )

=
θ(t; q)

(q; q)2∞θ(λ; q1/2)

∑
n∈Z

(−1)nqn(n+1)/4λnB1/2f̂ (1)(q
n
2 λt, q).

(205)
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Now the top of the Newton polygon has one edge of slope 0. We find the solution satisfies

g(0)(t, q) =
∞∑
k=0

βk(q)t
−k θ(ρ

−1t; q)

θ(t; q)
where βk(q)− q−kρ−1(1− qkρ−1)2βk+1(q) = 0. (206)

Therefore, as the indicial polynomial is

(1− q−1ρ−1)2β0(q) = 0 (207)

we take ρ = q−1eε and expand to order ε2 to find solutions

g(0)(t, ε, q) =
∞∑
k=0

(−1)k
qk(k+1)/2

(q; q)2k
t−1−k

+

(
∞∑
k=0

(
1

2
E1(q)−

1

2
− θ′(t−1; q)

θ(t−1; q)
+

k∑
j=1

1 + qj

1− qj

)
(−1)k

qk(k+1)/2

(q; q)2k
t−1−k

)
ε+O(ε2) ,

(208)

where E1(q) = 1− 4
∑∞

j=1
qj

1−qj . Therefore, we have solutions

g(0,0)(t, q) =
∞∑
k=0

(−1)k
qk(k+1)/2

(q; q)2k
t−1−k

g(0,1)(t, q) =
∞∑
k=0

(
1

2
E1(q)−

1

2
− θ′(t−1; q)

θ(t−1; q)
+

k∑
j=1

1 + qj

1− qj

)
(−1)k

qk(k+1)/2

(q; q)2k
t−1−k.

(209)

5.2. Monodromy. Consider the fundamental matrices U and V given by Equations (29)
and the associated monodromy. Using the modular transformation properties of the Jacobi
θ-function Equation (49) and the Dedekind η-function, it is easy to see that Equation (31)
implies (32).

Note that each of the functions
−→
M2,1,

−→
M2,1|−1T,

−→
M2,1|−1S has SL2(Z)-stabiliser 〈T 2, TST 〉,

〈T 2, S〉 and 〈ST 2S, T 〉, respectively, and that the second group is the θ-subgroup and the
last group is Γ0(2). The appearance of Γ0(2) is a consequence of the (1/2)-q-Borel transform
below.

The rest of this section is devoted to the proof that the monodromy is given by Equa-
tion (31). To achieve this, we need to write f (−1) and f (1) as linear combinations of g(0,0)

and g(0,1), the coefficients in these expressions give the entries of the monodromy matrix.
Firstly we determine the second column of the monodromy, using an adaption of an argu-

ment in [54]. Using the (−1)-q-Laplace transform or the Meinardus trick (see for example [51]
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and [71, p.54]) and shifting the contour of
∮

:=
∫
|t|=ε we obtain that

f̂ (−1)(t, q) = (q; q)2∞

∮
0

θ(t/ξ; q)

(ξ; q)2∞

dξ

2πiξ
= −(q; q)2∞

∞∑
k=0

(
Resξ=q−k

) θ(t/ξ; q)
(ξ; q)2∞

dξ

2πiξ

= −(q; q)2∞
∞∑
k=0

(Resε=0)
θ(tqkeε; q)

(q−1e−ε; q−1)2k(e
−ε; q)2∞

−dε
2πi

= −(q; q)4
∞∑
k=0

(Resε=0)
(−1)kq−k(k+1)/2t−ke−kεθ(teε; q)

θ(eε; q)2
(qeε; q)2∞

q−k(k+1)e−2kε(qeε; q)2k

−dε
2πi

= (q; q)6∞Resε=0
θ(teε; q)

θ(eε; q)2
(qeε; q)2∞
(q; q)2∞

∞∑
k=0

(−1)kqk(k+1)/2t−kekε

(qeε; q)2k

dε

2πi

= −θ(t−1; q)

∞∑
k=0

1

2
E1(q)−

1

2
+

k∑
j=1

1 + qj

1− qj

 (−1)kqk(k+1)/2t−k−1

(q; q)2k
+ θ′(t−1; q)

∞∑
k=0

(−1)kqk(k+1)/2t−k−1

(q; q)2k
.

(210)

Therefore, we see that

f (−1)(t, q) = g(0,1)(t, q) , (211)

which implies that
−→
M1,2 = 0 and

−→
M2,2 = 1. Lemma 5.4 below implies that det(M) = −1,

therefore
−→
M(t, λ, q) =

(
−1 0
∗ 1

)
. (212)

To finish the proof we will show that the function

E2 := f (1) + g(0,0) −m2,1g
(0,1) (213)

vanishes identically, where m2,1 denotes the function given in Equation (31). The function

E2 is meromorphic of t ∈ C× and has potential simple poles located at t ∈ ±q−1/4− 1
2
Zλ−1

(coming from f (1) and
−→
M2,1) and potential simple poles at qZ (coming from g(0,1)). Lemma 5.3

below gives

Rest=±q−1/4−nλ−1f (1)(t, λ, q)
dt

2πit

=
θ(±q3/4λ−1; q)θ(±q−1/4; q)θ(±q−3/4; q)θ(±q−3/4λ; q)

2(q; q)6∞θ(q
−1λ; q)θ(q−3/2λ; q)

f (−1)(±q−1/4−nλ−1, q) .
(214)

On the other hand,

Rest=±q−1/4−nλ−1m2,1(t, λ, q)
dt

2πit

=
Rest=±q−1/4−nλ−1θ(qt; q)θ(tλ; q)θ(tλq−1/2; q)θ(tλ2q−1/2; q)

θ(tλq1/4; q)θ(−tλq1/4; q)θ(tλq−1/4; q)θ(−tλq−1/4; q)θ(q−1λ; q)θ(q−3/2λ; q)

dt

2πit

=
(−1)nqn(n−1)/2

(q; q)3∞

θ(±q3/4−nλ−1; q)θ(±q−1/4−n; q)θ(±q−3/4−n; q)θ(±q−3/4−nλ; q)

θ(−q−n; q)θ(q−1/2−n; q)θ(−q−1/2−n; q)θ(q−1λ; q)θ(q−3/2λ; q)

=
θ(±q3/4λ−1; q)θ(±q−1/4; q)θ(±q−3/4; q)θ(±q−3/4λ; q)

(q; q)3∞θ(−1; q)θ(q−1/2; q)θ(−q−1/2; q)θ(q−1λ; q)θ(q−3/2λ; q)

=
θ(±q3/4λ−1; q)θ(±q−1/4; q)θ(±q−3/4; q)θ(±q−3/4λ; q)

2(q; q)6∞θ(q
−1λ; q)θ(q−3/2λ; q)

.

(215)
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Therefore,

Rest=±q−1/4−nλ−1E2(t, λ, q)
dt

2πit
= 0 . (216)

A similar computation or the fact everything is elliptic in λ 7→ q1/2λ also shows that

Rest=±q−3/4−nλ−1E2(t, λ, q)
dt

2πit
= 0 . (217)

Now notice that m2,1(q
Z, λ, q) = 0 which implies m2,1g

(0,1) is holomorphic at t ∈ qZ. We
then see that E2(t, λ, q) extends to a holomorphic function of t ∈ C×. Therefore, from
Corollary 5.5 we see that E2(t, λ, q) = C(q)g(0,0)(t, q). Finally, we note that

−C(q)

(q; q)2∞
= lim

r→∞

E2(qrt, λ, q)
θ(qrt; q)

= 0 (218)

which follows from Lemma 5.1. Thus, Equation (31) follows from the residue equation (214)
and from a computation of the determinants of U and V . We discuss these in the next
sections.

Lemma 5.1. For t in some compact set where the functions are holomorphic, we have

lim
r→∞

g(0,0)(qrt, q)

θ(qrt; q)
=
−1

(q; q)2∞
lim
r→∞

f (−1)(qrt, q)

θ(qrt; q)
= 0

lim
r→∞

g(0,1)(qrt, q)

θ(qrt; q)
= 0 lim

r→∞

f (1)(qrt, q)

θ(qrt; q)
=

1

(q; q)2∞
.

(219)

Proof. We have

g(0,0)(qrt, q) =
∞∑
k=0

(−1)k
qk(k+1)/2−rk−r

(q; q)2k
t−k−1

= q−r(r+1)/2

∞∑
k=0

(−1)k
q(k−r)(k−r+1)/2

(q; q)2k
t−k−1

= (−1)rq−r(r+1)/2t−r−1
∞∑

k=−r

(−1)k
qk(k+1)/2

(q; q)2k+r
t−k .

(220)

The first equality then follows from

lim
r→∞

g(0,0)(qrt, q)

θ(qrt; q)
= lim

r→∞

−1

θ(t−1; q)

∞∑
k=−r

(−1)k
qk(k+1)/2

(q; q)2k+r
t−k

=
−1

θ(t−1; q)

∑
k∈Z

(−1)k
qk(k+1)/2

(q; q)2∞
t−k =

−1

(q; q)2∞
.

We can show similarly that

g(0,1)(qrt, q) = (−1)rq−r(r+1)/2t−r−1
∞∑

k=−r

1

2
E1(q)− r −

1

2
−
θ′(t−1; q)

θ(t−1; q)
+

k+r∑
j=1

1 + qj

1− qj

 (−1)k
qk(k+1)/2

(q; q)2k+r
t−k . (221)
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Noting that E1(q)/2 − 1/2 +
∑k

j=1
1+qj

1−qj = k + O(qk) completes the proof of the limits of

g(0,0), g(0,1). The limits of f (±1) follow from Watson’s lemma for q-Borel resummation and
keeping track of the θ prefactors. �

5.3. Residues. Note that g(0,0) is holomorphic on C×∪{∞}. In this subsection we compute
the residues of the meromorphic functions f (−1) = g(0,1) and f (1).

