
APPLICATIONS OF THE LANTERN IDENTITY

STAVROS GAROUFALIDIS

Abstract. The purpose of this note is to unify the role of the lantern identity in the proof of
several finiteness theorems. In particular, we show that for every nonnegative integer m, the vector
space (over the rationals) of type m (resp. T -type m) invariants of integral homology 3-spheres are
finite dimensional. These results have already been obtained by [Oh] and [GL2] respectively; our
derivation however is simpler, conceptual and relates to several other applications of the lantern
identity.

1. The lantern identity

In his seminal work using the lantern identity, D. Johnson showed that the Torelli group is finitely
generated [Jo4] and further determined its abelianization [Jo5].

In the present note we use the lantern identity in order to give a simple proof of the following
two finiteness theorems:

• The vector space of type m invariants of integral homology 3-spheres is finite dimensional (for
every m), due to T. Ohtsuki [Oh].
• The vector space of T -type m invariants of integral homology 3-spheres is finite dimensional

(for every m), due to the author and J. Levine, [GL2].

Our proof relates D. Johnson’s finiteness theorems to the above mentioned results and explains in
a conceptual way the relation of the lantern identity and finiteness theorems. For completeness,
in Section 3 we mention two more applications of the lantern identity to finiteness theorems. We
also offer exercises and hints for the reader to figure out forms of a fictional lantern identity (which
would still prove the various finiteness results), hoping to bring together a rather diverse audience
and unify the use of the lantern identity in the proofs of finiteness theorems.

We begin by recalling the lantern identity, which is usually written as an identity in the group of
framed pure 3-strand braids P3 on the plane, or in the group of framed pure 4-strand braids P4(S2)
on the 2-sphere S2 (otherwise known as the mapping class group of a 2-sphere with 4 boundary
components). With the notation of Figures 1, 2 we have:

τ123τ1τ2τ3 = τ12τ13τ23 in P3

ε4ε1ε2ε3 = αβγ in P4(S2)

Note that for an unoriented simple closed curve c, a right-handed (resp. left-handed) Dehn twist on
c represents an element of the mapping class group denoted by c (resp. c−1), and that we compose
maps from left to right (contrary to the usual way which composition of functions is written) and
braids from top to bottom. There is a map Pn+1 → Pn(S2) (which places the last strand at infinity)
which maps one version of the lantern identity on the other, as is obvious from the left hand side
of Figure 2.
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Figure 1. The lantern identity in P3. Horizontal circles in the picture correspond (by a +1, i.e., a

right-handed twist) framed pure braids on 3-strands denoted by τi, τij , τijk.
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Figure 2. Two views of the curves that appear in the lantern identity on a sphere.

2. The lantern identity and finite type invariantss

2.1. Finite type invariants and the lantern identity. Using the following elementary lemma:

Lemma 2.1. If R = Z〈a, b〉 is the noncommutative ring on {a, b} and I
def
= (a, b) the two-sided

augmentation ideal (where x
def
= 1− x), then we have:

ab ≡ a+ b mod I2(1)

together with the lantern identity in P3, we deduce that:

Proposition 2.2. [Oh] For R = ZP3 and I the augmentation ideal, we have:

τ123 ≡ τ12 + τ13 + τ23 − τ1 − τ2 − τ3 mod I2(2)

Together with the moves of [Oh, Figure 2.1], Ohtsuki used the above equation to show that
the vector space of finite type m invariants of integral homology 3-spheres is finite dimensional for
every nonnegative integer m, [Oh]. It was shown in [L] (see also [GL1, Remark 2.9]) that the moves
of [Oh, Figure 2.1] generate the surgery equivalence relation of algebraically split links (i.e., links
with linking number zero); however a conceptual understanding of equation (2) was missing. The
lantern identity provides such an explanation.

A few questions are in order:

Question 1. Can we improve Lemma 2.1 and Corollary 2.2 mod Im for any m > 2?

The answer is positive, as follows.

Lemma 2.3. If R = Z〈a, b, b−1〉, then in the completion R̂I with respect to the augmentation ideal,
we have:

1− ab−1 = (1− a)(1− b)−1
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Proof. Since a = 1 − a and b−1 = 1/b = (1 − b)−1, it follows that 1 − ab−1 = ab−1 = (1 − a)(1 −
b)−1.