Lemma 5.2. The functions f (−1)(t, q) = g(0,1)(t, q) have simple poles at t = qZ with residues

Rest=qnf
(−1)(t, q)

dt

2πit
= Rest=qng

(0,1)(t, q)
dt

2πit
= g(0,0)(qn, q) . (222)

Proof. We have

Rest=qk
θ′(t−1; q)

θ(t−1; q)

dt

2πit
= −1 . (223)

To finish we note that the proof of the equality f (−1) = g(0,1) is independent of this Lemma
and follows from Equation (210). �

Lemma 5.3. (a) The function B1/2f̂ (1)(ξ, q) has simple poles at ξ = ±q−1/4−Z/2 with residue

Resξ=±q−1/4−n/2B1/2f̂ (1)(ξ, q)
dξ

2πiξ
=
−θ(±q−1/4; q1/2)

2(q; q)2∞

k∑
`=0

(±1)k
q
k(k+2)

4

(q; q)`(q; q)k−`
. (224)

(b) The function f (1)(t, λ, q) has simple poles at t = ±q−1/4+Zλ−1 with residue

Rest=±q−1/4−nλ−1f (1)(t, λ, q)
dt

2πit

=
θ(±q3/4λ−1; q)θ(±q−1/4; q)θ(±q−3/4; q)θ(±q−3/4λ; q)

2(q; q)6∞θ(q
−1λ; q)θ(q−3/2λ; q)

f (−1)(±q−1/4−nλ−1, q) .
(225)

Proof. For part (a), consider the following auxiliary function,

Hr(ξ, q) =
∑
k

ξ2k

(q; q)k(q; q)k+r
, (226)

which we analytically continue to ξ /∈ ±q 1
2
Z≤0 . From the power series at ξ = 0, we see that

B1/2f̂ (1)(q−1/4ξ, q) =
∑
r∈Z

(−1)rqr
2/4ξrHr(ξ, q). (227)

We have the relation

Hr−1(ξ, q)− ξHr(ξ, q) = −q1−r (Hr−2(ξ, q)−Hr−1(ξ, q)) (228)

and from this we can see that

Resξ=1 (Hr−1(ξ, q)−Hr(ξ, q))
dξ

2πiξ
= (−1)rq−r(r−1)/2Resξ=1 (H−1(ξ, q)−H0(ξ, q))

dξ

2πiξ
.

(229)
Since

lim
r→∞

Hr(ξ, q) =
1

(q; q)∞(ξ2; q)∞
, (230)
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it follows that

Resξ=1Hr(ξ, q)
dξ

2πiξ
= Resξ=1H0(ξ, q)

dξ

2πiξ
= Resξ=1H∞(ξ, q)

dξ

2πiξ
=

−1

2(q; q)2∞
. (231)

Let

R±(n, q) = Resξ=±q−1/4−n/2B1/2f̂ (1)(ξ, q)
dξ

2πiξ
. (232)

Then,

R(0, q) = Resξ=±1
∑
r∈Z

(−1)rqr
2/4ξrHr(ξ, q)

dξ

2πiξ
=
−θ(±q−1/4; q1/2)

2(q; q)2∞
. (233)

Now from the functional equation of B1/2f̂ (1)(ξ, q), we deduce that

0 = Resξ=±q−1/4−n/2(1− q1/2ξ2)B1/2f̂ (1)(ξ, q) + 2ξB1/2f̂ (1)(q1/2ξ, q)− B1/2f̂ (1)(qξ, q)
dξ

2πiξ

= (1− q−n)R±(n, q)± 2q−1/4−(n−1)/2R±(n− 1, q)−R±(n− 2, q).
(234)

Note that R±(n, q) = 0 for n < 0 and that when R±(−1, q) is zero we have a unique solution
determined by R±(0, q). One can then check that

R±(n, q) =
−θ(±q−1/4; q1/2)

2(q; q)2∞

n∑
`=0

(±1)n
q
n(n+2)

4

(q; q)`(q; q)n−`
. (235)

For part (b), we compute

Rest=±q−1/4−nλ−1f (1)(t, λ, q)
dt

2πit

= Rest=±q−1/4−nλ−1

θ(t; q)

(q; q)2∞
L1/2B1/2f̂ (1)(t, q)

dt

2πit

=
θ(±q−1/4−nλ−1; q)
(q; q)2∞θ(λ; q1/2)

∑
k∈Z

(−1)kq(k−2n)(k−2n−1)/4λ−k+2nR±(k, q)

=
θ(±q−1/4−nλ−1; q)
(q; q)2∞θ(λ; q1/2)

−θ(±q−1/4; q1/2)
2(q; q)2∞

qn(2n+1)/2λ2n
∞∑
k=0

k∑
`=0

(−1)k
q
k(k+1)

2

(q; q)`(q; q)k−`
(±q−1/4−nλ−1)k

= −θ(±q
−1/4−nλ−1; q)θ(±q−1/4; q1/2)

2(q; q)4∞θ(λ; q1/2)
qn(2n+1)/2λ2nf̂ (−1)(±q−1/4−n/2λ−1, q)

= −θ(±q
−1/4−nλ−1; q)θ(±q−1/4; q)θ(±q−3/4; q)θ(±q−5/4−nλ−1; q)

2(q; q)6∞θ(λ; q)θ(q−1/2λ; q)q−n(2n+1)/2λ−2n
f (−1)(±q−1/4−nλ−1, q)

= −θ(±q
−1/4λ−1; q)θ(±q−1/4; q)θ(±q−3/4; q)θ(±q−5/4λ−1; q)

2(q; q)6∞θ(λ; q)θ(q−1/2λ; q)
f (−1)(±q−1/4−nλ−1, q)

=
θ(±q3/4λ−1; q)θ(±q−1/4; q)θ(±q−3/4; q)θ(±q−3/4λ; q)

2(q; q)6∞θ(q
−1λ; q)θ(q−3/2λ; q)

f (−1)(±q−1/4−nλ−1, q) .

(236)
�
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5.4. Determinants. The functional equation (28) for U, V defined in (29) can be written
in the form

U(qt, λ, q) = A(t; q)U(t, λ, q) and V (qt, q) = A(t; q)V (t, q) (237)

where

A(t, q) =

(
0 1
−q−2 2q−1 − q−2t−1

)
. (238)

Therefore, we see that

det(U(qt, λ, q)) = det(U(t, λ, q))q−2 and det(V (qt, q)) = det(V (t, q))q−2. (239)

Lemma 5.4. We have

− det(U(t, λ, q)) = det(V (t, q)) = q−1t−2 . (240)

Proof. Firstly notice that both det(U(t, λ, q))t2 and det(V (t, q))t2 are elliptic functions in t.
Furthermore,

det(U(t, λ, q)) = f (1)(t, λ, q)f (−1)(qt, q)− f (1)(qt, λ, q)f (−1)(t, q) (241)

has potentially simple poles in t at ±q−1/4−n/2λ−1. Lemma 5.3 implies that

Rest=±q−1/4−nλ−1 det(U(t, λ, q)) =
θ(±q3/4λ−1; q)θ(±q−1/4; q)θ(±q−3/4; q)θ(±q−3/4λ; q)

2(q; q)6∞θ(q
−1λ; q)θ(q−3/2λ; q)

× f (−1)(±q−1/4−nλ−1, q)f (−1)(±q3/4−nλ−1, q)

− θ(±q3/4λ−1; q)θ(±q−1/4; q)θ(±q−3/4; q)θ(±q−3/4λ; q)

2(q; q)6∞θ(q
−1λ; q)θ(q−3/2λ; q)

× f (−1)(±q3/4−nλ−1, q)f (−1)(±q−1/4−nλ−1, q)
= 0 .

A similar calculation shows that Rest=±q1/4−nλ−1 det(U(t, λ, q)) = 0. Therefore, U(t, λ; q)t2 is
elliptic and holomorphic in t ∈ C×, hence it is constant in t. Now considering the limit as
t → 0, using the definition of f (±1) and their asymptotic expansions (given by their formal
power series expansions, by a q-version of Watson’s lemma), it follows that

det(U(t, λ, q))t2 = lim
t→0

det(U(t, λ, q))t2 = lim
t→0

θ(t; q)

θ(t; q)
t2 − lim

t→0

θ(qt; q)

θ(q−1t; q)
t2

= − lim
t→0

q−1
θ(t; q)

θ(t; q)
= −q−1 .

(242)

For V notice that

det(V (t, q))t2 = g(0,0)(t, q)g(0,1)(qt, q)t2 − g(0,0)(qt, q)g(0,1)(t, q)t2. (243)

This has potentially simple poles at t ∈ qZ. There is no non-constant elliptic function that
satisfies this [2]. Therefore, det(V (t, q))t2 is constant. Then notice that

det(V (t, q))t2 = lim
t→∞

det(V (t, q))t2 = q−1. (244)

�
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Corollary 5.5. If h(t, q) is holomorphic for t ∈ C× and satisfies the q-difference equa-
tion (28) then

h(t, q) = C0(q)g
(0,0)(t, q) . (245)

Proof. Every solution to equation (28) can be written in the form

h(t, q) = C0(t, q)g
(0,0)(t, q) + C1(t, q)g

(0,1)(t, q) (246)

for some elliptic functions C0 and C1. Now we see that

det

(
g(0,0)(t, q) h(t, q)
g(0,0)(qt, q) h(qt, q)

)
= C1(t, q)q

−1t−2 (247)

is holomorphic and therefore C1(t, q) = C1(q) is independent of t. Now notice that if
g(t0, q) = 0 then g(qt0, q) 6= 0 as otherwise this would imply det(V (t0, q)) = 0. This means
that if C1(q) 6= 0 then C0(t, q) has simple poles at t ∈ qZ and no other poles for t ∈ C×
which contradicts the fact that C0(t, q) is elliptic as this would give an isomorphism from
the elliptic curve to CP1. Therefore C1(q) = 0. Then again noting that if g(t0, q) = 0 then
g(qt0, q) 6= 0 we see that C0(t, q) must be constant in t.

We remark that an alternative proof can be given using the fact that all holomorphic
solutions on C× have a convergent Laurent/Fourier series expansion∑

k∈Z

αk(q)t
k . (248)

This is a consequence of Cauchy’s theorem and a detailed discussion of this can be found,
for example, in [1]. In our case, the functional equations imply this expansion is divergent
if α−1 6= 0. This forces α−1 = 0, and the functional equation then implies that αk = 0 for
k < 0 and that αk are uniquely determined by C0(q) = α0(q) for k ≥ 0 which implies that
our function is equal to C0(q)g

(0,0)(t, q). �

5.5. State integral. In this section we discuss the second part of Theorem 1.7 concerning
the extension of the cocycle to the cut plane. The main idea is to use descendant state
integrals, following [27, Eqn.(41)], defined by

IA,B(z, τ) =

∫
R+iε

Φb(x)B exp
(
−Aπix2 − 2π

zx

b

)
dx. (249)

Using the holomorphic extension of the quantum dilogarithm Φ from Theorem 1.5, this
integral can be shown to extend to a holomorphic function in for (z, τ) ∈ C × C′. We
are interested in the integrals I1,2(z, τ) which, using the residue theorem, factorise as an
elementary function holomorphic for τ ∈ C′ times the following bilinear combination, see [27,
Thm.3],

I(z, τ) = τ 1/2g(0,0)(t̃, q̃)g(0,1)(t, q)− τ−1/2g(0,1)(t̃, q̃)g(0,0)(t, q)

+ τ−1/2
(
τ
θ′(t−1; q)

θ(t−1; q)
− θ′(t̃−1; q̃)

θ(t̃−1; q̃)
− 1

2
+
τ

2
− z
)
g(0,0)(t̃, q̃)g(0,0)(t, q)

= τ 1/2g(0,0)(t̃, q̃)g(0,1)(t, q)− τ−1/2g(0,1)(t̃, q̃)g(0,0)(t, q) .

(250)
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where the equality follows from Equation (52). Therefore, I(z, τ) extends to a holomorphic
function for (z, τ) ∈ C×C′. Now, we see that

ΩV,S(z, τ) = (V |κS)(z, τ)V (z, τ)−1

= qt2
(
g(0,0)(t̃, q̃) g(0,1)(t̃, q̃)

g(0,0)(q̃t̃, q̃) g(0,1)(q̃t̃, q̃)

)(
τ1/2 0

0 τ−1/2

)(
g(0,1)(qt, q) −g(0,1)(t, q)
−g(0,0)(qt, q) g(0,0)(t, q)

)
.

(251)

The entries of ΩV,S are then elementary functions holomorphic for τ ∈ C′ times I(z + n +
mτ, τ) for some n,m ∈ {−1, 0, 1}. This shows that the cocycle ΩV,S extends to a holomorphic
function for (z, τ) ∈ C × C′; see [26, Thm.14] following the proof of [30, Thm.1.1]. Now
noting that

Av(
−→
M) = ∆κ,γ(Av(

−→
M)|κγ) (252)

and ΩAv(U),T = I, part (c) of Theorem 1.2 proves part (b) of Theorem 1.7.

5.6. The inhomogeneous equation. We now consider Equation (35). We can convert
this into a homogeneous equation of one degree higher

tf(t; q) + (1− 3qt)f(qt; q) + (3tq2 − 1)f(q2t; q)− tq3f(q3t; q) = 0 (253)

with Newton polygon shown in Figure 5.

g(0,0) g(0,1) g(0,2)

f (−1) f (1)

f (0)

Figure 5. The Newton polygon of Equation (35).

Now from the general theory the solutions f (±1) and g(0,0) and g(0,1) are the same as the
solutions in Section 5.1. We do find two additional solutions which are in fact solutions to
the inhomogeneous equation, namely

f̂ (0)(t, q) =
∞∑
k=0

(−1)kq−k(k+1)/2(q; q)2kt
k , (254)

a divergent formal power series solution at t = 0 and

g(0,2)(t; q) =

∞∑
k=0

1

2

(
1

2
E1(q)−

1

2
+

k∑
j=1

1 + qj

1− qj

2

−

1

2
E1(q)−

1

2
+

k∑
j=1

1 + qj

1− qj

 θ′(t−1; q)

θ(t−1; q)

+
1

2

θ′′(t−1; q)

θ(t−1; q)
+

k∑
j=1

qj

(1− qj)2
− 1

24
− 1

24
E2(q)

)
(−1)k

qk(k+1)/2

(q; q)2k
t−1−k ,

(255)
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where E2(q) = 1− 24
∑∞

k=0 q
k/(1− qk)2, a convergent solution at t =∞. So, we must resum

f̂ (0)(t, q). For |ξ| < 1, we have

B1f̂ (0)(ξ, q) =
∞∑
k=0

(q; q)2kξ
k (256)

which can be analytically continued away from ξ ∈ qZ≤0 using the relation

(1− ξ)B1f̂ (0)(ξ, q) + 2qξB1f̂ (0)(qξ, q)− q2ξB1f̂ (0)(q2ξ, q) = 1. (257)

f (0)

B1
B1f (0)

Therefore, we define

f (0)(t, λ2, q) = (L1B1f̂ (0))(t, λ2, q) =
1

θ(λ2; q)

∑
k∈Z

(−1)kqk(k+1)λk2B1f̂ (0)(qkλ2t, q). (258)

Now we consider the matrices

U(t, λ1, λ2, q) = W (f (1)(t, λ1, q), f
(−1)(t, q), f (0)(t, λ2, q))

=

 0 1 0
0 0 1

q−2t−1 −q−2 q−2t−1 − 2q−1

 0 0 1
f (1)(t, λ1, q) f (−1)(t, q) f (0)(t, λ2, q)
f (1)(qt, λ1, q) f (−1)(qt, λ1, q) f (0)(qt, λ2, q)


(259)

and

V (t, q) = W (g(0,0)(t, q), g(0,1)(t, q), g(0,2)(t, q))

=

 0 1 0
0 0 1

q−2t−1 −q−2 q−2t−1 − 2q−1

 0 0 1
g(0,0)(t, q) g(0,1)(t, q) g(0,2)(t, q)
g(0,0)(qt, q) g(0,1)(qt, q) g(0,2)(qt, q)

 .
(260)

With these formulae we will now go on to prove Theorem 1.8.

Proof of Theorem 1.8. The identification of the first two columns of
−→
M(t, λ1, λ2, q) with those

in Equation (37) follows from Theorem 1.7. Equations (259) and (260), together with
Lemma 5.4 imply that

− det(U(t, λ1, λ2, q)) = det(V (t, q)) = q−3t−3 . (261)

Hence, det(
−→
M(t, λ1, λ2, q)) = −1 which in turn implies that

−→
M3,3(t, λ2, q) = 1.

Now, Equation (37), written in the form U(t, λ1, λ2, q) = V (t, q)
−→
M(t, λ1, λ2, q), together

with Equations (259) and (260) and the fact that
−→
M3,3 = 1 imply that

f (0) =
−→
M1,3g

(0,0) +
−→
M2,3g

(0,1) + g(0,2) . (262)
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Thus, to determine the two remaining entries of the monodromy matrix, we need to show
that the function

E3 := f (0) − (m1,3g
(0,0) +m2,3g

(0,1) + g(0,2)) (263)

vanishes identically, where

m1,3(t, q) = ℘(t, q), m2,3(t, λ2, q) =
1

2

℘′(t, q)− ℘′(λ2, q)
℘(t, q)− ℘(λ2, q)

(264)

denote the two entries of the matrix on the right hand-side of Equation (37). Note that
E3(t, λ2, q) is a meromorphic function of t with potential simple poles at λ−12 qZ (coming from
f (0) and m2,3) and potential double poles at qZ (coming from g(0,1), g(0,2), m1,3 and m2,3).
Since Rest=q−mλ−1

2
m2,3(t, λ2, q)

dt
2πit

= 1 , combined with equation (211) gives

Rest=q−mλ−1
2
m2,3(t, λ2, q)g

(0,1)(t, q)
dt

2πit
= f (−1)(q−mλ−12 , q) , (265)

we see from Lemma 5.6 that E3 has no poles at λ−12 qZ. Now noting that

m2,3(t, λ2, q) =
θ′(t−1; q)

θ′(t−1; q)
+
θ′(λ−1; q)

θ′(λ−1; q)
− θ′(λ−1t−1; q)

θ′(λ−1t−1; q)
+

1

2
, (266)

the only terms that contribute to the polar part of

g(0,2)(t, q) +m2,3(t, λ2, q)g
(0,1)(t, q) +m1,3(t, q)g

(0,0)(t, q) (267)

at t = qmε for ε ∼ 1 are

∞∑
k=0

(
−
(
k − 2E

(k)
1 (q)

) θ′(ε−1; q)
θ(ε−1; q)

+
1

2

θ′′(q−mε−1; q)

θ(q−mε−1; q)

+

(
k −m− θ′(ε−1; q)

θ(ε−1; q)
− 2E

(k)
1 (q)

)
θ′(ε−1; q)

θ(ε−1; q)
− 1

2

θ′(ε−1; q)

θ(ε−1; q)

+
θ′(ε−1; q)2

θ(ε−1; q)2
− θ′′(ε−1; q)

θ(ε−1; q)

)
(−1)k

qk(k+1)/2−m−mk

(q; q)2k
ε−1−k

=
∞∑
k=0

(
1

2

θ′′(q−mε−1; q)

θ(q−mε−1; q)
−
(
m+

1

2

)
θ′(ε−1; q)

θ(ε−1; q)
− θ′′(ε−1; q)

θ(ε−1; q)

)
(−1)k

qk(k+1)/2

(q; q)2k
ε−1−k.