On the other hand, the lantern identity implies that for any number n ≥ 3 of strands we have
in Pn:

τ12...n

n∏
i=1

τn−2
i =

∏
1≤i<j≤n

τij

(where τi commute with τij, and the product is taken lexicographically). Thus, we deduce that in

the group ring ẐPn (completed with respect to the augmentation ideal) we have:

1− τ12...n =

∏
1≤i<j≤n(1− τ ij)∏n
i=1(1− τ i)n−2

(where the product is taken lexicographically). This was first obtained in [GL1, Theorem 4]. The
reader is invited to be convinced that the above identity is indeed a generalization of Proposition
2.2.

Question 2. Do we really need the lantern identity in order to show that the space of finite type
m invariants of integral homology 3-spheres is finite dimensional?

Ohtsuki’s proof uses only the fact that we can express τ123 of equation (2) in terms of τ i, τ ij .
Therefore any fictional identity on P3 that expressed a nonzero power of τ123 in terms of τi, τij
would suffice.

2.2. Finite T -type invariants and the lantern identity. We begin by recalling a few definitions
and notation from [GL2]. All manifolds will be oriented and all maps will be orientation preserving.
LetM denote the vector space (over Q) on the set of (oriented) integral homology 3-spheres. Given
an embedding Σg → M of a closed genus g surface in an integral homology 3-sphere M , let Tg
denote the Torelli group of Σg (i.e., the group of (orientation preserving) diffeomorphism classes of
surface diffeomorphisms that act trivially in the homology), let QTg denote the group-ring and I its
augmentation ideal. The process of cutting M across Σg, twisting by an element of Tg and gluing
back, defines (by linear extension) a map: Φf : QTg →M. In [GL2, Definition 1.1] we considered

the decreasing filtration FT∗M onM defined by FTmM = ∪all fΦf (Im). We call a map λ :M→ Q
an invariant of integral homology 3-spheres of T -type m if λ(FTm+1M) = 0. As an application of
the lantern identity we show that:

Proposition 2.4. The vector space of T -type m invariants of integral homology 3-spheres is fi-
nite dimensional for every nonnegative integer m. Furthermore, the graded vector space is zero
dimensional for odd m.

Proof. It suffices to show that the graded vector space GTmM
def
= FTmM/FTm+1M is finite (resp.

zero) dimensional for every nonnegative (resp. odd) integer m. A geometric argument of [GL2,
Proposition 1.6] implies that FTmM is the union over all Heegaard surfaces h : Σg →M in integral
homology 3-spheres M , and thus GTmM = ∪hΦh(Im/Im+1). For the convenience of the reader, we
sketch this argument here. Given Σ ↪→ M , it separates M in two components M+,M−. Though
M+,M− need not be handelbodies, after we drill in tubes in them (thus increasing the genus of
their boundary) we can assume that they are. Any finite set of elements of the Torelli group of Σ
can be extended to elements of the Torelli group of the extended surface.

The action of the mapping class group Γg on Tg by conjugation implies that Im/Im+1 is a
Sp(H) (and thus, a GL(L+)) module, where H = H1(Σg,Z), L± = Ker(h : H → H1(M±,Z)) and
M = M+ ∪h M

−. Furthermore, another geometric argument of [GL3, Lemmas 3.1-3.3] implies
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that ∪hΦh(Im/Im+1) = ∪h′Φh′((I
m/Im+1)GL(L+)), for all h′ standard Heegaard splittings of S3 (of

arbitrary genus).
For the convenience of the reader, we briefly sketch this argument here. First, we show that

given a handelbody Q and an automorphism α of H1(∂Q,Z) preserving as a set the Lagrangian
L = Ker(H1(∂Q,Z)→ H1(Q,Z)), then it can be geometrically realized by a homeomorphism of Q.
Using that, we show that given two Heegaard splittings f1, f2 : Σ ↪→ M such that f1(Σ) = f2(Σ)
and such that the two Lagrangians in H1(Σ,Z) with respect to f1 equal to those with respect
to f2, then Φf1(Im/Im+1) = Φf2(Im/Im+1). Next, we show that given two Heegaard splittings
f1, f2 : Σ ↪→ M such that the two Lagrangians L+, L− in H1(Σ,Z) with respect to f1 equal to
those with respect to f2, then Φf1(Im/Im+1) = Φf2(Im/Im+1). This, together with the fact that
Φf1(Im/Im+1) is GL(L+) invariant, implies the conclusion.

Next, we recall that D. Johnson [Jo2] introduced a group homomorphism (well known as the

Johnson homomorphism) Tg → U
def
= Λ3H/H. Using the lantern identity, he showed in [Jo5] that

the Johnson homomorphism coincides (rationally) with the abelianization of the Torelli group Tg
as a Sp(H) module.