(268)

This has a potentially simple pole at ε = 1 however noting that

Resε=1
θ′′(q−mε−1; q)

θ(q−mε−1; q)

dε

2πiε
= −2m+ 1

Resε=1
θ′(ε−1; q)

θ(ε−1; q)

dε

2πiε
= −1

(269)

we see that the residue vanishes and therefore (267) has a removable singularity at all points
t ∈ qZ. Therefore, we see that E3 is a holomorphic (for t ∈ C×) solution of Equation (28)
and therefore from Corollary 5.5 we see that E3(t, λ2, q) = C(q)g(0,0)(t, q). To finish the proof
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we note that for t on some compact set where the functions are holomorphic, Lemma 5.1
and Lemma 5.7 implies that

− C(q)

(q; q)2∞
= lim

r→∞

C(q)g(0,0)(tr, q)

θ(qrt; q)

= lim
r→∞

f (0)(t, λ2, q)− (g(0,2)(t, q) +m2,3(t, λ2, q)g
(0,1)(t, q) +m1,3(t, q)g

(0,0)(t, q))

θ(qrt; q)

=
1

(q; q)2∞
(m1,3(t

−1, q)−m1,3(t, q)) = 0 ,

where we note that m1,3(t, q) is the Weierstrass ℘-function plus a constant which is even in
z where t = e(z).

Our next task is to compute the residues of f (0).

Lemma 5.6. (a) The function B1f̂ (0)(ξ, q) has simple poles at ξ ∈ qZ with residue

R(m, q) := Resξ=q−mB1f̂ (0)(ξ, q)
dξ

2πiξ
= −(q; q)2∞

m∑
`=0

qm

(q; q)`(q; q)m−`
. (270)

(b) The function f (0)(t, q) has simple poles at t ∈ λ−12 qZ with residue

Rest=q−mλ−1
2
f (0)(t, λ2, q)

dt

2πit
= f (−1)(q−mλ−12 , q) . (271)

Proof. For part (a), notice that

B1f̂ (0)(ξ, q) =
∞∑
k=0

(q; q)2kξ
k = (q; q)2∞

∞∑
k=0

1

(qk+1; q)∞
ξk

= (q; q)2∞

∞∑
k,`,n=0

qkn+k`+n+`

(q; q)`(q; q)n
ξk = (q; q)2∞

∞∑
`,n=0

qn+`

(q; q)`(q; q)n(1− qn+`ξ)

(272)

is the analytic continuation of B1f̂ (0). From this, it clearly follows that the only poles are
simple, located at ξ = qZ. (Alternatively, one can also use the linear q-difference equation
satisfied by this function, though this is not needed here). We compute the residue as follows:

R(m, q) = Resξ=q−m(q; q)2∞

∞∑
`,n=0

qn+`

(q; q)`(q; q)n(1− qn+`ξ)
dξ

2πiξ

= −(q; q)2∞

m∑
`=0

qm

(q; q)`(q; q)m−`
.

(273)

For part (b), the pole structure is clear noting that Equation (258) is convergent if all the

terms are and that B1f̂ (0)(qktλ2, q) has poles at t ∈ λ−12 qZ≤−k . We compute the residues as
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follows:

Rest=q−mλ−1
2
f (0)(t, λ2, q)

dt

2πit
= Rest=q−mλ−1

2
(L1B1f̂ (0))(t, λ2, q)

dt

2πit

= Rest=q−mλ−1
2

1

θ(λ2, q)

∑
k∈Z

(−1)kqk(k+1)/2λk2B1f̂ (0)(qkλ2t, q)
dt

2πit

=
1

θ(λ2, q)

∑
k∈Z

(−1)kqk(k+1)/2λk2R(m− k, q)

=
1

θ(λ2, q)
(−1)mqm(m+1)/2λm2

∞∑
k=0

(−1)kqk(k−1)/2(q−mλ−12 )kR(k, q)

=
−(q; q)2∞
θ(λ2, q)

(−1)mqm(m+1)/2λm2

∞∑
k,`=0

(−1)k
qk(k+1)/2

(q; q)`(q; q)k−`
(q−mλ−12 )k

= f (−1)(q−mλ−12 , q) .

(274)

�

Lemma 5.7. For t in some compact set where the functions are holomorphic, we have

lim
r→∞

g(0,2)(qrt, q)

θ(qrt; q)
=

1

(q; q)2∞
m1,3(t

−1, q) lim
r→∞

f (0)(qrt, q)

θ(qrt; q)
= 0 . (275)

Proof. We have

(−1)rqr(r+1)/2tr+1g(0,2)(qrt, q)

=
∞∑

k=−r

(
1

2

(
1

2
E1(q)− r −

1

2
− θ′(t−1; q)

θ(t−1; q)
+

k+r∑
j=1

1 + qj

1− qj

)2

−

(
1

2
E1(q)− r −

1

2
− θ′(t−1; q)

θ(t−1; q)
+

k+r∑
j=1

1 + qj

1− qj

)
θ′(t−1; q)

θ(t−1; q)

+
1

2

θ′′(t−1; q)

θ(t−1; q)
+

k+r∑
j=1

qj

(1− qj)2
− 1

24
− 1

24
E2(q)

)
(−1)k

qk(k+1)/2

(q; q)2k+r
t−k .

(276)

Then noting that 1/24− E2(q)/24−
∑k

j=1 q
j/(1− qj)2) = O(qk+1) the proof then proceeds

as in Lemma 5.1. �

To finish the proof of Theorem 1.8 we will use the state integrals introduced in [28,
Eqn.(73)]. ∫

R+iε

Φb(x)2
exp

(
−πix2 − 2π zx

b

)
1 + q̃1/2 exp

(
−2πx

b

) dx . (277)

The factorisation of this integral was done in [28, Thm.7]. The fact this module is not
self dual (see Proposition 2.6) means that additional functions arise in the factorisation.
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It was shown, using Equation (52), that Equation (277) factors as an elementary function
holomorphic in C′ times

I(z, τ) =τ 2g(0,2)(t̃, q̃) + τg(0,1)(t̃, q̃)L0(t, q)− g(0,0)(t̃, q̃)L1(t, q) (278)

where

L0(t, q) = 1− 1

2
E1(q) +

θ′(t−1; q)

θ(t−1; q)
+
∞∑
k=1

(−1)k
qk(k+1)/2

(q; q)2k(1− qk)
t−k

L1(t, q) = − 5

12
+

1

2
E1 − E1(q)

2 − 1

24
E2(q)−

(
1

8
− 1

8
E1(q)

)
θ′(t−1; q)

θ(t−1; q)
− θ′′(t−1; q)

2θ(t−1; q)

+
∞∑
k=1

(−1)k
qk(k+1)/2

(q; q)2k(1− qk)
t−k

(
1

2
E1(q)−

1

2
− θ′(t−1; q)

θ(t−1; q)
+

k∑
j=1

1 + qj

1− qj
+

qk

1− qk

)
.

(279)
These functions Li where then shown to satisfy

L0(t, q)− L0(qt, q) = −qtg(0,0)(qt, q)
L1(t; q)− L1(qt, q) = −qtg(0,1)(qt, q).

(280)

Notice that functions satisfying these equations are unique up to the addition of an elliptic
function. Therefore, with exactly the same argument in [28, Thm.4] with the addition of
checking the principal parts of the LHS and RHS we can then show that

V (t, q)−1

(
0 1 0
0 0 1

q−2t−1 −q−2 q−2t−1 − 2q−1

)
=

−L1(t, q) −qt2g(0,1)(qt, q) qt2g(0,1)(t, q)

L0(t, q) qt2g(0,0)(qt, q) −qt2g(0,0)(qt, q)
1 0 0

 .

(281)
Therefore, we see that the entries of ΩV,S are combinations of elementary functions times
I(z+n+mτ, τ) form,n ∈ {−2,−1, 0, 1, 2}. Using the explicit expressions for the monodromy
one can prove it satisfies Equation (32) with equal weights (2, 1, 0) and again using part (c)
of Theorem 1.2 complete the proof. �

5.7. The x-deformation. We will first discuss the two variable holonomic system given by
the homogeneous equations

tq−1f(q−1t, x, q) + (1− (x−1 + x)t)f(t, x, q) + tqf(qt, x, q) = 0 , (282a)

(1− qx)(1− q−1x2)f(t, qx, q)

−(x− 1)2(x+ 1)(x2t− x− (q−1 + q)t− x−1 + x−2t)f(t, x, q)

+(1− qx2)(1− q−1x)f(t, q−1x, q) = 0 ,

(282b)

(1− xq)(f(t, qx, q)− x−1f(qt, qx, q)) = (1− x−1)(f(t, x, q)− qxf(qt, x, q)) . (282c)

This is not a random system of equations, instead they are the defining equations of the t-
deformation of the homogeneous Â-polynomial of the 41 knot. This system appeared in [29,
Eqn.(10)] and [26, Eqn.(134)], and it is q-holonomic of rank 2 in the variables (t, x). The
system is symmetric under the involution x↔ x−1 (which corresponds to the Weyl symmetry
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in the color of the Jones polynomial of the knot) and our solutions will also be invariant
under this involution. As a result the monodromy connecting x = 0 to x =∞ is the identity.

To construct solutions, we will apply the Frobenius method to the Equation (282a). This
has Newton polygon depicted in Figure 4. Notice that the indicial polynomial (ρ−1)2 for the
top edge of Equation (28) now becomes (ρ− x)(ρ− x−1) for Equation (282a). We can then
normalise so that the solutions satisfy the full system of equations (282a), (282b), (282c).
The solutions to this homogeneous system are then given by

f (−1)(t, x, q) =
θ(q−1x; q)

(1− x)θ(q−1t; q)(q; q)∞

∞∑
k=0

k∑
`=0

(−1)k
qk(k+1)/2x2`−k

(q; q)`(q; q)k−`
tk

f (1)(t, x, λ1, q) =
θ(t; q)(q; q)∞
(1− x)θ(x; q)

L1/2B1/2f̂ (1)(t, x, λ1, q)

g(0,x
−1)(t, x, q) =

θ(q−1x; q)θ(tx; q)(qx2; q)∞
θ(t; q)θ(x2; q)(1− x)(q; q)∞

∞∑
k=0

(−1)k
qk(k+1)/2xk

(q; q)k(qx2; q)k
t−k−1

g(0,x)(t, x, q) =
θ(q−1x−1; q)θ(tx−1; q)(qx−2; q)∞
θ(t; q)θ(x−2; q)(1− x−1)(q; q)∞

∞∑
k=0

(−1)k
qk(k+1)/2x−k

(q; q)k(qx−2; q)k
t−k−1

(283)

where

f̂ (1)(t, x, q) =
∞∑
k=0

k∑
`=0

q`
2−k`x2`−k

(q; q)`(q; q)k−`
tk. (284)

Notice that we have

B1/2f̂ (1)(t, x, q) =
∞∑
k=0

k∑
`=0

(−1)k
qk(k+1)/4+`2−k`x2`−k

(q; q)`(q; q)k−`
tk (285)

which satisfies

(1− q1/2ξ2)B1/2f̂ (1)(ξ, q) + (x+ x−1)ξB1/2f̂ (1)(q1/2ξ, q)− B1/2f̂ (1)(qξ, q) = 0. (286)

We can complete this to include the inhomogeneous solutions to the system of Equations (39a),
(39b), (39c). Equations (39a) can be made third order homogenous which has Newton
polygon depicted in Figure 5. The indicial polynomial of the top edge now factors as
(ρ − x)(ρ − x−1)(ρ − 1). This gives two additional solutions as in Section 5.6. Firstly
we have

f̂ (0)(t, x, q) =
∞∑
k=0

(−1)kq−k(k+1)/2(qx; q)k(qx
−1; q)kt

k , (287)

a divergent formal power series solution at t = 0. Then

B1f (0)(ξ, x, q) =
∞∑
k=0

(qx; q)k(qx
−1; q)kt

k , (288)

which can be analytically continued away from ξ ∈ qZ≤0 using the relation

(1− ξ)B1f̂ (0)(ξ, q) + (x+ x−1)qξB1f̂ (0)(qξ, q)− q2ξB1f̂ (0)(q2ξ, q) = 1. (289)
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So we define

f (0)(t, x, λ2, q) = (L1B1f̂ (0))(t, x, λ2, q) =
1

θ(λ2; q)

∑
k∈Z

(−1)kqk(k+1)λk2B1f̂ (0)(qkλ2t, x, q).

(290)
The second solution is then given by

g(0)(t, x, q) =
∞∑
k=0

(−1)k
qk(k+1)/2

(x; q)k+1(x−1; q)k+1

t−k−1. (291)

We then take

U(t, x, λ1, λ2, q) = W (f (1)(t, x, λ1, q), f
(−1)(t, x, q), f (0)(t, x, λ2, q)) ,

V (t, q) = W (g(0,x
−1)(t, x, q), g(0,x)(t, x, q), g(0,1)(t, x, q)) .

(292)

Before we give the proof note the immediate symmetries

g(0,x
−1)(t, x−1, q) = g(0,x)(t, x, q), f (−1)(t, x−1, q) = f (−1)(t, x, q),

g(0,x)(t, x−1, q) = g(0,x
−1)(t, x, q), f (−1)(t, x−1, q) = f (−1)(t, x, q),

g(0,1)(t, x−1, q) = g(0,1)(t, x, q), f (0)(t, x−1, q) = f (0)(t, x, q) .

(293)

Proof of Theorem 1.9. First we prove the existence of the elliptic function m2,1 with the
properties listed in Theorem 1.9. Note that the only restriction to an existence of an elliptic
function with prescribed poles and residues is the vanishing of the sum of the residues on a
fundamental domain. Here, there are six residues, and their sum vanishing is equivalent to

1 =
θ(q3/4λ−11 ; q)θ(q−1/4x; q)θ(q−3/4x; q)θ(q−3/4λ1; q)

2θ(x; q)θ(x−1; q)θ(q−1λ1; q)θ(q−3/2λ1; q)

+
θ(−q3/4λ−11 ; q)θ(−q−1/4x; q)θ(−q−3/4x; q)θ(−q−3/4λ1; q)

2θ(x; q)θ(x−1; q)θ(q−1λ1; q)θ(q−3/2λ1; q)

+
θ(q1/4λ−11 ; q)θ(q−1/4x; q)θ(q−3/4x; q)θ(q−1/4λ1; q)

2θ(x; q)θ(x−1; q)θ(q−1/2λ1; q)θ(q−1λ1; q)

+
θ(−q1/4λ−11 ; q)θ(−q−1/4x; q)θ(−q−3/4x; q)θ(−q−1/4λ1; q)

2θ(x; q)θ(x−1; q)θ(q−1/2λ1; q)θ(q−1λ1; q)

=

(
θ(q3/4λ−11 ; q)θ(q−3/4λ1; q)

2θ(q−1λ1; q)θ(q−3/2λ1; q)
+
θ(q1/4λ−11 ; q)θ(q−1/4λ1; q)

2θ(q−1/2λ1; q)θ(q−1λ1; q)

)
θ(q−1/4x; q)θ(q−3/4x; q)

θ(x; q)θ(x−1; q)

+

(
θ(−q3/4λ−11 ; q)θ(−q−3/4λ1; q)

2θ(q−1λ1; q)θ(q−3/2λ1; q)
+
θ(−q1/4λ−11 ; q)θ(−q−1/4λ1; q)

2θ(q−1/2λ1; q)θ(q−1λ1; q)

)
θ(−q−1/4x; q)θ(−q−3/4x; q)

θ(x; q)θ(x−1; q)
.

(294)
To prove this identity, notice that the right hand side is elliptic in λ1 7→ q1/2λ1 and x 7→ qx.
Moreover, λ1 has only one potential simple pole in its fundamental domain and therefore
this is constant in λ1. Then x has a potential double pole which cancels. Then specialising
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the RHS to λ1 = q1/4 and x = −q1/4 gives

θ(q1/2; q)θ(q−1/2; q)

2θ(q−3/4; q)θ(q−5/4; q)

θ(−1; q)θ(−q−1/2; q)
θ(−q1/4; q)θ(−q−1/4; q)

. (295)

This can be proven to equal one by elementary means using the Jacobi triple product identity.
Therefore, such an m2,1(t, x, λ1, q) exists. Explicitly, we have

m2,1(t, x, λ1, q) =
−1
2

θ′(tx; q)

θ(tx; q)
+
−1
2

θ′(tx−1; q)

θ(tx−1; q)

+
θ(q3/4λ−1

1 ; q)θ(q−1/4x; q)θ(q−3/4x; q)θ(q−3/4λ1; q)

2θ(x; q)θ(x−1; q)θ(q−1λ1; q)θ(q−3/2λ1; q)

θ′(tλ1q1/4)

θ(tλ1q1/4)
+
θ(−q3/4λ−1

1 ; q)θ(−q−1/4x; q)θ(−q−3/4x; q)θ(−q−3/4λ1; q)

2θ(x; q)θ(x−1; q)θ(q−1λ1; q)θ(q−3/2λ1; q)

θ′(−tλ1q1/4)
θ(−tλ1q1/4)

+
θ(q1/4λ−1

1 ; q)θ(q−1/4x; q)θ(q−3/4x; q)θ(q−1/4λ1; q)

2θ(x; q)θ(x−1; q)θ(q−1/2λ1; q)θ(q−1λ1; q)

θ′(tλ1q3/4)

θ(tλ1q3/4)
+
θ(−q1/4λ−1

1 ; q)θ(−q−1/4x; q)θ(−q−3/4x; q)θ(−q−1/4λ1; q)

2θ(x; q)θ(x−1; q)θ(q−1/2λ1; q)θ(q−1λ1; q)

θ′(−tλ1q3/4)
θ(−tλ1q3/4)

−
−1
2

θ′(x; q)

θ(x; q)
−
−1
2

θ′(x−1; q)

θ(x−1; q)
−
θ(q3/4λ−1

1 ; q)θ(q−1/4x; q)θ(q−3/4x; q)θ(q−3/4λ1; q)

2θ(x; q)θ(x−1; q)θ(q−1λ1; q)θ(q−3/2λ1; q)

θ′(λ1q1/4)

θ(λ1q1/4)

−
θ(−q3/4λ−1

1 ; q)θ(−q−1/4x; q)θ(−q−3/4x; q)θ(−q−3/4λ1; q)

2θ(x; q)θ(x−1; q)θ(q−1λ1; q)θ(q−3/2λ1; q)

θ′(−λ1q1/4)
θ(−λ1q1/4)

−
θ(q1/4λ−1

1 ; q)θ(q−1/4x; q)θ(q−3/4x; q)θ(q−1/4λ1; q)

2θ(x; q)θ(x−1; q)θ(q−1/2λ1; q)θ(q−1λ1; q)

θ′(λ1q3/4)

θ(λ1q3/4)

−
θ(−q1/4λ−1

1 ; q)θ(−q−1/4x; q)θ(−q−3/4x; q)θ(−q−1/4λ1; q)

2θ(x; q)θ(x−1; q)θ(q−1/2λ1; q)θ(q−1λ1; q)

θ′(−λ1q3/4)
θ(−λ1q3/4)

.