Furthermore, both the Johnson homomorphism and the map Φh′ above are stable with respect
to the inclusion of a surface to another, in the following sense: for a surface Σ with one boundary
component included in a closed surface Σ′, let Σ̂ denote the surface obtained by closing Σ by the
addition of a disc. Then, we have a canonical inclusion H1(Σ̂,Z) ' H1(Σ,Z) → H1(Σ′,Z), and
both the Johnson homomorphism and the map Φh′ respect this inclusion.

Since I/I2 can also be (rationally) identified with the abelianization of Tg, we deduce that
I/I2 ' U as a Sp(H) module. Thus, for a fixed m, Im/Im+1 is a quotient of ⊗mU , and hence of
Λ3H and of T3H, the third tensor power of H. Note that T3H = T3L+T2L⊗L?+T2L?⊗L+T3L?

(where L = L+ and L? is the dual of L) is a GL(L) representation.
We now need to recall some facts from classical invariant theory, which we refer the reader to [W]

for a complete exposition. The contraction L⊗L? → Q of the indices of L with the indices of L? is
a GL(L) invariant map. It follows from the first fundamental theorem of classical invariant theory
that for all nonegative integers a, b (TaL ⊗ TbL?)GL(L) is generated by all ways of contracting all
indices of TaL with all indices of TbL?; in particular (TaL⊗TbL?)GL(L) is zero dimensional unless
a = b. The second fundamental theorem of classical invariant theory implies that if the dimension
of L is greater than a+ b then the above mentioned contractions are linearly independent and thus
form a basis of (TaL ⊗ TbL?)GL(L) independent of L. Thus, the dimension of the vector space
(TmT3(L+ L?))GL(L) is independent of L as long as dim(L) > 3m. and zero for odd m.

The above discussion together with the stability of the Johnson homomorphism with respect to

g imply that the vector spaces (Im/Im+1)GL(L+) are naturally isomorphic, finite dimensional for
genus g ≥ 3m and in addition zero dimensional for odd m. Furthermore, by the stability of Φh we
have that GTmM = Φh3m((Im/Im+1)GL(L+)) where h3m is the standard genus 3m Heegaard splitting
of S3. This finishes the proof of the proposition.

Remark 2.5. In [GL2, Theorem 4] we have shown among other things that T -type 2m invariants of
integral homology 3-spheres coincide with T -type 2m − 1 and with type 3m invariants of integral
homology 3-spheres. Thus, the above proposition follows from the fact type m invariants of integral
homology 3-spheres form a finite dimensional vector space. Compared to the rather involved proof
of [GL2, Theorem 4], the above proof is new and shorter; furthermore it reduces the finiteness result
of the proposition to the fact that the abelianization of the Torelli group is finitely generated.

It seems natural to ask the following:

Question 3. Do we really need the lantern identity in order to show that the space of T -type m
invariants of integral homology 3-spheres is finite dimensional?



APPLICATIONS OF THE LANTERN IDENTITY 5

The above proof shows that as long as (rationally) the abelianization of the Torelli is finitely
generated, T -type m invariants of integral homology 3-spheres form a finite dimensional space. In
addition, as long as the abelianization of the Torelli group as a Sp(H) module is included in an
odd tensor power of H, the graded vector space of finite T -type m invariants is zero dimensional
for odd m. The ambitious reader may figure out a form of a fictional lantern identity compatible
with Johnson’s arguments which show that the Torelli group (and thus its abelianization) is finitely
generated [Jo4] or with Johnson’s arguments that determine the abelianization of the Torelli group
[Jo5].

3. Two additional applications

In this section we mention two more applications of the lantern identity to the following finiteness
theorems:

• The abelianization of the mapping class group of a closed genus g > 2 surface is trivial, due
to J. Powell [Po] and independently due to J. Harer [Ha].
• The conformal dimensions and the central charge of an arbitrary topological quantum field

theory in 3 dimensions are rational numbers, due to C. Vafa [Va].

We summarize Harer’s argument here. Since the mapping class group is generated by Dehn
twists on simple closed curves, the lantern identity implies that it is generated by twists on non-
separating curves. Since any two nonseparating simple closed curves are conjugate, the lantern
identity (applied so that the Dehn twists on all seven participating curves are nonseparating and
right-handed) implies the abelianization of the the mapping class group is trivial.

For a reproduction of Vafa’s argument as well as a friendly and complete definition of the terms
and concepts involved, see [BK].

The ambitious reader may figure out a form of a fictional lantern identity which would still make
J. Harer’s and C. Vafa’s arguments work.

3.1. Acknowledgment. We wish to thank Jerome Levine for encouraging conversations.
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