(296)
Next we calculate the second column of the monodromy matrix using the same argument

as Equation (210) from [54].

f̂ (−1)(t, x; q) =

∮
0
B−1(g)(ξ, x; q)θ(t/ξ; q)

dξ

2πiξ
=

∮
0

θ(t/ξ; q)

(xξ; q)∞(x−1ξ; q)∞

dξ

2πiξ

= −
∞∑
k=0

(
Resξ=x±q−k

) θ(t/ξ; q)

(xξ; q)∞(x−1ξ; q)∞

dξ

2πiξ

= −
∞∑
k=0

(Resε=0)
θ(txqkeε; q)

(q−1e−ε; q−1)k(e−ε; q)∞(x−2q−1e−ε; q−1)k(x−2e−ε; q)∞

−dε
2πi

−
∞∑
k=0

(Resε=0)
θ(tx−1qkeε; q)

(x2q−1e−ε; q−1)k(x2e−ε; q)∞(q−1e−ε; q−1)k(e−ε; q)∞

−dε
2πi

=

∞∑
k=0

θ(txqk; q)(qx2; q)∞
(q−1; q−1)k(x−2q−1; q−1)kθ(x2; q)

+

∞∑
k=0

θ(tx−1qk; q)(qx−2; q)∞
(x2q−1; q−1)kθ(x−2; q)(q−1; q−1)k

=
θ(tx; q)(qx2; q)∞

θ(x2; q)

∞∑
k=0

(−1)k
qk(k+1)/2xkt−k

(q; q)k(x2q; q)k
+
θ(tx−1; q)(qx−2; q)∞

θ(x−2; q)

∞∑
k=0

(−1)k
qk(k+1)/2x−kt−k

(q; q)k(qx−2; q)k

= −θ(q
−1t; q)(1− x)(q; q)∞

θ(q−1x; q)
g(0,x

−1)(t, x, q)− θ(q−1t; q)(1− x−1)(q; q)∞
θ(q−1x−1; q)

g(0,x)(t, x, q) .

(297)
Therefore, we see that

f (−1)(t, x, q) = −g(0,x−1)(t, x, q)− g(0,x)(t, x, q). (298)

Now note that the bottom row of
−→
M is given by (0, 0, 1) simply from the fact the inho-

mogeneous module contains the homogeneous as a sub-module and then the inhomogeneity
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normalises the last entry. Therefore, from Lemma 5.12, we see that 1 −1 0
−1 −1 0
0 0 1

−1 −→M(t, x, λ, q) =

 θ(x−2;q)θ(t;q)2(q;q)3∞
2θ(q−1x;q)2θ(tx;q)θ(tx−1;q)

0 ∗
∗ 1 ∗
0 0 1

 . (299)

Consider the function

E4 := f (1)(t, x, λ1, q)−
θ(x−2; q)θ(t; q)2(q; q)3∞

2θ(q−1x; q)2θ(tx; q)θ(tx−1; q)

(
g(0,x

−1)(t, x, q)− g(0,x)(t, x, q)
)

−m2,1(t, x, λ1, q)
(
−g(0,x−1)(t, x, q)− g(0,x)(t, x, q)

)
= f (1)(t, x, λ1, q)−

θ(x−2; q)θ(t; q)2(q; q)3∞
2θ(q−1x; q)2θ(tx; q)θ(tx−1; q)

(
g(0,x

−1)(t, x, q) + g(0,x)(t, x, q)
)

−m2,1(t, x, λ1, q)f
(−1)(t, x, q)

(300)

where is m2,1 has the properties stated in Theorem 1.9. Then by the definition of m2,1 along
with Lemma 5.9 and Lemma 5.10 we see that E4 is holomorphic and satisfies Equation (282a)
and therefore must be zero from Lemma 5.8. This proves the first column. Now for the last
column consider the function

E5 := f (0)(t, λ2, x, q)− g(0,1)(t, x, q)

− θ(x−2; q)θ(t; q)2(q; q)3∞
2θ(q−1x; q)2θ(tx; q)θ(tx−1; q)

(
g(0,x

−1)(t, x, q)− g(0,x)(t, x, q)
)

−
(
θ′(tλ2)

θ(tλ2)
− θ′(tx)

2θ(tx)
− θ′(tx−1)

2θ(tx−1)
− θ′(λ2)

θ(λ2)
− 1

2

)
×
(
−g(0,x−1)(t, x, q)− g(0,x)(t, x, q)

)
.

(301)

This is holomorphic from Lemma 5.9, Lemma 5.10 and Lemma 5.11. Moreover, E5 satisfies
Equation (282a) and therefore vanishes from Lemma 5.8.

The entries of the RHS of Equation (41) have the following transformation properties
under the S matrix

θ(x−2; q̃)θ(t; q̃)2(q̃; q̃)3∞
2θ(q̃−1x; q̃)2θ(tx; q̃)θ(tx−1; q̃)

= τ
θ(x−2; q)θ(t; q)2(q; q)3∞

2θ(q−1x; q)2θ(tx; q)θ(tx−1; q)(
θ′(t̃λ̃2)

θ(t̃λ̃2)
− θ′(t̃x̃)

2θ(t̃x̃)
− θ′(t̃x̃−1)

2θ(t̃x̃−1)
− θ′(λ̃2)

θ(λ̃2)
− 1

2

)
= τ

(
θ′(tλ2)

θ(tλ2)
− θ′(tx)

2θ(tx)
− θ′(tx−1)

2θ(tx−1)
− θ′(λ2)

θ(λ2)
− 1

2

)
(302)

while m2,1 has three elements in it’s SL2(Z) orbit m2,1,m2,1|1S,m2,1|1T . To see this notice
that m2,1|1T 2 simply permutes the terms in RHS of Equation (296). Then using Equa-
tions (49) (52) we can explicitly compute m2,1|1S and m2,1|1TS which can be used to show
that m2,1|1ST = m2,1|1S and m2,1|1TS = m2,1|1T . Altogether, this shows the monodromy
satisfies Equation (43).

Lemma 5.8. If h(t, x, q) is holomorphic for t ∈ C× and satisfies Equation (282a) then it
vanishes.



MODULAR q-HOLONOMIC MODULES 57

Proof. If h(t, x, q) is holomorphic for t ∈ C× then is has an Laurent series expansion

h(t, x, q) =
∑
k∈Z

αk(x, q)t
k. (303)

Therefore Equation (282a) determines the coefficients αk(x, q) from two initial conditions

say α0 and α−1. However for any non-zero choice of (α0, α−1) we find that αk ∼ O(q−k
2/2)

for k ∼ −∞ and therefore it is divergent unless α0 = α−1 = 0. Notice the difference here
with that of Corollary 5.5 comes from the fact that α−1 = 0 does not imply that αk = 0 for
k < 0. �

Lemma 5.9. We have

Rest=qmx
θ(t; q)2

θ(tx; q)θ(tx−1; q)
g(0,x

−1)(t, x, q)
dt

2πit
=
−θ(x; q)2f (−1)(qmx, x, q)

θ(x2; q)(q; q)3∞

Rest=qmx−1

θ(t; q)2

θ(tx; q)θ(tx−1; q)
g(0,x)(t, x, q)

dt

2πit
=
−θ(x−1; q)2f (−1)(qmx−1, x, q)

θ(x−2; q)(q; q)3∞

(304)

while g(0,1)(t, x, q) is holomorphic for t ∈ C× ∪ {∞}.

Proof. This follows from Equation (298) and the fact that

Rest=qmx±
θ(t; q)2

θ(tx; q)θ(tx−1; q)

dt

2πit
=

θ(x±; q)2

θ(x±2; q)(q; q)3∞
. (305)

�

Lemma 5.10. (a) The function B1/2f̂ (1)(ξ, x, q) has simple poles at ξ = ±q−1/4−Z≥0/2 with
residue

Resξ=±q−1/4−n/2B1/2f̂ (1)(ξ, x, q)
dξ

2πiξ
=
−θ(±q−1/4x; q1/2)

2(q; q)2∞

n∑
`=0

(±1)n
q
n(n+2)

4 x2`−n

(q; q)`(q; q)n−`
. (306)

(b) The function f (1)(t, x, λ1, q) has simple poles at t = ±q−1/4+Zλ−11 with residue

Rest=±q−1/4−nλ−1
1
f (1)(t, x, λ1, q)

dt

2πit

=
θ(±q3/4λ−11 ; q)θ(±q−1/4x; q)θ(±q−3/4x; q)θ(±q−3/4λ1; q)

2θ(x; q)θ(x−1; q)θ(q−1λ1; q)θ(q−3/2λ1; q)
f (−1)(±q−1/4−nλ−11 , x, q) .

(307)

Proof. Firstly note that the singularities are determined by the functional equation for
B1/2f̂ (1)(ξ, x, q). For part (a), recall the auxiliary function Hr(ξ, q) defined in Equation (226).
Note that from the power series at ξ = 0, we see that

B1/2f̂ (1)(q−1/4ξ, x, q) =
∑
r∈Z

(−1)rqr
2/4xrξrHr(ξ, q). (308)

Let

R±(n, x, q) = Resξ=±q−1/4−n/2B1/2f̂ (1)(ξ, x, q)
dξ

2πiξ
. (309)
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Then, from Equation (231),

R±(0, x, q) = Resξ=±1
∑
r∈Z

(−1)rqr
2/4ξrxrHr(ξ, q)

dξ

2πiξ
=
−θ(±q−1/4x; q1/2)

2(q; q)2∞
. (310)

Now from the functional equation of B1/2f̂ (1)(ξ, x, q), we can deduce that

Resξ=±q−1/4−n/2(1− q1/2ξ2)B1/2f̂ (1)(ξ, q) + (x+ x−1)ξB1/2f̂ (1)(q1/2ξ, q)− B1/2f̂ (1)(qξ, q)
dξ

2πiξ

= (1− q−n)R±(n, x, q)± (x+ x−1)q−1/4−(n−1)/2R±(n− 1, x, q)−R±(n− 2, x, q) = 0.
(311)

Note that R±(n, x, q) = 0 for n < 0 and that when R±(−1, x, q) is zero we have a unique
solution determined by R±(0, x, q). One can then check that

R±(n, x, q) =
−θ(±q−1/4x; q1/2)

2(q; q)2∞

n∑
`=0

(±1)n
q
n(n+2)

4 x2`−n

(q; q)`(q; q)n−`
. (312)

For part (b), we compute

Rest=±q−1/4−nλ−1
1
f (1)(t, x, λ1, q)

dt

2πit

= Rest=±q−1/4−nλ−1
1

θ(t; q)(q; q)∞
(1− x)θ(x; q)

L1/2B1/2f̂ (1)(t, x, λ1, q)
dt

2πit

=
θ(±q−1/4−nλ−11 ; q)(q; q)∞

(1− x)θ(x; q)θ(λ1; q1/2)

∑
k∈Z

(−1)kq(k−2n)(k−2n−1)/4λ−k+2n
1 R±(k, x, q)

=
θ(±q−1/4−nλ−11 ; q)(q; q)∞

(1− x)θ(x; q)θ(λ1; q1/2)

−θ(±q−1/4x; q1/2)

2(q; q)2∞q
−n(2n+1)/2λ−2n1

∞∑
k=0

k∑
`=0

(−1)k
q
k(k+1)

2 x2`−k

(q; q)`(q; q)k−`
(±q−1/4−nλ−11 )k

= −θ(±q
−1/4−nλ−11 ; q)θ(±q−1/4x; q1/2)

2(q; q)∞(1− x)θ(x; q)θ(λ1; q1/2)
qn(2n+1)/2λ2n1

(1− x)

θ(q−1x; q)
f̂ (−1)(±q−1/4−n/2λ−11 , x, q)

=
θ(±q−1/4−nλ−11 ; q)θ(±q−1/4x; q)θ(±q−3/4x; q)θ(±q−5/4−nλ−11 ; q)

2xθ(x; q)2θ(λ1; q)θ(q−1/2λ1; q)q−n(2n+1)/2λ−2n1

f (−1)(±q−1/4−nλ−11 , x, q)

=
θ(±q−1/4λ−11 ; q)θ(±q−1/4x; q)θ(±q−3/4x; q)θ(±q−5/4λ−11 ; q)

2xθ(x; q)2θ(λ1; q)θ(q−1/2λ1; q)
f (−1)(±q−1/4−nλ−11 , x, q)

=
θ(±q3/4λ−11 ; q)θ(±q−1/4x; q)θ(±q−3/4x; q)θ(±q−3/4λ1; q)

2θ(x; q)θ(x−1; q)θ(q−1λ1; q)θ(q−3/2λ1; q)
f (−1)(±q−1/4−nλ−11 , x, q) .

(313)

�

Lemma 5.11. (a) The function B1f̂ (0)(ξ, x, q) has simple poles at ξ ∈ qZ with residue

R(m,x, q) := Resξ=q−mB1f̂ (0)(ξ, x, q)
dξ

2πiξ
= −(qx; q)∞(qx−1; q)∞

m∑
`=0

qmx2`−m

(q; q)`(q; q)m−`
.

(314)
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(b) The function f (0)(t, x, λ2, q) has simple poles at t ∈ λ−12 qZ with residue

Rest=q−mλ−1
2
f (0)(t, x, λ2, q)

dt

2πit
= f (−1)(q−mλ−12 , x, q) . (315)

Proof. For part (a), notice that

B1f̂ (0)(ξ, x, q) =

∞∑
k=0

(qx; q)k(qx
−1; q)kξ

k = (qx; q)∞(qx−1; q)∞

∞∑
k=0

1

(qk+1x; q)∞(qk+1x−1; q)∞
ξk

= (qx; q)∞(qx−1; q)∞

∞∑
k=0

∞∑
n,`=0

qkn+k`+n+`x`−n

(q; q)n(q; q)`
ξk

= (qx; q)∞(qx−1; q)∞

∞∑
n,`=0

qn+`x`−n

(q; q)n(q; q)`(1− qn+`ξ)

= (qx; q)∞(qx−1; q)∞

∞∑
n=0

n∑
`=0

qnx2`−n

(q; q)`(q; q)n−`(1− qnξ)
.

(316)

The residue then follows. For part (b), the pole structure is clear noting that Equation (290)

is convergent if all the terms are and that B1f̂ (0)(qktλ2, x, q) has poles at t ∈ λ−12 qZ≤−k . We
compute the residues ρm := Rest=q−mλ−1

2
f (0)(t, x, λ2, q)

dt
2πit

as follows:

ρm = Rest=q−mλ−1
2

(L1B1f̂ (0))(t, x, λ2, q)
dt

2πit

= Rest=q−mλ−1
2

1

θ(λ2, q)

∑
k∈Z

(−1)kqk(k+1)/2λk2B1f̂ (0)(qkλ2t, x, q)
dt

2πit

=
1

θ(λ2, q)

∑
k∈Z

(−1)kqk(k+1)/2λk2R(m− k, x, q)

=
1

θ(λ2, q)
(−1)mqm(m+1)/2λm2

∞∑
k=0

(−1)kqk(k−1)/2(q−mλ−12 )kR(k, x, q)

=
−(qx; q)∞(qx−1; q)∞

θ(λ2, q)
(−1)mqm(m+1)/2λm2

∞∑
k,`=0

(−1)k
qk(k+1)/2x2`−k

(q; q)`(q; q)k−`
(q−mλ−12 )k

= f (−1)(q−mλ−12 , x, q) .

(317)

�

The functional equation (282a) for U, V defined in (292) can be written in the form

U(qt, x, λ1, λ2, q) = A(t, x, q)U(t, x, λ1, λ2, q) and V (qt, x, q) = A(t, x, q)V (t, x, q) (318)

where

A(t, x, q) =

 0 1 0
0 0 1
q−3 q−3t−1 − (1 + x+ x−1)q−2 (1 + x+ x−1)q−1 − q−3t−1

 . (319)
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Therefore, we see that

det(U(qt, x, λ1, λ2, q)) = det(U(t, x, λ1, λ2, q))q
−3, det(V (qt, x, q)) = det(V (t, x, q))q−3 .

Lemma 5.12. We have:

det(U(t, x, λ1, λ2, q)) = − q−3x

(1− x)2
t−3

det(V (t, x, q)) =
θ(q−1x; q)2θ(tx; q)θ(tx−1; q)

θ(x−2; q)θ(t; q)2(q; q)3∞

q−3x

(1− x)2
t−3 .

(320)

Proof. Firstly notice that

U(t, x, λ1, λ2, q)

=W (f (1)(t, x, λ1, q), f
(−1)(t, x, q), f (0)(t, x, λ2, q))

=

 0 1 0

0 0 1
q−2t−1 −q−2 q−2t−1 − (x+ x−1)q−1

 0 0 1

f (1)(t, x, λ1, q) f (−1)(t, x, q) f (0)(t, x, λ2, q)

f (1)(qt, x, λ1, q) f (−1)(qt, x, λ1, q) f (0)(qt, x, λ2, q)

 (321)

with a similar expression for V . Therefore,

det(U(t, x, λ1, λ2, q)) = q−2t−1(f (1)(t, x, λ1, q)f
(−1)(qt, x, q)− f (1)(qt, x, λ1, q)f

(−1)(t, x, q))

det(V (t, x, q)) = q−2t−1(g(0,x
−1)(t, x, q)g(0,x)(qt, x, q)− g(0,x−1)(qt, x, q)g(0,x)(t, x, q)) .

(322)
Now notice that both det(U(t, x, λ1, λ2, q))t

3 and det(V (t, x, q))t3 are elliptic functions in t.
Furthermore, det(U(t, x, λ1, q)) has potentially simple poles in t at t ∈ ±q−1/4−Z/2λ−1 and
t ∈ qZ. However, note that the poles of f (−1) at t ∈ qZ cancel with zeros of f (1). Lemma 5.10
implies that

Rest=±q−1/4−nλ−1 det(U(t, x, λ1, λ2, q)q
2t) =

θ(±q3/4λ−11 ; q)θ(±q−1/4x; q)θ(±q−3/4x; q)θ(±q−3/4λ1; q)
2(q; q)2∞θ(x; q)θ(x−1; q)θ(q−1λ1; q)θ(q−3/2λ1; q)

× f (−1)(±q−1/4−nλ−11 , x, q)f (−1)(±q3/4−nλ−11 , x, q)

− θ(±q3/4λ−11 ; q)θ(±q−1/4x; q)θ(±q−3/4x; q)θ(±q−3/4λ1; q)
2(q; q)2∞θ(x; q)θ(x−1; q)θ(q−1λ1; q)θ(q−3/2λ1; q)

× f (−1)(±q3/4−nλ−11 , x, q)f (−1)(±q−1/4−nλ−11 , x, q) = 0 .

(323)

A similar calculation shows that

Rest=±q−3/4−nλ−1
1

det(U(t, x, λ1, λ2, q)) = 0 . (324)

Therefore, we see that U(t, x, λ1, q)t
2 is elliptic and holomorphic in t ∈ C×. Therefore,

it is constant in t. Now considering the limit as t → 0, using the definition of f (±1) and
their asymptotic expansions (given by their formal power series expansions, by a version of
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Watson’s lemma), it follows that

det(U(t, x, λ1, λ2, q))q
2t3 = lim

t→0
det(U(t, x, λ1, λ2, q))q

2t3

= lim
t→0

θ(t; q)θ(q−1x; q)

θ(t; q)θ(x; q)(1− x)2
t2 − lim

t→0

θ(qt; q)θ(q−1x; q)

θ(q−1t; q)θ(x; q)(1− x)2
t2

= − lim
t→0

q−1
θ(t; q)θ(x; q)

θ(t; q)θ(x; q)(1− x)2
= − q−1x

(1− x)2
.

(325)
Now noting that θ(t; q)2/θ(tx; q)θ(tx−1; q) is elliptic we see that

det(V (t, x, q))t3
θ(t; q)2

θ(tx; q)θ(tx−1; q)
(326)

is elliptic and holomorphic in t and therefore constant in t. Then we see that

lim
t→∞

det(V (t, x, q))q2t3
θ(t; q)2

θ(tx; q)θ(tx−1; q)

= lim
t→∞

(g(0,x
−1)(t, x, q)g(0,x)(qt, x, q)− g(0,x−1)(qt, x, q)g(0,x)(t, x, q))t2

θ(t; q)2

θ(tx; q)θ(tx−1; q)

= q−1
(qx2; q)∞(qx−2; q)∞(1− x2)θ(q−1x; q)θ(q−1x−1; q)

(1− x)2θ(x2; q)θ(x−2; q)(q; q)2∞

= −q−1x2 θ(x2; q)θ(q−1x; q)θ(q−1x−1; q)

θ(x2; q)θ(x−2; q)(1− x)2(q; q)3∞
.

(327)

�

To finish the proof of Theorem 1.9 we will use the state integrals introduced in [28,
Equ.(139)] for w in a neighbourhood of zero.∫

R+iε

Φb(x+ ib−1u)Φb(x− ib−1u)
exp

(
−πix2 − 2π zx

b

)
1 + q̃1/2 exp

(
−2πx

b

) dx . (328)

The factorisation of this integral was done in [28, Equ.(149)]. This module is again not self
dual (see Proposition 2.6) and means that additional functions arise in the factorisation. It
was shown, using Equation (49), that Equation (328) factors as combinations of elementary
functions holomorphic in C′ times

I(z, w, τ) = g(0,1)(t̃, x̃, q̃) + τg(0,x)(t̃, x̃, q̃)L(x−1)(t, x, q)− τg(0,x−1)(t̃, x̃, q̃)L(x)(t, x, q) (329)

where

L(x∓)(t, x, q) =
θ(t; q)(1− x∓)(q; q)2∞
θ(q−1x±; q)θ(tx∓; q)

(qx±2; q)∞

∞∑
k=0

(−1)k
qk(k+1)/2x±k

(q; q)k(qx±2; q)k(1− qkx±)
t−k.

(330)
These functions L(x∓) can then be shown to satisfy

L(x∓)(t, x, q)− L(x∓)(qt, x, q) =
θ(x−2; q)θ(t; q)2(q; q)3∞

θ(q−1x; q)2θ(tx; q)θ(tx−1; q)

(1− x)2

x
qtg(0,x

±)(qt, x, q).

(331)
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Again this determines L(x∓) up to the addition of an elliptic function so checking the principal
parts

V (t, x, q)−1

(
0 1 0
0 0 1

q−2t−1 −q−2 q−2t−1 − (x+ x−1)q−1

)
=

−L(x)(t, x, q) ∗ ∗
L(x−1)(t, x, q) ∗ ∗

1 0 0

 . (332)

where the ∗ are given by ± det(V (t, x, q))−1g(0,x
±)(qmt, x, q) where m = 0, 1. Finally, one can

use the functional equations to take w away from 0 which gives the analytic continuation or
can alter the contour depending on w. Noting that the entries of ΩV,S are combinations of
elementary functions times I(z+n+mτ,w, τ), we see that ΩV,S extends for τ ∈ C′ and using
the modularity of the monodromy and part (c) of Theorem 1.2 completes the proof. �

5.8. An analytic lift of the colored Jones polynomial. We finish this section by giving
a proof of Theorem 1.10. The main observation is that when x = qN , the series f̂ (0)(t, qN , q)
terminates to a polynomial of t, in which case the q-Borel transfrom, followed by a q-Laplace
transfrom is the identity. Explicitly, when x = qN for N ∈ Z≥1 we have

f̂ (0)(t, qN , q) =
∞∑
k=0

(−1)kq−k(k+1)/2(q1+N ; q)k(q
1−N ; q)kt

k

=
N−1∑
k=0

(−1)kq−k(k+1)/2(qN+1; q)k(q
1−N ; q)kt

k .

(333)

The theorem then follows from Equation (58). �

5.9. Specialisation t = qm. In this short subsection, included for completeness, we briefly
comment how our analytic functions of t, specialised to t = qm, become the known sequences
of q-series and (x, q)-series that have appeared in the literature. In [36] and [26, 27, 28] the
q-holonomic modules are discrete versions of what we have considered in Section 5. Here
we describe how the solutions can be constructed from the ones presented here. Consider a
solution f(t, q) of a q-difference equation

ar(t, q)f(qrt, q) + ar−1(t, q)f(qr−1t, q) + · · ·+ a0(t, q)f(t, q) = 0

corresponding to an edge of slope κ on the Newton polygon, and let

fm(q) = (−1)κmq−κm(m+1)/2Resz=0θ(q
me(z), q)−κf(qme(z), q)

dz

2πiz
. (334)

Then we find that fm(q) satisfies the linear q-difference equation

ar(q
m, q)fr+m(q) + ar−1(q

m, q)fr+m−1(q) + · · ·+ a0(q
m, q)fm(q) = 0 .

This follows from

0 =Resz=0

(
ar(q

me(z), q)f(qr+me(z), q) + ar−1(q
me(z), q)f(qr+m−1e(z), q) + . . .

+a0(q
me(z), q)f(qme(z), q))

e(κz)dz

θ(e(z); q)κ2πiz

=ar(q
m, q)fr+m(q) + ar−1(q

m, q)fr+m−1(q) + · · ·+ a0(q
m, q)fm(q)

(335)
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where the equality follows from holomorphicity of θ−κf or the higher order of vanishing of
the indicial polynomial.

For example, for the Equation (28), and its solution solution g(0,1) defined in Equa-
tion (209), we obtain that

Resz=0g
(0,1)(qme(z), q)

dz

2πiz
=
∞∑
k=0

(
k +

1

2
−m− 2E

(k)
1 (q)

)
(−1)k

qk(k+1)/2−km−m

(q; q)2k
, (336)

a q-series that appears in [27, Equ.13b] and [28, Equ.6].
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2009.

[48] Maxim Kontsevich. Talks on resurgence. July 20, 2020 and August 21, 2020.
[49] Christoph Koutschan. HolonomicFunctions (user’s guide). Technical Report 10-01, RISC Report Series,

Johannes Kepler University Linz, 2010.
[50] Ruth Lawrence and Don Zagier. Modular forms and quantum invariants of 3–manifolds. Asian Journal

of Mathematics, 3:93–107, 1999.
[51] Günter Meinardus. Asymptotische Aussagen über Partitionen. Math. Z., 59:388–398, 1954.
[52] Peter Miller. Applied asymptotic analysis, volume 75 of Graduate Studies in Mathematics. American

Mathematical Society, Providence, RI, 2006.
[53] Claude Mitschi and David Sauzin. Divergent series, summability and resurgence. I, volume 2153 of

Lecture Notes in Mathematics. Springer, [Cham], 2016. Monodromy and resurgence, With a foreword

by Jean-Pierre Ramis and a preface by Éric Delabaere, Michèle Loday-Richaud, Claude Mitschi and
David Sauzin.

[54] Takeshi Morita. A connection formula of the Hahn-Exton q-Bessel function. Symmetry Integrability and
Geometry-methods and Applications, 7:115, 2011.

[55] Takeshi Morita. The Stokes phenomenon for the q-difference equation satisfied by the basic hypergeo-
metric series 3ϕ1(a1, a2, a3; b1; q, x). In Novel development of nonlinear discrete integrable systems, RIMS
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